0 of 88 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 88 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
A force \(F=20+10 y\) acts on a particle in \(y\)-direction, where \(F\) is in newton and \(y\) in meter. Work done by this force to move the particle from \(y=0\) to \(y=1 \mathrm{~m}\) is [NEET 2019]
(b) Work done by a variable force
Work done, \(W=\int_{y_{i}}^{y_{f}} F d y \Rightarrow \int_{y=0}^{y_{f}=1} F \cdot d y\) where, \(\mathrm{F}=20+10 y\)
\(
\begin{aligned}
&\therefore \quad W=\int_{0}^{1}(20+10 y) d y \\
&=\left[20 y+\frac{10 y^{2}}{2}\right]_{0}^{1}=25 J
\end{aligned}
\)
An object of mass \(500 \mathrm{~g}\), initially at rest acted upon by a variable force whose \(X\) component varies with \(X\) in the manner shown in the figure below. The velocities of the object a point \(X=8 \mathrm{~m}\) and \(X=12 \mathrm{~m}\), would be the respective values of (nearly) [NEET (Odisha) 2019]
(c) The area under the force-displacement curve gives the amount of work done.
From the work-energy theorem,
\(
W=\Delta K E
\)
From \(x=0\) to \(x=8 \mathrm{~m}\)
\(
\begin{aligned}
&\frac{1}{2} m v^{2}=100+30 \\
&\therefore v=\sqrt{520}=23 \mathrm{~m} / \mathrm{s} \\
&\text { From } x=0 \text { to } x=12 \mathrm{~m} \\
&\frac{1}{2} m v^{2}=100+30-47.5+20 \\
&\therefore v=\sqrt{410}=20.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
Consider a drop of rain water having mass \(1 \mathrm{~g}\) falling from a height of \(1 \mathrm{~km}\). It hits the ground with a speed of \(50 \mathrm{~m} / \mathrm{s}\). Take \(\mathrm{g}\)Â constant with a value \(10 \mathrm{~m} / \mathrm{s}^{2}\). The work done by the (i) gravitational force and the (ii) resistive force of air is [NEET 2017]
(c) From work-energy theorem,
\(
\begin{aligned}
&\mathrm{W}_{g}+\mathrm{W}_{a}=\Delta \mathrm{K} . \mathrm{E} . \\
&\text { or, } m g h+\mathrm{W}_{a}=\frac{1}{2} m v^{2}-0 \\
&10^{-3} \times 10 \times 10^{3}+\mathrm{W}_{a}=\frac{1}{2} \times 10^{-3} \times(50)^{2} \\
&\Rightarrow \mathrm{W}_{a}=-8.75 \mathrm{~J}
\end{aligned}
\)
which is the work done due to air resistance
Work done due to gravity \( \mathrm{W}_{g} =\mathrm{mgh}\) \(=10^{-3} \times 10 \times 10^{3}=10 \mathrm{~J}\)
Two similar springs P and Q have spring constants \(\mathrm{K}_{\mathrm{P}}\) and \(\mathrm{K}_{\mathrm{Q}}\), such that \(\mathrm{K}_{\mathrm{P}}>\mathrm{K}_{\mathrm{Q}}\). They are stretched, first by the same amount (case a,) and then by the same force (case b). The work done by the springs \(\mathrm{W}_{\mathrm{P}}\) and \(\mathrm{W}_{\mathrm{Q}}\) are related as, in case (a) and case (b), respectively [CBSE AIPMT 2015]
(b) Case (a): Suppose the two springs are stretched by the same distance \(x\). Then \(\frac{W_{P}}{W_{Q}}=\frac{\frac{1}{2} k_{p} x^{2}}{\frac{1}{2} k_{Q} x^{2}}=\frac{k_{p}}{k_{Q}}\)
As \(\mathrm{k}_{\mathrm{p}}>\mathrm{k}_{\mathrm{Q}}\) so, \(\mathrm{W}_{\mathrm{p}}>\mathrm{W}_{\mathrm{Q}}\)
Case (b): Suppose the two springs stretched by distance \(x_{P}\) and \(x_{Q}\) by the same force \(\mathrm{F}\). Then, \(\quad \mathrm{F}=k_{p}{x}_{p}=k_{Q}{x}_{Q}\)
\(
\frac{W_{p}}{W_{Q}}=\frac{\frac{1}{2} k_{p} x_{p}^{2}}{\frac{1}{2} k_{Q} x_{Q}^{2}}=\frac{k_{p} \cdot x_{p} \cdot x_{p}}{k_{Q} \cdot x_{Q} \cdot x_{Q}}=\frac{F x_{p}}{F x_{Q}}=\frac{k_{Q}}{k_{p}}
\)
As \(k_{P}>k_{Q} \quad \therefore \quad \mathrm{W}_{\mathrm{Q}}>\mathrm{W}_{\mathrm{P}}\)
A uniform force of \((3 \hat{i}+\hat{j})\) newton acts on a particle of mass \(2 \mathrm{~kg}\). The particle is displaced from position \((2 \hat{i}+\hat{k})\) meter to position \((4 \hat{i}+3 \hat{j}-\hat{k})\) meter. The work done by the force on the particle is
[CBSE AIPMT 2013]
(c) Given : \(\overrightarrow{\mathrm{F}}=3 \hat{i}+\hat{j}\)
\(
\begin{aligned}
&\vec{r}_{1}=(2 \hat{i}+\hat{k}), \vec{r}_{2}=(4 \hat{i}+3 \hat{j}-\vec{k}) \\
&\vec{r}=\vec{r}_{2}-\vec{r}_{1}=(4 \hat{i}+3 \hat{j}-\vec{k})-(2 \hat{i}+\hat{k})
\end{aligned}
\)
or \(\vec{r}=2 \hat{i}+3 \hat{j}-2 \hat{k}\)
So work done by the given force, \(w=\vec{F} \cdot \vec{r}\)
\(
=(3 \hat{i}+\hat{j}) \cdot(2 \hat{i}+3 \hat{j}-2 \hat{k})=6+3+0=9 \mathrm{~J}
\)
Force \(F\) on a particle moving in a straight line varies with distance d as shown in the figure below. The work done on the particle during its displacement of \(12 \mathrm{~m}\) is
[CBSE AIPMT 2011]
(b)
(b) Work done is equal to the area under the curve in the F-d graph.
Work done = Area under F-d graph
\(
\begin{aligned}
&=2 \times(7-3)+\frac{1}{2} \times 2 \times(12-7) \\
&=8+\frac{1}{2} \times 10=8+5=13 \mathrm{~J}
\end{aligned}
\)
A vertical spring with force constant \(\mathrm{k}\) is fixed on a table. A ball of mass \(m\) at a height \(h\) above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance d. The network done in the process is
[CBSE AIPMT 2007]
(a) \(W=\) Potential energy stored in the spring +
Loss of potential energy of mass
\(
W=m g(h+d)-\frac{1}{2} k d^{2}
\)
The gravitational potential energy of the ball gets converted into the elastic potential energy of the spring.
\(
m g(h+d)=\frac{1}{2} k d^{2}
\)
Net work done \(=\operatorname{mg}(h+d)-\frac{1}{2} k d^{2}=0\)
A body of mass \(3 \mathrm{~kg}\) is under a constant force, which causes a displacement \(s\) in metre in it, given by the relation \(s=\frac{1}{3} t^{2}\), where \(t\) is in second. Work done by the force in \(2 \mathrm{~s}\) is [CBSE AIPMT 2006]
(c) Work done by the force = force x displacement
or \(\quad W=F \times s \dots (i)\)
But from Newton’s 2nd law, we have
Force = mass \(\times\) acceleration
i.e. \(F=m a \dots (ii)\)
Hence, from Eqs. (i) and (ii), we get
\(W=m a s=m\left(\frac{d^{2} s}{d t^{2}}\right) s\left(\because a=\frac{d^{2} s}{d t^{2}}\right) \ldots\) (iii)
Now, we have displacement,
\(s=\frac{1}{3} t^{2}\)
\(\therefore \quad \frac{d^{2} s}{d t^{2}}=\frac{d}{d t}\left[\frac{d}{d t}\left(\frac{1}{3} t^{2}\right)\right]\)
\(=\frac{d}{d t} \times\left(\frac{2}{3} t\right)\)
\(=\frac{2}{3} \frac{d t}{d t}=\frac{2}{3}\)
Hence, Eq. (iii) becomes
\(W=\frac{2}{3} m s=\frac{2}{3} m \times \frac{1}{3} t^{2}=\frac{2}{9} m t^{2}\)
We have, \(\quad m=3 \mathrm{~kg}, \mathrm{t}=2 \mathrm{~s}\)
\(
\therefore \quad W=\frac{2}{9} \times 3 \times(2)^{2}=\frac{8}{3} \mathrm{~J}
\)
\(300 \mathrm{~J}\) of work is done in sliding a \(2 \mathrm{~kg}\) block up an inclined plane of height \(10 \mathrm{~m}\). Taking \(g=10\) \(\mathrm{m} / \mathrm{s}^{2}\), work done against friction is \([2006]\)
(a) Network done in sliding a body up to a height hon inclined plane
\(=\) Work done against gravitational force
+ Work done against frictional force
\(\Rightarrow \quad \mathrm{W}=\mathrm{W}_{g}+\mathrm{W}_{f} \quad \ldots\) (i)
but \(\quad W=300 \mathrm{~J}\)
\(W_{g}=m g h\)
\(=2 \times 10 \times 10=200 \mathrm{~J}\)
Putting in Eq. (i), we get
\(300=200+W_{f}\)
\(\Rightarrow \quad W_{f}=300-200=100 \mathrm{~J}\)
A force \(F\) acting on an object varies with distance \(x\) as shown here. The force is in newton and \(x\) is in metre. The work done by the force in moving the object from \(x=0\) to \(x=6 \mathrm{~m}\) is [CBSE AIPMT 2005]
(c) Work done in moving the object from \(x=0\) to \(x=6 \mathrm{~m}\), is given by area under the F-x curve.
\(
\begin{aligned}
W &=\text { Area of square }+\text { area of triangle } \\
&=3 \times 3+\frac{1}{2} \times 3 \times 3 \\
&=9+4.5=13.5 \mathrm{~J}
\end{aligned}
\)
A force of \(250 \mathrm{~N}\) is required to lift a \(75 \mathrm{~kg}\) mass through a pulley system. In order to lift the mass through \(3 \mathrm{~m}\), the rope has to be pulled through \(12 \mathrm{~m}\). The efficiency of the system is [CBSE AIPMT 2001]
(d) Efficiency \(=\frac{\text { output } \text { work }}{\text { input work }}\)
i.e., Efficiency,
\(
=\frac{75 \mathrm{~g} \times 3}{250 \times 12}=\frac{75 \times 10 \times 3}{250 \times 12}=0.75=75 \%
\)
A force acts on a 30 gm particle in such a way that the position of the particle as a function of time is given by \(x=3 t-4 t^{2}+t^{3}\), where \(x\) is in metres and t is in seconds. The work done during the first 4 seconds [CBSE AIPMT 1998]
(a) The mass is \(30 \mathrm{~g}\) or \(0.03 \mathrm{~kg}\) and the position of the particle is \(\mathrm{x}=3 \mathrm{t}-4 \mathrm{t}^{2}+\mathrm{t}^{3}\).
