0 of 80 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 80 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
The triple points of neon and carbon dioxide are \(24.57 \mathrm{~K}\) and \(216.55 \mathrm{~K}\) respectively. Express these temperatures on the Celsius and Fahrenheit scales.
Kelvin and Celsius scales are related as:
\(
T_{\mathrm{C}}=T_{\mathrm{K}}-273.15 \ldots \text { (i) }
\)
Celsius and Fahrenheit scales are related as:
\(
T_F=\frac{9}{5} T_c+32 \ldots \text { (ii) }
\)
For neon:
\(
\begin{aligned}
& T_{\mathrm{K}}=24.57 \mathrm{~K} \\
& \therefore T_{\mathrm{C}}=24.57-273.15=-248.58^{\circ} \mathrm{C} \\
& T_F=\frac{9}{5} T_c+32 \\
& \frac{9}{5}(-248.58)+32 \\
& =-415.44^{\circ} \mathrm{F}
\end{aligned}
\)
For carbon dioxide:
\(
\begin{aligned}
& T_{\mathrm{K}}=216.55 \mathrm{~K} \\
& \therefore T_{\mathrm{C}}=216.55-273.15=-56.60^{\circ} \mathrm{C} \\
& T_F=\frac{9}{5}\left(T_c\right)+32 \\
& =\frac{9}{5}(-56.60)+32 \\
& =-69.88^{\circ} \mathrm{C}
\end{aligned}
\)
Two absolute scales \(A\) and \(B\) have triple points of water defined to be \(200 \mathrm{~A}\) and 350 B. What is the relation between \(T_{\mathrm{A}}\) and \(T_{\mathrm{B}}\)?
Triple point of water on absolute scale A, \(T_1=200 \mathrm{~A}\)
Triple point of water on absolute scale \(\mathrm{B}, T_2=350 \mathrm{~B}\)
Triple point of water on Kelvin scale, \(T_K=273.15 \mathrm{~K}\)
The temperature \(273.15 \mathrm{~K}\) on Kelvin scale is equivalent to \(200 \mathrm{~A}\) on absolute scale A.
\(
\begin{aligned}
& T_1=T_K \\
& 200 \mathrm{~A}=273.15 \mathrm{~K} \\
& \therefore A=\frac{273.15}{200}
\end{aligned}
\)
The temperature \(273.15 \mathrm{~K}\) on Kelvin scale is equivalent to \(350 \mathrm{~B}\) on absolute scale B.
\(
\begin{aligned}
& T_2=T_K \\
& 350 \mathrm{~B}=273.15 \\
& \therefore B=\frac{273.15}{350}
\end{aligned}
\)
\(T_{\mathrm{A}}\) is triple point of water on scale A.
\(T_{\mathrm{B}}\) is triple point of water on scale B.
\(
\begin{aligned}
& \therefore=\frac{273.15}{200} \times T_A=\frac{273.15}{350} \times T_B \\
& T_A=\frac{200}{350} T_B
\end{aligned}
\)
Therefore, the ratio \(T_A: T_B\) is given as 4: 7 .
The electrical resistance in ohms of a certain thermometer varies with temperature according to the approximate law :
\(
R=R_o\left[1+\alpha\left(T-T_o\right)\right]
\)
The resistance is \(101.6 \Omega\) at the triple-point of water \(273.16 \mathrm{~K}\), and \(165.5 \Omega\) at the normal melting point of lead \((600.5 \mathrm{~K})\). What is the temperature when the resistance is \(123.4 \Omega\)?
Here, \(R_0=101.6 \Omega ; T_0=273.16 \mathrm{~K}\) Case (i) \(R_1=165.5 \Omega ; T_1=600.5 \mathrm{~K}\), Case (ii) \(R_2=123.4, T_2=\) ?
Using the relation \(R=R_0\left[1+\alpha\left(T-T_0\right)\right]\)
Case (i) \(165.5=101.6[1+\alpha(600.5-273.16)]\)
\(
\begin{aligned}
& \alpha=\frac{165.5-101.6}{101.6 \times(600.5-273.16)}=\frac{63.9}{101.6 \times 327 \times 37} \\
& \text { Case II } 123.4=101.6\left[1+\alpha\left(T_2-273.16\right)\right] \\
& \text { or } 123.4=101.6\left[1+\frac{63.9}{101.6 \times 327.34}\left(T_2-273.16\right)\right] \\
& =101.6+\frac{63.9}{327.37}\left(T_2-273.16\right) \\
& \text { or } T_2=\frac{(123.4-101.6) \times 327.34}{63.9}+273.16=111.67+273.16 \\
& =384.83 \mathrm{~K}
\end{aligned}
\)
There were two fixed points in the original Celsius scale as mentioned above which were assigned the number \(0^{\circ} \mathrm{C}\) and \(100^{\circ} \mathrm{C}\) respectively. On the absolute scale, one of the fixed points is the triple-point of water, which on the Kelvin absolute scale is assigned the number \(273.16 \mathrm{~K}\). What is the other fixed point on this (Kelvin) scale?
What is the temperature of the triple-point of water on an absolute scale whose unit interval size is equal to that of the Fahrenheit scale?
Let \(T_F\) be the temperature on Fahrenheit scale and \(T_K\) be the temperature on absolute scale. Both the temperatures can be related as:
\(
\frac{T_F-32}{180}=\frac{T_K-273.15}{100} \dots(i)
\)
Let \(T_{F 1}\) be the temperature on Fahrenheit scale and \(T_{K 1}\) be the temperature on absolute scale. Both the temperatures can be related as:
\(
\frac{T_{F 1}-32}{180}=\frac{T_{K 1}-273.15}{100} \dots(ii)
\)
It is given that:
\(
T_{K 1}-T_K=1 K
\)
Subtracting equation (i) from equation (ii), we get:
\(
\begin{aligned}
& \frac{T_{F 1}-T_F}{180}=\frac{T_{K 1}-T_K}{100}=\frac{1}{100} \\
& T_{F 1}-T_F=\frac{1 \times 180}{100}=\frac{9}{5}
\end{aligned}
\)
Triple point of water \(=273.16 \mathrm{~K}\)
\(\therefore\) Triple point of water on absolute scale \(=273.16 \times \frac{9}{5}=491.69\)
Two ideal gas thermometers \(A\) and \(B\) use oxygen and hydrogen respectively. The following observations are made:
\(
\begin{array}{|l|l|l|}
\hline \text { Temperature } & \text { Pressure thermometer A } & \text { Pressure thermometer B } \\
\hline \text { Triple-point of water } & 1.250 \times 10^5 \mathrm{pa} & 0.200 \times 10^6 \mathrm{pa} \\
\hline \text { Normal melting point of sulphur } & 1.797 \times 10^5 \mathrm{pa} & 0.287 \times 10^5 \mathrm{pa} \\
\hline
\end{array}
\)
What is the absolute temperature of normal melting point of sulphur as read by thermometers \(A\) and \(B\)?
Triple point of water, \(T=273.16 \mathrm{~K}\).
At this temperature, pressure in thermometer A, \(P_A=\mathbf{1 . 2 5 0} \times \mathbf{1 0}{ }^5 \mathrm{~Pa}\)
Let \(T_1\) be the normal melting point of sulphur.
At this temperature, pressure in thermometer \(\mathrm{A}, P_B=1.797 \times 10^5 \mathrm{~Pa}\)
According to Charles’ law, we have the relation:
\(
\begin{aligned}
& \frac{P_A}{T}=\frac{P_1}{T_1} \\
& \therefore T_1=\frac{P_1 T}{P_A}=\frac{1.797 \times 10^5 \times 273.16}{1.250 \times 10^5} \\
& =392.69 \mathrm{~K}
\end{aligned}
\)
Therefore, the absolute temperature of the normal melting point of sulphur as read by thermometer A is \(392.69 \mathrm{~K}\).
At triple point \(273.16 \mathrm{~K}\), the pressure in thermometer \(\mathrm{B}, P_B=0.200 \times 10^5 \mathrm{~Pa}\)
At temperature \(T_1\), the pressure in thermometer \(\mathrm{B}, P_2=0.287 \times 10^5 \mathrm{~Pa}\)
According to Charles’ law, we can write the relation:
\(
\begin{aligned}
& \frac{P_B}{T}=\frac{P_1}{T_1} \\
& \frac{0.200 \times 10^5}{273.16}=\frac{0.287 \times 10^5}{T_1} \\
& \therefore T_1=\frac{0.287 \times 10^5}{0.200 \times 10^5} \times 273.16=391.98 \mathrm{~K}
\end{aligned}
\)
Therefore, the absolute temperature of the normal melting point of sulphur as read by
thermometer B is 391.98 K.
A steel tape \(1 \mathrm{~m}\) long is correctly calibrated for a temperature of \(27.0^{\circ} \mathrm{C}\). The length of a steel rod measured by this tape is found to be \(63.0 \mathrm{~cm}\) on a hot day when the temperature is \(45.0^{\circ} \mathrm{C}\). What is the actual length of the steel rod on that day ? What is the length of the same steel rod on a day when the temperature is \(27.0^{\circ} \mathrm{C} ?\) Coefficient of linear expansion of steel \(=1.20 \times 10^{-5} \mathrm{~K}^{-1}\).
Length of the steel tape at temperature \(T=27^{\circ} \mathrm{C}, l=1 \mathrm{~m}=100 \mathrm{~cm}\)
At temperature \(T_1=45^{\circ} \mathrm{C}\), the length of the steel rod, \(l_1=63 \mathrm{~cm}\)
Coefficient of linear expansion of steel, \(\alpha=1.20 \times 10^{-5} \mathrm{~K}^{-1}\)
Let \(l_2\) be the actual length of the steel rod and \(l^{\prime}\) be the length of the steel tape at \(45^{\circ} \mathrm{C}\).
\(
\begin{aligned}
& l^{\prime}=l+a l\left(T_1-T\right) \\
& \therefore l^{\prime}=100+1.20 \times 10^{-5} \times 100(45-27) \\
& =100.0216 \mathrm{~cm}
\end{aligned}
\)
Hence, the actual length of the steel rod measured by the steel tape at \(45^{\circ} \mathrm{C}\) can be calculated as:
\(
l_2=\frac{100.0216}{100} \times 63=63.0136 \mathrm{~cm}
\)
Therefore, the actual length of the rod at \(45.0^{\circ} \mathrm{C}\) is \(63.0136 \mathrm{~cm}\). Its length at \(27.0^{\circ} \mathrm{C}\) is \(63.0 \mathrm{~cm}\).
A large steel wheel is to be fitted on to a shaft of the same material. At \(27^{\circ} \mathrm{C}\), the outer diameter of the shaft is \(8.70 \mathrm{~cm}\) and the diameter of the central hole in the wheel is \(8.69 \mathrm{~cm}\). The shaft is cooled using ‘dry ice’. At what temperature of the shaft does the wheel slip on the shaft? Assume coefficient of linear expansion of the steel to be constant over the required temperature range :
\(
\alpha_{\text {steel }}=1.20 \times 10^{-5} \mathrm{~K}^{-1} \text {. }
\)
The given temperature, \(T=27^{\circ} \mathrm{C}\) can be written in Kelvin as: \(27+273=300 \mathrm{~K}\)
The outer diameter of the steel shaft at \(T, d_1=8.70 \mathrm{~cm}\)
Diameter of the central hole in the wheel at \(T, d_2=8.69 \mathrm{~cm}\)
Coefficient of linear expansion of steel, \(\boldsymbol{\alpha}_{\text {steel }}=1.20 \times 10^{-5} \mathrm{~K}^{-1}\)
After the shaft is cooled using ‘dry ice’, its temperature becomes \(T_1\).
The wheel will slip on the shaft, if the change in diameter, \(\Delta d=8.69-8.70\) \(=-0.01 \mathrm{~cm}\)
Temperature \(T_1\), can be calculated from the relation:
\(
\begin{aligned}
& \Delta d=d_1 \boldsymbol{\alpha}_{\text {steel }}\left(T_1-T\right) \\
& 0.01=8.70 \times 1.20 \times 10^{-5}\left(T_1-300\right) \\
& \left(T_1-300\right)=95.78 \\
& \therefore T_1=204.21 \mathrm{~K} \\
& =204.21-273.16 \\
& =-68.95^{\circ} \mathrm{C}
\end{aligned}
\)
Therefore, the wheel will slip on the shaft when the temperature of the shaft is \(-69^{\circ} \mathrm{C}\).
A hole is drilled in a copper sheet. The diameter of the hole is \(4.24 \mathrm{~cm}\) at \(27.0^{\circ} \mathrm{C}\). What is the change in the diameter of the hole when the sheet is heated to \(227^{\circ} \mathrm{C}\)? Coefficient of linear expansion of copper \(=1.70 \times 10^{-5} \mathrm{~K}^{-1}\).
Initial temperature, \(T_1=27.0^{\circ} \mathrm{C}\)
Diameter of the hole at \(T_1, d_1=4.24 \mathrm{~cm}\)
Final temperature, \(T_2=227^{\circ} \mathrm{C}\)
Diameter of the hole at \(T_2=d_2\)
Co-efficient of linear expansion of copper, \(\alpha_{C u}=1.70 \times 10^{-5} \mathrm{~K}^{-1}\)
For co-efficient of superficial expansion \(\beta\), and change in temperature \(\Delta T\), we have the relation:
\(\frac{\text { Change in area }(\triangle A)}{\text { Original area }(A)}=\beta_{\Delta T}\)
\(\frac{\left(\pi \frac{d_2^2}{4}-\pi \frac{d_1^2}{4}\right)}{\left(\pi \frac{d_1^2}{4}\right)}=\frac{\Delta A}{A}\)
\(\therefore \frac{\Delta A}{A}=\frac{d_2^2-d_1^2}{d_1^2}\)
But \(\beta=2 a\)
\(
\begin{aligned}
& \therefore \frac{d_2^2-d_1^2}{d_1^2}=2 a \Delta T \\
& \frac{d_2^2}{d_1^2}-1=2 a\left(T_2-T_1\right) \\
& \frac{d_2^2}{d(4.24)^2}=2 \times 1.7 \times 10^{-5}(227-27)+1 \\
& d_2^2=17.98 \times 1.0068=18.1 \\
& \therefore d_2=4.2544 \mathrm{~cm}
\end{aligned}
\)
Change in diameter \(=d_2-d_1=4.2544-4.24=0.0144 \mathrm{~cm}\)
Hence, the diameter increases by \(1.44 \times 10^{-2} \mathrm{~cm}\).
A brass wire \(1.8 \mathrm{~m}\) long at \(27^{\circ} \mathrm{C}\) is held taut with little tension between two rigid supports. If the wire is cooled to a temperature of \(-39^{\circ} \mathrm{C}\), what is the tension developed in the wire, if its diameter is \(2.0 \mathrm{~mm}\)? Co-efficient of linear expansion of brass \(=2.0 \times 10^{-5} \mathrm{~K}^{-1}\); Young’s modulus of brass \(=0.91 \times 10^{11} \mathrm{~Pa}\).
Initial temperature, \(T_1=27^{\circ} \mathrm{C}\)
Length of the brass wire at \(T_1, l=1.8 \mathrm{~m}\)
Final temperature, \(T_2=-39^{\circ} \mathrm{C}\)
Diameter of the wire, \(d=2.0 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}\)
Tension developed in the wire \(=F\)
Coefficient of linear expansion of brass, \(\alpha=2.0 \times 10^{-5} \mathrm{~K}^{-1}\)
Young’s modulus of brass, \(Y=0.91 \times 10^{11} \mathrm{~Pa}\)
Young’s modulus is given by the relation:
\(
\begin{aligned}
& Y=\frac{\text { Stress }}{\text { Strain }}=\frac{\frac{F}{A}}{\frac{\Delta L}{L}} \\
& \Delta L=\frac{F \times L}{A \times Y} \dots(i)
\end{aligned}
\)
Where,
\(F=\) Tension developed in the wire
\(A=\) Area of cross-section of the wire.
\(\Delta L=\) Change in the length, given by the relation:
\(\Delta L=\alpha L\left(T_2-T_1\right) \ldots\) (ii)
Equating equations (i) and (ii), we get:
\(
\begin{aligned}
& a L\left(T_2-T_1\right)=\frac{F L}{\pi\left(\frac{d}{2}\right)^2 \times Y} \\
& F=a\left(T_2-T_1\right) \pi\left(\frac{d}{2}\right)^2 \\
& F=2 \times 10^{-5} \times(-39-27) \times 3.14 \times 0.91 \times 10^{11} \times\left(\frac{2 \times 10^{-3}}{2}\right)^2 \\
& =-3.8 \times 10^2 N \\
& 3.8 \times 10^2 \mathrm{~N}
\end{aligned}
\)
(The negative sign indicates that the tension is directed inward.)
