0 of 44 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 44 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
A 50 kg girl wearing high heel shoes balances on a single heel. The heel is circular with a diameter \(1.0 \mathrm{~cm}\). What is the pressure exerted by the heel on the horizontal floor?
\(
\begin{array}{rlrl}
\text { Mass of girl, } m =50 \mathrm{~kg} . \\
\therefore \text { Force on the heel, } FÂ =m g=50 \times 9.8=490 \mathrm{~N} \\
\text { Diameter, } DÂ =1.0 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m} \\
\therefore \quad \text { Area, } AÂ =\frac{\pi D^2}{4}=\frac{3.14 \times\left(1 \times 10^{-2}\right)^2}{4}=7.85 \times 10^{-5} \mathrm{~m}^2 \\
\therefore \quad \text { Pressure, } PÂ =\frac{F}{A}=\frac{490}{7.85 \times 10^{-5}}=6.24 \times 10^6 \mathrm{~Pa} .
\end{array}
\)
Toricelli’s barometer used mercury. Pascal duplicated it using French wine of density \(984 \mathrm{~kg} \mathrm{~m}{ }^{-3}\). Determine the height of the wine column for normal atmospheric pressure.
We know that atmospheric pressure, \(P=1.01 \times 10^5 \mathrm{~Pa}\).
If we use French wine of density, \(\rho=984 \mathrm{~kg} \mathrm{~m}^{-3}\), then the height of the wine column should be \(h_{m^{\prime}}\) such that \(P=h \rho g\)
\(
\Rightarrow \quad h_m=\frac{P}{\rho g}=\frac{1.01 \times 10^5}{984 \times 9.8}=10.47 \mathrm{~m} \simeq 10.5 \mathrm{~m}
\)
A vertical off-shore structure is built to withstand a maximum stress of \(10^9 \mathrm{~Pa}\). Is the structure suitable for putting up on top of an oil well in the ocean? Take the depth of the ocean to be roughly \(3 \mathrm{~km}\), and ignore ocean currents.
Here, Maximum stress \(=10^9 \mathrm{~Pa}, \mathrm{~h}=3 \mathrm{~km}=3 \times 10^3 \mathrm{~m}\);
\(p\) (water) \(=10^3 \mathrm{~kg} / \mathrm{m}^3\) and \(g=9.8 \mathrm{~m} / \mathrm{s}^2\).
The structure will be suitable for putting upon top of an oil well provided the pressure exerted by seawater is less than the maximum stress it can bear.
Pressure due to sea water, \(P=h \rho g=3 \times 10^3 \times 10^3 \times 9.8 \mathrm{~Pa}=2.94 \times 10^7 \mathrm{~Pa}\)
Since the pressure of seawater is less than the maximum
A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000 kg. The area of cross-section of the piston carrying the load is \(425 \mathrm{~cm}^2\). What maximum pressure would the smaller piston have to bear?
Pressure on the piston due to car
\(
\begin{aligned}
& =\frac{\text { Weight of car }}{\text { Area of piston }} \\
P & =\frac{3000 \times 9.8}{425 \times 10^{-4}} \mathrm{Nm}^{-2}=6.92 \times 10^5 \mathrm{~Pa}
\end{aligned}
\)
This is also the maximum pressure that the smaller piston would have to bear.
A U-tube contains water and methylated spirit separated by mercury. The mercury columns in the two arms are in level with \(10.0 \mathrm{~cm}\) of water in one arm and \(12.5 \mathrm{~cm}\) of spirit in the other. What is the specific gravity of spirit?
For water column in one arm of \(U\) tube, \(h_1=10.0 \mathrm{~cm} ; \rho_1\) (density) \(=1 \mathrm{~g} \mathrm{~cm}^{-3}\)
For spirit column in other arm of U tube, \(h_2=12.5 \mathrm{~cm} ; \rho_2=\) ?
As the mercury columns in the two arms of \(U\) tube are in level, therefore pressure exerted by each is equal.
Hence \(h_1 \rho_1 g=h_2 \rho_2 g\) or \(\rho_2=h_1 \rho_1 / h_2=10 \times 1 / 12.5=0.8 \mathrm{~g} \mathrm{~cm}^{-3}\)
Therefore, relative density of spirit \(=\rho_2 / \rho_1=0.8 / 1=0.8\)
In the previous problem, if \(15.0 \mathrm{~cm}\) of water and spirit each are further poured into the respective arms of the tube, what is the difference in the levels of mercury in the two arms? (Specific gravity of mercury \(=13.6\) )
Height of the water column, \(h_1=10+15=25 \mathrm{~cm}\)
Height of the spirit column, \(h_2=12.5+15=27.5 \mathrm{~cm}\)
Density of water, \(\rho_1=1 \mathrm{~g} \mathrm{~cm}^{-3}\)
Density of spirit, \(\rho_2=0.8 \mathrm{~g} \mathrm{~cm}^{-3}\)
Density of mercury \(=13.6 \mathrm{~g} \mathrm{~cm}^{-3}\)
Let \(h\) be the difference between the levels of mercury in the two arms.
Pressure exerted by height \(h\), of the mercury column:
\(=h p \mathrm{~g}\)
\(=h \times 13.6 g \ldots\) (i)
Difference between the pressures exerted by water and spirit:
\(
\begin{aligned}
& =\rho_1 h_1 g-\rho_2 h_2 g \\
& =g(25 \times 1-27.5 \times 0.8) \\
& =3 g \ldots \text { (ii) }
\end{aligned}
\)
Equating equations (i) and (ii), we get:
\(
\begin{aligned}
& 13.6 \mathrm{hg}=3 \mathrm{~g} \\
& h=0.220588 \approx 0.221 \mathrm{~cm}
\end{aligned}
\)
Hence, the difference between the levels of mercury in the two arms is \(0.221 \mathrm{~cm}\).
Can Bernoulli’s equation be used to describe the flow of water through a rapid motion in a river?
Bernoulli’s equation cannot be used to describe the flow of water through a rapid in a river because of the turbulent flow of water. This principle can only be applied to a streamlined flow. Bernoulli’s equation itself is derived under the condition it must be a streamline flow.
Does it matter if one uses gauge instead of absolute pressures in applying Bernoulli’s equation?Â
No, it does not matter if one uses gauge instead of absolute pressures in applying Bernoulli’s equation, provided the atmospheric pressure at the two points where Bernoulli’s equation is applied are significantly different.
Glycerine flows steadily through a horizontal tube of length \(1.5 \mathrm{~m}\) and radius \(1.0\) \(\mathrm{cm}\). If the amount of glycerine collected per second at one end is \(4.0 \times 10^{-3} \mathrm{~kg} \mathrm{~s}^{-1}\), what is the pressure difference between the two ends of the tube? (Density of glycerine \(=1.3 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\) and viscosity of glycerine \(=0.83 \mathrm{~Pa}\) s). [You may also like to check if the assumption of laminar flow in the tube is correct].
