0 of 38 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 38 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
A block of mass \(0.5 \mathrm{~kg}\) hanging from a vertical spring executes simple harmonic motion of amplitude \(0.1 \mathrm{~m}\) and time period \(0.314 \mathrm{~s}\). Find the maximum force exerted by the spring on the block.
It is given that:
Amplitude of simple harmonic motion, \(x=0.1 \mathrm{~m}\)
Time period of simple harmonic motion, \(T=0.314 \mathrm{~s}\)
Mass of the block, \(m=0.5 \mathrm{~kg}\)
Weight of the block, \(W=m g=0.5 \times 10=5 \mathrm{~kg} \quad\left(\because g=10 \mathrm{~ms}^{-2}\right)\)
Total force exerted on the block \(=\) Weight of the block + spring force
Periodic time of spring is given by,
\(
\begin{aligned}
& T=2 \pi \sqrt{\left(\frac{m}{k}\right)} \\
& \Rightarrow 0.314=2 \pi \sqrt{\left(\frac{0.5}{k}\right)} \\
& \Rightarrow k=200 N / m
\end{aligned}
\)
\(\therefore\) The force exerted by the spring on the block \((F)\) is, \(F=k x=200.0 \times 0.1=20 \mathrm{~N}\)
Maximum force \(=F+\) weight of the block
\(
=20+5=25 \mathrm{~N}
\)
A body of mass \(2 \mathrm{~kg}\) suspended through a vertical spring executes simple harmonic motion of period \(4 \mathrm{~s}\). If the oscillations are stopped and the body hangs in equilibrium, find the potential energy stored in the spring.
It is given that:
Mass of the body, \(m=2 \mathrm{~kg}\)
Time period of the spring mass system, \(T=4 \mathrm{~s}\)
The time period for spring-mass system is given as,
\(
T=2 \pi \sqrt{\left(\frac{m}{k}\right)}
\)
where \(k\) is the spring constant.
On substituting the respective values, we get:
\(
\begin{aligned}
& \Rightarrow 4=2 \pi \sqrt{\frac{2}{k}} \\
& \Rightarrow 2=\pi \sqrt{\frac{2}{k}} \\
& \Rightarrow 4=\pi^2\left(\frac{2}{k}\right) \\
& \Rightarrow k=\frac{2 \pi^2}{4} \\
& =\frac{\pi^2}{2}=5 N / m
\end{aligned}
\)
As the restoring force is balanced by the weight, we can write:
\(
\begin{aligned}
F & =m g=k x \\
\Rightarrow x & =\frac{m g}{k}=\frac{2 \times 10}{5}=4
\end{aligned}
\)
\(\therefore\) Potential Energy \((U)\) of the spring is,
\(
\begin{aligned}
& U=\left(\frac{1}{2}\right) k x^2=\frac{1}{2} \times 5 \times 16 \\
& =5 \times 8=40 \mathrm{~J}
\end{aligned}
\)
A spring stores \(5 \mathrm{~J}\) of energy when stretched by \(25 \mathrm{~cm}\). It is kept vertical with the lower end fixed. A block fastened to its other end is made to undergo small oscillations. If the block makes 5 oscillations each second, what is the mass of the block?
It is given that:
Energy stored in the spring, \(E=5 \mathrm{~J}\)
Frequency of the mass-spring system, \(f=5\)
Extension in the length of the spring, \(x=25 \mathrm{~cm}=0.25 \mathrm{~m}\)
Time period,\(T=\frac{1}{5} s\)
Potential energy \((U)\) is given by,
\(
\begin{aligned}
& U=\frac{1}{2} k x^2 \\
& \Rightarrow \frac{1}{2} k x^2=5 \\
& \Rightarrow \frac{1}{2} k(0.25)^2=5 \\
& \Rightarrow k=160 N / m
\end{aligned}
\)
Time period of spring mass system is given by,
\(T=2 \pi \sqrt{\left(\frac{m}{k}\right)}\) where \(\mathrm{m}\) is the mass of the body hanged, and \(\mathrm{k}\) is the spring constant.
On substituting the respective values in the above expression, we get:
\(
\begin{aligned}
& \frac{1}{5}=2 \pi \sqrt{\left(\frac{m}{160}\right)} \\
& \Rightarrow m=0.16 \mathrm{~kg}
\end{aligned}
\)
A small block of mass \(m\) is kept on a bigger block of mass \(M\) which is attached to a vertical spring of spring constant \(k\) as shown in the figure. The system oscillates vertically. (a) Find the resultant force on the smaller block when it is displaced through a distance \(x\) above its equilibrium position. (b) Find the normal force on the smaller block at this position. When is this force the smallest in magnitude? (c) What can be the maximum amplitude with which the two blocks may oscillate together?
(a) Consider the free body diagram.
Weight of the body, \(W=m g\)
Force, \(F=m a=m \omega^2 x\)
\(x\) is the small displacement of mass \(m\).
As normal reaction \(R\) is acting vertically in the upward direction, we can write:
\(
R+m \omega^2 x-m g=0 \dots(1)
\)
\(
\begin{aligned}
& \text { Resultant force }=m \omega^2 x=m g-R \\
& \Rightarrow m \omega^2 x=m\left(\frac{k}{M+m}\right) x \\
& =\frac{m k x}{M+m}
\end{aligned}
\)
Here,
\(
\omega=\sqrt{\left\{\frac{k}{M+m}\right\}}
\)
\(
\begin{aligned}
& \text { (b) } \mathrm{R}=m g-m \omega^2 x \\
& =m g-m \frac{k}{M+N} x \\
& =m g-\frac{m k x}{M+N}
\end{aligned}
\)
It can be seen from the above equations that, for \(R\) to be smallest, the value of \(m \omega^2 x\) should be maximum which is only possible when the particle is at the highest point.
(c) \(\mathrm{R}=m g-m \omega^2 x\)
As the two blocks oscillate together \(R\) becomes greater than zero.
When limiting condition follows,
i.e. \(R=0\)
\(
\begin{aligned}
& m g=m \omega^2 x \\
& x=\frac{m g}{m \omega^2}=\frac{m g \cdot(M+m)}{m k} \\
&
\end{aligned}
\)
Required maximum amplitude
\(
=\frac{g(M+m)}{k}
\)
The block of mass \(m_1\) shown in figure is fastened to the spring and the block of mass \(m_2\) is placed against it. (a) Find the compression of the spring in the equilibrium position. (b) The blocks are pushed a further distance \((2 / k)\left(m_1+m_2\right) g \sin \theta\) against the spring and released. Find the position where the two blocks separate. (c) What is the common speed of blocks at the time of separation?
(a) As it can be seen from the figure,
Restoring force \(=k x\)
Component of total weight of the two bodies acting vertically downwards \(=\left(m_1+m_2\right) g \sin \theta\)
At equilibrium,
\(
\begin{aligned}
& k x=\left(m_1+m_2\right) g \sin \theta \\
& \Rightarrow x=\frac{\left(m_1+m_2\right) g \sin \theta}{k}
\end{aligned}
\)
(b) It is given that:
Distance at which the spring is pushed,
\(
x_1=\frac{2}{k}\left(m_1+m_2\right) g \sin \theta
\)
As the system is released, it executes S.H.M.
where \(\omega=\sqrt{\frac{k}{m_1+m_2}}\)
When the blocks lose contact, \(P\) becomes zero. \(\quad\left(P\right.\) is the force exerted by mass \(m_1\) on mass \(\left.m_2\right)\)
\(
\therefore m_2 g \sin \theta=m_2 x_2 \omega^2=m_2 x_2 \times \frac{k}{m_1+m_2} \Rightarrow x_2=\frac{\left(m_1+m_2\right) g \sin \theta}{k}
\)
Therefore, the blocks lose contact with each other when the spring attains its natural length.
(c) Let \(v\) be the common speed attained by both the blocks.
