0 of 66 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 66 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means?
No, the gravitational force is a long-range force and we cannot escape from it.
An astronaut inside a small spaceship orbiting around the earth cannot detect gravity. If the space station orbiting around the earth has a large size, can he hope to detect gravity?Â
Due to the small spaceship, the force of attraction between the earth and the ship is too less, the astronaut cannot detect gravity. If the size of the space station is very large, the magnitude of the gravity will also become appreciable and hence he can hope to detect it.
If you compare the gravitational force on the earth due to the sun to that due to the moon, you would find that the Sun’s pull is greater than the moon’s pull. However, the tidal effect of the moon’s pull is greater than the tidal effect of the sun.
Is it correct?
Choose the correct statement
a. Decreases.
The value of acceleration due to gravity at a height ‘h’ above the ground ‘gh’ is given by, \(g_h=g\left[1-2 h / R_e\right]\) where \(R_e\) is radius of Earth. Therefore \(g_h\) decreases with an increase in height.
b. Acceleration decreases according to the formula \(\mathrm{g}^{\prime}=\mathrm{g}\left(1-\frac{\mathrm{d}}{\mathrm{R_e}}\right)\), where \(d\) is depth and \(R_e\) is the radius of the earth.
c. Mass of the body.
The acceleration due to gravity of any planet of mass ‘ \(M\) ‘ and radius ‘ \(R\) ‘ is given by, \(g\) \(=G M / R^2\), where, \(G\) is the universal gravitational constant. So, the value of ‘ \(g\) ‘ is dependent on the mass of the earth but independent of mass of the body.
d. More accurate.
The gravitational potential energy of any point at a distance ‘ \(r\) ‘ from the centre of the earth is \(V(r)=G m M / r\)
So, Potential Energy difference
\(
\begin{aligned}
&=V\left(r_2\right)-V\left(r_1\right) \\
&\Delta V=-G m M\left(\frac{1}{r_2}-\frac{1}{r_1}\right) \\
&=+G m M\left(\frac{\left(r_2-r_1\right)}{r_1 r_2}\right) \\
&=\left(\frac{G M}{r_1 r_2}\right) m\left(r_2-r_1\right) \\
&=\operatorname{gm}\left(r_2-r_1\right) \\
&=m g r_2-m g r_1
\end{aligned}
\)
(Assuming \(r_2-r_1 \approx R^2\) )
Thus \(-\mathrm{GmM}\left(1 / \mathrm{r}_2-1 / \mathrm{r}_1\right)\) is a more accurate relation.
Suppose there existed a planet that went around the sun twice as fast as the earth. What would be its orbital size as compared to that of the earth?
Time taken by the Earth to complete one revolution around the Sun, \(\mathrm{T}_{\mathrm{e}}=1\) year
Time taken by the planet to complete one revolution around the Sun, \(T_P=\) \(\frac{1}{2} \mathrm{~T}_{\mathrm{e}}=\frac{1}{2}\) year
Orbital radius of the planet \(=\mathrm{Rp}\)
From Kepler’s third law of planetary motion, we can write:
\(
\left(\frac{\mathrm{R}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{e}}}\right)^3=\left(\frac{\mathrm{T}_{\mathrm{P}}}{\mathrm{T}_{\mathrm{e}}}\right)^2
\)
\(
\left(\frac{R_P}{R_e}\right)=\left(\frac{T_P}{T_e}\right)^{2 / 3}
\)
\(
=0.5^{(2 / 3)}=0.63
\)
Hence, the orbital radius of the planet will be \(0.63\) times of the Earth.
I0, one of the satellites of Jupiter has an orbital period of \(1.769\) days and the radius of the orbit is \(4.22 \times 10^8 \mathrm{~m}\). What is the mass of Jupiter is compared to the sun?