Hence, the tension developed in the wire is \(3.8 \times 10^2 \mathrm{~N}\).
A brass rod of length \(50 \mathrm{~cm}\) and diameter \(3.0 \mathrm{~mm}\) is joined to a steel rod of the same length and diameter. What is the change in length of the combined rod at \(250^{\circ} \mathrm{C}\), if the original lengths are at \(40.0^{\circ} \mathrm{C}\)? Is there a ‘thermal stress’ developed at the junction ? The ends of the rod are free to expand (Co-efficient of linear expansion of brass \(=2.0 \times 10^{-5} \mathrm{~K}^{-1}\), steel \(=1.2 \times 10^{-5} \mathrm{~K}^{-1}\) ).
Initial temperature, \(T_1=40^{\circ} \mathrm{C}\)
Final temperature, \(T_2=250^{\circ} \mathrm{C}\)
Change in temperature, \(\Delta T=T_2-T_1=210^{\circ} \mathrm{C}\)
Length of the brass rod at \(T_1, l_1=50 \mathrm{~cm}\)
Diameter of the brass rod at \(T_1, d_1=3.0 \mathrm{~mm}\)
Length of the steel rod at \(T_2, l_2=50 \mathrm{~cm}\)
Diameter of the steel rod at \(T_2, d_2=3.0 \mathrm{~mm}\)
Coefficient of linear expansion of brass, \(\alpha_1=\mathbf{2 . 0} \times 10^{-5} \mathrm{~K}^{-1}\)
Coefficient of linear expansion of steel, \(\alpha_2=1.2 \times 10^{-5} \mathrm{~K}^{-1}\)
For the expansion in the brass rod, we have:
\(
\begin{aligned}
& \frac{\text { Change in area }(\triangle A)}{\text { Original area }(A)}=a_1 \Delta T \\
& \therefore \Delta l_1=50 \times\left(2.1 \times 10^{-5}\right) \times 210 \\
& =0.2205 \mathrm{~cm}
\end{aligned}
\)
For the expansion in the steel rod, we have:
\(
\begin{aligned}
& \frac{\text { Change in area }(\Delta A)}{\text { Original area }(A)}=a_2 \Delta T \\
& \therefore \Delta l_2=50 \times\left(2.1 \times 10^{-5}\right) \times 210 \\
& =0.126 \mathrm{~cm}
\end{aligned}
\)
Total change in the lengths of brass and steel,
\(
\begin{aligned}
& \Delta l=\Delta l_1+\Delta l_2 \\
& =0.2205+0.126
\end{aligned}
\)
\(=0.346 \mathrm{~cm}\)
Total change in the length of the combined rod \(=0.346 \mathrm{~cm}\)
Since the rod expands freely from both ends, no thermal stress is developed at the junction.
The coefficient of volume expansion of glycerine is \(49 \times 10^{-5} \mathrm{~K}^{-1}\). What is the fractional change in its density for a \(30^{\circ} \mathrm{C}\) rise in temperature?
Coefficient of volume expansion of glycerin, \(\alpha_V=49 \times 10^{-5} \mathrm{~K}^{-1}\)
Rise in temperature, \(\Delta T=30^{\circ} \mathrm{C}\)
Fractional change in its volume \(=\frac{\Delta V}{V}\)
This change is related with the change in temperature as:
\(
\begin{aligned}
& \frac{\Delta V}{V}=a_v \Delta T \\
& V_{T_2}-V_{T_1}=V_{T_1} a_v \Delta T \\
& \frac{m}{\rho_{T_2}}-\frac{m}{\rho_{T_1}}=\frac{m}{\rho_{T_1}} a_v \Delta T
\end{aligned}
\)
Where,
\(
\begin{aligned}
& m=\text { Mass of glycerine } \\
& \rho_{T_1}=\text { Initial density at } T_1 \\
& \rho_{T_2}=\text { Final density at } T_2 \\
& \frac{\rho_{T_1}-\rho_{T_2}}{\rho_{T_2}} a_v \Delta T
\end{aligned}
\)
Where,
\(\frac{\rho_{T_1}-\rho_{T_2}}{\rho_{T_2}}=\) Fractional change in density
\(\therefore\) Fractional change in the density of glycerin \(=49 \times 10^{-5} \times 30=1.47 \times 10^{-2}\)
A \(10 \mathrm{~kW}\) drilling machine is used to drill a bore in a small aluminium block of mass \(8.0 \mathrm{~kg}\). How much is the rise in temperature of the block in \(2.5\) minutes, assuming \(50 \%\) of power is used up in heating the machine itself or lost to the surroundings. Specific heat of aluminium \(=0.91 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}\).
Power of the drilling machine, \(P=10 \mathrm{~kW}=10 \times 10^3 \mathrm{~W}\)
Mass of the aluminum block, \(m=8.0 \mathrm{~kg}=8 \times 10^3 \mathrm{~g}\)
Time for which the machine is used, \(t=2.5 \mathrm{~min}=2.5 \times 60=150 \mathrm{~s}\)
Specific heat of aluminium, \(c=0.91 \mathrm{~J} \mathrm{~g}^{-1} \mathbf{K}^{-1}\)
Rise in the temperature of the block after drilling \(=\delta T\)
Total energy of the drilling machine \(=P_t\)
\(
\begin{aligned}
& =10 \times 10^3 \times 150 \\
& =1.5 \times 10^6 \mathrm{~J}
\end{aligned}
\)
It is given that only \(50 \%\) of the power is useful.
Useful energy, \(\Delta Q=\frac{50}{100} \times 1.5 \times 10^6=7.5 \times 10^5 \mathrm{~J}\)
But \(\Delta Q=m c \Delta T\)
\(
\begin{aligned}
& \therefore \Delta T=\frac{\Delta Q}{m c} \\
& =\frac{7.5 \times 10^5}{8 \times 10^3 \times 0.91} \\
& =103^{\circ} \mathrm{C}
\end{aligned}
\)
Therefore, in \(2.5\) minutes of drilling, the rise in the temperature of the block is \(103^{\circ} \mathrm{C}\).
A copper block of mass \(2.5 \mathrm{~kg}\) is heated in a furnace to a temperature of \(500^{\circ} \mathrm{C}\) and then placed on a large ice block. What is the maximum amount of ice that can melt? (Specific heat of copper \(=0.39 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}\); heat of fusion of water \(\left.=335 \mathrm{~J} \mathrm{~g}^{-1}\right)\)
Mass of the copper block, \(m=2.5 \mathrm{~kg}=2500 \mathrm{~g}\)
Rise in the temperature of the copper block, \(\Delta \theta=500^{\circ} \mathrm{C}\)
Specific heat of copper, \(C=0.39 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{C}^{-1}\)
Heat of fusion of water, \(L=335 \mathrm{~J} \mathrm{~g}^{-1}\)
The maximum heat the copper block can lose, \(Q=m C \Delta \theta\)
\(
\begin{aligned}
= & 2500 \times 0.39 \times 500 \\
& =487500 \mathrm{~J}
\end{aligned}
\)
Let \(m_1 \mathrm{~g}\) be the amount of ice that melts when the copper block is placed on the ice block.
The heat gained by the melted ice, \(Q=m_1 L\)
\(
\therefore m_1=\frac{Q}{L}=\frac{487500}{335}=1455.22 \mathrm{~g}
\)
Hence, the maximum amount of ice that can melt is \(1.45 \mathrm{~kg}\).
In an experiment on the specific heat of a metal, a \(0.20 \mathrm{~kg}\) block of the metal at \(150^{\circ} \mathrm{C}\) is dropped in a copper calorimeter (of water equivalent \(0.025 \mathrm{~kg}\) ) containing \(150 \mathrm{~cm}^3\) of water at \(27^{\circ} \mathrm{C}\). The final temperature is \(40^{\circ} \mathrm{C}\). Compute the specific heat of the metal. If heat losses to the surroundings are not negligible, is your answer greater or smaller than the actual value for specific heat of the metal ?
Mass of the metal, \(m=0.20 \mathrm{~kg}=200 \mathrm{~g}\)
Initial temperature of the metal, \(T_1=150^{\circ} \mathrm{C}\)
Final temperature of the metal, \(T_2=40^{\circ} \mathrm{C}\)
Calorimeter has water equivalent of mass, \(m^{\prime}=0.025 \mathrm{~kg}=25 \mathrm{~g}\)
Volume of water, \(V=150 \mathrm{~cm}^3\)
Mass \((M)\) of water at temperature \(T=27^{\circ} \mathrm{C}\) :
\(
150 \times 1=150 \mathrm{~g}
\)
Fall in the temperature of the metal:
\(
\Delta T=T_1-T_2=150-40=110^{\circ} \mathrm{C}
\)
Specific heat of water, \(C_w=4.186 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{K}\)
Specific heat of the metal \(=C\)
Heat lost by the metal, \(\theta=m C \Delta T \ldots\). (i)
Rise in the temperature of the water and calorimeter system:
\(
\Delta T^{\prime}=40-27=13^{\circ} \mathrm{C}
\)
Heat gained by the water and calorimeter system:
\(
\begin{aligned}
& \Delta \theta^{\prime}=m_1 C_w \Delta T^{\prime} \\
& =\left(M+m^{\prime}\right) C_w \Delta T^{\prime} \ldots \text { (ii) }
\end{aligned}
\)
Heat lost by the metal \(=\) Heat gained by the water and colorimeter system
\(
\begin{aligned}
& m C \Delta T=\left(M+m^{\prime}\right) C_w \Delta T^{\prime} \\
& 200 \times C \times 110=(150+25) \times 4.186 \times 13 \\
& \therefore C=\frac{175 \times 4.186 \times 13}{110 \times 200}=0.43 J_{g^{-1}} K^{-1}
\end{aligned}
\)
If some heat is lost to the surroundings, then the value of \(C\) will be smaller than the actual value.
A child running a temperature of \(101^{\circ} \mathrm{F}\) is given an antipyrin (i.e. a medicine that lowers fever) which causes an increase in the rate of evaporation of sweat from his body. If the fever is brought down to \(98^{\circ} \mathrm{F}\) in 20 minutes, what is the average rate of extra evaporation caused, by the drug. Assume the evaporation mechanism to be the only way by which heat is lost. The mass of the child is \(30 \mathrm{~kg}\). The specific heat of human body is approximately the same as that of water, and latent heat of evaporation of water at that temperature is about \(580 \mathrm{cal} \mathrm{g}^{-1}\).
The initial temperature of the body of the child, \(T_1=101^{\circ} \mathrm{F}\)
The final temperature of the body of the child, \(T_2=98^{\circ} \mathrm{F}\)
Change in temperature, \(\Delta T=\left[\left(101-98 \times \frac{5}{9}\right)\right]{ }^{\circ} \mathrm{C}\)
Time taken to reduce the temperature, \(t=20 \mathrm{~min}\)
Mass of the child, \(m=30 \mathrm{~kg}=30 \times 10^3 \mathrm{~g}\)
Specific heat of the human body \(=\) Specific heat of water \(=c\)
\(=1000 \mathrm{cal} / \mathrm{kg} /{ }^{\circ} \mathrm{C}\)
Latent heat of evaporation of water, \(L=580 \mathrm{cal} \mathrm{g} \mathrm{g}^{-1}\)
The heat lost by the child is given as: \(\triangle \theta=m c \triangle T\)
\(
\begin{aligned}
& =30 \times 1000 \times(101-98) \times \frac{5}{9} \\
& =50000 \mathrm{cal}
\end{aligned}
\)
Let \(m_1\) be the mass of the water evaporated from the child’s body in \(20 \mathrm{~min}\).
Loss of heat through water is given by:
\(
\begin{aligned}
& \triangle \theta=m_1 L \\
& \therefore m_1=\frac{\triangle \theta}{L} \\
& =\frac{50000}{580}=86.2 g \\
& \therefore \text { Average rate of extra evaporation caused by the drug }=\frac{m_1}{t} \\
& =\frac{86.2}{200}=4.3 \mathrm{~g} / \mathrm{min}
\end{aligned}
\)
A ‘thermacole’ icebox is a cheap and an efficient method for storing small quantities of cooked food in summer in particular. A cubical icebox of side \(30 \mathrm{~cm}\) has a thickness of \(5.0 \mathrm{~cm}\). If \(4.0 \mathrm{~kg}\) of ice is put in the box, estimate the amount of ice remaining after \(6 \mathrm{~h}\). The outside temperature is \(45^{\circ} \mathrm{C}\), and coefficient of thermal conductivity of thermacole is \(0.01 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1}\). [Heat of fusion of water \(=335 \times 10^3\) \(\left.\mathrm{J} \mathrm{kg}^{-1}\right]\)
Side of the given cubical ice box, \(s=30 \mathrm{~cm}=0.3 \mathrm{~m}\)
Thickness of the ice box, \(l=5.0 \mathrm{~cm}=0.05 \mathrm{~m}\)
Mass of ice kept in the ice box, \(m=4 \mathrm{~kg}\)
Time gap, \(t=6 \mathrm{~h}=6 \times 60 \times 60 \mathrm{~s}\)
Outside temperature, \(T=45^{\circ} \mathrm{C}\)
Coefficient of thermal conductivity of thermacole, \(K=0.01 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-}\)
Heat of fusion of water, \(L=335 \times 10^3 \mathrm{~J} \mathrm{~kg}^{-1}\)
Let \(m^{\prime}\) be the total amount of ice that melts in \(6 \mathrm{~h}\).
The amount of heat lost by the food: \(\theta=\frac{K A(T-0) t}{l}\)
Where
\(
\begin{aligned}
& A=\text { Surface area of the box }=6 s^2=6 \times(0.3)^2=0.54 \mathrm{~m}^3 \\
& \theta=\frac{0.01 \times 0.54 \times(45) \times 6 \times 60 \times 60}{0.05}=104976 \mathrm{~J}
\end{aligned}
\)
But \(\theta=m \prime L\)
\(
\begin{aligned}
& \therefore m \prime=\frac{\theta}{L} \\
& =\frac{104976}{335 \times 10^3}=0.313 \mathrm{~kg}
\end{aligned}
\)
Mass of ice left \(=4-0.313=3.687 \mathrm{~kg}\)
Hence, the amount of ice remaining after \(6 \mathrm{~h}\) is \(3.687 \mathrm{~kg}\).
A brass boiler has a base area of \(0.15 \mathrm{~m}^2\) and thickness \(1.0 \mathrm{~cm}\). It boils water at the rate of \(6.0 \mathrm{~kg} / \mathrm{min}\) when placed on a gas stove. Estimate the temperature of the part of the flame in contact with the boiler. Thermal conductivity of brass \(=109 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1}\) \(\mathrm{K}^{-1}\); Heat of vaporisation of water \(=2256 \times 10^3 \mathrm{~J} \mathrm{~kg}^{-1}\).
Here \(K=109 J s^{-1} m^{-1} K^{-1}\)
\(
\begin{aligned}
& A=0.15 \mathrm{~m}^2 \\
& d=1.0 \mathrm{~cm}=10^{-2} \mathrm{~m} \\
& T_2=100^{\circ} \mathrm{C}
\end{aligned}
\)
Let \(T_1=\) temperature of the part of the boiler in contact with the stove.
if \(Q\) be the amount of heat flowing per second throught the base of the boiler, then
\(
\begin{aligned}
& Q=\frac{109 \times 0.15 \times\left(T_1-100\right)}{10^{-2}} \dots(i)\\
& =1635\left(T_1-100\right) J_{s^{-1}}
\end{aligned}
\)
Also heat of vaporisation of water \(L=2256 \times 10^3 \mathrm{Jkg}^{-1}\)
Rate of boiling of water in the boiler, \(\mathrm{M}=6.0 \mathrm{kgmin}=\frac{-1}{60}=0.0 \mathrm{~kg}^{-1} \mathrm{~s}\)
\(\therefore\) Heat received by water per second, \(\mathrm{Q}=\mathrm{ML}\)
\(\Rightarrow Q=0.1 \times 2256 \times 10^3 J_s^{-1} \ldots\) (ii)
:. From equation \(\mathrm{i}\) and (ii) we get
\(
1635\left(T_1-100\right)=2256 \times 10^2
\)
or \(T_1-100=\frac{2256 \times 10^2}{1653}=138\)
\(
T_1=138+100=238^{\circ} \mathrm{C}
\)
Identify the true statement from the given list.
