0 of 50 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 50 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
A steel wire of length \(4.7 \mathrm{~m}\) and cross-sectional area \(3.0 \times 10^{-5} \mathrm{~m}^2\) stretches by the same amount as a copper wire of length \(3.5 \mathrm{~m}\) and cross-sectional area of \(4.0 \times 10^{-5} \mathrm{~m}^2\) under a given load. What is the ratio of the Young’s modulus of steel to that of copper?
For steel
\(
l_1=4.7 \mathrm{~m}, \quad A_1=3.0 \times 10^{-5} \mathrm{~m}^2
\)
If \(F\) newton is the stretching force and \(\Delta l\) metre the extension in each case, then
\(
\begin{aligned}
Y_1 & =-\frac{F l_1}{A_1 \Delta l} \dots(i)\\
\Rightarrow \quad Y_1 & =\frac{F \times 4.7}{3.0 \times 10^{-5} \times \Delta l}
\end{aligned}
\)
For copper
Now,
\(
l_2=3.5 \mathrm{~m}, \quad A_2=4.0 \times 10^{-5} \mathrm{~m}^2
\)
\(Y_2=\frac{F \times 3.5}{4.0 \times 10^{-5} \times \Delta l} \dots(ii)\)
Dividing (i) by (ii), we get
\(
\frac{Y_1}{Y_2}=\frac{4.7}{3.0 \times 10^{-5}} \times \frac{4.0 \times 10^{-5}}{3.5}=\frac{4.7 \times 4.0}{3.0 \times 3.5}=1.79 :1
\)
The figure below shows the strain-stress curve for a given material. What are (a) Young’s modulus and (b) approximate yield strength for this material?
(a) Young’s modulus of the material \((Y)\) is given by
\(
\begin{aligned}
& Y=\text { Stress } / \text { Strain } \\
& =150 \times 10^6 / 0.002 \\
& 150 \times 10^6 / 2 \times 10-3 \\
& =75 \times 10^9 \mathrm{Nm}^{-2} \\
& =75 \times 10^{10} \mathrm{Nm}^{-2}
\end{aligned}
\)
(b)Yield strength of a material is defined as the maximum stress it can sustain. From graph, the approximate yield strength of the given material
\(
\begin{aligned}
& =300 \times 10^6 \mathrm{Nm}^{-2} \\
& =3 \times 10^8 \mathrm{Nm}^{-2} .
\end{aligned}
\)
The stress-strain graphs for materials A and B are shown in the figure below.
The graphs are drawn to the same scale.
(a) Which of the materials has the greater Young’s modulus?
(b) Which of the two is the stronger material?
(a) From the two graphs we note that for a given strain, stress for A is more than that of B. Hence Young’s modulus \(=(\) Stress \(/\) Strain \()\) is greater for \(A\) than that of \(B\).
(b) Strength of a material is determined by the amount of stress required to cause a fracture. This stress corresponds to the point of fracture. The stress corresponding to the point of fracture in A is more than for B. So, material A is stronger than material B.
Read the following two statements below carefully and state, with reasons, if it is true or false.
(a) The Young’s modulus of rubber is greater than that of steel;
(b) The stretching of a coil is determined by its shear modulus.
(a) False. The-Young’s modulus is defined as the ratio of stress to the strain within the elastic limit. For a given stretching force elongation is more in rubber and quite less in steel. Hence, rubber is less elastic than steel.
(b) True. The stretching of the coil simply changes its shape without any change in the length of the wire used and shear modulus deals with the change in the shape of the material.
Two wires of diameter 0.25 cm, one made of steel and the other made of brass are loaded as shown in the figure below. The unloaded length of steel wire is 1.5 m and that of brass wire is 1.0 m. Compute the elongations of the steel and the brass wires.
For steel wire; total force on steel wire;
\(
\begin{aligned}
F_1 & =4+6=10 \mathrm{~kg} f=10 \times 9.8 \mathrm{~N} ; \\
l_1 & =1.5 \mathrm{~m}, \quad \Delta l_1=? ; \quad 2 r_1=0.25 \mathrm{cm}
\end{aligned}
\)
or
\(
r_1=\left(\frac{0.25}{2}\right) \mathrm{cm}=0.125 \times 10^{-2} \mathrm{~m}
\)
\(
\begin{aligned}
Y_1=2.0 \times 10^{11} \mathrm{~Pa}
\end{aligned}
\)
For brass wire,
\(
\begin{aligned}
F_2 & =6.0 \mathrm{~kg} f=6 \times 9.8 \mathrm{~N} ; \\
2 r_2 & =0.25 \mathrm{~cm} \\
r_2 & =\left(\frac{0.25}{2}\right)=0.125 \times 10^{-2} \mathrm{~m} ; \\
Y_2 & =0.91 \times 10^{11} \mathrm{~Pa}, \quad l_2=1.0 \mathrm{~m}, \Delta l_2=?
\end{aligned}
\)
Since,
or
\(
Y_1=\frac{F_1 \times l_1}{A_1 \times \Delta l_1}=\frac{F_1 \times l_1}{\pi r_1^2 \times \Delta l_1} \Rightarrow \Delta l_1=\frac{F_1 \times l_1}{\pi r_1^2 \times \Delta l_1}
\)
or
\(
\Delta l_1=\frac{(10 \times 9.8) \times 1.5 \times 7}{22 \times\left(0.125 \times 10^{-2}\right)^2 \times 2 \times 10^{11}}=1.49 \times 10^{-4} \mathrm{~m} .
\)
and
\(\Delta l_2=\frac{F_2 \times l_2}{\pi r_2^2 \times Y_2}=\frac{(6 \times 9.8) \times 1 \times 7}{22 \times\left(0.125 \times 10^{-2}\right)^2 \times\left(0.91 \times 10^{11}\right)}=1.3 \times 10^{-4} \mathrm{~m}\).
The edge of an aluminium cube is \(10 \mathrm{~cm}\) long. One face of the cube is firmly fixed to a vertical wall. A mass of \(100 \mathrm{~kg}\) is then attached to the opposite face of the cube. The shear modulus of aluminium is \(25 \mathrm{GPa}\). What is the vertical deflection of this face?
\(
\begin{aligned}
& G=\frac{F \times L}{A \times \Delta l} \\
& \therefore \Delta l=\frac{m \times g \times L}{A \times G} \\
& \therefore \Delta l=\frac{100 \times 9.8 \times 0.1}{0.1 \times 0.1 \times 25 \times 10^{9}} \\
& \therefore \Delta l=3.92 \times 10^{-7} \mathrm{~m}
\end{aligned}
\)
Four identical hollow cylindrical columns of mild steel support a big structure of mass \(50,000 \mathrm{~kg}\). The inner and outer radii of each column are 30 and \(60 \mathrm{~cm}\) respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.
Here total mass to be supported, \(M=50,000 \mathrm{~kg}\)
\(\therefore\) Total weight of the structure to be supported \(=\mathrm{Mg}\)
\(
=50,000 \times 9.8 \mathrm{~N}
\)
Since this weight is to be st ported by 4 columns,
\(\therefore\) Compressional force on each column \((F)\) is given by
\(
F=\frac{\mathrm{Mg}}{4}=\frac{50,000 \times 9.8}{4} \mathrm{~N}
\)
Inner radius of a column, \(r_1=30 \mathrm{~cm}=0.3 \mathrm{~m}\)
Outer radius of a column, \(r_2=60 \mathrm{~cm}=0.6 \mathrm{~m}\).
\(\therefore\) Area of cross-section of each column is given by
\(
\begin{aligned}
A & =\pi\left(r_2^2-r_1^2\right) \\
& =\pi\left[(0.6)^2-(0.3)^2\right]=0.27 \pi \mathrm{m}^2
\end{aligned}
\)
Young’s modulus, \(Y=2 \times 10^{11} \mathrm{~Pa}\)
Compressional strain of each column \(=\) ?
\(
\begin{aligned}
\therefore \quad Y & =\frac{\text { Compressional force } / \text { area }}{\text { Compressional Strain }} \\
& =\frac{F / A}{\text { Compressional Strain }}
\end{aligned}
\)
or Compressional strain of each column
\(
\begin{aligned}
& =\frac{F}{A Y}=\frac{50,000 \times 9.8 \times 7}{4 \times 0.27 \times 22 \times 2 \times 10^{11}} \\
& =0.722 \times 10^{-6}
\end{aligned}
\)
\(\therefore\) Compressional strain of all columns is given by
\(
\begin{aligned}
& =0.722 \times 10^{-6} \times 4=2.88 \times 10^{-6} \\
& =2.88 \times 10^{-6} .
\end{aligned}
\)
A piece of copper having a rectangular cross-section of \(15.2 \mathrm{~mm} \times 19.1 \mathrm{~mm}\) is pulled in tension with \(44,500 \mathrm{~N}\) force, producing only elastic deformation. Calculate the resulting strain?
\(
\begin{aligned}
& A=15.2 \times 19.2 \mathrm{~mm}^2=15.2 \times 19.2 \times 10^{-6} \mathrm{~m}^2 \\
& \mathrm{~F}=44,500 \mathrm{~N} \\
& \text { Strain = F/AY }=44500 / 15.2 \times 19.1 \times 10^{-6} \times 1.2 \times 10^{11} \\
& =0.001277
\end{aligned}
\)
A steel cable with a radius of \(1.5 \mathrm{~cm}\) supports a chairlift at a ski area. If the maximum stress is not to exceed \(10^8 \mathrm{~N} \mathrm{~m}^{-2}\), what is the maximum load the cable can support?
