0 of 91 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 91 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be 3 Ã….
Diameter of an oxygen molecule,d = 3 Ã…
Radius, \(r=\frac{d}{2}=\frac{3}{2}=1.5 Ã…=1.5 \times 10^{-8} \mathrm{~cm}\)
The actual volume occupied by 1 mole of oxygen gas at \(S T P=22400 \mathrm{~cm}^3\)
Molecular volume of oxygen gas, \(V=\frac{4}{3} \pi r^3 . N\)
Where, \(N\) is Avogadro’s number \(=6.023 \times 10^{23}\) molecules \(/\) mole
\(\therefore V=\frac{4}{3} \times 3.14 \times\left(1.5 \times 10^{-8}\right)^3 \times 6.023 \times 10^{23}=8.51 \mathrm{~cm}^3\)
The ratio of the molecular volume to the actual volume of oxygen \(=\frac{8.51}{22400}\) \(=3.8 \times 10^{-4}\approx 4 \times 10^{-4}\)
Molar volume is the volume occupied by \(1 \mathrm{~mol}\) of any (ideal) gas at standard temperature and pressure (STP: 1 atmospheric pressure, \(0^{\circ} \mathrm{C}\) ). Calculate the molar volume of teh gas at STP in litres. is 22.4 litres.
The ideal gas equation relating pressure \((P)\), volume \((V)\), and absolute temperature \((T)\) is given as:
\(
P V=n R T
\)
Where,
\(R\) is the universal gas constant \(=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\)
\(
\begin{aligned}
& n=\text { Number of moles }=1 \\
& T=\text { Standard temperature }=273 \mathrm{~K} \\
& P=\text { Standard pressure }=1 \mathrm{~atm}=1.013 \times 10^5 \mathrm{Nm}^{-2} \\
& \therefore V=\frac{n R T}{T} \\
& =\frac{1 \times 8.314 \times 273}{1.013 \times 10^5} \\
& =0.0224 \mathrm{~m}^3 \\
& =22.4 \text { litres }
\end{aligned}
\)
Hence, the molar volume of a gas at STP is 22.4 litres.
The figure below shows plot of \(P V / T\) versus \(P\) for \(1.00 \times 10^{-3} \mathrm{~kg}\) of oxygen gas at two different temperatures. What does the dotted plot signify?
The figure below shows plot of \(P V / T\) versus \(P\) for \(1.00 \times 10^{-3} \mathrm{~kg}\) of oxygen gas at two different temperatures.
\(
\text { What is the value of } P V / T \text { where the curves meet on the } y \text { axis? }
\)
The value of the ratio \(\frac{\mathrm{PV}}{\mathrm{T}}\), where the two curves meet, is \(\mu R\). This is because the ideal gas equation is given as,
\(
\begin{aligned}
& P V=\mu R T \\
& \frac{P V}{T}=\mu \mathrm{R}
\end{aligned}
\)
where,
\(P\) is the pressure,
\(T\) is the temperature,
\(V\) is the volume,
\(\mu\) is the number of moles,
\(R\) is the universal constant.
Molecular mass of oxygen \(=32.0 \mathrm{~g}\)
Mass of oxygen \(=1 \times 10^{-3} \mathrm{~kg}=1 \mathrm{~g}\)
\(
\begin{aligned}
& R=8.314 \mathrm{~J} \mathrm{~mole}^{-1} \mathrm{~K}^{-1} \\
& \therefore\left(\frac{\mathrm{PV}}{\mathrm{T}}\right)=\left(\frac{1}{32}\right) \times 8.314 \\
& =0.26 \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
\)
Therefore, the value of the ratio \(\left(\frac{P V}{T}\right)\), where the curves meet on the \(y\)-axis, is \(0.26 \mathrm{~J} \mathrm{~K}^{-1}\).
The figure below shows plot of \(P V / T\) versus \(P\) for \(1.00 \times 10^{-3} \mathrm{~kg}\) of oxygen gas at two different temperatures.
If we obtained similar plots for \(1.00 \times 10^{-3} \mathrm{~kg}\) of hydrogen, would we get the same value of \(P V / T\) at the point where the curves meet on the \(y\)-axis? If not, what mass of hydrogen yields the same value of \(P V / T\) (for low pressure high temperature region of the plot) ? (Molecular mass of \(\mathrm{H}_2=2.02 \mathrm{u}\), of \(\mathrm{O}_2=32.0 \mathrm{u}\), \(\left.R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}.\right)\)
If we obtain similar plots for \(1.00 \times 10^{-3} \mathrm{~kg}\) of hydrogen, then we will not get the same value of \(\left(\frac{\mathrm{PV}}{\mathrm{T}}\right)\) at the point where the curves meet the \(y\)-axis.
This is because the molecular mass of hydrogen \((2.02 \mathrm{u})\) is different from that of oxygen \((32.0 \mathrm{u})\)
We have,
\(
\begin{aligned}
\left(\frac{\mathrm{PV}}{\mathrm{T}}\right) & =0.26 \mathrm{~J} \mathrm{~K}^{-1} \\
R & =8.314 \mathrm{~J} \mathrm{~mole}^{-1} \mathrm{~K}^{-1}
\end{aligned}
\)
Molecular mass \((M)\) of \(\mathrm{H}_2=2.02 \mathrm{u}\)
\(\left(\frac{\mathrm{PV}}{\mathrm{T}}\right)=\mu R\), at constant temperature
where, \(\mu=m / M\)
\(
\begin{aligned}
& \begin{aligned}
m & =\text { Mass of } \mathrm{H}_2 \\
\therefore m & =\left(\frac{\mathrm{PV}}{\mathrm{T}}\right) \times\left(\frac{M}{R}\right) \\
& =0.26 \times 2.02 / 8.31 \\
& =6.3 \times 10^{-2} \mathrm{~g} \\
& =6.3 \times 10^{-5} \mathrm{~kg}
\end{aligned} \\
& \text { Hence, } 6.3 \times 10^{-5} \mathrm{~kg} \text { of } \mathrm{H}_2 \text { will yield the same value of }\left(\frac{\mathrm{PV}}{\mathrm{T}}\right) .
\end{aligned}
\)
An oxygen cylinder of volume 30 litres has an initial gauge pressure of \(15 \mathrm{~atm}\) and a temperature of \(27^{\circ} \mathrm{C}\). After some oxygen is withdrawn from the cylinder, the gauge pressure drops to 11 atm and its temperature drops to \(17^{\circ} \mathrm{C}\). Estimate the mass of oxygen taken out of the cylinder \(\left(R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right.\), molecular mass of \(\left.\mathrm{O}_2=32 \mathrm{u}\right)\).
Initial Volume, \(V_1=30\) litre \(=30 \times 10^3 \mathrm{~cm}^3\)
\(
=30 \times 10^3 \times 10^{-6} \mathrm{~m}^3=30 \times 10^{-3} \mathrm{~m}^3
\)
Initial Pressure, \(P_1=15 \mathrm{~atm}\)
\(=15 \times 1.013 \times 10^5 \mathrm{Nm}^{-2}\)
Initial temperature, \(T_1=(27+273) K=300 K\)
The initial number of moles
\(
\mu_1=\frac{P_1 V_1}{R} T_1=\frac{15 \times 1.013 \times 10^5 \times 30 \times 10^{-3}}{8.31 \times 300}=18.3
\)
Final Pressure, \(P_2=11\) atm
\(=11 \times 1.013 \times 10^5 \mathrm{Nm}^{-2}\)
Final Volume, \(V_2=30\) litre \(=30 \times 10^{-3} \mathrm{~cm}^3\)
Final temperature, \(T_2=17+273=290 K\)
Final number of moles, \(\mu_2=\frac{P_2 V_2}{R T_2}=\frac{11 \times 1.013 \times 10^5 \times 30 \times 10^{-3}}{8.31 \times 290}=13.9\)
Number of moles taken out of cylinder \(=18.3-13.9=4.4\)
Mass of gas taken out of cylinder \(=4.4 \times 32 \mathrm{~g}=140.8 \mathrm{~g}=0.141 \mathrm{~kg}\)
An air bubble of volume \(1.0 \mathrm{~cm}^3\) rises from the bottom of a lake \(40 \mathrm{~m}\) deep at a temperature of \(12^{\circ} \mathrm{C}\). To what volume does it grow when it reaches the surface, which is at a temperature of \(35^{\circ} \mathrm{C}\)?
Volume of the bubble inside, \(V_1=1.0 \mathrm{~cm}^3=1 \times 10^{-6} \mathrm{~m}^3\)
Pressure on the bubble, \(P_1=\) Pressure of water + Atmospheric pressure
\(
\begin{aligned}
& =p g h+1.01 \times 10^5=1000 \times 9.8 \times 40+1.01 \times 10^5 \\
& =3.92 \times 10^5+1.01 \times 10^5=4.93 \times 10^5 \mathrm{~Pa}
\end{aligned}
\)
Temperature, \(T_1=12^{\circ} \mathrm{C}=273+12=285 \mathrm{~K}\)
Also, pressure outside the lake, \(P_2=1.01 \times 10^5 \mathrm{~nm}^{-2}\)
Temperature, \(T_2=35^{\circ} \mathrm{C}=273+35=308 \mathrm{~K}\), Volume \(V_2=?\)
Now \(\frac{P_1 V_1}{T_1}=\frac{P_2 V_2}{T_2}\)
\(
\therefore V_2=\frac{P_1 V_1}{T_1} \cdot \frac{T_2}{P_2}=\frac{4.93 \times 10^5 \times 1 \times 10^{-6} \times 308}{285 \times 1.01 \times 10^5}=5.3 \times 10^{-6} \mathrm{~m}^{3}
\)
Estimate the total number of air molecules (inclusive of oxygen, nitrogen, water vapour and other constituents) in a room of capacity \(25.0 \mathrm{~m}^3\) at a temperature of \(27^{\circ} \mathrm{C}\) and 1 atm pressure.
Here, Volume of room, \(V=25.0 \mathrm{~m}^3\), temperature, \(T=27^{\circ} \mathrm{C}=300 \mathrm{~K}\) and
Pressure, \(P=1 \mathrm{~atm}=1.01 \times 10^5 \mathrm{~Pa}\)
According to gas equation, \(P V=\mu R T=\mu N_A \cdot k_B T\)
Hence, the total number of air molecules in the volume of the given gas
\(
\begin{aligned}
& N=\mu . N_A=P \frac{V}{K_B} T \\
& \therefore N=\frac{1.01 \times 10^5 \times 25.0}{\left(1.38 \times 10^{-23}\right) \times 300}=6.1 \times 10^{26}
\end{aligned}
\)
Estimate the average thermal energy of a helium atom at (i) room temperature \(\left(27^{\circ} \mathrm{C}\right.\) ), (ii) the temperature on the surface of the Sun ( \(6000 \mathrm{~K}\) ), (iii) the temperature of 10 million kelvin (the typical core temperature in the case of a star)
(i) At room temperature, \(\mathrm{T}=27^{\circ} \mathrm{C}=300 \mathrm{~K}\)
Average thermal energy \(=(3 / 2) \mathrm{kT}\)
Where \(\mathrm{k}\) is Boltzmann constant \(=1.38 \times 10^{-23} \mathrm{~m}^2 \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}\)
\(
\begin{aligned}
& \therefore \frac{3}{2} k T=\frac{3}{2} \times 1.38 \times 10^{-38} \times 300 \\
& =6.21 \times 10^{-21} \mathrm{~J}
\end{aligned}
\)
Hence, the average thermal energy of a helium atom at room temperature \(\left(27^{\circ} \mathrm{C}\right)\) is \(6.21 \times 10^{-21} \mathrm{~J}\).
(ii) On the surface of the sun, \(T=6000 \mathrm{~K}\)
Average thermal energy \(=\frac{3}{2} k T\)
\(
\begin{aligned}
& =\frac{3}{2} \times 1.38 \times 10^{-38} \times 6000 \\
& =1.241 \times 10^{-19} \mathrm{~J}
\end{aligned}
\)
Hence, the average thermal energy of a helium atom on the surface of the sun is \(1.241 \times 10^{-19} \mathrm{~J}\).
(iii) At temperature, \(\mathrm{T}=10^7 \mathrm{~K}\)
Average thermal energy
\(
=\frac{3}{2} k T
\)
\(
\begin{aligned}
& =\frac{3}{2} \times 1.38 \times 10^{-23} \times 10^7 \\
& =2.07 \times 10^{-16} \mathrm{~J}
\end{aligned}
\)
Hence, the average thermal energy of a helium atom at the core of a star is \(2.07 \times\) \(10^{-16} \mathrm{~J}\).
Three vessels of equal capacity have gases at the same temperature and pressure. The first vessel contains neon (monatomic), the second contains chlorine (diatomic), and the third contains uranium hexafluoride (polyatomic). Do the vessels contain equal number of respective molecules? Is the root mean square speed of molecules the same in the three cases? If not, in which case is \(v_{\text {rms }}\) the largest?
All the three vessels have the same capacity, they have the same volume. Hence, each gas has the same pressure, volume, and temperature.
According to Avogadro’s law, the three vessels will contain an equal number of the respective molecules. This number is equal to Avogadro’s number, \(\mathrm{N}=\) \(6.023 \times 10^{23}\).
The root mean square speed \(\left(\mathrm{V}_{\mathrm{rms}}\right)\) of a gas of mass \(\mathrm{m}\), and temperature \(\mathrm{T}\), is given by the relation:
\(
\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{m}}}
\)
where,
\(\mathrm{k}\) is Boltzmann constant
For the given gases, \(\mathrm{k}\) and \(\mathrm{T}\) are constants.
Hence, \(V_{\mathrm{rms}}\) depends only on the mass of the atoms, i.e., \(\mathrm{V}_{\mathrm{rms}} \propto(1 / \mathrm{m})^{1 / 2}\).
Therefore, the root mean square speed of the molecules in the three cases is not the same. Among neon, chlorine, and uranium hexafluoride, the mass of neon is the smallest. Hence, neon has the largest root mean square speed among the given gases.
At what temperature is the root mean square speed of an atom in an argon gas cylinder equal to the rms speed of a helium gas atom at \(-20^{\circ} \mathrm{C}\)? (atomic mass of \(\mathrm{Ar}\) \(=39.9 \mathrm{u}\), of \(\mathrm{He}=4.0 \mathrm{u})\)
Let \(\mathrm{C}\) and \(\mathrm{C}^{\prime}\) be the rms velocity of argon and a helium gas atoms at temperature \(\mathrm{T}Â Â \mathrm{K}\) and \(\mathrm{T}^{\prime}Â Â \mathrm{K}\) respectively Here, \(\mathrm{M}=39.9 ; \mathrm{M}^{\prime}=4.0 ; \mathrm{T}=? ; \mathrm{T}^{\prime}=-20+273=253 \mathrm{~K}\)
Now, \(C=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 R T}{39.9}}\) and \(C ^{\prime}=\sqrt{\frac{3 R T^{\prime}}{{M}^{\prime}}}=\frac{\sqrt{3 R \times 253}}{4}\)
Since \(C=C^{\prime}\)
Therefore \(\sqrt{\frac{3 R T}{39.9}}=\frac{\sqrt{3 R \times 253}}{4}\) or \(T=\frac{39.9 \times 253}{4}=2523.7 \mathrm{~K}\)
A vessel of volume \(8.0 \times 10^{-3} \mathrm{~m}^3\) contains an ideal gas at \(300 \mathrm{~K}\) and \(200Â \mathrm{kPa}\). The gas is allowed to leak till the pressure falls to \(125Â \mathrm{kPa}\). Calculate the amount of the gas (in moles) leaked assuming that the temperature remains constant.
As the gas leaks out, the volume and the temperature of the remaining gas do not change. The number of moles of the gas in the vessel is given by \(n=\frac{p V}{R T}\). The number of moles in the vessel before the leakage is
\(
n_1=\frac{p_1 V}{R T}
\)
and that after the leakage is
\(
n_2=\frac{p_2 V}{R T} \text {. }
\)
Thus, the amount leaked is
\(
\begin{aligned}
n_1-n_2 & =\frac{\left(p_1-p_2\right) V}{R T} \\
& =\frac{(200-125) \times 10^3 \mathrm{~N} \mathrm{~m}^{-2} \times 8.0 \times 10^{-3} \mathrm{~m}^3}{\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(300 \mathrm{~K})} \\
& =0.24 \mathrm{~mol}^{-1} .
\end{aligned}
\)
A vessel of volume \(2000 \mathrm{~cm}^3\) contains \(0.1 \mathrm{~mol}\) of oxygen and \(0.2 \mathrm{~mol}\) of carbon dioxide. If the temperature of the mixture is \(300 \mathrm{~K}\), find its pressure.
We have \(p=\frac{n R T}{V}\).
The pressure due to oxygen is
\(
p_1=\frac{(0.1 \mathrm{~mol})\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(300 \mathrm{~K})}{\left(2000 \times 10^{-6} \mathrm{~m}^{-3}\right)}=1.25 \times 10^5 \mathrm{~Pa} .