(a) a body with large reflectivity is a poor emitter because A body with a large reflectivity is a poor absorber of light radiations. A poor absorber will in turn be a poor emitter of radiation. Hence, a body with a large reflectivity is a poor emitter.
(b) a brass tumbler feels much colder than a wooden tray on a chilly day because Brass is a good conductor of heat. When one touches a brass tumbler, heat is conducted from the body to the brass tumbler easily. Hence, the temperature of the body reduces to a lower value and one feels cooler. Wood is a poor conductor of heat. When one touches a wooden tray, very little heat is conducted from the body to the wooden tray. Hence, there is only a negligible drop in the temperature of the body and one does not feel cool.
(c) an optical pyrometer (for measuring high temperatures) calibrated for ideal black body radiation gives too low a value for the temperature of a red-hot iron piece in the open but gives a correct value for the temperature when the same piece is in the furnace. An optical pyrometer calibrated for an ideal black body radiation gives too low a value for temperature of a red hot iron piece kept in the open.
Black body radiation equation is given by:
\(
E=\sigma\left(T^4-T_0^4\right)
\)
Where,
\(E\) = Energy Radiation
\(T\) = Temperature of optical pyrometer
\(T_{\mathrm{o}}=\) Temperature of open space
\(\sigma=\) Constant
Hence, an increase in the temperature of open space reduces the radiation energy.
When the same piece of iron is placed in a furnace, the radiation energy, \(E=\sigma T^4\)
(d) the earth without its atmosphere would be inhospitably cold. Without its atmosphere, earth would be inhospitably cold. In the absence of atmospheric
gases, no extra heat will be trapped. All the heat would be radiated back from the earth’s surface.
(e) heating systems based on the circulation of steam are more efficient in warming a building than those based on the circulation of hot water. A heating system based on the circulation of steam is more efficient in warming a building than that based on the circulation of hot water. This is because steam contains surplus heat in the form of latent heat (540 cal/g).
A body cools from \(80^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\) in 5 minutes. Calculate the time it takes to cool from \(60^{\circ} \mathrm{C}\) to \(30^{\circ} \mathrm{C}\). The temperature of the surroundings is \(20^{\circ} \mathrm{C}\).
According to Newton’s law of cooling, the rate of cooling is proportional to the difference in temperature.
Here Average of \(80^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}=65^{\circ} \mathrm{C}\)
Temperature of surroundings \(=20^{\circ} \mathrm{C}\)
\(\therefore\) Difference \(=65-20=45^{\circ} \mathrm{C}\)
Under these condition. the body cools \(30^{\circ} \mathrm{C}\) in time 5 minutes
\(\therefore \frac{\text { Change in temp }}{\text { Time }}=K \triangle T\) or \(\frac{30}{5}=K \times 45^{\circ} \dots(i)\)
The average of \(60^{\circ} \mathrm{C}\) and \(30^{\circ}\) is \(45^{\circ} \mathrm{C}\) which is \(25^{\circ} \mathrm{C}(45-20)\) above the room temperature anf the bodycppls by \(30^{\circ} C(60-30)\) in time \(t\) (say)
\(
\therefore \frac{30}{t}=K \times 25 \dots(ii)
\)
Where \(\mathrm{K}\) is same for this situation as for the original.
Dividing equation i by ii we get
\(
=\frac{30 / 5}{30 / \mathrm{t}}=\frac{K \times 45}{K \times 25}
\)
or \(\frac{t}{5}=\frac{9}{5}\)
\(\Rightarrow t=9 \mathrm{~min}\)
Answer the following questions based on the P-T phase diagram of carbon dioxide:
At what temperature and pressure can the solid, liquid and vapour phases of \(\mathrm{CO}_2\) co-exist in equilibrium?
Answer the following questions based on the P-T phase diagram of carbon dioxide:
What is the effect of decrease of pressure on the fusion and boiling point of \(\mathrm{CO}_2 ?\)
Answer the following questions based on the P-T phase diagram of carbon dioxide:
Is \(\mathrm{CO}_2\) solid, liquid or gas at (a) \(-70^{\circ} \mathrm{C}\) under 1 atm, (b) \(-60^{\circ} \mathrm{C}\) under 10 atm, (c) \(15^{\circ} \mathrm{C}\) under 56 atm ?
\(
\text { Answer the following questions based on the } P-T \text { phase diagram of } \mathrm{CO}_2 \text { : }
\)
\(\mathrm{CO}_2\) at 1 atm pressure and temperature \(-60^{\circ} \mathrm{C}\) is compressed isothermally. Does it go through a liquid phase?
\(
\text { Answer the following questions based on the } P-T \text { phase diagram of } \mathrm{CO}_2 \text { : }
\)
What happens when \(\mathrm{CO}_2\) at \(4 \mathrm{~atm}\) pressure is cooled from room temperature at constant pressure ?
The pressure of air in the bulb of a constant volume gas thermometer is \(73 \mathrm{~cm}\) of mercury at \(0^{\circ} \mathrm{C}, 100^{\circ} 3 \mathrm{~cm}\) of mercury at \(100^{\circ} \mathrm{C}\) and \(77.8 \mathrm{~cm}\) of mercury at room temperature. Find the room temperature in centigrades.
\(
\begin{aligned}
t & =\frac{p-p_0}{p_{100}-p_0} \times 100^{\circ} \mathrm{C} \\
& =\frac{77.8-73}{100^{\circ} 3-73} \times 100^{\circ} \mathrm{C}=17^{\circ} \mathrm{C} .
\end{aligned}
\)
The pressure of the gas in a constant volume gas thermometer at steam point \((373.15 \mathrm{~K})\) is \(1.50 \times 10^4 \mathrm{~Pa}\). What will be the pressure at the triple point of water?
The temperature in kelvin is defined as
\(
T=\frac{p}{p_{t r}} \times 273.16 \mathrm{~K}
\)
Thus,
\(
\begin{aligned}
373 \cdot 15 & =\frac{1.50 \times 10^4 \mathrm{~Pa}}{p_{t r}} \times 273.16 \\
p_{t r} & =1.50 \times 10^4 \mathrm{~Pa} \times \frac{273 \cdot 16}{373 \cdot 15} \\
& =1.10 \times 10^4 \mathrm{~Pa}
\end{aligned}
\)
The pressure of air in the bulb of a constant volume gas thermometer at \(0^{\circ} \mathrm{C}\) and \(100^{\circ} \mathrm{C}\) are \(73.00 \mathrm{~cm}\) and \(100 \mathrm{~cm}\) of mercury respectively. Calculate the pressure at the room temperature \(20^{\circ} \mathrm{C}\).
The room temperature on the scale measured by the thermometer is
\(
t=\frac{p_t-p_0}{p_{100}-p_0} \times 100^{\circ} \mathrm{C} .
\)
Thus,
\(
20^{\circ} \mathrm{C}=\frac{p_t-73.00 \mathrm{~cm} \text { of } \mathrm{Hg}}{100 \mathrm{~cm} \text { of } \mathrm{Hg}-73.00 \mathrm{~cm} \text { of } \mathrm{Hg}} \times 100^{\circ} \mathrm{C}
\)
or, \(\quad p_t=78.4 \mathrm{~cm}\) of mercury.
The pressure of the gas in a constant volume gas thermometer is \(80 \mathrm{~cm}\) of mercury in melting ice at \(1 \mathrm{~atm}\). When the bulb is placed in a liquid, the pressure becomes \(160 \mathrm{~cm}\) of mercury. Find the temperature of the liquid.
For an ideal gas at constant volume,
\(
\begin{aligned}
& \frac{T_1}{T_2}=\frac{p_1}{p_2} \\
& T_2=\frac{p_2}{p_1} T_1 .
\end{aligned}
\)
\(
\text { or, } \quad T_2=\frac{p_2}{p_1} T_1 \text {. }
\)
The temperature of melting ice at 1 atm is \(273 \cdot 15 \mathrm{~K}\). Thus, the temperature of the liquid is
\(
T_2=\frac{160}{80} \times 273.15 \mathrm{~K}=546.30 \mathrm{~K} .
\)
In a constant volume gas thermometer, the pressure of the working gas is measured by the difference in the levels of mercury in the two arms of a \(U\)-tube connected to the gas at one end. When the bulb is placed at the room temperature \(27 \cdot 0^{\circ} \mathrm{C}\), the mercury column in the arm open to atmosphere stands \(5.00 \mathrm{~cm}\) above the level of mercury in the other arm. When the bulb is placed in a hot liquid, the difference of mercury levels becomes \(45.0 \mathrm{~cm}\). Calculate the temperature of the liquid. (Atmospheric pressure \(=75 \cdot 0 \mathrm{~cm}\) of mercury.)
At \(27^{\circ} \mathrm{C}\), the pressure is \(75 \mathrm{~cm}+5 \mathrm{~cm}=80 \mathrm{~cm}\) of mercury. At the liquid temperature, the pressure is \(75 \mathrm{~cm}+45 \mathrm{~cm}=120 \mathrm{~cm}\) of mercury. Using \(T_2=\frac{P_2}{P_1} T_1\), the temperature of the liquid is
\(
\begin{aligned}
T & =\frac{120}{80} \times(27 \cdot 0+273 \cdot 15) \mathrm{K}=450 \cdot 22 \mathrm{~K} . \\
& =177 \cdot 07^{\circ} \mathrm{C} \approx 177^{\circ} \mathrm{C} .
\end{aligned}
\)
The resistances of a platinum resistance thermometer at the ice point, the steam point and the boiling point of sulphur are 2.50, \(3.50\) and \(6.50 \Omega\) respectively. Find the boiling point of sulphur on the platinum scale. The ice point and the steam point measure \(0^{\circ}\) and \(100^{\circ}\) respectively.
The temperature on the platinum scale is defined as
\(
t=\frac{R_t-R_0}{R_{100}-R_0} \times 100^{\circ} .
\)
The boiling point of sulphur on this scale is
\(
t=\frac{6 \cdot 50-2 \cdot 50}{3 \cdot 50-2 \cdot 50} \times 100^{\circ}=400^{\circ} .
\)
A platinum resistance thermometer reads \(0^{\circ}\) and \(100^{\circ}\) at the ice point and the boiling point of water respectively. The resistance of a platinum wire varies with Celsius temperature \(\theta\) as \(R_t=R_0\left(1+\alpha \theta+\beta \theta^2\right)\), where \(\alpha=3.8 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}\) and \(\beta=-5.6 \times 10^{-7}{ }^{\circ} \mathrm{C}^{-2}\). What will be the reading of this thermometer if it is placed in a liquid bath maintained at \(50^{\circ} \mathrm{C}\)?
The resistances of the wire in the thermometer at \(100^{\circ} \mathrm{C}\) and \(50^{\circ} \mathrm{C}\) are
\(
R_{100}=R_0\left[1+\alpha \times 100^{\circ} \mathrm{C}+\beta \times\left(100^{\circ} \mathrm{C}\right)^2\right]
\)
and, \(\quad R_{\text {b } 0}=R_0\left[1+\alpha \times 50^{\circ} \mathrm{C}+\beta \times\left(50^{\circ} \mathrm{C}\right)^2\right]\).
The temperature \(t\) measured on the platinum thermometer is given by
\(
\begin{aligned}
t & =\frac{R_{50}-R_0}{R_{100}-R_0} \times 100^{\circ} \\
& =\frac{\alpha \times 50^{\circ} \mathrm{C}+\beta \times\left(50^{\circ} \mathrm{C}\right)^2}{\alpha \times 100^{\circ} \mathrm{C}+\beta \times\left(100^{\circ} \mathrm{C}\right)^2} \times 100^{\circ} \\
& =50.4^{\circ} \mathrm{C}.
\end{aligned}
\)
A platinum resistance thermometer is constructed which reads \(0^{\circ}\) at ice point and \(100^{\circ}\) at steam point. Let \(t_p\) denote the temperature on this scale and let \(t\) denote the temperature on a mercury thermometer scale. The resistance of the platinum coil varies with \(t\) as \(R_t=R_0\left(1+\alpha t+\beta t^2\right)\). Derive an expression for the resistance as a function of \(t_{p \text {. }}\).
Let \(R_{t_p}\) denote the resistance of the coil at the platinum scale temperature \(t_p\). Then
\(
\begin{aligned}
t_p & =\frac{R_{t_p}-R_0}{R_{100}-R_0} \times 100 \\
\text { or, } \quad R_{t_p} & =\frac{t_p}{100}\left(R_{100}-R_0\right)+R_0 \\
& =\frac{t_p}{100}\left[R_0\left\{1+\alpha \times 100+\beta \times(100)^2\right\}-R_0\right]+R_0 \\
& =\frac{t_p}{100}\left[\alpha \times 100+\beta \times(100)^2\right] R_0+R_0 \\
& =R_0\left[1+\left\{\alpha \times 100+\beta \times(100)^2\right\} \frac{t_p}{100}\right] \\
& =R_0\left[1+\alpha t_p+\beta \times(100) t_p\right] .
\end{aligned}
\)
Only numerical values of \(\alpha\) and \(\beta\) are to be used.
An iron rod of length \(50 \mathrm{~cm}\) is joined at an end to an aluminium rod of length \(100 \mathrm{~cm}\). All measurements refer to \(20^{\circ} \mathrm{C}\). Find the length of the composite system at \(100^{\circ} \mathrm{C}\) and its average coefficient of linear expansion. The coefficient of linear expansion of iron and aluminium are \(12 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\) and \(24 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\) respectively.
The length of the iron rod at \(100^{\circ} \mathrm{C}\) is
\(
\begin{aligned}
l_1 & =(50 \mathrm{~cm})\left[1+\left(12 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right)\left(100^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)\right] \\
& =50.048 \mathrm{~cm} .
\end{aligned}
\)
The length of the aluminium rod at \(100^{\circ} \mathrm{C}\) is
\(
\begin{aligned}
l_2 & =(100 \mathrm{~cm})\left[1+\left(24 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right)\left(100^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)\right] \\
& =100 \cdot 192 \mathrm{~cm} .
\end{aligned}
\)
The length of the composite system at \(100^{\circ} \mathrm{C}\) is
\(
50 \cdot 048 \mathrm{~cm}+100 \cdot 192 \mathrm{~cm}=150 \cdot 24 \mathrm{~cm} \text {. }
\)
The length of the composite system at \(20^{\circ} \mathrm{C}\) is \(150 \mathrm{~cm}\). So, the average coefficient of linear expansion of the composite rod is
\(
\begin{aligned}
\alpha & =\frac{0.24 \mathrm{~cm}}{150 \mathrm{~cm} \times\left(100^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)} \\
& =20 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1} .
\end{aligned}
\)
An iron ring measuring \(15.00 \mathrm{~cm}\) in diameter is to be shrunk on a pulley which is \(15.05 \mathrm{~cm}\) in diameter. All measurements refer to the room temperature \(20^{\circ} \mathrm{C}\). To what minimum temperature should the ring be heated to make the job possible? Calculate the strain developed in the ring when it comes to the room temperature. Coefficient of linear expansion of iron \(=12 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\).
The ring should be heated to increase its diameter from \(15 \cdot 00 \mathrm{~cm}\) to \(15.05 \mathrm{~cm}\).
Using \(\quad l_2=l_1(1+\alpha \Delta \theta)\),
\(
\begin{aligned}
& =\frac{0.05 \mathrm{~cm}}{15.00 \mathrm{~cm} \times 12 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}} \\
& =278^{\circ} \mathrm{C} \\
\text { The temperature } & =20^{\circ} \mathrm{C}+278^{\circ} \mathrm{C}=298^{\circ} \mathrm{C} .
\end{aligned}
\)
\(
\text { The strain developed }=\frac{l_2-l_1}{l_1}=3.33 \times 10^{-3} \text {. }
\)
A pendulum clock consists of an iron rod connected to a small, heavy bob. If it is designed to keep the correct time at \(20^{\circ} \mathrm{C}\), how fast or slow will it go in 24 hours at \(40^{\circ} \mathrm{C}\)? Coefficient of linear expansion of iron \(=1.2 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}\).
The time period at temperature \(\theta\) is
\(
\begin{aligned}
T & =2 \pi \sqrt{l_\theta / g} \\
& =2 \pi \sqrt{l_0(1+\alpha \theta) / g} \\
& =2 \pi \sqrt{l_0 / g}(1+\alpha \theta)^{1 / 2} \\
& \approx T_0\left(1+\frac{1}{2} \alpha \theta\right) .