Orbital period of \(I_0, T_{10}=1.769\) days \(=1.769 \times 24 \times 60 \times 60 \mathrm{~s}\)
Orbital radius of \(I_0, R_{10}=4.22 \times 10^8 \mathrm{~m}\)
Satellite \(I_0\) is revolving around the Jupiter
Mass of the latter is given by the relation:
\(
M_J=\frac{4 \pi^2 R_{\pm}^3}{G T_{10}^2} \ldots . \text { (i) }
\)
Where
\(M_J=\) Mass of Jupiter
\(G=\) Universal gravitational constant
Orbital period of the earth
\(T_e=365.25\) days \(=365.25 \times 24 \times 60 \times 60 \mathrm{~s}\)
Orbital radius of the Earth
\(R_e=1 A U=1.496 \times 10^{11} \mathrm{~m}\)
Mass of Sun is given as
\(
M_s=\frac{4 \pi^2 R_e^3}{G T_e^2} \text {.. (ii) }
\)
\(
\begin{aligned}
&\therefore \frac{M_s}{M_J}=\frac{4 \pi^2 R_e^3}{G T_e^2} \times \frac{G T_{I o}^2}{4 \pi^2 R_{\mathrm{lo}}^3}=\frac{R_e^3}{R_{\mathrm{lo}}^3} \times \frac{T_{\mathrm{lo}}^2}{T_e^2} \\
&=\left(\frac{1.769 \times 24 \times 60 \times 60}{365.25 \times 24 \times 60 \times 60}\right)^2 \times\left(\frac{1.496 \times 10^{11}}{4.22 \times 10^8}\right) \\
&=1045.04 \\
&\therefore \frac{M_s}{M_J} \sim 1000 \\
&M_s \sim 1000 \times M_J
\end{aligned}
\)
Hence, it can be inferred that the mass of Jupiter is about one thousandth that of the Sun.
Let us assume that our galaxy consists of \(2.5 \times 10^{11}\) stars each of one solar mass. How long will a star at a distance of \(50,000 \mathrm{ly}\) from the galactic centre take to complete one revolution? Take the diameter of the Milky Way to be \(10^5\) ly.
Here, \(r=50000 \mathrm{ly}=50000 \times 9.46 \times 10^{15} \mathrm{~m}=4.73 \times 10^{20} \mathrm{~m}\) \(M=2.5 \times 10^{11}\) solar mass \(=2.5 \times 10^{11} \times\left(2 \times 10^{30}\right) \mathrm{kg}=5.0 \times 10^{41} \mathrm{~kg}\)
We know that
\(
\begin{aligned}
&M=\frac{4 \pi^2 r^3}{G T^2} \\
&\text { or } T=\left(\frac{4 \pi^2 r^3}{\mathrm{GM}}\right)^{\frac{1}{2}}=\left[\frac{4 \times\left(\frac{22}{7}\right)^2 \times\left(4.73 \times 10^{20}\right)^3}{6.67 \times 10^{-11} \times\left(5.0 \times 10^{41}\right)}\right]^{\frac{1}{2}} \\
&=1.12 \times 10^{16} \mathrm{~s}
\end{aligned}
\)
Choose the correct statement
(a) We know,
Potential energy of satellite(P.E) \(=-G M m / r\)
Kinetic energy of satellite(K.E) \(=\mathrm{GMm} / 2 \mathrm{r}\)
Total energy \(=\) P.E \(+\) K.E
\(=-\mathrm{GMm} / \mathrm{r}+\mathrm{GMm} / 2 \mathrm{r}\)
\(=-G M m / 2 r=-K . E\)
e.g the total energy of an orbiting satellite is negative of the kinetic energy.
(b) the energy required to rocket an orbiting satellite out of earth’s Gravitational influence is less than the energy required to project a stationary object, because, in the case of orbiting satellite the Gravitational pull of the earth acting on it is balanced by centripetal force so, no work is required against the Gravitational pull.
The escape speed of a body from the earth depends on
Escape velocity is given by,
\(
\begin{aligned}
V_e &=\sqrt{2 g r}=\sqrt{\frac{2 G M}{r}} \\
&=\sqrt{\frac{2 G M}{R+h}}
\end{aligned}
\)
where,
\(\mathrm{g}\) is the acceleration due to gravity at the point from where the body is projected,
r is the distance from the centre of the earth from where the body is projected, and
\(h\) is the height from the surface of the earth.
(a) Escape velocity, \(v_e\) does not depend on the mass of the body.
(b) Escape velocity, \(v_e\) depends on upon \(g\) and at different locations \(g\) is different \(\left(g_\lambda=g\right.\)
\(R \omega^2 \cos ^2 \lambda\) ), therefore, \(v_e\) slightly depends on upon the angle of latitude \(\left(\because R \omega^2 \cos ^2 \lambda\right.\) \(\leq 3.36 \mathrm{~cm} / \mathrm{s}^2\) ).