\(
\begin{aligned}
\text { Maximum load } & =\text { Maximum stress } \times \text { Cross-sectional area } \\
& =10^8 \mathrm{Nm}^{-2} \times \frac{22}{7} \times\left(1.5 \times 10^{-2} \mathrm{~m}\right)^2 \\
& =7.07 \times 10^4 \mathrm{~N} .
\end{aligned}
\)
A rigid bar of mass 15 kg is supported symmetrically by three wires each 2.0 m long. Those at each end are of copper and the middle one is of iron. Determine the ratios of their diameters if each is to have the same tension.
The tension force acting on each wire is the same. Thus, the extension in each case is the same. Since the wires are of the same length, the strain will also be the same.
The relation for Young’s modulus is given as:
\(
Y=\frac{\text { Stress }}{\text { Strain }}=\frac{\frac{F}{A}}{\text { Strain }}=\frac{\frac{4 F}{\pi d^2}}{\text { Strain }} \text {….(i) }
\)
Where,
\(F=\) Tension force
\(A=\) Area of cross-section
\(d=\) Diameter of the wire
It can be inferred from equation (i) that \(Y \propto \frac{1}{d^2}\)
Young’s modulus for iron, \(Y_1=190 \times 10^9 \mathrm{~Pa}\)
Diameter of the iron wire \(=d_1\)
Young’s modulus for copper, \(Y_2=120 \times 10^9 \mathrm{~Pa}\)
Diameter of the copper wire \(=d_2\)
Therefore, the ratio of their diameters is given as:
\(
\frac{d_2}{d_1}=\sqrt{\frac{Y_1}{Y_2}}=\sqrt{\frac{190 \times 10^9}{120 \times 10^9}}=\sqrt{\frac{19}{12}}=1.25
\)
A \(14.5 \mathrm{~kg}\) mass, fastened to the end of a steel wire of unstretched length \(1.0 \mathrm{~m}\), is whirled in a vertical circle with an angular velocity of 2 rev/s at the bottom of the circle. The cross-sectional area of the wire is \(0.065 \mathrm{~cm}^2\). Calculate the elongation of the wire when the mass is at the lowest point of its path.
Mass, \(\mathrm{m}=14.5 \mathrm{~kg}\)
Length of the steel wire, \(\mathrm{l}=1.0 \mathrm{~m}\)
Angular velocity, \(\omega=2\) rev \(/ \mathrm{s}\)
Cross-sectional area of the wire, \(a=0.065 \mathrm{~cm}^2\)
Let \(\Delta l\) be the elongation of the wire when the mass is at the lowest point of its path. When the mass is placed at the position of the vertical circle, the total force on the mass is:
\(
\begin{aligned}
& F=m g+m l \omega^2 \\
& =14.5 \times 9.8+14.5 \times 1 \times(2)^2=200.1 \mathrm{~N}
\end{aligned}
\)
\(
\text { Young’s modulus }=\frac{\text { Stress }}{\text { Strain }}
\)
\(
Y=\frac{\frac{F}{A}}{\frac{\Delta l}{l}}=\frac{F}{A} \frac{l}{\Delta l}
\)
\(
\therefore \Delta l=\frac{F l}{A Y}
\)
Young’s modulus for steel \(=2 \times 10^{11} \mathrm{~Pa}\)
\(
\begin{aligned}
\therefore \Delta l & =\frac{200.1 \times 1}{0.065 \times 10^{-4} \times 2 \times 10^{11}}=1539.23 \times 10^{-7} \\
& =1.539 \times 10^{-4} \mathrm{~m}
\end{aligned}
\)
Hence, the elongation of the wire is \(1.539 \times 10^{-4} \mathrm{~m}\).
Compute the bulk modulus of water from the following data: Initial volume \(=100.0\) litre, Pressure increase \(=100.0 \mathrm{~atm}\left(1 \mathrm{~atm}=1.013 \times 10^5 \mathrm{~Pa}\right)\), Final volume \(=100.5\) litre. Compare the bulk modulus of water with that of air (at constant temperature). Explain in simple terms why the ratio is so large.
Initial volume, \(\mathrm{V}_1=100.01=100.0 \times 10^{-3} \mathrm{~m}^3\)
Final volume, \(\mathrm{V}_2=100.5 \mathrm{l}=100.5 \times 10^{-3} \mathrm{~m}^3\)
Increase in volume, \(\Delta \mathrm{V}=\mathrm{V}_2-\mathrm{V}_1=0.5 \times 10^{-3} \mathrm{~m}^3\)
Increase in pressure, \(\Delta \mathrm{p}=100.0 \mathrm{~atm}=100 \times 1.013 \times 10^5 \mathrm{~Pa}\)
\(
\begin{aligned}
\text { Bulk modulus } & =\frac{\Delta p}{\frac{\Delta V}{V_1}}=\frac{\Delta p \times V_1}{\Delta V} \\
& =\frac{100 \times 1.013 \times 10^5 \times 100 \times 10^{-3}}{0.5 \times 10^{-3}} \\
& =2.026 \times 10^9 \mathrm{~Pa}
\end{aligned}
\)
Bulk modulus of air \(=1.0 \times 10^5 \mathrm{~Pa}\)
\(
\therefore \frac{\text { Bulk modulus of water }}{\text { Bulk modulus of air }}=\frac{2.026 \times 10^9}{1.0 \times 10^5}=2.026 \times 10^4
\)
This ratio is very high because air is more compressible than water.
What is the density of water at a depth where pressure is \(80.0 \mathrm{~atm}\), given that its density at the surface is \(1.03 \times 103 \mathrm{~kg} \mathrm{~m}^{-3}\)?
Let the given depth be \(h\).
Pressure at the given depth, \(p=80.0 \mathrm{~atm}=80 \times 1.01 \times 10^5 \mathrm{~Pa}\)
Density of water at the surface, \(\rho_1=1.03 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\)
Let \(\rho_2\) be the density of water at the depth \(h\).
Let \(V_1\) be the volume of water of mass \(m\) at the surface.
Let \(V_2\) be the volume of water of mass \(m\) at the depth \(h\).
Let \(\Delta V\) be the change in volume.
\(
\begin{aligned}
& \Delta V=V_1-V_2 \\
& =m\left(\frac{1}{\rho_1}-\frac{1}{\rho_2}\right) \\
& \therefore \text { Volumetric strain }=\frac{\Delta V}{V_1}
\end{aligned}
\)
\(
\begin{aligned}
& =m\left(\frac{1}{\rho_1}-\frac{1}{\rho_2}\right) \times \frac{\rho_1}{m} \\
& \therefore \frac{\Delta V}{V_1}=1-\frac{\rho_1}{\rho_2} \ldots \text {…(i) } \\
& \text { Bulk modulus, } B=\frac{p V_1}{\Delta V} \\
& \frac{\Delta V}{V_1}=\frac{p}{B} \\
& \text { Compressibity of water }=\frac{1}{B}=45.8 \times 10^{-11} \mathrm{~Pa}^{-1} \\
& \therefore \frac{\Delta V}{V_1}=80 \times 1.013 \times 10^5 \times 45.8 \times 10^{11}=3.71 \times 10^{-3} \dots(ii)
\end{aligned}
\)
For equation (i) and (ii) we get
\(
\begin{aligned}
& 1-\frac{\rho_1}{\rho_2}=3.71 \times 10^{-3} \\
& \rho_2=\frac{1.03 \times 10^3}{1-\left(3.71 \times 10^{-3}\right)} \\
& =1.034 \times 10^3 \mathrm{kgm}^{-3}
\end{aligned}
\)
Therefore, the density of water at the given depth \((h)\) is \(1.034 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}\).
Compute the fractional change in volume of a glass slab, when subjected to a hydraulic pressure of 10 atm.
Hydraulic pressure exerted on the glass slab, \(p=10 \mathrm{~atm}=10 \times 1.013 \times 10^5 \mathrm{~Pa}\)
Bulk modulus of glass, \(B=37 \times 10^9 \mathrm{Nm}^{-2}\)
Bulk modulus, \(B=\frac{\mathrm{p}}{\Delta \mathrm{V} / \mathrm{v}}\)
where,
\(\Delta V / V=\) Fractional change in volume
\(
\begin{aligned}
\therefore \Delta V / V & =p / B \\
& =\frac{10 \times 1.013 \times 10^5}{\left(37 \times 10^9\right)} \\
& =2.73 \times 10^{-5}
\end{aligned}
\)
Hence, the fractional change in the volume of the glass slab is \(2.73 \times 10^{-5}\).
Determine the volume contraction of a solid copper cube, \(10 \mathrm{~cm}\) on an edge, when subjected to a hydraulic pressure of \(7.0 \times 10^6 \mathrm{~Pa}\).
\(
\begin{aligned}
& \mathrm{P}=7.0 \times 10^6 \mathrm{~Pa} \\
& \mathrm{l}=10 \mathrm{~cm} \\
& \mathrm{~V}=\mathrm{l}^3=10^{-3} \mathrm{~m}^3 \\
& \mathrm{~B}=140 \times 10^9 \\
& \mathrm{~B}=\frac{\mathrm{P} \times \mathrm{V}}{\Delta \mathrm{V}} \\
& \Delta \mathrm{V}=\frac{\mathrm{P}}{\mathrm{B}} \times \mathrm{V}=\frac{7 \times 10^6}{140 \times 10^9} \times 10^{-3} \mathrm{~m}^3 \\
& =5 \times 10^{-8} \mathrm{~m}^3 \\
& =0.05 \mathrm{~cm}^3
\end{aligned}
\)
\(
\text { How much should the pressure on a litre of water be changed to compress it by } 0.10 \% \text { ? }
\)
\(
\mathrm{B}=\frac{\mathrm{P} \times \mathrm{V}}{\Delta \mathrm{V}}
\)
\(
p=B \frac{\Delta V}{V}=\left(2.2 \times 10^9\right) \times 10^{-3}=2.2 \times 10^6 \mathrm{~Pa}
\)
Anvils made of single crystals of diamond, with the shape as shown in Figure below, are used to investigate behaviour of materials under very high pressures. Flat faces at the narrow end of the anvil have a diameter of \(0.50 \mathrm{~mm}\), and the wide ends are subjected to a compressional force of \(50,000 \mathrm{~N}\). What is the pressure at the tip of the anvil?