\(
\begin{aligned}
l & =1.5 \mathrm{~m}, \quad r=1 \times 10^{-2} \mathrm{~m}, \\
\text { Volume/s, } \quad V & =\frac{\text { Mass } / \mathrm{s}}{\text { Density }}=\frac{4 \times 10^{-3}}{1.3 \times 10^3} \mathrm{~m}^3 \mathrm{~s}^{-1} \\
& =\frac{4}{1.3} \times 10^{-6} \mathrm{~m}^3 \mathrm{~s}^{-1} \\
\eta & =0.83 \mathrm{~Pa} \mathrm{~s} \\
\text { Now, } \quad V & =\frac{\pi p r^4}{8 \eta l},
\end{aligned}
\)
where \(p\) is the pressure difference across the capillary.
or
\(
p=\frac{8 V \eta l}{\pi r^4}
\)
Substituting values,
\(
\begin{aligned}
p & =\& \times \frac{4}{1.3} \times 10^{-6} \times 0.83 \times 1.5 \times \frac{7}{22} \times \frac{1}{10^{-8}} \mathrm{~Pa} \\
& =9.75 \times 10^2 \mathrm{~Pa}
\end{aligned}
\)
The Reynolds number is \(0.3\). So, the flow is laminar.
In a test experiment on a model aeroplane in a wind tunnel, the flow speeds on the upper and lower surfaces of the wing are \(70 \mathrm{~m} \mathrm{~s}^{-1}\) and \(63 \mathrm{~m} \mathrm{~s}^{-1}\) respectively. What is the lift on the wing if its area is \(2.5 \mathrm{~m}^2\)? Take the density of air to be \(1.3 \mathrm{~kg} \mathrm{~m}^{-3}\).
Let \(v_1, v_2\) be the speeds on the upper and lower surfaces of the wing of aeroplane, and \(P_1\) and \(P_2\) be the pressures on upper and lower surfaces of the wing respectively. Then \(v_1=70 \mathrm{~ms}^{-1} ; \quad v_2=63 \mathrm{~ms}^{-1} ; \rho=1.3 \mathrm{~kg} \mathrm{~m}^{-3}\).
From Bernoulli’s theorem
\(
\begin{array}{rlrl}
\frac{P_1}{\rho}+g h+\frac{1}{2} v_1^2 & =\frac{P_2}{\rho}+g h+\frac{1}{2} v_2^2 \\
\therefore & \frac{P_1}{\rho}-\frac{P_2}{\rho} & =\frac{1}{2}\left(v_2^2-v_1^2\right)
\end{array}
\)
or
\(
P_1-P_2=\frac{1}{2} \rho\left(v_2^2-v_1^2\right)=\frac{1}{2} \times 1.3\left[(70)^2-(63)^2\right] \mathrm{Pa}=605.15 \mathrm{~Pa} .
\)
This difference of pressure provides the lift to the aeroplane. So, lift on the aeroplane \(=\) pressure difference \(\times\) area of wings
\(
\begin{aligned}
& =605.15 \times 2.5 \mathrm{~N}=1512.875 \mathrm{~N} \\
& =1.51 \times 10^3 \mathrm{~N} .
\end{aligned}
\)
Figures (a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures in incorrect?Â
Figure (a) is incorrect. It is because of the fact that at the kink, the velocity of the flow of liquid is large, and hence using Bernoulli’s theorem the pressure is less. As a result, the water should not rise higher in the tube where there is a kink (i.e., where the area of the cross-section is small).
The cylindrical tube of a spray pump has a cross-section of \(8.0 \mathrm{~cm}^2\) one end of which has 40 fine holes each of diameter \(1.0 \mathrm{~mm}\). If the liquid flow inside the tube is \(1.5 \mathrm{~m} \mathrm{~min}^{-1}\), what is the speed of ejection of the liquid through the holes?
Total cross-sectional area of 40 holes, \(a_2\)
\(
\begin{aligned}
& =40 \times \frac{22}{7} \times \frac{\left(1 \times 10^{-3}\right)^2}{4} \mathrm{~m}^2 \\
& =\frac{22}{7} \times 10^{-5} \mathrm{~m}^2
\end{aligned}
\)
Cross-sectional area of tube, \(a_1=8 \times 10^{-4} \mathrm{~m}^2\)
Speed inside the tube, \(v_1=1.5 \mathrm{~m} \mathrm{~min}^{-1}=\frac{1.5}{60} \mathrm{~ms}^{-1}\);
Speed of ejection, \(\quad v_2=\)?
Using \(a_2 v_2=a_1 v_1\)
we get
\(
v_2=\frac{a_1 v_1}{a_2}=\frac{8 \times 10^{-4} \times \frac{1.5}{60} \times 7}{22 \times 10^{-5}} \mathrm{~ms}^{-1}=0.64 \mathrm{~ms}^{-1} .
\)
A U-shaped wire is dipped in a soap solution and removed. The thin soap film formed between the wire and the light slider supports a weight of \(1.5 \times 10^{-2} \mathrm{~N}\) (which includes the small weight of the slider). The length of the slider is \(30 \mathrm{~cm}\). What is the surface tension of the film?
In present case force of surface tension is balancing the weight of \(1.5 \times 10^{-2} \mathrm{~N}\), hence force of surface tension, \(F=1.5 \times 10^{-2} \mathrm{~N}\).
Total length of liquid film, \(l=2 \times 30 \mathrm{~cm}=60 \mathrm{~cm}=0.6 \mathrm{~m}\) because the liquid film has two surfaces.
Surface tension, \(T=F / l=1.5 \times 10^{-2} \mathrm{~N} / 0.6 \mathrm{~m}=2.5 \times 10^{-2} \mathrm{Nm}^{-1}\)
The figure below (a) shows a thin liquid film supporting a small weight \(=4.5 \times 10^{-2} \mathrm{~N}\). What is the weight supported by a film of the same liquid at the same temperature in Fig. (b) and (c)? Explain your answer physically.
Take case (a):
The length of the liquid film supported by the weight, \(l=40 \mathrm{~cm}=0.4 \mathrm{~cm}\)
The weight supported by the film, \(W=4.5 \times 10^{-2} \mathrm{~N}\)
A liquid film has two free surfaces.
\(\therefore\) Surface tension \(=W / 2l\)
\(
\begin{aligned}
& =4.5 \times 10^{-2} /(2 \times 0.4) \\
& =5.625 \times 10^{-2} \mathrm{~N} / \mathrm{m}
\end{aligned}
\)
In all the three figures, the liquid is the same.
Temperature is also the same for each case.
Hence, the surface tension in figure (b) and figure (c) is the same as in figure (a).
i.e., \(5.625 \times 10^{-2} \mathrm{~N} \mathrm{~m}^{-1}\).
Since the length of the film in all the cases is \(40 \mathrm{~cm}\), the weight supported in each case is \(4.5 \times 10^{-2} \mathrm{~N}\).
What is the pressure inside the drop of mercury of radius \(3.00 \mathrm{~mm}\) at room temperature? Surface tension of mercury at that temperature \(\left(20^{\circ} \mathrm{C}\right)\) is \(4.65 \times\) \(10^{-1} \mathrm{~N} \mathrm{~m}^{-1}\). The atmospheric pressure is \(1.01 \times 10^5 \mathrm{~Pa}\). Also give the excess pressure inside the drop.
\(
\begin{aligned}
\text { Excess pressure } & =\frac{2 \sigma}{R}=\frac{2 \times 4.65 \times 10^{-1}}{3 \times 10^{-3}}=310 \mathrm{~Pa} \\
\text { Total pressure } & =1.01 \times 10^5+\frac{2 \sigma}{R} \\
& =1.01 \times 10^5+310=1.0131 \times 10^5 \mathrm{~Pa}
\end{aligned}
\)
Since data is correct up to three significant figures, we should write total pressure inside the drop as \(1.01 \mathrm{x}\) \(10^5 \mathrm{~Pa}\).