\end{aligned}
\)
Thus, \(\quad T_{20}=T_0\left[1+\frac{1}{2} \alpha\left(20^{\circ} \mathrm{C}\right)\right]\)
and, \(\quad T_{40}=T_0\left[1+\frac{1}{2} \alpha\left(40^{\circ} \mathrm{C}\right)\right]\)
or, \(\quad \frac{T_{40}}{T_{20}}=\left[1+\left(20^{\circ} \mathrm{C}\right) \alpha\right]\left[1+\left(10^{\circ} \mathrm{C}\right) \alpha\right]^{-1}\)
\(\approx\left[1+\left(20^{\circ} \mathrm{C}\right) \alpha\right]\left[1-\left(10^{\circ} \mathrm{C}\right) \alpha\right]\)
\(\approx 1+\left(10^{\circ} \mathrm{C}\right) \alpha\)
or, \(\quad \frac{T_{40}-T_{20}}{T_{20}}=\left(10^{\circ} \mathrm{C}\right) \alpha=1.2 \times 10^{-4} \dots(i)\).
This is fractional loss of time. As the temperature increases, the time period also increases. Thus, the clock goes slow. The time lost in 24 hours is, by (i),
\(
\Delta t=\left(24 \text { hours }\left(1^{.} 2 \times 10^{-4}\right)=10^{.} 4 \mathrm{~s}\right. \text {. }\)
A pendulum clock having copper rod keeps correct time at \(20^{\circ} \mathrm{C}\). It gains 15 seconds per day if cooled to \(0^{\circ} \mathrm{C}\). Calculate the coefficient of linear expansion of copper.
The time period at temperature \(\theta\) is
\(
\begin{aligned}
T & =2 \pi \sqrt{l_\theta / g} \\
& \approx T_0\left(1+\frac{1}{2} \alpha \theta\right)
\end{aligned}
\)
Thus, \(\quad T_{20}=T_0\left[1+\alpha\left(10^{\circ} \mathrm{C}\right)\right]\)
or, \(\quad \frac{\left(T_{20}-T_0\right)}{T_0}=\alpha\left(10^{\circ} \mathrm{C}\right) \dots(i)\)
\(T_{20}\) is the correct time period. The period at \(0^{\circ} \mathrm{C}\) is smaller so that the clock runs fast. Equation (i) gives approximately the fractional gain in time. The time gained in 24 hours is
\(
\begin{array}{rlrl}
\Delta T & =(24 \text { hours })\left[\left(10^{\circ} \mathrm{C}\right) \alpha\right] \\
\text { or, } & 15 \mathrm{~s} & =(24 \text { hours })\left[\left(10^{\circ} \mathrm{C}\right) \alpha\right]
\end{array}
\)
\(
\text { or, } \quad \begin{aligned}
\alpha & =\frac{15 \mathrm{~s}}{(24 \text { hours })\left(10^{\circ} \mathrm{C}\right)} \\
& =1.7 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1} .
\end{aligned}
\)
A piece of metal weighs \(46 \mathrm{~g}\) in air and \(30 \mathrm{~g}\) in a liquid of density \(1.24 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\) kept at \(27^{\circ} \mathrm{C}\). When the temperature of the liquid is raised to \(42^{\circ} \mathrm{C}\), the metal piece weighs \(30.5 \mathrm{~g}\). The density of the liquid at \(42^{\circ} \mathrm{C}\) is \(1.20 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\). Calculate the coefficient of linear expansion of the metal.
Let the volume of the metal piece be \(V_0\) at \(27^{\circ} \mathrm{C}\) and \(V_\theta\) at \(42^{\circ} \mathrm{C}\). The density of the liquid at \(27^{\circ} \mathrm{C}\) is \(\rho_0=1.24 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\) and the density of the liquid at \(42^{\circ} \mathrm{C}\) is \(\rho_\theta=1.20 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\).
The weight of the liquid displaced \(=\) apparent loss in the weight of the metal piece when dipped in the liquid. Thus,
\(
V_0 \rho_0=46 \mathrm{~g}-30 \mathrm{~g}=16 \mathrm{~g}
\)
and, \(\quad V_\theta \rho_\theta=46 \mathrm{~g}-30.5 \mathrm{~g}=15 \cdot 5 \mathrm{~g}\).
Thus,
or,
\(
\frac{V_\theta}{V_0}=\frac{\rho_0}{\rho_\theta} \times \frac{15.5}{16}
\)
or, \(1+3 \alpha\left(42^{\circ} \mathrm{C}-27^{\circ} \mathrm{C}\right)=1.00104\)
or, \(\quad \alpha=2.3 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}\).
A sphere of diameter \(7.0 \mathrm{~cm}\) and mass \(266.5 \mathrm{~g}\) floats in a bath of liquid. As the temperature is raised, the sphere begins to sink at a temperature of \(35^{\circ} \mathrm{C}\). If the density of the liquid is \(1.527 \mathrm{~g} \mathrm{~cm}^{-3}\) at \(0^{\circ} \mathrm{C}\), find the coeffiecient of cubical expansion of the liquid. Neglect the expansion of the sphere.
It is given that the expansion of the sphere is negligible as compared to the expansion of the liquid. At \(0^{\circ} \mathrm{C}\), the density of the liquid is \(\rho_0=1.527 \mathrm{~g} \mathrm{~cm}^{-3}\). At \(35^{\circ} \mathrm{C}\), the density of the liquid equals the density of the sphere. Thus,
\(
\begin{aligned}
\rho_{35} & =\frac{266.5 \mathrm{~g}}{\frac{4}{3} \pi(3.5 \mathrm{~cm})^3} \\
& =1.484 \mathrm{~g} \mathrm{~cm}^{-3}
\end{aligned}
\)
We have
or,
\(
\begin{array}{ll}
\text { We have } & \frac{\rho_\theta}{\rho_0}=\frac{V_0}{V_\theta}=\frac{1}{(1+\gamma \theta)} \\
\text { or, } & \rho_\theta=\frac{\rho_0}{1+\gamma \theta} . \\
\text { Thus, } & \gamma=\frac{\rho_0-\rho_{35}}{\rho_{35}\left(35^{\circ} \mathrm{C}\right)}
\end{array}
\)
\(
\begin{aligned}
& =\frac{(1.527-1.484) \mathrm{g} \mathrm{cm}^{-3}}{\left(1.484 \mathrm{~g} \mathrm{~cm}^{-3}\right)\left(35^{\circ} \mathrm{C}\right)} \\
& =8.28 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1} .
\end{aligned}
\)
An iron rod and a copper rod lie side by side. As the temperature is changed, the difference in the lengths of the rods remains constant at a value of \(10 \mathrm{~cm}\). Find the lengths at \(0^{\circ} \mathrm{C}\). Coefficients of linear expansion of iron and copper are \(1.1 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}\) and \(1.7 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}\) respectively.
Suppose the length of the iron rod at \(0^{\circ} \mathrm{C}\) is \(l_{i_0}\) and the length of the copper rod at \(0^{\circ} \mathrm{C}\) is \(l_{c 0^{\circ}}\). The lengths at temperature \(\theta\) are
\(
\begin{aligned}
& l_{i \theta}=l_{i 0}\left(1+\alpha_i \theta\right) \dots(i) \\
& l_{c \theta}=l_{c 0}\left(1+\alpha_c \theta\right) \text {. } \dots(ii) \\
& \text { and } \\
& \text { Subtracting, } \\
& l_{i \theta}-l_{c \theta}=\left(l_{i 0}-l_{c 0}\right)+\left(l_{i 0} \alpha_i-l_{c 0} \alpha_c\right) \theta . \dots(iii) \\
& l_{i \theta}-l_{c \theta}=l_{i 0}-l_{c 0}(=10 \mathrm{~cm}) . \\
& \text { Thus, from (iii), } l_{i 0} \alpha_i=l_{c 0} \alpha_c \\
& \text { or, } \\
& \frac{l_{i 0}}{l_{c 0}}=\frac{\alpha_c}{\alpha_i} \\
& \text { or, } \quad \frac{l_{i 0}}{l_{i 0}-l_{c 0}}=\frac{\alpha_c}{\alpha_c-\alpha_i} \\
& =\frac{1.7 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}}{0.6 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}}=\frac{17}{6} . \\
&
\end{aligned}
\)
This shows that \(l_{i 0}-l_{c 0}\) is positive. Its value is \(10 \mathrm{~cm}\) as given in the question.
\(
\begin{aligned}
& \text { Hence, } \quad l_{i 0}=\frac{17}{6} \times\left(l_{i 0}-l_{c 0}\right) \\
& =\frac{17}{6} \times 10 \mathrm{~cm}=28.3 \mathrm{~cm} \\
& \text { and } \\
& l_{c 0}=l_{i 0}-10 \mathrm{~cm}=18 \cdot 3 \mathrm{~cm} . \\
&
\end{aligned}
\)
A uniform steel wire of cross-sectional area \(0.20 \mathrm{~mm}^2\) is held fixed by clamping its two ends. Find the extra force exerted by each clamp on the wire if the wire is cooled from \(100^{\circ} \mathrm{C}\) to \(0^{\circ} \mathrm{C}\). Young’s modulus of steel \(=2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\).
Coefficient of linear expansion of steel \(=1.2 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}\).
Let us assume that the tension is zero at \(100^{\circ} \mathrm{C}\) so that \(l_\theta\) is the natural length of the wire at \(100^{\circ} \mathrm{C}\). As the wire cools down, its natural length decreases to \(l_0\). As the wire is fixed at the clamps, its length remains the same as the length at \(100^{\circ} \mathrm{C}\). Thus, the extension of the wire over its natural length at \(0^{\circ} \mathrm{C}\) is
\(
l_\theta-l_0=l_0(1+\alpha \theta)-l_0=l_0 \alpha \theta \text {. }
\)
The strain developed is \(\frac{l_\theta-l_0}{l_\theta} \approx \frac{l_\theta-l_0}{l_0}=\alpha \theta\).
The stress developed \(=Y \times\) strain \(=Y \alpha \theta\).
The tension in the wire at \(0^{\circ} \mathrm{C}\) is
\(
\begin{aligned}
T & =\text { stress } \times \text { area } \\
& =Y \alpha t \times 0.20 \mathrm{~mm}^2 \\
& =\left(2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\right) \times\left(1.2 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}\right) \\
& \times 100^{\circ} \mathrm{C} \times\left(0.20 \times 10^{-6} \mathrm{~m}^{-2}\right) \\
= & 48 \mathrm{~N} .
\end{aligned}
\)
This is equal to the extra force exerted by each clamp.
A glass vessel of volume \(100 \mathrm{~cm}^{-3}\) is filled with mercury and is heated from \(25^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\). What volume of mercury will overflow? Coefficient of linear expansion of glass \(=1.8 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\) and the coefficient of volume expansion of mercury is \(1.8 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}\).
The volume of mercury at \(25^{\circ} \mathrm{C}\) is
\(
V_0=100 \mathrm{~cm}^{-3} \text {. }
\)
The coefficient of volume expansion of mercury
\(
\gamma_L=1.8 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}
\)
The coefficient of volume expansion of glass
\(
\begin{aligned}
\gamma_S & =3 \times 1.8 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1} \\
& =5.4 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}
\end{aligned}
\)
Thus, the volume of mercury at \(75^{\circ} \mathrm{C}\) is
\(
V_{L \theta}=V_0\left(1+\gamma_L \Delta \theta\right)
\)
and the volume of the vessel at \(75^{\circ} \mathrm{C}\) is
\(
V_{S \theta}=V_0\left(1+\gamma_S \Delta \theta\right) \text {. }
\)
The volume of mercury overflown
\(
\begin{aligned}
& =V_{L \theta}-V_{S \theta}=V_0\left(\gamma_L-\gamma_S\right) \Delta \theta \dots(i) \\
& =\left(100 \mathrm{~cm}^{-3}\right)\left(1.8 \times 10^{-4}-5.4 \times 10^{-6}\right) /{ }^{\circ} \mathrm{C} \times\left(50^{\circ} \mathrm{C}\right) \\
& =0.87 \mathrm{~cm}^3 .
\end{aligned}
\)
Note that \(\gamma_a=\left(\gamma_L-\gamma_S\right)\) acts as the effective coefficient of expansion of the liquid with respect to the solid. The expansion of mercury ‘as seen from the glass’ can be written as
\(
\begin{array}{rlrl}
V_\theta-V_0 & =V_0 \gamma_a \theta \\
\text { or, } & V_\theta & =V_0\left(1+\gamma_a \theta\right) .
\end{array}
\)
The constant \(\gamma_a\) is called the ‘apparent coefficient of expansion’ of the liquid with respect to the solid.
A barometer reads \(75.0 \mathrm{~cm}\) on a steel scale. The room temperature is \(30^{\circ} \mathrm{C}\). The scale is correctly graduated for \(0^{\circ} \mathrm{C}\). The coefficient of linear expansion of steel is \(\alpha=1.2 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}\) and the coefficient of volume expansion of mercury is \(\gamma=1 \cdot 8 \times 10^{-4} \mathrm{C}^{-1}\). Find the correct atmospheric pressure.
The \(75 \mathrm{~cm}\) length of steel at \(0^{\circ} \mathrm{C}\) will become \(l_\theta\) at \(30^{\circ} \mathrm{C}\) where,
\(
l_\theta=(75 \mathrm{~cm})\left[1+\alpha\left(30^{\circ} \mathrm{C}\right)\right] \dots(i).
\)
The length of mercury column at \(30^{\circ} \mathrm{C}\) is \(l_\theta\). Suppose the length of the mercury column, if it were at \(0^{\circ} \mathrm{C}\), is \(l_0\). Then,
\(
l_\theta=l_0\left[1+\frac{1}{3} \gamma\left(30^{\circ} \mathrm{C}\right)\right] \dots(ii).
\)
By (i) and (ii),
\(
l_0\left[1+\frac{1}{3} \gamma\left(30^{\circ} \mathrm{C}\right)\right]=75 \mathrm{~cm}\left[1+\alpha\left(30^{\circ} \mathrm{C}\right)\right]
\)
\(
\text { or, } \quad \begin{aligned}
l_0 & =75 \mathrm{~cm} \frac{\left[1+\alpha\left(30^{\circ} \mathrm{C}\right)\right]}{\left[1+\frac{1}{3} \gamma\left(30^{\circ} \mathrm{C}\right)\right]} \\
& \approx 75 \mathrm{~cm}\left[1+\left(\alpha-\frac{\gamma}{3}\right)\left(30^{\circ} \mathrm{C}\right)\right] \\
& =74.89 \mathrm{~cm} .
\end{aligned}
\)
A piece of ice of mass \(100 \mathrm{~g}\) and at temperature \(0^{\circ} \mathrm{C}\) is put in \(200 \mathrm{~g}\) of water at \(25^{\circ} \mathrm{C}\). How much ice will melt as the temperature of the water reaches \(0^{\circ} \mathrm{C}\) ? The specific heat capacity of water \(=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\) and the specific latent heat of fusion of ice \(=3.4 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\).
The heat released as the water cools down from \(25^{\circ} \mathrm{C}\) to \(0^{\circ} \mathrm{C}\) is
\(
Q=m s \Delta \theta=(0-2 \mathrm{~kg})\left(4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)(25 \mathrm{~K})=21000 \mathrm{~J} .
\)
The amount of ice melted by this much heat is given by
\(
m=\frac{Q}{L}=\frac{21000 \mathrm{~J}}{3 \cdot 4 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}}=62 \mathrm{~g} .
\)
A calorimeter of water equivalent \(15 \mathrm{~g}\) contains \(165 \mathrm{~g}\) of water at \(25^{\circ} \mathrm{C}\). Steam at \(100^{\circ} \mathrm{C}\) is passed through the water for some time. The temperature is increased to \(30^{\circ} \mathrm{C}\) and the mass of the calorimeter and its contents is increased by \(1.5 \mathrm{~g}\). Calculate the specific latent heat of vaporization of water. Specific heat capacity of water is \(1 \mathrm{cal} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}\)
Let \(L\) be the specific latent heat of vaporization of water. The mass of the steam condensed is \(1.5 \mathrm{~g}\). Heat lost in condensation of steam is
\(
Q_1=(1.5 \mathrm{~g}) L \text {. }
\)
The condensed water cools from \(100^{\circ} \mathrm{C}\) to \(30^{\circ} \mathrm{C}\). Heat lost in this process is
\(
Q_2=(1.5 \mathrm{~g})\left(1 \mathrm{cal} \mathrm{g}^{-1 \circ} \mathrm{C}^{-1}\right)\left(70^{\circ} \mathrm{C}\right)=105 \mathrm{cal} .