Diameter of the corner end of the anvil,
\(
d=0.50 \mathrm{~mm}=0.50 \times 10^{-3} \mathrm{~m}
\)
Area of cross-section of tip,
\(
\begin{aligned}
A & =\frac{\pi d^2}{4} \\
& =\frac{22 \times\left(0.50 \times 10^{-3}\right)^2}{7 \times 4} \mathrm{~m}^2
\end{aligned}
\)
Stress (= pressure at the tip of the anvil)
\(
\begin{aligned}
& =\frac{F}{A}=\frac{50,000 \times 4 \times 7}{22 \times(0.50)^2 \times 10^{-6}} \mathrm{Nm}^{-2} \\
& =2.54 \times 10^{11} \mathrm{Nm}^{-2}(\text { or } \mathrm{Pa}) .
\end{aligned}
\)
A rod of length \(1.05 \mathrm{~m}\) having negligible mass is supported at its ends by two wires of steel (wire A) and aluminium (wire B) of equal lengths as shown in Fig. 9.15. The cross-sectional areas of wires \(\mathrm{A}\) and \(\mathrm{B}\) are \(1.0 \mathrm{~mm}^2\) and \(2.0 \mathrm{~mm}^2\), respectively. At what point along the rod should a mass \(m\) be suspended in order to produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.
For steel wire \(A, l_1=l_{;} ; A_1=1 \mathrm{~mm}^2 ; Y_1=2 \times 1011 \mathrm{Nm}^{-2}\)
For aluminium wire \(B, I_2=I ; A_2=2 \mathrm{~mm}^2 ; Y_2=7 \times 1010 \mathrm{Nm}^{-2}\)
a) Let mass \(m\) be suspended from the rod at distance \(x\) from the end where wire \(A\) is connected. Let \(F_1\) and \(\mathrm{F}_2\) be the tensions in two wires and there is equal stress in two wires, then
\(
\frac{F_1}{A_1}=\frac{F_2}{A_2} \Rightarrow \frac{F_1}{F_2}=\frac{A_1}{A_2}=\frac{1}{2} \ldots \text {.. (i) }
\)
Taking moment of forces about the point of suspension of mass from the rod, we have
\(
F_1 x=F_2(1.05-x) \text { or } \frac{1.05-x}{x}=\frac{F_1}{F_2}=\frac{1}{2}
\)
or \(2.10-2 x=x=>x=0.70 \mathrm{~m}=70 \mathrm{~cm}\)
(b) Let mass \(m\) be suspended from the rod at distance \(x\) from the end where wire \(A\) is connected. Let \(F_1\) and \(\mathrm{F}_2\) be the tension in the wires and there is equal strain in the two wires i.e.,
\(
\frac{F_1}{A_1 Y_1}=\frac{F_2}{A_2 Y_2} \Rightarrow \frac{F_1}{F_2}=\frac{A_1 Y_1}{A_2 Y_2}=\frac{1}{2} \times \frac{2 \times 10^{11}}{7 \times 10^{10}}=\frac{10}{7}
\)
As the rod is stationary, so \(F_1 x=F_2(1.05-x)\) or
\(
\begin{aligned}
& \frac{1.05-x}{x}=\frac{F_1}{F_2}=\frac{10}{7} \\
& =>10 \mathrm{x}=7.35-7 \mathrm{x} \text { or } \mathrm{x}=0.4324 \mathrm{~m}=43.2 \mathrm{~cm}
\end{aligned}
\)
A mild steel wire of length \(1.0 \mathrm{~m}\) and cross-sectional area \(0.50 \times 10^{-2} \mathrm{~cm}^2\) is stretched, well within its elastic limit, horizontally between two pillars. A mass of 100 \(\mathrm{g}\) is suspended from the mid-point of the wire. Calculate the depression at the midpoint.
Let \(A B\) be a mild steel wire of length \(2 L=I \mathrm{~m}\) and its cross-section area \(A=0.50 \times 10^{-2} \mathrm{~cm}^2\). A mass \(\mathrm{m}=100\) \(\mathrm{g}=0.1 \mathrm{~kg}\) is suspended at mid-point \(\mathrm{C}\) of wire as shown in figure. Let \(\mathrm{x}\) be the depression at mid-point i.e., \(C D=x\)
\(
\therefore A D=D B=\sqrt{\left(A C^2+C D^2\right)}=\sqrt{L^2+x^2}
\)
\(\therefore\) Increase in length \(\triangle L=(A D+D B)-A B=2 \sqrt{L^2+x^2}-2 L\)
\(
=2 L\left[\left(1+\frac{x^2}{L^2}\right)^{\frac{1}{2}}-1\right]=2 L \cdot \frac{x^2}{2 L^2}=\frac{x^2}{L}
\)
\(\therefore\) Longitudinal strain \(=\frac{\Delta L}{2 L}=\frac{x^2}{2 L^2}\)
If \(\mathrm{T}\) be the tension in the wire as shown figure then in equilibrium \(2 T \cos \theta=m g\)
or \(T=\frac{\mathrm{mg}}{2 \cos \theta}\)
\(
\begin{aligned}
& =\frac{\mathrm{mg}}{2 \frac{x}{\sqrt{x^2+L^2}}}=\frac{m g \sqrt{x^2+L^2}}{2 x}=\frac{\mathrm{mgL}}{2 x} \\
& \therefore \text { Stress }=\frac{T}{A}=\frac{\mathrm{mgL}}{2 x A}
\end{aligned}
\)
\(
\begin{aligned}
& \text { As Young’s modulus } Y=\frac{\text { stress }}{\text { strain }} \\
& =\frac{\frac{m g L}{2 x A}}{\frac{x^2}{2 L^2}}=\frac{m g L}{2 x A} \times \frac{2 L^2}{x^2}=\frac{m g L^3}{A x^3} \\
& \Rightarrow x=\left[\frac{m g L^3}{Y A}\right]^{\frac{1}{3}}=L\left[\frac{m g}{Y A}\right]^{\frac{1}{3}} \\
& =\frac{1}{2}\left[\frac{0.1 \times 9.8}{2 \times 10^{11} \times 0.50 \times 10^{-2} \times 10^{-4}}\right]^{\frac{1}{3}}=1.074 \times 10^{-2} \mathrm{~m} \\
& =1.074 \mathrm{~cm} \approx 1.07 \mathrm{~cm} \text { or } 0.01 \mathrm{~m}
\end{aligned}
\)
Two strips of metal are riveted together at their ends by four rivets, each of diameter \(6.0\) \(\mathrm{mm}\). What is the maximum tension that can be exerted by the riveted strip if the shearing stress on the rivet is not to exceed \(6.9 \times 10^7 \mathrm{~Pa}\)? Assume that each rivet is to carry one-quarter of the load.
Let the tension exerted by riveted strip \(=\mathrm{F}\)
This tension would provide shearing force on the four rivets, which share it equally.
\(\therefore\) Shearing force on each rivet \(=F / 4\)
and shearing stress on each rivet \(=F / 4 / A=F / 4 A\)
As the maximum shearing stress on each rivet is given to be \(2.3 \times 10^9 \mathrm{~Pa}\), so we have
\(
\begin{aligned}
& \frac{F_{\text {max }}}{4 A}=2.3 \times 10^9 \\
& \text { or } F_{\max }=4 A \times 2.3 \times 10^9 \\
& =4 \times \pi r^2 \times 2.3 \times 10^9 \\
& =4 \times \frac{22}{7} \times\left(3.0 \times 10^3\right)^2 \times 2.3 \times 10^9 \\
& =260.2 \times 10^3 \mathrm{~N}=260 \mathrm{kN}
\end{aligned}
\)
The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven \(\mathrm{km}\) beneath the surface of the water. The water pressure at the bottom of the trench is about \(1.1 \times 10^8 \mathrm{~Pa}\). A steel ball of initial volume \(0.32 \mathrm{~m}^3\) is dropped into the ocean and falls to the bottom of the trench. What is the change in the volume of the ball when it reaches to the bottom?
Water pressure at the bottom of the trench is given as
\(
\mathrm{p}=1.1 \times 10^8 \mathrm{~Pa}
\)
Initial volume of the steel ball is given as \(V=0.32 \mathrm{~m}^3\)
Bulk modulus of steel is known as \(\mathrm{B}=1.6 \times 10^{11} \mathrm{Nm}^{-2}\)
The ball lands at the bottom of the trench, which is about 11 kilometres below the water’s surface.
Let \(\triangle \mathrm{V}\) be the volume change of the ball after reaching the bottom of the trench.
Bulk modulus, \(B=p /(\Delta V / V)=p V / \Delta V\)
\(
\begin{aligned}
& \Delta V=p V / B \\
& =\left(1.1 \times 10^8 \times 0.32\right) /\left(1.6 \times 10^{11}\right) \\
& =2.2 \times 10^{-4} \mathrm{~m}^3
\end{aligned}
\)
One end of a wire \(2 \mathrm{~m}\) long and \(0.2 \mathrm{~cm}^2\) in cross section is fixed in a ceiling and a load of \(4.8 \mathrm{~kg}\) is attached to the free end. Find the extension of the wire. Young modulus of steel \(=2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\). Take \(g=10 \mathrm{~m} \mathrm{~s}^{-2}\).