The velocity is given as,
\(
\frac{\mathrm{dx}}{\mathrm{dt}}=3-8 \mathrm{t}+3 \mathrm{t}^{2}
\)
The acceleration is given as,
\(
\frac{d^{2} x}{d t^{2}}=-8+6 t
\)
The work done is given as,
\(\mathrm{dW}=(\mathrm{ma}) \mathrm{dx}\)
\(\mathrm{dW}=(0.03) \times(-8+6 \mathrm{t})\left(3-8 \mathrm{t}+3 \mathrm{t}^{2}\right) \mathrm{dt}\)
\(\mathrm{W}=(0.03) \int_{0}^{4}\left(18 \mathrm{t}^{3}-72 \mathrm{t}^{2}+82 \mathrm{t}-24\right) \mathrm{dt}\)
\(\mathrm{W}=(0.03)\left(18 \times \frac{\mathrm{t}^{4}}{4}-72 \times \frac{\mathrm{t}^{3}}{3}+82 \times \frac{\mathrm{t}^{2}}{2}-24 \mathrm{t}\right)_{0}^{4}\)
\(\mathrm{W}=(0.03) \times 176\)
\(\mathrm{W}=5.28 \mathrm{~J}\)
Thus, the work done during the first \(4 \mathrm{~s}\) is \(5.28 \mathrm{~J}\).
A position dependent force, \(\mathrm{F}=\left(7-2 x+3 x^{2}\right)\),\(\mathrm{N}\) acts on a small body of mass \(2 \mathrm{~kg}\) and displaces it from \(\mathrm{x}=0\) to \(x=5 \mathrm{~m}\). Work done in joule is [CBSE AIPMT 1992]
(d) Work done by a variable force \(F\) in displacement from \(x=x_{1}\) to \(x=x_{2}\) is given by
\(
W=\int_{x_{1}}^{x_{2}} F(d x)
\)
Given, \(\quad x_{1}=0, x_{2}=5\)
\(
\begin{aligned}
F &=\left(7-2 x+3 x^{2}\right) \mathrm{N} \\
\therefore \quad W &=\int_{0}^{5}\left(7-2 x+3 x^{2}\right) d x \\
&=\left[7 x-x^{2}+x^{3}\right]_{0}^{5} \\
&=\left[7 \times 5-(5)^{2}+(5)^{3}\right] \\
&=[35-25+125]=135 \mathrm{~J}
\end{aligned}
\)
A bullet of mass \(10 \mathrm{~g}\) leaves a rifle at an initial velocity of \(1000 \mathrm{~m} / \mathrm{s}\) and strikes the earth at the same level with a velocity of \(500 \mathrm{~m} / \mathrm{s}\). The work done in joule to overcome the resistance of air will be [CBSE AIPMT 1989]
\(
\begin{array}{l}
\text { (b) } \mathrm{W}=\Delta \mathrm{E}=\frac{1}{2} m\left(v_{1}^{2}-v_{2}^{2}\right) \\
=\frac{1}{2} \times 0.01\left[(1000)^{2}-(500)^{2}\right]=3750 \mathrm{~J} .
\end{array}
\)
A particle of mass \(10 \mathrm{~g}\) moves along a circle of radius \(6.4 \mathrm{~cm}\) with a constant tangential acceleration. What is the magnitude of this acceleration if the kinetic energy of the particle becomes equal to \(8 \times 10^{-4}\) J by the end of the second revolution after the beginning of the motion? [NEET 2016]
(a) Given: Mass of particle, \(\mathrm{M}=10 \mathrm{~g}=\) \(\frac{10}{1000} \mathrm{~kg}\)
radius of circle \(R=6.4 \mathrm{~cm}\)
Kinetic energy E of particle \(=8 \times 10^{-4} \mathrm{~J}\)
acceleration \(a=\) ?
\(
\begin{array}{l}
\frac{1}{2} \mathrm{mv}^{2}=\mathrm{E} \Rightarrow \frac{1}{2}\left(\frac{10}{1000}\right) \mathrm{v}^{2}=8 \times 10^{-4} \\
\Rightarrow v^{2}=16 \times 10^{-2} \\
\Rightarrow \quad v=4 \times 10^{-1}=0.4 \mathrm{~m} / \mathrm{s} \\
\text { Now using } \\
v^{2}=u^{2}+2 a s \quad(s=4 \pi \mathrm{R}) \\
(0.4)^{2}=0^{2}+2 a\left(4 \times \frac{22}{7} \times \frac{6.4}{100}\right) \\
\Rightarrow \quad a=(0.4)^{2} \times \frac{7 \times 100}{8 \times 22 \times 6.4}=0.1 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
\)
A block of mass \(10 \mathrm{~kg}\), moving in \(x\) direction with a constant speed of \(10 \mathrm{~ms}^{-1}\), is subject to a retarding force \(\mathrm{F}=0.1 x \mathrm{~J} / \mathrm{m}\) during its travel from \(x=20 \mathrm{~m}\) to \(30 \mathrm{~m}\). Its final \(\mathrm{KE}\) will be: [CBSE AIPMT 2015]
(d) From the work-energy theorem,
Work done \(=\) Change in \(\mathrm{KE}\)
\(
\begin{aligned}
\Rightarrow \quad W &=K_{f}-K_{i} \\
\Rightarrow \quad K_{f} &=W+K_{i}=\int_{x_{1}}^{x_{2}} F x d x+\frac{1}{2} m v^{2} \\
&=\int_{20}^{30}-0.1 x d x+\frac{1}{2} \times 10 \times 10^{2} \\
&=-0.1\left[\frac{x^{2}}{2}\right]_{20}^{30}+500 \\
&=-0.05\left[30^{2}-20^{2}\right]+500 \\
&=-0.05[900-400]+500 \\
\quad K_{f} &=-25+500=475 \mathrm{~J}
\end{aligned}
\)
A person holding a rifle (mass of person and rifle together is \(100 \mathrm{~kg}\) ) stands on a smooth surface and fires 10 shots horizontally, in \(5 \mathrm{~s}\). Each bullet has a mass of \(10 \mathrm{~g}\) with a muzzle velocity of \(800 \mathrm{~ms}^{-1}\). The final velocity acquired by the person and the average force exerted on the person are [NEET Karnatak 2013]
(b) We have to use the Law of momentum conservation:
\(P(\) initial \()=P(\) final \()\)
\(0=n \cdot m \cdot u+(M-n \cdot m) \cdot v\)
where: \(\mathrm{n}=10, \mathrm{~m}=10 \mathrm{~g}=0.01 \mathrm{~kg}, \mathrm{u}=\) \(800 \mathrm{~m} / \mathrm{s}, \mathrm{M}=100 \mathrm{~kg}\).
\(0=10 \cdot 0.01 \mathrm{~kg} \cdot 800 \mathrm{~m} / \mathrm{s}+(100 \mathrm{~kg}-10\) – \(0.01 \mathrm{~kg}) \cdot \mathrm{v}\)
\(\mathrm{v}=-80Â \mathrm{kgm} \mathrm{s}^{-1} / 99.9Â \mathrm{kgm}Â \mathrm{s}^{-1}\)
\(\mathrm{v}= -0.8 \mathrm{~m} / \mathrm{s}\)
\(\mathrm{F}=\frac{\Delta \mathrm{P}}{\Delta \mathrm{t}}=\frac{10 \times 0.01 \mathrm{~kg} \times 800 \mathrm{~m} / \mathrm{s}}{5 \mathrm{~s}}=16 \mathrm{~N}\)
A particle with total energy \(E\) is moving in a potential energy region \(U(x)\). The motion of the particle is restricted to the region when [NEET Kar. 2013]
(c) As the particle is moving in a potential energy region.
\(\therefore\) Kinetic energy \(>0\)
And, total energy \(\mathrm{E}=\mathrm{K} . \mathrm{E} .+\) P.E.
\(\Rightarrow \mathrm{U}(x)<\mathrm{E}\)
The potential energy of a system increases if work is done [CBSE AIPMT 2011]
(b) When the work is done by the system against any conservative force the potential energy increases.
\(
-\Delta \mathrm{U}=\mathrm{W}_{\text {conservative force }}
\)
An engine pumps water continuously through a hose. Water leaves the hose with a velocity \(v\) and \(m\) is the mass per unit length of the water jet. What is the rate at which kinetic energy is imparted to water? [CBSE AIPMT 2009]
(a) As \(m\) is the mass per unit length, then rate of mass per second \(=\frac{m x}{t}=m v\)
\(\therefore \quad\) Rate of \(K E=\frac{1}{2}(m v) v^{2}=\frac{1}{2} m v^{3}\)
A body of mass \(1 \mathrm{~kg}\) is thrown upwards with a velocity \(20 \mathrm{~m} / \mathrm{s}\). It momentarily comes to rest after attaining a height of \(18 \mathrm{~m}\). How much energy is lost due to air friction? ( \(g=10\) \(\mathrm{m} / \mathrm{s}^{2}\) ) [CBSE AIPMT 2009]
(a) When the body is thrown upwards. its K.E is converted into P.E.
The loss of energy due to air friction is the difference of K.E and P.E.
\(
\begin{aligned}
\frac{1}{2} m v^{2}-m g h &=\frac{1}{2} \times 1 \times 400-1 \times 18 \times 10 \\
&=200-180=20 \mathrm{~J}
\end{aligned}
\)
A particle of mass \(m_{1}\) is moving with a velocity \(v_{1}\) and another particle of mass \(m_{2}\) is moving with a velocity \(v_{2}\). Both of them have the same momentum but their different kinetic energies are \(\mathrm{E}_{1}\) and \(\mathrm{E}_{2}\) respectively. If \(m_{1}>m_{2}\) then [CBSE AIPMT 2004]
(c) Kinetic energy is given by
\(
E=\frac{1}{2} m v^{2}=\frac{1}{2 m}(m v)^{2}
\)
but, \(m v=\) momentum of the particle \(=p\) \(\therefore \quad E=\frac{p^{2}}{2 m}\) or \(p=\sqrt{2 m E}\)
Therefore,
\(
\frac{p_{1}}{p_{2}}=\sqrt{\frac{m_{1} E_{1}}{m_{2} E_{2}}}
\)
but it is given that, \(p_{1}=p_{2}\)
\(\therefore \quad m_{1} E_{1}=m_{2} E_{2}\)
or \(\frac{E_{1}}{E_{2}}=\frac{m_{2}}{m_{1}} \dots (i)\)
Now, \(\quad m_{1}>m_{2}\)
or \(\frac{m_{1}}{m_{2}}>1 \dots (ii)\)
Thus, from Eqs. (i) and (ii), we get
\(
\frac{E_{1}}{E_{2}}<1 \text { or } E_{1}<E_{2}
\)
A ball of mass \(2 \mathrm{~kg}\) and another of mass \(4 \mathrm{~kg}\) are dropped together from a 60 feet tall building. After a fall of 30 feet each towards earth, their respective kinetic energies will be in the ratio of [CBSE AIPMT 2004]
(d) Since height is the same for both balls, their velocities on reaching the ground will be the same (Velocity of free-falling body does not depend on its mass, it depends on the height from which it has been dropped.)