\)
Heat supplied to the calorimeter and to the cold water during the rise in temperature from \(25^{\circ} \mathrm{C}\) to \(30^{\circ} \mathrm{C}\) is
\(
Q_3=(15 \mathrm{~g}+165 \mathrm{~g})\left(1 \mathrm{cal} \mathrm{g}{ }^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)\left(5^{\circ} \mathrm{C}\right)=900 \mathrm{cal} .
\)
If no heat is lost to the surrounding,
\(
\begin{aligned}
\text { (1.5 g) } L+105 \mathrm{cal} & =900 \mathrm{cal} \\
L & =530 \mathrm{cal} \mathrm{g}^{-1} .
\end{aligned}
\)
Calculate the amount of heat required to convert \(1.00 \mathrm{~kg}\) of ice at \(-10^{\circ} \mathrm{C}\) into steam at \(100^{\circ} \mathrm{C}\) at normal pressure. Specific heat capacity of ice \(=2100 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\), latent heat of fusion of ice \(=3.36 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\), specific heat capacity of water \(=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\) and latent heat of vaporization of water \(=2.25 \times 10^6 \mathrm{~J} \mathrm{~kg}^{-1}\).
Heat required to take the ice from \(-10^{\circ} \mathrm{C}\) to \(0^{\circ} \mathrm{C}\)
\(
=(1 \mathrm{~kg})\left(2100 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)(10 \mathrm{~K})=21000 \mathrm{~J} \text {. }
\)
Heat required to melt the ice at \(0^{\circ} \mathrm{C}\) to water
\(
=(1 \mathrm{~kg})\left(3.36 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\right)=336000 \mathrm{~J} \text {. }
\)
Heat required to take \(1 \mathrm{~kg}\) of water from \(0^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\)
\(
=(1 \mathrm{~kg})\left(4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)(100 \mathrm{~K})=420000 \mathrm{~J} \text {. }
\)
Heat required to convert \(1 \mathrm{~kg}\) of water at \(100^{\circ} \mathrm{C}\) into steam
\(
=(1 \mathrm{~kg})\left(2.25 \times 10^6 \mathrm{~J} \mathrm{~kg}^{-1}\right)=2.25 \times 10^6 \mathrm{~J} \text {. }
\)
Total heat required \(=3.03 \times 10^6 \mathrm{~J}\).
A \(5 \mathrm{~g}\) piece of ice at \(-20^{\circ} \mathrm{C}\) is put into \(10 \mathrm{~g}\) of water at \(30^{\circ} \mathrm{C}\). Assuming that heat is exchanged only between the ice and the water, find the final temperature of the mixture. Specific heat capacity of ice \(=2100 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\), specific heat capacity of water \(=4200 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\) and latent heat of fusion of ice \(=3.36 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\).
The heat given by the water when it cools down from \(30^{\circ} \mathrm{C}\) to \(0^{\circ} \mathrm{C}\) is
\(
(0.01 \mathrm{~kg})\left(4200 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)\left(30^{\circ} \mathrm{C}\right)=1260 \mathrm{~J} .
\)
The heat required to bring the ice to \(0^{\circ} \mathrm{C}\) is
\(
(0.005 \mathrm{~kg})\left(2100 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)\left(20^{\circ} \mathrm{C}\right)=210 \mathrm{~J} .
\)
The heat required to melt \(5 \mathrm{~g}\) of ice is
\(
(0.005 \mathrm{~kg})\left(3.36 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\right)=1680 \mathrm{~J} \text {. }
\)
We see that whole of the ice cannot be melted as the required amount of heat is not provided by the water. Also, the heat is enough to bring the ice to \(0^{\circ} \mathrm{C}\). Thus the final temperature of the mixture is \(0^{\circ} \mathrm{C}\) with some of the ice melted.
An aluminium container of mass \(100 \mathrm{~g}\) contains \(200 \mathrm{~g}\) of ice at \(-20^{\circ} \mathrm{C}\). Heat is added to the system at a rate of \(100 \mathrm{cal} \mathrm{s}^{-1}\). What is the temperature of the system after 4 minutes? Specific heat capacity of ice \(=0.5 \mathrm{cal} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}\), specific heat capacity of aluminium \(=0.2 \mathrm{cal} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}\), specific heat capacity of water \(=1 \mathrm{cal} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}\) and latent heat of fusion of ice \(=80 \mathrm{cal} \mathrm{g}^{-1}\).
Total heat supplied to the system in 4 minutes is \(Q=100 \mathrm{cal} \mathrm{s}^{-1} \times 240 \mathrm{~s}=2.4 \times 10^4 \mathrm{cal}\).
The heat required to take the system from \(-20^{\circ} \mathrm{C}\) to \(0^{\circ} \mathrm{C}\)
\(
\begin{aligned}
& \quad=(100 \mathrm{~g}) \times\left(0-2 \mathrm{cal} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right) \times\left(20^{\circ} \mathrm{C}\right)+ \\
& (200 \mathrm{~g}) \times\left(0-5 \mathrm{cal} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right) \times\left(20^{\circ} \mathrm{C}\right) \\
& =400 \mathrm{cal}+2000 \mathrm{cal}=2400 \mathrm{cal} .
\end{aligned}
\)
The time taken in this process \(=\frac{2400}{100} \mathrm{~s}=24 \mathrm{~s}\).
The heat required to melt the ice at \(0^{\circ} \mathrm{C}\)
\(
=(200 \mathrm{~g})\left(80 \mathrm{cal} \mathrm{g}^{-1}\right)=16000 \mathrm{cal} .
\)
The time taken in this process \(=\frac{16000}{100} \mathrm{~s}=160 \mathrm{~s}\).
If the final temperature is \(\theta\), the heat required to take the system to the final temperature is
\(
=(100 \mathrm{~g})\left(0.2 \mathrm{cal} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right) \theta+(200 \mathrm{~g})\left(1 \mathrm{cal} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right) \theta \text {. }
\)
Thus,
\(
\begin{aligned}
& 2 \cdot 4 \times 10^4 \mathrm{cal}=2400 \mathrm{cal}+16000 \mathrm{cal}+\left(220 \mathrm{cal}^{\circ} \mathrm{C}^{-1}\right) \theta \\
& \text { or, } \quad \theta=\frac{5600 \mathrm{cal}}{220 \mathrm{cal}^{\circ} \mathrm{C}^{-1}}=25 \cdot 5^{\circ} \mathrm{C} .
\end{aligned}
\)
A thermally isolated vessel contains \(100 \mathrm{~g}\) of water at \(0^{\circ} \mathrm{C}\). When air above the water is pumped out, some of the water freezes and some evaporates at \(0^{\circ} \mathrm{C}\) itself. Calculate the mass of the ice formed if no water is left in the vessel. Latent heat of vaporization of water at \(0^{\circ} \mathrm{C}=2.10 \times 10^6 \mathrm{~J} \mathrm{~kg}^{-1}\) and latent heat of fusion of ice \(=3.36 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\)
Total mass of the water \(=M=100 \mathrm{~g}\).
Latent heat of vaporization of water at \(0^{\circ} \mathrm{C}\)
\(
=L_1=21.0 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1} \text {. }
\)
Latent heat of fusion of ice \(=L_2=3.36 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\).
Suppose, the mass of the ice formed \(=m\).
Then the mass of water evaporated \(=M-m\).
Heat taken by the water to evaporate \(=(M-m) L_1\) and heat given by the water in freezing \(=m L_2\).
Thus, \(m L_2=(M-m) L_1\)
or,
\(
\begin{aligned}
m & =\frac{M L_1}{L_1+L_2} \\
& =\frac{(100 \mathrm{~g})\left(21 \cdot 0 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\right)}{(21 \cdot 0+3.36) \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}}=86 \mathrm{~g} .
\end{aligned}
\)
A lead bullet penetrates into a solid object and melts. Assuming that \(50 \%\) of its kinetic energy was used to heat it, calculate the initial speed of the bullet. The initial temperature of the bullet is \(27^{\circ} \mathrm{C}\) and its melting point is \(327^{\circ} \mathrm{C}\). Latent heat of fusion of lead \(=2.5 \times 10^4 \mathrm{~J} \mathrm{~kg}^{-1}\) and specific heat capacity of lead \(=125 \mathrm{~J} \mathrm{~kg}^1 \mathrm{~K}^1\).
Let the mass of the bullet \(=m\).
Heat required to take the bullet from \(27^{\circ} \mathrm{C}\) to \(327^{\circ} \mathrm{C}\)
\(
\begin{aligned}
& =m \times\left(125 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)(300 \mathrm{~K}) \\
& =m \times\left(3.75 \times 10^4 \mathrm{~J} \mathrm{~kg}^{-1}\right) .
\end{aligned}
\)
Heat required to melt the bullet
\(
=m \times\left(2.5 \times 10^4 \mathrm{~J} \mathrm{~kg}^{-1}\right) \text {. }
\)
If the initial speed be \(v\), the kinetic energy is \(\frac{1}{2} m v^2\) and hence the heat developed is \(\frac{1}{2}\left(\frac{1}{2} m v^2\right)=\frac{1}{4} m v^2\). Thus,
\(
\frac{1}{4} m v^2=m(3 \cdot 75+2 \cdot 5) \times 10^4 \mathrm{~J} \mathrm{~kg}^{-1}
\)
or, \(\quad v=500 \mathrm{~m} \mathrm{~s}^{-1}\).
A lead ball at \(30^{\circ} \mathrm{C}\) is dropped from a height of \(6.2 \mathrm{~km}\). The ball is heated due to the air resistance and it completely melts just before reaching the ground. The molten substance falls slowly on the ground. Calculate the latent heat of fusion of lead. Specific heat capacity of lead \(=126 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\) and melting point of lead \(=330^{\circ} \mathrm{C}\). Assume that any mechanical energy lost is used to heat the ball. Use \(\mathrm{g}=10 \mathrm{~m} \mathrm{~s}^{-2}\).
The initial gravitational potential energy of the ball
\(
\begin{aligned}
& =m g h \\
= & m \times(10 \mathrm{~m} \mathrm{~s} \\
= & m \times\left(6.2 \times 10^{-2} \mathrm{~m}^2 \mathrm{~s}^{-2}\right)=m \times\left(6.2 \times 10^4 \mathrm{~J} \mathrm{~kg}^{-1}\right) .
\end{aligned}
\)
All this energy is used to heat the ball as it reaches the ground with a small velocity. Energy required to take the ball from \(30^{\circ} \mathrm{C}\) to \(330^{\circ} \mathrm{C}\) is
\(
\begin{aligned}
& m \times\left(126 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right) \times\left(300^{\circ} \mathrm{C}\right) \\
= & m \times 37800 \mathrm{~J} \mathrm{~kg}^{-1}
\end{aligned}
\)
and energy required to melt the ball at \(330^{\circ} \mathrm{C}\)
\(
=m L
\)
where \(L=\) latent heat of fusion of lead.
Thus,
\(
m \times\left(6.2 \times 10^4 \mathrm{~J} \mathrm{~kg}^{-1}\right)=m \times 37800 \mathrm{~J} \mathrm{~kg}^{-1}+m L
\)
or, \(\quad L=2.4 \times 10^4 \mathrm{~J} \mathrm{~kg}^{-1}\).
Calculate the ratio \(C_p / C_V\) of oxygen from the following data. Speed of sound in oxygen at \(0^{\circ} \mathrm{C}=315 \mathrm{~m} \mathrm{~s}^{-1}\), molecular weight of oxygen \(=32 \mathrm{~g} \mathrm{~mol}^{-1}\) and the gas constant \(R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\).
The speed of sound in a gas is given by
\(
\begin{aligned}
v & =\sqrt{\frac{\gamma P}{\rho}}=\sqrt{\frac{\gamma R T}{M}} \\
\gamma & =\frac{M v^2}{R T} \\
& =\frac{\left(32 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}\right)\left(315 \mathrm{~m} \mathrm{~s}^{-1}\right)^2}{\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(273 \mathrm{~K})}=1.4
\end{aligned}
\)
A diatomic gas \((\gamma=1.4)\) does \(200 \mathrm{~J}\) of work when it is expanded isobarically. Find the heat given to the gas in the process.
For a diatomic gas, \(C_V=\frac{5}{2} R\) and \(C_p=\frac{7}{2} R\). The work done in an isobaric process is
\(
\begin{aligned}
W & =p\left(V_2-V_1\right) \\
& =n R T_2-n R T_1 \\
\text { or, } \quad T_2-T_1 & =\frac{W}{n R} .
\end{aligned}
\)
The heat given in an isobaric process is
\(
\begin{aligned}
Q & =n C_p\left(T_2-T_1\right) \\
& =n C_p \frac{W}{n R}=\frac{7}{2} W \\
& =\frac{7}{2} \times 200 \mathrm{~J}=700 \mathrm{~J}
\end{aligned}
\)
\(4 \mathrm{~mol}\) of an ideal gas having \(\gamma=1.67\) are mixed with \(2 \mathrm{~mol}\) of another ideal gas having \(\gamma=1-4\). Find the equivalent value of \(\gamma\) for the mixture.
Let,
\(C_V^{\prime}=\) molar heat capacity of the first gas,
\(C^{\prime \prime}{ }_V=\) molar heat capacity of the second gas,
\(C_V=\) molar heat capacity of the mixture
and similar symbols for other quantities. Then,
\(
\gamma=\frac{C_p^{\prime}}{C_V^{\prime}}=1.67
\)
and \(\quad C_p^{\prime}=C_V^{\prime}+R\).
This gives \(C_V^{\prime}=\frac{3}{2} R\) and \(C_p^{\prime}=\frac{5}{2} R\).
Similarly, \(\gamma=1 \cdot 4\) gives \(C^{\prime \prime}{ }_V=\frac{5}{2} R\) and \(C^{\prime \prime}{ }_p=\frac{7}{2} R\).
Suppose the temperature of the mixture is increased by \(d T\). The increase in the internal energy of the first gas \(=n_1 C_V{ }^{\prime} d T\). The increase in internal energy of the second gas \(=n_2 C_V^{\prime \prime} d T\) and the increase in internal energy of the mixture \(=\left(n_1+n_2\right) C_V d T\). Thus,
\(
\left(n_1+n_2\right) C_V d T=n_1 C_V^{\prime} d T+n_2 C_V^{\prime \prime} d T
\)
or,
\(
\begin{aligned}
C_V & =\frac{n_1 C_V^{\prime}+n_2 C_V^{\prime \prime}}{n_1+n_2} \dots(i) \\
C_p=C_V+R & =\frac{n_1 C_V^{\prime}+n_2 C_V^{\prime \prime}}{n_1+n_2}+R \\
& =\frac{n_1\left(C_V^{\prime}+R\right)+n_2\left(C_V^{\prime \prime}+R\right)}{n_1+n_2} \\
& =\frac{n_1 C_p^{\prime}+n_2 C_p^{\prime \prime}}{n_1+n_2} \dots(ii)
\end{aligned}
\)
From (i) and (ii), \(\gamma=\frac{C_p}{C_V}=\frac{n_1 C_p^{\prime}+n_2 C_p^{\prime \prime}}{n_1 C_V^{\prime}+n_2 C_V^{\prime \prime}}\)
\(
=\frac{4 \times \frac{5}{2} R+2 \times \frac{7}{2} R}{4 \times \frac{3}{2} R+2 \times \frac{5}{2} R}=1.54
\)
A sample of gas \((\gamma=1 \cdot 5)\) is taken through an adiabatic process in which the volume is compressed from \(1600 \mathrm{~cm}^3\) to \(400 \mathrm{~cm}^3\). If the initial pressure is \(150 \mathrm{kPa}\), (a) what is the final pressure and (b) how much work is done by the gas in the process?
(a) For an adiabatic process,
\(
p_1 V_1^\gamma=p_2 V_2^\gamma \text {. }
\)
Thus,
\(
\begin{gathered}
p_2=p_1\left(\frac{V_1}{V_2}\right)^\gamma \\
=(150 \mathrm{kPa})\left(\frac{1600 \mathrm{~cm}^3}{400 \mathrm{~cm}^3}\right)^{3 / 2}=1200 \mathrm{kPa} .