We have
\(
Y=\frac{\text { stress }}{\text { strain }}=\frac{T / A}{l / L}
\)
with symbols having their usual meanings. The extension is
\(
l=\frac{T L}{A Y} .
\)
As the load is in equilibrium after the extension, the tension in the wire is equal to the weight of the load
\(
=4.8 \mathrm{~kg} \times 10 \mathrm{~m} \mathrm{~s}^{-2}=48 \mathrm{~N}
\)
Thus, \(l=\frac{(48 \mathrm{~N})(2 \mathrm{~m})}{\left(0.2 \times 10^{-4} \mathrm{~m}^2\right) \times\left(2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\right)}\)
\(
=2.4 \times 10^{-5} \mathrm{~m}
\)
end of a nylon rope of length \(4.5 \mathrm{~m}\) and diameter \(6 \mathrm{~mm}\) is fixed to a tree-limb. A monkey weighing \(100 \mathrm{~N}\) jumps to catch the free end and stays there. Find the elongation of the rope and the corresponding change in the diameter. Young modulus of nylon \(=4 \cdot 8 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\) and Poisson ratio of nylon \(=0.2\).
\(
\begin{aligned}
& Y=\frac{\text { stress }}{\text { strain }}=\frac{T / A}{l / L} \\
& \text { or, } \quad l=\frac{T L}{A Y} \\
& \text { or, elongation }=l=\frac{(100 \mathrm{~N}) \times(4 \cdot 5 \mathrm{~m})}{\left(\pi \times 9 \times 10^{-6} \mathrm{~m}^2\right) \times\left(4 \cdot 8 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\right)} \\
& =3.32 \times 10^{-5} \mathrm{~m} \text {. } \\
& \text { Again, Poisson ratio }=\frac{\Delta d / d}{l / L}=\frac{(\Delta d) L}{l d} \\
& \text { or, } \quad 0.2=\frac{\Delta d \times 4.5 \mathrm{~m}}{\left(3.32 \times 10^{-5} \mathrm{~m}\right) \times\left(6 \times 10^{-3} \mathrm{~m}\right)} \\
& \text { or, } \quad \Delta d=\frac{0.2 \times 6 \times 3.32 \times 10^{-8} \mathrm{~m}}{4.5} \\
& =8.8 \times 10^{-9} \mathrm{~m} \text {. } \\
&
\end{aligned}
\)
OneTwo blocks of masses \(1 \mathrm{~kg}\) and \(2 \mathrm{~kg}\) are connected by a metal wire going over a smooth pulley as shown in figure below. The breaking stress of the metal is \(2 \times 10^9 \mathrm{~N} \mathrm{~m}^{-2}\). What should be the minimum radius of the wire used if it is not to break ? Take \(g=10 \mathrm{~m} \mathrm{~s}^{-2}\).
The stress in the wire \(=\frac{\text { Tension }}{\text { Area of cross section }}\).
To avoid breaking, this stress should not exceed the breaking stress.
Let the tension in the wire be \(T\). The equations of motion of the two blocks are,
and
\(
T-10 \mathrm{~N}=(1 \mathrm{~kg}) a
\)
Eliminating \(a\) from these equations,
\(
\begin{aligned}
T & =(40 / 3) \mathrm{N} . \\
\text { The stress } & =\frac{(40 / 3) \mathrm{N}}{\pi r^2} .
\end{aligned}
\)
If the minimum radius needed to avoid breaking is \(r\),
\(
2 \times 10^9 \frac{\mathrm{N}}{\mathrm{m}^2}=\frac{(40 / 3) \mathrm{N}}{\pi r^2}
\)
Solving this,
\(
r=4.6 \times 10^{-5} \mathrm{~m}
\)
Two wires of equal cross section but one made of steel and the other of copper, are joined end to end. When the combination is kept under tension, the elongations in the two wires are found to be equal. Find the ratio of the lengths of the two wires. Young modulus of steel \(=2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\) and that of copper \(=1.1 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\).
As the cross sections of the wires are equal and same tension exists in both, the stresses developed are equal. Let the original lengths of the steel wire and the copper wire be \(L_s\) and \(L_c\) respectively and the elongation in each wire be \(l\).
and
\(
\begin{aligned}
\frac{l}{L_s} & =\frac{\text { stress }}{2 \cdot 0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}} \dots(i)\\
\frac{l}{L_c} & =\frac{\text { stress }}{1 \cdot 1 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}} \dots(ii)
\end{aligned}
\)
Dividing (ii) by (i),
\(
L_s / L_c=2 \cdot 0 / 1 \cdot 1=20: 11 .
\)
Find the decrease in the volume of a sample of water from the following data. Initial volume \(=1000 \mathrm{~cm}^3\), initial pressure \(=10{ }^5 \mathrm{~N} \mathrm{~m}^{-2}\), final pressure \(=10^6 \mathrm{~N} \mathrm{~m}^{-2}\), compressibility of water \(=50 \times 10^{-11} \mathrm{~m}^2 \mathrm{~N}^{-1}\).
One end of a metal wire is fixed to a ceiling and a load of \(2 \mathrm{~kg}\) hangs from the other end. A similar wire is attached to the bottom of the load and another load of \(1 \mathrm{~kg}\) hangs from this lower wire. Find the longitudinal strain in both the wires. Area of cross section of each wire is \(0.005 \mathrm{~cm}^2\) and Young modulus of the metal is \(2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\). Take \(g=10 \mathrm{~m} \mathrm{~s}^{-2}\)
The situation is described in the figure below. As the \(1 \mathrm{~kg}\) mass is in equilibrium, the tension in the lower wire equals the weight of the load.
Thus \(\quad T_1=10 \mathrm{~N}\)
\(
\begin{aligned}
\text { Stress } & =10 \mathrm{~N} / 0.005 \mathrm{~cm}^2 \\
& =2 \times 10^7 \mathrm{~N} \mathrm{~m}^{-2} .
\end{aligned}
\)
Longitudinal strain \(=\frac{\text { stress }}{Y}=\frac{2 \times 10^7 \mathrm{~N} \mathrm{~m}^{-2}}{2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}}=10^{-4}\).
Considering the equilibrium of the upper block, we can write,
\(
\begin{aligned}
T_2 & =20 \mathrm{~N}+T_1, \quad \text { or, } \quad T_2=30 \mathrm{~N} . \\
\text { Stress } & =30 \mathrm{~N} / 0.005 \mathrm{~cm}^2 \\
& =6 \times 10^7 \mathrm{~N} \mathrm{~m}^{-2} .
\end{aligned}
\)
Longitudinal strain \(=\frac{6 \times 10^7 \mathrm{~N} \mathrm{~m}^{-2}}{2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}}=3 \times 10^{-4}\).
Each of the three blocks \(P, Q\) and \(R\) shown in figure below has a mass of \(3 \mathrm{~kg}\). Each of the wires \(A\) and \(B\) has cross-sectional area \(0.005 \mathrm{~cm}^2\) and Young modulus \(2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\). Neglect friction. Find the longitudinal strain developed in each of the wires. Take \(g=10 \mathrm{~m} \mathrm{~s}^{-2}\).
The block \(R\) will descend vertically and the blocks \(P\) and \(Q\) will move on the frictionless horizontal table. Let the common magnitude of the acceleration be \(a\). Let the tensions in the wires \(A\) and \(B\) be \(T_A\) and \(T_B\) respectively.
Writing the equations of motion of the blocks \(P, Q\) and \(R\), we get,
\(
T_{\mathrm{A}}=(3 \mathrm{~kg}) a \dots(i)
\)
\(
T_B-T_A=(3 \mathrm{~kg}) a \dots(ii)
\)
and \((3 \mathrm{~kg}) g-T_B=(3 \mathrm{~kg}) a \dots(iii)\).
By (i) and (ii),
\(
T_B=2 T_A .
\)
By (i) and (iii),
\(
\begin{aligned}
& T_A+T_B=(3 \mathrm{~kg}) g=30 \mathrm{~N} \\
& \text { or, } \quad 3 T_A=30 \mathrm{~N} \\
& \text { or, } \quad T_A=10 \mathrm{~N} \text { and } T_B=20 \mathrm{~N} . \\
& \text { Longitudinal strain }=\frac{\text { Longitudinal stress }}{\text { Young modulus }} \\
& \text { Strain in wire } A=\frac{10 \mathrm{~N} / 0 \cdot 005 \mathrm{~cm}^2}{2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}}=10^{-4} \\
& \text { and strain in wire } B=\frac{20 \mathrm{~N} / 0 \cdot 005 \mathrm{~cm}^2}{2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}}=2 \times 10^{-4} .
\end{aligned}
\)
A wire of area of cross-section \(3.0 \mathrm{~mm}^2\) and natural length \(50 \mathrm{~cm}\) is fixed at one end and a mass of \(2.1 \mathrm{~kg}\) is hung from the other end. Find the elastic potential energy stored in the wire in steady state. Young modulus of the material of the wire \(=1.9 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\). Take \(g=10 \mathrm{~m} \mathrm{~s}^{-2}\)
The volume of the wire is
\(
\begin{aligned}
V & =\left(3.0 \mathrm{~mm}^2\right)(50 \mathrm{~cm}) \\
& =\left(3.0 \times 10^{-6} \mathrm{~m}^2\right)(0.50 \mathrm{~m})=1.5 \times 10^{-6} \mathrm{~m}^3 .