Total compression \(=x_1+x_2\)
\(
\begin{aligned}
& \frac{1}{2}\left(m_1+m_2\right) v^2-0=\frac{1}{2} k\left(x_1+x_2\right)^2-\left(m_1+m_2\right) g \sin \theta\left(x+x_1\right) \\
& \Rightarrow \frac{1}{2}\left(m_1+m_2\right) v^2=\frac{1}{2} k\left(\frac{3}{k}\right)\left(m_1+m_2\right) g \sin \theta-\left(m_1+m_2\right) g \sin \theta\left(x_1+x_2\right) \\
& \Rightarrow \frac{1}{2}\left(m_1+m_2\right) v^2=\frac{1}{2}\left(m_1+m_2\right) g \sin \theta \times\left(\frac{3}{k}\right)\left(m_1+m_2\right) g \sin \theta \\
& \Rightarrow v=\sqrt{\left\{\frac{3}{k}\left(m_1+m_2\right)\right\}} g \sin \theta
\end{aligned}
\)
A particle of mass \(m\) is attatched to three springs \(A, B\) and \(C\) of equal force constants \(k\) as shown in the figure below. If the particle is pushed slightly against the spring \(C\) and released, find the time period of oscillation.
\(
\text { (a) Let us push the particle lightly against the spring C through displacement } x \text {. }
\)
As a result of this movement, the resultant force on the particle is \(k x\). The force on the particle due to springs \(\mathrm{A}\) and \(\mathrm{B}\) is \(\frac{k x}{\sqrt{2}}\).
Total Resultant force \(=k x+\sqrt{\left(\frac{k x}{\sqrt{2}}\right)^2+\left(\frac{k x}{\sqrt{2}}\right)^2}\) \(=k x+k x=2 k x\)
Acceleration is given by \(=\frac{2 k x}{m}\)
Time period \(=2 \pi \sqrt{\frac{\text { Displacement }}{\text { Acceleration }}}\)
\(=2 \pi \sqrt{\frac{x}{2 k x / m}}\)
\(=2 \pi \sqrt{\frac{m}{2 k}}\)
A particle of mass \(m\) is attatched to three springs \(A, B\) and \(C\) of equal force constants \(k\) as shown in the figure below. If the particle is pushed slightly against the spring \(C\) and released, find the time period of oscillation. Assume the angle between each pair of springs is \(120^{\circ}\) initially.
\(
\text { As the particle is pushed against the spring } C \text { by the distance } x \text {, it experiences a force of magnitude } k x \text {. }
\)
If the angle between each pair of the springs is \(120^{\circ}\) then the net force applied by the springs \(A\) and \(B\) is given as,
\(
\sqrt{\left(\frac{k x}{2}\right)^2+\left(\frac{k x}{2}\right)^2+2\left(\frac{k x}{2}\right)\left(\frac{k x}{2}\right) \cos 120^{\circ}}=\frac{k x}{2}
\)
Total resultant force \((F)\) acting on mass \(m\) will be,
\(
\begin{aligned}
& F=k x+\frac{k x}{2}=\frac{3 k x}{2} \\
& \therefore a=\frac{F}{m}=\frac{3 k x}{2 m} \\
& \Rightarrow \frac{a}{x}=\frac{3 k}{2 m}=\omega^2 \\
& \Rightarrow \omega=\sqrt{\frac{3 k}{2 m}} \\
& \therefore \text { Time period }, T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{2 m}{3 k}}
\end{aligned}
\)
The springs shown in the figure below are all unstretched in the beginning when a man starts pulling the block. The man exerts a constant force \(F\) on the block. Find the amplitude and the frequency of the motion of the block.
As the block of mass \(M\) is pulled, a net resultant force is exerted by the three springs opposing the motion of the block.
Now, springs \(k_2\) and \(k_3\) are in connected as a series combination.
Let \(k_4\) be the equivalent spring constant.
\(
\begin{aligned}
& \therefore \frac{1}{k_4}=\frac{1}{k_2}+\frac{1}{k_3}=\frac{k_2+k_3}{k_2 k_3} \\
& k_4=\frac{k_2 k_3}{k_2+k_3}
\end{aligned}
\)
\(k_4\) and \(k_1\) form a parallel combination of springs. Hence, equivalent spring constant \(k=k_1+k_4\).
\(
\begin{aligned}
& =\frac{k_2 k_3}{k_2+k_3}+k_1 \\
& =\frac{k_2 k_3+k_1 k_2+k_1 k_3}{k_2+k_3}
\end{aligned}
\)
\(\therefore\) Time peiod, \(T=2 \pi \sqrt{\frac{M}{k}}\)
\(
=2 \pi \sqrt{\frac{M\left(k_2+k_3\right)}{k_2 k_3+k_1 k_2+k_1 k_3}}
\)
(b) Frequency \((v)\) is given by,
\(
\begin{aligned}
& v=\frac{1}{T} \\
& =\frac{1}{2 \pi} \sqrt{\frac{k_2 k_3+k_1 k_2+k_1 k_3}{M\left(k_2+k_3\right)}}
\end{aligned}
\)
(c) Amplitude ( \(x\) ) is given by,
\(
x=\frac{F}{k}=\frac{F\left(k_2+k_3\right)}{k_1 k_2+k_2 k_3+k_1 k_3}
\)
Find the elastic potential energy stored in each spring shown in the figure below, when the block is in equilibrium. Also, find the time period of vertical oscillation of the block.
All three spring attached to the mass \(M\) are in series.
\(\mathrm{k}_1, k_2, k_3\) are the spring constants.
Let \(k\) be the resultant spring constant.
\(
\begin{aligned}
& \frac{1}{k}=\frac{1}{k_1}+\frac{1}{k_2}+\frac{1}{k_3} \\
& \Rightarrow k=\frac{k_1 k_2 k_3}{k_1 k_2+k_2 k_3+k_3 k_1}
\end{aligned}
\)
Time period \((T)\) is given by,
\(
\begin{aligned}
& T=2 \pi \sqrt{\frac{M}{k}} \\
& =2 \sqrt{\frac{M\left(k_1 k_2+k_2 k_3+k_3 k_1\right)}{k_1 k_2 k_3}} \\
& =2 \sqrt{M\left(\frac{1}{k_1}+\frac{1}{k_2}+\frac{1}{k_3}\right)}
\end{aligned}
\)
As force is equal to the weight of the body,
\(
F=\text { weight }=M g
\)
Let \(x_1, x_2\), and \(x_3\) be the displacements of the springs having spring constants \(k_1, k_2\) and \(k_3\) respectively.
For spring \(k_1\)
\(
x_1=\frac{M g}{k_1}
\)
Similarly,\(x_2=\frac{M g}{k_2}\)
and \(x_3=\frac{M g}{k_3}\)
\(\therefore P E_1=\frac{1}{2} k_1 x_1^2\)
\(=\frac{1}{2} k_1\left(\frac{M g}{k_1}\right)^2\)
\(=\frac{1}{2} k_1 \frac{M^2 g^2}{k_1^2}\)
\(=\frac{1}{2} \frac{M^2 g^2}{k_1}=\frac{M^2 g^2}{2 k_1}\)
Similarly, \(P E_2=\frac{M^2 g^2}{2 k_2}\)
and \(P E_3=\frac{M^2 g^2}{2 k_3}\)
The string, the spring and the pulley shown in the figure below are light. Find the time period of the mass \(m\).
\(
\text { Let } l \text { be the extension in the spring when mass } m \text { is hung. }
\)
\(
T_1=k l=m g
\)
Let \(x\) be the extension in the string on applying a force \(F\). Then, the new value of tension \(T_2\) is given by,
\(
T_2=\mathrm{k}(\mathrm{x}+\mathrm{l})
\)
Driving force is the difference between tensions \(T_1\) and \(T_2\).