What is the excess pressure inside a bubble of soap solution of radius \(5.00 \mathrm{~mm}\), given that the surface tension of soap solution at the temperature \(\left(20^{\circ} \mathrm{C}\right)\) is \(2.50 \times\) \(10^{-2} \mathrm{~N} \mathrm{~m}^{-1}\)? If an air bubble of the same dimension were formed at depth of \(40.0\) \(\mathrm{cm}\) inside a container containing the soap solution (of relative density 1.20), what would be the pressure inside the bubble? ( 1 atmospheric pressure is \(1.01 \times 10^5 \mathrm{~Pa}\) ).
Here surface tension of soap solution at room temperature
\(\mathrm{T}=2.50 \times 10^{-2} \mathrm{Nm}^{-1}\), radius of soap bubble, \(r=5.00 \mathrm{~mm}=5.00 \times 10^{-3} \mathrm{~m}\).
\(\therefore\) Excess pressure inside soap bubble, \(P=P_i-P_0=\frac{4 T}{r}\)
\(
=\frac{4 \times 2.50 \times 10^{-2}}{5.00 \times 10^{-3}}=20.0 \mathrm{~Pa}
\)
When an air bubble of radius \(r=5.00 \times 10^{-3} \mathrm{~m}\) is formed at a depth \(h=40.0 \mathrm{~cm}=\) \(0.4 \mathrm{~m}\) inside a container containing a soap solution of relative density \(1.20\) or density \(\rho=1.20 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\), then excess pressure
\(
\begin{aligned}
P & =P_i-P_0=\frac{2 T}{r} \\
\therefore \quad P_i & =P_0+\frac{2 T}{r}=\left(\mathrm{P}_a+h \rho g\right)+\frac{2 T}{r} \\
& =\left[1.01 \times 10^5+0.4 \times 1.2 \times 10^3 \times 9.8+\frac{2 \times 2.50 \times 10^{-2}}{5.00 \times 10^{-3}}\right] \mathrm{Pa} \\
& =\left(1.01 \times 10^5+4.7 \times 10^3+10.0\right) \mathrm{Pa} \\
& \simeq 1.06 \times 10^5 \mathrm{~Pa} .
\end{aligned}
\)
A tank with a square base of area \(1.0 \mathrm{~m}^2\) is divided by a vertical partition in the middle. The bottom of the partition has a small-hinged door of area \(20 \mathrm{~cm}^2\). The tank is filled with water in one compartment, and an acid (of relative density 1.7) in the other, both to a height of \(4.0 \mathrm{~m}\). compute the force necessary to keep the door close.
Pressure difference across the door
\(
\begin{aligned}
= & (4 \times 1700 \times 9.8-4 \times 1000 \times 9.8) \mathrm{Pa} \\
\left(6.664 \times 10^4-3.92 \times 10^4\right) & \mathrm{Pa}=2.774 \times 10^4 \mathrm{~Pa} \\
\text { Force on the door } & =\text { Pressure difference } \times \text { Area of door } \\
& =2.774 \times 10^4 \times 20 \times 10^{-4} \mathrm{~N} \\
& =54.88 \mathrm{~N}=55 \mathrm{~N} .
\end{aligned}
\)
Note. The base area does not affect the answer.
A manometer reads the pressure of a gas in an enclosure as shown in Figure below (a) When a pump removes some of the gas, the manometer reads as in Figure below (b) The liquid used in the manometers is mercury and the atmospheric pressure is 76 \(\mathrm{cm}\) of mercury.
(a) Give the absolute and gauge pressure of the gas in the enclosure for cases (a) and (b), in units of cm of mercury.
(b) How would the levels change in case (b) if \(13.6 \mathrm{~cm}\) of water (immiscible with mercury) are poured into the right limb of the manometer? (Ignore the small change in the volume of the gas).
The atmospheric pressure, \(P=76 \mathrm{~cm}\) of mercury
(a) From figure \((a)\),
Pressure head, \(\quad h=20 \mathrm{~cm}\) of mercury
\(\therefore\) Absolute pressure \(=p+h=76+20=96 \mathrm{~cm}\) of mercury
Also, Gauge pressure \(=h=20 \mathrm{~cm}\) of mercury
From figure \((b)\),
pressure head, \(\quad h=-18 \mathrm{~cm}\) of mercury
\(\therefore\) Absolute pressure \(=p+h=76+(-18)=58 \mathrm{~cm}\) of mercury
Also, Gauge pressure \(=h=-18 \mathrm{~cm}\) of mercury
(b) When \(13.6 \mathrm{~cm}\) of water is poured into the right limb of the manometer of figure \((b)\), then, using the relation:
\(
\text { Pressure }=\rho g h=\rho^{\prime} g^{\prime} h^{\prime}
\)
We get \(h^{\prime}=\frac{\rho h}{\rho^{\prime}}=\frac{1 \times 13.6}{13.6}=1 \mathrm{~cm}\) of mercury
\(\left[\rho^{\prime}=\right.\) density of mercury \(]\)
Therefore, pressure at the point \(B\),
\(
p_B=P+h^{\prime}=76+1=77 \mathrm{~cm} \text { of mercury }
\)
If \(h^{\prime \prime}\) is the difference in the mercury levels in the two limbs, then taking \(P_A=P_B\) \(\Rightarrow \quad 58+h^{\prime \prime}=77 \Rightarrow h^{\prime \prime}=77-58=19 \mathrm{~cm}\) of mercury.
Two vessels have the same base area but different shapes. The first vessel takes twice the volume of water that the second vessel requires to fill upto a particular common height. Is the force exerted by the water on the base of the vessel the same in the two cases ? If so, why do the vessels filled with water to that same height give different readings on a weighing scale ?
 Pressure (and therefore force) on the two equal base areas are identical. But force is exerted by water on the sides of the vessels also, which has a non-zero vertical component when sides of the vessel are not perfectly normal to the base. This net vertical component of force by water on the sides of the vessel is greater for the first vessel than the second. Hence, the vessels weigh different even when the force on the base is the same in the two cases.
During blood transfusion, the needle is inserted in a vein where the gauge pressure is \(2000 \mathrm{~Pa}\). At what height must the blood container be placed so that blood may just enter the vein? \(
\text { Given density of whole blood }=1.06 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}
\)
\(h=P / \rho g=200 /\left(1.06 \times 10^3 \times 9.8\right)=0.1925 \mathrm{~m}\)
The blood may just enter the vein if the height at which the blood container be kept must be slightly greater than \(0.1925 \mathrm{~m} = 0.2 \mathrm{~m}\).
In deriving Bernoulli’s equation, we equated the work done on the fluid in the tube to its change in the potential and kinetic energy. (a) What is the largest average velocity of blood flow in an artery of diameter \(2 \times 10^{-3} \mathrm{~m}\) if the flow must remain laminar ? (b) Do the dissipative forces become more important as the fluid velocity increases? Discuss qualitatively.
(a) If dissipative forces are present, then some forces in liquid flow due to pressure difference is spent against dissipative forces, due to which the pressure drop becomes large.