\(
\therefore \frac{K \cdot E_{1}}{K \cdot E_{2}}=\frac{\frac{1}{2} m_{1} v_{0}^{2}}{\frac{1}{2} m_{2} v_{0}^{2}}=\frac{m_{1}}{m_{2}}=\frac{2}{4}=\frac{1}{2}
\)
When a long spring is stretched by \(2 \mathrm{~cm}\), its potential energy is U. If the spring is stretched by \(10 \mathrm{~cm}\), the potential energy stored in it will be [CBSE AIPMT 2003]
(a) If \(k\) be the spring constant, then
\(
\begin{array}{l}
U=\frac{1}{2} \times k \times(2)^{2}=2 k \\
U_{\text {final }}=\frac{1}{2} \times k \times(10)^{2}=50 k \\
\Rightarrow \frac{U}{U_{\text {final }}}=\frac{2 k}{50 k}=\frac{1}{25} \\
\Rightarrow \mathrm{U}_{\text {final }}=25 \mathrm{U}
\end{array}
\)
If the kinetic energy of a particle is increased by \(300 \%\), the momentum of the particle will increase by [CBSE AIPMT 2002]
(d) Kinetic energy
\(
K=\frac{1}{2 m}\left(p^{2}\right) \text { or } p=\sqrt{2 m K}
\)
If kinetic energy of a body is increased by \(300 \%\), let its momentum becomes \(p^{\prime}\).
New kinetic energy
\(
K^{\prime}=K+\frac{300}{100} K=4 K\left(\begin{array}{l}
\text { initial } K E=K \\
\text { final } K E=K^{\prime}
\end{array}\right)
\)
Therefore, momentum is given by
\(
\begin{array}{l}
p^{\prime}=\sqrt{2 m \times 4 K} \\
=2 \sqrt{2 m K}=2 p
\end{array}
\)
Hence, percentage change (increase) in momentum
\(
\begin{aligned}
\frac{\Delta p}{p} \times 100 &=\frac{p^{\prime}-p}{p} \times 100 \\
&=\left(\frac{p^{\prime}}{p}-1\right) \times 100 \\
&=\left(\frac{2 p}{p}-1\right) \times 100 \\
&=100 \%
\end{aligned}
\)
In a simple pendulum of length \(l\) the bob is pulled aside from its equilibrium position through an angle \(\theta\) and then released. The bob passes through the equilibrium position with speed [CBSE AIPMT 2000]
(d) If \(l\) is length of pendulum and \(\theta\) be angular amplitude then height
\(
\mathrm{h}=\mathrm{AB}-\mathrm{AC}=l-l \cos \theta=l(1-\cos \theta)
\)
At extreme position, potential energy is maximum and kinetic energy is zero; At mean (equilibrium) position potential energy is zero and kinetic energy is maximum, so from principle of conservation of energy. \((\mathrm{KE}+\mathrm{PE})\) at \(\mathrm{P}=(\mathrm{KE}+\mathrm{PE})\) at \(\mathrm{B}\)
\(
\begin{array}{l}
0+m g h=\frac{1}{2} m v^{2}+0 \\
\Rightarrow v=\sqrt{2 g h}=\sqrt{2 g l(1-\cos \theta)}
\end{array}
\)
Two bodies with kinetic energies in the ratio 4: 1 are moving with equal linear momentum. The ratio of their masses is [CBSE AIPMT 1999]
(c) As we know that, relation between kinetic energy and momentum is given by
\(
K E=\frac{p^{2}}{2 m}
\)
If \(p_{1}=p_{2}\) for two bodies
So, \(\quad K E_{1} \propto \frac{1}{m_{1}}\)
and \(\quad K E_{2} \propto \frac{1}{m_{2}}\)
Therefore, ratio of two masses is given by
\(
\frac{m_{1}}{m_{2}}=\frac{K E_{2}}{K E_{1}}=\frac{1}{4} \quad\left[\because \frac{K E_{1}}{K E_{2}}=\frac{4}{1}\right]
\)
A rubber ball is dropped from a height of \(5 \mathrm{~m}\) on a plane, where the acceleration due to gravity is not shown. On bouncing it rises to \(1.8 \mathrm{~m}\). The ball loses its velocity on bouncing by a factor of [CBSE AIPMT 1998]
(b) Potential energy = Kinetic energy
i.e. \(m g h=\frac{1}{2} m v^{2} \Rightarrow v=\sqrt{2 g h}\)
If \(h_{1}\) and \(h_{2}\) are the initial and final heights, then
\(
v_{1}=\sqrt{2 g h_{1}}, v_{2}=\sqrt{2 g h_{2}}
\)
Loss in velocity
\(
\Delta v=v_{1}-v_{2}=\sqrt{2 g h_{1}}-\sqrt{2 g h_{2}}
\)
\(\therefore\) Fractional loss in velocity
\(
=\frac{\Delta v}{v_{1}}=\frac{\sqrt{2 g h_{1}}-\sqrt{2 g h_{2}}}{\sqrt{2 g h_{1}}}=1-\sqrt{\frac{h_{2}}{h_{1}}}
\)
Substituting the values, we have
\(
\begin{aligned}
\therefore \quad \frac{\Delta v}{v_{1}} &=1-\sqrt{\frac{1.8}{5}}=1-\sqrt{0.36}=1-0.6 \\
&=0.4=\frac{2}{5}
\end{aligned}
\)
Two bodies of masses \(\mathrm{m}\) and \(4 \mathrm{~m}\) are moving with equal Kinetic Energy. The ratio of their linear momenta is [CBSE AIPMT 1997, 1988]
\(
\begin{array}{l}
\text { (c) } m_{1}=m, m_{2}=4 \mathrm{~m} \\
\mathrm{~K} . \mathrm{E}_{1}=\mathrm{K} . \mathrm{E}_{2} \\
\frac{1}{2} m_{1} v_{1}^{2}=\frac{1}{2} m_{2} v_{2}^{2} ; \frac{1}{2} m v_{1}^{2}=\frac{1}{2} 4 m v_{2}^{2} \\
\frac{v_{1}}{v_{2}}=2 \Rightarrow v_{1}=2 v_{2} \\
\frac{\text { Linear momentum of first body }}{\text { Linear momentum of second body }} \\
=\frac{m_{1} v_{1}}{m_{2} v_{2}}=\frac{m \cdot 2 v_{2}}{4 m v_{2}}=\frac{1}{2}
\end{array}
\)
The kinetic energy acquired by a mass \((\mathrm{m})\) in travelling distance (d) starting from rest under the action of a constant force is directly proportional to [CBSE AIPMT 1996,1994]
(d) K.E. \(=\frac{1}{2} m v^{2}\)
Further, \(v^{2}=u^{2}+2 a s=0+2 a d=2 a d\) \(=2(\mathrm{~F} / \mathrm{m}) d\)
Hence, K.E. \(=\frac{1}{2} m \times 2(F / m) d=F d\)
or, K.E. acquired \(=\) Work done \(=\mathrm{F} \times d=\) constant.
i.e., it is independent of mass \(\mathrm{m}\).
If the momentum of a body is increased by \(50 \%\), then the percentage increase in its kinetic energy is [CBSE AIPMT 1995]
(d0 Let \(p_{1}\) be the initial momentum and \(p_{2}\) be the inversed momentum
So, \(\quad p_{2}=\frac{150}{100} p_{1}\)
i.e. \(m v_{2}=\frac{15}{10} m v_{1} \quad\left(\begin{array}{l}p_{1}=m v_{1} \\ p_{2}=m v_{2}\end{array}\right)\)
or \(\quad v_{2}=\frac{15}{10} v_{1}\)
Now, \(\frac{E_{2}}{E_{1}}=\frac{\frac{1}{2} m v_{2}^{2}}{\frac{1}{2} m v_{1}^{2}}=\left(\frac{v_{2}}{v_{1}}\right)^{2}=\left(\frac{15}{10}\right)^{2}=\frac{225}{100}\)
Clearly, \(E_{2}>E_{1}\)
So, percentage increase in \(K E\)
\(
\begin{array}{l}
=\frac{\left(E_{2}-E_{1}\right)}{E_{1}} \times 100 \\
=\left(\frac{225}{100}-1\right) \times 100=125 \%
\end{array}
\)
Consider a car moving along a straight horizontal road with a speed of \(72 \mathrm{~km} / \mathrm{h}\). If the coefficient of static friction between road and tires is \(0.5\), the shortest distance in which the car can be stopped is [CBSE AIPMT 1994]
(d) Force due to friction = kinetic energy
\(\mu m g s=\frac{1}{2} m v^{2}\)
[Here, \(v=72 \mathrm{~km} / \mathrm{h}=\frac{72000}{60 \times 60}=20 \mathrm{~m} / \mathrm{s}\) ]
or, \(s=\frac{v^{2}}{2 \mu g}=\frac{20 \times 20}{2 \times 0.5 \times 10}=40 \mathrm{~m}\)
If a body of mass \(m\) moves with velocity \(u\) on a rough surface and stops after travelling a distance \(S\) due to friction. Then, frictional force, \(\mathrm{F}=\mathrm{ma}=\) \(\mu \mathrm{R} \Rightarrow \mathrm{ma}=\mu \mathrm{mg} \Rightarrow a=\mu \mathrm{g}\)
Using \(v^{2}=u^{2}-2 a s\)
\(\Rightarrow 0=u^{2}-2 \mu g S\)
\(\Rightarrow S=\frac{u^{2}}{2 \mu g}\)
Two masses of \(1 \mathrm{~g}\) and \(9 \mathrm{~g}\) are moving with equal kinetic energies. The ratio of the magnitudes of their respective linear momenta is [CBSE AIPMT 1993]
(a) The relation between \(\mathrm{KE}\) and pis given by
\(
\begin{array}{ll}
 K E=\frac{p^{2}}{2 m} \\
\Rightarrow \quad p^{2}=2 m K E \\
\Rightarrow \quad \quad p=\sqrt{2 m K E} \\
\text { If KE of two bodies are equal. } \\
\text { So, } \quad \quad p_{1} \propto \sqrt{m_{1}} \\
\text { and } \quad p_{2} \propto \sqrt{m_{2}} \\
\Rightarrow \quad \frac{p_{1}}{p_{2}}=\sqrt{\frac{m_{1}}{m_{2}}}=\sqrt{\frac{1}{9}}=\frac{1}{3}
\end{array}
\)
A \(4 \mathrm{~kg}\) mass and \(1 \mathrm{~kg}\) are moving with equal kinetic energies. The ratio of the magnitudes of their linear momenta is [CBSE AIPMT 1989]
(c) \(E=\frac{1}{2} m v^{2}\). Hence, \(m v=(2 \mathrm{mE})^{1 / 2}\).
For same KE, momentum \(\propto \sqrt{m}\).