\)
Similarly, the pressure due to carbon dioxide is
\(
p_2=2.50 \times 10^5 \mathrm{~Pa} \text {. }
\)
The total pressure in the vessel is
\(
\begin{aligned}
p & =p_1+p_2 \\
& =(1.25+2.50) \times 10^5 \mathrm{~Pa}=3.75 \times 10^5 \mathrm{~Pa} .
\end{aligned}
\)
A mixture of hydrogen and oxygen has volume \(2000 \mathrm{~cm}^3\), temperature \(300 \mathrm{~K}\), pressure \(100 \mathrm{kPa}\) and mass \(0.76 \mathrm{~g}\). Calculate the masses of hydrogen and oxygen in the mixture.
Suppose there are \(n_1\) moles of hydrogen and \(n_2\) moles of oxygen in the mixture. The pressure of the mixture will be
\(
p=\frac{n_1 R T}{V}+\frac{n_2 R T}{V}=\left(n_1+n_2\right) \frac{R T}{V}
\)
or, \(100 \times 10^3 \mathrm{~Pa}=\left(n_1+n_2\right) \frac{\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(300 \mathrm{~K})}{2000 \times 10^{-6} \mathrm{~m}^{-3}}\)
or, \(\quad n_1+n_2=0.08 \mathrm{~mol} \dots(i)\).
The mass of the mixture is
\(
n_1 \times 2 \mathrm{~g} \mathrm{~mol}^{-1}+n_2 \times 32 \mathrm{~g} \mathrm{~mol}^{-1}=0.76 \mathrm{~g}
\)
or, \(\quad n_1+16 n_2=0.38 \mathrm{~mol} \dots(ii)\).
from (i) and (ii),
\(
n_1=0.06 \mathrm{~mol} \text { and } n_2=0.02 \mathrm{~mol} \text {. }
\)
The mass of hydrogen \(=0.06 \times 2 \mathrm{~g}=0.12 \mathrm{~g}\) and the mass of oxygen \(=0.02 \times 32 \mathrm{~g}=0.64 \mathrm{~g}\).
A mercury manometer (figure below) consists of two unequal arms of equal cross section \(1 \mathrm{~cm}^2\) and lengths \(100 \mathrm{~cm}\) and \(50 \mathrm{~cm}\). The two open ends are sealed with air in the tube at a pressure of \(80 \mathrm{~cm}\) of mercury. Some amount of mercury is now introduced in the manometer through the stopcock connected to it. If mercury rises in the shorter tube to a length \(10 \mathrm{~cm}\) in steady state, find the length of the mercury column risen in the longer tube.
Using \(p V=\) constant for the shorter arm,
\((80 \mathrm{~cm})(50 \mathrm{~cm})=p_1(50 \mathrm{~cm}-10 \mathrm{~cm})\)
or, \(\quad p_1=100 \mathrm{~cm} \dots(i)\).
Using \(p V=\) constant for the longer arm,
\(
(80 \mathrm{~cm})(100 \mathrm{~cm})=p_2\left(100-l_0\right) \mathrm{cm} \text {. } \dots(ii)
\)
From the figure,
\(
p_1=p_2+\left(l_0-10\right) \mathrm{cm}
\)
Thus by (i),
or, \(\quad p_2=110 \mathrm{~cm}-l_0 \mathrm{~cm}\).
Putting in (ii),
\(\left(110-l_0\right)\left(100-l_0\right)=8000\)
or, \(\quad l_0^2-210 l_0+3000=0\)
or, \(\quad l_0=15^{-5} 5\).
The required length is \(15-5 \mathrm{~cm}\).
ideal gas has pressure \(p_0\), volume \(V_0\) and temperature \(T_0\). It is taken through an isochoric process till its pressure is doubled. It is now isothermally expanded to get the original pressure. Finally, the gas is isobarically compressed to its original volume \(V_0\). (i) What is the temperature in the isothermal part of the process? (ii) What is the volume at the end of the isothermal part of the process?
The process is shown in a \(p-V\) diagram in the figure below. The process starts from \(A\) and goes through \(A B C A\).
(i) Applying \(p V=n R T\) at \(A\) and \(B\),
and \(\quad\left(2 p_0\right) V_0=n R T_B\).
Thus, \(\quad T_B=2 T_0\).
This is the temperature in the isothermal part \(B C\).
(ii) As the process \(B C\) is isothermal, \(T_C=T_B=2 T_0\).
Applying \(p V=n R T\) at \(A\) and \(C\),
and \(\quad p_0 V_C=n R\left(2 T_0\right)\)
or, \(\quad V_C=2 V_0\).
Two closed vessels of equal volume contain air at \(105 \mathrm{kPa}, 300 \mathrm{~K}\) and are connected through a narrow tube. If one of the vessels is now maintained at \(300 \mathrm{~K}\) and the other at \(400 \mathrm{~K}\), what will be the pressure in the vessels?
Let the initial pressure, volume and temperature in each vessel be \(p_0(=105 \mathrm{kPa}), V_0\) and \(T_0(=300 \mathrm{~K})\). Let the number of moles in each vessel be \(n\). When the first vessel is maintained at temperature \(T_0\) and the other is maintained at \(T^{\prime}=400 \mathrm{~K}\), the pressures change. Let the common pressure become \(p^{\prime}\) and the number of moles in the two vessels become \(n_1\) and \(n_2\). We have
\(
\begin{aligned}
p_0 V_0 & =n R T_0 \dots(i) \\
p^{\prime} V_0 & =n_1 R T_0 \dots(ii) \\
p^{\prime} V_0 & =n_2 R T^{\prime} \dots(iii) \\
n_1+n_2 & =2 n \dots(iv)
\end{aligned}
\)
Putting \(n, n_1\) and \(n_2\) from (i), (ii) and (iii) in (iv),
or, or,
\(
\begin{aligned}
\frac{p^{\prime} V_0}{R T_0}+\frac{p^{\prime} V_0}{R T^{\prime}} & =2 \frac{p_0 V_0}{R T_0} \\
p^{\prime}\left(\frac{T^{\prime}+T_0}{T_0 T^{\prime}}\right) & =\frac{2 p_0}{T_0} \\
p^{\prime} & =\frac{2 p_0 T^{\prime}}{T^{\prime}+T_0} \\
& =\frac{2 \times 105 \mathrm{kPa} \times 400 \mathrm{~K}}{400 \mathrm{~K}+300 \mathrm{~K}}=120 \mathrm{kPa}
\end{aligned}
\)
A vessel contains \(14 \mathrm{~g}\) of hydrogen and \(96 \mathrm{~g}\) of oxygen at STP. (i) Find the volume of the vessel. (ii) Chemical reaction is induced by passing an electric spark in the vessel till one of the gases is consumed. The temperature is brought back to its starting value \(273 \mathrm{~K}\). Find the pressure in the vessel.
(i) The number of moles of hydrogen \(=14 \mathrm{~g} / 2 \mathrm{~g}=7\) and the number of moles of oxygen \(=96 \mathrm{~g} / 32 \mathrm{~g}=3\). The total number of moles in the vessel \(=7+3=10\). The pressure is 1 atm \(=1.0 \times 10^5 \mathrm{~N} \mathrm{~m}^{-2}\) and the temperature \(=273 \mathrm{~K}\).
Now
\(
p V=n R T \dots(i)
\)
or,
\(
\begin{aligned}
V & =\frac{n R T}{p} \\
& =\frac{(10 \mathrm{~mol}) \times\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(273 \mathrm{~K})}{1.0 \times 10^5 \mathrm{~N} \mathrm{~m}^{-2}} \\
& =0.23 \mathrm{~m}^3 .
\end{aligned}
\)
(ii) When electric spark is passed, hydrogen reacts with oxygen to form water \(\left(\mathrm{H}_2 \mathrm{O}\right)\). Each gram of hydrogen reacts with eight grams of oxygen. Thus, \(96 \mathrm{~g}\) of oxygen will be totally consumed together with \(12 \mathrm{~g}\) of hydrogen. The gas left in the vessel will be \(2 \mathrm{~g}\) of hydrogen which is \(n^{\prime}=1\) mole.
Neglecting the volume of the water formed,
\(
p^{\prime} V=n^{\prime} R T \dots(ii)
\)
From (i) and (ii),
\(
\begin{aligned}
\frac{p^{\prime}}{p} & =\frac{n^{\prime}}{n}=\frac{1}{10} \\
p^{\prime} & =p \times 0.10 \\
& =0.10 \mathrm{~atm}
\end{aligned}
\)
A barometer reads \(75 \mathrm{~cm}\) of mercury. When \(2.0 \mathrm{~cm}^3\) of air at atmospheric pressure is introduced into the space above the mercury level, the volume of this space becomes \(50 \mathrm{~cm}^3\). Find the length by which the mercury column descends.
Let the pressure of the air in the barometer be p. We have,
\(
\begin{aligned}
p \times 50 \mathrm{~cm}^3 & =(75 \mathrm{~cm} \text { of mercury }) \times\left(2.0 \mathrm{~cm}^3\right) \\
\text { or, } \quad p & =3.0 \mathrm{~cm} \text { of mercury. }
\end{aligned}
\)
The atmospheric pressure is equal to the pressure due to the mercury column plus the pressure due to the air inside. Thus, the mercury column descends by \(3.0 \mathrm{~cm}\).
A barometer tube is \(1 \mathrm{~m}\) long and \(2 \mathrm{~cm}^2\) in cross section. Mercury stands to a height of \(75 \mathrm{~cm}\) in the tube. When a small amount of oxygen is introduced in the space above the mercury level, the level falls by \(5 \mathrm{~cm}\). Calculate the mass of the oxygen introduced. Room temperature \(=27^{\circ} \mathrm{C}, g=10 \mathrm{~m} \mathrm{~s}^{-2}\) and density of mercury \(=13600 \mathrm{~kg} \mathrm{~m}^{-3}\)
The pressure of oxygen in the space above the mercury level \(=5 \mathrm{~cm}\) of mercury
\(
\begin{aligned}
& =0.05 \mathrm{~m} \times 13600 \mathrm{~kg} \mathrm{~m}^{-3} \times 10 \mathrm{~m} \mathrm{~s}^{-2} \\
& =6800 \mathrm{~N} \mathrm{~m}^{-2}
\end{aligned}
\)
The volume of oxygen \(=\left(2 \mathrm{~cm}^2\right) \times(25 \mathrm{~cm}+5 \mathrm{~cm})\) \(=60 \mathrm{~cm}^3=6 \times 10^{-5} \mathrm{~m}^{-3}\).
The temperature \(\quad=(273+27) \mathrm{K}=300 \mathrm{~K}\).
The amount of oxygen is
\(
n=\frac{p V}{R T}
\)
\(
\begin{aligned}
& =\frac{\left(6800 \mathrm{~N} \mathrm{~m}^{-2}\right) \times 6 \times 10^{-5} \mathrm{~m}^{-3}}{\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(300 \mathrm{~K})} \\
& =16.4 \times 10^{-5} \mathrm{~mol} .
\end{aligned}
\)
The mass of oxygen is
\(
\begin{aligned}
& \left(16.4 \times 10^{-5} \mathrm{~mol}\right) \times\left(32 \mathrm{~g} \mathrm{~mol}^{-1}\right) \\
= & 5.24 \times 10^{-3} \mathrm{~g} .
\end{aligned}
\)
The figure below shows a vertical cylindrical vessel separated in two parts by a frictionless piston free to move along the length of the vessel. The length of the cylinder is \(90 \mathrm{~cm}\) and the piston divides the cylinder in the ratio of \(5: 4\). Each of the two parts of the vessel contains 0.1 mole of an ideal gas. The temperature of the gas is \(300 \mathrm{~K}\) in each part. Calculate the mass of the piston.
Let \(l_1\) and \(l_2\) be the lengths of the upper part and the lower part of the cylinder respectively. Clearly, \(l_1=50 \mathrm{~cm}\) and \(l_2=40 \mathrm{~cm}\). Let the pressures in the upper and lower parts be \(p_1\) and \(p_2\) respectively. Let the area of cross-section of the cylinder be \(A\). The temperature in both parts is \(T=300 \mathrm{~K}\).
Consider the equilibrium of the piston. The forces acting on the piston are
(a) its weight \(\mathrm{mg}\)
(b) \(p_1 A\) downward, by the upper part of the gas and (c) \(p_2 A\) upward, by the lower part of the gas.
Thus, \(\quad p_2 A=p_1 A+m g \dots(i)\)
Using \(p V=n R T\) for the upper and the lower parts
\(p_1 l_1 A=n R T \dots(ii)\)
and \(\quad p_2 l_2 A=n R T \dots(iii)\).
Putting \(p_1 A\) and \(p_2 A\) from (ii) and (iii) into (i),
\(
\frac{n R T}{l_2}=\frac{n R T}{l_1}+m g .
\)
Thus,
\(
m=\frac{n R T}{g}\left[\frac{1}{l_2}-\frac{1}{l_1}\right]
\)
\(
\begin{aligned}
& =\frac{(0.1 \mathrm{~mol})\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(300 \mathrm{~K})}{9.8 \mathrm{~m} \mathrm{~s}^{-2}}\left[\frac{1}{0.4 \mathrm{~m}}-\frac{1}{0.5 \mathrm{~m}}\right] \\
& =12 \cdot 7 \mathrm{~kg} .
\end{aligned}
\)
The figure below shows a cylindrical tube of volume \(V_0\) divided in two parts by a frictionless separator. The walls of the tube are adiabatic but the separator is conducting. Ideal gases are filled in the two parts. When the separator is kept in the middle, the pressures are \(p_1\) and \(p_2\) in the left part and the right part respectively. The separator is slowly slid and is released at a position where it can stay in equilibrium. Find the volumes of the two parts.
As the separator is conducting, the temperatures in the two parts will be the same. Suppose the common temperature is \(T\) when the separator is in the middle. Let \(n_1\) and \(n_2\) be the number of moles of the gas in the left part and the right part respectively. Using the ideal gas equation,
\(p_1 \frac{V_0}{2}=n_1 R T\)
and \(p_2 \frac{V_0}{2}=n_2 R T\).
Thus, \(
\frac{n_1}{n_2}=\frac{p_1}{p_2} \text {. } \dots(i)
\)
The separator will stay in equilibrium at a position where the pressures on the two sides are equal. Suppose the volume of the left part is \(V_1\) and of the right part is \(V_2\) in this situation. Let the common pressure be \(p^{\prime}\). Also, let the common temperature in this situation be \(T^{\prime}\). Using ideal gas equation,
\(
p^{\prime} V_1=n_1 R T^{\prime}
\)
and
or, \(\quad \frac{V_1}{V_2}=\frac{n_1}{n_2}=\frac{p_1}{p_2}\). [using (i)]
Also, \(\quad V_1+V_2=V_0\).
Thus, \(\quad V_1=\frac{p_1 V_0}{p_1+p_2}\) and \(V_2=\frac{p_2 V_0}{p_1+p_2}\).
A thin tube of uniform cross section is sealed at both ends. It lies horizontally, the middle \(5 \mathrm{~cm}\) containing mercury and the parts on its two sides containing air at the same pressure \(p\). When the tube is held at an angle of \(60^{\circ}\) with the vertical, the length of the air column above and below the mercury pellet are \(46 \mathrm{~cm}\) and \(44.5 \mathrm{~cm}\) respectively. Calculate the pressure \(p\) in centimetres of mercury. The temperature of the system is kept at \(30^{\circ} \mathrm{C}\).
When the tube is kept inclined to the vertical, the length of the upper part is \(l_1=46 \mathrm{~cm}\) and that of the lower part is \(l_2=44 \cdot 5 \mathrm{~cm}\). When the tube lies horizontally, the length on each side is
\(
l_0=\frac{l_1+l_2}{2}=\frac{46 \mathrm{~cm}+44 \cdot 5 \mathrm{~cm}}{2}=45 \cdot 25 \mathrm{~cm} .
\)
Let \(p_1\) and \(p_2\) be the pressures in the upper and the lower parts when the tube is kept inclined. As the temperature is constant throughout, we can apply Boyle’s law. For the upper part,
\(
p_1 l_1 A=p l_0 A
\)
or,
\(
p_1=\frac{p l_0}{l_1} \dots(i)
\)
Similarly, for the lower part,
\(
p_2=\frac{p l_0}{l_2} \dots(ii)
\)
Now consider the equilibrium of the mercury pellet when the tube is kept in inclined position. Let \(m\) be the mass of the mercury. The forces along the length of the tube are
(a) \(p_1 A\) down the tube
(b) \(p_2 A\) up the tube
and (c) \(m g \cos 60^{\circ}\) down the tube.
Thus, \(\quad p_2=p_1+\frac{m g}{A} \cos 60^{\circ}\).