(b) The dissipative forces become more important with increasing flow velocity, because of turbulence.
(a) What is the largest average velocity of blood flow in an artery of radius \(2 \times 10^{-3} \mathrm{~m}\) if the flow must remain lanimar? (b) What is the corresponding flow rate ? (Take viscosity of blood to be \(2.084 \times 10^{-3} \mathrm{~Pa}\) s).
Here,
\(
\begin{aligned}
& r=2 \times 10^{-3} \mathrm{~m} ; \quad D=2 r=2 \times 2 \times 10^{-3}=4 \times 10^{-3} \mathrm{~m} ; \\
& \eta=2.084 \times 10^{-3} \quad \text { Pa-s; } \rho=1.06 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3} .
\end{aligned}
\)
For flow to be laminar, \(N_R=2000\)
(a) Now, \(v_{\mathrm{c}}=\frac{N_R \eta}{\rho D}=\frac{2000 \times\left(2.084 \times 10^{-3}\right)}{\left(1.06 \times 10^3\right) \times\left(4 \times 10^{-3}\right)}=0.98 \mathrm{~m} / \mathrm{s}\).
(b) Volume flowing per second \(=\pi r^2 v_c=\frac{22}{7} \times\left(2 \times 10^{-3}\right)^2 \times 0.98=1.24 \times 10^{-5} \mathbf{m}^3 \mathrm{~s}^{-1}\).
A plane is in level flight at constant speed and each of its two wings has an area of \(25 \mathrm{~m}^2\). If the speed of the air is \(180 \mathrm{~km} / \mathrm{h}\) over the lower wing and \(234 \mathrm{~km} / \mathrm{h}\) over the upper wing surface, determine the plane’s mass. (Take air density to be \(1 \mathrm{~kg}\) \(\mathrm{m}^{-3} \mathrm{y}\)
Here speed of air over lower wing, \(v_1=180 \mathrm{~km} / \mathrm{h}=180 \times \frac{5}{18}=50 \mathrm{~ms}^{-1}\)
Speed over the upper wing, \(v_2=234 \mathrm{~km} / \mathrm{h}=234 \times \frac{5}{18}=65 \mathrm{~ms}^{-1}\)
\(\therefore\) Pressure difference, \(P_1-P_2=\frac{1}{2} \rho\left(v_2^2-v_1^2\right)=\frac{1}{2} \times 1\left(65^2-50^2\right)=862.5 \mathrm{~Pa}\)
\(\therefore\) Net upward force, \(F=\left(P_1-P_2\right) A\)
This upward force balances the weight of the plane.
\(
\begin{array}{ll}
\therefore \quad m g & =F=\left(P_1-P_2\right) A \\
\therefore \quad & {\left[A=25 \times 2=50 \mathrm{~m}^2\right]} \\
& m=\frac{\left(P_1-P_2\right) A}{g}=\frac{862.5 \times 50}{9.8}=4400 \mathrm{~Kg} .
\end{array}
\)
In Millikan’s oil drop experiment, what is the terminal speed of an uncharged drop of radius \(2.0 \times 10^{-5} \mathrm{~m}\) and density \(1.2 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\). Take the viscosity of air at the temperature of the experiment to be \(1.8 \times 10^{-5} \mathrm{~Pa} \mathrm{~s}\). How much is the viscous force on the drop at that speed? Neglect buoyancy of the drop due to air.
Here radius of drop, \(r=2.0 \times 10^{-5} \mathrm{~m}\), density of drop, \(p=1.2 \times 10^3 \mathrm{~kg} / \mathrm{m}^3\), viscosity of air \(\mathrm{TI}=1.8 \mathrm{x}\) \(10^{-5} \mathrm{~Pa}-\mathrm{s}\)
Neglecting upward thrust due to air, we find that terminal speed is
\(
\begin{aligned}
v_T & =\frac{2}{9} \frac{r^2 \rho g}{\eta}=\frac{2 \times\left(2.0 \times 10^{-5}\right)^2 \times\left(1.2 \times 10^3\right) \times 9.8}{9 \times\left(1.8 \times 10^{-5}\right)} \\
& =5.81 \times 10^{-2} \mathrm{~ms}^{-1} \quad \text { or } 5.81 \mathrm{~cm} \mathrm{~s}^{-1}
\end{aligned}
\)
Viscous force at this speed,
\(
\begin{aligned}
F=6 \pi \eta r v & =6 \times 3.14 \times\left(1.8 \times 10^{-5}\right) \times\left(2.0 \times 10^{-5}\right) \times\left(5.81 \times 10^{-2}\right) \\
& =3.94 \times 10^{-10} \mathrm{~N} .
\end{aligned}
\)
Mercury has an angle of contact equal to \(140^{\circ}\) with soda lime glass. A narrow tube of radius \(1.00 \mathrm{~mm}\) made of this glass is dipped in a trough containing mercury. By what amount does the mercury dip down in the tube relative to the liquid surface outside? The surface tension of mercury at the temperature of the experiment is \(0.465\) \(\mathrm{N} \mathrm{m}^{-1}\). Density of mercury \(=13.6 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\).
Radius of tube, \(\quad r=1.00 \mathrm{~mm}=10^{-3} \mathrm{~m}\)
Surface tension of mercury, \(\sigma=0.465 \mathrm{Nm}^{-1}\)
Density of mercury, \(\sigma=13.6 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\)
Angle of contact, \(\quad \theta=140^{\circ}\)
\(
\begin{aligned}
\therefore \quad h & =\frac{2 \sigma \cos \theta}{r \rho g}=\frac{2 \times 0.465 \times \cos 140^{\circ}}{10^{-3} \times 13.6 \times 10^3 \times 9.8} \\
& =\frac{2 \times 0.465 \times(-0.7660)}{10^{-3} \times 13.6 \times 10^3 \times 9.8} \\
& =-5.34 \times 10^{-3} \mathrm{~m}=-5.34 \mathrm{~mm}
\end{aligned}
\)
Negative sign shows that the mercury level is depressed in the tube.
Two narrow bores of diameters \(3.0 \mathrm{~mm}\) and \(6.0 \mathrm{~mm}\) are joined together to form a U-tube open at both ends. If the U-tube contains water, what is the difference in its levels in the two limbs of the tube? The surface tension of water at the temperature of the experiment is \(7.3 \times 10^{-2} \mathrm{~N} \mathrm{~m}^{-1}\). Take the angle of contact to be zero and density of water to be \(1.0 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\left(g=9.8 \mathrm{~m} \mathrm{~s}^{-2}\right)\).