\end{gathered}
\)
(b) Work done by the gas in an adiabatic process is
\(
\begin{aligned}
W & =\frac{p_1 V_1-p_2 V_2}{\gamma-1} \\
& =\frac{(150 \mathrm{kPa})\left(1600 \mathrm{~cm}^3\right)-(1200 \mathrm{kPa})\left(400 \mathrm{~cm}^3\right)}{1 \cdot 5-1} \\
& =\frac{240 \mathrm{~J}-480 \mathrm{~J}}{0 \cdot 5}=-480 \mathrm{~J} .
\end{aligned}
\)
A quantity of air is kept in a container having walls which are slightly conducting. The initial temperature and volume are \(27^{\circ} \mathrm{C}\) (equal to the temperature of the surrounding) and \(800 \mathrm{~cm}^3\) respectively. Find the rise in the temperature if the gas is compressed to \(200 \mathrm{~cm}^3\) (a) in a short time (b) in a long time. Take \(\gamma=1.4\).
(a) When the gas is compressed in a short time, the process is adiabatic. Thus,
or,
\(
\begin{aligned}
T_2 V_2^{\gamma-1} & =T_1 V_1^{\gamma-1} \\
T_2 & =T_1\left(\frac{V_1}{V_2}\right)^{\gamma-1} \\
& =(300 \mathrm{~K}) \times\left[\frac{800}{200}\right]^{0.4}=522 \mathrm{~K} .
\end{aligned}
\)
Rise in temperature \(=T_2-T_1=222 \mathrm{~K}\).
(b) When the gas is compressed in a long time, the process is isothermal. Thus, the temperature remains equal to the temperature of the surrounding that is \(27^{\circ} \mathrm{C}\). The rise in temperature \(=0\).
An experiment is performed to measure the molar heat capacity of a gas at constant pressure using Regnault’s method. The gas is initially contained in a cubical reservoir of size \(40 \mathrm{~cm} \times 40 \mathrm{~cm} \times 40 \mathrm{~cm}\) at \(600 \mathrm{kPa}\) at \(27^{\circ} \mathrm{C}\). A part of the gas is brought out, heated to \(100^{\circ} \mathrm{C}\) and is passed through a calorimeter at constant pressure. The water equivalent of the calorimeter and its contents is \(100 \mathrm{~g}\). The temperature of the calorimeter and its contents increases from \(20^{\circ} \mathrm{C}\) to \(30^{\circ} \mathrm{C}\) during the experiment and the pressure in the reservoir decreases to \(525 \mathrm{kPa}\). Specific heat capacity of water \(=4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\). Calculate the molar heat capacity \(C_p\) from these data.
We have \(p V=n R T\) or, \(n=\frac{p V}{R T}\). The amount of the gas in the reservoir is \(n_1=\frac{p_1 V}{R T}\) before the gas is taken out and \(n_2=\frac{p_2 V}{R T}\) after the gas is taken out. The amount taken out is
\(
\begin{aligned}
& \Delta n=n_1-n_2=\left(p_1-p_2\right) \frac{V}{R T} \\
= & \frac{(600-525) \times 10^3 \mathrm{~N} \mathrm{~m}^{-2} \times\left(40 \times 10^{-2} \mathrm{~m}\right)^3}{\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(300 \mathrm{~K})} \\
= & 1.925 \mathrm{~mol} .
\end{aligned}
\)
The gas is heated to \(100^{\circ} \mathrm{C}\) and cools down as it passes through the calorimeter. The average final temperature of the gas is \(\frac{20^{\circ} \mathrm{C}+30^{\circ} \mathrm{C}}{2}=25^{\circ} \mathrm{C}\). Thus, the average decrease in temperature of the gas is
\(
\begin{aligned}
& \Delta T=\left(100^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)=75^{\circ} \mathrm{C} \\
& \Delta T=75 \mathrm{~K} .
\end{aligned}
\)
\(
\text { or, } \quad \Delta T=75 \mathrm{~K} \text {. }
\)
The heat lost by the gas is
\(
\Delta Q=\Delta n C_p \Delta T \text {. }
\)
The heat gained by the calorimeter and its contents is \((100 \mathrm{~g})\left(4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)(30-20)^{\circ} \mathrm{C}=4200 \mathrm{~J}\).
Thus, \(\Delta n C_p \Delta T=4200 \mathrm{~J}\)
or,
\(
C_p=\frac{4200 \mathrm{~J}}{(1 \cdot 925 \mathrm{~mol})(75 \mathrm{~K})}=29 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \text {. }
\)
A sample of ideal gas \((\gamma=1 \cdot 4)\) is heated at constant pressure. If an amount \(140 \mathrm{~J}\) of heat is supplied to the gas, find (a) the change in internal energy of the gas, (b) the work done by the gas.
Suppose the sample contains \(n\) moles. Also, suppose the volume changes from \(V_1\) to \(V_2\) and the temperature changes from \(T_1\) to \(T_2\).
The heat supplied is
\(
\Delta Q=n C_p\left(T_2-T_1\right) .
\)
(a) The change in internal energy is
\(
\begin{aligned}
\Delta U & =n C_V\left(T_2-T_1\right)=\frac{C_V}{C_p} n C_p\left(T_2-T_1\right) \\
& =\frac{C_V}{C_p} \Delta Q=\frac{140 \mathrm{~J}}{1 \cdot 4}=100 \mathrm{~J} .
\end{aligned}
\)
(b) The work done by the gas is
\(
\begin{aligned}
\Delta W & =\Delta Q-\Delta U \\
& =140 \mathrm{~J}-100 \mathrm{~J}=40 \mathrm{~J} .
\end{aligned}
\)
An ideal gas has a molar heat capacity at constant pressure \(C_p=2 \cdot 5 R\). The gas is kept in a closed vessel of volume \(0.0083 \mathrm{~m}^3\), at a temperature of \(300 \mathrm{~K}\) and a pressure of \(1.6 \times 10^6 \mathrm{~N} \mathrm{~m}^{-2}\). An amount \(2.49 \times 10^4 \mathrm{~J}\) of heat energy is supplied to the gas. Calculate the final temperature and pressure of the gas.
We have
\(
C_V=C_p-R=2.5 R-R=1.5 R .
\)
The amount of the gas (in moles) is \(n=\frac{p V}{R T}\)
\(
=\frac{\left(1.6 \times 10^6 \mathrm{~N} \mathrm{~m}^{-2}\right) \times\left(0.0083 \mathrm{~m}^3\right)}{\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(300 \mathrm{~K})}=5.3 \mathrm{~mol} \text {. }
\)
As the gas is kept in a closed vessel, its volume is constant. Thus, we have
\(
\begin{aligned}
\Delta Q & =n C_V \Delta T \\
\text { or, } \quad \Delta T & =\frac{\Delta Q}{n C_V} \\
& =\frac{2.49 \times 10^4 \mathrm{~J}}{(5.3 \mathrm{~mol})\left(1.5 \times 8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)}=377 \mathrm{~K} .
\end{aligned}
\)
The final temperature is \(300 \mathrm{~K}+377 \mathrm{~K}=677 \mathrm{~K}\).
We have,
\(
\frac{p_1 V_1}{T_1}=\frac{p_2 V_2}{T_2} .
\)
Here \(V_1=V_2\) Thus,
\(
\begin{aligned}
p_2 & =\frac{T_2}{T_1} p_1=\frac{677}{300} \times 1.6 \times 10^6 \mathrm{~N} \mathrm{~m}^{-2} \\
& =3.6 \times 10^6 \mathrm{~N} \mathrm{~m}^{-2} .
\end{aligned}
\)
Calculate the value of the mechanical equivalent of heat from the following data. Specific heat capacity of air at constant volume \(=170 \mathrm{cal} \mathrm{kg}^{-1} \mathrm{~K}^{-1}, \gamma=C_p / C_V=1 \cdot 4\) and the density of air at STP is \(1.29 \mathrm{~kg} \mathrm{~m}^{-3}\). Gas constant \(R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\).
Using \(p V=n R T\), the volume of 1 mole of air at STP is
\(
\begin{aligned}
V & =\frac{n R T}{p}=\frac{(1 \mathrm{~mol}) \times\left(8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(273 \mathrm{~K})}{1.0 \times 10^6 \mathrm{~N} \mathrm{~m}^{-2}} \\
& =0.0224 \mathrm{~m}^3 .
\end{aligned}
\)
The mass of 1 mole is, therefore,
\(\left(1.29 \mathrm{~kg} \mathrm{~m}^{-2}\right) \times\left(0.0224 \mathrm{~m}^3\right)=0.029 \mathrm{~kg}\).
The number of moles in \(1 \mathrm{~kg}\) is \(\frac{1}{0 \cdot 029}\). The molar heat capacity at constant volume is
\(
\begin{aligned}
C_V & =\frac{170 \mathrm{cal}}{(1 / 0 \cdot 029) \mathrm{mol} \mathrm{K}^{-1}} \\
& =4.93 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1} .
\end{aligned}
\)
Hence, \(\quad C_p=\gamma C_V=1.4 \times 4.93 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\)
or, \(\quad C_p-C_V=0.4 \times 4.93 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\)
\(=1.97 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\).
Also,
\(
C_p-C_V=R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} .
\)
Thus, \(\quad 8.3 \mathrm{~J}=1.97 \mathrm{cal}\).
The mechanical equivalent of heat is
\(
\frac{8.3 \mathrm{~J}}{1.97 \mathrm{cal}}=4.2 \mathrm{~J} \mathrm{cal}^{-1} .
\)
The lower surface of a slab of stone of face-area \(3600 \mathrm{~cm}^2\) and thickness \(10 \mathrm{~cm}\) is exposed to steam at \(100^{\circ} \mathrm{C}\). A block of ice at \(0^{\circ} \mathrm{C}\) rests on the upper surface of the slab. \(4.8 \mathrm{~g}\) of ice melts in one hour. Calculate the thermal conductivity of the stone. Latent heat of fusion of ice \(=3.36 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\)
The amount of heat transferred through the slab to the ice in one hour is
\(
\begin{aligned}
Q & =\left(4.8 \times 10^{-3} \mathrm{~kg}\right) \times\left(3.36 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\right) \\
& =4.8 \times 336 \mathrm{~J} .
\end{aligned}
\)
Using the equation
\(
\begin{aligned}
Q & =\frac{K A\left(\theta_1-\theta_2\right) t}{x}, \\
4.8 \times 336 \mathrm{~J} & =\frac{K\left(3600 \mathrm{~cm}^2\right)\left(100^{\circ} \mathrm{C}\right) \times(3600 \mathrm{~s})}{10 \mathrm{~cm}}
\end{aligned}
\)
or, \(\quad K=1.24 \times 10^{-3} \mathrm{~W} \mathrm{~m}^{-10} \mathrm{C}^{-1}\).
An icebox made of \(1.5 \mathrm{~cm}\) thick styrofoam has dimensions \(60 \mathrm{~cm} \times 60 \mathrm{~cm} \times 30 \mathrm{~cm}\). It contains ice at \(0^{\circ} \mathrm{C}\) and is kept in a room at \(40^{\circ} \mathrm{C}\). Find the rate at which the ice is melting. Latent heat of fusion of ice \(=3.36 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\). and thermal conductivity of styrofoam \(=0.04 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{C}^{-1}\).
A closed cubical box is made of perfectly insulating material and the only way for heat to enter or leave the box is through two solid cylindrical metal plugs, each of cross sectional area \(12 \mathrm{~cm}^2\) and length \(8 \mathrm{~cm}\) fixed in the opposite walls of the box. The outer surface of one plug is kept at a temperature of \(100^{\circ} \mathrm{C}\) while the outer surface of the other plug is maintained at a temperature of \(4^{\circ} \mathrm{C}\). The thermal conductivity of the material of the plug is \(2.0 \mathrm{Wm}^{-10} \mathrm{C}^{-1}\). A source of energy generating \(13 \mathrm{~W}\) is enclosed inside the box. Find the equilibrium temperature of the inner surface of the box assuming that it is the same at all points on the inner surface.
The situation is shown in the figure below. Let the temperature inside the box be \(\theta\). The rate at which heat enters the box through the left plug is
\(
\frac{\Delta Q_1}{\Delta t}=\frac{K A\left(\theta_1-\theta\right)}{x} .
\)
The rate of heat generation in the box \(=13 \mathrm{~W}\). The rate at which heat flows out of the box through the right plug is
\(
\frac{\Delta Q_2}{\Delta t}=\frac{K A\left(\theta-\theta_2\right)}{x} .
\)
In the steady state
\(
\begin{aligned}
\frac{\Delta Q_1}{\Delta t}+13 \mathrm{~W} & =\frac{\Delta Q_2}{\Delta t} \\
\text { or, } \quad \frac{K A}{x}\left(\theta_1-\theta\right)+13 \mathrm{~W} & =\frac{K A}{x}\left(\theta-\theta_2\right) \\
\text { or, } & 2 \frac{K A}{x} \theta=\frac{K A}{x}\left(\theta_1+\theta_2\right)+13 \mathrm{~W} \\
\text { or, } & \theta=\frac{\theta_1+\theta_2}{2}+\frac{(13 \mathrm{~W}) x}{2 K A} \\
= & \frac{100^{\circ} \mathrm{C}+4^{\circ} \mathrm{C}}{2}+\frac{(13 \mathrm{~W}) \times 0.08 \mathrm{~m}}{2 \times\left(2 \cdot 0 \mathrm{~W} \mathrm{~m}^{-1_{\circ}} \mathrm{C}^{-1}\right)\left(12 \times 10^{-4} \mathrm{~m}^2\right)} \\
= & 52^{\circ} \mathrm{C}+216.67^{\circ} \mathrm{C} \approx 269^{\circ} \mathrm{C} .
\end{aligned}
\)
A bar of copper of length \(75 \mathrm{~cm}\) and a bar of steel of length \(125 \mathrm{~cm}\) are joined together end to end. Both are of circular cross section with diameter \(2 \mathrm{~cm}\). The free ends of the copper and the steel bars are maintained at \(100^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\) respectively. The curved surfaces of the bars are thermally insulated. What is the temperature of the copper-steel junction? What is the amount of heat transmitted per unit time across the junction? Thermal conductivity of copper is \(386 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{C}^{-1}\) and that of steel is \(46 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\).
The situation is shown in the figure below. Let the temperature at the junction be \(\theta\) (on Celsius scale). The same heat current passes through the copper and the steel rods. Thus,
\(
\begin{aligned}
& \frac{\Delta Q}{\Delta t}=\frac{K_{\text {cu }} A\left(100^{\circ} \mathrm{C}-\theta\right)}{75 \mathrm{~cm}}=\frac{K_{\text {steel }} A \theta}{125 \mathrm{~cm}} \\
& \frac{K_{c u}\left(100^{\circ} \mathrm{C}-\theta\right)}{75}=\frac{K_{\text {steel }} \theta}{125} \\
& \frac{100^{\circ} \mathrm{C}-\theta}{\theta}=\frac{75 K_{\text {steel }}}{125 K_{\text {cu }}}=\frac{3}{5} \times \frac{46}{386} \\
& \theta=93^{\circ} \mathrm{C} .
\end{aligned}
\)
The rate of heat flow is
\(
\begin{aligned}
\frac{\Delta Q}{\Delta t} & =\frac{K_{\text {steel }} A \theta}{125 \mathrm{~cm}} \\
& =\frac{\left(46 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{C}^{-1}\right)\left(\pi \times 1 \mathrm{~cm}^2\right) \times 93^{\circ} \mathrm{C}}{125 \mathrm{~cm}} \\
& =1.07 \mathrm{~J} \mathrm{~s}^{-1} .
\end{aligned}
\)
Two parallel plates \(A\) and \(B\) are joined together to form a compound plate (figure below). The thicknesses of the plates are \(4.0 \mathrm{~cm}\) and \(2.5 \mathrm{~cm}\) respectively and the area of cross section is \(100 \mathrm{~cm}^2\) for each plate. The thermal conductivities are \(K_A=200 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{C}^{-1}\) for the plate \(A\) and \(K_B=400 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{C}^{-1}\) for the plate \(B\). The outer surface of the plate \(A\) is maintained at \(100^{\circ} \mathrm{C}\) and the outer surface of the plate \(B\) is maintained at \(0^{\circ} \mathrm{C}\). Find (a) the rate of heat flow through any cross-section, (b) the temperature at the interface and (c) the equivalent thermal conductivity of the compound plate.
(a) Let the temperature of the interface be \(\theta\). The area of cross section of each plate is \(A=100 \mathrm{~cm}^2\) \(=0.01 \mathrm{~m}^2\). The thicknesses are \(x_A=0.04 \mathrm{~m}\) and \(x_B=0.025 \mathrm{~m}\).