Putting from (i) and (ii),
\(
\frac{p l_0}{l_2}=\frac{p l_0}{l_1}+\frac{m g}{2 A}
\)
or, \(\quad p l_0\left(\frac{1}{l_2}-\frac{1}{l_1}\right)=\frac{m g}{2 A}\)
or,
\(
p=\frac{m g}{2 A l_0\left(\frac{1}{l_2}-\frac{1}{l_1}\right)} .
\)
If the pressure \(p\) is equal to a height \(h\) of mercury,
\(
\begin{aligned}
& p=h \rho g \text {. } \\
& \text { Also, } \quad m=(5 \mathrm{~cm}) A \rho \\
& \text { so that } h \rho g=\frac{(5 \mathrm{~cm}) A \rho g}{2 A l_0\left(\frac{1}{l_2}-\frac{1}{l_1}\right)} \\
& h=\frac{(5 \mathrm{~cm})}{2(45 \cdot 25 \mathrm{~cm})\left(\frac{1}{44 \cdot 5 \mathrm{~cm}}-\frac{1}{46 \mathrm{~cm}}\right)} \\
& =75 \cdot 39 \mathrm{~cm} \text {. } \\
&
\end{aligned}
\)
The pressure \(p\) is equal to \(75.39 \mathrm{~cm}\) of mercury.
An ideal monatomic gas is confined in a cylinder by a spring-loaded piston of cross section \(8.0 \times 10^{-3} \mathrm{~m}^2\). Initially the gas is at \(300 \mathrm{~K}\) and occupies a volume of \(2.4 \times 10^{-3} \mathrm{~m}^2\) and the spring is in its relaxed state (figure below). The gas is heated by a small heater until the piston moves out slowly by \(0.1 \mathrm{~m}\). Calculate the final temperature of the gas. The force constant of the spring is \(8000 \mathrm{~N} \mathrm{~m}^{-1}\), and the atmospheric pressure is \(1.0 \times 10^5 \mathrm{~N} \mathrm{~m}^{-2}\). The cylinder and the piston are thermally insulated. The piston and the spring are massless and there is no friction between the piston and the cylinder. Neglect any heat loss through the lead wires of the heater. The heat capacity of the heater coil is negligible.
Initially the spring is in its relaxed state. So, the pressure of the gas equals the atmospheric pressure.
Initial pressure \(=p_1=1.0 \times 10^5 \mathrm{~N} \mathrm{~m}^{-2}\).
Final pressure \(=p_2=p_1+\frac{k x}{A}\)
\(
\begin{aligned}
& =1.0 \times 10^5 \mathrm{Nm}^{-2}+\frac{\left(8000 \mathrm{Nm}^{-1}\right)(0.1 \mathrm{~m})}{8.0 \times 10^{-3} \mathrm{~m}^2} \\
& =2.0 \times 10^5 \mathrm{Nm}^{-2} . \\
\text { Final volume } & =V_2=V_1+A x
\end{aligned}
\)
\(
=2.4 \times 10^{-3} \mathrm{~m}^3+8.0 \times 10^{-3} \mathrm{~m}^2 \times 0.1 \mathrm{~m}=3.2 \times 10^{-3} \mathrm{~m}^3 .
\)
\(
\text { Using } \frac{p_1 V_1}{T_1}=\frac{p_2 V_2}{T_2} \text {, }
\)
\(
T_2=\frac{p_2 V_2}{p_1 V_1} T_1
\)
\(
\begin{aligned}
& =\frac{\left(2 \cdot 0 \times 10^5 \mathrm{~N} \mathrm{~m}^{-2}\right)\left(3.2 \times 10^{-3} \mathrm{~m}^3\right)}{\left(1 \cdot 0 \times 10^5 \mathrm{~N} \mathrm{~m}^{-2}\right)\left(2.4 \times 10^{-3} \mathrm{~m}^3\right)} \times 300 \mathrm{~K} \\
& =800 \mathrm{~K} .
\end{aligned}
\)
Assume that the temperature remains essentially constant in the upper part of the atmosphere. Obtain an expression for the variation in pressure in the upper atmosphere with height. The mean molecular weight of air is \(M\).
Suppose the pressure at height \(h\) is \(p\) and that at \(h+d h\) is \(p+d p\). Then
\(
d p=-\rho g d h \dots(i)
\)
Now considering any small volume \(\Delta V\) of air of mass \(\Delta m\)
or, or,
\(
\begin{aligned}
p \Delta V & =n R T=\frac{\Delta m}{M} R T \\
p & =\frac{\Delta m}{\Delta V} \frac{R T}{M}=\frac{\rho R T}{M} \\
\rho & =\frac{M}{R T} p .
\end{aligned}
\)
Putting in (i),
\(
\begin{array}{r}
d p=-\frac{M}{R T} p g d h \\
\text { or, } \quad \int_{P_0}^p \frac{d p}{p}=\int_0^h-\frac{M}{R T} g d h
\end{array}
\)
or, \(\ln \frac{p}{p_0}=-\frac{M g h}{R T}\) where \(p_0\) is the pressure at \(h=0\).
Thus,
\(
p=p_0 e^{-\frac{M g h}{R T}}
\)
A horizontal tube of length \(l\) closed at both ends contains an ideal gas of molecular weight \(M\). The tube is rotated at a constant angular velocity \(\omega\) about a vertical axis passing through an end. Assuming the temperature to be uniform and constant, Find the pressure \(p_2\) in terms of \(p_1\).
Consider an element of the gas between the cross sections at distances \(x\) and \(x+d x\) from the fixed end (figure above). If \(p\) be the pressure at \(x\) and \(p+d p\) at \(x+d x\), the force acting on the element towards the centre is \(A d p\), where \(A\) is the cross-sectional area. As this element is going in a circle of radius \(x\), \(
A d p=(d m) \omega^2 x
\)
where \(d m=\) mass of the element. Using \(p V=n R T\) on this element,
or,
\(
\begin{aligned}
p A d x & =\frac{d m}{M} R T \\
d m & =\frac{M p A}{R T} d x .
\end{aligned}
\)
Putting in (i),
\(
\begin{aligned}
A d p & =\frac{M p A}{R T} \omega^2 x d x \\
\int_{p_1}^{p_2} \frac{d p}{p} & =\int_0^l \frac{M \omega^2}{R T} x d x \\
\ln \frac{p_2}{p_1} & =\frac{M \omega^2 l^2}{2 R T} \\
p_2 & =p_1 e^{\frac{M \omega^2 l^2}{2 R T}} .
\end{aligned}
\)
A barometer tube contains a mixture of air and saturated water vapour in the space above the mercury column. It reads \(70 \mathrm{~cm}\) when the actual atmospheric pressure is \(76 \mathrm{~cm}\) of mercury. The saturation vapour pressure at room temperature is \(1.0 \mathrm{~cm}\) of mercury. The tube is now lowered in the reservoir till the space above the mercury column is reduced to half its original volume. Find the reading of the barometer. Assume that the temperature remains constant.
The pressure due to the air + vapour is \(76 \mathrm{~cm}-70 \mathrm{~cm}=6 \mathrm{~cm}\) of mercury. The vapour is saturated and the pressure due to it is \(1 \mathrm{~cm}\) of mercury. The pressure due to the air is, therefore, \(5 \mathrm{~cm}\) of mercury.
As the tube is lowered and the volume above the mercury is decreased, some of the vapour will condense. The remaining vapour will again exert a pressure of \(1 \mathrm{~cm}\) of mercury. The pressure due to air is doubled as the volume is halved. Thus, \(p_{\text {air }}=2 \times 5 \mathrm{~cm}=10 \mathrm{~cm}\) of mercury. The pressure due to the air + vapour \(=10 \mathrm{~cm}+1 \mathrm{~cm}=11 \mathrm{~cm}\) of mercury. The barometer reading is \(76 \mathrm{~cm}-11 \mathrm{~cm}=65 \mathrm{~cm}\).
Find the mass of water vapour per cubic metre of air at temperature \(300 \mathrm{~K}\) and relative humidity \(50 \%\). The saturation vapour pressure at \(300 \mathrm{~K}\) is \(3.6 \mathrm{kPa}\) and the gas constant \(R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\).
At \(300 \mathrm{~K}\), the saturation vapour pressure \(=3.6 \mathrm{kPa}\). Considering \(1 \mathrm{~m}^3\) of volume,
\(
p V=n R T=\frac{m}{M} R T
\)
where \(m=\) mass of vapour and \(M=\) molecular weight of water.
Thus, \(m=\frac{M p V}{R T}\)
\(
=\frac{\left(18 \mathrm{~g} \mathrm{~mol}^{-1}\right)\left(3 \cdot 6 \times 10^3 \mathrm{~Pa}\right)\left(1 \mathrm{~m}^3\right)}{\left(8 \cdot 3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(300 \mathrm{~K})} \approx 26 \mathrm{~g} .
\)
As the relative humidity is \(50 \%\), the amount of vapour present in \(1 \mathrm{~m}^3\) is \(26 \mathrm{~g} \times 0.50=13 \mathrm{~g}\).
The temperature and the relative humidity of air are \(20^{\circ} \mathrm{C}\) and \(80 \%\) on a certain day. Find the fraction of the mass of water vapour that will condense if the temperature falls to \(5^{\circ} \mathrm{C}\). Saturation vapour pressures at \(20^{\circ} \mathrm{C}\) and \(5^{\circ} \mathrm{C}\) are \(17.5 \mathrm{~mm}\) and \(6.5 \mathrm{~mm}\) of mercury respectively.
The relative humidity is
Thus, the vapour pressure at \(20^{\circ} \mathrm{C}\)
\(
\begin{aligned}
& =0.8 \times 17.5 \mathrm{~mm} \text { of } \mathrm{Hg} \\
& =14 \mathrm{~mm} \text { of } \mathrm{Hg} .
\end{aligned}
\)
Consider a volume \(V\) of air. If the vapour pressure is \(p\) and the temperature is \(T\), the mass \(m\) of the vapour present is given by
\(
\begin{aligned}
p V & =\frac{m}{M} R T \\
m & =\frac{M V}{R} \frac{p}{T} \dots(i)
\end{aligned}
\)
The mass present at \(20^{\circ} \mathrm{C}\) is
\(
m_1=\frac{M V}{R} \frac{14 \mathrm{~mm} \text { of } \mathrm{Hg}}{293 \mathrm{~K}} .
\)
When the air is cooled to \(5^{\circ} \mathrm{C}\), some vapour condenses and the air gets saturated with the remaining vapour. The vapour pressure at \(5^{\circ} \mathrm{C}\) is, therefore, \(6.5 \mathrm{~mm}\) of mercury. The mass of vapour present at \(5^{\circ} \mathrm{C}\) is, therefore,
\(
m_2=\frac{M V}{R} \frac{6 \cdot 5 \mathrm{~mm} \text { of } \mathrm{Hg}}{278 \mathrm{~K}} .
\)
The fraction condensed
\(
\begin{aligned}
& =\frac{m_1-m_2}{m_1}=1-\frac{m_2}{m_1} \\
& =1-\frac{6 \cdot 5}{278} \times \frac{293}{14}=0.51 .
\end{aligned}
\)
A vessel containing water is put in a dry sealed room of volume \(76 \mathrm{~m}^3\) at a temperature of \(15^{\circ} \mathrm{C}\). The saturation vapour pressure of water at \(15^{\circ} \mathrm{C}\) is \(15 \mathrm{~mm}\) of mercury. How much water will evaporate before the water is in equilibrium with the vapour?
Water will be in equilibrium with its vapour when the vapour gets saturated. In this case, the pressure of vapour=saturation vapour pressure \(=15 \mathrm{~mm}\) of mercury
\(
\begin{aligned}
& =\left(15 \times 10^{-3} \mathrm{~m}\right)\left(13600 \mathrm{~kg} \mathrm{~m}^{-3}\right)\left(9.8 \mathrm{~m} \mathrm{~s}^{-2}\right) \\
& =2000 \mathrm{~N} \mathrm{~m}^{-2} .
\end{aligned}
\)
Using gas law, \(p V=\frac{m}{M} R T\)
\(
\begin{aligned}
m & =\frac{M p V}{R T} \\
& =\frac{\left(18 \mathrm{~g} \mathrm{~mol}^{-1}\right)\left(2000 \mathrm{~N} \mathrm{~m}^{-2}\right)\left(76 \mathrm{~m}^3\right)}{\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(288 \mathrm{~K})} \\
& =1145 \mathrm{~g}=1.14 \mathrm{~kg} .
\end{aligned}
\)
Thus, \(1.14 \mathrm{~kg}\) of water will evaporate.
A jar contains a gas and a few drops of water at an absolute temperature \(T_1\). The pressure in the jar is \(830 \mathrm{~mm}\) of mercury. The temperature of the jar is reduced by \(1 \%\). The saturation vapour pressures of water at the two temperatures are \(30 \mathrm{~mm}\) of mercury and \(25 \mathrm{~mm}\) of mercury. Calculate the new pressure in the jar.
At temperature \(T_1\), the total pressure is \(830 \mathrm{~mm}\) of mercury. Out of this, \(30 \mathrm{~mm}\) of mercury is due to the vapour and \(800 \mathrm{~mm}\) of mercury is due to the gas. As the temperature decreases, the pressure due to the gas decreases according to the gas law. Here the volume is constant, so,
or,
\(
\begin{aligned}
& \frac{p_2}{T_2}=\frac{p_1}{T_1} \\
& p_2=\frac{T_2}{T_1} p_1 .
\end{aligned}
\)
As \(T_2\) is \(1 \%\) less than \(T_1\)
\(
T_2=0.99 T_1
\)
and hence,
\(
p_2=0 \cdot 99 p_1
\)
\(=0.99 \times 800 \mathrm{~mm}\) of mercury \(=792 \mathrm{~mm}\) of mercury.
The vapour is still saturated and hence, its pressure is \(25 \mathrm{~mm}\) of mercury. The total pressure at the reduced temperature is
\(
\begin{aligned}
p & =(792+25) \mathrm{mm} \text { of mercury } \\
& =817 \mathrm{~mm} \text { of mercury. }
\end{aligned}
\)
Calculate the mass of 1 litre of moist air at \(27^{\circ} \mathrm{C}\) when the barometer reads \(753.6 \mathrm{~mm}\) of mercury and the dew point is \(161^{\circ} \mathrm{C}\). Saturation vapour pressure of water at \(161^{\circ} \mathrm{C}=13.6 \mathrm{~mm}\) of mercury, density of air at \(S T P\) \(=0.001293 \mathrm{~g}(\mathrm{cc})^{-1}\), density of saturated water vapour at \(S T P=0.000808 \mathrm{~g}(\mathrm{cc})^{-1}\).
We have \(p V=\frac{m}{M} R T\)
or,
\(
\rho=\frac{m}{V}=\frac{M p}{R T} \dots(i)
\)
The dew point is \(161^{\circ} \mathrm{C}\) and the saturation vapour pressure is \(13.6 \mathrm{~mm}\) of mercury at the dew point. This means that the present vapour pressure is \(13.6 \mathrm{~mm}\) of mercury.
At this pressure and temperature, the density of vapour will be
\(
\begin{aligned}
& \rho=\frac{M p}{R T} \\
& =\frac{\left(18 \mathrm{~g} \mathrm{~mol}^{-1}\right)\left(13 \cdot 6 \times 10^{-3} \mathrm{~m}\right)\left(13600 \mathrm{~kg} \mathrm{~m}^{-3}\right)\left(9 \cdot 8 \mathrm{~m} \mathrm{~s}^{-2}\right)}{\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(300 \mathrm{~K})} \\
& =13.1 \mathrm{~g} \mathrm{~m}^{-3} .
\end{aligned}
\)
Thus, 1 litre of moist air at \(27^{\circ} \mathrm{C}\) contains \(0.0131 \mathrm{~g}\) of vapour.
The pressure of dry air at \(27^{\circ} \mathrm{C}\) is \(753.6 \mathrm{~mm}-13.6 \mathrm{~mm}\) \(=740 \mathrm{~mm}\) of mercury. The density of air at STP is \(0.001293 \mathrm{~g}(\mathrm{cc})^{-1}\). The density at \(27^{\circ} \mathrm{C}\) is given by equation (i),
or,
\(
\begin{aligned}
\frac{\rho_1}{\rho_2} & =\frac{p_1 / T_1}{p_2 / T_2} \\
\rho_2 & =\frac{p_2 T_1}{T_2 p_1} \rho_1 \\
& =\frac{740 \times 273}{300 \times 760} \times 0.001293 \mathrm{~g}(\mathrm{cc})^{-1} . \\
& =.001457 \mathrm{~g}(\mathrm{cc})^{-1} .