Let \(r_1\) be the radius of one bore and \(r_2\) be the radius of second bore of the \(U\)-tube. The, if \(h 1\) and \(h_2\) are the heights of water on two sides, then
\(
h_1=\frac{2 S \cos \theta}{r_1 \rho g} \text { and } h_2=\frac{2 S \cos \theta}{r_2 \rho g}
\)
On subtraction, we get
Here,
\(
\begin{aligned}
& h_1-h_2=\frac{2 S \cos \theta}{r_1 \rho g}-\frac{2 S \cos \theta}{r_2 \rho g}=\frac{2 S \cos \theta}{\rho g}\left[\frac{1}{r_1}-\frac{1}{r_2}\right] \\
& S=7.3 \times 10^{-2} \mathrm{Nm}^{-1}, \quad \theta=0, \quad \rho=1.0 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3} \text {, } \\
& g=9.8 \mathrm{~ms}^{-2}, \quad r_1=\frac{3}{2} \mathrm{~min}=1.5 \times 10^{-3} \mathrm{~m} \quad \text { and } \quad r_2=\frac{6}{2} \mathrm{~mm} \\
& =3 \times 10^{-3} \mathrm{~m} \\
& \therefore \quad h_1-h_2=\frac{2 \times 7.3 \times 10^{-2} \times \cos \theta}{1 \times 10^3 \times 9.8}\left[\frac{1}{1.5 \times 10^{-3}}-\frac{1}{3 \times 10^{-3}}\right] \\
& =1.49 \times 10^{-5} \times \frac{1}{3 \times 10^{-3}} \approx 4.97 \times 10^{-3} \mathrm{~m}=4.97 \mathrm{~mm} \\
&
\end{aligned}
\)
(a) It is known that density \(\rho\) of air decreases with height \(y\) as
\(
\rho=\rho_0 e^{-y / y_0}
\)
where \(\rho_0=1.25 \mathrm{~kg} \mathrm{~m}^{-3}\) is the density at sea level, and \(y_0\) is a constant. This density variation is called the law of atmospheres. Obtain this law assuming that the temperature of atmosphere remains a constant (isothermal conditions). Also assume that the value of \(g\) remains constant.
(b) A large He balloon of volume \(1425 \mathrm{~m}^3\) is used to lift a payload of \(400 \mathrm{~kg}\). Assume that the balloon maintains constant radius as it rises. How high does it rise?
[Take \(y_0=8000 \mathrm{~m}\) and \(\rho_{H e}=0.18 \mathrm{~kg} \mathrm{~m}^{-3}\) ].
(a) We know that rate of decrease of density \(p\) of air is directly proportional to the height \(y\). It is given as \(d \rho / d y=-\rho / y_0\)
where \(y\) is a constant of proportionality and -ve sign signifies that density is decreasing with an increase in height. On integration, we get
\(
\begin{aligned}
\int_{\rho_0}^\rho \frac{d \rho}{\rho}=-\int_0^y \frac{1}{y_0} d y \\
\Rightarrow \quad[\log \rho]_{\rho_0}^\rho=-\left[\frac{y}{y_0}\right]_0^y, \text { where, } \rho_0=\text { density of air at sea level } \text { i.e., } y=0 \\
\text { or } \log _e \frac{\rho}{\rho_0}=-\frac{y}{y_0} \text { or } \rho=\rho_0 e^{-\frac{y}{y_0}}
\end{aligned}
\)
Here dimensions and units of constant \(y_0\) are same as of \(y\).
(b) Here volume of He balloon, \(V=1425 \mathrm{~m}^3\), mass of payload, \(m=400 \mathrm{~kg}\)
\(
y_0=8000 \mathrm{~m} \text {, density of } \mathrm{He} \rho_{\mathrm{He}}=0.18 \mathrm{kgm}^{-3}
\)
Mean density of balloon, \(\rho=\frac{\text { Total mass of balloon }}{\text { Volume }}=\frac{m+V \cdot \rho_{\mathrm{He}}}{\mathrm{Va}} \mathrm{Pa}\)
\(
=\frac{400+1425 \times 0.18}{1425}=0.4608=0.46 \mathrm{kgm}^{-3}
\)
As density of air at sea level \(\rho_0=1.25 \mathrm{~kg} \mathrm{~m}^{-3}\). The balloon will rise up to a height \(y\) where density of air \(=\) density of balloon \(\rho=0.46 \mathrm{kgm}^{-3}\)
As \(\quad \rho=\rho_0 e^{-\frac{y}{y_0}}\) or \(\frac{\rho_0}{\rho}=e^{\frac{y_0}{y}}\)
\(
\begin{aligned}
\therefore \quad \log _e\left(\frac{\rho_0}{\rho}\right) & =\frac{y_0}{y} \quad \text { or } \quad y=\frac{y_0}{\log _e\left(\frac{\rho_0}{\rho}\right)}=\frac{8000}{\log _e\left(\frac{1.25}{0.46}\right)} \\
& =8002 \mathrm{~m} \text { or } 8.0 \mathrm{~km} .
\end{aligned}
\)
A \(5.0 \mathrm{~cm}\) long straight piece of thread is kept on the surface of water. Find the force with which the surface on one side of the thread pulls it. Surface tension of water \(=0.076 \mathrm{~N} \mathrm{~m}^{-1}\).
Length of thread \(l=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}\)
Surface tension of water \(\mathrm{T}=0.76 \mathrm{~N} / \mathrm{m}\)
We know that:
\(
\begin{aligned}
F & =T \times l=0.76 \times 5 \times 10^{-2} \\
& =3.8 \times 10^{-3} \mathrm{~N}
\end{aligned}
\)
Therefore, the water surface on one side of the thread pulls it with a force of \(3.8 \times 10^{-3} \mathrm{~N}\)
Find the excess pressure inside (a) a drop of mercury of radius \(2 \mathrm{~mm}\) (b) a soap bubble of radius \(4 \mathrm{~mm}\) and (c) an air bubble of radius \(4 \mathrm{~mm}\) formed inside a tank of water. Surface tension of mercury, soap solution and water are \(0.465 \mathrm{~N} \mathrm{~m}^{-1}, 0.03 \mathrm{~N} \mathrm{~m}^{-1}\) and \(0.076 \mathrm{~N} \mathrm{~m}^{-1}\) respectively.
Radius of mercury drop \(\mathrm{r}=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}\)
Radius of soap bubble \(r=4 \mathrm{~mm}=4 \times 10^{-3} \mathrm{~m}\)
Radius of air bubble \(r=4 \mathrm{~mm}=4 \times 10^{-3} \mathrm{~m}\)
Surface tension of mercury \(\mathrm{T}_{H g}=0.465 \mathrm{~N} / \mathrm{m}\)
Surface tension of soap solution \(\mathrm{T}_s=0.03 \mathrm{~N} / \mathrm{m}\)
Surface tension of water \(\mathrm{T}_w=0.076 \mathrm{~N} / \mathrm{m}\)
(a) Excess pressure inside mercury drop:
\(
\begin{aligned}
& P=\frac{2 T_{H g}}{r} \\
& =\frac{0.465 \times 2}{2 \times 10^{-3}}=465 \mathrm{~N} / \mathrm{m}^2
\end{aligned}
\)
(b) Excess pressure inside the soap bubble:
\(
\begin{aligned}
& P=\frac{4 T_s}{r} \\
& =\frac{4 \times 0.03}{4 \times 10^{-3}}=30 \mathrm{~N} / \mathrm{m}^2
\end{aligned}
\)
(c) Excess pressure inside the air bubble:
\(
\begin{aligned}
& P=\frac{2 T_w}{r} \\
& =\frac{2 \times 0.076}{4 \times 10^{-3}}=38 \mathrm{~N} / \mathrm{m}^2
\end{aligned}
\)
Consider a small surface area of \(1 \mathrm{~mm}^2\) at the top of a mercury drop of radius \(4.0 \mathrm{~mm}\). Find the force exerted on this area (a) by the air above it (b) by the mercury below it and (c) by the mercury surface in contact with it. Atmospheric pressure \(=1 \cdot 0 \times 10^5 \mathrm{~Pa}\) and surface tension of mercury \(=0.465 \mathrm{~N} \mathrm{~m}^{-1}\). Neglect the effect of gravity. Assume all numbers to be exact.