(c) Escape velocity, \(v_e\) does not depend on upon the direction of projection.
(d) Escape velocity, \(\mathrm{v}_{\mathrm{e}}\) depends on upon height from the surface of the earth.
A comet orbits the sun in a highly elliptical orbit. The comet has a constant
The torque exerted by the sun on the comet is zero.
Therefore, angular momentum of comet remains constant.
i.e., \(\quad \mathrm{mvr}=\mathrm{constant}\)
\(\Rightarrow \quad \mathrm{vr}=\) constant [because \(\mathrm{m}\) is constant].
In an elliptical orbit distance of the comet from the sun changes, therefore, the speed of the comet also changes.
(a) Linear speed of the comet is not constant.
(b) Angular speed \(\omega\) of the comet is not constant.
(c) Angular momentum of the comet is constant.
(d) Kinetic energy of comet \(1 / 2 \mathrm{mv}^2\) changes because the speed of the comet changes.
(e) Potential energy of the comet is \(-\frac{G M m}{r}\)
(f) Total energy of the comet remains constant.
Which of the following symptoms is not likely to afflict an astronaut in space?
(a) Legs hold the entire mass of a body in a standing position due to gravitational pull. In space, an astronaut feels weightlessness because of the absence of gravity. Therefore, swollen feet of an astronaut do not affect him/her in space.
(b) A swollen face is caused generally because of apparent weightlessness in space. Sense organs such as eyes, ears nose, and mouth constitute a person’s face. This symptom can affect an astronaut in space.
(c) Headaches are caused because of mental strain. It can affect the working of an astronaut in space.
(d) Space has different orientations. Therefore, the orientational problem can affect an astronaut in space.
The gravitational intensity at the centre of a hemispherical shell of uniform mass density has the direction indicated by the arrow.
We know that the gravitational potential \((\mathrm{V})\) in a sphere is constant throughout. Also, the gravitational intensity will act in the downward direction as its upper half is cut (gravitational force will also act in a downward direction). Hence the required direction of gravitational intensity is shown by arrow c.
The direction of the gravitational intensity at an arbitrary point P is indicated by the arrow
Since, the gravitational intensity is defined as the negative of the gradient of gravitational potential i.e., \(\left(-\frac{d v}{d r}\right)\) and the value of gravitational potential inside the spherical shell is constant, the value of gravitational intensity is zero. Consider any point \(\mathrm{p}\) as shown, inside a sphere then the net gravitational intensity at that point is zero. If the upper half is cut off, the pull in the left and right side cancel each other just like the full sphere base but the pull upwards is missing. Thus the effective force is downwards along \(e\).
A rocket is fired from the earth towards the sun. At what distance from the earth’s centre is the gravitational force on the rocket zero? Mass of the sun \(=2 \times 10^{30} \mathrm{~kg}\), mass of the earth \(=6 \times 10^{24} \mathrm{~kg}\). Neglect the effect of other planets etc. (orbital radius = \(\left.1.5 \times 10^{11} \mathrm{~m}\right)\)
Mass of the Sun, \(M_s=2 \times 10^{30} \mathrm{~kg}\)
Mass of the Earth, \(\mathrm{M}_{\mathrm{e}}=6 \times 10^{24} \mathrm{~kg}\)
Orbital radius, \(\mathrm{r}=1.5 \times 10^{11} \mathrm{~m}\)
Mass of the rocket \(=\mathrm{m}\)
Let \(\mathrm{x}\) be the distance from the centre of the Earth where the gravitational force acting on satellite \(\mathrm{P}\) becomes zero.