\end{aligned}
\)
Thus, 1 litre of moist air contains \(1.145 \mathrm{~g}\) of dry air. The mass of 1 litre of moist air is \(1.1457 \mathrm{~g}+0.0131 \mathrm{~g}\) \(\approx 1 \cdot 159 \mathrm{~g}\)
Calculate the volume of 1 mole of an ideal gas at STP.\( \text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { wherever required. }\)
Volume of 1 mole gas
\(
\begin{aligned}
& P V=n R T \\
& \Rightarrow V=\frac{R T}{P}=0.082 \times 273(\text { as } P=1) \\
& V=22.386=22.4 \mathrm{~L} \\
& =22.4 \times 10^{-3} \mathrm{~m}^3 \\
& =2.24 \times 10^{-2} \mathrm{~m}^3
\end{aligned}
\)
Find the number of molecules of an ideal gas in a volume of \(1.000 \mathrm{~cm}^3\) at STP. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { wherever required. }\)
Volume of ideal gas at STP \(=22.4 \mathrm{~L}\)
Number of molecules in \(22.4 \mathrm{~L}\) of ideal gas at STP \(=6.022 \times 10^{23}\)
Number of molecules in \(22.4 \times 10^3 \mathrm{~cm}^3\) of ideal gas at STP \(=6.022 \times 10^{23}\)
Now,
Number of molecules in \(1 \mathrm{~cm}^3\) of ideal gas at STP \(=\frac{6.022 \times 10^{23}}{22.4 \times 10^3}=2.688 \times 10^{19}\)
Find the number of molecules in \(1 \mathrm{~cm}^3\) of an ideal gas at \(0^{\circ} \mathrm{C}\) and at a pressure of \(10^{-5} \mathrm{~mm}\) of mercury. \( \text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text { wherever required. }\)
Given:
Volume of ideal gas, \(V=1 \mathrm{~cm}^3=10^{-6} \mathrm{~m}^3\)
Temperature of ideal gas, \(T=0^{\circ} \mathrm{C}=273 \mathrm{~K}\)
Pressure of mercury, \(P=10^{-8} \mathrm{~m}\) of \(\mathrm{Hg}\)
Density of ideal gas, \(\rho=13600 \mathrm{kgm}^{-3}\)
Pressure \((P)\) is given by
\(P=\rho g h\)
Here,
\(\rho=\) density of ideal gas
\(g=\) acceleration due to gravity,
Using the ideal gas equation, we get
\(
\begin{aligned}
& n=\frac{P V}{R T} \\
& \Rightarrow n=\frac{\rho g h \times V}{R T} \\
& \Rightarrow n=\frac{13600 \times 9.8 \times 10^{-8} \times 10^{-6}}{8.31 \times 273} \\
& \Rightarrow n=5.87 \times 10^{-13}
\end{aligned}
\)
\(
\begin{aligned}
\text { Number of molecules } & =N \times n \\
& =6.023 \times 10^{23} \times 5.874 \times 10^{-13} \\
& =35.384 \times 10^{10} \\
& =3.538 \times 10^{11}
\end{aligned}
\)
\(\text { Calculate the mass of } 1 \mathrm{~cm}^3 \text { of oxygen kept at STP. }\)\(\text { Use } R=8.3 \mathrm{~J}\mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
We know that \(22.4 \mathrm{~L}\) of \(\mathrm{O}_2\) contains \(1 \mathrm{~mol} \mathrm{O}_2\) at STP. Thus,
\(22.4 \times 10^3 \mathrm{~cm}^3\) of \(\mathrm{O}_2=1 \mathrm{~mol} \mathrm{O}_2\)
\(1 \mathrm{~cm}^3\) of \(\mathrm{O}_2=\frac{1}{22.4 \times 10^3} \mathrm{~mol} \mathrm{O}_2\)
\(1 \mathrm{~mol}\) of \(\mathrm{O}_2=32 \mathrm{~g}\)
\(\frac{1}{22.4 \times 10^3} \mathrm{~mol}\) of \(\mathrm{O}_2=\frac{32}{22.4 \times 10^3}=1.43 \times 10^{-3} \mathrm{~g}=1.43 \mathrm{mg}\)
Equal masses of air are sealed in two vessels, one of volume \(V_0\) and the other of volume \(2 V_0\). If the first vessel is maintained at a temperature \(300 \mathrm{~K}\) and the other at \(600 \mathrm{~K}\), find the ratio of the pressures in the two vessels. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
Let the pressure and temperature for the vessels of volume \(V_0\) and \(2 V_0\) be \(P_1, T_1\) and \(P_2, T_2\), respectively. Since the two vessels have the same mass of gas, \(n_1=n_2=n\).
\(
\begin{aligned}
& T_1=300 K \\
& T_2=600 K
\end{aligned}
\)
Using the equation of state for perfect gas, we get \(P V=n R T\)
For the vessel of volume \(\mathrm{V}_o\) :
\(
P_1 V_o=n R T_1 \ldots(1)
\)
For the vessel of volume \(2 \mathrm{~V}_o\) :
\(
P_2\left(2 V_o\right)=n R T_2 \ldots(2)
\)
Dividing eq . (2) by eq . (1), we get
\(
\begin{aligned}
& \frac{2 P_2}{P_1}=\frac{T_2}{T_1}=\frac{600}{300}=2 \\
& \Rightarrow \frac{P_2}{P_1}=1 \\
& \Rightarrow P_2: P_1=1: 1
\end{aligned}
\)
An electric bulb of volume \(250 \mathrm{cc}\) was sealed during manufacturing at a pressure of \(10^{-3} \mathrm{~mm}\) of mercury at \(27^{\circ} \mathrm{C}\). Compute the number of air molecules contained in the bulb. Avogadro constant \(=6 \times 10^{23} \mathrm{~mol}^{-1}\), density of mercury \(=13600 \mathrm{~kg} \mathrm{~m}^{-3}\) and \(g=10 \mathrm{~m} \mathrm{~s}^{-2}\). \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
Given:
Volume of electric bulb, \(V=250 \mathrm{cc}\)
Temperature at which manufacturing takes place, \(T=27+273=300 \mathrm{~K}\)
Height of mercury, \(h=10^{-3} \mathrm{~mm}\)
Density of mercury, \(\rho 13600 \mathrm{kgm}^{-3}\)
Avogadro constant, \(N=6 \times 10^{23} \mathrm{~mol}^{-1}\)
Pressure \((P)\) is given by
\(
P=\rho g h
\)
Using the ideal gas equation, we get
\(
\begin{aligned}
& P V=n R T \\
& P V=n R T \\
& \Rightarrow n=\frac{P V}{R T} \\
& \Rightarrow n=\frac{\rho g h V}{R T} \\
& \Rightarrow n=\frac{10^{-6} \times 13600 \times 10 \times 250 \times 10^{-6}}{8.314 \times 300}
\end{aligned}
\)
Now, number of molecules \(=n N\)
\(
\begin{aligned}
& =\frac{10^{-6} \times 13600 \times 10 \times 250 \times 10^{-6}}{8.314 \times 300} \times 6 \times 10^{23} \\
& =8 \times 10^{15}
\end{aligned}
\)
A gas cylinder has walls that can bear a maximum pressure of \(1.0 \times 10^6 \mathrm{~Pa}\). It contains a gas at \(8.0 \times 10^5 \mathrm{~Pa}\) and \(300 \mathrm{~K}\). The cylinder is steadily heated. Neglecting any change in the volume, calculate the temperature at which the cylinder will break.Â
Maximum pressure that the cylinder can bear, \(P_{\max }=1.0 \times 10^6 \mathrm{~Pa}\)
Pressure in the gas cylinder, \(P_1=8.0 \times 10^5 \mathrm{~Pa}\)
Temperature in the cylinder, \(T_1=300 \mathrm{~K}\)
Let \(T_2\) be the temperature at which the cylinder will break.
Volume is constant. Thus,
(Given)
\(
V_1=V_2=V
\)
Applying the five variable gas equation, we get
\(
\begin{aligned}
& \frac{P_1 V}{T_1}=\frac{P_2 V}{T_2} \ldots \ldots\left(\because V_1=V_2\right) \\
& \Rightarrow \frac{P_1}{T_1}=\frac{P_2}{T_2} \\
& \Rightarrow T_2=\frac{P_2 \times T_1}{P_1} \\
& \Rightarrow T_2=\frac{1.0 \times 10^6 \times 300}{8.0 \times 10^5}=375 K
\end{aligned}
\)
\(2 \mathrm{~g}\) of hydrogen is sealed in a vessel of volume \(0.02 \mathrm{~m}^3\) and is maintained at \(300 \mathrm{~K}\). Calculate the pressure in the vessel. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\).
Given:
Mass of hydrogen, \(m=2 \mathrm{~g}\)
Volume of the vessel, \(V=0.02 \mathrm{~m}^3\)
Temperature in the vessel, \(T=300 \mathrm{~K}\)
Molecular mass of the hydrogen, \(M=2 \mathrm{u}\)
No of moles, \(n=\frac{m}{M}=\frac{2}{2}=1\) mole
Rydberg’s constant, \(R=8.3 \mathrm{~J} / \mathrm{Kmol}\)
From the ideal gas equation, we get
\(
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \Rightarrow P=\frac{n R T}{V} \\
& \Rightarrow P=\frac{1 \times 8.3 \times 300}{0.02} \\
& \Rightarrow P=1.24 \times 10^5 \mathrm{~Pa}
\end{aligned}
\)
The density of an ideal gas is \(1.25 \times 10^{-3} \mathrm{~g} \mathrm{~cm}^{-3}\) at STP. Calculate the molecular weight of the gas. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\). \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\).
Let:
\(m\) = Mass of the gas
\(M=\) Molecular mass of the gas
Now,
Density of ideal gas, \(\rho=1.25 \times 10^{-3} \mathrm{gcm}^{-3}=1.25 \mathrm{kgm}^{-3}\)
Pressure, \(P=1.01325 \times 10^5 \mathrm{~Pa} \quad\) (At STP)
Temperature, \(T=273 \mathrm{~K} \quad\) (At STP)
Using the ideal gas equation, we get
\(
\begin{aligned}
& P V=n R T \ldots(1) \\
& n=\frac{m}{M} \ldots(2) \\
& \therefore P V=\frac{m}{M} R T \\
& \Rightarrow M=\frac{m}{V} \frac{R T}{P} \\
& \Rightarrow M=\rho \frac{R T}{P} \\
& \Rightarrow M=1.25 \times \frac{8.31 \times 273}{10^5} \\
& \Rightarrow M=2.83 \times 10^{-2} \\
& =28.3 g \mathrm{mol}^{-1}
\end{aligned}
\)
The temperature and pressure at Simla are \(15.0^{\circ} \mathrm{C}\) and \(72.0 \mathrm{~cm}\) of mercury and at Kalka these are \(35.0^{\circ} \mathrm{C}\) and \(76.0 \mathrm{~cm}\) of mercury. Find the ratio of air density at Kalka to the air density at Simla. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\).
Here,
Temperature in Simla, \(T_1=15+273=288 \mathrm{~K}\)
Pressure in Simla, \(\mathrm{P}_1=0.72 \mathrm{~m}\) of \(\mathrm{Hg}\)
Temperature in Kalka, \(\mathrm{T}_2=35+273=308 \mathrm{~K}\)
Pressure in Kalka, \(P_2=0.76 \mathrm{~m}\) of \(\mathrm{Hg}\)
Let the density of air at Simla and Kalka be \(\rho_1\) and \(\rho_2\) respectively. Then,
\(
\begin{aligned}
& P V=\frac{m}{M} R T \\
& \Rightarrow \frac{m}{V}=\frac{P M}{R T} \\
& \Rightarrow \rho=\frac{P M}{R T} \\
& \text { Thus, } \rho_1=\frac{P_1 M}{R T_1} \\
& \rho_2=\frac{P_2 M}{R T_2}
\end{aligned}
\)
Taking ratios, we get
\(
\begin{aligned}
& \frac{\rho_1}{\rho_2}=\frac{P_1}{T_1} \times \frac{T_2}{P_2} \\
& \Rightarrow \frac{\rho_1}{\rho_2}=\frac{0.72}{288} \times \frac{308}{0.76} \\
& \Rightarrow \frac{\rho_2}{\rho_1}=0.987
\end{aligned}
\)
The figure below shows a cylindrical tube with adiabatic walls and fitted with a diathermic separator. The separator can be slid in the tube by an external mechanism. An ideal gas is injected into the two sides at equal pressures and equal temperatures. The separator remains in equilibrium at the middle. It is now slid to a position where it divides the tube in the ratio of \(1: 3\). Find the ratio of the pressures in the two parts of the vessel. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\).
Since the separator initially divides the cylinder equally, the number of moles of gas are equal in the two parts. Thus,
\(
\mathrm{n}_1=\mathrm{n}_2=\mathrm{n}
\)
Volume of the first part \(=V\)
Volume of the second part \(=3 \mathrm{~V}\)
It is given that the walls are diathermic. So, temperature of the two parts is equal. Thus,
\(
T_1=T_2=T
\)
Let pressure of first and second parts be \(P_1\) and \(P_2\), respectively.
For first part:- Applying equation of state, we get
\(
P_1 V=n R T \dots(1)
\)
For second part:- Applying equation of state, we get
\(
P_2(3 V)=n R T \dots(2)
\)
Dividing eq. (1) by eq. (2), we get
\(
\begin{aligned}
& \frac{P_1 V}{P_2(3 V)}=1 \\
& \Rightarrow \frac{P_1}{P_2}=\frac{3}{1} \\
& \Rightarrow P_1: P_2=3: 1
\end{aligned}
\)
Find the rms speed of hydrogen molecules in a sample of hydrogen gas at \(300 \mathrm{~K}\). Find the temperature at which the rms speed is double the speed calculated in the previous part. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
Here,
Temperature of hydrogen gas, \(T=300 \mathrm{~K}\)
Molar mass of hydrogen, \(M_0=2 \mathrm{~g} / \mathrm{mol}=0.002 \mathrm{~kg} / \mathrm{mol}\)
We know,
\(
\begin{aligned}
& C=\sqrt{\frac{3 R T}{M_0}} \\
& \Rightarrow C=\sqrt{\frac{3 \times 8.3 \times 300}{0.002}} \\
& \Rightarrow C=1932.6 \mathrm{~ms}^{-1}\approx 1930 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
In the second case, let the required temperature be \(T\).
Applying the same formula, we get
\(
\begin{aligned}
& \sqrt{\frac{3 \times 8.3 T}{0.002}}=2 \times 1932.6 \\
& \Rightarrow T=1200 \mathrm{~K}
\end{aligned}
\)
A sample of \(0.177 \mathrm{~g}\) of an ideal gas occupies \(1000 \mathrm{~cm}^3\) at STP. Calculate the rms speed of the gas molecules.
Here,
\(
\begin{aligned}
& V=10^{-3} \mathrm{~m}^3 \\
& \text { Density }=0.177 \mathrm{kgm}^{-3} \\
& P=10^5 \mathrm{pa} \\
& C=\sqrt{\frac{3 P}{\rho}}=\sqrt{\frac{3 \times 10^5}{0.177}} \\
& =1301.9 \mathrm{~ms}^{-1} \approx 1300 \mathrm{~ms}^{-1}
\end{aligned}
\)
The average translational kinetic energy of air molecules is \(0.040 \mathrm{eV}\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)\). Calculate the temperature of the air. Boltzmann constant \(k=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\).
We know from kinetic theory of gases that the average translational energy per molecule is \(\frac{3}{2} k T\).
Now,
\(
\begin{aligned}
& \mathrm{E}_{\mathrm{avg}}=0.040 \mathrm{eV}=0.040 \times 1.6 \times 10^{-19}=6.4 \times 10^{-21} J \\
& 6.40 \times 10^{-21}=\frac{3}{2} \times 1.38 \times 10^{-23} \times T \\
& \Rightarrow T=\frac{2}{3} \times \frac{6.40 \times 10^{-21}}{1.38 \times 10^{-23}}=309.2 \mathrm{~K}\approx 310\mathrm{~K}
\end{aligned}
\)
Consider a sample of oxygen at \(300 \mathrm{~K}\). Find the average time taken by a molecule to travel a distance equal to the diameter of the earth. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
Here,
\(
\begin{aligned}
& V_{a v g}=\frac{\sqrt{8 R T}}{\sqrt{\pi M}}=\frac{\sqrt{8 \times 8.314 \times 300}}{\sqrt{3.14 \times 0.032}} \\
& =441.44 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
We know
\(
\begin{aligned}
& T=\frac{\text { Distance }}{\text { Speed }}=\frac{6400000 \times 2}{441.44} \\
& =\frac{28996.01 h}{3600}=8.054 h=8 h
\end{aligned}
\)
Find the average magnitude of linear momentum of a helium molecule in a sample of helium gas at \(0^{\circ} \mathrm{C}\). Mass of a helium molecule \(=6.64 \times 10^{-27} \mathrm{~kg}\) and Boltzmann constant \(=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\). \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
Here,
\(
\begin{aligned}
& \mathrm{m}=6.64 \times 10^{-27} \mathrm{~kg} \\
& \mathrm{~T}=273 \mathrm{~K}
\end{aligned}
\)
Average speed of the \(\mathrm{He}\) atom is given by \(V_{a v g}=\sqrt{\frac{8 k T}{\pi m}}\)
\(
\begin{aligned}
& =\sqrt{\frac{8 \times 1.38 \times 10^{-23} \times 273}{3.14 \times 6.64 \times 10^{-27}}} \\
& =1202.31
\end{aligned}
\)
We know,
Momentum \(=m \times V_{\text {avg }}\)
\(
\begin{aligned}
& =6.64 \times 10^{-27} \times 1201.35 \\
& =7.97 \times 10^{-24} \\
& =8 \times 10^{-24} \mathrm{~kg} \mathrm{m} / \mathrm{s}
\end{aligned}
\)
The mean speed of the molecules of a hydrogen sample equals the mean speed of the molecules of a helium sample. Calculate the ratio of the temperature of the hydrogen sample to the temperature of the helium sample. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1}\mathrm{~mol}^{-1}\)
Mean velocity is given by \(V_{a v g}=\sqrt{\frac{8 R T}{\pi M}}\)
Let temperature for \(\mathrm{H}\) and \(\mathrm{He}\) respectively be \(T_1\) and \(T_2\), respectively.