The thermal resistance of the plate \(A\) is
\(
R_1=\frac{1}{K_A} \frac{x_A}{A}
\)
and that of the plate \(B\) is
\(
R_2=\frac{1}{K_B} \frac{x_B}{A}
\)
The equivalent thermal resistance is
\(
R=R_1+R_2=\frac{1}{A}\left(\frac{x_A}{K_A}+\frac{x_B}{K_B}\right) \text {. } \dots(i)
\)
Thus, \(\frac{\Delta Q}{\Delta t}=\frac{\theta_1-\theta_2}{R}\)
\(
\begin{aligned}
& =\frac{A\left(\theta_1-\theta_2\right)}{x_A / K_A+x_B / K_B} \\
& =\frac{\left(0.01 \mathrm{~m}^2\right)\left(100^{\circ} \mathrm{C}\right)}{(0.04 \mathrm{~m}) /\left(200 \mathrm{~W} \mathrm{~m}^{-1_{\circ}} \mathrm{C}^{-1}\right)+(0.025 \mathrm{~m}) /\left(400 \mathrm{~W} \mathrm{~m}^{-1_{\circ}} \mathrm{C}^{-1}\right)} \\
& =3810 \mathrm{~W} .
\end{aligned}
\)
(b) We have \(\frac{\Delta Q}{\Delta t}=\frac{A\left(\theta-\theta_2\right)}{x_B / K_B}\)
or, \(\quad 3810 \mathrm{~W}=\frac{\left(0.01 \mathrm{~m}^2\right)\left(\theta-0^{\circ} \mathrm{C}\right)}{(0.025 \mathrm{~m}) /\left(400 \mathrm{~W} \mathrm{~m}^{-1 \circ} \mathrm{C}^{-1}\right)}\)
or, \(\theta=24^{\circ} \mathrm{C}\).
(c) If \(K\) is the equivalent thermal conductivity of the compound plate, its thermal resistance is
\(
R=\frac{1}{A} \frac{x_A+x_B}{K} .
\)
Comparing with (i),
\(
\begin{aligned}
\frac{x_A+x_B}{K} & =\frac{x_A}{K_A}+\frac{x_B}{K_B} \\
K & =\frac{x_A+x_B}{x_A / K_A+x_B / K_B} \\
& =248 \mathrm{~W} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}
\end{aligned}
\)
A room has a \(4 \mathrm{~m} \times 4 \mathrm{~m} \times 10 \mathrm{~cm}\) concrete roof \((K=1-26\) \(\mathrm{Wm}^{-1 \circ} \mathrm{C}^{-1}\) ). At some instant, the temperature outside is \(46^{\circ} \mathrm{C}\) and that inside is \(32^{\circ} \mathrm{C}\). (a) Neglecting convection, calculate the amount of heat flowing per second into the room through the roof. (b) Bricks \(\left(K=0 \cdot 65 \mathrm{Wm}^{-1 \circ} \mathrm{C}^{-1}\right)\) of thickness \(7.5 \mathrm{~cm}\) are laid down on the roof. Calculate the new rate of heat flow under the same temperature conditions.
The area of the roof
\(
=4 \mathrm{~m} \times 4 \mathrm{~m}=16 \mathrm{~m}^2 \text {. }
\)
The thickness \(x=10 \mathrm{~cm}=0 \cdot 10 \mathrm{~m}\).
(a) The thermal resistance of the roof is
\(
\begin{aligned}
R_1=\frac{1}{K} \frac{x}{A} & =\frac{1}{1 \cdot 26 \mathrm{~W} \mathrm{~m}^{-1} { }^{\circ} \mathrm{C}^{-1}} \frac{0 \cdot 10 \mathrm{~m}}{16 \mathrm{~m}^2} \\
& =4 \cdot 96 \times 10^{-8}{ }^{\circ} \mathrm{C} \mathrm{W}^{-1} .
\end{aligned}
\)
The heat current is
\(
\begin{aligned}
\frac{\Delta Q}{\Delta t} & =\frac{\theta_1-\theta_2}{R_1}=\frac{46^{\circ} \mathrm{C}-32^{\circ} \mathrm{C}}{4 \cdot 96 \times 10^{-3}{ }^{\circ} \mathrm{C} \mathrm{W}^{-1}} \\
& =2822 \mathrm{~W} .
\end{aligned}
\)
(b) The thermal resistance of the brick layer is
\(
\begin{aligned}
R_2=\frac{1}{K} \frac{x}{A}=\frac{1}{0.65 \mathrm{~W} \mathrm{~m}^{-1} { }^{\circ} \mathrm{C}^{-1}} \frac{7 \cdot 5 \times 10^{-2} \mathrm{~m}}{16 \mathrm{~m}^2}
& =7.2 \times 10^{-3}{ }^{\circ} \mathrm{C} \mathrm{W}^{-1} .
\end{aligned}
\)
The equivalent thermal resistance is
\(
\begin{aligned}
R & =R_1+R_2=(4 \cdot 96+7 \cdot 2) \times 10^{-3}{ }^{\circ} \mathrm{C} \mathrm{W}^{-1} \\
& =1.216 \times 10^{-2}{ }^{\circ} \mathrm{C} \mathrm{W}^{-1} .
\end{aligned}
\)
The heat current is
\(
\begin{aligned}
\frac{\Delta Q}{\Delta t} & =\frac{\theta_1-\theta_2}{R}=\frac{46^{\circ} \mathrm{C}-32^{\circ} \mathrm{C}}{1.216 \times 10^{-2}{ }^{\circ} \mathrm{C} \mathrm{W}^{-1}} . \\
& =1152 \mathrm{~W} .
\end{aligned}
\)
An electric heater is used in a room of total wall area \(137 \mathrm{~m}^2\) to maintain a temperature of \(20^{\circ} \mathrm{C}\) inside it, when the outside temperature is \(-10^{\circ} \mathrm{C}\). The walls have three different layers of materials. The innermost layer is of wood of thickness \(2.5 \mathrm{~cm}\), the middle layer is of cement of thickness \(1.0 \mathrm{~cm}\) and the outermost layer is of brick of thickness \(25.0 \mathrm{~cm}\). Find the power of the electric heater. Assume that there is no heat loss through the floor and the ceiling. The thermal conductivities of wood, cement and brick are \(0.125 \mathrm{Wm}^{-1_0} \mathrm{C}^{-1}, 1.5 \mathrm{Wm}^{-1_{\circ}} \mathrm{C}^{-1}\) and \(1.0 \mathrm{Wm}^{-1_{\circ}} \mathrm{C}^{-1}\) respectively.
The situation is shown in figure above.
The thermal resistances of the wood, the cement and the brick layers are
\(
\begin{aligned}
R_W & =\frac{1}{K} \frac{x}{A} \\
& =\frac{1}{0.125 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}} \frac{2.5 \times 10^{-2} \mathrm{~m}}{137 \mathrm{~m}^2} \\
& =\frac{0.20}{137}{ }^{\circ} \mathrm{C} \mathrm{W}^{-1}, \\
R_C & =\frac{1}{1.5 \mathrm{~W}{ }^{-1}{ }^{\circ} \mathrm{C}^{-1}} \frac{1.0 \times 10^{-2} \mathrm{~m}}{137 \mathrm{~m}^2} \\
& =\frac{0.0067}{137}{ }^{\circ} \mathrm{C} \mathrm{W}^{-1} \\
R_B & =\frac{1}{1.0 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}} \frac{25.0 \times 10^{-2} \mathrm{~m}}{137 \mathrm{~m}^2} \\
& =\frac{0.25}{137}{ }^{\circ} \mathrm{C} \mathrm{W}^{-1} .
\end{aligned}
\)
As the layers are connected in series, the equivalent thermal resistance is
\(
R=R_W+R_C+R_B
\)
\(
\begin{aligned}
& =\frac{0.20+0.0067+0.25}{137}{ }^{\circ} \mathrm{C} \mathrm{W}^{-1} \\
& =3.33 \times 10^{-3}{ }^{\circ} \mathrm{C} \mathrm{W}^{-1} .
\end{aligned}
\)
The heat current is
\(
\begin{aligned}
i & =\frac{\theta_1-\theta_2}{R} \\
& =\frac{20^{\circ} \mathrm{C}-\left(-10^{\circ} \mathrm{C}\right)}{3.33 \times 10^{-3}{ }^{\circ} \mathrm{C} \mathrm{W}{ }^{-1}} \approx 9000 \mathrm{~W} .
\end{aligned}
\)
The heater must supply \(9000 \mathrm{~W}\) to compensate the outflow of heat.
Three rods of material \(x\) and three of material \(y\) are connected as shown in figure below. All the rods are identical in length and cross sectional area. If the end \(A\) is maintained at \(60^{\circ} \mathrm{C}\) and the junction \(E\) at \(10^{\circ} \mathrm{C}\), calculate the temperature of the junction \(B\). The thermal conductivity of \(x\) is \(800 \mathrm{~W} \mathrm{~m}^{-10} \mathrm{C}^{-1}\) and that of \(y\) is \(400 \mathrm{~W} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\).
It is clear from the symmetry of the figure that the points \(C\) and \(D\) are equivalent in all respect and hence, they are at the same temperature, say \(\theta\). No heat will flow through the rod \(C D\). We can, therefore, neglect this rod in further analysis.
Let \(l\) and \(A\) be the length and the area of cross section of each rod. The thermal resistances of \(A B, B C\) and \(B D\) are equal. Each has a value
\(R_1=\frac{1}{K_x} \frac{l}{A} .\)
Similarly, thermal resistances of \(C E\) and \(D E\) are equal, each having a value
\(R_2=\frac{1}{K_y} \frac{l}{A} .\)
As the rod \(C D\) has no effect, we can say that the rods \(B C\) and \(C E\) are joined in series. Their equivalent thermal resistance is
\(R_3=R_{B C}+R_{C Z}=R_1+R_2 \text {. }\)
Also, the rods \(B D\) and \(D E\) together have an equivalent thermal resistance \(R_4=R_{D D}+R_{D E}=R_1+R_2\).
The resistances \(R_3\) and \(R_4\) are joined in parallel and hence their equivalent thermal resistance is given by
\(\frac{1}{R_5}=\frac{1}{R_3}+\frac{1}{R_4}=\frac{2}{R_3}\)
or,
\(R_5=\frac{R_3}{2}=\frac{R_1+R_2}{2}\)
This resistance \(R_5\) is connected in series with \(A B\). Thus, the total arrangement is equivalent to a thermal resistance
\(R=R_{A B}+R_{\mathrm{b}}=R_1+\frac{R_1+R_2}{2}=\frac{3 R_1+R_2}{2}\)
The figure below shows the successive steps in this reduction.
The heat current through \(A\) is
\(i=\frac{\theta_A-\theta_E}{R}=\frac{2\left(\theta_A-\theta_E\right)}{3 R_1+R_2}\)
This current passes through the rod \(A B\). We have
or, \(\quad \theta_A-\theta_B=\left(R_{A D}\right) i\)
\(i=\frac{\theta_A-\theta_B}{R_{A B}}\)
\(=R_1 \frac{2\left(\theta_A-\theta_{\bar{E}}\right)}{3 R_1+R_2} \text {. }\)
Putting from (i) and (ii),
\(
\begin{aligned}
\theta_A-\theta_B & =\frac{2 K_y\left(\theta_A-\theta_{\bar{Z}}\right)}{K_x+3 K_y} \\
& =\frac{2 \times 400}{800+3 \times 400} \times 50^{\circ} \mathrm{C}=20^{\circ} \mathrm{C}
\end{aligned}
\)
or,
\(\theta_B=\theta_A-20^{\circ} \mathrm{C}=40^{\circ} \mathrm{C} \text {. }\)
A rod \(C D\) of thermal resistance \(5.0 \mathrm{~K} \mathrm{~W}^{-1}\) is joined at the middle of an identical rod \(A B\) as shown in the figure below. The ends \(A, B\) and \(D\) are maintained at \(100^{\circ} \mathrm{C}\), \(0^{\circ} \mathrm{C}\) and \(25^{\circ} \mathrm{C}\) respectively. Find the heat current in \(C D\).
The thermal resistance of \(A C\) is equal to that of \(C B\) and is equal to \(2.5 \mathrm{~K} \mathrm{~W}^{-1}\). Suppose, the temperature at \(C\) is \(\theta\). The heat currents through \(A C\), \(C B\) and \(C D\) are
\(
\frac{\Delta Q_1}{\Delta t}=\frac{100^{\circ} \mathrm{C}-\theta}{2.5 \mathrm{~K} \mathrm{~W}^{-1}},
\)
\(
\begin{array}{rlrl}
\frac{\Delta Q_2}{\Delta t} & =\frac{\theta-0^{\circ} \mathrm{C}}{2 \cdot 5 \mathrm{~K} \mathrm{~W}^{-1}} \\
\text { and } & \frac{\Delta Q_3}{\Delta t} =\frac{\theta-25^{\circ} \mathrm{C}}{5 \cdot 0 \mathrm{~K} \mathrm{~W}^{-1}}
\end{array}
\)
We also have
\(
\frac{\Delta Q_1}{\Delta t}=\frac{\Delta Q_2}{\Delta t}+\frac{\Delta Q_3}{\Delta t}
\)
Thus,
\(\begin{aligned} \frac{100^{\circ} \mathrm{C}-\theta}{2 \cdot 5} & =\frac{\theta-0^{\circ} \mathrm{C}}{2 \cdot 5}+\frac{\theta-25^{\circ} \mathrm{C}}{5} \\ 225^{\circ} \mathrm{C} & =5 \theta \\ \theta & =45^{\circ} \mathrm{C} .\end{aligned}\)
\(
\frac{\Delta Q_3}{\Delta t}=\frac{45^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{5 \cdot 0 \mathrm{~K} \mathrm{~W}^{-1}}=\frac{20 \mathrm{~K}}{5 \cdot 0 \mathrm{~K} \mathrm{~W}^{-1}}
\)
\(
=4.0 \mathrm{~W} \text {. }
\)
Two thin metallic spherical shells of radii \(r_1\) and \(r_2\) \(\left(r_1<r_2\right)\) are placed with their centres coinciding. A material of thermal conductivity \(K\) is filled in the space between the shells. The inner shell is maintained at temperature \(\theta_1\) and the outer shell at temperature \(\theta_2\) \(\left(\theta_1<\theta_2\right)\). Calculate the rate at which heat flows radially through the material.
Let us draw two spherical shells of radii \(x\) and \(x+d x\) concentric with the given system. Let the temperatures at these shells be \(\theta\) and \(\theta+d \theta\) respectively. The amount of heat flowing radially inward through the material between \(x\) and \(x+d x\) is
\(
\frac{\Delta Q}{\Delta t}=\frac{K 4 \pi x^2 d \theta}{d x} .
\)
Thus,
\(
\begin{aligned}
K 4 \pi \int_{\theta_1}^{\theta_2} d \theta & =\frac{\Delta Q}{\Delta t} \int_{r_1}^{r_2} \frac{d x}{x^2} \\
K 4 \pi\left(\theta_2-\theta_1\right) & =\frac{\Delta Q}{\Delta t}\left(\frac{1}{r_1}-\frac{1}{r_2}\right) \\
\frac{\Delta Q}{\Delta t} & =\frac{4 \pi K r_1 r_2\left(\theta_2-\theta_1\right)}{r_2-r_1} .
\end{aligned}
\)
On a cold winter day, the atmospheric temperature is \(-\theta\) (on Celsius scale) which is below \(0^{\circ} \mathrm{C}\). A cylindrical drum of height \(h\) made of a bad conductor is completely filled with water at \(0^{\circ} \mathrm{C}\) and is kept outside without any lid. Calculate the time taken for the whole mass of water to freeze. Thermal conductivity of ice is \(K\) and its latent heat of fusion is L. Neglect expansion of water on freezing.
Suppose, the ice starts forming at time \(t=0\) and a thickness \(x\) is formed at time \(t\). The amount of heat flown from the water to the surrounding in the time interval \(t\) to \(t+d t\) is
\(
\Delta Q=\frac{K A \theta}{x} d t .
\)
The mass of the ice formed due to the loss of this amount of heat is
\(
d m=\frac{\Delta Q}{L}=\frac{K A \theta}{x L} d t .
\)
The thickness \(d x\) of ice formed in time \(d t\) is
\(
\begin{aligned}
d x & =\frac{d m}{A \rho}=\frac{K \theta}{\rho x L} d t \\
\text { or, } \quad d t & =\frac{\rho L}{K \theta} x d x .