\(
\begin{aligned}
\therefore \text { Driving force } & =T_2-T_1=k(x+l)-k l \\
& =k x
\end{aligned}
\)
Acceleration, \(a=\frac{k x}{m}\)
Time period \((T)\) is given by,
\(
\begin{aligned}
& T=2 \pi \sqrt{\frac{\text { displacement }}{\text { Acceleration }}} \\
& =2 \pi \sqrt{\frac{x}{k x / m}}=2 \pi \sqrt{\frac{m}{k}}
\end{aligned}
\)
The string, the spring and the pulley shown in the figure below are light. Solve the previous problem if the pulley has a moment of inertia I about its axis and the string does not slip over it. Find the time period of the mass \(m\).
Let us try to solve the problem using energy method.
If \(\delta\) is the displacement from the mean position then, the initial extension of the spring from the mean position is given by, \(\delta=\frac{m g}{k}\)
Let \(x\) be any position below the equilibrium during oscillation.
Let \(v\) be the velocity of mass \(m\) and \(\omega\) be the angular velocity of the pulley.
If \(r\) is the radius of the pulley then
\(v=r \omega\)
As total energy remains constant for simple harmonic motion, we can write:
\(
\begin{aligned}
& \frac{1}{2} M v^2+\frac{1}{2} I \omega^2+\frac{1}{2} k\left[(x+\delta)^2-\delta^2\right]-M g x=\text { Constant } \\
& \Rightarrow \frac{1}{2} M v^2+\frac{1}{2} I \omega^2+\frac{1}{2} k x^2+k x d-M g x=\text { Constant } \\
& \Rightarrow \frac{1}{2} M v^2+\frac{1}{2} I\left(\frac{v^2}{r^2}\right)+\frac{1}{2} k x^2=\text { Constant }\left[\because \delta=\frac{M g}{k}\right]
\end{aligned}
\)
By taking derivatives with respect to \(t\), on both sides, we have:
\(
\begin{aligned}
& M v \cdot \frac{d v}{d t}+\frac{I}{r^2} v \cdot \frac{d v}{d t}+k x \frac{d x}{d t}=0 \\
& M v a+\frac{I}{r^2} v a+k x v=0\left(\because v=\frac{d x}{d t} \text { and } a=\frac{d v}{d t}\right) a\left(M+\frac{I}{r^2}\right)=-k x \Rightarrow \frac{a}{x}=\frac{k}{M+\frac{I}{r^2}}=\omega^2 T=\frac{2 \pi}{\omega} \\
& \Rightarrow T=2 \pi \sqrt{\frac{M+\frac{I}{r^2}}{k}}
\end{aligned}
\)
Consider the situation shown in the figure below. Show that if the blocks are displaced slightly in opposite directions and released, they will execute simple harmonic motion. Calculate the time period.
The centre of mass of the system should not change during simple harmonic motion.
Therefore, if the block \(m\) on the left hand side moves towards right by distance \(x\), the block on the right hand side should also move towards left by distance \(x\). The total compression of the spring is \(2 x\).
If \(v\) is the velocity of the block. Then
Using energy method, we can write:
\(
\begin{aligned}
& \frac{1}{2} k(2 x)^2+\frac{1}{2} m v^2+\frac{1}{2} m v^2=C \\
& \Rightarrow m v^2+2 k x^2=C
\end{aligned}
\)
By taking the derivative of both sides with respect to \(t\), we get:
\(
2 m v \frac{d v}{d t}+2 k \times 2 x \frac{d x}{d t}=0
\)
Putting \(v=\frac{d x}{d t} ;\) and \(a=\frac{d v}{d t}\) in above expression, we get
\(
\begin{aligned}
& m a+2 k x=0 \\
& \Rightarrow-\frac{a}{x}=\frac{2 k}{m}=\omega^2 \\
& \Rightarrow \omega=\sqrt{\frac{2 k}{m}} \\
& \Rightarrow \text { Time period }, T=2 \pi \sqrt{\left(\frac{m}{2 k}\right)}
\end{aligned}
\)
A rectangular plate of sides \(a\) and \(b\) is suspended from a ceiling by two parallel strings of length \(L\) each (figure below). The separation between the strings is \(d\). The plate is displaced slightly in its plane keeping the strings tight. Show that it will execute the simple harmonic motion. Find the time period.
Let \(m\) is the mass of rectangular plate and \(\mathrm{x}\) is the displacement of the rectangular plate During the oscillation, the centre of mass does not change.
Driving force \((F)\) is given as,
\(F=m g \sin \theta\)
Comparing the above equation with \(\mathrm{F}=\mathrm{ma}\), we get:
\(
a=\frac{F}{m}=g \sin \theta
\)
For small values of \(\theta, \sin \theta\) can be taken as equal to \(\theta\).
Thus, the above equation reduces to:
\(a=g \theta=g\left(\frac{x}{L}\right)[\) Where \(\mathrm{g}\) and \(\mathrm{L}\) are constant.]
It can be seen from the above equation that, a \(a \propto x\).
Hence, the motion is simple harmonic.
Time period of simple harmonic motion \((T)\) is given by,
\(
\begin{aligned}
& T=2 \pi \sqrt{\frac{\text { displacement }}{\text { Acceleration }}} \\
& =2 \pi \sqrt{\frac{x}{g x / L}}=2 \pi \sqrt{\frac{L}{g}}
\end{aligned}
\)
A \(1 \mathrm{~kg}\) block is executing simple harmonic motion of amplitude \(0.1 \mathrm{~m}\) on a smooth horizontal surface under the restoring force of a spring of spring constant \(100 \mathrm{~N} \mathrm{~m}^{-1}\). A block of mass \(3 \mathrm{~kg}\) is gently placed on it at the instant it passes through the mean position. Assuming that the two blocks move together, find the frequency and the amplitude of the motion.
It is given that: Amplitude of simple harmonic motion, \(x=0.1 \mathrm{~m}\)
Total mass of the system, \(M=3+1=4 \mathrm{~kg} \quad\) (when both the blocks move together)
Spring constant, \(k=100 \mathrm{~N} / \mathrm{m}\)
Time period of SHM \((T)\) is given by,
\(T=2 \pi \sqrt{\frac{M}{k}}\)
\(\text { On substituting the values of } M \text { and } k \text { in the above equation, we have: }\)
\(
T=2 \pi \sqrt{\frac{4}{100}}=\frac{2 \pi}{5} s
\)
Frequency of the motion is given by, \(\frac{1}{T}=\frac{5}{2 \pi} H z\)
Let \(v\) be the velocity of the \(1 \mathrm{~kg}\) block, at the mean position.
As kinetic energy is equal to the potential energy, we can write: \(\frac{1}{2} m v^2=\frac{1}{2} k x^2\)
where \(x=\) amplitude \(=0.1 \mathrm{~m}\)
Substituting the value of \(x\) in above equation and solving for \(v\), we get:
\(
\begin{aligned}
& \left(\frac{1}{2}\right) \times\left(1 \times v^2\right)=\left(\frac{1}{2}\right) \times 100(0.1)^2 \\
& v=1 m s^{-1} \ldots(1)
\end{aligned}
\)
When the \(3 \mathrm{~kg}\) block is gently placed on the \(1 \mathrm{~kg}\) block, the \(4 \mathrm{~kg}\) mass and the spring become one system. As a spring-mass system experiences an external force, momentum should be conserved.
Let \(V\) be the velocity of \(4 \mathrm{~kg}\) block.
Now, Initial momentum = Final momentum
\(\therefore 1 \times v=4 \times V\)
\(\Rightarrow V=\frac{1}{4} m / s\left[\right.\) As \(v=1 \mathrm{~ms}^{-1}\), from equation (1) \(]\)
Thus, at the mean position, two blocks have a velocity of \(\frac{1}{4} m s^{-1}\)
Mean value of kinetic energy is given as,
\(K E\) at mean position \(=\frac{1}{2} M V^2\)
\(
=\left(\frac{1}{2}\right) \times 4 \times\left(\frac{1}{4}\right)^2=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}
\)
At the extreme position, the spring-mass system has only potential energy.