\end{aligned}
\)
Tension (tensile Force) in the wire is
\(
\begin{aligned}
T & =m g \\
& =(2.1 \mathrm{~kg})\left(10 \mathrm{~m} \mathrm{~s}^{-2}\right)=21 \mathrm{~N} .
\end{aligned}
\)
The stress \(=T / A = F / A\)
\(
=\frac{21 \mathrm{~N}}{3.0 \mathrm{~mm}^2}=7 \cdot 0 \times 10^6 \mathrm{~N} \mathrm{~m}^{-2} \text {. }
\)
The strain \(=\) stress \(/ Y\)
\(
=\frac{7 \cdot 0 \times 10^6 \mathrm{~N} \mathrm{~m}^{-2}}{1 \cdot 9 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}}=3.7 \times 10^{-5} \text {. }
\)
The elastic potential energy of the wire is
\(
\begin{aligned}
U & =\frac{1}{2}(\text { stress) }(\text { strain) (volume) } \\
& =\frac{1}{2}\left(7 \cdot 0 \times 10^6 \mathrm{~N} \mathrm{~m}^{-2}\right)\left(3.7 \times 10^{-5}\right)\left(1.5 \times 10^{-6} \mathrm{~m}^3\right) \\
& =1 \cdot 9 \times 10^{-4} \mathrm{~J} .
\end{aligned}
\)
A block of weight \(10 \mathrm{~N}\) is fastened to one end of a wire of cross-sectional area \(3 \mathrm{~mm}^2\) and is rotated in a vertical circle of radius \(20 \mathrm{~cm}\). The speed of the block at the bottom of the circle is \(2 \mathrm{~m} \mathrm{~s}^{-1}\). Find the elongation of the wire when the block is at the bottom of the circle. Young modulus of the material of the wire \(=2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\).
Forces acting on the block are (a) the tension \(T\) and (b) the weight \(W\). At the lowest point, the resultant force is \(T-W\) towards the centre. As the block is going in a circle, the net force towards the centre should be \(m v^2 / r\) with usual symbols. Thus,
or,
\(
\begin{aligned}
T-W & =m v^2 / r \\
T & =W+m v^2 / r \\
& =10 \mathrm{~N}+\frac{(1 \mathrm{~kg})\left(2 \mathrm{~m} \mathrm{~s}^{-1}\right)^2}{0 \cdot 2 \mathrm{~m}}=30 \mathrm{~N}
\end{aligned}
\)
We have
or,
\(
\begin{aligned}
Y & =\frac{T / A}{l / L} \\
l & =\frac{T L}{A Y} \\
& =\frac{30 \mathrm{~N} \times(20 \mathrm{~cm})}{\left(3 \times 10^{-6} \mathrm{~m}^2\right) \times\left(2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\right)} \\
& =5 \times 10^{-5} \times 20 \mathrm{~cm}=10^{-3} \mathrm{~cm} .
\end{aligned}
\)
A uniform heavy rod of weight \(W\), cross-sectional area A and length \(L\) is hanging from a fixed support. Young modulus of the material of the rod is \(Y\). Neglect the lateral contraction. Find the elongation of the rod.
Consider a small length \(d x\) of the rod at a distance \(x\) from the fixed end. The part below this small element has length \(L-x\). The tension \(T\) of the rod at the element equals the weight of the rod below it.
\(
T=(L-x) \frac{W}{L}
\)
Elongation in the element is given by
\(
\begin{aligned}
\text { elongation } & =\text { original length } \times \text { stress } / Y \\
& =\frac{T d x}{A Y}=\frac{(L-x) W d x}{L A Y} .
\end{aligned}
\)
\(
\begin{aligned}
\text { The total elongation } & =\int_0^L \frac{(L-x) W d x}{L A Y} \\
& =\frac{W}{L A Y}\left(L x-\frac{x^2}{2}\right)_0^L=\frac{W L}{2 A Y} .
\end{aligned}
\)
A load of \(10 \mathrm{~kg}\) is suspended by a metal wire \(3 \mathrm{~m}\) long and having a cross-sectional area \(4 \mathrm{~mm}^2\).
Find (a) the stress (b) the strain and (c) the elongation. Young modulus of the metal is \(2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\).
Given:
Mass of the load \((\mathrm{m})=10 \mathrm{~kg}\)
Length of wire \((L)=3 \mathrm{~m}\)
Area of cross-section of the wire \((\mathrm{A})=4 \mathrm{~mm}^2=4.0 \times 10^{-6} \mathrm{~m}^2\)
Young’s modulus of the metal \(Y=2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\)
(a) Stress = F/A
\(
\begin{aligned}
& \begin{aligned}
\mathrm{F}= & \mathrm{mg} \\
& =10 \times 10=100 \mathrm{~N} \quad\left(\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^2\right) \\
\therefore \frac{F}{A} & =\frac{100}{4 \times 10^{-6}} \\
= & 2.5 \times 10^7 \mathrm{~N} / \mathrm{m}^2
\end{aligned}
\end{aligned}
\)
(b) Strain \(=\frac{\Delta L}{L}\)
Or,
Strain \(=\frac{\text { Stress }}{Y}\)
Strain \(=\frac{2.5 \times 10^7}{2 \times 10^{11}}\)
\(=1.25 \times 10^{-4}\)
(c) Let the elongation in the wire be \(\Delta L\).
\(
\begin{aligned}
& \text { Strain }=\frac{\Delta L}{L} \\
& \Rightarrow \Delta L=(\text { Strain }) \times L \\
& =1.25 \times 10^{-4} \times 3 \\
& =3.75 \times 10^{-4} \mathrm{~m}
\end{aligned}
\)
A vertical metal cylinder of radius \(2 \mathrm{~cm}\) and length \(2 \mathrm{~m}\) is fixed at the lower end and a load of \(100 \mathrm{~kg}\) is put on it. Find (a) the stress (b) the strain and (c) the compression of the cylinder. Young modulus of the metal \(=2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\)
Given:
Radius of cylinder \((r)=2 \mathrm{~cm}=2 \times 10^{-2} \mathrm{~m}\)
Length of cylinder \((\mathrm{L})=2 \mathrm{~m}\)
Mass of the load \(=100 \mathrm{~kg}\)
Young’s modulus of the metal \(=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^2\)
(a) Stress is given by : \(\frac{F}{A}\)
Here, \(\mathrm{F}\) is the force given by \(\mathrm{mg}=100 \times 10=1000 \mathrm{~N}\) ( Taking \(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2\) )
\(A\) is the area of cross-section \(=\pi r^2=4 \pi \times 10^{-4} \mathrm{~m}^2\)
\(
\begin{aligned}
& \Rightarrow \text { Stress } =\frac{\mathrm{mg}}{A} \\
& =\frac{(100 \times 10)}{\left(4 \pi \times 10^{-4}\right)} \\
& =7.96 \times 10^5 \mathrm{~N} / \mathrm{m}^2
\end{aligned}
\)
(b) Strain is given by:
\(
\begin{aligned}
& \text { Strain }=\frac{\text { Stress }}{Y}=\frac{\left(7.96 \times 10^5\right)}{\left(2 \times 10^{11}\right)} \\
& =4 \times 10^{-6}
\end{aligned}
\)
(c) Compression of the cylinder:
\(
\begin{aligned}
\Delta L & =\text { strain } \times L \\
& =4 \times 10^{-6} \times 2=8 \times 10^{-6} \mathrm{~m}
\end{aligned}
\)
The elastic limit of steel is \(8 \times 10^8 \mathrm{~N} \mathrm{~m}^{-2}\) and its Young modulus \(2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\). Find the maximum elongation of a half-metre steel wire that can be given without exceeding the elastic limit.
Given:
Elastic limit of steel \(\frac{F}{A}=8 \times 10^5 \mathrm{~N} / \mathrm{m}^2\)
Young’s modulus of steel \(Y=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^2\)
Length of steel wire \(L=\frac{1}{2} \mathrm{~m}=0.5 \mathrm{~m}\)
The elastic limit of steel indicates the maximum pressure that steel can bear.
Let the maximum elongation of steel wire be \(\Delta L\).
\(
\begin{aligned}
& Y=\frac{F}{A} \frac{L}{\Delta L} \\
& \Rightarrow \Delta L=\frac{F L}{A Y} \\
& \Rightarrow \Delta L=\frac{8 \times 10^5 \times(0.5)}{2 \times 10^{11}} \\
& =2 \times 10^{-3} \mathrm{~m}=2 \mathrm{~mm}
\end{aligned}
\)
Hence, the required elongation of steel wire is \(2 \mathrm{~mm}\).
A steel wire and a copper wire of equal length and equal cross-sectional area are joined end to end and the combination is subjected to a tension. Find the ratio of (a) the stresses developed in the two wires and (b) the strains developed. \(Y\) of steel \(=2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2} . Y\) of copper \(=1.3 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\)
Given:
Young’s modulus of steel \(=2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\)
Young’s modulus of copper \(=1.3 \times 1011 \mathrm{~N} \mathrm{~m}^{-2}\)
Both wires are of equal length and equal cross-sectional area. Also, equal tension is applied on them.
As per the question:
\(
\begin{aligned}
& L_{\text {steel }}=L_{\text {Cu }} \\
& A_{\text {steel }}=A_{\mathrm{Cu}} \\
& F_{\text {Cu }}=F_{\text {Steel }}
\end{aligned}
\)
Here: \(\mathrm{L}_{\text {steel }}\) and \(\mathrm{L}_{\text {Cu }}\) denote the lengths of steel and copper wires, respectively.
\(\mathrm{A}_{\text {steel }}\) and \(\mathrm{A}_{\mathrm{Cu}}\) denote the cross-sectional areas of steel and copper wires, respectively.