For hydrogen:
\(
\mathrm{M}_{\mathrm{H}}=2 \mathrm{~g}=2 \times 10^{-3} \mathrm{~kg}
\)
For helium:
\(
\mathrm{M}_{\mathrm{He}}=4 \mathrm{~g}=4 \times 10^{-3} \mathrm{~kg}
\)
Now,
\(
\begin{aligned}
& \mathrm{A} / \mathrm{q} \sqrt{\frac{8 R T_1}{\pi M_H}}=\sqrt{\frac{8 R T_2}{\pi M_{H e}}} \\
& \Rightarrow \sqrt{\frac{8 R T_1}{2 \times 10^{-3} \pi}}=\sqrt{\frac{8 R T_2}{\pi \times 4 \times 10^{-3}}} \\
& \Rightarrow \sqrt{\frac{T_1}{2}}=\sqrt{\frac{T_2}{4}} \\
& \Rightarrow \frac{T_1}{T_2}=\frac{1}{2} \\
& \Rightarrow T_1: T_2=1: 2
\end{aligned}
\)
At what temperature the mean speed of the molecules of hydrogen gas equals the escape speed from the earth? \(\text { Use } R=8 \cdot 3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
Mean speed of the molecule is givne by
\(
\sqrt{\frac{8 R T}{\pi M}}
\)
For \(\mathrm{H}\) molecule, \(M=2 \times 10^{-3} \mathrm{~kg}\)
\(
=\sqrt{\frac{4 R T \times 10^3}{\pi}}
\)
For escape velocity of Earth :
Let \(r\) be the radius of Earth
\(
v=\sqrt{\frac{2 G M}{r}}
\)
Multiplying numerator and denominator by \(R\), we get
\(
\begin{aligned}
& v_c=\sqrt{\frac{G M}{r^2} 2 r} \\
& g=\frac{G M}{r^2} \\
& v_c=\sqrt{2 g r} \\
& \sqrt{\frac{4 R T \times 10^3}{\pi}}=\sqrt{2 g r} \\
& \Rightarrow \frac{2 \times 8.314 \times T \times 10^3}{3.142}=9.8 \times 6.37 \times 10^6 \\
& \Rightarrow T \approx 11800 \mathrm{~K}
\end{aligned}
\)
Find the ratio of the mean speed of hydrogen molecules to the mean speed of nitrogen molecules in a sample containing a mixture of the two gases. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
we know ,
\(
\begin{aligned}
& V_{a v g}=\sqrt{\frac{8 R T}{\pi M}} \\
& \text { Molar mass of } \mathrm{H}_2=\mathrm{M}_{\mathrm{H}}=2 \times 10^{-3} \mathrm{~kg} \\
& \text { Molar mass of } \mathrm{N}_2=\mathrm{M}_{\mathrm{N}}=28 \times 10^{-3} \mathrm{~kg} \\
& \text { Now, } \\
& <V>_H=\sqrt{\frac{8 R T}{\pi M_H}} \\
& <V>_N=\sqrt{\frac{8 R T}{\pi M_N}} \\
& \frac{<V>_H}{<V>_N}=\sqrt{\frac{M_N}{M_H}}=\sqrt{\frac{28}{2}}=\sqrt{14}=3.74
\end{aligned}
\)
The figure below shows a vessel partitioned by a fixed-diathermic separator. Different ideal gases are filled in the two parts. The rms speed of the molecules in the left part equals the mean speed of the molecules in the right part. Calculate the ratio of the mass of a molecule in the left part to the mass of a molecule in the right part.
Given that
The RMS speed of the gas molecule is \(\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{KT}}{\mathrm{m}}}\)
The average velocity of the gas molecule is \(\mathrm{V}_{\text {avg }}=\sqrt{\frac{8 \mathrm{KT}}{\pi \mathrm{m}_2}}\)
Equating the two velocities:
\(
\begin{aligned}
& \mathrm{V}_{\mathrm{rms}}=\mathrm{V}_{\mathrm{avg}} \\
& \Rightarrow \sqrt{\frac{3 \mathrm{KT}}{\mathrm{m}_1}}=\sqrt{\frac{8 \mathrm{KT}}{\pi \mathrm{m}_2}}
\end{aligned}
\)
where \(m_1 \& m_2\) are mass of gas in left and right chamber respectively.
\(
\begin{aligned}
& \Rightarrow \text { So, } \sqrt{\frac{3 \mathrm{KT}}{\mathrm{m}_1}}=\sqrt{\frac{8 \mathrm{KT}}{\pi \mathrm{m}_2}} \\
& \Rightarrow 3 \mathrm{~m}_2=\frac{8 \mathrm{~m}_1}{3.14} \\
& \Rightarrow \frac{\mathrm{m}_1}{\mathrm{~m}_2}=1.18
\end{aligned}
\)
Hence, the answer is 1.18.
Estimate the number of collisions per second suffered by a molecule in a sample of hydrogen at STP. The mean free path (average distance covered by a molecule between successive collisions) \(=1.38 \times 10^{-5} \mathrm{~cm}\). \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
Here,
\(
\begin{aligned}
& \lambda=1.38 \times 10^{-8} \mathrm{~m} \\
& \mathrm{~T}=273 \mathrm{~K} \\
& \mathrm{M}=2 \times 10^{-3} \mathrm{~kg}
\end{aligned}
\)
Average speed of the \(\mathrm{H}\) molecules is given by
\(
\begin{aligned}
& v_{a v g}=\sqrt{\frac{8 R T}{\pi M}} \\
& =\sqrt{\frac{8 \times 8.31 \times 273}{3.14 \times 2 \times 10^{-3}}} \\
& =1700 \mathrm{~ms}^{-1}
\end{aligned}
\)
The time between two collisions is given by
\(
\begin{aligned}
& t=\frac{\lambda}{v_{a v g}} \\
& \Rightarrow t=\frac{1.38 \times 10^{-8}}{1700} \\
& \Rightarrow t=8 \times 10^{-12} s
\end{aligned}
\)
Number of collisions in \(1 \mathrm{~s}=\frac{1}{8.11 \times 10^{-12}}=1.23 \times 10^{11}\)
Hydrogen gas is contained in a closed vessel at \(1 \mathrm{~atm}\) \((100 \mathrm{kPa}\) ) and \(300 \mathrm{~K}\). (a) Calculate the mean speed of the molecules. (b) Suppose the molecules strike the wall with this speed making an average angle of \(45^{\circ}\) with it. How many molecules strike each square metre of the wall per second? \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
\(
\begin{aligned}
& \mathrm{P}=10^5 \mathrm{~Pa} \\
& \mathrm{~T}=300 \mathrm{~K}
\end{aligned}
\)
For \(\mathrm{H}_2\)
\(
M=2 \times 10^{-3} \mathrm{~kg}
\)
(a) Mean speed is given by
\(
\begin{aligned}
& <v>=\sqrt{\frac{8 R T}{\pi M}} \\
& =\sqrt{\frac{8 \times 8.3 \times 300 \times 7}{2 \times 10^{-3} \times 22}} \\
& =1780 \mathrm{~ms}^{-1}
\end{aligned}
\)
Let us consider a cubic volume of \(1 \mathrm{~m}^3\).
\(
V=1 m^3
\)
The momentum of 1 molecule normal to the striking surface before collision \(=\mathrm{mu} \sin 45^{\circ}\)
The momentum of 1 molecule normal to the striking surface after collision \(=-m u \sin 45^{\circ}\)
Change in momentum of the molecule \(=2 \mathrm{mu} \sin 45^{\circ}=\sqrt{2} m u\)
Change in momentum of \(\mathrm{n}\) molecules \(=2 \mathrm{mnu} \sin 45^{\circ}=\sqrt{2} \mathrm{mnu}\)
Let \(\Delta \mathrm{t}\) be the time taken in changing the momentum.
Force per unit area due to one molecule \(=\frac{\sqrt{2} m u}{\Delta t}=\frac{\sqrt{2} m u}{\Delta t}\)
Observed pressure due to collision by \(\mathrm{n}\) molecules \(=\frac{\sqrt{2} m n u}{\Delta t}=10^5\)
\(
\begin{aligned}
& n=\frac{\frac{\sqrt{2} m n u}{\Delta t}}{\frac{\sqrt{2} m u}{\Delta t}}=\frac{10^5}{\sqrt{2} m u} \\
& 6.0 \times 10^{23} \text { molecules }=2 \times 10^{-3} \mathrm{~kg} \\
& 1 \text { molecule }=\frac{2 \times 10^{-} 3}{6 \times 10^{23}}=3.3 \times 10^{-27} \mathrm{~kg} \\
& \Rightarrow n=\frac{10^5}{\sqrt{2} \times 3.3 \times 10^{-27} \times 1780}=1.2 \times 10^{28}
\end{aligned}
\)
Air is pumped into an automobile tyre’s tube up to a pressure of \(200 \mathrm{kPa}\) in the morning when the air temperature is \(20^{\circ} \mathrm{C}\). During the day the temperature rises to \(40^{\circ} \mathrm{C}\) and the tube expands by \(2 \%\). Calculate the pressure of the air in the tube at this temperature.
Here,
\(
\begin{aligned}
& P_1=2 \times 10^5 \mathrm{~Pa} \\
& \mathrm{P}_2=? \\
& \mathrm{~T}_1=293 \mathrm{~K} \\
& \mathrm{~T}_2=313 \mathrm{~K} \\
& \mathrm{~V}_2=\mathrm{V}_1+0.02 \mathrm{~V}_1=\mathrm{V}_1(1.02)
\end{aligned}
\)
Now,
\(
\begin{aligned}
& \frac{P_1 V_1}{T_1}=\frac{P_2 V_2}{T_2} \\
& \Rightarrow \frac{2 \times 10^5 V_1}{293}=\frac{P_2 V_1(1.02)}{313} \\
& \Rightarrow P_2=\frac{2 \times 10^5 \times 313}{293 \times 1.02}=209 \mathrm{kPa}
\end{aligned}
\)
Oxygen is filled in a closed metal jar of volume \(1.0 \times 10^{-3} \mathrm{~m}^3\) at a pressure of \(1.5 \times 10^5 \mathrm{~Pa}\) and temperature \(400 \mathrm{~K}\). The jar has a small leak in it. The atmospheric pressure is \(1.0 \times 10^5 \mathrm{~Pa}\) and the atmospheric temperature is \(300 \mathrm{~K}\). Find the mass of the gas that leaks out by the time the pressure and the temperature inside the jar equalise with the surrounding.Â
Here,
\(
\begin{aligned}
& \mathrm{V}_1=1.0 \times 10^{-3} \mathrm{~m}^3 \\
& \mathrm{~T}_1=400 \mathrm{~K} \\
& \mathrm{P}_1=1.5 \times 10^5 \mathrm{~Pa} \\
& \mathrm{P}_2=1.0 \times 10^5 \mathrm{~Pa} \\
& \mathrm{~T}_2=300 \\
& M=32 \mathrm{~g}
\end{aligned}
\)
Number of moles in the jar before \(n_1=\frac{P_1 V_1}{R T_1}\)
Volume of the gas when pressure becomes equal to external pressure is given by
\(
\begin{aligned}
& \frac{P_1 V_1}{T_1}=\frac{P_2 V_2}{T_2} \\
& \Rightarrow V_2=\frac{P_1 V_1 T_2}{P_2 T_1} \\
& \Rightarrow V_2=\frac{1.5 \times 10^5 \times 1.0 \times 10^{-3} \times 300}{1.0 \times 10^5 \times 400}=1.125 \times 10^{-3}
\end{aligned}
\)
Net volume of leaked gas \(=V_2-V_1\)
\(
\begin{aligned}
& =1.125 \times 10^{-3}-1.0 \times 10^{-3} \\
& =1.25 \times 10^{-4} \mathrm{~m}^3
\end{aligned}
\)
Let \(n_2\) be the number of moles of leaked gas. Applying the equation of state on this amount of gas, we get
\(
n_2=\frac{P_2 V_2}{R T_2}=\frac{1.0 \times 10^5 \times 1.25 \times 10^{-4}}{8.3 \times 300}=0.005
\)
Mass of leaked gas \(=32 \times 0.005=0.16 \mathrm{~g}\)
An air bubble of radius \(2.0 \mathrm{~mm}\) is formed at the bottom of a \(3.3 \mathrm{~m}\) deep river. Calculate the radius of the bubble as it comes to the surface. Atmospheric pressure \(=1.0 \times 10^5 \mathrm{~Pa}\) and density of water \(=1000 \mathrm{~kg} \mathrm{~m}^{-3}\).
\(
\begin{aligned}
& V_1=\frac{4}{3} \pi\left(2.0 \times 10^{-3}\right)^3 \\
& h=3.3 \mathrm{~m} \\
& P_1=P_0+\rho g h \\
& \Rightarrow P_1=1.0 \times 10^5+1000 \times 9.8 \times 3.3 \\
& \Rightarrow P_1=1.32 \times 10^5 \mathrm{~Pa} \\
& \quad P_2=1.0 \times 10^5 \mathrm{~Pa}
\end{aligned}
\)
Since temperature remains the same, applying Boyle’s law we get
\(
\begin{aligned}
& \mathrm{P}_1 \mathrm{~V}_1=\mathrm{P}_2 \mathrm{~V}_2 \\
& \Rightarrow \mathrm{V}_2=\frac{P_1 V_1}{P_2} \\
& \Rightarrow \mathrm{V}_2=\frac{1.32 \times 10^5 \times \frac{4}{3} \pi\left(2.0 \times 10^{-3}\right)^3}{1.0 \times 10^5}
\end{aligned}
\)
Let \(R_2\) be the new radius. Then,
\(
\begin{aligned}
& \frac{4}{3} \pi R_2^3=\frac{1.32 \times 10^5 \times \frac{4}{3} \pi\left(2.0 \times 10^{-3}\right)^3}{1.0 \times 10^5} \\
& \Rightarrow R_2^3=\frac{1.32 \times 10^5 \times\left(2.0 \times 10^{-3}\right)^3}{1.0 \times 10^5} \\
& \Rightarrow R_3=\sqrt[3]{\frac{1.32 \times 10^5 \times\left(2.0 \times 10^{-3}\right)^3}{1.0 \times 10^5}} \\
& \Rightarrow R_3=2.2 \times 10^{-3} \mathrm{~m}
\end{aligned}
\)
Air is pumped into the tubes of a cycle rickshaw at a pressure of \(2 \mathrm{~atm}\). The volume of each tube at this pressure is \(0.002 \mathrm{~m}^3\). One of the tubes gets punctured and the volume of the tube reduces to \(0.0005 \mathrm{~m}^3\). How many moles of air have leaked out? Assume that the temperature remains constant at \(300 \mathrm{~K}\) and that the air behaves as an ideal gas. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
\(
\begin{aligned}
& \mathrm{P}_1=2 \times 10^5 \mathrm{pa} \\
& \mathrm{V}_1=0.002 \mathrm{~m}^3 \\
& \mathrm{~V}_2=0.0005 \mathrm{~m}^3 \\
& \mathrm{~T}_1=\mathrm{T}_2=300 \mathrm{~K}
\end{aligned}
\)
Number of moles initially , \(\mathrm{n}_1=\frac{P_1 V_1}{R T_1}\)
\(
\begin{aligned}
& \Rightarrow \mathrm{n}_1=\frac{2 \times 10^5 \times 0.002}{8.3 \times 300} \\
& \Rightarrow \mathrm{n}_1=0.16
\end{aligned}
\)
Applying equation of state, we get
\(
P_2 V_2=n_2 R T
\)
Assuming the final pressure becomes equal to the atmospheric pressure, we get
\(
\begin{aligned}
& \mathrm{P}_2=1.0 \times 10^5 \mathrm{pa} \\
& \Rightarrow \mathrm{n}_2=\frac{P_2 V_2}{R T} \\
& \Rightarrow \mathrm{n}_2=\frac{1.0 \times 10^5 \times 0.0005}{8.3 \times 300} \\
& \Rightarrow \mathrm{n}_2=0.02
\end{aligned}
\)
Number of leaked moles \(=n_2-n_1\)
\(
\begin{aligned}
& =0.16-0.02 \\
& =0.14
\end{aligned}
\)
\(0.040 \mathrm{~g}\) of \(\mathrm{He}\) is kept in a closed container initially at \(100 \cdot 0^{\circ} \mathrm{C}\). The container is now heated. Neglecting the expansion of the container, calculate the temperature at which the internal energy is increased by \(12 \mathrm{~J}\). \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\).