Given:
Surface area of mercury drop, \(A=1 \mathrm{~mm}^2=10^{-6} \mathrm{~m}^2\)
Radius of mercury drop, \(r=4 \mathrm{~mm}=4 \times 10^{-3} \mathrm{~m}\)
Atmospheric pressure, \(\mathrm{P}_0=1.0 \times 10^5 \mathrm{P}_{\mathrm{a}}\)
Surface tension of mercury, \(\mathrm{T}=0.465 \mathrm{~N} / \mathrm{m}\)
(a) Force exerted by air on the surface area:
\(
\begin{aligned}
& F=P_0 A \\
& \Rightarrow F=1.0 \times 10^5 \times 10^{-6}=0.1 \mathrm{~N}
\end{aligned}
\)
(b) Force exerted by mercury below the surface area :
Pressure \(\mathrm{P}^{\prime}=\mathrm{P}_0+\frac{2 T}{\mathrm{r}}\)
\(
\begin{aligned}
& F=P^{\prime} A=\left(P_0+\frac{2 T}{r}\right) A \\
& =\left(0.1+\frac{2 \times 0.465}{4 \times 10^{-3}}\right) \times 10^{-6} \\
& =0.1+0.00023=0.10023 \mathrm{~N}
\end{aligned}
\)
(c) Force exerted by mercury surface in contact with it:
\(
\begin{aligned}
& P=\frac{2 T}{r} \\
& F=P A=\frac{2 T}{r} A \\
& =\frac{2 \times 0.465}{4 \times 10^{-3}} \times 10^{-6}=0.00023 \mathrm{~N}
\end{aligned}
\)
The capillaries shown in the figure below have inner radii \(0.5 \mathrm{~mm}, 1.0 \mathrm{~mm}\) and \(1.5 \mathrm{~mm}\) respectively. The liquid in the beaker is water. Find the heights of water level in the capillaries. The surface tension of water is \(7.5 \times 10^{-2} \mathrm{~N} \mathrm{~m}^{-1}\)
Given:
Surface tension of water \(T=7.5 \times 10^{-2} \mathrm{~N} / \mathrm{m}\) Taking \(\cos \theta=1\) :
Radius of capillary \(A\left(r_A\right)=0.5 \mathrm{~mm}=0.5 \times 10^{-3} \mathrm{~m}\)
Height of water level in capillary A:
\(
\begin{aligned}
& h_{\mathrm{A}}=\frac{2 \mathrm{~T} \cos \theta}{\mathrm{r}_{\mathrm{A}} \rho \mathrm{g}} \\
& =\frac{2 \times 7.5 \times 10^{-2}}{0.5 \times 10^{-3} \times 1000 \times 10} \\
& =3 \times 10^{-2} \mathrm{~m}=3 \mathrm{~cm}
\end{aligned}
\)
Radius of capillary \(B\left(r_B\right)=1 \mathrm{~mm}=1 \times 10^{-3} \mathrm{~m}\)
Height of water level in capillary B:
\(
\begin{aligned}
& h_B=\frac{2 \mathrm{~T} \cos \theta}{r_B \rho g} \\
& =\frac{2 \times 7.5 \times 10^{-2}}{1 \times 10^{-3} \times 10^3 \times 10} \\
& =15 \times 10^{-3} \mathrm{~m}=1.5 \mathrm{~cm}
\end{aligned}
\)
Radius of capillary \(C\left(r_C\right)=1.5 \mathrm{~mm}=1.5 \times 10^{-3} \mathrm{~m}\)
Height of water level in capillary C:
\(
\begin{aligned}
& \mathrm{h}_{\mathrm{C}}=\frac{2 \mathrm{~T} \cos \theta}{\mathrm{r}_{\mathrm{C}} \rho \mathrm{g}} \\
& =\frac{2 \times 7.5 \times 10^{-2}}{1.5 \times 10^{-3} \times 10^3 \times 10} \\
& =\frac{15}{1.5} \times 10^{-3} \mathrm{~m}=1 \mathrm{~cm}
\end{aligned}
\)
The lower end of a capillary tube is immersed in mercury. The level of mercury in the tube is found to be 2 cm below the outer level. If the same tube is immersed in water, up to what height will the water rise in the capillary?
Rise \(/\) depression \(=2\) S \(\cos \theta / r \rho g\)
For mercury, \(-0.02=2 S^{\prime} \cdot \cos \theta / r \rho^{\prime} \text { g } \dots(i)
\)
For water rise, \(\mathrm{h}=2 \mathrm{~S} \cdot \cos 0^{\circ} / r \rho g \dots(ii)\)
Dividing (ii) by (i)
\(
\begin{aligned}
& \mathrm{h} / 0.02=-\mathrm{S} \rho^{\prime} /\left(\mathrm{S}^{\prime} \times \cos \theta \times \rho\right) \\
& \rightarrow \mathrm{h}=-0.02 \times \mathrm{~S} \rho^{\prime} /\left(1000 \mathrm{~S}^{\prime} \times \cos \theta\right) \\
& \mathrm{S}^{\prime}=7.5 \times 10^{-2} \mathrm{~N} / \mathrm{m} . \mathrm{S}=0.465 \mathrm{~N} / \mathrm{m} \\
& \rho^{\prime}=13600 \mathrm{~kg} / \mathrm{m}^3 \\
& \theta=140^{\circ} \\
& \text { So, } h=-0.02 \times 7.5 \times 10^{-2} \times 13600 /\left(1000 \times 0.465 \times \cos 140^{\circ}\right) \\
& \rightarrow \mathrm{h}=0.0573 \mathrm{~m}=\mathbf{5 . 7 3} \mathrm{cm}
\end{aligned}
\)
A barometer is constructed with its tube having radius \(1.0 \mathrm{~mm}\). Assume that the surface of the mercury in the tube is spherical in shape. If the atmospheric pressure is equal to \(76 \mathrm{~cm}\) of mercury, what will be the height raised in the barometer tube? The contact angle of mercury with glass \(=135^{\circ}\) and surface tension of mercury \(=0.465 \mathrm{~N} \mathrm{~m}^{-1}\). Density of mercury \(=13600 \mathrm{~kg} \mathrm{~m}^{-3}\).
Given:
Radius of tube \(r=1.0 \mathrm{~mm}\)
Atmospheric pressure \(=76 \mathrm{~cm}\) of \(\mathrm{Hg}\)
Contact angle of mercury with glass \(\theta=135^{\circ}\)
Surface tension of mercury \(T=0.465 \mathrm{~N} / \mathrm{m}\)
Density of mercury \(=13600 \mathrm{~kg} \mathrm{~m}^{-3}\)
Let \(\mathrm{h}\) be the rise in level in the baromet
\(
\begin{aligned}
& \mathrm{h}=\frac{2 T \cos \theta}{r \rho g} \\
& =\frac{2 \times 465 \times(1 / \sqrt{2})}{10^{-3} \times 13600 \times 10}=0.0048 \mathrm{~m} \\
& =0.48 \mathrm{~cm} \\
& \therefore \text { Net rise in level in the barometer tube }=\mathrm{H}-h \\
& =76-0.48 \\
& =75.52 \mathrm{~cm} \\
&
\end{aligned}
\)
A capillary tube of radius \(0.50 \mathrm{~mm}\) is dipped vertically in a pot of water. Find the difference between the pressure of the water in the tube \(5.0 \mathrm{~cm}\) below the surface and the atmospheric pressure. Surface tension of water \(=0.075 \mathrm{~N} \mathrm{~m}^{-1}\).