\end{aligned}
\)
Thus, the time \(T\) taken for the whole mass of water to freeze is given by
\(
\begin{gathered}
\int_0^T d t=\frac{\rho L}{K \theta} \int_0^h x d x \\
T=\frac{\rho L h^2}{2 K \theta} .
\end{gathered}
\)
The figure below shows a large tank of water at a constant temperature \(\theta_0\) and a small vessel containing \(a\) mass \(m\) of water at an initial temperature \(\theta_1\left(<\theta_0\right)\). A metal rod of length \(L\), area of cross section \(A\) and thermal conductivity \(K\) connects the two vessels. Find the time taken for the temperature of the water in the smaller vessel to become \(\theta_2\left(\theta_1<\theta_2<\theta_0\right)\). Specific heat capacity of water is s and all other heat capacities are negligible.
Suppose, the temperature of the water in the smaller vessel is \(\theta\) at time \(t\). In the next time interval \(d t\), a heat \(\Delta Q\) is transferred to it where
\(
\Delta Q=\frac{K A}{L}\left(\theta_0-\theta\right) d t \dots(i)
\)
This heat increases the temperature of the water of mass \(m\) to \(\theta+d \theta\) where
\(
\Delta Q=m s d \theta \dots(ii)
\)
From (i) and (ii),
or,
\(
\frac{K A}{L}\left(\theta_0-\theta\right) d t=m s d \theta
\)
or,
\(
\begin{aligned}
d t & =\frac{L m s}{K A} \frac{d \theta}{\theta_0-\theta} \\
\int_0^T d t & =\frac{L m s}{K A} \int_{\theta_1}^{\theta_2} \frac{d \theta}{\theta_0-\theta}
\end{aligned}
\)
where \(T\) is the time required for the temperature of the water to become \(\theta_2\).
Thus,
\(
T=\frac{L m s}{K A} \ln \frac{\theta_0-\theta_1}{\theta_0-\theta_2}
\)
One mole of an ideal monatomic gas is kept in a rigid vessel. The vessel is kept inside a steam chamber whose temperature is \(97^{\circ} \mathrm{C}\). Initially, the temperature of the gas is \(5 \cdot 0^{\circ} \mathrm{C}\). The walls of the vessel have an inner surface of area \(800 \mathrm{~cm}^2\) and thickness \(1.0 \mathrm{~cm}\). If the temperature of the gas increases to \(9.0^{\circ} \mathrm{C}\) in \(5.0\) seconds, find the thermal conductivity of the material of the walls.
The initial temperature difference is \(97^{\circ} \mathrm{C}-5^{\circ} \mathrm{C}=92^{\circ} \mathrm{C}\) and at \(5.0 \mathrm{~s}\) the temperature difference becomes \(97^{\circ} \mathrm{C}-9^{\circ} \mathrm{C}=88^{\circ} \mathrm{C}\). As the change in the temperature difference is small, we work with the average temperature difference
\(
\frac{92^{\circ} \mathrm{C}+88^{\circ} \mathrm{C}}{2}=90^{\circ} \mathrm{C}=90 \mathrm{~K} .
\)
The rise in the temperature of the gas is
\(
9.0^{\circ} \mathrm{C}-5.0^{\circ} \mathrm{C}=4^{\circ} \mathrm{C}=4 \mathrm{~K} \text {. }
\)
The heat supplied to the gas in \(5.0 \mathrm{~s}\) is
\(
\begin{aligned}
\Delta Q & =n C_v \Delta T \\
& =(1 \mathrm{~mol}) \times\left(\frac{3}{2} \times 8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \times(4 \mathrm{~K}) \\
& =49 \cdot 8 \mathrm{~J} .
\end{aligned}
\)
If the thermal conductivity is \(K\),
\(
\begin{aligned}
49.8 \mathrm{~J} & =\frac{K\left(800 \times 10^{-4} \mathrm{~m}^2\right) \times(90 \mathrm{~K})}{1.0 \times 10^{-2} \mathrm{~m}} \times 5.0 \mathrm{~s} \\
\text { or, } \quad K & =\frac{49.8 \mathrm{~J}}{3600 \mathrm{msK}}=0.014 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1} .
\end{aligned}
\)
A monatomic ideal gas is contained in a rigid container of volume \(V\) with walls of total inner surface area \(A\), thickness \(x\) and thermal conductivity \(K\). The gas is at an initial temperature \(T_0\) and pressure \(p_0\). Find the pressure of the gas as a function of time if the temperature of the surrounding air is \(T_s\). All temperatures are in absolute scale.
As the volume of the gas is constant, a heat \(\Delta Q\) given to the gas increases its temperature by \(\Delta T=\Delta Q / C_v\). Also, for a monatomic gas, \(C_v=\frac{3}{2} R\). If the temperature of the gas at time \(t\) is \(T\), the heat current into the gas is
\(
\begin{array}{rlrl}
\frac{\Delta Q}{\Delta t}Â =\frac{K A\left(T_s-T\right)}{x} \\
\text { or, } & \frac{\Delta T}{\Delta t} =\frac{2 K A}{3 x R}\left(T_s-T\right) \\
\text { or, } & \int_{T_0}^T \frac{d T}{T_s-T} =\int_0^t \frac{2 K A}{3 x R} d t \\
\text { or, } & \ln \frac{T_s-T_0}{T_s-T} =\frac{2 K A}{3 x R} t \\
\text { or, } & T_s-T =\left(T_s-T_0\right) e^{-\frac{2 K A}{3 x R} t} \\
\text { or, } & T=T_s =\left(T_s-T_0\right) e^{-\frac{2 K A}{3 x R} t} .
\end{array}
\)
As the volume remains constant,
\(
\begin{aligned}
\frac{p}{T} & =\frac{p_0}{T_0} \\
\text { or, } \quad p & =\frac{p_0}{T_0} T \\
& =\frac{p_0}{T_0}\left[T_s-\left(T_s-T_0\right) e^{-\frac{2 K A}{3 x_R} t}\right] .
\end{aligned}
\)
A blackbody of surface area \(1 \mathrm{~cm}^2\) is placed inside an enclosure. The enclosure has a constant temperature \(27^{\circ} \mathrm{C}\) and the blackbody is maintained at \(327^{\circ} \mathrm{C}\) by heating it electrically. What electric power is needed to maintain the temperature \(? \sigma=6.0 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\).
The area of the blackbody is \(A=10^{-4} \mathrm{~m}^2\), its temperature is \(T_1=327^{\circ} \mathrm{C}=600 \mathrm{~K}\) and the temperature of the enclosure is \(T_2=27^{\circ} \mathrm{C}=300 \mathrm{~K}\). The blackbody emits radiation at the rate of \(A \sigma T_1^4\). The radiation falls on it (and gets absorbed) at the rate of \(A \sigma T_2^4\). The net rate of loss of energy is \(A \sigma\left(T_1^4-T_2^4\right)\). The heater must supply this much of power. Thus, the power needed is \(A \sigma\left(T_1^4-T_2^4\right)\) \(=\left(10^{-4} \mathrm{~m}^2\right)\left(6.0 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\right)\left[(600 \mathrm{~K})^4-(300 \mathrm{~K}){ }^4\right]\) \(=0.73 \mathrm{~W}\).
An electric heater emits \(1000 \mathrm{~W}\) of thermal radiation. The coil has a surface area of \(0.020 \mathrm{~m}^2\). Assuming that the coil radiates like a blackbody, find its temperature. \(\sigma=6.00 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\)
Let the temperature of the coil be \(T\). The coil will emit radiation at a rate \(A \sigma T^4\). Thus,
\(
\begin{aligned}
1000 \mathrm{~W} & =\left(0.020 \mathrm{~m}^2\right) \times\left(6.0 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\right) \times T^4 \\
\text { or, } \quad T^4 & =\frac{1000}{0.020 \times 6.00 \times 10^{-8}} \mathrm{~K}^4 \\
& =8.33 \times 10^{11} \mathrm{~K}^4 \\
\text { or, } \quad T & =955 \mathrm{~K} .
\end{aligned}
\)
The earth receives solar radiation at a rate of \(8.2 \mathrm{~J} \mathrm{~cm}^{-2} \min ^{-1}\). Assuming that the sun radiates like a blackbody, calculate the surface temperature of the sun. The angle subtended by the sun on the earth is \(0.53^{\circ}\) and the Stefan constant \(\sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\).
Let the diameter of the sun be \(D\) and its distance from the earth be \(R\). From the question,
\(
\begin{aligned}
\frac{D}{R} & \approx 0.53 \times \frac{\pi}{180} \\
& =9.25 \times 10^{-3} \dots(i)
\end{aligned}
\)
The radiation emitted by the surface of the sun per unit time is
\(
4 \pi\left(\frac{D}{2}\right)^2 \sigma T^4=\pi D^2 \sigma T^4 .
\)
At distance \(R\), this radiation falls on an area \(4 \pi R^2\) in unit time. The radiation received at the earth’s surface per unit time per unit area is, therefore,
\(
\begin{aligned}
& \frac{\pi D^2 \sigma T^4}{4 \pi R^2}=\frac{\sigma T^4}{4}\left(\frac{D}{R}\right)^2 \\
& \text { Thus, } \quad \frac{\sigma T^4}{4}\left(\frac{D}{R}\right)^2=8.2 \mathrm{~J} \mathrm{~cm}^{-2} \mathrm{~min}^{-1} \\
& \text { or, } \quad \frac{1}{4} \times\left(5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\right) T^4 \times\left(9.25 \times 10^{-3}\right)^2 \\
&=\frac{8.2}{10^{-4} \times 60} \mathrm{~W} \mathrm{~m}^{-2} \\
& \text { or, } \quad T=5794 \mathrm{~K} \approx 5800 \mathrm{~K} .
\end{aligned}
\)
The temperature of a body falls from \(40^{\circ} \mathrm{C}\) to \(36^{\circ} \mathrm{C}\) in 5 minutes when placed in a surrounding of constant temperature \(16^{\circ} \mathrm{C}\). Find the time taken for the temperature of the body to become \(32^{\circ} \mathrm{C}\).
As the temperature differences are small, we can use Newton’s law of cooling.
or, \(\quad \frac{d \theta}{\theta-\theta_0}=-k d t\)
where \(k\) is a constant, \(\theta\) is the temperature of the body at time \(t\) and \(\theta_0=16^{\circ} \mathrm{C}\) is the temperature of the surrounding. We have,
\(
\begin{aligned}
& \int_{40^{\circ} \mathrm{C}}^{36 \mathrm{C}} \frac{d \theta}{\theta-\theta_0}=-k(5 \mathrm{~min}) \\
& \text { or, } \quad \ln \frac{36^{\circ} \mathrm{C}-16^{\circ} \mathrm{C}}{40^{\circ} \mathrm{C}-16^{\circ} \mathrm{C}}=-k(5 \min ) \\
& \text { or, } \quad k=-\frac{\ln (5 / 6)}{5 \mathrm{~min}} \text {. } \\
&
\end{aligned}
\)
If \(t\) be the time required for the temperature to fall from \(36^{\circ} \mathrm{C}\) to \(32^{\circ} \mathrm{C}\) then by (i),
\(
\begin{aligned}
\int_{36^{\circ} \mathrm{C}}^{32^{\circ} \mathrm{C}} \frac{d \theta}{\theta-\theta_0} & =-k t \\
\text { or, } \quad \ln \frac{32^{\circ} \mathrm{C}-16^{\circ} \mathrm{C}}{36^{\circ} \mathrm{C}-16^{\circ} \mathrm{C}} & =\frac{\ln (5 / 6) t}{5 \min } \\
\text { or, } \quad t & =\frac{\ln (4 / 5)}{\ln (5 / 6)} \times 5 \mathrm{~min} \\
& =6.1 \mathrm{~min} .
\end{aligned}
\)
A hot body placed in air is cooled down according to Newton’s law of cooling, the rate of decrease of temperature being \(k\) times the temperature difference from the surrounding. Starting from \(t=0\), find the time in which the body will lose half the maximum heat it can lose.
We have,
\(
\frac{d \theta}{d t}=-k\left(\theta-\theta_0\right)
\)
where \(\theta_0\) is the temperature of the surrounding and \(\theta\) is the temperature of the body at time \(t\). Suppose \(\theta=\theta_1\) at \(t=0\).
Then,
or,
\(
\begin{aligned}
& \int_{\theta_1}^\theta \frac{d \theta}{\theta-\theta_0} & =-k \int_0^t d t \\
\text { or, } & \ln \frac{\theta-\theta_0}{\theta_1-\theta_0} & =-k t \\
\text { or, } & \theta-\theta_0 & =\left(\theta_1-\theta_0\right) e^{-k t} .
\end{aligned}
\)
The body continues to lose heat till its temperature becomes equal to that of the surrounding. The loss of heat in this entire period is
\(
\Delta Q_m=m s\left(\theta_1-\theta_0\right) .
\)
This is the maximum heat the body can lose. If the body loses half this heat, the decrease in its temperature will be,
\(
\frac{\Delta Q_m}{2 m s}=\frac{\theta_1-\theta_0}{2} .
\)
If the body loses this heat in time \(t_1\), the temperature at \(t_1\) will be
\(
\theta_1-\frac{\theta_1-\theta_0}{2}=\frac{\theta_1+\theta_0}{2} .
\)
Putting these values of time and temperature in (i),
\(
\begin{aligned}
& \frac{\theta_1+\theta_0}{2}-\theta_0=\left(\theta_1-\theta_0\right) e^{-k t_1} \\
& \text { or, } \quad e^{-k t_1}=\frac{1}{2} \\
&
\end{aligned}
\)
or,
\(t_1=\frac{\ln 2}{k}\).
Consider a cubical vessel of edge a having a small hole in one of its walls. The total thermal resistance of the walls is \(r\). At time \(t=0\), it contains air at atmospheric pressure \(p_a\) and temperature \(T_0\). The temperature of the surrounding air is \(T_a\left(>T_0\right)\). Find the amount of the gas (in moles) in the vessel at time t. Take \(C_v\) of air to be \(5 R / 2\).
As the gas can leak out of the hole, the pressure inside the vessel will be equal to the atmospheric pressure \(p_a\). Let \(n\) be the amount of the gas (moles) in the vessel at time \(t\). Suppose an amount \(\Delta Q\) of heat is given to the gas in time \(d t\). Its temperature increases by \(d T\) where
\(
\Delta Q=n C_p d T
\)
If the temperature of the gas is \(T\) at time \(t\), we have
\(
\frac{\Delta Q}{d t}=\frac{T_a-T}{r}
\)
or, \(\quad\left(C_p r\right) n d T=\left(T_a-T\right) d t \dots(i)\).
We have, \(\quad p_a a^3=n R T\)
or, \(\quad n d T+T d n=0\)
or, \(\quad n d T=-T d n \dots(ii)\).
Also, \(\quad T=\frac{p_a a^3}{n R} \dots(iii)\).
Using (ii) and (iii) in (i),
\(
\begin{aligned}
& \frac{-C_p r p_a a^3}{n R} d n=\left(T_a-\frac{p_a a^3}{n R}\right) d t \\
& \text { or, } \quad \frac{d n}{n R\left(T_a-\frac{p_a a^3}{n R}\right)}=-\frac{d t}{C_p r p_a a^3} \\
& \text { or, } \quad \int_{n_0}^n \frac{d n}{n R T_a-p_a a^3}=-\int_0^t \frac{d t}{C_p r p_a a^3}
\end{aligned}
\)
where \(n_0=\frac{p_a a^3}{R T_0}\) is the initial amount of the gas in the vessel. Thus,
\(
\begin{aligned}
& \qquad \frac{1}{R T_a} \ln \frac{n R T_a-p_a a^3}{n_0 R T_a-p_a a^3}=-\frac{t}{C_p r p_a a^3} \\
& \text { or, } \quad n R T_a-p_a a^3=\left(n_0 R T_a-p_a a^3\right) e^{-\frac{R T_a}{C_p r p_a a^3} t} . \\
& \text { Writing } \quad n_0=\frac{p_a a^3}{R T_0} \text { and } C_p=C_v+R=\frac{7 R}{2}, \\
& n=\frac{p_a a^3}{R T_a}\left[1+\left(\frac{T_a}{T_0}-1\right) e^{-\frac{2 T_a}{7 r p_a a^3} t}\right] .
\end{aligned}
\)
You cannot copy content of this page