From Newton’s law of gravitation, we can equate gravitational forces acting on satellite \(\mathrm{P}\) under the influence of the Sun and the Earth as:
\(
\frac{\mathrm{GmM}_s}{(\mathrm{r}-\mathrm{x})^2}=\frac{\mathrm{GmM}_e}{\mathrm{x}^2}
\)
\(
\left[\frac{(\mathrm{r}-\mathrm{x})}{\mathrm{x}}\right]^2=\mathrm{M}_s / \mathrm{M}_e
\)
\(
(r-x) / x=\left(\frac{2 \times 10^{30}}{60 \times 10^{24}}\right)^{1 / 2}=577.35
\)
\(
1.5 \times 10^{11}-\mathrm{x}=577.35 \mathrm{x}
\)
\(
578.35 \mathrm{x}=1.5 \times 10^{11}
\)
\(
x=1.5 \times 10^{11} / 578.35=2.59 \times 10^8 \mathrm{~m}
\)
If the mean orbital radius of the earth around the sun is \(1.5 \times 10^8 \mathrm{~km}\). Then the mass of the sun is approximately:
Orbital radius of the Earth around the Sun, \(r=1.5 \times 10^{11} \mathrm{~m}\)
Time taken by the Earth to complete one revolution around the Sun,
\(
\begin{aligned}
&T=1 \text { year }=365.25 \text { days } \\
&=365.25 \times 24 \times 60 \times 60 s
\end{aligned}
\)
Universal gravitational constant, \(G=6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{~kg}^{-2}\)
Thus, mass of the Sun can be calculated using the relation,
\(
\begin{aligned}
&M=\frac{4 \pi^2 r^3}{G T^2} \\
&=\frac{4 \times(3.14)^2 \times\left(1.5 \times 10^{11}\right)^3}{\left(6.67 \times 10^{11} \times(365.25 \times 24 \times 60 \times 60)\right)^2} \\
&=\frac{133.24 \times 10}{6.64 \times 10^4}=2.0 \times 10^{30} \mathrm{~kg}
\end{aligned}
\)
Hence, the mass of the Sun is \(2 \times 10^{30} \mathrm{~kg}\).
A Saturn year is \(29.5\) times the earth year. How far is Saturn from the sun if the earth is \(1.5 \times 10^8 \mathrm{~km}\) away from the sun?
Distance of Earth from Sun, \(\mathrm{r}_{\mathrm{e}}=1.5 \times 10^{11} \mathrm{~m}\)
Time period of Earth \(=\mathrm{T}_{\mathrm{e}}\)
Time period of Saturn, \(T_s=29.5 T_e\)
Distance of Saturn from the Sun \(=r_{\mathrm{s}}\)
From Kepler’s third law of planetary motion,
\(
\begin{aligned}
&\mathrm{T}=\sqrt{\frac{4 \pi^2 \mathrm{r}^3}{\mathrm{GM}}} \\
&\Rightarrow \mathrm{r}_{\mathrm{s}}^3 / \mathrm{r}_{\mathrm{e}}^3=\mathrm{T}_{\mathrm{s}}^2 / \mathrm{T}_{\mathrm{e}}^2
\end{aligned}
\)
\(
r_s=r_e\left(T_s / T_e\right)^{2 / 3}
\)
\(
=1.5 \times 10^{11} \times 29.5^{2 / 3}
\)
\(
=14.32 \times 10^{11} \mathrm{~m}
\)
Therefore, the distance between Saturn and the Sun is \(1.43 \times 10^{12} \mathrm{~m}\).
Alternate:
By Keplers law: \(T^2 \propto r^3\)
\(
\begin{aligned}
& \frac{T_S^2}{T_E^2}=\frac{r_S^3}{r_E^3} \\
\therefore \quad r_s &=\left(\frac{T_S}{T_E}\right)^{2 / 3} \times r_E \\
&=\left(\frac{29.4 \times T_E}{T_E}\right)^{2 / 3} \times 1.5 \times 10^8 \mathrm{~km} \\
&=1.43 \times 10^9 \mathrm{~km}
\end{aligned}
\)
A body weighs \(63 \mathrm{~N}\) on the surface of the earth. What is the gravitational force on it due to the earth at a height equal to half the radius of the earth?
Weight of the body, \(\mathrm{W}=63 \mathrm{~N}\)
Acceleration due to gravity at height \(h\) from the Earth’s surface is given by the relation:
\(
\mathrm{g_h}=\frac{\mathrm{g}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}_{\mathrm{e}}}\right)^2}
\)
Substituting \(\mathrm{h}=\mathrm{R}_{\mathrm{e}} / 2\)
\(
\mathrm{g_h}=4 \mathrm{~g} / 9
\)
Weight of body of mass \(m\) at height \(h\) is given as:
\(
\begin{aligned}
\mathrm{W_h} &=\mathrm{mg_h} \\
&=4 / 9 \mathrm{mg} \\
&=4 / 9 \times 63=28 \mathrm{~N}
\end{aligned}
\)
Assuming the earth to be a sphere of uniform mass density, how much would a body weigh halfway down to the centre of the earth if it weighed \(250 \mathrm{~N}\) on the surface?