Hence, the ratio is \(2: 1\).
A body of mass \(1 \mathrm{~kg}\) begins to move under the action of a time dependent force \(\vec{F}=\left(2 t \hat{i}+3 t^{2} \hat{j}\right) \mathrm{N}\), where \(\hat{i}\) and \(\hat{j}\) are unit vectors along \(x\) and \(y\)-axis. What power will be developed by the force at the time \(t\) ? [NEET 2016]
(d) Given force \(\vec{F}=2 t \hat{i}+3 t^{2} \hat{j}\)
According to Newton’s second law of motion,
\(
\begin{array}{l}
m \frac{d \vec{v}}{d t}=2 t \hat{i}+3 t^{2} \hat{j}(\mathrm{~m}=1 \mathrm{~kg}) \\
\Rightarrow \quad \int_{0}^{\vec{v}} d \vec{v}=\int_{0}^{t}\left(2 t \hat{i}+3 t^{2} \hat{j}\right) d t \\
\Rightarrow \quad \vec{v}=t^{2} \hat{i}+t^{3} \hat{j}
\end{array}
\)
Power P \(=\vec{F} \cdot \vec{v}\left(2 t \hat{i}+3 t^{2} \hat{j}\right) \cdot\left(t^{2} \hat{i}+t^{3} \hat{j}\right)\) \(=\left(2 t^{3}+3 t^{5}\right) \mathrm{W}\)
A particle of mass \(\mathrm{m}\) is driven by a machine that delivers a constant power of \(k\) watts. If the particle starts from rest the force on the particle at time \(t\) is
[CBSE AIPMT 2015]
(d) As we know power \(\mathrm{P}=\frac{d w}{d t}\)
\(
\Rightarrow w=P t=\frac{1}{2} \mathrm{mV}^{2}
\)
So, \(v=\sqrt{\frac{2 \mathrm{P}t}{\mathrm{m}}}\)
Hence, acceleration \(a=\frac{d V}{d t}=\sqrt{\frac{2 P}{m}} \cdot \frac{1}{2 \sqrt{t}}\) Therefore, force on the particle at time ‘ \(t\) ‘
\(
=m a=\sqrt{\frac{2 K m^{2}}{m}} \cdot \frac{1}{2 \sqrt{t}}=\sqrt{\frac{K m}{2 t}}=\sqrt{\frac{m K}{2}} t^{-1 / 2}
\)
The heart of man pumps 5 litres of blood through the arteries per minute at a pressure of \(150 \mathrm{~mm}\) of mercury. If the density of mercury be \(13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\) and \(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\) then the power of heart in watt is: [CBSE AIPMT 2015]
(d) Given, pressure \(=150 \mathrm{~mm}\) of \(\mathrm{Hg}\)
Pumping rate of heart of a man
\(
=\frac{d V}{d t}=\frac{5 \times 10^{-3}}{60} \mathrm{~m}^{3} / \mathrm{s}
\)
Power of heart \(=P \cdot \frac{d V}{d t}=\rho g h \cdot \frac{d V}{d t}\)
\(
\begin{aligned}
\frac{\left(13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(10 \times 0.15 \times 5 \times 10^{-3}\right)}{60} = 1.70 \mathrm{~W}
\end{aligned}
\)
One coolie takes 1 minute to raise a suitcase through a height of \(2 \mathrm{~m}\) but the second coolie takes \(30 \mathrm{~s}\) to raise the same suitcase to the same height. The powers of two coolies are in the ratio of [NEET Karnatak 2013]
(a) Power \(P=\frac{W}{t}\)
\(
\Rightarrow \frac{P_{1}}{P_{2}}=\frac{t_{2}}{t_{1}}=\frac{30 s}{1 \text { minute }}=\frac{30 s}{60 s}=\frac{1}{2}
\)
\(\left(t_{1}=1\right.\) minute; \(t_{2}=30\) second given)
A car of mass \(m\) starts from rest and accelerates so that the instantaneous power delivered to the car has a constant magnitude \(P_{0}\). The instantaneous velocity of this car is proportional to [CBSE AIPMT 2012]
(b) Constant power of car \(\mathrm{P}_{0}=\mathrm{F} \cdot \mathrm{V}=\mathrm{ma} . \mathrm{V}\)
\(
\begin{array}{c}
P_{0}=m \frac{d v}{d t} \cdot v \\
\mathrm{P}_{0} d t=m v d v \text { Integrating } \\
P_{0} \cdot t=\frac{m v^{2}}{2} \\
\quad v=\sqrt{\frac{2 P_{0} t}{m}} \\
\because \mathrm{P}_{0}, \mathrm{~m} \text { and } 2 \text { are constant } \\
\therefore \quad v \propto \sqrt{t}
\end{array}
\)
Note: At constant power, \(P=\) constant
\(\mathbf{P}=F v=\frac{m d v}{d t} v=P \quad\left(\because F=\frac{m d v}{d t}\right)\)
\(\Rightarrow v d v=\frac{P}{m} d t\)
Integrating both sides, we get
\(\int v d v=\int \frac{P}{m} t\)
\(\Rightarrow \frac{v^{2}}{2}=\frac{P}{m} t+C_{1}\)
At \(t=0, v=0\)
\(\therefore C_{1}=0\)
From equation (i) we get
\(
\mathbf{V}^{2}=\frac{2 P t}{m} \Rightarrow \mathbf{V}=\left(\frac{2 P t}{m}\right)^{1 / 2}
\)
A body projected vertically from the earth reaches a height equal to the earth’s radius before returning to the earth. The power exerted by the gravitational force is greatest [CBSE AIPMT 2011]
(b) We know that, Power, \(P=\mathbf{F} \cdot \mathbf{V}=F V \cos \theta\) So, just before hitting, \(\theta\) is zero, power will be maximum.
An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of \(2 \mathrm{~m} / \mathrm{s}\). The mass per unit length of water in the pipe is \(100 \mathrm{~kg} / \mathrm{m}\). What is the power of the engine? [CBSE AIPMT 2010]
(a) \(
\text { Power }=\text { K.E. of water flowing per second }
\)
\(\begin{aligned}
P &=\frac{d k}{d t} \\
P &=\frac{d}{d t}\left(\frac{1}{2} m v^{2}\right) \\
&=\frac{1}{2} v^{2} \frac{d m}{d t} \\
&=\frac{1}{2} v^{2} \frac{d m}{d l} \frac{d l}{d t} \\
&=\frac{1}{2} v^{3} \frac{d m}{d l}=\frac{1}{2} \times 8 \times 100 \mathrm{w} = 400 \mathrm{w} \\
\end{aligned}\)
Water falls from a height of \(60 \mathrm{~m}\) at the rate of \(15 \mathrm{~kg} / \mathrm{s}\) to operate a turbine. The losses due to frictional force are \(10 \%\) of energy. How much power is generated by the turbine? \([2008]\) \(\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)\) [CBSE AIPMT 2008]
(a)
\(\begin{aligned}
P_{\text {generated }} &=P_{\text {input }} \times \frac{90}{100}=\frac{m g h}{t} \times \frac{90}{100} \\
&=\frac{15 \times 10 \times 60}{1} \times \frac{90}{100}=8.1 \mathrm{~kW}
\end{aligned}\)
How much water, a pump of \(2 \mathrm{~kW}\) can raise in one minute to a height of \(10 \mathrm{~m}\), take \(\mathrm{g}=10\) \(\mathrm{m} / \mathrm{s}^{2} ?\)Â [CBSE AIPMT 1990]
(c) Power of a body is defined as the rate at which the body can do the work, i.e.
\(
\text { Power }=\frac{\text { work }}{\text { time }}=\frac{W}{t}
\)
Given, power, \(P=2 \mathrm{~kW}=2000 \mathrm{~W}\)
\(
\begin{array}{l}
\begin{aligned}
W=M g h &=M \times 10 \times 10 \quad\left[\because g=10 \mathrm{~m} / \mathrm{s}^{2}\right] \\
&=100 \mathrm{M}
\end{aligned} \\
\text { Time, } t=60 \mathrm{~s} \\
\therefore \quad 2000=\frac{100 M}{60} \\
\therefore \quad M=1200 \mathrm{~kg} \text { and } V=1200 \mathrm{~L}
\end{array}
\)
Its volume \(=1200\) litre as 1 litre of water contains \(1 \mathrm{~kg}\) of its mass.
Body A of mass \(4 \mathrm{~m}\) moving with speed \(u\) collides with another body \(B\) of mass \(2 \mathrm{~m}\), at rest. The collision is head-on and elastic in nature. After the collision, the fraction of energy lost by the colliding body A is: [NEET 2019]
(b) Fractional loss of K.E. of colliding body
\(
\begin{array}{l}
\frac{\Delta K E}{K E}=\frac{4\left(m_{1} m_{2}\right)}{\left(m_{1}+m_{2}\right)^{2}} \\
=\frac{4(4 m) 2 m}{(4 m+2 m)^{2}} \\
=\frac{32 m^{2}}{36 m^{2}}=\frac{8}{9}
\end{array}
\)
An object flying in air with velocity \((20 \hat{\mathbf{i}}+25 \hat{\mathbf{j}}-12 \hat{\mathbf{k}})\) suddenly breaks in two pieces whose masses are in the ratio 1: 5 . The smaller mass flies off with a velocity \((100 \hat{\mathbf{i}}+35 \hat{\mathbf{j}}+8 \hat{\mathbf{k}})\). The velocity of the larger piece will be [NEET (Odisha) 2019]
\(
\begin{array}{l}
\text { (a) } \vec{P}_{i}=\vec{P}_{f} \\
m \vec{v}_{i}=\left(\frac{m}{6} \vec{v}_{1}+\frac{5 m}{6} \vec{v}_{2}\right) \\
\vec{v}_{i}=\left(\frac{\vec{v}_{1}}{6}+\frac{5}{6} \vec{v}_{2}\right) \\
20 \hat{i}+25 \hat{j}-12 \hat{k}=\frac{(100 \hat{i}+35 \hat{j}+8 \hat{k})}{6}+\frac{5 \vec{v}_{2}}{6} \\
\vec{v}_{2}=\frac{20 \hat{i}+115 \hat{j}-80 \hat{k}}{5} \\
\therefore \quad \vec{v}_{2}=4 \hat{i}+23 \hat{j}-16 \hat{k}
\end{array}
\)
Two bullets are fired horizontally and simultaneously towards each other from roof tops of two buildings \(100 \mathrm{~m}\) apart of same height of \(200 \mathrm{~m}\), with the same velocity of 25 \(\mathrm{m} / \mathrm{s}\). When and where will the two bullets collide? \(\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right.\) ) [NEET Odisha 2019]
(b) Bullets collide at time \(t\)
\(
\begin{array}{l}
x_{1}+x_{2}=100 \mathrm{~m} \\
25 t+25 t=100
\end{array}
\)
\(\begin{array}{l}
t=2 s \\
y=\frac{1}{2} g t^{2}=\frac{1}{2} \times 10 \times 2^{2}=20 \mathrm{~m} \\
h=200-20=180 \mathrm{~m}
\end{array}\)
A particle of mass \(5 \mathrm{~m}\) at rest suddenly breaks on its own into three fragments. Two fragments of mass \(\mathrm{m}\) each move along mutually perpendicular direction with speed \(v\) each. The energy released during the process is [NEET Odisha 2019]
(a) The particle of mass \(5 \mathrm{~m}\) breaks in three fragments of mass \(m, m\) and \(3 \mathrm{~m}\) respectively. Two fragments of mass \(m\) each, move in the perpendicular direction with velocity v, and the left fragment will move in a direction with velocity \(\mathbf{v}^{\prime}\) such that the total momentum of the system must remain conserved.