\( E=\frac{1}{2} k \delta^2=\frac{1}{2} \times \frac{1}{4}\)
where \(\delta\) is the new amplitude.
\(
\begin{aligned}
& \therefore \frac{1}{4}=100 \delta^2 \\
& \delta=\sqrt{\left(\frac{1}{400}\right)} =0.05 \mathrm{~m}=5 \mathrm{~cm}
\end{aligned}
\)
The left block in the figure below moves at a speed v towards the right block placed in equilibrium. All collisions to take place are elastic and the surfaces are frictionless. Show that the motions of the two blocks are periodic. Find the time period of these periodic motions. Neglect the widths of the blocks.
According to the question, the collision is elastic and the surface is frictionless, therefore, when the left block A moves with speed \(v\) and collides with the right block \(B\), it transfers all the energy to the right block \(B\).
The left block A moves a distance \(x\) against the spring; the right block returns to the original position and completes half of the oscillation.
Therefore, the period of right block \(B\) will be, \(T=\frac{2 \pi \sqrt{\left(\frac{m}{k}\right)}}{2}=\pi \sqrt{\left(\frac{m}{k}\right)}\)
Right block B collides with left block A and comes to rest.
Let \(L\) be the distance moved by the block to return to its original position. The time taken is given by,
\(
\frac{L}{V}+\frac{L}{V}=2\left(\frac{L}{V}\right)
\)
Hence, time period of the periodic motion is,
\(
2 \frac{L}{V}+\pi \sqrt{\left(\frac{m}{k}\right)}
\)
Find the time period of the motion of the particle shown in the figure below. Neglect the small effect of the bend near the bottom.
Let \(t_1\) and \(t_2\) be the time taken by the particle to travel distances \(\mathrm{AB}\) and \(\mathrm{BC}\) respectively.
Acceleration for part \(\mathrm{AB}, a_1=g \sin 45^{\circ}\)
The distance travelled along \(A B\) is \(s_1\).
\(
\therefore s_1=\frac{0.1}{\sin 45^{\circ}}=2 m
\)
Let \(v\) be the velocity at point \(\mathrm{B}\), and \(u\) be the initial velocity.
Using the third equation of motion, we have:
\(
\begin{aligned}
& v^2-u^2=2 a_1 s_1 \\
& \Rightarrow v^2=2 \times g \sin 45^{\circ} \times \frac{0.1}{\sin 45^{\circ}}=2 \\
& \Rightarrow v=\sqrt{2} \mathrm{~m} / \mathrm{s} \\
& A s v=u+a_1 t_1 \\
& \therefore t_1=\frac{v-u}{a_1} \\
& =\frac{\sqrt{2}-0}{\frac{g}{\sqrt{2}}} \\
& =\frac{2}{g}=\frac{2}{10}=0.2 \sec \left(g=10 \mathrm{~ms}^{-2}\right)
\end{aligned}
\)
For the distance \(\mathrm{BC}\),
Acceleration, \(a_2=-g \sin 60^{\circ}\)
Initial velocity,\(u=\sqrt{2}\)
\(
\begin{aligned}
& v=0 \\
& \therefore \text { time period }, t_2=\frac{0-\sqrt{2}}{-\frac{g}{(3 \sqrt{2})}}=\frac{2 \sqrt{2}}{\sqrt{3} g} \\
& =\frac{2 \times(1.414)}{(1.732) \times 10}=0.163 \mathrm{~s}
\end{aligned}
\)
Thus, the total time period, \(t=2\left(t_1+t_2\right)=2(0.2+0.163)=0.73 \mathrm{~s}\)
A uniform plate of mass \(M\) stays horizontally and symmetrically on two wheels rotating in opposite directions (figure below). The separation between the wheels is \(L\). The friction coefficient between each wheel and the plate is \(\mu\). Find the time period of oscillation of the plate if it is slightly displaced along its length and released.
Let \(x\) be the displacement of the uniform plate towards left.
Therefore, the centre of gravity will also be displaced through displacement \(x\).
At the displaced position,
\(
R_1+R_2=m g
\)
Taking moment about \(g\), we get:
\(
\begin{aligned}
& R_1\left(\frac{L}{2}-x\right)=R_2\left(\frac{L}{2}+x\right)=\left(M g-R_1\right)\left(\frac{L}{2}+x\right) \ldots (1)\\
& \therefore R_1\left(\frac{L}{2}-x\right)=\left(M g-R_1\right)\left(\frac{L}{2}+x\right) \\
& \Rightarrow R_1 \frac{L}{2}-R_1 x=M g \frac{L}{2}-R_1 x+M g x-R_1 \frac{L}{2} \\
& \Rightarrow R_1 \frac{L}{2}+R_1 \frac{L}{2}=M g\left(x+\frac{L}{2}\right) \\
& \Rightarrow R_1\left(\frac{L}{2}+\frac{L}{2}\right)=M g\left(\frac{2 x+L}{2}\right) \\
& \Rightarrow R_1 L=M g(2 x+L) \\
& \Rightarrow R_1=M g \frac{(L+2 x)}{2 L}
\end{aligned}
\)
Now,
\(
F_1=\mu R_1=\mu M g \frac{(L+2 x)}{2 L}
\)
Similarly ,
\(
F_2=\mu R_2=\mu M g \frac{(L-2 x)}{2 L}
\)
As \(F_1>F_2\), we can write:
\(
\begin{aligned}
& F_1-F_2=M a=\left(2 \mu \frac{M g}{L}\right) x \\
& \frac{a}{x}=2 \mu \frac{g}{L}=\omega^2 \\
& \Rightarrow \omega=\sqrt{\frac{2 \mu g}{L}}
\end{aligned}
\)
Time period \((T)\) is given by,
\(
T=2 \pi \sqrt{\frac{L}{2 \mu g}}
\)
A pendulum having time period equal to two seconds is called a seconds pendulum. Those used in pendulum clocks are of this type. Find the length of a seconds pendulum at a place where \(g=\pi^2 \mathrm{~m} \mathrm{~s}^{-2}\)Â
It is given that:
Time period of the second pendulum, \(T=2 \mathrm{~s}\)
Acceleration due to gravity of a given place, \(g=\pi^2 \mathrm{~ms}^{-2}\)
The relation between time period and acceleration due to gravity is given by,
\(
T=2 \pi \sqrt{\left(\frac{l}{g}\right)}
\)
where \(l\) is the length of the second pendulum.
Substituting the values of \(T\) and \(g\), we get:
\(
\begin{aligned}
& \Rightarrow 2=2 \pi \sqrt{\left(\frac{l}{\pi^2}\right)} \\
& \Rightarrow \frac{1}{\pi}=\frac{\sqrt{l}}{\pi} \\
& \Rightarrow l=1 m
\end{aligned}
\)
Hence, the length of the pendulum is \(1 \mathrm{~m}\).
The angle made by the string of a simple pendulum with the vertical depends on time as \(\theta=\frac{\pi}{90} \sin \left[\left(\pi \mathrm{s}^{-1}\right) t\right]\). Find the length of the pendulum if \(g=\pi^2 \mathrm{~ms}^{-2}\).
It is given that:
Angle made by the simple pendulum with the vertical, \(\theta=\left(\frac{\pi}{90}\right) \sin \left[\pi\left(s^{-1}\right) t\right]\) On comparing the above equation with the equation of \(\mathrm{S} . \mathrm{H} . \mathrm{M}\)., we get:
\(
\begin{aligned}
& \omega=\pi s^{-1} \\
& \Rightarrow \frac{2 \pi}{T}=\pi \\
& \therefore T=2 s
\end{aligned}
\)
Time period is given by the relation,
\(
\begin{aligned}
& T=2 \pi \sqrt{\left(\frac{l}{g}\right)} \\
& \Rightarrow 2=2 \pi \sqrt{\left(\frac{l}{\pi^2}\right)} \\
& \Rightarrow 1=\pi \frac{1}{\pi} \sqrt{(l)} \\
& \Rightarrow l=1 m
\end{aligned}
\)
Hence, the length of the pendulum is \(1 \mathrm{~m}\).