Weight of a body of mass \(m\) at the Earth’s surface, \(W=m g=250 \mathrm{~N}\)
Body of mass \(m\) is located at depth, \(\mathrm{d}=\frac{1}{2} R_e\)
Where
\(R_e=\) Radius of Earth
Acceleration due to gravity at depth \(g(d)\) is given by the relation:
\(
g(d)=\left(1-\frac{d}{R_e}\right) g
\)
\(
=\left(1-\frac{R_e}{2 \times R_e}\right) g=\frac{1}{2} g
\)
Weight of the body at depth \(d\),
\(
\begin{aligned}
&\mathrm{W(d)}={mg(d)} \\
&=m \times \frac{1}{2} g=\frac{1}{2} m g=\frac{1}{2} W \\
&=\frac{1}{2} \times 250=125 \mathrm{~N}
\end{aligned}
\)
A rocket is fired vertically with a speed of \(5 \mathrm{~km} / \mathrm{s}\) from the earth’s surface. How far from the earth does the rocket go before returning to the earth? Mass of the earth \(=6.0 \times 10^{24} \mathrm{~kg} ;\) mean radius of the earth \(=6.4 \times 10^6 \mathrm{~m} ; G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^2 \mathrm{~kg}^{-2}\).
Initial kinetic energy of rocket \(=1 / 2 \mathrm{mv}^2=1 / 2 \times \mathrm{m} \times(5000) 2=1.25 \times 10^7 \mathrm{~mJ}\)
At distance \(r\) from centre of earth, kinetic energy becomes zero
Change in kinetic energy \(=1.25 \times 10^7-0=1.25 \times 10^7 \mathrm{~m} \mathrm{~J}\)
This energy changes into potential energy.
Initial potential energy at the surface of earth \(=\mathrm{GM}_{\mathrm{e}} \mathrm{m} / \mathrm{r}\)
\(=\frac{-\left(6.67 \times 10^{-11}\right) \times\left(6 \times 10^{24}\right) m}{6.4 \times 10^6}=-6.25 \times 10^7 \mathrm{~J}\)
Final potential energy at distance \(r=-\frac{G M_e m}{r}\)
\(=\frac{-\left(6.67 \times 10^{-11}\right) \times\left(6 \times 10^{24}\right) m}{r}=-4 \times 10^{14} \frac{m}{r} J\)
\(\therefore\) Change in potential energy \(=6.25 \times 10^7 \mathrm{~m}-4 \times 10^{14} \frac{\mathrm{m}}{\mathrm{r}}\)
Using the law of conservation of energy
\(6.25 \times 10^7 \mathrm{~m}-\frac{4 \times 10^{14} \mathrm{~m}}{\mathrm{r}}=1.25 \times 10^7 \mathrm{~m}\)
i.e \(r=\frac{4 \times 10^{14}}{5 \times 10^7} m=8 \times 10^{16} \mathrm{~m}\)
The escape speed of a projectile on the earth’s surface is \(11.2 \mathrm{~km} / \mathrm{s}\). A body is projected out with thrice this speed. What is the speed of the body far away from the earth? (Ignore the presence of the sun and other planets.)
Escape velocity of a projectile from the Earth, \(v_{\mathrm{esc}}=11.2 \mathrm{~km} / \mathrm{s}\)
Projection velocity of the projectile, \(v_{\mathrm{p}}=3 \mathrm{v}_{\mathrm{esc}}\)
Mass of the projectile \(=m\)
Velocity of the projectile far away from the Earth \(=v_{\mathrm{f}}\)
Total energy of the projectile on the Earth \(=\left(\frac{1}{2}\right) m v_{\mathrm{p}}^2-\left(\frac{1}{2}\right) m v_{\mathrm{esc}}{ }^2\)
Gravitational potential energy of the projectile far away from the Earth is zero.