Given:
Radius of capillary tube \(r=0.5 \mathrm{~mm}=5 \times 10^{-4} \mathrm{~m}\)
Depth (where pressure is to be found) \(\mathrm{h}=5.0 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}\)
Surface tension of water \(\mathrm{T}=0.075 \mathrm{~N} / \mathrm{m}\)
Excess pressure at \(5 \mathrm{~cm}\) before the surface:
\(
P=\rho h g=1000 \times\left(5 \times 10^{-2}\right) \times 9.8=490 \mathrm{~N} / \mathrm{m}^2
\)
Excess pressure at the surface is given by:
\(
\begin{aligned}
& P_0=\frac{2 T}{r}=\frac{2 \times(0.75)}{\left(5 \times 10^{-4}\right)} \\
& =300 \mathrm{~N} / \mathrm{m}^2
\end{aligned}
\)
Difference in pressure: \(\mathrm{P}_0-\mathrm{P}\)
\(
=490-300=190 \mathrm{~N} / \mathrm{m}^2
\)
Hence, the required difference in pressure is \(190 \mathrm{~N} / \mathrm{m}^2\).
Find the surface energy of water kept in a cylindrical vessel of radius \(6.0 \mathrm{~cm}\). Surface tension of water \(=0.075 \mathrm{~J} \mathrm{~m}^{-2}\)
Given:
Radius of cylindrical vessel, \(r=6.0 \mathrm{~cm}=0.06 \mathrm{~m}\)
Surface tension of water, \(T=0.075 \mathrm{~J} / \mathrm{m}^2\)
Area, \(A=\pi r^2=\pi \times(0.06)^2\)
Surface energy \(=\mathrm{T} \times \mathrm{A}\)
\(
\begin{aligned}
& =(0.075) \times(3.14) \times(0.06)^2 \\
& =8.5 \times 10^{-4} \mathrm{~J}
\end{aligned}
\)
Therefore, the surface energy of water kept in a cylindrical vessel is \(8.5 \times 10^{-4} \mathrm{~J}\).
A drop of mercury of radius \(2 \mathrm{~mm}\) is split into 8 identical droplets. Find the increase in surface energy. Surface tension of mercury \(=0.465 \mathrm{~J} \mathrm{~m}^{-2}\).
Given:
Initial radius of mercury drop \(R=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}\)
Surface tension of mercury \(T=0.465 \mathrm{~J} / \mathrm{m}^2\)
Let the radius of a small drop of mercury be \(r\).
As one big drop is split into 8 identical droplets:
volume of initial drop \(=8 \times\) (volume of a small drop)
\(
\left(\frac{4}{3}\right) \pi R^3=\left(\frac{4}{3}\right) \pi r^3 \times 8
\)
Taking cube root on both sides of the above equation: \(r=\frac{R}{2}=10^{-3} \mathrm{~m}\)
Surface energy \(=\mathrm{T} \times\) surface area
\(
\begin{aligned}
& \therefore \text { Increase in surface energy }=\mathrm{TA}^{\prime}-\mathrm{TA} \\
& =\left(8 \times 4 \pi r^2-4 \pi R^2\right) T \\
& =4 \pi T\left[8 \times\left(\frac{R^2}{4}\right)-R^2\right] \\
& =4 \pi T R^2 \\
& =4 \times(3.14) \times(0.465) \times\left(4 \times 10^{-6}\right) \\
& =23.36 \times 10^{-6} \\
& =23.4 \mu \mathrm{J} \\
&
\end{aligned}
\)
Hence, the required increase in the surface energy of the mercury droplets is \(23.4 \mu \mathrm{J}\).
A capillary tube of radius \(1 \mathrm{~mm}\) is kept vertical with the lower end in water. (a) Find the height of water raised in the capillary. (b) If the length of the capillary tube is half the answer of part (a), find the angle \(\theta\) made by the water surface in the capillary with the wall.
(a) Let \(T\) be the surface tension and \(\rho\) be the density of the liquid.
Then, for \(\cos \theta=1\), height \((h)\) of liquid level: \(h=\frac{2 T}{r \rho g} \dots(i)\) where \(g\) is the acceleration due to gravity
\(
\begin{aligned}
& \Rightarrow \mathrm{h}=\frac{2 \times(0.076)}{10^{-3} \times 10 \times 100} \\
& =1.52 \mathrm{~cm} \\
& =1.52 \times 10^{-2} \mathrm{~m} \\
& =1.52 \mathrm{~cm}
\end{aligned}
\)
(b) Let the new length of the tube be \(h\) :
\(
\begin{gathered}
\mathrm{h}^{\prime}=\frac{2 T \cos \theta}{\mathrm{r} \rho \mathrm{g}} \\
\cos \theta=\frac{\mathrm{h}^{\prime} \mathrm{r} \rho g}{2 T}
\end{gathered}
\)
Using equation (i), we get:
\(
\begin{aligned}
& \cos \theta=\frac{h^{\prime}}{h}=\frac{1}{2}\left(\text { Because } h^{\prime}=\frac{h}{2}\right) \\
& \Rightarrow \theta=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}
\end{aligned}
\)
The water surface in the capillary makes an angle of \(60^{\circ}\) with the wall.
The lower end of a capillary tube of radius \(1 \mathrm{~mm}\) is dipped vertically into mercury. (a) Find the depression of mercury column in the capillary. (b) If the length dipped inside is half the answer of part (a), find the angle made by the mercury surface at the end of the capillary with the vertical. Surface tension of mercury \(=0.465 \mathrm{~N} \mathrm{~m}^{-1}\) and the contact angle of mercury with glass \(=135^{\circ}\)
\(
\begin{aligned}
& r=1 \mathrm{~mm}=10^{-3} \mathrm{~m}, \theta=135^{\circ} \\
& h=\frac{2 T \cos \theta}{r \rho g} \theta \\
& =\frac{2 \times 0.465 \times \cos 135^{\circ}}{10^{-3} \times 13600 \times(10)} \\
& =0.0049 \mathrm{~m}=4.9 \mathrm{~mm} \\
& \text { Depression }=4.9 \mathrm{~m} \\
& \mathrm{~h}^{\prime}=\frac{h}{2} \\
& \mathrm{~h}^{\prime}=\frac{2 T \cos \theta}{\operatorname{\rho\times rg}} \\
& \frac{h^{\prime}}{h}=\frac{2 T \cos \theta}{\operatorname{\rho\times rg}} \\
& \frac{h^{\prime}}{h}=\frac{\left(2 \mathrm{~T} \cos \theta^{\prime} \times r 0 \times r g\right)}{\operatorname{\rho\times rg} \times 2 \mathrm{~T} \cos 135}=\frac{\cos \theta^{\prime}}{\cos 135} \\
& \frac{1}{2}=\frac{\left(\cos \theta^{\prime}\right)}{\cos 135} \\
& \theta^{\prime}=111^{\circ}
\end{aligned}
\)
Two large glass plates are placed vertically and parallel to each other inside a tank of water with separation between the plates equal to \(1 \mathrm{~mm}\). Find the rise of water in the space between the plates. Surface tension of water \(=0.075 \mathrm{~N} \mathrm{~m}^{-1}\)
Given:
Surface tension of water \(\mathrm{T}=0.075 \mathrm{~N} / \mathrm{m}\)
Separation between the glass plates \(\mathrm{d}=1 \mathrm{~mm}=10^{-3} \mathrm{~m}\)
Density of water \(\rho=10^3 \mathrm{~kg} / \mathrm{m}^3\)
Applying law of conservation of energy:
\(
\begin{aligned}
& \mathrm{T}(2 \mathrm{~L})=\left[1 \times\left(10^{-3}\right) \times \mathrm{h}\right] \rho \mathrm{g} \\
& \Rightarrow \mathrm{h}=\frac{2 \times(0.075)}{10^{-3} \times 10^3 \times 10} \\
& =0.015 \mathrm{~m}=1.5 \mathrm{~cm}
\end{aligned}
\)
Therefore, the rise of water in the space between the plates is \(1.5 \mathrm{~cm}\).