The pendulum of a certain clock has time period \(2.04 \mathrm{~s}\). How fast or slow does the clock run during 24 hours?
Given, Time period of the clock pendulum \(=2.04 \mathrm{~s}\)
The number of oscillations made by the pendulum in one day is calculated as \(\frac{\text { Number of seconds in one day }}{\text { time period of the pendulum in seconds }}=\frac{24 \times 3600}{2}=43200\)
In each oscillation, the clock gets slower by \((2.04-2.00)\) s, i.e., \(0.04 \mathrm{~s}\).
In one day, it is slowed by \(=43200 \times(0.04)\)
\(
=28.8 \mathrm{~min}
\)
Thus, the clock runs 28.8 minutes slow over 24 hours.
A pendulum clock giving correct time at a place where \(g=9.800 \mathrm{~m} \mathrm{~s}^{-2}\) is taken to another place where it loses 24 seconds during 24 hours. Find the value of \(g\) at this new place.
Let \(\mathrm{T}_1\) be the time period of the pendulum clock at a place where the acceleration due to gravity \(\left(g_1\right)\) is \(9.8 \mathrm{~ms}^{-2}\).
Let \(\mathrm{T}_1=2 \mathrm{~s}\)
\(
g_1=9.8 \mathrm{~ms}^{-2}
\)
Let \(T_2\) be the time period at the place where the pendulum clock loses 24 seconds during 24 hours.
Acceleration due to gravity at this place is \(\left(g_2\right)\)
\(
\begin{aligned}
& T_2=\frac{24 \times 3600}{\frac{(24 \times 3600-24)}{2}} \\
& =2 \times \frac{3600}{3599}
\end{aligned}
\)
As
\(
\begin{aligned}
& T \propto \frac{1}{\sqrt{g}} \\
& \therefore \frac{T_1}{T_2}=\sqrt{\left(\frac{g_2}{g_1}\right)} \\
& \Rightarrow \frac{g_2}{g_1}=\left(\frac{T_1}{T_2}\right)^2 \\
& \Rightarrow g_2=(9.8)\left(\frac{3599}{3600}\right)^2 \\
& =9.795 \mathrm{~m} / \mathrm{s}^2
\end{aligned}
\)
A simple pendulum is constructed by hanging a heavy ball by a \(5.0 \mathrm{~m}\) long string. It undergoes small oscillations. (a) How many oscillations does it make per second? (b) What will be the frequency if the system is taken on the moon where the acceleration due to gravitation of the moon is \(1.67 \mathrm{~m} \mathrm{~s}^{-2}\)?
It is given that:
Length of the pendulum, \(\mathrm{l}=5 \mathrm{~m}\)
Acceleration due to gravity, \(\mathrm{g}=9.8 \mathrm{~ms}^{-2}\)
Acceleration due to gravity at the moon, \(\mathrm{g}^{\prime}=1.67 \mathrm{~ms}^{-2}\)
(a) Time period \((T)\) is given by,
\(
\begin{aligned}
& T=2 \pi \sqrt{\frac{l}{g}} \\
& =2 \pi \sqrt{\frac{5}{9.8}} \\
& =2 \pi \sqrt{0.510}=2 \pi(0.71) \mathrm{s}
\end{aligned}
\)
i.e. the body will take \(2 \pi(0.7)\) seconds to complete an oscillation.
Now, frequency \((f)\) is given by,
\(
\begin{aligned}
& f=\frac{1}{T} \\
& \therefore f=\frac{1}{2 \pi(0.71)} \\
& =\frac{0.70}{\pi} H z
\end{aligned}
\)
(b) Let
\(g^{\prime}\) be the value of acceleration due to gravity at moon. Time period of simple pendulum at moon \(\left(T^{\prime}\right)\), is given as:
\(
T^{\prime}=2 \pi \sqrt{\left(\frac{l}{g^{\prime}}\right)}
\)
On substituting the respective values in the above formula, we get:
\(
T^{\prime}=2 \pi \sqrt{\frac{5}{1.67}}
\)
Therefore, frequency \(\left(f^{\prime}\right)\) will be,
\(
\begin{aligned}
& f^{\prime}=\frac{1}{T^{\prime}} \\
& =\frac{1}{2 \pi} \sqrt{\frac{1.67}{5}}=\frac{1}{2 \pi}(0.577) \\
& =\frac{1}{2 \pi \sqrt{3}} H z
\end{aligned}
\)
The maximum tension in the string of an oscillating pendulum is double of the minimum tension. Find the angular amplitude.
Let the speed of the bob of the pendulum at an angle \(\theta\) be \(v\).
Using the principle of conservation of energy between the mean and extreme positions, we get:
\(
\begin{aligned}
& \frac{1}{2} m v^2-0=m g l(1-\cos \theta) \\
& v^2=2 g l(1-\cos \theta) \dots(1)
\end{aligned}
\)
In a moving pendulum, the tension is maximum at the mean position, whereas it is minimum at the extreme position.
Maximum tension at the mean position is given by
\(
T_{\max }=m g+2 m g(1-\cos \theta)
\)
Minimum tension at the extreme position is given by
\(
T_{\min }=m g \cos \theta
\)
According to the question,
\(
T_{\max }=2 T_{\min }
\)
\(
\begin{aligned}
& \Rightarrow m g+2 m g-2 m g \cos \theta=2 m g \cos \theta \\
& \Rightarrow 3 m g=4 m g \cos \theta \\
& \Rightarrow \cos \theta=\frac{3}{4} \\
& \Rightarrow \theta=\cos ^{-1} \frac{3}{4}
\end{aligned}
\)
A small block oscillates back and forth on a smooth concave surface of radius \(R\) (figure below). Find the time period of small oscillation.
It is given that \(R\) is the radius of the concave surface.
Let \(N\) be the normal reaction force.
Driving force, \(F=m g \sin \theta\)
Comparing the expression for driving force with the expression, \(F=m a\), we get:
Acceleration, \(a=g \sin \theta\)
Since the value of \(\theta\) is very small,
\(\therefore \sin \theta \rightarrow \theta\)
\(\therefore\) Acceleration, \(a=g \theta\)
Let \(x\) be the displacement of the body from the mean position.
\(
\begin{aligned}
& \therefore \theta=\frac{x}{R} \\
& \Rightarrow a=g \theta=g\left(\frac{x}{R}\right) \\
& \Rightarrow\left(\frac{a}{x}\right)=\left(\frac{g}{R}\right) \\
& \Rightarrow a=x \frac{g}{R}
\end{aligned}
\)
As acceleration is directly proportional to the displacement. Hence, the body will execute S.H.M.
Time period \((T)\) is given by,
\(
\begin{aligned}
& T=2 \pi \sqrt{\frac{\text { displacement }}{\text { Acceleration }}} \\
& =2 \pi \sqrt{\frac{x}{g x / R}}=2 \pi \sqrt{\frac{R}{g}}
\end{aligned}
\)
A spherical ball of mass \(m\) and radius \(r\) rolls without slipping on a rough concave surface of large radius \(R\). It makes small oscillations about the lowest point. Find the time period.
Let \(\omega\) be the angular velocity of the system about the point of suspension at any time. The velocity of the ball rolling on a rough concave surface \(\left(v_C\right)\) is given by, \(v_C=(R-r) \omega\)
Also, \(v_{\mathrm{C}}=r \omega_1\)
where \(\omega_1\) is the rotational velocity of the sphere.