Total energy of the projectile far away from the Earth \(=\left(\frac{1}{2}\right) m v^2\)
From the law of conservation of energy, we have
\(
\begin{aligned}
\left(\frac{1}{2}\right) m v_{\mathrm{p}}^2-\left(\frac{1}{2}\right) m v_{\mathrm{esc}}{ }^2=\left(\frac{1}{2}\right) m v_{\mathrm{f}}^2 \\
v_{\mathrm{f}} =\left(v_{\mathrm{p}}^2-v_{\mathrm{esc}}{ }^2\right)^{1 / 2} \\
=\left[\left(3 v_{\mathrm{esc}}\right)^2-v_{\mathrm{esc}}{ }^2\right]^{1 / 2} \\
=\sqrt{8} v_{\mathrm{esc}} \\
=\sqrt{8} \times 11.2 \\
=31.68 \mathrm{~km} / \mathrm{s} .
\end{aligned}
\)
A satellite orbits the earth at a height of \(400 \mathrm{~km}\) above the surface. How much energy must be expended to rocket the satellite out of the earth’s gravitational influence? Mass of the satellite \(=200 \mathrm{~kg}\); mass of the earth \(=6.0 \times 10^{24} \mathrm{~kg}\); radius of the earth \(=6.4 \times 10^6 \mathrm{~m} ; G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^2 \mathrm{~kg}^{-2}\).
Mass of the Earth, \(M=6.0 \times 10^{24} \mathrm{~kg}\)
Mass of the satellite, \(m=200 \mathrm{~kg}\)
Radius of the Earth, \(R_{\mathrm{e}}=6.4 \times 10^6 \mathrm{~m}\)
Universal gravitational constant, \(G=6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{~kg}^{-2}\)
Height of the satellite, \(h=400 \mathrm{~km}=4 \times 10^5 \mathrm{~m}=0.4 \times 10^6 \mathrm{~m}\)
Total energy of the satellite at height \(h=\frac{1}{2} m v^2+\left(\frac{-\mathrm{G} M_e m}{R_{\mathrm{e}}+h}\right)\)
Orbital velocity of the satellite, \(v=\sqrt{\frac{\mathrm{G} M_e}{R_{\mathrm{e}}+h}}\)
Total energy of height, \(h=\frac{1}{2} m\left(\frac{\mathrm{G} M_{\mathrm{e}}}{R_{\mathrm{e}}+h}\right)-\frac{\mathrm{G} M_{\mathrm{e}} m}{R_{\mathrm{e}}+h}=-\frac{1}{2}\left(\frac{\mathrm{G} M_{\mathrm{e}} m}{R_{\mathrm{e}}+h}\right)\)
The negative sign indicates that the satellite is bound to the Earth. This is called bound energy of the satellite.
The energy required to send the satellite out of its orbit \(=-\) (Bound energy)
\(
\begin{aligned}
&=\frac{1}{2} \frac{\mathrm{G} M_{\mathrm{e}} m}{\left(R_{\mathrm{e}}+h\right)} \\
&=\frac{1}{2} \times \frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 200}{\left(6.4 \times 10^6+0.4 \times 10^6\right)} \\
&=\frac{1}{2} \times \frac{6.67 \times 6 \times 2 \times 10}{6.8 \times 10^6}=5.9 \times 10^9 \mathrm{~J}
\end{aligned}
\)
Two stars each of one solar mass \(\left(=2 \times 10^{30} \mathrm{~kg}\right)\) are approaching each other for a head-on collision. When they are a distance \(10^9 \mathrm{~km}\), their speeds are negligible. What is the speed with which they collide? The radius of each star is \(10^4 \mathrm{~km}\). Assume the stars to remain undistorted until they collide. (Use the known value of \(G\) ).
Here, mass of each star, \(M=2 \times 10^{30} \mathrm{~kg}\)
Initial potential between two stars, \(r=10^9 \mathrm{~km}=10^{12} \mathrm{~m}\).
Initial potential energy of the system \(=-\mathrm{GMm} / \mathrm{r}\)
Total K.E. of the stars \(=1 / 2 \mathrm{Mv}^2+1 / 2 \mathrm{Mv}^2\)
where \(v\) is the speed of stars with which they collide. When the stars are about to collide, the distance between their centres, \(r^{\prime}=2 \mathrm{R}\).