\(
\begin{aligned}
& m=0.040 \mathrm{~g} \\
& \mathrm{M}=4 \mathrm{~g} \\
& \mathrm{n}=\frac{0.040}{4}=0.01 \\
& T_1=(100+273) \mathrm{K}=373 \mathrm{~K}
\end{aligned}
\)
He is a monoatomic gas. Thus,
\(
\begin{aligned}
& C_v=3 \times\left(\frac{1}{2} R\right) \\
& \Rightarrow C_{\mathrm{v}}=1.5 \times 8.3=12.45
\end{aligned}
\)
Let the initial internal energy be \(U_1\).
Let the final internal energy be \(\mathrm{U}_2\).
\(
\begin{aligned}
& U_2-U_1=n C_V\left(T_2-T_1\right) \\
& \Rightarrow 0.01 \times 12.45\left(T_2-373\right)=12 \\
& \Rightarrow T_2=469 \mathrm{~K}
\end{aligned}
\)
The temperature in \({ }^{\circ} \mathrm{C}\) can be obtained as follows: \(469-273=196^{\circ} \mathrm{C}\)
During an experiment, an ideal gas is found to obey an additional law \(p V^2=\) constant. The gas is initially at a temperature \(T\) and volume \(V\). Find the temperature when it expands to a volume \(2 \mathrm{~V}\). \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\).
\(
\begin{aligned}
& p V=n R T \\
& \Rightarrow p=(n R T / V) \\
& \text { taking }(n R) \text { as a constant } k \\
& \Rightarrow p=k T / V
\end{aligned}
\)
given
\(
\begin{aligned}
& p V^2=\text { constant } \\
& (k T / V) \times V^2=\text { constant } \\
& T \times \mathrm{~V}=\text { constant }
\end{aligned}
\)
As \(V\) becomes \(2 \mathrm{~V}\),
\(\mathrm{T}\) will become \(\mathrm{T} / 2\) to make \(\left(\mathrm{T} \times \mathrm{~V}=\right.\) constant)
temperature \(=\mathrm{T} / 2\)
A vessel contains \(1.60 \mathrm{~g}\) of oxygen and \(2.80 \mathrm{~g}\) of nitrogen. The temperature is maintained at \(300 \mathrm{~K}\) and the volume of the vessel is \(0.166 \mathrm{~m}^3\). Find the pressure of the mixture.
\(
\begin{aligned}
& P_{O_2}=\frac{n_{O_2} R T}{V}, \\
& P_{\mathrm{H}_2}=\frac{n_{H_2} R T}{V} \\
& n_{O_2}=\frac{m}{M_{O_2}}=\frac{1.60}{32}=0.05 \\
& \text { Now } P_{\text {mix }}=\left(\frac{n_{O_2}+n_{H_2}}{V}\right) R T \\
& n_{H_2}=\frac{m}{M_{H_2}}=\frac{2.80}{28}=0.1 \\
& P_{\text {mix }}=\frac{(0.05+0.1) \times 8.3 \times 300}{0.166}=2250 \mathrm{~N} / \mathrm{m}^2
\end{aligned}
\)
A vertical cylinder of height 100 cm contains air at a constant temperature. The top is closed by a frictionless light piston. The atmospheric pressure is equal to 75 cm of mercury. Mercury is slowly poured over the piston. Find the maximum height of the mercury column that can be put on the piston.
\(
\mathrm{h}=1 \mathrm{~m}
\)
\(
\mathrm{P}_1=0.75 \mathrm{mHg}=0.75 \mathrm{\rho g} \mathrm{Pa}
\)
Let \(\mathrm{h}\) be the height of the mercury above the piston.
\(
P_2=P_1+h \rho g
\)
Let the CSA be A.
\(
\begin{aligned}
& V_1=A h=A \\
& V_2=(1-h) A
\end{aligned}
\)
Applying Boyle’s law, we get
\(
\begin{aligned}
& P_1 V_1=P_2 V_2 \\
& \Rightarrow 0.75 \rho g A=P_2(1-h) A
\end{aligned}
\)
\(
\Rightarrow 0.75 \rho g=(0.75 \rho g+h \rho g)(1-h)
\)
\(
\Rightarrow 0.75=(0.75+\mathrm{h})(1-\mathrm{h})
\)
\(
\begin{aligned}
& \Rightarrow \mathrm{h}=0.25 \mathrm{~m} \\
& \mathrm{~h}=25 \mathrm{~cm}
\end{aligned}
\)
The figure below shows two vessels \(A\) and \(B\) with rigid walls containing ideal gases. The pressure, temperature and volume are \(p_A, T_A, V\) in the vessel \(A\) and \(p_B, T_B, V\) in the vessel \(B\). The vessels are now connected through a small tube. Calculate the pressure \(p\) when equilibrium is achieved.
Let the partial pressure of the gas in chamber \(A\) and \(B\) be \(P_A^{\prime}\) and \(P_B^{\prime}\), respectively.
Applying equation of state for gas \(A\), we get
\(
\begin{aligned}
& \frac{P_A V}{T_A}=\frac{P_A^{\prime} 2 V}{T} \\
& \Rightarrow P_A^{\prime}=\frac{P_A T}{2 T_A}
\end{aligned}
\)
Similarly, For gas B :
\(
P_B^{\prime}=\frac{P_B T}{2 T_B}
\)
Total Pressure is the sum of the partial pressures . It is given by
\(
\begin{aligned}
& \mathrm{P}=\mathrm{P}_{\mathrm{A}}^{\prime}+\mathrm{P}_{\mathrm{B}}^{\prime} \\
& =\frac{P_A T}{2 T_A}+\frac{P_B T}{2 T_B} \\
& \Rightarrow \mathrm{P}=\frac{T}{2}\left(\frac{P_A}{T_A}+\frac{P_B}{T_B}\right) \\
& \Rightarrow \frac{P}{T}=\frac{1}{2}\left(\frac{P_A}{T_A}+\frac{P_B}{T_B}\right)
\end{aligned}
\)
A container of volume \(50 \mathrm{cc}\) contains air (mean molecular weight \(=28.8 \mathrm{~g}\) ) and is open to the atmosphere where the pressure is \(100 \mathrm{kPa}\). The container is kept in a bath containing melting ice \(\left(0^{\circ} \mathrm{C}\right)\). (a) Find the mass of the air in the container when thermal equilibrium is reached. (b) The container is now placed in another bath containing boiling water \(\left(100^{\circ} \mathrm{C}\right)\). Find the mass of air in the container. (c) The container is now closed and placed in the melting-ice bath. Find the pressure of the air when thermal equilibrium is reached. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
(a) Here,
\(
\begin{aligned}
& V_1=5 \times 10^{-5} \mathrm{~m}^3 \\
& P_1=10^5 \mathrm{~Pa} \\
& T_1=273 \mathrm{~K} \\
& \mathrm{M}=28.8 \mathrm{~g} \\
& P_1 V_1=n R T_1 \\
& \Rightarrow n=\frac{P_1 V_1}{R T_1} \\
& \Rightarrow \frac{m}{M}=\frac{10^5 \times 5 \times 10^{-5}}{8.3 \times 273} \\
& \Rightarrow m=\frac{10^5 \times 5 \times 10^{-5} \times 28.8}{8.3 \times 273} \\
& \Rightarrow \mathrm{m}=0.0635 \mathrm{~g}
\end{aligned}
\)
(b) Here,
\(
\begin{aligned}
& V_1=5 \times 10^{-5} \mathrm{~m}^3 \\
& P_1=10^5 \mathrm{~Pa}, P_2=10^5 \mathrm{~Pa}, T_1=273 \mathrm{~K}, T_2=373 \mathrm{~K} \\
& \mathrm{M}=28.8 \mathrm{~g} \\
& \frac{P_1 V_1}{T_1}=\frac{P_2 V_2}{T_2} \\
& \Rightarrow \frac{5 \times 10^{-5}}{273}=\frac{V_2}{373} \\
& \Rightarrow V_2=\frac{5 \times 10^{-5} \times 373}{273} \\
& \Rightarrow V_2=6.831 \times 10^{-5}
\end{aligned}
\)
Volume of expelled air \(=6.831 \times 10^{-5}-5 \times 10^{-5}\)
\(
=1.831 \times 10^{-5}
\)
Applying equation of state, we get
\(
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \Rightarrow \frac{m}{M}=\frac{P V}{R T}=\frac{10^5 \times 1.831 \times 10^{-5}}{8.3 \times 373} \\
& \Rightarrow m=\frac{28.8 \times 10^5 \times 1.831 \times 10^{-5}}{8.3 \times 373}=0.017
\end{aligned}
\)
Thus, mass of expelled air \(=0.017 \mathrm{~g}\)
Amount of air in the container \(=0.0635-0.017=0.0465 \mathrm{~g}\)
(c) Here,
\(
\begin{aligned}
& \mathrm{T}=273 \mathrm{~K} \\
& P=10^5 \mathrm{~Pa} \\
& V=5 \times 10^{-5} \mathrm{~m}^3
\end{aligned}
\)
Applying equation of state, we get
\(
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \Rightarrow P=\frac{n R T}{\mathrm{~V}}=\frac{0.0465 \times 8.3 \times 273}{28.8 \times 5 \times 10^{-5}} \\
& P=0.731 \times 10^5 \approx 73 \mathrm{KPa}
\end{aligned}
\)
A uniform tube closed at one end contains a pellet of mercury 10 cm long. When the tube is kept vertically with the closed-end upward, the length of the air column trapped is 20 cm. Find the length of the air column trapped when the tube is inverted so that the closed-end goes down. Atmospheric pressure = 75 cm of mercury.
Let the CSA of the tube be \(A\).
Initial volume of air, \(\mathrm{V}_1=20 \mathrm{~A} \mathrm{~cm}=0.2 \mathrm{~A}\)
Length of mercury, \(\mathrm{h}=0.1 \mathrm{~m}\)
Let the pressure of the trapped air when the tube is inverted and vertical be \(P_1\).
Now, Pressure of the mercury and trapped air balances the atmospheric pressure. Thus,
\(
\begin{aligned}
& \mathrm{P} 1+0.1 \rho g=0.75 \rho g \\
& \Rightarrow \mathrm{P}_1=0.65 \rho g
\end{aligned}
\)
when the tube is inverted with the closed end down, the pressure acting upon the trapped air is
Atmospheric pressure + Mercury column pressure
Now , Pressure of trapped air \(=\) Atmospheric Pressure + Mercury column Pressure \(\quad\) [In equilibrium]
\(
\mathrm{P}_2=0.75 \rho g+0.1 \rho g=0.85 \rho g
\)
Applying the Boyle’s law when the temperature remains constant, we get
\(
P_1 V_1=P_2 V_2
\)
Let the new height of the trapped air be \(x\).
\(
\begin{aligned}
& \Rightarrow 0.65 \rho g 0.2 \mathrm{~A}=0.85 \rho g \times \mathrm{A} \\
& \Rightarrow \mathrm{x}=0.15 \mathrm{~m}=15 \mathrm{~cm}
\end{aligned}
\)
A glass tube, sealed at both ends, is \(100 \mathrm{~cm}\) long. It lies horizontally with the middle \(10 \mathrm{~cm}\) containing mercury. The two ends of the tube contain air at \(27^{\circ} \mathrm{C}\) and at a pressure \(76 \mathrm{~cm}\) of mercury. The air column on one side is maintained at \(0^{\circ} \mathrm{C}\) and the other side is maintained at \(127^{\circ} \mathrm{C}\). Calculate the length of the air column on the cooler side. Neglect the changes in the volume of mercury and of the glass.
Let CSA of the tube be \(A\). on the colder side:
\(
\begin{aligned}
& \mathrm{P}_1=0.76 \mathrm{~m} \mathrm{Hg} \\
& \mathrm{T}_1=300 \mathrm{~K} \\
& \mathrm{~V}_1=\mathrm{V} \\
& \mathrm{T}_2=273 \mathrm{~K} \\
& \mathrm{~V}_2=\mathrm{Ax} \\
& \frac{P_1 V}{T_1}=\frac{P_2 A x}{T_2} \\
& \Rightarrow P_2=\frac{P_1 V T_2}{T_1 A x}
\end{aligned}
\)
on the hotter side :
\(
\begin{aligned}
& \mathrm{P}_1=0.76 \mathrm{~m} \mathrm{Hg} \\
& \mathrm{T}_1=300 \mathrm{~K} \\
& \mathrm{~V}_1^{\prime}=\mathrm{V} \\
& \mathrm{T}_2^{\prime}=400 \mathrm{~K} \\
& \mathrm{~V}_2^{\prime}=\mathrm{Ay} \\
& \frac{{P}_1^{\prime} V}{T_1}=\frac{{P}_2^{\prime} A y}{{T}_1^{\prime}} \\
& \Rightarrow {P}_2^{\prime}=\frac{P_1 V {{T}_1^{\prime}}}{T_1 A y}
\end{aligned}
\)
In equilibrium, the pressures on both side will balance each other.
\(
\Rightarrow P_2^{\prime}=P_2
\)
\(
\begin{aligned}
& \Rightarrow \frac{P_1 V {T}_2^{\prime}}{T_1 A y}=\frac{P_1 V T_2}{T_1 A x} \\
& \Rightarrow \frac{{T}_2^{\prime}}{y}=\frac{T_2}{x}
\end{aligned}
\)
From the length of the tube, we get
\(
\begin{aligned}
& \mathrm{x}+\mathrm{y}+0.1=1 \\
& \Rightarrow \mathrm{y}=0.9-\mathrm{x} \\
& \frac{400}{(0.9-x)}=\frac{273}{x} \\
& \Rightarrow \mathrm{x}=0.365 \mathrm{~m} \\
& \Rightarrow \mathrm{x}=36.5 \mathrm{~cm}
\end{aligned}
\)
An ideal gas is trapped between a mercury column and the closed-end of a narrow vertical tube of uniform base containing the column. The upper end of the tube is open to the atmosphere. The atmospheric pressure equals \(76 \mathrm{~cm}\) of mercury. The lengths of the mercury column and the trapped air column are \(20 \mathrm{~cm}\) and \(43 \mathrm{~cm}\) respectively. What will be the length of the air column when the tube is tilted slowly in a vertical plane through an angle of \(60^{\circ}\)? Assume the temperature to remain constant.
Initial pressure \(=\) Atmospheric pressure + pressure due to mercury
\(
\Rightarrow \mathrm{P}_1=\mathrm{P}_0+\mathrm{P}_{\mathrm{Hg}}
\)
Let the CSA of the tube be \(A\).
\(
\begin{aligned}
& \mathrm{P}_1=0.76+0.2=0.96 \mathrm{~m} \mathrm{Hg} \\
& \mathrm{T}_1=\mathrm{T}_2=\mathrm{T} \\
& \mathrm{V}_1=0.43 \mathrm{~A}
\end{aligned}
\)
If the tube is slanted, then the atmospheric pressure \(\mathrm{P}_0\) remains the same . only the \(\mathrm{P}_{\mathrm{Hg}}\) changes
\(
\begin{aligned}
& P_2=P_0+P_H g \cos 60^{\circ}=0.76+0.2 \times 0.5=0.86 \\
& P_1 V_1=P_2 V_2 \\
& \Rightarrow V_2=\frac{P_1 V_1}{P_2}=\frac{0.96 \times 0.43 A}{0.86}
\end{aligned}
\)
Let the length of the air column be \(l\).
\(
\begin{aligned}
& \Rightarrow \mathrm{Al}=\frac{P_1 V_1}{P_2}=\frac{0.96 \times 0.43 A}{0.86} \\
& \Rightarrow l=0.48 \mathrm{~m} \\
& \Rightarrow l=48 \mathrm{~cm}
\end{aligned}
\)
The figure below shows a cylindrical tube of length \(30 \mathrm{~cm}\) which is partitioned by a tight-fitting separator. The separator is very weakly conducting and can freely slide along the tube. Ideal gases are filled in the two parts of the vessel. In the beginning, the temperatures in the parts \(A\) and \(B\) are \(400 \mathrm{~K}\) and \(100 \mathrm{~K}\) respectively. The separator slides to a momentary equilibrium position shown in the figure. Find the final equilibrium position of the separator, reached after a long time.