By law of conservation of momentum,
\(
\begin{aligned}
& 5 m \times 0=m v \hat{\mathbf{i}}+m \hat{\mathbf{j}}+3 m \mathbf{v}^{\prime} \\
\Rightarrow \quad \mathbf{v}^{\prime} &=-\frac{v}{3} \hat{\mathbf{i}}-\frac{v}{3} \hat{\mathbf{j}} \\
\therefore &\left|\mathbf{v}^{\prime}\right|=\sqrt{\left(-\frac{v}{3}\right)^{2}+\left(-\frac{v}{3}\right)^{2}}=\frac{v \sqrt{2}}{3}
\end{aligned}
\)
\(\therefore\) Energy released
\(
\begin{aligned}
E &=\frac{1}{2} m v^{2}+\frac{1}{2} m v^{2}+\frac{1}{2} \times 3 m\left(\frac{v \sqrt{2}}{3}\right)^{2} \\
&=m v^{2}+\frac{m v^{2}}{3}=\frac{4}{3} m v^{2}
\end{aligned}
\)
A moving block having mass \(m\), collides with another stationary block having mass \(4 \mathrm{~m}\). The lighter block comes to rest after collision. When the initial velocity of the lighter block is \(v\), then the value of the coefficient of restitution (e) will be [NEET 2018]
(b) Since, the collision mentioned is an elastic head-on collision. Thus, according to the law of conservation of linear momentum, we get
\(
m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}
\)
where, \(m_{1}\) and \(m_{2}\) are the masses of the two blocks, respectively and \(u_{1}\) and \(u_{2}\) are their initial velocities and \(v_{1}\) and \(v_{2}\) are their final velocities, respectively.
Here, \(m_{1}=m, m_{2}=4 m\)
\(
\begin{array}{c}
u_{1}=v, u_{2}=0 \text { and } v_{1}=0 \\
m v+4 m \times 0=0+4 m v_{2} \\
\Rightarrow \quad m v=4 m v_{2} \text { or } v_{2}=\frac{v}{4} \quad \ldots \text { (i) }
\end{array}
\)
As, the coefficient of restitution is given as
\(
\begin{aligned}
e &=\frac{\text { relative velocity of separation after collision }}{\text { relative velocity of approach }} \\
&=\frac{v_{2}-v_{1}}{u_{2}-u_{1}}=\frac{\frac{v}{4}-0}{0-v} \quad \text { [from Eq. (i)] } \\
&=\frac{1}{4} \\
\therefore e &=0.25
\end{aligned}
\)
Two particles A and B, move with constant velocities \(\vec{v}_{1}\) and \(\vec{v}_{2}\). At the initial moment their position vectors are \(\vec{r}_{1}\) and \(\vec{r}_{2}\) respectively. The condition for particles \(\mathrm{A}\) and B for their collision is:[CBSE AIPMT 2015]
(d) For the collision the final position of both particles should be equal.
hence, \(\overrightarrow{r_{1}}+\overrightarrow{v_{1}} t=\overrightarrow{r_{2}}+\overrightarrow{v_{2}} t\)
\(
\begin{array}{l}
\text { or } \overrightarrow{r_{1}}-\overrightarrow{r_{2}}=\left(\overrightarrow{\mathrm{v}}_{2}-\overrightarrow{\mathrm{v}}_{1}\right) t \\
\text { or } \overrightarrow{\mathrm{r}_{1}}-\overrightarrow{\mathrm{r}_{2}}=\left(\overrightarrow{\mathrm{v}_{2}}-\overrightarrow{\mathrm{v}_{1}}\right) \frac{\left|\overrightarrow{\vec{r}_{1}}-\overrightarrow{\mathrm{r}_{2}}\right|}{\left|\overrightarrow{\mathrm{v}}_{2}-\overrightarrow{\mathrm{v}_{1}}\right|} \\
\text { or } \frac{\overrightarrow{\mathrm{r}_{1}}-\overrightarrow{\mathrm{r}_{2}}}{\left|\overrightarrow{\mathrm{r}_{1}}-\overrightarrow{\mathrm{r}_{2}}\right|}=\frac{\overrightarrow{\mathrm{v}_{2}}-\overrightarrow{\mathrm{v}_{1}}}{\left|\overrightarrow{\mathrm{v}_{2}}-\overrightarrow{\mathrm{v}_{1}}\right|}
\end{array}
\)
On a frictionless surface, a block of mass \(M\) moving at speed \(v\) collides elastically with another block of the same mass \(M\) which is initially at rest. After collision, the first block moves at an angle \(\theta\) to its initial direction and has a speed \(v / 3\). The second block’s speed after the collision is [CBSE AIPMT 2015]
(a) According to law of conservation of kinetic energy, we have
\(
\begin{aligned}
& \frac{1}{2} M v^{2}+0=\frac{1}{2} M\left(\frac{v}{3}\right)^{2}+\frac{1}{2} M v_{2}^{2} \\
\Rightarrow & v^{2}=\frac{v^{2}}{9}+v_{2}^{2} \\
\Rightarrow & v^{2}-\frac{v^{2}}{9}=v_{2}^{2} \Rightarrow \frac{8 v^{2}}{9}
\end{aligned}
\)
Velocity of second block after collision
\(
v_{2}=\frac{2 \sqrt{2}}{3} v
\)
A ball is thrown vertically downwards from a height of \(20 \mathrm{~m}\) with an initial velocity \(v_{0}\). It collides with the ground loses 50 percent of its energy in collision and rebounds to the same height. The initial velocity \(v_{0}\) is: [CBSE AIPMT 2015] (Take \(g=10 \mathrm{~ms}^{-2}\) )
(a)
Suppose a ball rebounds with speed \(v_{\text {, }}\)
\(
\begin{aligned}
v &=\sqrt{2 g h}=\sqrt{2 \times 10 \times 20} \\
&=20 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
Energy of a ball just after rebound,
\(
E=\frac{1}{2} m v^{2}=200 \mathrm{~m}
\)
As, \(50 \%\) of energy loses in collision means just before collision energy is \(400 \mathrm{~m}\).
According to law of conservation of energy, we have
\(
\begin{aligned}
& \frac{1}{2} m v_{0}^{2}+m g h=400 \mathrm{~m} \\
\Rightarrow & \frac{1}{2} m v_{0}^{2}+m \times 10 \times 20=400 \mathrm{~m} \\
\Rightarrow & v_{0}=20 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
A body of mass \((4 \mathrm{~m})\) is lying in \(x-y\) plane at rest. It suddenly explodes into three pieces. Two pieces, each of mass (m) move perpendicular to each other with equal speeds \((v)\). The total kinetic energy generated due to explosion is: [CBSE AIPMT 2014]
(b) By conservation of linear momentum Magnitude of the momentum of heavier piece of mass \((2 \mathrm{~m})=\) Magnitude of the vector sum of momentum of each piece of mass (m)
\(
\begin{aligned}
&(2 \mathrm{~m}) v_{1}=\sqrt{(m v)^{2}+(m v)^{2}} \\
\Rightarrow & 2 m v_{1}=\sqrt{2} \mathrm{mv} \Rightarrow \mathrm{v}_{1}=\frac{\mathrm{v}}{\sqrt{2}}
\end{aligned}
\)
As two masses of each of mass m move perpendicular to each other.
Total Kinetic Energy generated
\(
\begin{array}{l}
=\frac{1}{2} m v^{2}+\frac{1}{2} m v^{2}+\frac{1}{2}(2 m) v_{1}^{2} \\
=m v^{2}+\frac{m v^{2}}{2}=\frac{3}{2} m v^{2}
\end{array}
\)
An explosion breaks a rock into three parts in a horizontal plane. Two of them go off at right angles to each other. The first part of mass 1 \(\mathrm{kg}\) moves with a speed of \(12 \mathrm{~ms}^{-1}\) and the second part of mass \(2 \mathrm{~kg}\) moves with speed \(8 \mathrm{~ms}^{-}\) 1. If the third part flies off with speed \(4 \mathrm{~ms}^{-1}\) then its mass is [CBSE AIPMT 2013]
(b) Momentum is conserved before and after the collision.
We have, \(\quad \mathbf{p}_{1}+\mathbf{p}_{2}+\mathbf{p}_{3}=0 \quad[\because p=m v]\)
\(\therefore \quad 1 \times 12 \mathbf{i}+2 \times 8 \mathbf{j}+\mathbf{p}_{3}=0\)
\(\Rightarrow \quad 12 \hat{\mathbf{i}}+16 \hat{\mathbf{j}}+\mathbf{p}_{3}=0\)
\(\begin{array}{ll}\Rightarrow & \mathbf{p}_{3}=-(12 \mathbf{i}+16 \mathbf{j}) \\ \therefore & \mathbf{p}_{3}=\sqrt{(12)^{2}+(16)^{2}}\end{array}\)
\(=\sqrt{144+256}\)
\(=20 \mathrm{~kg}\mathrm{m} / \mathrm{s}\)
Now, \(\quad \mathbf{p}_{3}=m_{3} v_{3}\)
\(\Rightarrow \quad m_{3}=\frac{\mathbf{p}_{3}}{v_{3}}=\frac{20}{4}=5 \mathrm{~kg}\)
A solid cylinder of mass \(3 \mathrm{~kg}\) is rolling on a horizontal surface with velocity \(4 \mathrm{~ms}^{-1}\). It collides with a horizontal spring of force constant \(200 \mathrm{Nm}^{-1}\). The maximum compression produced in the spring will be: [CBSE AIPMT 2012]
(c) We know that for the rolling body, the initial kinetic energy is equal to potential energy of the spring
\(
\mathrm{K} . \mathrm{E}=\mathrm{P} . \mathrm{E}
\)
Potential energy of the spring \(=\frac{k \Delta x^{2}}{2}\)
Here, \(\Delta \mathrm{x}=\) Maximum compression of the spring
Kinetic energy of rolling body \(=\) Translational Kinetic energy +
Rotational kinetic energy
\(
\begin{array}{l}
=\frac{1}{2} \mathrm{mV}^{2}+\frac{1}{2} \mathrm{I} \omega^{2} \\
=\frac{1}{2} \mathrm{mV}^{2}+\frac{1}{2}\left(\frac{\mathrm{MR}}{2}\right)\left(\frac{\mathrm{V}}{\mathrm{R}}\right)^{2} \\
=\frac{3}{4} \mathrm{mV}^{2}
\end{array}
\)
Now
\(
\begin{array}{l}
\frac{\mathrm{K} \Delta \mathrm{x}^{2}}{2}=\frac{3}{4} \mathrm{mV}^{2} \\
\Delta \mathrm{x}=\sqrt{\frac{3 \mathrm{mV}^{2}}{2 \mathrm{~K}}} \\
=\sqrt{\frac{3 \times 3 \times 4^{2}}{2 \times 200}} \\
=0.6 \mathrm{~m}
\end{array}
\)
Two spheres \(A\) and \(B\) of masses \(m_{1}\) and \(m_{2}\) respectively collide. \(A\) is at rest initially and \(B\) is moving with velocity \(v\) along \(x\)-axis. After collision, \(B\) has a velocity \(\frac{v}{2}\) in a direction perpendicular to the original direction. The mass \(A\) moves after collision in the direction [CBSE AIPMT 2012]
(d) According to law of conservation of linear momentum along \(x\)-axis, we get \(\Rightarrow m_{1}(0)+m_{2} v=m_{1} v^{\prime} \cos \theta\) \(\Rightarrow \quad \cos \theta=\frac{m_{2} v}{m_{1} v^{\prime}} \quad\)…(i)
Similarly, the law of conservation of linear momentum along the \(y\)-axis, we get
\(\Rightarrow m_{1}(0)+m_{2}(0)=m_{1} v^{\prime} \sin \theta+m_{2}\left(\frac{v}{2}\right)\) \(\Rightarrow \quad \sin \theta= -\frac{m_{2} v}{2 m_{1} v^{\prime}} \quad \ldots\) (ii) From equations, (i) and (ii),
\(\tan \theta=-\left(\frac{m_{2} v}{2 m v^{\prime}}\right) \times\left(\frac{m_{1} v^{\prime}}{m_{2} v}\right)=-\frac{1}{2}\)
\(\theta=\tan ^{-1}\left(\frac{-1}{2}\right)\) to the \(x\)-axis.