\(\mathrm{F}_{\text {steel }}\) and \(\mathrm{F}_{\mathrm{Cu}}\) denote the tension of steel and cooper wires, respectively.
(a)
\(
\frac{\text { Stress of } \mathrm{Cu}}{\text { Stress of Steel }}=\frac{F_{\mathrm{Cu}}}{A_{\mathrm{Cu}}} \frac{A_{\text {Steel }}}{F_{\text {Steel }}}=1
\)
(b)
\(
\begin{aligned}
& \frac{\text { Strain of } \mathrm{Cu}}{\text { Strain of steel }}=\frac{\frac{\Delta L_{\text {Steel }}}{L_{\text {Steel }}}}{\frac{\Delta L_{\mathrm{cu}}}{L_{\mathrm{cu}}}}=\frac{F_{\text {Steel }} L_{\text {Steel }} A_{\mathrm{cu}} Y_{\mathrm{cu}}}{A_{\text {Steel }} Y_{\text {Steel }} F_{\mathrm{cu}} L_{\mathrm{cu}}} \\
& \left(\text { Using } \frac{\Delta L}{L}=\frac{F}{A Y}\right) \\
& \Rightarrow \frac{\text { Strain of } \mathrm{Cu}}{\text { Strain of steel }}=\frac{Y_{\mathrm{cu}}}{Y_{\text {Steel }}}=\frac{1.3 \times 10^{11}}{2 \times 10^{11}} \\
& \Rightarrow \frac{\text { Strain of Cu }}{\text { Strain of steel }}=\frac{13}{20} \\
& \Rightarrow \frac{\text { Strain of steel }}{\text { Strain of Cu }}=\frac{20}{13}
\end{aligned}
\)
Hence, the required ratio is \(20: 13\).
In the figure below the upper wire is made of steel and the lower of copper. The wires have equal cross section. Find the ratio of the longitudinal strains developed in the two wires.
Given that both wires are of equal length and equal cross-sectional area, the block applies equal tension on both of them.
\(
\begin{aligned}
& \therefore L_{\text {steel }}=L_{\mathrm{Cu}} \\
& A_{\text {steel }}=A_{\mathrm{Cu}} \\
& F_{\text {Cu }}=F_{\text {Steel }} \\
& \frac{\text { Strain of } \mathrm{Cu}}{\text { Strain of steel }}=\frac{\frac{\Delta L_{\text {Steel }}}{L_{\text {Steel }}}}{\frac{\Delta L_{\mathrm{cu}}}{L_{\mathrm{cu}}}}=\frac{F_{\text {Steel }} L_{\text {Steel }} A_{\mathrm{cu}} Y_{\mathrm{cu}}}{A_{\text {Steel }} Y_{\text {Steel }} F_{\mathrm{cu}} L_{\mathrm{cu}}} \\
& \left(\text { Using } \frac{\Delta L}{L}=\frac{F}{A Y}\right) \\
& \Rightarrow \frac{\text { Strain of } \mathrm{Cu}}{\text { Strain of steel }}=\frac{Y_{\text {cu }}}{Y_{\text {Steel }}}=\frac{1.3 \times 10^{11}}{2 \times 10^{11}} \\
& \Rightarrow \frac{\text { Strain of steel }}{\text { Strain of Cu }}=\frac{20}{13}=1.54
\end{aligned}
\)
The two wires shown in the figure below are made of the same material which has a breaking stress of \(8 \times 10^8 \mathrm{~N} \mathrm{~m}^{-2}\). The area of cross section of the upper wire is \(0.006 \mathrm{~cm}^2\) and that of the lower wire is \(0.003 \mathrm{~cm}^2\). The mass \(m_1=10 \mathrm{~kg}, m_2=20 \mathrm{~kg}\) and the hanger is light. (a) Find the maximum load that can be put on the hanger without breaking a wire. Which wire will break first if the load is increased? (b) Repeat the above part if \(m_1=10 \mathrm{~kg}\) and \(m_2=36 \mathrm{~kg}\).
Given: Breaking stress of wire \(=8 \times 10^8 \mathrm{~N} / \mathrm{m}^2\)
Area of cross-section of upper wire \(\left(A_{\mathrm{u}}\right)=0.006 \mathrm{~cm}^2=6 \times 10^{-7} \mathrm{~m}\)
Area of cross-section of lower wire \(\left(A_l\right)=0.003 \mathrm{~cm}^2=3 \times 10^{-7} \mathrm{~m}\) \(m_1=10 \mathrm{~kg}, m_2=20 \mathrm{~kg}\)
(a)
Tension in lower wire
\(
T_1=\mathrm{m}_1 \mathrm{~g}+\mathrm{w}
\)
Here : \(g\) is the acceleration due to gravity, \(w\) is the load
\(\therefore\) Stress in lower wire
\(
\begin{aligned}
& =\frac{\mathrm{T}_1}{\mathrm{~A}_1}=\frac{\mathrm{m}_1 \mathrm{~g}+\mathrm{w}}{\mathrm{A}_1} \\
& \Rightarrow \frac{\mathrm{m}_1 \mathrm{~g}+\mathrm{w}}{\mathrm{A}_{\mathrm{l}}}=8 \times 10^8 \\
& \Rightarrow \mathrm{w}=\left[\left(8 \times 10^8\right) \times\left(3 \times 10^{-7}\right)\right]-100 \\
& \Rightarrow \mathrm{w}=140 \mathrm{~N} \text { or } 14 \mathrm{~kg}
\end{aligned}
\)
Now, tension in upper wire
\(T_2=m_1 g+m_2 g+w\)
\(\therefore\) Stress in upper wire
\(
\begin{aligned}
& =\frac{T_u}{A_u}=\frac{m_2 g+m_1 g+w}{A_u} \\
& \Rightarrow \frac{m_2 g+m_1 g+w}{A_u}=8 \times 10^8 \\
& \Rightarrow w=180 \mathrm{~N} \text { or } 18 \mathrm{~kg}
\end{aligned}
\)
For the same breaking stress, the maximum load that can be put is \(140 \mathrm{~N}\) or \(14 \mathrm{~kg}\). The lower wire will break first if the load is increased.
(b)
If \(\mathrm{m}_1=10 \mathrm{~kg}\) and \(\mathrm{m}_2=36 \mathrm{~kg}\)
Tension in lower wire \(T_1=m_1 g+w\)
\(\therefore\) Stress in lower wire:
\(
\begin{aligned}
& \Rightarrow \frac{T_1}{A_l}=\frac{m_1 g+w}{A_l}=8 \times 10^5 \\
& \Rightarrow \mathrm{w}=140 \mathrm{~N}
\end{aligned}
\)
Now, tension in upper wire
\(
\begin{aligned}
& \mathrm{T}_2=\mathrm{m}_1 \mathrm{~g}+\mathrm{m}_2 \mathrm{~g}+\mathrm{w} \\
& \therefore \text { Stress in upper wire: } \\
& \Rightarrow \frac{\mathrm{T}_{\mathrm{u}}}{\mathrm{A}_{\mathrm{u}}}=\frac{\mathrm{m}_2 \mathrm{~g}+\mathrm{m}_1 \mathrm{~g}+\mathrm{w}}{\mathrm{A}_{\mathrm{u}}}=8 \times 10^5 \\
& \Rightarrow \mathrm{w}=20 \mathrm{~N} = 2 \mathrm{~kg}
\end{aligned}
\)
For the same breaking stress, the maximum load that can be put is \(20 \mathrm{~N}\) or \(2 \mathrm{~kg}\). The upper wire will break first if the load is increased.
Two persons pull a rope towards themselves. Each person exerts a force of \(100 \mathrm{~N}\) on the rope. Find the Young modulus of the material of the rope if it extends in length by \(1 \mathrm{~cm}\). Original length of the rope \(=2 \mathrm{~m}\) and the area of cross section \(=2 \mathrm{~cm}^2\).
Given:
Force \((\mathrm{F})\) applied by two persons on the rope \(=100 \mathrm{~N}\)
Original length of rope \(\mathrm{L}=2 \mathrm{~m}\)
Extension in the rope \(\Delta L=0.01 \mathrm{~m}\)
Area of cross – section of the rope \(A=2 \times 10^{-4}\)
We know that :
Young’s modulus \(Y=\frac{F}{A} \times \frac{L}{\Delta L}\)
\(
\begin{aligned}
& =\frac{100}{2 \times 10^{-4}} \times \frac{2}{0.01} \\
& \Rightarrow Y=1 \times 10^8 \mathrm{~N} / \mathrm{m}^2
\end{aligned}
\)
Hence, the required Young’s modulus for the rope is \(1 \times 10^8 \mathrm{~N} / \mathrm{m}^2\).
A steel rod of cross-sectional area \(4 \mathrm{~cm}^2\) and length \(2 \mathrm{~m}\) shrinks by \(0.1 \mathrm{~cm}\) as the temperature decreases in night. If the rod is clamped at both ends during the day hours, find the tension developed in it during night hours. Young modulus of steel \(=1.9 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\).
Given:
Cross-sectional area of steel \(\operatorname{rod} \mathrm{A}=4 \mathrm{~cm}^2=4 \times 10^{-4} \mathrm{~m}^2\)
Length of steel \(\operatorname{rod} \mathrm{L}=2 \mathrm{~m}\)
Compression during night hours \(\Delta \mathrm{L}=0.1 \mathrm{~cm}=10^{-3} \mathrm{~m}\)
Young modulus of steel \(Y=1.9 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\)
Let the tension developed at night be \(\mathrm{F}\).