The middle wall is weakly conducting. Thus after a long time, the temperature of both parts will equalise. The final position of the separating wall be at distance \(x\) from the left end. So it is at a distance \(30-x\) from the right end Putting combined gas equation of one side of the separating wall,
\(
\begin{aligned}
& \frac{P_1 \times V_1}{T_1}=\frac{P_2 \times V_2}{T_2} \\
& \Rightarrow \frac{P \times 20 A}{400}=\frac{P^{\prime} \times A}{T} \dots(1)\\
& \Rightarrow \frac{P \times 10 A}{100}=\frac{-P^{\prime}(30-x)}{T} \dots(2)
\end{aligned}
\)
Equating (1) and (2)
\(
\Rightarrow \frac{1}{2}=\frac{x}{30-x} \quad \Rightarrow 30-x=2 x \Rightarrow 3 x=30 \Rightarrow x=10 \mathrm{~cm}
\)
The separator will be at a distance \(10 \mathrm{~cm}\) from left end.
A vessel of volume \(V_0\) contains an ideal gas at pressure \(p_0\) and temperature \(T\). Gas is continuously pumped out of this vessel at a constant volume rate \(d V / d t=r\) keeping the temperature constant. The pressure of the gas being taken out equals the pressure inside the vessel. Find (a) the pressure of the gas as a function of time, (b) the time taken before half the original gas is pumped out.
(a) We have,
\(
\begin{aligned}
& d \frac{V}{d t}=r \\
& \Rightarrow d V=r d t
\end{aligned}
\)
Let the pressure pumped out gas \(=d p\) Volume of container \(=V_0\)
At a pump \(d V\) amount of gas has been
pumped out
\(
\begin{aligned}
& P d V=-\left(V_0\right) d P \\
& \Rightarrow \operatorname{Prdt}=-\left(V_0\right) d P \\
& \Rightarrow d \frac{p}{P}=\left(-r \frac{d t}{V_0}\right)
\end{aligned}
\)
On integration, we get
\(
P=\left(e^{-r \frac{t}{V_0}}\right)
\)
(b) Half of the gas has been pumped out, and the pressure will be half.
That is, \(1=(1 / 2) \left(e^{-r^t \frac{t}{V_0}}\right)\)
\(
\begin{aligned}
& \ln 2=r \frac{t}{V_0} \\
& t=\operatorname{In} 2 \times\left(\frac{V_0}{r}\right)
\end{aligned}
\)
One mole of an ideal gas undergoes a process
\(
p=\frac{p_0}{1+\left(V / V_0\right)^2}
\)
where \(p_0\) and \(V_0\) are constants. Find the temperature of the gas when \(V=V_0\)
Given:
\(
P=\frac{p_0}{1+\left(\frac{V}{V_0}\right)^2}
\)
Multiplying both sides by \(V\), we get
\(
\begin{aligned}
& p V=\frac{p_0 V}{1+\left(\frac{V}{V_0}\right)^2} \\
& p V=R T
\end{aligned}
\)
Now,
\(
\begin{aligned}
& R T=\frac{p_0 V}{1+\left(\frac{V}{V_0}\right)^2} \\
& T=\frac{1}{R}\left(\frac{p_0 V_0}{1+\left(\frac{V_0}{V_0}\right)^2}\right) \quad\left[V=V_0\right] \\
& \Rightarrow T=\frac{p_0 V_0}{2 R}
\end{aligned}
\)
The figure below shows a cylindrical tube of radius \(5 \mathrm{~cm}\) and length \(20 \mathrm{~cm}\). It is closed by a tight-fitting cork. The friction coefficient between the cork and the tube is 0.20. The tube contains an ideal gas at a pressure of \(1 \mathrm{~atm}\) and a temperature of \(300 \mathrm{~K}\). The tube is slowly heated and it is found that the cork pops out when the temperature reaches \(600 \mathrm{~K}\). Let \(d N\) denote the magnitude of the normal contact force exerted by a small length \(d l\) of the cork along the periphery (see the figure). Assuming that the temperature of the gas is uniform at any instant, calculate \(\frac{d N}{d l}\).
Given
\(
\begin{aligned}
& P_1=10^5 \mathrm{~Pa} \\
& A=\pi(0.05)^2 \\
& \mathrm{~L}=0.2 \mathrm{~m} \\
& V=A L=0.0016 \mathrm{~m}^3 \\
& T_1=300 \mathrm{~K} \\
& T_2=600 \mathrm{~K} \\
& \mu=0.20
\end{aligned}
\)
Applying 5 variable equation of state, we get
\(
\begin{aligned}
& \frac{P_1 V}{T_1}=\frac{P_2 V}{T_2} \\
& \Rightarrow \frac{P_1}{T_1}=\frac{P_2}{T_2} \\
& \Rightarrow P_2=\frac{T_2}{T_1} \times P_1=\frac{600}{300} \times 10^5 \\
& \Rightarrow P_2=2 \times 10^5
\end{aligned}
\)
Net pressure, \(P=P_2-P_1=2 \times 10^5-10^5=10^5\)
Total force acting on the stopper \(=P A=10^5 \times \pi \times(0.05)^2\)
Applying law of friction, we get
\(
\begin{aligned}
& F=\mu N=0.2 N \\
& \Rightarrow N=\frac{F}{\mu}=\frac{10^5 \times \pi \times(0.05)^2}{0.2} \\
& \frac{d N}{d l}=\frac{N}{2 \pi r}=\frac{10^5 \times \pi \times(0.05)^2}{0.2 \times 2 \pi \times(0.05)}=0.125 \times 10^5 \\
& \Rightarrow \frac{d N}{d l}=1.25 \times 10^4 \frac{N}{m}
\end{aligned}
\)
The figure below shows a cylindrical tube of the cross-sectional area \(A\) fitted with two frictionless pistons. The pistons are connected to each other by a metallic wire. Initially, the temperature of the gas is \(T_0\) and its pressure is \(p_0\) which equals the atmospheric pressure. (a) What is the tension in the wire? (b) What will be the tension if the temperature is increased to \(2 T_0\)?
(a)
Since pressure from outside and inside the cylinder is the same, there is no net pressure acting on the pistons. So, tension will be zero.
(b)
\(
\begin{aligned}
& T_1=T_0 \\
& T_2=2 T_0 \\
& P_1=P_0=10^5 \mathrm{~Pa} \\
& \mathrm{CSA}=\mathrm{A}
\end{aligned}
\)
Let the Pistons be \(\mathrm{L}\) distance apart .
\(
V=A L
\)
Applying five variable gas equation, we get
\(
\begin{aligned}
& \frac{P_1 V}{T_1}=\frac{P_2 V}{T_2} \\
& \Rightarrow \frac{10^5}{T_0}=\frac{P_2}{2 T_0} \\
& \Rightarrow P_2=2 \times 10^5=2 P_0
\end{aligned}
\)
Net Force acting outside \(=2 P_0-P_0=P_0\)
Force acting on a piston \(F=P_0 A\)
By the free body diagram, we get
\(
\begin{aligned}
& F-T=0 \\
& T=P_0 A
\end{aligned}
\)
Figure below shows a large closed cylindrical tank containing water. Initially the air trapped above the water surface has a height \(h_0\) and pressure \(2 p_0\) where \(p_0\) is the atmospheric pressure. There is a hole in the wall of the tank at a depth \(h_1\) below the top from which water comes out. A long vertical tube is connected as shown. (a) Find the height \(h_2\) of the water in the long tube above the top initially. (b) Find the speed with which water comes out of the hole. (c) Find the height of the water in the long tube above the top when the water stops coming out of the hole.
(a) Pressure of water above the water level of the bigger tank is given by
\(
P=\left(h_2+h_0\right) \rho g
\)
Let the atmospheric pressure above the tube be \(P_0\).
Total pressure above the tube \(=P_0+P\)
\(
=\left(h_2+h_0\right) \rho g+P_0
\)
This pressure initially is balanced by pressure above the tank \(2 P_0\).
\(
\begin{aligned}
& \Rightarrow 2 P_0=\left(h_2+h_0\right) \rho g+P_0 \\
& \Rightarrow h_2=\frac{P_0}{\rho g}-h_0
\end{aligned}
\)
(b) Velocity of the efflux out of the outlet depends upon the total pressure above the outlet.Total pressure above the outlet \(=2 P_0+\left(h_1-h_0\right) \rho g\)
Applying Bernouli’s law, we get
Let the velocity of efflux be \(v_1\) and the velocity with which the level of the tank falls be \(v_2\). pressure above the outlet is \(P_0\). Then,
\(
\frac{2 P_0+\left(h_1-h_0\right) \rho g}{\rho}+\mathrm{gz}+\frac{v_2^2}{2}=\frac{P_0}{\rho}+\mathrm{gz}+\frac{v_2^2}{2}
\)
Now, let the reference point of the liquid be the level of the outlet. Thus, \(z=0\)
\(
\Rightarrow \frac{P_0+\left(h_1-h_0\right) \rho g}{\rho}+\frac{v_2^2}{2}=\frac{v_1^2}{2}
\)
Again, the speed with which the water level of the tank goes down is very less compared to the velocity of the efflux. Thus,
\(
\begin{aligned}
& \mathrm{v}_2=0 \\
& \Rightarrow \frac{P_0+\left(h_1-h_0\right) \rho g}{\rho}=\frac{v_1^2}{2} \\
& \Rightarrow v_1=\left[\frac{2}{\rho}\left(P_0+\left(h_1-h_0\right) \rho g\right)\right]^{\frac{1}{2}}
\end{aligned}
\)
(c) Water maintains its own level, so the height of the water of the tank will be \(h_1\) when water will stop flowing
Thus the height of water in the tube below the tank height will be \(=h_1\)
Hence the height of the water above the tank height will be \(=-h_1\)
An ideal gas is kept in a long cylindrical vessel fitted with a frictionless piston of the cross-sectional area \(10 \mathrm{~cm}^2\) and weight \(1 \mathrm{~kg}\) (figure below). The vessel itself is kept in a big chamber containing air at atmospheric pressure \(100 \mathrm{kPa}\). The length of the gas column is \(20 \mathrm{~cm}\). If the chamber is now completely evacuated by an exhaust pump, what will be the length of the gas column? Assume the temperature to remain constant throughout the process.
Atmospheric pressure inside the cylinderical vessel, \(P_0=10^5 \mathrm{~Pa}\)
\(
A=10 \mathrm{~cm}^2=10 \times 10^{-4} \mathrm{~m}^2
\)
Pressure due to the weight of the piston \(=\frac{m g}{A}=\frac{1 \times 9.8}{10 \times 10^{-4}}\)
\(
\begin{aligned}
& P_1=10^5+9.8 \times 10^3 \\
& V_1=0.2 \times 10 \times 10^{-4}=2 \times 10^{-4}
\end{aligned}
\)
After evacution, external pressure above the piston \(=0\)
\(
P_2=0+9.8 \times 10^3
\)
Now,
\(
P_1 V_1=P_2 V_2
\)
Let \(\mathrm{L}\) be the final length of the gas column. Then,
\(
\begin{aligned}
& V_2=10 \times 10^{-4} L \\
& \Rightarrow\left(10^5+9.8 \times 10^3\right) \times 0.2 \times 10 \times 10^{-4}=9.8 \times 10^3 \times 10 \times 10^{-4} \mathrm{~L} \\
& L=2.2 \mathrm{~m}
\end{aligned}
\)
An ideal gas is kept in a long cylindrical vessel fitted with a frictionless piston of the cross-sectional area \(10 \mathrm{~cm}^2\) and weight \(1 \mathrm{~kg}\). The length of the gas column in the vessel is \(20 \mathrm{~cm}\). The atmospheric pressure is \(100 \mathrm{kPa}\). The vessel is now taken into a spaceship revolving round the earth as a satellite. The air pressure in the spaceship is maintained at \(100 \mathrm{kPa}\). Find the length of the gas column in the cylinder. \(\text { Use } R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\)
\(
\begin{aligned}
& P_1 V_1=P_2 V_2 \\
& \Rightarrow\left(\frac{\mathrm{mg}}{\mathrm{A}}+\mathrm{P}_0\right) \mathrm{A}l=\mathrm{P}_0 \mathrm{A}l^{\prime} \\
& \Rightarrow\left(\frac{1 \times 98}{10 \times 10^{-4}}+10^5\right) 0.2=10^5 l^{\prime} \\
& \Rightarrow\left(9.8 \times 10^3+10^5\right) \times 0.2=10^5 l^{\prime} \\
& =109.8 \times 10^3 \times 0.2=10^5 l^{\prime} \\
& \Rightarrow l^{\prime}=\frac{109.8 \times 0.2}{10^2} \\
& =0.2196 \mathrm{~m}=0.22 \mathrm{~m} \approx 22 \mathrm{~cm}
\end{aligned}
\)
Two glass bulbs of equal volume are connected by a narrow tube and are filled with a gas at \(0^{\circ} \mathrm{C}\) at a pressure of \(76 \mathrm{~cm}\) of mercury. One of the bulbs is then placed in melting ice and the other is placed in a water bath maintained at \(62^{\circ} \mathrm{C}\). What is the new value of the pressure inside the bulbs? The volume of the connecting tube is negligible.
Given,
\(
\begin{aligned}
& P_1=0.76 \mathrm{~m} \mathrm{Hg} \\
& P_2=P \\
& T_1=273 K \\
& T_2=335 K
\end{aligned}
\)
Let each of the bulbs have \(n_1\) moles initially .
Let the number of moles left in second bulb after its pressure reached \(\mathrm{P}\) be \(\mathrm{n}_2\).
Applying equation of state, we get
\(
\begin{aligned}
& \frac{P_1 V}{n_1 T_1}=\frac{P V}{n_2 T_2} \\
& \Rightarrow \frac{0.76}{273 n_1}=\frac{P}{335 n_2} \\
& \Rightarrow n_2=\frac{273 P}{335 \times 0.76} n_1
\end{aligned}
\)
Number of moles left in the second bulb after the temperature rose \(=n_1-n_2\)
\(
=n_1-\frac{273 P}{335 \times 0.76} n_1
\)
Let \(n_3\) moles be left when pressure reached \(P\). Applying equation of state in the first bulb, we get
\(
\begin{aligned}
& \frac{P_1 V}{n_1 T_1}=\frac{P V}{n_3 T_1} \\
& \Rightarrow \frac{0.76}{n_1}=\frac{P}{n_3} \\
& \Rightarrow n_3=\frac{P n_1}{0.76}
\end{aligned}
\)
\(\mathrm{n}_3=\) its own \(n_1\) moles + the it received from the first
\(
\begin{aligned}
& \mathrm{n}_3=n_1+\left(n_1-n_2\right) \\
& \Rightarrow \frac{P n_1}{0.76}=\mathrm{n}_1+n_1-\frac{273 P}{335 \times 0.76} n_1 \\
& \Rightarrow \frac{P}{0.76}=2-\frac{273 P}{335 \times 0.76} \\
& \Rightarrow \mathrm{P}=0.8375 \\
& \Rightarrow \mathrm{P}=84 \mathrm{~cm} \text { of } \mathrm{Hg}
\end{aligned}
\)
Weather report reads, “Temperature \(20^{\circ} \mathrm{C}\) : Relative humidity \(100 \%\) “. What is the dew point?
Relative humidity \(=100 \%\)
\(
\mathrm{RH}=\frac{\text { Vapour pressure of air }}{\mathrm{SVP} \text { at the same temperature }}=1
\)
\(\Rightarrow\) Vapour pressure of air \(=\) SVP at the same temperature
So, the air is saturated at \(20^{\circ} \mathrm{C}\). So, the dew point is \(20^{\circ} \mathrm{C}\).
The condition of air in a closed room is described as follows. Temperature \(=25^{\circ} \mathrm{C}\), relative humidity \(=60 \%\), pressure \(=104 \mathrm{kPa}\). If all the water vapour is removed from the room without changing the temperature, what will be the new pressure? The saturation vapour pressure at \(25^{\circ} \mathrm{C}=3.2 \mathrm{kPa}\).
\(
\begin{aligned}
& \mathrm{T}=298 \mathrm{~K} \\
& \mathrm{RH}=60 \% \\
& \mathrm{P}=1.04 \times 10^5 \mathrm{~Pa} \\
& \mathrm{RH}=\frac{\text { Vapour pressure of water vapour }}{\text { saturated Vapour pressure }} \\
& =0.6 \\
& \text { Saturated vapour pressure }=3.2 \times 10^3 \mathrm{~Pa} \\
& \Rightarrow \text { vapour pressure of water vapour }(\mathrm{VP})=0.6 \times 3.2 \times 10^3=1.92 \times 10^3 \mathrm{~Pa} \\
& \text { If the water vapour is completely removed from the air , then net pressure }=1.04 \times 10^5-1.92 \times 10^3 \\
& =1.02 \times 10^5 \mathrm{~Pa} \\
& =102 \mathrm{kPa}
\end{aligned}
\)
The temperature and the dew point in an open room are \(20^{\circ} \mathrm{C}\) and \(10^{\circ} \mathrm{C}\). If the room temperature drops to \(15^{\circ} \mathrm{C}\), what will be the new dew point?