A mass \(m\) moving horizontally (along the \(x\)-axis) with velocity \(v\) collides and sticks to mass of \(3 \mathrm{~m}/\) moving vertically upward (along the \(y\)-axis) with velocity \(2 v\). The final velocity of the combination is [CBSE AIPMT 2011]
(a) As the two masses stick together after the collision, hence it is an inelastic collision. Therefore, only momentum is conserved.
\(\begin{aligned}
\therefore & m v \hat{i}+3 m(2 v) \hat{j}=(m + 3m) \vec{v} \\
\vec{v} &=\frac{v}{4} \hat{i}+\frac{6}{4} v \hat{j} \\
&=\frac{v}{4} \hat{i}+\frac{3}{2} v \hat{j}
\end{aligned}\)
A ball moving with velocity \(2 \mathrm{~m} / \mathrm{s}\) collides head on with another stationary ball of double the mass. If the coefficient of restitution is \(0.5\), then their velocities (in \(\mathrm{m} / \mathrm{s}\) ) after collision will be: [CBSE AIPMT 2010]
(a) If two bodies collide head on with coefficient of restitution
\(
e=\frac{v_{2}-v_{1}}{u_{1}-u_{2}}
\)
From, the law of conservation of linear momentum
\(
\begin{array}{r}
m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2} \\
\Rightarrow v_{1}=\left[\frac{m_{1}-e m_{2}}{m_{1}+m_{2}}\right] u_{1}+\left[\frac{(1+e) m_{2}}{m_{1}+m_{2}}\right] u_{2}
\end{array}
\)
Substituting \(u_{1}=2 \mathrm{~ms}^{-1}, u_{2}=0, m_{1}=m\)
and \(m_{2}=2 m, e=0.5\)
we get, \(\quad v_{1}=\left[\frac{m-m}{m+2 m}\right] \times 2\)
\(\Rightarrow \quad v_{1}=0\)
Similarly,
\(
\begin{aligned}
v_{2} &=\left[\frac{(1+e) m_{1}}{m_{1}+m_{2}}\right] u_{1}+\left[\frac{m_{2}-e m_{1}}{m_{1}+m_{2}}\right] u_{2} \\
&=\left[\frac{1.5 \times m}{3 m}\right] \times 2=1 \mathrm{~ms}^{-1}
\end{aligned}
\)
A shell of mass \(200 \mathrm{gm}\) is ejected from a gun of mass \(4 \mathrm{~kg}\) by an explosion that generates \(1.05\) \(\mathrm{kJ}\) of energy. The initial velocity of the shell is: [CBSE AIPMT 2008]
(a) Let the initial velocity of the shell be \(v\), then by the conservation of momentum \(m v=\mathrm{M} v^{\prime}\) where \(v^{\prime}=\) velocity of gun.
\(
\therefore \quad \mathrm{v}^{\prime}=\left(\frac{\mathrm{m}}{\mathrm{M}}\right) \mathrm{v}
\)
Now, total K.E. \(=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \frac{1}{2} \mathrm{Mv}^{\prime 2}\)
\(
\begin{array}{l}
=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{M}\left(\frac{\mathrm{m}}{\mathrm{M}}\right)^{2} \mathrm{v}^{2} \\
=\frac{1}{2} \mathrm{mv}^{2}\left[1+\frac{\mathrm{m}}{\mathrm{M}}\right] \\
=\left(\frac{1}{2} \times 0.2\right)\left(1+\frac{0.2}{4}\right) v^{2}=(0.1 \times 1.05) \mathrm{v}^{2}
\end{array}
\)
But total K.E. \(=1.05 \mathrm{~kJ}=1.05 \times 10^{3} \mathrm{~J}\) \(\therefore 1.05 \times 10^{3}=0.1 \times 1.05 \times v^{2}\)
\(
\begin{array}{l}
\Rightarrow v^{2}=\frac{1.05 \times 10^{3}}{0.1 \times 1.05}=10^{4} \\
\therefore v=10^{2}=100 \mathrm{~ms}^{-1}
\end{array}
\)
A bomb of mass \(30 \mathrm{~kg}\) at rest explodes into two pieces of masses \(18 \mathrm{~kg}\) and \(12 \mathrm{~kg}\). The velocity of 18 \(\mathrm{kg}\) mass is \(6 \mathrm{~ms}^{-1}\). The kinetic energy of the other mass is
[CBSE AIPMT 2005]
(b) From conservation of linear momentum
\(
\begin{array}{l}
m_{1} v_{1}+m_{2} v_{2}=0 \\
v_{2}=\left(\frac{-m_{1}}{m_{2}}\right) v_{1}=\left(\frac{-18}{12}\right) 6=-9 \mathrm{~ms}^{-1} \\
\text { K.E. }=\frac{1}{2} m_{2} v_{2}^{2}=\frac{1}{2} \times 12 \times 9^{2}=486 \mathrm{~J}
\end{array}
\)
A mass of \(0.5 \mathrm{~kg}\) moving with a speed of \(1.5 \mathrm{~m} /\) \(s\) on a horizontal smooth surface, collides with a nearly weightless spring of force constant \(k=50 \mathrm{~N} / \mathrm{m}\). The maximum compression of the spring would be [CBSE AIPMT 2004]
(b) Speed of moving mass \(\mathrm{v}=1.5 \mathrm{~m} / \mathrm{s}\)
Given : \(k=50 \mathrm{~N} / \mathrm{m}\) and \(\mathrm{m}=0.5 \mathrm{~kg}\)
The kinetic energy of the moving mass will be converted into potential energy in the spring when the spring is at maximum compression \(\mathrm{x}_{0}\).
\(
\therefore \frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{kx}_{\mathrm{o}}^{2}
\)
or \(x_{0}=\sqrt{\frac{m}{k}} v\)
\(
\Rightarrow \mathrm{x}_{\mathrm{o}}=\sqrt{\frac{0.5}{50}} \times 1.5=0.15 \mathrm{~m}
\)
A stationary particle explodes into two particles of masses \(m_{1}\) and \(m_{2}\) which move in opposite directions with velocities \(v_{1}\) and \(v_{2}\). The ratio of their kinetic energies \(E_{1} / E_{2}\) is [CBSE AIPMT 2003]
(c) From the conservation of linear momentum,
Initial momentum \(p_{\text {initial }}=\) Final
momentum \(p_{\text {final }}\)
\(
0=m_{1} v_{1}-m_{2} v_{2}
\)
or \(\quad m_{1} v_{1}=m_{2} v_{2}\)
or \(\quad \frac{v_{1}}{v_{2}}=\frac{m_{2}}{m_{1}}\)
Thus, ratio of kinetic energies,
\(
\frac{K_{1}}{K_{2}}=\frac{\frac{1}{2} m_{1} v_{1}^{2}}{\frac{1}{2} m_{2} v_{2}^{2}}=\frac{m_{1}}{m_{2}} \times\left(\frac{m_{2}}{m_{1}}\right)^{2}=\frac{m_{2}}{m_{1}}
\)
A bomb of mass \(1 \mathrm{~kg}\) is thrown vertically upwards with a speed of \(100 \mathrm{~m} / \mathrm{s}\). After 5 seconds it explodes into two fragments. One fragment of mass \(400 \mathrm{gm}\) is found to go down with a speed of \(25 \mathrm{~m} / \mathrm{s}\). What will happen to the second fragment just after the explosion? \(\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)\)Â [CBSE AIPMT 2000]
(b) Speed of bomb after 5 second, \(v=u-g t=100-10 \times 5=50 \mathrm{~m} / \mathrm{s}\)
Momentum of \(400 \mathrm{~g}\) fragment \(=\frac{400}{1000} \times(-25)\) [downward]
Momentum of \(600 \mathrm{~g}\) fragment \(=\frac{600}{1000} v\)
Momentum of bomb \(=1 \times 50=50\)
From conservation of momentum
Total momentum before splitting \(=\) total momentum after splitting.
\(\Rightarrow 50=-\frac{400}{1000} \times 25+\frac{600}{1000} v\)
\(\Rightarrow v=100 \mathrm{~m} / \mathrm{s} \quad\) [upward]
Two equal masses \(m_{1}\) and \(m_{2}\) moving along the same straight line with velocities \(+3 \mathrm{~m} / \mathrm{s}\) and \(-5 \mathrm{~m} / \mathrm{s}\) respectively collide elastically. Their velocities after the collision will be respectively [CBSE AIPMT 1998]
(d) Given,
\(u_{1}=3 \mathrm{~m} / \mathrm{s}, u_{2}=-5 \mathrm{~m} / \mathrm{s}, m_{1}=m_{2}=m A c c\)
According to principle of conservation of linear momentum,
\(
\begin{aligned}
m_{1} u_{1}+m_{2} u_{2} &=m_{1} v_{1}+m_{2} v_{2} \\
m \times 3-m \times 5 &=m v_{1}+m v_{2} \\
\text { or } \quad v_{1}+v_{2} &=-2
\end{aligned}
\)
In an elastic collision,
\(
\begin{aligned}
e &=\frac{v_{2}-v_{1}}{u_{1}-u_{2}} \\
\Rightarrow \quad v_{2}-v_{1} &=e\left(u_{1}-u_{2}\right)
\end{aligned}
\)
\(
\Rightarrow v_{2}-v_{1}=(1)(3+5) \quad(\because e=1)
\)
\(
\Rightarrow v_{1}-v_{2}=-8
\)
Adding Eqs. (i) and (ii), we obtain
\(2 v_{1}=-10\)
\(\Rightarrow \quad v_{1}=-5 \mathrm{~m} / \mathrm{s}\)
From Eq. (i),
\(
v_{2}=-2-v_{1}=-2+5=3 \mathrm{~m} / \mathrm{s}
\)
Thus, \(v_{1}=-5 \mathrm{~m} / \mathrm{s}, v_{2}=+3 \mathrm{~m} / \mathrm{s}\)
If two bodies collide elastically, then their velocities are interchanged. Since, it is an elastic collision hence, velocities after collision will be \(-5 \mathrm{~m} / \mathrm{s}\) and \(3 \mathrm{~m} / \mathrm{s}\).
