Orbital Velocity is the minimum velocity required to put the satellite into its orbit around the Earth.
For the derivation, let us consider a satellite of mass \((m)\) revolving around the earth having mass \((M)\) and the radius \((R)\) in a circular radius \((r)\) at a height \((h)\) from the surface of the Earth. To revolve around the Earth, the Gravitational force between the satellite and the Earth provides a centripetal force.
As we know that, According to the law of gravitation, the force of gravity on the satellite at an altitude of \(h\) is given by
\(
F_g=\frac{G M m}{(r)^2}=\frac{G M m}{(R+h)^2}(r=R+h) \ldots(1)
\)
And, the centripetal force required by the satellite to keep it in its orbit is given as
\(
F_r=\frac{m V_o^2}{r}=\frac{m V_o^2}{R+h} \quad \ldots \ldots(2)
\)
So, the satellite will orbit the earth if,
\(
\begin{aligned}
&F_{\text {Gravitational }}=F_{\text {Centripetal }} \\
&\Rightarrow \frac{G M m}{(R+h)^2}=\frac{m V_o^2}{R+h} \\
&\Rightarrow V_o^2=\frac{G M}{R+h} \\
&\Rightarrow V_o=\sqrt{\frac{G M}{R+h}}
\end{aligned}
\)
Now when the satellite revolves close to the surface of the Earth then, \((h=0\), on comparing with the radius of the earth), and the orbital velocity becomes
\(
\Rightarrow V_o=\sqrt{\frac{G M}{R}} \ldots(3)
\)
Where,
\(M=\) Mass of the Earth,
\(R=\) Radius of the Earth,
\(m=\) Mass of the Satellite
\(V_o=\) Orbital Velocity of the Satellite
\(H=\) Height of the satellite above the earth’s surface
There exists a relationship between escape velocity and orbital velocity. The mathematical relation between the escape velocity and the orbital velocity will be
From the expression of the Escape velocity,
We have:- \(v_e=\sqrt{\frac{2 G M}{R}} \quad \cdots(4)\)
And from the expression of the orbital velocity,
We have:- \(V_o=\sqrt{\frac{G M}{R}} \quad \cdots(5)\)
Now, On dividing Eq (4) and Eq (5)
We have
\(
\begin{aligned}
&\frac{v_e}{V_o}=\sqrt{\frac{2 G M}{R}} \times \sqrt{\frac{R}{G M}} \\
&\Rightarrow v_e=\sqrt{2} V_o \quad \cdots(6)
\end{aligned}
\)
The above relation is valid for any orbit at a distance of \(r\) from the earth’s centre.
To escape from the earth’s surface, we calculate the escape velocity, As we know that
The Mass of the Earth \(=5.98 \times 10^{24} \mathrm{~kg}\)
The Radius of the Earth \(=6.38 \times 10^6 \mathrm{~m}\)
Newtons Gravitational Constant, \(G=6.673 \times 10^{-11} \mathrm{Nm}^2 \mathrm{~kg}^{-2}\).
Now we can find the escape velocity from the earth using the escape velocity formula:-
\(
v_e=\sqrt{\frac{2 G M}{R}}
\)
Now substituting all the above values, we have:-
\(
\begin{aligned}
&v_e=\sqrt{\frac{2 \times\left(6.673 \times 10^{11}\right)\left(5.98 \times 10^{24}\right)}{6.38 \times 10^6}} \\
&\Rightarrow v_e=\sqrt{\frac{\left(7.981 \times 10^{14}\right)}{6.38 \times 10^6}} \\
&\Rightarrow v_e=\sqrt{1.251 \times 10^8} \\
&\Rightarrow v_e=11184 \mathrm{~m} \mathrm{~s}^{-1} \\
&\Rightarrow v_e=11.2 \mathrm{~km} \mathrm{~s}^{-1}
\end{aligned}
\)
Therefore, the escape velocity from the Earth is \(11.2 \mathrm{~km} \mathrm{~s}^{-1}\).
You cannot copy content of this page