Temperature \(=20^{\circ} \mathrm{C}\)
Dew Point \(=10^{\circ} \mathrm{C}\)
Air becomes saturated at \(10^{\circ} \mathrm{C}\). But if the room temperature is lowered to \(15^{\circ} \mathrm{C}\), the Dew point will still be at \(10^{\circ} \mathrm{C}\).
Pure water vapour is trapped in a vessel of volume \(10 \mathrm{~cm}^3\). The relative humidity is \(40 \%\). The vapour is compressed slowly and isothermally. Find the volume of the vapour at which it will start condensing.
\(
\begin{aligned}
& \mathrm{RH}=40 \% \\
& V_1=10 \times 10^{-6} \mathrm{~m}^3 \\
& \mathrm{RH}=\frac{\mathrm{VP}}{\mathrm{SVP}}=0.4 \\
& \text { Let SVP }=P_0 \\
& \text { condensation occurs when } \mathrm{VP}=P_0 \\
& \Rightarrow P_1=0.4 P_0 \\
& \Rightarrow P_2=P_0
\end{aligned}
\)
Since the process is isothermal, applying Boyle’s law we get
\(
\begin{aligned}
& P_1 V_1=P_2 V_2 \\
& \Rightarrow V_2=\frac{P_1 V_1}{P_2} \\
& \Rightarrow V_2=\frac{0.4 P_0 \times 10 \times 10^{-6}}{P_0} \\
& \Rightarrow V_2=4.0 \times 10^{-6} \\
& \Rightarrow V_2=4.0 \mathrm{~cm}^3
\end{aligned}
\)
Thus water vapour condenses at volume \(4.0 \mathrm{~cm}^3\)
A barometer tube is \(80 \mathrm{~cm}\) long (above the mercury reservoir). It reads \(76 \mathrm{~cm}\) on a particular day. A small amount of water is introduced in the tube and the reading drops to \(75.4 \mathrm{~cm}\). Find the relative humidity in the space above the mercury column if the saturation vapour pressure at the room temperature is \(1.0 \mathrm{~cm}\).
Atmospheric pressure, \(\mathrm{P}=0.76 \mathrm{~m} \mathrm{Hg}\)
pressure due to water vapour inside, \(\mathrm{P}^{\prime}=0.754 \mathrm{mHg}\)
Vapour pressure \(=P-P^{\prime}=0.76-0.754=0.006 \mathrm{mHg}\)
\(\mathrm{SVH}=0.01 \mathrm{mHg}\)
\(\mathrm{RH}=\frac{\text { Vapour pressure }}{\mathrm{SVH}} \times 100 \%\)
\(=\frac{0.006}{0.01} \times 100 \%=60 \%\)
A glass contains some water at room temperature \(20^{\circ} \mathrm{C}\). Refrigerated water is added to it slowly. When the temperature of the glass reaches \(10^{\circ} \mathrm{C}\), small droplets condense on the outer surface. Calculate the relative humidity in the room. The boiling point of water at a pressure of \(17.5 \mathrm{~mm}\) of mercury is \(20^{\circ} \mathrm{C}\) and at \(8.9 \mathrm{~mm}\) of mercury it is \(10^{\circ} \mathrm{C}\).
Dew point \(=10^{\circ} \mathrm{C} \quad\left[\because\right.\) Dew appears at \(\left.10^{\circ} \mathrm{C}\right]\)
At boiling point, SVP equals atmospheric pressure.
At \(20^{\circ} \mathrm{C}, \mathrm{SVP}=17.5 \mathrm{mmHg}\)
At dew point, \(\mathrm{SVP}=8.9 \mathrm{mmHg}\)
\(
\begin{aligned}
& \text { RH }=\frac{\text { SVP at dew point }}{\text { SVP at air temperature }} \times 100 \% \\
& =\frac{8.9}{17.5} \times 100 \% \\
& =51 \%
\end{aligned}
\)
\(50 \mathrm{~m}^3\) of saturated vapour is cooled down from \(30^{\circ} \mathrm{C}\) to \(20^{\circ} \mathrm{C}\). Find the mass of the water condensed. The absolute humidity of saturated water vapour is \(30 \mathrm{~g} \mathrm{~m}^{-3}\) at \(30^{\circ} \mathrm{C}\) and \(16 \mathrm{~g} \mathrm{~m}^{-3}\) at \(20^{\circ} \mathrm{C}\).
We Know that \(1 \mathrm{~m}^3\) of air contains \(30 \mathrm{~g}\) of water vapour at \(30^{\circ} \mathrm{C}\).
So, amount of water vapour in \(50 \mathrm{~m}^3\) of air at \(30^{\circ} \mathrm{C}=(30 \times 50) \mathrm{g}=1500 \mathrm{~g}\)
Also, \(1 \mathrm{~m}^3\) of air contains \(16 \mathrm{~g}\) of water vapour at \(20^{\circ} \mathrm{C}\).
Amount of water vapour in \(50 \mathrm{~m}^3\) of air at \(20^{\circ} \mathrm{C} .=(16 \times 50) \mathrm{g}=800 \mathrm{~g}\)
Amount of water vapour condensed \(=(1500-800) \mathrm{g}=700 \mathrm{~g}\)
A barometer correctly reads the atmospheric pressure as \(76 \mathrm{~cm}\) of mercury. Water droplets are slowly introduced into the barometer tube by a dropper. The height of the mercury column first decreases and then becomes constant. If the saturation vapour pressure at the atmospheric temperature is \(0.80 \mathrm{~cm}\) of mercury, find the height of the mercury column when it reaches its minimum value.
Atmospheric pressure \(=76 \mathrm{~cm} \mathrm{Hg}\)
\(\mathrm{SVP}=0.80 \mathrm{~cm} \mathrm{Hg}\)
When water is introduced into the barometer, water evaporates.
Thus, it exerts its vapour pressure over the mercury meniscus.
As more and more water evaporates, the vapour pressure increases that forces down the mercury level further.
Finally, when the volume is saturated with the vapour at the atmospheric temperature, the highest vapour pressure, i.e. SVP is observed and the fall of mercury level reaches its minimum. Thus,
Net pressure acting on the column \(=76-0.80 \mathrm{cmHg}\)
Net length of \(\mathrm{Hg}\) column at SVG \(=75.2 \mathrm{~cm}\)
\(50 \mathrm{cc}\) of oxygen is collected in an inverted gas jar over water. The atmospheric pressure is \(99.4 \mathrm{kPa}\) and the room temperature is \(27^{\circ} \mathrm{C}\). The water level in the jar is same as the level outside. The saturation vapour pressure at \(27^{\circ} \mathrm{C}\) is \(3.4 \mathrm{kPa}\). Calculate the number of moles of oxygen collected in the jar.
Atmospheric pressure, \(\mathrm{P}_0=99.4 \times 10^3 \mathrm{~Pa}\)
SVP at \(27^{\circ} C, \mathrm{P}_\omega=3.4 \times 10^3 \mathrm{~Pa}\)
\(\mathrm{T}=300 \mathrm{~K}\)
\(V=50 \times 10^{-6} \mathrm{~m}^3\)
Now, Pressure inside the jar = Pressure outside the jar
\([\because\) Level of water is same inside and outside of the jar]
Pressure outside the jar \(=\) Atmospheric pressure
Pressure inside the jar \(=\) VP of oxygen + SVP of water at \(27^{\circ} \mathrm{C}\)
\(
\begin{aligned}
& \Rightarrow P_0=P+P_\omega \\
& \Rightarrow P=P_0-P_\omega=99.4 \times 10^3-3.4 \times 10^3=96 \times 10^3
\end{aligned}
\)
Applying equation of state, we get
\(
\begin{aligned}
& P V=n R T \\
& \Rightarrow 96 \times 10^3 \times 50 \times 10^{-6}=n \times 8.3 \times 300 \\
& \Rightarrow n=1.9277 \times 10^{-3} \mathrm{~mol} \approx 1.93 \times 10^{-3} \mathrm{~mol}
\end{aligned}
\)
A faulty barometer contains certain amount of air and saturated water vapour. It reads \(74 \cdot 0 \mathrm{~cm}\) when the atmospheric pressure is \(76.0 \mathrm{~cm}\) of mercury and reads \(72.10 \mathrm{~cm}\) when the atmospheric pressure is \(74.0 \mathrm{~cm}\) of mercury. Saturation vapour pressure at the air temperature \(=1.0 \mathrm{~cm}\) of mercury. Find the length of the barometer tube above the mercury level in the reservoir.
Let the barometer has a length \(=x\)
Height of air above the air mercury column
\(
=(X-74+1)=(X-73)
\)
Pressure of air \(=(76-74-1=1 \mathrm{~cm})\)
for 2 nd case, height of air above
\(
\Rightarrow(X-72.1+1)=(X-71.1)
\)
pressure of air \(=(74-72.1-1)=0.90\)
\(
\begin{aligned}
& (X-73)(1)=\frac{9}{10}(X-71.1) \\
& \Rightarrow 10(X-73)=9(X-71.1) \\
& \Rightarrow X=10 \times 73-9(71.1) \\
& =730-639.9 \\
& X=90.1
\end{aligned}
\)
Height of air \(=90.1\)
Height of barometer tube above the
mercury column
\(
=90.1+1=91.1 \mathrm{~mm} \text {. }
\)
On a winter day, the outside temperature is \(0^{\circ} \mathrm{C}\) and relative humidity \(40 \%\). The air from outside comes into a room and is heated to \(20^{\circ} \mathrm{C}\). What is the relative humidity in the room? The saturation vapour pressure at \(0^{\circ} \mathrm{C}\) is \(4.6 \mathrm{~mm}\) of mercury and at \(20^{\circ} \mathrm{C}\) it is \(18 \mathrm{~mm}\) of mercury.
Relative humidity \(=40 \%\)
SVP \(=4.6 \mathrm{~mm}\) of \(\mathrm{Hg}\)
\(
\begin{array}{ll}
0.4=\frac{V P}{4.6} & \Rightarrow V P=0.4 \times 4.6=1.84 \\
\frac{P_1 V}{T_1}=\frac{P_2 V}{T_2} & \Rightarrow \frac{1.84}{273}=\frac{P_2}{293} \Rightarrow P_2=\frac{1.84}{273} \times 293
\end{array}
\)
Relative humidity at \(20^{\circ} \mathrm{C}\)
\(
=\frac{V P}{S V P}=\frac{1.84 \times 293}{273 \times 10}=0.109=10.9 \%
\)
The temperature and humidity of air are \(27^{\circ} \mathrm{C}\) and \(50 \%\) on a particular day. Calculate the amount of vapour that should be added to 1 cubic metre of air to saturate it. The saturation vapour pressure at \(27^{\circ} \mathrm{C}=3600 \mathrm{~Pa}\).
\(
\begin{aligned}
& \mathrm{V}=1 \mathrm{~m}^3 \\
& \mathrm{M}=18 \text { g for water } \\
& R H=50 \% \\
& \Rightarrow \frac{V P}{S V P}=0.5 \\
& \Rightarrow V P=0.5 \times 3600=1800
\end{aligned}
\)
Let \(\mathrm{m}_1\) be the mass of water present in the \(50 \%\) humid air.
\(
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \Rightarrow P V=\frac{m_1}{M} R T \\
& \Rightarrow 1800=\frac{m_1}{18} \times 8.3 \times 300 \\
& \Rightarrow m_1=13 g
\end{aligned}
\)
Required pressure for saturation \(=3600 \mathrm{~Pa}\)
Let \(\mathrm{m}_2\) be the amount of water required for saturation.
\(
\begin{aligned}
& \Rightarrow 3600=\frac{m_2}{M} R T \\
& \Rightarrow m_2=\frac{3600 \times 18}{8.3 \times 300}=26 \mathrm{~g}
\end{aligned}
\)
Total excess water vapour that has to be added \(=\mathrm{m}_2-m_1\) \(=36-13=13 g\)
The temperature and relative humidity in a room are \(300 \mathrm{~K}\) and \(20 \%\) respectively. The volume of the room is \(50 \mathrm{~m}^3\). The saturation vapour pressure at \(300 \mathrm{~K}\) is \(3.3 \mathrm{kPa}\). Calculate the mass of the water vapour present in the room.
\(
\begin{aligned}
& \mathrm{T}=300 \mathrm{~K} \\
& \mathrm{SVP}=3300 \mathrm{~Pa} \text { at } 300 \mathrm{~K} \\
& \mathrm{RH}=20 \% \\
& \Rightarrow \frac{P}{S V P}=0.2 \\
& \Rightarrow P=0.2 \times S V P=0.2 \times 3300=660 \\
& \mathrm{~V}=50 \mathrm{~m}^3 \\
& \mathrm{M}=18 \mathrm{~g}
\end{aligned}
\)
Now ,
\(
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \Rightarrow P V=\frac{m}{M} R T \\
& \Rightarrow 660 \times 50=\frac{m}{18} \times 8.3 \times 300 \\
& \Rightarrow \mathrm{m}=238.55 \mathrm{~g} \approx 238 \mathrm{~g}
\end{aligned}
\)
The temperature and the relative humidity are \(300 \mathrm{~K}\) and \(20 \%\) in a room of volume \(50 \mathrm{~m}^3\). The floor is washed with water, \(500 \mathrm{~g}\) of water sticking on the floor. Assuming no communication with the surrounding, find the relative humidity when the floor dries. The changes in temperature and pressure may be neglected. Saturation vapour pressure at \(300 \mathrm{~K}=3.3 \mathrm{kPa}\).
\(
\begin{aligned}
& \mathrm{M}=18 \mathrm{~g} \text { for water } \\
& \mathrm{m}=500 \mathrm{~g} \\
& \mathrm{~V}=50 \mathrm{~m}^3 \\
& \mathrm{~T}=300 \mathrm{~K} \\
& \mathrm{SVP}=3300 \mathrm{~Pa} \\
& \mathrm{RH}=20 \% \\
& \frac{V P}{S V P}=0.2 \\
& \Rightarrow \mathrm{VP}=P_1=0.2 \times 3300=660 \mathrm{~Pa}
\end{aligned}
\)
Partial pressure \(P_2\) For evaporated water is given by
\(
\begin{aligned}
& P_2 V=\frac{m}{M} R T \\
& \Rightarrow P_2=\frac{500}{18 \times 50} \times 8.31 \times 300 \\
& \Rightarrow P_2=1385 \mathrm{~Pa} \\
& \text { Total pressure }, P=P_1+P_2=1385+660=2045 \mathrm{~Pa} \\
& \mathrm{RH}=\frac{P}{S V P} \times 100=\frac{2045}{3300} \times 100 \%=61.9 \approx 62 \%
\end{aligned}
\)
A bucket full of water is placed in a room at \(15^{\circ} \mathrm{C}\) with initial relative humidity \(40 \%\). The volume of the room is \(50 \mathrm{~m}^3\). (a) How much water will evaporate? (b) If the room temperature is increased by \(5^{\circ} \mathrm{C}\), how much more water will evaporate? The saturation vapour pressure of water at \(15^{\circ} \mathrm{C}\) and \(20^{\circ} \mathrm{C}\) are \(1.6 \mathrm{kPa}\) and \(2.4 \mathrm{kPa}\) respectively.
(a) Relative humidity is given by
\(
\begin{gathered}
\frac{V P}{\text { SVP at } 15^{\circ} \mathrm{C}} \\
\Rightarrow 0.4=\frac{V P}{1.6 \times 10^3} \\
\Rightarrow V P=0.4 \times 1.6 \times 10^3
\end{gathered}
\)
Evaporation occurs as long as the atmosphere is not saturated.
Net pressure change \(=1.6 \times 10^3-0.4 \times 1.6 \times 10^3\)
\(
\begin{aligned}
& =(1.6-0.4 \times 1.6) 10^3 \\
& =0.96 \times 10^3
\end{aligned}
\)
Let the mass of water evaporated be \(m\). Then,
\(
\begin{aligned}
& \Rightarrow 0.96 \times 10^3 \times 50=\frac{m \times 8.3 \times 288}{18} \\
& \Rightarrow m=\frac{0.96 \times 50 \times 18 \times 10^3}{8.3 \times 288} \\
& =361.45 \approx 361 \mathrm{~g}
\end{aligned}
\)
(b) At \(20^{\circ} \mathrm{C}, \mathrm{SVP}=2.4 \mathrm{KPa}\)
At \(15^{\circ} \mathrm{C}, \mathrm{SVP}=1.6 \mathrm{KPa}\)
Net pressure change \(=(2.4-1.6) \times 10^3 \mathrm{~Pa}\)
\(
=0.8 \times 10^3 \mathrm{~Pa}
\)
Mass of water evaporated is given by
\(
\begin{aligned}
& m=\frac{m^{\prime} \times 8.3 \times 293}{18} \\
& \Rightarrow m^{\prime}=\frac{0.8 \times 50 \times 18 \times 10^3}{8.3 \times 293} \\
& =296.06 \approx 296 \mathrm{~g}
\end{aligned}
\)
You cannot copy content of this page