Consider an ice cube of edge \(1.0 \mathrm{~cm}\) kept in a gravity-free hall. Find the surface area of the water when the ice melts. Neglect the difference in densities of ice and water.
Given:
Edge of the ice cube (a) \(=1.0 \mathrm{~cm}\)
The water that is formed due to the melting of ice acquires a spherical surface. In the absence of gravity, let the radius of the spherical surface be \(r\).
Volume of ice cube \(=\) volume of spherical surface of water
\(
\begin{aligned}
& \Rightarrow a^3=\frac{4}{3} \pi r^3 \\
& \Rightarrow r=\left[\frac{3 a^3}{4 \pi}\right]^{1 / 3}
\end{aligned}
\)
Surface area of spherical water surface \(=4 \pi r^2\)
\(
\begin{aligned}
& =4 \pi\left[\frac{3 a^3}{4 \pi}\right]^{2 / 3} \\
& =(36 \pi)^{1 / 3} \mathrm{~cm}^2
\end{aligned}
\)
A wire forming a loop is dipped into soap solution and taken out so that a film of soap solution is formed. A loop of \(6.28 \mathrm{~cm}\) long thread is gently put on the film and the film is pricked with a needle inside the loop. The thread loop takes the shape of a circle. Find the tension in the thread. Surface tension of soap solution \(=0.030 \mathrm{~N} \mathrm{~m}^{-1}\)
Considering a small section on thread subtending an angle of \(2 d \theta\) at center.
Force due to soap solution on this section=2T(2R \(d\theta)\)
This force is balanced by tension in thread \(=2 T^{\prime} \sin d \theta=2 T^{\prime} d \theta\)
By equilibrium of force
\(2 T(2 \mathrm{Rd} \theta)=2 \mathrm{~T}^{\prime} \mathrm{d} \theta\)
\(T^{\prime}=2 T R\)
\(T^{\prime}=2 T\left(\frac{L}{2 \pi}\right)\)
\(T^{\prime}=\frac{T L}{\pi}\)
\(=\frac{(0.03)\left(6.28 \times 10^{-2}\right)}{3.14}\)
\(T^{\prime}=6 \times 10^{-4} \mathrm{~N}\)
A metal sphere of radius \(1 \mathrm{~mm}\) and mass \(50 \mathrm{mg}\) falls vertically in glycerine. Find (a) the viscous force exerted by the glycerine on the sphere when the speed of the sphere is \(1 \mathrm{~cm} \mathrm{~s}^{-1}\), (b) the hydrostatic force exerted by the glycerine on the sphere and (c) the terminal velocity with which the sphere will move down without acceleration. Density of glycerine \(=1260 \mathrm{~kg} \mathrm{~m}^{-3}\) and its coefficient of viscosity at room temperature \(=8.0\) poise.
(a)
\(
\text { Viscous force }=6 \pi \eta r v
\)
\(
\begin{aligned}
& =6 \times 3.14 \times 0.8 \times 10^{-3} \times 10^{-2} \\
& \mathrm{~F}=1.5 \times 10^{-4} \mathrm{~N}
\end{aligned}
\)
(b)
\(\text { Hydrostatic force }={ V \rho g }\)
\(
\begin{aligned}
& =\frac{4}{3} \pi^3 \mathrm{\rho g} \\
& =\frac{4}{3} \times 3.14 \times\left(10^{-3}\right)^3 \times 1260 \times 10 \\
& =5.2 \times 10^{-5} \mathrm{~N}
\end{aligned}
\)
(c)
c) At the time of terminal velocity
Download force \(=\) Upward force
\(
\begin{aligned}
& \mathrm{mg}=\mathrm{V \rho g}+6 \pi \eta r v \\
& 50 \times 10^{-3} \times 10=5.2 \times 10^{-5}+6 \times 3.14 \times 0.8 \times 10^{-3} \mathrm{~V} \\
& \mathrm{~V}=2.9 \times 10^{-2} \mathrm{~m} / \mathrm{s} \\
& \mathrm{V}=2.9 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
\)
Estimate the speed of vertically falling raindrops from the following data. Radius of the drops \(=0.02 \mathrm{~cm}\), viscosity of air \(=1.8 \times 10^{-4}\) poise, \(g=10 \mathrm{~m} \mathrm{~s}^{-2}\) and density of water \(=1000 \mathrm{~kg} \mathrm{~m}^{-3}\).
Estimate the speed of vertically falling raindrops from the following data. Radius of the drops \(=0.02\) \(\mathrm{cm}\), viscosity of air \(=1.8 \times 10^{-4}\) poise, \(\mathrm{g}=9.9 \mathrm{~m} / \mathrm{s}^2\) and density of water \(=1000 \mathrm{~kg} / \mathrm{m}^3\).
\(
\begin{aligned}
& \mathrm{V}=\frac{2 \mathrm{r}^2(\rho-\sigma) \mathrm{g}}{9 \eta} \\
& \mathrm{V}=\frac{2 \times\left(0.02 \times 10^{-2}\right)^2(1000-0)(9.9)}{9 \times 1.8 \times 10^{-5}} \\
& \mathrm{~V}=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
Water flows at a speed of \(6 \mathrm{~cm} \mathrm{~s}^{-1}\) through a tube of radius \(1 \mathrm{~cm}\). The coefficient of viscosity of water at room temperature is \(0.01\) poise. Calculate the Reynolds number. Is it a steady flow?
\(
\begin{aligned}
& \mathrm{V}=6 \times 10^{-2} \mathrm{~m} / \mathrm{s} \\
& \mathrm{R}=1^{\times 10^{-2}} \mathrm{~m} \\
& \eta=0.01 \\
& \text { poise }=10^{-3} \text { poisullie }
\end{aligned}
\)
Reynold’s number
\(
\begin{aligned}
& N=\frac{\rho v D}{\eta} \\
& =\frac{1000 \times 6 \times 10^{-2} \times 2 \times 10^{-2}}{10^{-3}} \\
& N=1200
\end{aligned}
\)
Reynold number is less than 1200 . Therefore, it is a steady Flow.
You cannot copy content of this page