A molecule of mass \(m\) of an ideal gas collides with the wall of a vessel with a velocity \(v\) and returns back with the same velocity. The change in linear momentum of the molecule is [CBSE AIPMT 1997]
(a) Initial momentum \(=m v\)
Final momentum \(=m(-v)\)
change in momentum
\(=m v-m(-v)=2 m v\)
A metal ball of mass \(2 \mathrm{~kg}\) moving with a velocity of \(36 \mathrm{~km} / \mathrm{h}\) has a head-on collision with a stationary ball of mass \(3 \mathrm{~kg}\). If after the collision, the two balls move together, the loss in kinetic energy due to collision is [CBSE AIPMT 1997]
(c) Initial momentum = Final momentum
\(
\therefore \quad m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v
\)
Given, \(v_{1}=36 \mathrm{~km} / \mathrm{h}\)
\(
\begin{aligned}
&=36 \times \frac{5}{18}=10 \mathrm{~m} / \mathrm{s}, \\
v_{2} &=0 \\
m_{1} &=2 \mathrm{~kg}, m_{2}=3 \mathrm{~kg} \\
\therefore \quad v &=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}} \\
&=\frac{2 \times 10+3 \times 0}{2+3} \\
\text { or } \quad v &=\frac{20}{5}=4 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
Loss in kinetic energy
\(
\begin{array}{l}
=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}-\frac{1}{2}\left(m_{1}+m_{2}\right) v^{2} \\
=\frac{1}{2} \times 2 \times(10)^{2}+0-\frac{1}{2}(2+3) \times(4)^{2} \\
=100-40=60 \mathrm{~J}
\end{array}
\)
A body of mass \(m\) moving with velocity \(3 \mathrm{~km} / \mathrm{h}\) collides with a body of mass \(2 \mathrm{~m}\) at rest. Now, the coalesced mass starts to move with a velocity [CBSE AIPMT 1996]
(a) Let \(v\) be the velocity of combined mass after the collision.
Applying law of conservation of linear momentum
Initial momentum = Final momentum
\(
\begin{aligned}
m \times 3+2 m \times 0 &=(m+2 m) v \\
\text { or } \quad 3 m &=3 m v \text { or } v=1 \mathrm{~km} / \mathrm{h}
\end{aligned}
\)
A shell is fired from a cannon, it explodes in mid-air, it’s total [CBSE AIPMT 1994]
(c) When the shell explodes in mid-air its chemical energy is partly converted into mechanical energy, hence K.E. increases.
Two identical balls A and B moving with velocities \(+0.5 \mathrm{~m} / \mathrm{s}\) and \(-0.3 \mathrm{~m} / \mathrm{s}\) respectively, collide head on elastically. The velocities of the balls \(A\) and \(B\) after collision, will be, respectively [CBSE AIPMT 1991]
(b) When the identical balls collide head-on, their velocities are exchanged.
A body of mass \(5 \mathrm{~kg}\) explodes at rest into three fragments with masses in the ratio \(1: 1: 3\). The fragments with equal masses fly in mutually perpendicular directions with speeds of \(21 \mathrm{~m} /\) s. The velocity of heaviest fragment in \(\mathrm{m} / \mathrm{s}\) will be [CBSE AIPMT 1989]
(a) Momentum of Ist part \(=\mathrm{m} \times 21=21 \mathrm{~m}\)
Momentum of 2 nd part \(=m \times 21=21 \mathrm{~m}\)
Resultant momentum, \(=\sqrt{(\mathrm{m} 21)^{2}+(\mathrm{m} 21)^{2}}\)
Resultant momentum \(=\) momentum of \(3 \mathrm{rd}\) part
\(\Rightarrow \quad 21 \sqrt{2} \mathrm{~m}=3 \mathrm{mv}\)
\(\Rightarrow \quad v=7 \sqrt{2} \mathrm{~m} / \mathrm{sec}\)
Note: Masses of the pieces are \(1,1,3 \mathrm{~kg}\). Hence
\((1 \times 21)^{2}+(1 \times 21)^{2}=(3 \times \mathrm{v})^{2}\)
That is, \(v=7 \sqrt{2} \mathrm{~m} / \mathrm{s}\)
The co-efficient of restitution e for a perfectly elastic collision is [CBSE AIPMT 1988]
(d) \(e=\left|v_{1}-v_{2}\right| /\left|u_{1}-u_{2}\right|\) which is 1 for a perfectly elastic collision.
A particle is released from height \(S\) from the surface of the Earth. At a certain height, its kinetic energy is three times its potential energy. The height from the surface of the earth and the speed of the particle at that instant are respectively
(d) Let the particle at height \(S\) from the surface of the Earth is as shown below. Given, at height \(x\), kinetic energy
\(=3\) (potential energy)
\(\Rightarrow \quad \mathrm{KE}=3 \mathrm{mgx}\)
At height \(S\), total energy, \(T E=P E+K E\)
\(
\mathrm{TE}=m g S+0=m g S
\)
At height \(x\), total energy,
\(\begin{array}{r}
\mathrm{TE}=\mathrm{PE}+\mathrm{KE} \\
\mathrm{TE}=\mathrm{mgx}+3 \mathrm{mgx} \\
\mathrm{mgS}=4 \mathrm{mgx} \\
x=\frac{\mathrm{S}}{4} \dots (i)
\end{array}\)
Now, we shall determine the speed of the particle at this height.
As, \(K E=3 \times m g x\)
\(\begin{aligned} K E &=3 \times m g \frac{S}{4} \quad \text { [from Eq. (i)] } \\ \frac{1}{2} m v^{2} &=\frac{3}{4} m g S \\ \Rightarrow \quad v &=\sqrt{\frac{3}{2} g S} \end{aligned}\)
The energy required to break one bond in DNA is \(10^{-20} \mathrm{~J}\). This value (in eV) is nearly [NEET 2020]
(b) Given, \(E=10^{-20} \mathrm{~J}\)
In terms of eV, we get
\(
E=\frac{10^{-20}}{1.6 \times 10^{-19}} \mathrm{eV}=0.06 \mathrm{eV}
\)
A particle moves from a point \((-2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}})\) to \((4 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})\) when a force of \((4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}) \mathrm{N}\) is applied. How much work has been done by the force?
[NEET 2016]
(d) Position vectors of the particles are \(\mathbf{r}_{1}=-2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}\) and \(\mathbf{r}_{2}=4 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\)
\(\therefore\) Displacement of the particle,
\(\Delta \mathbf{s}=\mathbf{r}_{2}-\mathbf{r}_{1}\)
\(
=4 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}-(-2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}})=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}
\)
Force on the particle, \(\mathbf{F}=4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}} \mathrm{N}\)
\(\therefore\) Work done, \(W=\mathbf{F} \cdot \Delta \mathbf{s}\)
\(
=(4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}) \cdot(2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}})=8-3=5 \mathrm{~J}
\)
Two similar springs \(P\) and \(Q\) have spring constants \(K_{P}\) and \(K_{0}\), such that \(K_{p}>K_{0}\). They are stretched, first by the same amount (case a), then by the same force (case \(b\) ). The work done by the springs \(W_{p}\) and \(W_{0}\) are related as, in case \((a)\) and case \((b)\), respectively [CBSE AIPMT 2015]
(c) Given, \(K_{p}>K_{0}\)
In case (a), the elongation is same
i.e. \(x_{1}=x_{2}=x\)
So, \(W_{p}=\frac{1}{2} K_{p} x^{2}\) and \(W_{0}=\frac{1}{2} K_{0} x^{2}\)
\(\therefore \quad \frac{W_{p}}{W_{0}}=\frac{K_{p}}{K_{0}}>1 \Rightarrow W_{p}>W_{0}\)
In case (b), the spring force is same i.e. \(\quad F_{1}=F_{2}=F\)
\(\begin{array}{l}
\text { So, } \quad x_{1}=\frac{F}{K_{p}}, x_{2}=\frac{F}{K_{0}}\\
\therefore \quad W_{p}=\frac{1}{2} K_{p} x_{1}^{2}=\frac{1}{2} K_{p} \frac{F^{2}}{K_{p}^{2}}=\frac{1}{2} \frac{F^{2}}{K_{p}}\\
\text { and } W_{0}=\frac{1}{2} K_{0} x_{2}^{2}=\frac{1}{2} K_{0} \cdot \frac{F^{2}}{K_{0}^{2}}=\frac{1}{2} \frac{F^{2}}{K_{0}}\\
\therefore \quad \frac{W_{p}}{W_{0}}=\frac{K_{0}}{K_{p}}<1\\
\Rightarrow \quad W_{p}<W_{0}
\end{array}\)
A mass \(m\) moves in a circle on a smooth horizontal plane with velocity \(v_{0}\) at a radius \(R_{0}\). The mass is attached to a string that passes through a smooth hole in the plane as shown. The tension in the string is increased gradually and finally \(m\) moves in a circle of radius \(\frac{R_{0}}{2}\). The final value of the kinetic energy is [CBSE AIPMT 2015]
(c) Conserving angular momentum
\(
\begin{aligned}
L_{i} &=L_{f} \\
\Rightarrow \quad m v_{0} R_{0} &=m v^{\prime}\left(\frac{R_{0}}{2}\right) \Rightarrow v^{\prime}=2 v_{0}
\end{aligned}
\)
So, final kinetic energy of the particle is
\(
\begin{aligned}
K_{f} &=\frac{1}{2} m v^{\prime 2}=\frac{1}{2} m\left(2 v_{0}\right)^{2} \\
&=4 \frac{1}{2} m v_{0}^{2}=2 m v_{0}^{2}
\end{aligned}
\)
The potential energy of a particle in a force field is \(U=\frac{A}{r^{2}}-\frac{B}{r}\), where \(A\) and \(B\) are positive constants and \(r\) is the distance of particle from the centre of the field. For stable equilibrium, the distance of the particle is [CBSE AIPMT 2012]
(b) Given, the potential energy of a particle in a force field, \(U=\frac{A}{r^{2}}-\frac{B}{r^{1}}\)
For stable equilibrium, \(F=-\frac{d U}{d r}=0\)
\(
=\frac{d U}{d r}=-2 A r^{-3}+B r^{-2}
\)
\(
0=-\frac{2 A}{r^{3}}+\frac{B}{r^{2}} \quad\left(\text { As } \frac{-d U}{d r}=0\right)
\)
or \(\frac{2 A}{r}=B\)
The distance of the particle from the centre of the field
\(
r=\frac{2 A}{B}
\)
A block of mass \(M\) is attached to the lower end of a vertical spring. The spring is hung from a ceiling and has force constant value \(k\). The mass is released from rest with the spring initially unstretched. The maximum extension produced in the length of the spring will be [CBSE AIPMT 2009]
(b) Let \(x\) be the extension in the spring.