\(
\begin{aligned}
& Y=\frac{F}{A} \times \frac{L}{\Delta L} \\
& \Rightarrow F=\frac{Y A \Delta L}{L} \\
& =\frac{1.9 \times 10^{11} \times 4 \times 10^{-4} \times 10^{-3}}{2} \\
& =3.8 \times 10^4 N
\end{aligned}
\)
\(\therefore\) Required tension developed in steel rod during night hours \(=3.8 \times 10^4 \mathrm{~N}\).
Consider the situation shown in the figure below. The force \(F\) is equal to the \(m_2 g / 2\). If the area of cross-section of the string is \(A\) and its Young modulus \(Y\), find the strain developed in it. The string is light and there is no friction anywhere.
Given:
Force \((F)=m_2 g / 2\)
Area of cross-section of the string \(=\mathrm{A}\)
Young’s modulus \(=Y\)
Let \(a\) be the acceleration produced in block \(\mathrm{m}_2\) in the downward direction and \(\mathrm{T}\) be the tension in the string.
From the free body diagram:
\(
\begin{aligned}
& m_2 \mathrm{~g}-\mathrm{T}=\mathrm{m}_2 \mathrm{a} \ldots \text { (i) } \\
& \mathrm{T}-\mathrm{F}=\mathrm{m}_1 \mathrm{a} \ldots \text { (ii) }
\end{aligned}
\)
From equations (i) and (ii), we get:
\(
\begin{aligned}
& a=\frac{m_2 g-F}{m_1+m_2} \\
& \text { Applying } F=\frac{m_2 g}{2} \\
& \Rightarrow a=\frac{m_2 g}{2\left(m_1+m_2\right)}
\end{aligned}
\)
Again, \(\mathrm{T}=\mathrm{F}+\mathrm{m}_1 \mathrm{a}\)
On applying the values of \(F\) and \(a\), we get:
\(
\Rightarrow T=\frac{m_2 g}{2}+m_1 \frac{m_2 g}{2\left(m_1+m_2\right)}
\)
We know that:
\(
\begin{aligned}
& \mathrm{Y}=\frac{\mathrm{FL}}{\mathrm{A} \Delta \mathrm{L}} \\
& \Rightarrow \text { Strain }=\frac{\Delta \mathrm{L}}{\mathrm{L}}=\frac{\mathrm{F}}{\mathrm{AY}} \\
& \Rightarrow \text { Strain }=\frac{\left(\mathrm{m}_2^2+2 \mathrm{~m}_1 \mathrm{~m}_2\right) \mathrm{g}}{2\left(\mathrm{~m}_1+\mathrm{m}_2\right) \mathrm{AY}} \\
& =\frac{\mathrm{m}_2 g\left(2 \mathrm{~m}_1+\mathrm{m}_2\right)}{2 \mathrm{AY}\left(\mathrm{m}_1+\mathrm{m}_2\right)}
\end{aligned}
\)
A sphere of mass \(20 \mathrm{~kg}\) is suspended by a metal wire of unstretched length \(4 \mathrm{~m}\) and diameter \(1 \mathrm{~mm}\). When in equilibrium, there is a clear gap of \(2 \mathrm{~mm}\) between the sphere and the floor. The sphere is gently pushed aside so that the wire makes an angle \(\theta\) with the vertical and is released. Find the maximum value of \(\theta\) so that the sphere does not rub the floor. Young modulus of the metal of the wire is \(2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\). Make appropriate approximations.
Given:
Mass of sphere \((m)=20 \mathrm{~kg}\)
Length of metal wire \((\mathrm{L})=4 \mathrm{~m}\)
Diameter of wire \((\mathrm{d}=2 \mathrm{r})=1 \mathrm{~mm}\)
\(
\Rightarrow \mathrm{r}=5 \times 10^{-4} \mathrm{~m}
\)
Young’s modulus of the metal wire \(=2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\)
Tension in the wire in equilibrium \(=T\)
\(
\mathrm{T}=\mathrm{mg}
\)
When it is moved at an angle \(\theta\) and released, let the tension at the lowest point be \(\mathrm{T}^{\prime}\).
\(
\Rightarrow T^{\prime}=m g+\frac{m v^2}{r}
\)
The change in tension is due to the centrifugal force.
\(
\begin{aligned}
& \therefore \Delta \mathrm{T}=\mathrm{T}^{\prime}-\mathrm{T} \\
& \Delta \mathrm{T}=\frac{\mathrm{mv}^2}{\mathrm{r}} \ldots \text { (1) }
\end{aligned}
\)
Now, using the work energy principle:
\(
\begin{aligned}
& \frac{1}{2} \mathrm{mv}^2-0=\operatorname{mgr}(1-\cos \theta) \\
& \Rightarrow \mathrm{v}^2=2 \mathrm{gr}(1-\cos \theta) \ldots(2)
\end{aligned}
\)
Applying the value of \(v^2\) in (1):
\(
\begin{aligned}
& \Delta T=\frac{\mathrm{m}[2 \mathrm{gr}(1-\cos \theta)]}{r} \\
& =2 \mathrm{mg}(1-\cos \theta)
\end{aligned}
\)
Now, \(\mathrm{F}=\Delta \mathrm{T}\)
\(
\begin{aligned}
& \text { Also, } F=\frac{Y A \Delta L}{L} \\
& \Rightarrow \frac{Y A \Delta L}{L}=2 \mathrm{mg}(1-\cos \theta) \\
& \Rightarrow \cos \theta=1-\frac{Y A \Delta L}{L(2 \mathrm{mg})} \\
& \Rightarrow \cos \theta=1-\left[\frac{2 \times 10^{11} \times 4 \times 3.14 \times(5)^2 \times 10^{-8} \times 2 \times 10^{-3}}{4 \times 2 \times 20 \times 10}\right] \\
& \Rightarrow \cos \theta=0.80 \\
& \text { Or, } \theta=36.4^{\circ}
\end{aligned}
\)
A steel wire of original length \(1 \mathrm{~m}\) and cross-sectional area \(4.00 \mathrm{~mm}^2\) is clamped at the two ends so that it lies horizontally and without tension. If a load of \(2.16 \mathrm{~kg}\) is suspended from the middle point of the wire, what would be its vertical depression?
\(Y\) of the steel \(=2.0 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\). Take \(g=10 \mathrm{~m} \mathrm{~s}^{-2}\).
Given: Original length of steel wire \((\mathrm{L})=1 \mathrm{~m}\)
Area of cross-section \((\mathrm{A})=4.00 \mathrm{~mm}^2=4 \times 10^{-2} \mathrm{~cm}^2\)
Load \(=2.16 \mathrm{~kg}\)
Young’s modulus of steel \((Y)=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^2\)
Acceleration due to gravity \((\mathrm{g})=10 \mathrm{~m} \mathrm{~s}^{-2}\)
Let \(\mathrm{T}\) be the tension in the string after the load is suspended and \(\theta\) be the angle made by the string with the vertical, as shown in the figure:
\(
\cos \theta=\frac{x}{\sqrt{x^2+l^2}}=\frac{x}{l}\left\{1+\frac{x^2}{l^2}\right\}^{-1 / 2}
\)
Expanding the above equation using the binomial theorem:
\(\cos \theta=\frac{x}{l}\left\{1-\frac{1}{2} \frac{x^2}{l^2}\right\}\) (neglecting the higher order terms )
Since \(\mathrm{x}<<l, \frac{x^2}{{l}^2}\) can be neglected.
\(
\Rightarrow \cos \theta=\frac{x}{{l}}
\)
Increase in length:
\(
\begin{aligned}
& \Delta \mathrm{L}=(\mathrm{AC}+\mathrm{CB})-\mathrm{AB} \\
& \mathrm{AC}=\left({l}^2+\mathrm{x}^2\right)^{1 / 2} \\
& \Delta \mathrm{L}=2\left({l}^2+\mathrm{x}^2\right)^{1 / 2}-2 {l}
\end{aligned}
\)
We know that : \(Y=\frac{F}{A} \frac{L}{\Delta L}\)
\(
\Rightarrow 2 \times 10^{12}=\frac{T \times 100}{\left(4 \times 10^{-2}\right) \times\left[2\left(50^2+x^2\right)^{1 / 2}-100\right]}
\)
From the free body diagram:
\(
\begin{aligned}
& 2 T \cos \theta=\mathrm{mg} \\
& 2 T\left(\frac{x}{50}\right)=2.16 \times 10^3 \times 980 \\
& \Rightarrow \frac{2 \times\left(2 \times 10^{12}\right) \times\left(4 \times 10^{-2}\right) \times\left[2\left(50^2+x^2 \frac{1}{2}\right)-100\right] x}{100 \times 50}=(2.16) \times 10^3 \times 980
\end{aligned}
\)
On solving the above equation, we get \(x=1.5 \mathrm{~cm}\).
Hence, the required vertical depression is \(1.5 \mathrm{~cm}\).
A copper wire of cross-sectional area \(0.01 \mathrm{~cm}^2\) is under a tension of \(20 \mathrm{~N}\). Find the decrease in the cross-sectional area. Young modulus of copper \(=1.1 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}\) and Poisson ratio \(=0.32\).