:. Final potential energy of two stars \(=-\mathrm{GMm} / 2 \mathrm{R}\)
Since gain in K.E. is at the cost of loss in P.E
\(
\therefore M v^2=-\frac{G M M}{r}-\left(-\frac{G M M}{2 R}\right)=-\frac{G M M}{r}+\frac{G M M}{2 R}
\)
or \(2 \times 10^{30} v^2=-\frac{6.67 \times 10^{-11} \times\left(2 \times 10^{30}\right)^2}{10^{12}}+\frac{6.67 \times 10^{-11} \times\left(2 \times 10^{30}\right)^2}{2 \times 10^7}\)
\(
\begin{aligned}
&=-2.668 \times 10^{38}+1.334 \times 10^{43} \\
&=1.334 \times 10^{43} \mathrm{~J} \\
&\mathrm{v}=\frac{\sqrt{1.334 \times 10^{43}}}{2 \times 10^{30}}=2.58 \times 10^6 \mathrm{~ms}^{-1}
\end{aligned}
\)
Two heavy spheres each of mass \(100 \mathrm{~kg}\) and radius \(0.10 \mathrm{~m}\) are placed \(1.0 \mathrm{~m}\) apart on a horizontal table. What is the gravitational force and potential at the midpoint of the line joining the centres of the spheres? Is an object placed at that point in equilibrium? If so, is the equilibrium stable or unstable?
Here \(G=6.67 \times 10^{-11} \mathrm{Nm}^2 \mathrm{~kg}^{-2} ; M=100 \mathrm{~kg} ; R=0.1 \mathrm{~m}\), the distance between the two spheres, \(d=1.0 \mathrm{~m}\); Suppose that the distance of either sphere from the mid-point of the line joining their centre is \(r\). Then \(r=d / 2=0.5 \mathrm{~m}\). The gravitational field at the mid-point due to two spheres will be equal and opposite.
Hence the resultant gravitational field at the mid poiint \(=0\)
The gravitational potential at the mid point \(=\left(-\frac{\mathrm{GM}}{r}\right) \times 2\)
\(=-\frac{6.67 \times 10^{-11} \times 100 \times 2}{0.5}=-2.668 \times 10^{-8} \mathrm{Jkg}^{-1}\)
The object placed at that point would be in stable equilibrium. This is because any change in the position of the object will change the effective force in that direction.
A spaceship is stationed on Mars. How much energy must be expended on the spaceship to launch it out of the solar system? Mass of the space ship \(=1000 \mathrm{~kg}\); mass of the sun \(=2 \times 10^{30} \mathrm{~kg}\); mass of mars \(=6.4 \times 10^{23} \mathrm{~kg}\); radius of mars \(=3395 \mathrm{~km}\); radius of the orbit of mars \(=2.28 \times 10^8 \mathrm{~km} ; G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^2 \mathrm{~kg}^{-2}\).
Let \(\mathrm{R}\) be the radius of the orbit of Mars and \(\mathrm{R}^{\prime}\) be the radius of Mars. \(\mathrm{M}\) be the mass of the Sun and \(\mathrm{M}^{\prime}\) be the mass of Mars. If \(m\) is the mass of the space-ship, then the Potential energy of the space-ship due to the gravitational attraction of the Sun \(=-G M \mathrm{~m} / \mathrm{R}\) Potential energy of space-ship due to the gravitational attraction of Mars = \(G M^{\prime} m / R^{\prime}\) Since the K.E. of space ship is zero, therefore total energy of spaceship \(=-\frac{G M m}{R}-\frac{G M \prime m}{R}=-G m\left(\frac{M}{R}+\frac{M \prime}{R \prime}\right)\)
\(\therefore\) Energy required to rocket out the spaceship from the solar system = -(total energy of spaceship)
\(
\begin{aligned}
&=-\left[-G m\left(\frac{M}{R}+\frac{M \prime}{R} \prime\right)\right]=G m\left[\frac{M}{R}+\frac{M \prime}{R} \prime\right] \\
&=6.67 \times 10^{-11} \times 1000 \times\left[\frac{2 \times 10^{30}}{2.28 \times 10^{11}}+\frac{6.4 \times 10^{23}}{3395 \times 10^3}\right] \\
&=6.67 \times 10^{-8}\left[\frac{20}{2.28}+\frac{6.4}{33.95}\right] \times 10^{18} \mathrm{~J}=5.98 \times 10^{11} \mathrm{~J}
\end{aligned}
\)
A rocket is fired ‘vertically’ from the surface of mars with a speed of \(2 \mathrm{~km} \mathrm{~s}^{-1}\). If \(20 \%\) of its initial energy is lost due to martian atmospheric resistance, how far will the rocket go from the surface of mars before returning to it? Mass of mars \(=6.4 \times 10^{23} \mathrm{~kg}\); radius of mars \(=3395 \mathrm{~km} ; G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^2 \mathrm{~kg}^{-2}\).