\(
\Rightarrow \omega_1=\frac{v_c}{r}=\left(\frac{R-r}{r}\right) \omega \cdots(1)
\)
As the total energy of a particle in S.H.M. remains constant,
\(
m g(R-r)(1-\cos \theta)+\frac{1}{2} m v_c^2+\frac{1}{2} I \omega_1^2=\text { constant }
\)
Substituting the values of \(v_{-} c\) and \(\omega_1\) in the above equation, we get:
\(
\begin{aligned}
& m g(R-r)(1-\cos \theta)+\frac{1}{2} m(R-r)^2 \omega^2+\frac{1}{2} m r^2\left(\frac{R-r}{r}\right) \omega^2=\text { constant }\left(\because I=m r^2\right) \\
& m g(R-r)(1-\cos \theta)+\frac{1}{2} m(R-r)^2 \omega^2+\frac{1}{5} m r^2\left(\frac{R-r}{r}\right) \omega^2=\text { constant } \\
& \Rightarrow g(R-r)(1-\cos \theta)+(R-r)^2 \omega^2\left[\frac{1}{2}+\frac{1}{5}\right]=\text { constant }
\end{aligned}
\)
Taking derivative on both sides, we get:
\(
g(R-r) \sin \theta \frac{d \theta}{d t}=\frac{7}{10}(R-r)^2 2 \omega \frac{d \omega}{d t}
\)
\(
\begin{aligned}
& \Rightarrow \mathrm{g} \sin \theta=2 \times\left(\frac{7}{10}\right)(\mathrm{R}-\mathrm{r}) \alpha\left(\because a=\frac{\mathrm{d} \omega}{\mathrm{dt}}\right) \\
& \Rightarrow \mathrm{g} \sin \theta=\left(\frac{7}{5}\right)(\mathrm{R}-\mathrm{r}) \alpha \\
& \Rightarrow \alpha=\frac{5 \mathrm{~g} \sin \theta}{7(\mathrm{R}-\mathrm{r})}=\frac{5 \mathrm{~g} \theta}{7(\mathrm{R}-\mathrm{r})}
\end{aligned}
\)
Therefore, the motion is S.H.M.
\(
\omega=\sqrt{\frac{5 g}{7(R-r)}}
\)
Time period is given by,
\(
\Rightarrow T=2 \pi \sqrt{\frac{7(R-r)}{5 g}}
\)
A simple pendulum of length \(40 \mathrm{~cm}\) is taken inside a deep mine. Assume for the time being that the mine is \(1600 \mathrm{~km}\) deep. Calculate the time period of the pendulum there. Radius of the earth \(=6400 \mathrm{~km}\).
It is given that:
Length of the pendulum, \(l=40 \mathrm{~cm}=0.4 \mathrm{~m}\)
Radius of the earth, \(R=6400 \mathrm{~km}\)
Acceleration due to gravity on the earth’s surface, \(g=9.8 \mathrm{~ms}^{-2}\)
Let
\(g^{\prime}\) be the acceleration due to gravity at a depth of \(1600 \mathrm{~km}\) from the surface of the earth. Its value is given by,
\(g^{\prime}=g\left(1-\frac{d}{R}\right)\) where \(d\) is the depth from the earth surfce, \(\mathrm{R}\) is the radius of earth, and \(\mathrm{g}\) is acceleration due to gravity.
On substituting the respective values, we get: \(g^{\prime}=9.8\left(1-\frac{1600}{6400}\right)\)
\(
\begin{aligned}
& =9.8\left(1-\frac{1}{4}\right) \\
& =9.8 \times\left(\frac{3}{4}\right)=7.35 \mathrm{~ms}^{-2}
\end{aligned}
\)
Time period is given as,
\(
\begin{aligned}
& T=2 \pi \sqrt{\left(\frac{l}{g^{\prime}}\right)} \\
& \Rightarrow T=2 \pi \sqrt{\left(\frac{0.4}{7.35}\right)} \\
& \Rightarrow T=2 \times 3.14 \times 0.23 \\
& =1.465 \approx 1.47 \mathrm{~s}
\end{aligned}
\)
A simple pendulum of length 1 feet suspended from the ceiling of an elevator takes \(\pi / 3\) seconds to complete one oscillation. Find the acceleration of the elevator.
It is given that:
Length of the simple pendulum, \(l=1\) feet
Time period of simple pendulum, \(T=\frac{\pi}{3} s\) Acceleration due to gravity, \(\mathrm{g}=32 \mathrm{ft} / \mathrm{s}^2\)
Let \(a\) be the acceleration of the elevator while moving upwards.
Driving force \((f)\) is given by,
\(
f=m(g+a) \sin \theta
\)
Comparing the above equation with the expression, \(f=m a\), we get:
Acceleration, \(a=(g+a) \sin \theta=(g+a) \theta \quad\) (For small angle \(\theta, \sin \theta \rightarrow \theta\) )
\(=\frac{(g+a) x}{l}=\omega^2 x\) (From the diagram \(\left.\theta=\frac{x}{l}\right)\)
\(\Rightarrow \omega=\sqrt{\frac{(g+a)}{l}}\)
Time Period \((T)\) is given as,
\(
T=2 \pi \sqrt{\frac{l}{g+a}}
\)
On substituting the respective values in the above formula, we get:
\(
\begin{aligned}
& \frac{\pi}{3}=2 \pi \sqrt{\frac{1}{32+a}} \\
& \frac{1}{9}=4\left(\frac{1}{32+a}\right) \\
& \Rightarrow 32+a=36 \\
& \Rightarrow a=36-32=4 \mathrm{ft} / \mathrm{s}^2
\end{aligned}
\)
A simple pendulum fixed in a car has a time period of 4 seconds when the car is moving uniformly on a horizontal road. When the accelerator is pressed, the time period changes to 3.99 seconds. Making an approximate analysis, find the acceleration of the car.
It is given that:
When the car is moving uniformly, time period of simple pendulum, \(T=4.0 \mathrm{~s}\)
As the accelerator is pressed, new time period of the pendulum, \(T^{\prime}=3.99 \mathrm{~s}\)
Time period of simple pendulum, when the car is moving uniformly on a horizontal road is given by,
\(
\begin{aligned}
& T=2 \pi \sqrt{\frac{l}{g}} \\
& \Rightarrow 4=2 \pi \sqrt{\frac{l}{g}}
\end{aligned}
\)
Let the acceleration of the car be \(a\).
The time period of pendulum, when the car is accelerated, is given by:
\(
\begin{aligned}
& T^{\prime}=2 \pi \sqrt{\frac{l}{\left(g^2+a^2\right)^{\frac{1}{2}}}} \\
& \Rightarrow 3.99=2 \pi \sqrt{\frac{l}{\left(g^2+a^2\right)^{\frac{1}{2}}}}
\end{aligned}
\)
Taking the ratio of \(T\) to \(T^{\prime}\), we get: \(\frac{T}{T^{\prime}}=\frac{4}{3.99}=\frac{\left(g^2+a^2\right)^{1 / 4}}{\sqrt{g}}\)
On solving the above equation for \(a\), we get:
\(
a=\frac{g}{10} m s^{-2}
\)
The ear-ring of a lady shown in figure below has a \(3 \mathrm{~cm}\) long light suspension wire. (a) Find the time period of small oscillations if the lady is standing on the ground.
(b) The lady now sits in a merry-go-round moving at \(4 \mathrm{~m} \mathrm{~s}^{-1}\) in a circle of radius \(2 \mathrm{~m}\). Find the time period of small oscillations of the ear-ring.
Given, Length of the long, light suspension wire, \(l=3 \mathrm{~cm}=0.03 \mathrm{~m}\)
Acceleration due to gravity, \(g=9.8 \mathrm{~ms}^{-2}\)
(a) Time Period \((T)\) is given by ,
\(
\begin{aligned}
& T=2 \pi \sqrt{\left(\frac{l}{g}\right)} \\
& =2 \pi \sqrt{\left(\frac{0.03}{9.8}\right)} \\
& =0.34 \text { second }
\end{aligned}
\)
(b) Velocity of merry-go-round, \(v=4 \mathrm{~ms}^{-1}\)
Radius of circle, \(r=2 m\)
As the lady sits on the merry-go-round, her earring experiences centripetal acceleration.
