Measurement Of Mass
Mass is a basic property of matter. It does not depend on the temperature, pressure or location of the object in space. The SI unit of mass is kilogram (kg). It is defined by taking the fixed numerical value of the Plank Constant \(h\) to be \(6.62607015 \times 10^{-34}\) when expressed in the unit of Js which is equal to \(\mathrm{kg} \mathrm{} \mathrm{m}^{2} \mathrm{~s}^{-1}\), where the metre and the second are defined is terms of \(C\) and \(\Delta v \mathrm{cs}\).
\(\begin{aligned}
&\text { Table 2.4 Range and order of masses }\\
&\begin{array}{|l|l|}
\hline \text { Object } & \text { Mass }(\text { kg }) \\
\hline \text { Electron } & 10^{-30} \\
\hline \text { Proton } & 10^{-27} \\
\hline \text { Uranium atom } & 10^{-25} \\
\hline \text { Red blood cell } & 10^{-13} \\
\hline \text { Dust particle } & 10^{-9} \\
\hline \text { Rain drop } & 10^{-6} \\
\hline \text { Mosquito } & 10^{-5} \\
\hline \text { Grape } & 10^{-3} \\
\hline \text { Human } & 10^{2} \\
\hline \text { Automobile } & 10^{3} \\
\hline \text { Boeing } 747 \text { aircraft } & 10^{-} \\
\hline \text { Moon } & 10^{23} \\
\hline \text { Earth } & 10^{25} \\
\hline \text { Sun } & 10^{30} \\
\hline \text { Milky way galaxy } & 10^{41} \\
\hline \text { Observable Universe } & 10^{55} \\
\hline
\end{array}
\end{aligned}\)