Applying conservation of energy
\(
\begin{aligned}
\quad M g x-\frac{1}{2} k x^{2} &=0-0 \\
\Rightarrow \quad x &=\frac{2 M g}{k}
\end{aligned}
\)
A stone is thrown at an angle of \(45^{\circ}\) to the horizontal with kinetic energy K. The kinetic energy at the highest point is [CBSE AIPMT 2001]
(a)
At the highest point
\(
\begin{aligned}
v_{x} &=u \cos \theta \\
v_{y} &=0 \\
K_{H} &=\frac{1}{2} m v_{x}^{2} \\
K_{H} &=\frac{1}{2} m u^{2} \cos ^{2} \theta
\end{aligned}
\)
Initial kinetic energy is
\(
K=\frac{1}{2} m u^{2}
\)
From Eqs. (i) and (ii), we get
\(
\begin{aligned}
K_{H} &=K \cos ^{2} \theta \\
&=K \cos ^{2} 45^{\circ} \\
&=K \times\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{K}{2}
\end{aligned}
\)
A child is swinging a swing. Minimum and maximum heights of swing from the earth’s surface are \(0.75 \mathrm{~m}\) and \(2 \mathrm{~m}\) respectively. The maximum velocity of this swing is [CBSE AIPMT 2001]
(a) From energy conservation
\(
\frac{1}{2} m v_{\max }^{2}=m g\left(H_{2}-H_{1}\right)
\)
Here, \(H_{1}=\) minimum height of swing from the earth’s surface
\(
\begin{aligned}
&=0.75 \mathrm{~m} \\
H_{2} &=\text { maximum height of swing from } \\
&=2 \mathrm{~m} \quad \text { earth’s surface }
\end{aligned}
\)
\(
\therefore \quad \frac{1}{2} m v_{\max }^{2}=m g(2-0.75)
\)
or \(v_{\max }=\sqrt{2 \times 10 \times 1.25}\)
\(
=\sqrt{25}=5 \mathrm{~m} / \mathrm{s}
\)
Water falls from a height of \(60 \mathrm{~m}\) at the rate of \(15 \mathrm{~kg} / \mathrm{s}\) to operate a turbine. The losses due to frictional force are \(10 \%\) of the input energy. How much power is generated by the turbine? \(\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)\) [NEET 2021]
(b) Given, the flow rate of the water,
\(
\frac{m}{t}=15 \mathrm{~kg} / \mathrm{s}
\)
The height of the water fall, \(h=60 \mathrm{~m}\)
Loss due to frictional force \(=10 \%\)
The power used in the turbine
\(
=(100-10) \%=90 \%
\)
The acceleration due to gravity,
\(
g=10 \mathrm{~m} / \mathrm{s}^{2}
\)
We know that, power generated by the turbine
\(=\) change in potential energy \(=0.90 \frac{\mathrm{mgh}}{\mathrm{t}}\)
\(
=0.90 \times 15 \times 10 \times 60=8100 \mathrm{~W}=8.1 \mathrm{~kW}
\)
A point mass \(m\) is moved in a vertical circle of radius \(r\) with the help of a string. The velocity of the mass is \(\sqrt{7 g r}\) at the lowest point. The tension in the string at the lowest point is [NEET 2020]Â
(c) Velocity of point mass in vertical circle at lowest point, \(V_{1}=\sqrt{7 g r}\)
\(
\therefore \quad V_{1}=\sqrt{7 g r}>\sqrt{5 g r}
\)
Hence, point mass will have completed the vertical circular path.
We know that,
\(\begin{aligned}
& T_{\text {bottom }}-m g=\frac{m v^{2}}{r}=\frac{m}{r}(\sqrt{7 g r})^{2} \\
\Rightarrow \quad & T_{\text {bottom }}-m g=7 \mathrm{mg} \\
\Rightarrow \quad \quad T_{\text {bottom }} &=8 \mathrm{mg}
\end{aligned}\)
A mass \(m\) is attached to a thin wire and whirled in a vertical circle. The wire is most likely to break when: [NEET (National) 2019]
(b) Let the mass m which is attached to a thin wire and is whirled in a vertical circle is shown in the figure below.
The tension in the string at any point \(P\) be T.
According to Newton’s law of motion, In equilibrium, net force towards the centre = centripetal force \(\Rightarrow T-m g \cos \theta=\frac{m v^{2}}{l}\)
Here, \(l=\) length of wire and \(v=\) linear velocity of the particle whirling in a circle.
\(
\Rightarrow T=m g \cos \theta+\frac{m v^{2}}{l}
\)
At \(A, \theta=0^{\circ} \Rightarrow T_{A}=m g+\frac{m v^{2}}{l}\)
At \(B, \theta=90^{\circ} \Rightarrow T_{B}=\frac{m v^{2}}{l}\)
At C, \(\theta=180^{\circ} \Rightarrow T_{C}=-m g+\frac{m v^{2}}{l}\)
At \(D_{1} \theta=90^{\circ} \Rightarrow T_{D}=T_{B}=\frac{m v^{2}}{l}\)
So, from the above analysis, it can be concluded that the tension is maximum at \(A\) i.e. the lowest point of circle, So chance of breaking is maximum.
A body initially at rest and sliding along a frictionless track from a height \(h\) (as shown in the figure) just completes a vertical circle of diameter \(A B=D\). The height \(h\) is equal to [NEET 2018]
(d) If a body is moving on a frictionless surface, then its total mechanical energy remains conserved. According to the conservation of mechanical energy,
\(
\begin{aligned}
&(T E)_{\text {inital }}=(T E)_{\text {final }} \\
\Rightarrow \quad(K E)_{i}+(P E)_{i} &=(K E)_{f}+(\mathrm{PE})_{f} \\
& 0+m g h=\frac{1}{2} m v_{A}^{2}+0 \\
\Rightarrow \quad & g h=\frac{v_{A}^{2}}{2} \text { or } h=\frac{v_{A}^{2}}{2 g} \dots (i)
\end{aligned}
\)
In order to complete the vertical circle, the velocity of the body at point \(A\)
should be
\(
v_{A}=v_{\text {min }}=\sqrt{5 g R}
\)
where, \(R\) is the radius of the body.
Here, \(\quad R=\frac{A B}{2}=\frac{D}{2}\)
\(
\Rightarrow \quad v_{\min }=v_{A}=\sqrt{\frac{5}{2} g D}
\)
Substituting the value of \(v_{A}\) in Eq. (i), we get
\(
\begin{aligned}
h &=\frac{\left(\sqrt{\left(\frac{5}{2} g D\right)}\right)^{2}}{2 g} \\
&=\frac{5 g D}{2 \times 2 g}=\frac{5}{4} D
\end{aligned}
\)
What is the minimum velocity with which a body of mass \(m\) must enter a vertical loop of radius \(R\) so that it can complete the loop? [NEET 2016]
(c) According to the question, we have
Let the tension at point \(A\) be \(T_{A}\). So, from Newton’s second law
\(
T_{A}-m g=\frac{m v_{c}^{2}}{R}
\)
Energy at point \(A=\frac{1}{2} m v_{0}^{2} \dots (i)\)
Energy at point \(C\) is
\(
\frac{1}{2} m v_{c}^{2}+m g \times 2 R \dots (ii)
\)
Applying Newton’s 2nd law at point \(C\)
\(
T_{c}+m g=\frac{m v_{c}^{2}}{R}
\)
To complete the \(\operatorname{loop} T_{c} \geq 0\)
So, \(m g=\frac{m v_{c}^{2}}{R}\)
\(\Rightarrow v_{c}=\sqrt{g R} \dots (iii)\)
From Eqs. (i) and (ii) by conservation of energy
\(
\begin{aligned}
& \Rightarrow \quad \frac{1}{2} m v_{0}^{2} =\frac{1}{2} m v_{c}^{2}+2 m g R \\
\Rightarrow \quad & \frac{1}{2} m v_{0}^{2} =\frac{1}{2} m g R+2 m g R \\
\Rightarrow & v_{0}^{2} =g R+4 g R \\
\Rightarrow & v_{0} =\sqrt{5 g R}
\end{aligned}
\)
A stone is attached to one end of a string and rotated in a vertical circle. If the string breaks at the position of maximum tension, it will break at [CBSE AIPMT 2000]
(b) When string makes an angle \(\theta\) with the vertical in a vertical circle, then balancing the force we get
\(
T-m g \cos \theta=\frac{m v^{2}}{l}
\)
or \(T=m g \cos \theta+\frac{m v^{2}}{l}\)
Tension is maximum when \(\cos \theta=+1\)
i.e. \(\theta=0\)
Thus, \(\theta\) is zero at lowest point B. At this point tension is maximum. So, string will break at point \(B\).
The energy that will be ideally radiated by a \(100 \mathrm{~kW}\) transmitter in 1 hour is [NEET 2022]
\(
\begin{aligned}
& \text { Energy }=\text { Power } \times \text { time } \\
& \begin{aligned}
E & =100 \times 10^3 \times 3600 \\
& =36 \times 10^7 \mathrm{~J}
\end{aligned}
\end{aligned}
\)
The amount of energy required to form a soap bubble of radius \(2 \mathrm{~cm}\) from a soap solution is nearly (surface tension of soap solution \(=0.03 \mathrm{~N} \mathrm{~m}^{-1}\) ) [NEET 2023]
Amount of energy required \(=[S \times \Delta A] \times 2\)
\(
\begin{aligned}
\Rightarrow \text { Energy required } & =\left[0.03 \times 4 \times \pi \times 4 \times 10^{-4}\right] \times 2 \\
& =3.015 \times 10^{-4} \mathrm{~J}
\end{aligned}
\)
The potential energy of a long spring when stretched by \(2 \mathrm{~cm}\) is \(U\). If the spring is stretched by \(8 \mathrm{~cm}\), potential energy stored in it will be [NEET 2023]
Potential energy stored in spring \(U=\frac{1}{2} K x^2\)
\(
\begin{aligned}
& U=\frac{1}{2} K(2)^2 \text { where } x=2 \mathrm{~cm} \\
& U=\frac{1}{2}(K) \cdot(4) \\
& U=2 K \dots(i) \\
& U^{\prime}=\frac{1}{2} K(8)^2 \\
& U^{\prime}=\frac{1}{2} K \times 64=32 K \dots(ii)
\end{aligned}
\)
On dividing (i) by (ii)
\(
\begin{aligned}
& \frac{U}{U}=\frac{2 K}{32 K}-\frac{1}{16} \\
& U=16 U
\end{aligned}
\)
You cannot copy content of this page