Centripetal acceleration (a) is given by,
\(
a=\frac{v^2}{r}=\frac{4^2}{2}=8 \mathrm{~m} / \mathrm{s}^2
\)
Resultant acceleration \((A)\) is given by ,
\(
\begin{aligned}
& A=\sqrt{\left(g^2+a^2\right)} \\
& =\sqrt{(96.04+64)} \\
& =12.65 \mathrm{~m} / \mathrm{s}^2
\end{aligned}
\)
Time Period
\(
\begin{aligned}
& T=2 \pi \sqrt{\left(\frac{l}{A}\right)} \\
& =2 \pi \sqrt{\left(\frac{0.03}{12.65}\right)} \\
& =0.30 \text { second }
\end{aligned}
\)
A uniform rod of length \(l\) is suspended by an end and is made to undergo small oscillations. Find the length of the simple pendulum having the time period equal to that of the rod.
It is given that the length of the rod is \(l\).
Let point \(A\) be the suspension point and point \(B\) be the centre of gravity.
Separation between the point of suspension and the centre of mass, \(l^{\prime}=\frac{l}{2}\)
\(\mathrm{AlsO}, h=\frac{l}{2}\)
Using the parallel axis theorem, the moment of inertia about \(A\) is given as,
\(
\begin{aligned}
& I=I_{C G}+m h^2 \\
& =\frac{m l^2}{12}+\frac{m l^2}{4}=\frac{m l^2}{3}
\end{aligned}
\)
the time period \((T)\) is given by,
\(
\begin{aligned}
& T=2 \pi \sqrt{\frac{I}{m g l^{\prime}}}=2 \pi \sqrt{\frac{I}{m g \frac{l}{2}}} \\
& =2 \pi \sqrt{\frac{2 m l^2}{3 m g l}}=2 \pi \sqrt{\frac{2 l}{3 g}}
\end{aligned}
\)
Let \(T^{\prime}\) be the time period of simple pendulum of length \(x\).
Time Period \(\left(T^{\prime}\right)\) is given by,\(T^{\prime}=2 \pi \sqrt{\left(\frac{x}{g}\right)}\)
As the time period of the simple pendulum is equal to the time period of the rod, \(T^{\prime}=T\)
\(
\begin{aligned}
& \Rightarrow \frac{2 l}{3 g}=\frac{x}{g} \\
& \Rightarrow x=\frac{2 l}{3}
\end{aligned}
\)
A uniform disc of radius \(r\) is to be suspended through a small hole made in the disc. Find the minimum possible time period of the disc for small oscillations. What should be the distance of the hole from the centre for it to have minimum time period?
Suppose that the point is ‘ \(x\) ‘ distance from C.G.
Let \(m=\) mass of the disc. Radius \(=r\)
Here \(\ell=\mathrm{x}\)
M.I. about \(A=I_{\text {C.G. }}+m x^2=m r^2 / 2+m x^2=m\left(r^2 / 2+x^2\right)\)
\(
T=2 \pi \sqrt{\frac{1}{\mathrm{mg} \ell}}=2 \pi \sqrt{\frac{\mathrm{m}\left(\frac{r^2}{2}+x^2\right)}{\mathrm{mgx}}}=2 \pi \sqrt{\frac{\mathrm{m}\left(r^2+2 x^2\right)}{2 \mathrm{mgx}}}=2 \pi \sqrt{\frac{r^2+2 \mathrm{x}^2}{2 g x}} \dots(1)
\)
For \(\mathrm{T}\) is minimum \(\frac{\mathrm{dt}^2}{\mathrm{dx}}=0\)
\(
\therefore \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{T}^2=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{4 \pi^2 \mathrm{r}^2}{2 \mathrm{gx}}+\frac{4 \pi^2 2 \mathrm{x}^2}{2 \mathrm{gx}}\right)
\)
\(
\begin{aligned}
& \Rightarrow \frac{2 \pi^2 r^2}{g}\left(-\frac{1}{x^2}\right)+\frac{4 \pi^2}{g}=0 \\
& \Rightarrow-\frac{\pi^2 r^2}{g x^2}+\frac{2 \pi^2}{g}=0 \\
& \Rightarrow \frac{\pi^2 r^2}{g x^2}=\frac{2 \pi^2}{g} \Rightarrow 2 x^2=r^2 \Rightarrow x=\frac{r}{\sqrt{2}}
\end{aligned}
\)
So putting the value of equation (1)
\(
T=2 \pi \sqrt{\frac{r^2+2\left(\frac{r^2}{2}\right)}{2 g x}}=2 \pi \sqrt{\frac{2 r^2}{2 g x}}=2 \pi \sqrt{\frac{r^2}{g\left(\frac{r}{\sqrt{2}}\right)}}=2 \pi \sqrt{\frac{\sqrt{2} r^2}{g r}}=2 \pi \sqrt{\frac{\sqrt{2 r}}{g}}
\)
A hollow sphere of radius \(2 \mathrm{~cm}\) is attached to an \(18 \mathrm{~cm}\) long thread to make a pendulum. Find the time period of oscillation of this pendulum. How does it differ from the time period calculated using the formula for a simple pendulum?
According to Energy equation, \(\mathrm{mg \ell}(1-\cos \theta)+(1 / 2) \mid \omega^2=\) const.
\(\operatorname{mg}(0.2)(1-\cos \theta)+(1 / 2) l \omega^2=C \dots(1)\).
Again, \(I=2 / 3 \mathrm{~m}(0.2)^2+\mathrm{m}(0.2)^2\)
\(
=m\left[\frac{0.008}{3}+0.04\right]
\)
\(=\mathrm{m}\left(\frac{0.1208}{3}\right) \mathrm{m}\). Where \(\mathrm{I} \rightarrow\) Moment of Inertia about the pt of suspension A
From equation
Differenting and putting the value of \(\mathrm{I}\) and 1 is
\(
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{mg}(0.2)(1-\cos \theta)+\frac{1}{2} \frac{0.1208}{3} \mathrm{~m} \omega^2\right]=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{C}) \\
& \Rightarrow \mathrm{mg}(0.2) \sin \theta \frac{\mathrm{d} \theta}{\mathrm{dt}}+\frac{1}{2}\left(\frac{0.1208}{3}\right) \mathrm{m} 2 \omega \frac{\mathrm{d} \omega}{\mathrm{dt}}=0
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow 2 \sin \theta=\frac{0.1208}{3} \alpha \text { [because, } g=10 \mathrm{~m} / \mathrm{s}^2 \text { ] } \\
& \Rightarrow \frac{\alpha}{\theta}=\frac{6}{0.1208}=\omega^2=58.36 \\
& \Rightarrow \omega=7.3 . \text { So } T=\frac{2 \pi}{\omega}=0.89 \mathrm{sec} .
\end{aligned}
\)
For simple pendulum \(\mathrm{T}=2 \pi \sqrt{\frac{0.19}{10}}=0.86 \mathrm{sec}\).
\(
\% \text { more }=\frac{0.89-0.86}{0.89}=0.3 .
\)
\(\therefore\) It is about \(0.3 \%\) larger than the calculated value.
A uniform disc of mass \(m\) and radius \(r\) is suspended through a wire attached to its centre. If the time period of the torsional oscillations be \(T\), what is the torsional constant of the wire?