\(
\left[\text { Hint : } \frac{\Delta A}{A}=2 \frac{\Delta r}{r}\right]
\)
Given:
Cross-sectional area of copper wire \(A=0.01 \mathrm{~cm}^2=10^{-6} \mathrm{~m}^2\)
Applied tension \(T=20 \mathrm{~N}\)
Young modulus of copper \(Y=1.1 \times 10^{11} \mathrm{~N} / \mathrm{m}^2\)
Poisson ratio \(\sigma=0.32\)
We know that: \(Y=\frac{F L}{A \Delta L}\)
\(
\begin{aligned}
& \Rightarrow \frac{\Delta L}{L}=\frac{F}{A Y} \\
& =\frac{20}{10^{-6} \times 1.1 \times 10^{11}}=18.18 \times 10^{-5}
\end{aligned}
\)
Poisson’s ratio, \(\sigma=\frac{\frac{\Delta d}{d}}{\frac{\Delta L}{L}}=0.32\)
Where \(d\) is the transverse length
So, \(\frac{\Delta d}{d}=(0.32) \times \frac{\Delta L}{L}\)
\(=0.32 \times(18.18) \times 10^{-5}=5.81 \times 10^{-5}\)
Again , \(\frac{\Delta A}{A}=\frac{2 \Delta r}{r}=\frac{2 \Delta d}{d}\)
\(
\begin{aligned}
& \Rightarrow \Delta A=\frac{2 \Delta d}{d} A \\
& \Rightarrow \Delta A=2 \times\left(5.8 \times 10^{-5}\right) \times(0.01) \\
& =1.164 \times 10^{-6} \mathrm{~cm}^2
\end{aligned}
\)
Hence, the required decrease in the cross-sectional area is \(1.164 \times 10^{-6} \mathrm{~cm}^2\)
Find the increase in pressure required to decrease the volume of a water sample by \(0.01 \%\). Bulk modulus of water \(=2.1 \times 10^9 \mathrm{~N} \mathrm{~m}^{-2}\).
Bulk modulus of water \((B)=2.1 \times 10^9 \mathrm{Nm}^{-2}\)
In order to decrease the volume \((\mathrm{V})\) of a water sample by \(0.01 \%\), let the increase in pressure be \(\mathrm{P}\).
\(
\begin{aligned}
& \frac{V \times 0.01}{100}=\Delta V \\
& \Rightarrow \frac{\Delta V}{V}=10^{-4}
\end{aligned}
\)
From \(B=\frac{P V}{\Delta V}\), we have :
\(
\begin{aligned}
& \Rightarrow P=B\left(\frac{\Delta V}{V}\right) \\
& =2.1 \times 10^9 \times 10^{-4} \\
& =2.1 \times 10^5 \mathrm{~N} / \mathrm{m}^2
\end{aligned}
\)
Hence, the required increase in pressure is \(2.1 \times 10^5 \mathrm{Nm}^{-2}\).
Estimate the change in the density of water in ocean at a depth of \(400 \mathrm{~m}\) below the surface. The density of water at the surface \(=1030 \mathrm{~kg} \mathrm{~m}^{-3}\) and the bulk modulus of water \(=2 \times 10^9 \mathrm{~N} \mathrm{~m}^{-2}\).
Given :
Bulk modulus of water \(B=2 \times 10^9 \mathrm{~N} / \mathrm{m}^2\)
Depth \((d)=400 \mathrm{~m}\)
Density of water at the surface \(\left(\rho_0\right)=1030 \mathrm{~kg} / \mathrm{m}^3\)
We know that:
Density at surface \(\rho_0=\frac{\mathrm{m}}{V_0}\)
Density at depth \(\rho_d=\frac{\mathrm{m}}{V_d}\)
\(
\Rightarrow \frac{\rho_d}{\rho_0}=\frac{V_0}{V_d} \ldots \text { (i) }
\)
Here: \(\rho_d=\) density of water at a depth
\(m=\) mass
\(V_0=\) volume at the surface
\(V_{d}=\) volume at a depth
Pressure at a depth \({d}=\rho_0 \mathrm{gd}\)
Acceleration due to gravity \(\mathrm{g}=10 \mathrm{~ms}^2\)
Volume strain \(=\frac{V_0-V_d}{V_0}\)
\(
\begin{aligned}
& B=\frac{\text { Pressure }}{\text { Volume strain }} \\
& \Rightarrow B=\frac{\rho_0 \mathrm{gd}}{\left(\frac{V_0-V_d}{V_0}\right)} \\
& \Rightarrow 1-\frac{V_d}{V_0}=\frac{\rho_0 \mathrm{gd}}{B} \\
& \Rightarrow \frac{V_d}{V_0}=\left(1-\frac{p_0 \mathrm{gd}}{B}\right) \dots(ii)
\end{aligned}
\)
Using equations (i) and (ii), we get:
\(
\begin{aligned}
& \frac{\rho_d}{\rho_0}=\frac{1}{\left(1-\frac{\rho_0 g \mathrm{~d}}{B}\right)} \\
& \Rightarrow \rho_d=\frac{1}{\left(1-\frac{\rho_0 \mathrm{gd}}{B}\right)} \rho_0 \\
& \Rightarrow \rho_d=\frac{1030}{\left(1-\frac{1030 \times 10 \times 400}{2 \times 10^9}\right)} \approx 1032 \mathrm{~kg} / \mathrm{m}^3
\end{aligned}
\)
Change in density \(=\rho_d-\rho_0\)
\(
=1032-1030=2 \mathrm{~kg} / \mathrm{m}^3
\)
Hence, the required density at a depth of \(400 \mathrm{~m}\) below the surface is \(2 \mathrm{~kg} / \mathrm{m}^3\).
A steel plate of face area \(4 \mathrm{~cm}^2\) and thickness \(0.5 \mathrm{~cm}\) is fixed rigidly at the lower surface. A tangential force of \(10 \mathrm{~N}\) is applied on the upper surface. Find the lateral displacement of the upper surface with respect to the lower surface. Rigidity modulus of steel \(=8.4 \times 10^{10} \mathrm{~N} \mathrm{~m}^{-2}\)
Given:
Face area of steel plate \(A=4 \mathrm{~cm}^2=4 \times 10^{-4} \mathrm{~m}^2\)
Thickness of steel plate \(d=0.5 \mathrm{~cm}=0.5 \times 10^{-2} \mathrm{~m}\)
Applied force on the upper surface \(F=10 \mathrm{~N}\)
Rigidity modulus of steel \(=8.4 \times 10^{10} \mathrm{~N} \mathrm{~m}^{-2}\)
Let \(\theta\) be the angular displacement.
Rigidity modulus \(\mathrm{m}=\frac{F}{A \theta}\)
\(
\begin{aligned}
& \Rightarrow m=\left(\frac{10}{4 \times 10^{-4} \theta}\right) \\
& \Rightarrow \theta=\frac{10}{4 \times 10^{-4} \times 8.4 \times 10^{10}} \\
& =0.297 \times 10^{-6}
\end{aligned}
\)
\(\therefore\) Lateral displacement of the upper surface with respect to the lower surface \(=\theta \times d\)
\(
\Rightarrow(0.297) \times 10^{-6} \times(0.5) \times 10^{-2}
\)
\(
\Rightarrow 1.5 \times 10^{-9} \mathrm{~m}
\)
Hence, the required lateral displacement of the steel plate is \(1.5 \times 10^{-9} \mathrm{~m}\).
A rope \(1 \mathrm{~cm}\) in diameter breaks if the tension in it exceeds \(500 \mathrm{~N}\). The maximum tension that may be given to a similar rope of diameter \(2 \mathrm{~cm}\) is
\(
F_1=500 \mathrm{~N}
\)
Let the required breaking force on the \(2 \mathrm{~cm}\) wire be \(F\).
Breaking stress in \(1 \mathrm{~cm}\) wire \(=\frac{F_1}{A_1}=\frac{500}{\pi\left(\frac{0.01}{2}\right)^2}\)
Breaking stress in \(2 \mathrm{~cm}\) wire \(=\frac{F_2}{A_2}=\frac{F_2}{\pi\left(\frac{0.02}{2}\right)^2}\)
The breaking stress is the same for a material.
\(
\begin{aligned}
& \Rightarrow \frac{500}{\pi\left(\frac{0.01}{2}\right)^2}=\frac{F_2}{\pi\left(\frac{0.02}{2}\right)^2} \\
& =>F_2=2000 \mathrm{~N}
\end{aligned}
\)
The breaking stress of a wire depends on
Breaking stress depends upon the intermolecular/inter-atomic forces of attraction within materials. In other words, it depends upon the material of the wire.
A wire can sustain the weight of 20 kg before breaking. If the wire is cut into two equal parts, each part can sustain a weight of
The stress at which the wire can break or rupture is called breaking stress. This is an intrinsic property of the material and depends only on the nature of the material.
Here, the breaking stress of the wire corresponds to the weight of 20 kg mass. As the wire is cut into two equal parts, the nature of the material does not change. Hence, its breaking stress will not change. i.e each part of the wire can sustain a weight of 20 kg mass.
Two wires \(A\) and \(B\) are made of same material. The wire \(A\) has a length \(l\) and diameter \(r\) while the wire \(B\) has a length \(2 l\) and diameter \(r / 2\). If the two wires are stretched by the same force, the elongation in \(A\) divided by the elongation in \(B\) is
Let the Young’s modulus of the wire’s material be \(Y\).
Here:
\(
\begin{aligned}
& \text { Force }=\mathrm{F} \\
& A_1=\pi r^2 \\
& L_1=l \\
& A_2=\pi\left(\frac{r}{2}\right)^2=\frac{\pi r^2}{4} \\
& \mathrm{~L}_2=2l
\end{aligned}
\)
Let the elongation in \(A\) be \(x\) and that in \(B\) be \(y\).
Since the Young’s modulus for both the wires is the same:
\(
\begin{aligned}
& Y=\frac{\frac{F}{A_1}}{\frac{x}{l}}=\frac{\frac{F}{A_2}}{\frac{y}{2 l}} \\
& \Rightarrow \frac{x}{y}=\frac{A_2}{2 A_1} \\
& \Rightarrow \frac{x}{y}=\frac{1}{8}
\end{aligned}
\)
You cannot copy content of this page