\(
\text { M.I. of the centre of the disc. }=\mathrm{mr}^2 / 2
\)
\(
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{k}}}=2 \pi \sqrt{\frac{\mathrm{mr}^2}{2 \mathrm{~K}}} \text { [where } \mathrm{K}=\text { Torsional constant] }
\)
\(
\mathrm{T}^2=4 \pi^2 \frac{\mathrm{mr}^2}{2 \mathrm{~K}}=2 \pi^2 \frac{\mathrm{mr}^2}{\mathrm{~K}}
\)
\(
\begin{aligned}
& \Rightarrow 2 \pi^2 \mathrm{mr}^2=\mathrm{KT}^2 \Rightarrow \mathrm{K}=\frac{2 \mathrm{mr}^2 \pi^2}{\mathrm{~T}^2} \\
& \therefore \text { Torsional constant } \mathrm{K}=\frac{2 \mathrm{mr}^2 \pi^2}{\mathrm{~T}^2}
\end{aligned}
\)
Two small balls, each of mass \(m\) are connected by a light rigid rod of length \(L\). The system is suspended from its centre by a thin wire of torsional constant \(k\). The rod is rotated about the wire through an angle \(\theta_0\) and released. Find the force exerted by the rod on one of the balls as the system passes through the mean position.
It is given that the mass of both the balls is \(m\) and they are connected to each other with the help of a light rod of length \(L\).
Moment of inertia of the two-ball system \((I)\) is given by,
\(
I=2 m\left(\frac{L}{2}\right)^2=\frac{m L^2}{2}
\)
Torque \((\tau)\), produced at any given position \(\theta\) is given as: \(\tau=k \theta\)
\(\Rightarrow\) Work done during the displacement of the system from 0 to \(\theta_0\) will be,
\(
W=\int_0^{\theta_0} \mathrm{k} \theta d \theta=\frac{k \theta_0^2}{2}
\)
On applying the work-energy theorem, we get:
\(
\begin{aligned}
& \frac{1}{2} I \omega^2-0=\text { work done }=\frac{k \theta_0^2}{2} \\
& \therefore \omega^2=\frac{k \theta_0^2}{I}=\frac{k \theta_0^2}{m L^2}
\end{aligned}
\)
From the free-body diagram of the rod, we can write:
\(
\begin{aligned}
& \text { Force, } T_2=\sqrt{\left(m \omega^2 L\right)^2+(m g)^2} \\
& =\sqrt{\left(m \frac{k \theta_0^2}{m L^2} \times L\right)^2+m^2 g^2} \\
& =\sqrt{\frac{k^2 \theta_0^4}{L^2}+m^2 g^2}
\end{aligned}
\)
A particle is subjected to two simple harmonic motions of the same time period in the same direction. The amplitude of the first motion is \(3.0 \mathrm{~cm}\) and that of the second is \(4.0 \mathrm{~cm}\). Find the resultant amplitude if the phase difference between the motions is (a) \(0^{\circ}\), (b) \(60^{\circ}\), (c) \(90^{\circ}\).
It is given that a particle is subjected to two S.H.M.s of same time period in the same direction.
Amplitude of first motion, \(A_1=3 \mathrm{~cm}\)
Amplitude of second motion, \(A_2=4 \mathrm{~cm}\)
Let \(\phi\) be the phase difference.
The resultant amplitude \((R)\) is given by,
\(
R=\sqrt{A_1^2+A_2^2+2 A_1 A_2 \cos \phi}
\)
(a) When \(\phi=0^{\circ}\)
\(
\begin{aligned}
& R=\sqrt{\left(3^2+4^2+(2)(3)(4) \cos 0^{\circ}\right)} \\
& =7 \mathrm{~cm}
\end{aligned}
\)
(b) When \(\phi=60^{\circ}\)
\(
\begin{aligned}
& R=\sqrt{3^2+4^2+(2)(3)(4) \cos 60^{\circ}} \\
& =\sqrt{37}=6.1 \mathrm{~cm}
\end{aligned}
\)
(c) When \(\phi=90^{\circ}\)
\(
\begin{aligned}
& R=\sqrt{\left(3^2+4^2+(2)(3)(4) \cos 90^{\circ}\right)} \\
& =\sqrt{25}=5 \mathrm{~cm}
\end{aligned}
\)
Three simple harmonic motions of equal amplitudes \(A\) and equal time periods in the same direction combine. The phase of the second motion is \(60^{\circ}\) ahead of the first and the phase of the third motion is \(60^{\circ}\) ahead of the second. Find the amplitude of the resultant motion.
\(
\text { Three SHMs of equal amplitudes ‘A’ and equal time periods in the same direction combine. }
\)
The vectors representing the three SHMs are shown it the figure.
Using vector method,
Resultant amplitude \(=\) Vector sum of the three vectors
\(
=\mathrm{A}+\mathrm{A} \cos 60^{\circ}+\mathrm{A} \operatorname{cso} 60^{\circ}=\mathrm{A}+\mathrm{A} / 2+\mathrm{A} / 2=2 \mathrm{~A}
\)
So the amplitude of the resultant motion is \(2 \mathrm{~A}\).
A particle is subjected to two simple harmonic motions given by
\(
x_1=2.0 \sin (100 \pi t) \text { and } x_2=2.0 \sin (120 \pi t+\pi / 3),
\)
where \(x\) is in centimeter and \(t\) in second. Find the displacement of the particle at
(a) \(t=0.0125\),
(b) \(t=0.025\).
Given are the equations of motion of a particle:
\(
\begin{aligned}
& x_1=2.0 \sin 100 \pi t \\
& x_2=2.0 \sin \left(120 \pi t+\frac{\pi}{3}\right)
\end{aligned}
\)
The Resultant displacement \((x)\) will be
\(
\begin{aligned}
& x=x_1+x_2 \\
& =2\left[\sin (100 \pi t)+\sin \left(120 \pi t+\frac{\pi}{3}\right)\right] \\
& \text { (a) At } t=0.0125 \mathrm{~s} \\
& x=2\left[\sin (100 \pi \times 0.0125)+\sin \left(120 \pi \times 0.0125+\frac{\pi}{3}\right)\right] \\
& =2\left[\sin \left(\frac{5 \pi}{4}\right)+\sin \left(\frac{3 \pi}{2}+\frac{\pi}{3}\right)\right] \\
& =2[(-0.707)+(-0.5)] \\
& =2 \times(-1.207)=-2.41 \mathrm{~cm}
\end{aligned}
\)
(b) At \(t=0.025 \mathrm{~s}\)
\(
\begin{aligned}
& x=2\left[\sin (100 \pi \times 0.025)+\sin \left(120 \pi \times 0.025+\frac{\pi}{3}\right)\right]=2\left[\sin \left(\frac{10 \pi}{4}\right)+\sin \left(3 \pi+\frac{\pi}{3}\right)\right] \\
& =2[1+(-0.866)] \\
& =2 \times(0.134)=0.27 \mathrm{~cm}
\end{aligned}
\)
A particle is subjected to two simple harmonic motions, one along the \(X\)-axis and the other on a line making an angle of \(45^{\circ}\) with the \(X\)-axis. The two motions are given by
\(
x=x_0 \sin \omega t \text { and } s=s_0 \sin \omega t
\)
Find the amplitude of the resultant motion.
Given:
Equation of motion along \(\mathrm{X}\) axis, \(x=x_0 \sin \omega t\)
Equation of motion along \(Y\) axis, \(s=s_0 \sin \omega t\)
Angle between the two motions, \(\theta 45^{\circ}\)
Resultant motion \((R)\) will be,
\(
\begin{aligned}
& R=\sqrt{\left(x^2+s^2+2(x)(s) \cos 45^{\circ}\right)} \\
& =\sqrt{\left\{x_0^2 \sin \omega t+s_0^2 \sin \omega t+2 x_0 s_0 \sin ^2 \omega t\left(\frac{1}{\sqrt{2}}\right)\right\}}=\left[x_0^2+s_0^2+\sqrt{2 x_0 s_0}\right]^{1 / 2} \sin \omega t
\end{aligned}
\)
Hence, the resultant amplitude is
\(
\left[x_0^2+s_0^2+\sqrt{2 x_0 s_0}\right]^{1 / 2}
\)
You cannot copy content of this page