Initial K.E \(=\frac{1}{2} m v^2 ;\) Initial P.E \(=-\frac{G M m}{R}\)
Where \(m=\) Mass of rocket, \(M=\) Mass of Mars, \(R=\) Radius of Mars.
\(\therefore\) Total initial energy \(=\frac{1}{2} m v^2-\frac{G M m}{R}\)
Since \(20 \%\) of \(k . E\) is lost,only \(80 \%\) remain to reach the height
\(\therefore\) Total inital energy available
\(
\begin{aligned}
&=\frac{4}{5} \times \frac{1}{2} m v^2-\frac{G M m}{R} \\
&=0.4 m v^2-\frac{G M m}{R}
\end{aligned}
\)
When the rocket reaches the highest point at a height \(h\) above the surface its K.E is zero and P.E \(=-\frac{G M m}{R+h}\)
Using the principle of conversion of energy
\(0.4 m v^2-\frac{G M m}{R}=\frac{G M m}{R+h}\)
or \(\frac{G M m}{R+h}=\frac{G M m}{R}-0.4 m v^2 \Rightarrow \frac{G M}{R+h}=\frac{G M}{R}-0.4 v^2\)
or \(\frac{G M}{R+h}=\frac{1}{R}\left[G M-0.4 R v^2\right] \Rightarrow \frac{R+h}{R}=\frac{G M}{G M-0.4 R v^2}\)
or \(\frac{h}{R}=\frac{G M}{G M-0.4 R v^2}-1\)
or \(\frac{h}{R}=\frac{0.4 R v^2}{G m-0.4 R v^2} \Rightarrow h=\frac{0.4 R^2 v^2}{G M-0.4 R v^2}\)
or \(h=\frac{0.4 \times\left(2 \times 10^3\right)^2 \times\left(3.395 \times 10^6\right)^2}{6.67 \times 10^{-11} \times 6.4 \times 10^{23}-0.4 \times\left(2 \times 10^3\right)^2 \times 3.395 \times 10^6} \mathrm{~m}\) \(=495 \mathrm{~km}\)
As you have learnt in the text, a geostationary satellite orbits the earth at a height of nearly \(36,000 \mathrm{~km}\) from the surface of the earth. What is the potential due to the earth’s gravity at the site of this satellite? (Take the potential energy at infinity to be zero). Mass of the earth \(=6.0 \times 10^{24} \mathrm{~kg}\), radius \(=6400 \mathrm{~km}\).
Mass of the Earth, \(M=6.0 \times 10^{24} \mathrm{~kg}\)
Radius of the Earth, \(R=6400 \mathrm{~km}=6.4 \times 10^6 \mathrm{~m}\)
Height of a geostationary satellite from the surface of the Earth, \(h=36000 \mathrm{~km}=3.6 \times 10^7 \mathrm{~m}\)
Gravitational potential energy due to Earth’s gravity at height \(h\),
\(
\begin{aligned}
&=\frac{-G M}{R+h} \\
&=\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{3.6 \times 10^7+0.64 \times 10^7} \\
&=-\frac{6.67 \times 6}{4.24} \times 10^{13-7} \\
&=-9.4 \times 10^6 \frac{J}{K} g
\end{aligned}
\)
A star \(2.5\) times the mass of the sun and collapsed to a size of \(12 \mathrm{~km}\) rotates with a speed of \(1.2\) rev. per second. (Extremely compact stars of this kind are known as neutron stars. Certain stellar objects called pulsars belong to this category). Will an object placed on its equator remain stuck to its surface due to gravity? (mass of the sun \(\left.=2 \times 10^{30} \mathrm{~kg}\right)\)
Yes
A body gets stuck to the surface of a star if the inward gravitational force is greater than the outward centrifugal force caused by the rotation of the star.
Gravitational force, \(f_g=\frac{G M m}{R^2}\)
Where
\(M=\) Mass of the star \(=2.5 \times 2 \times 10^{30}=5 \times 10^{30} \mathrm{~kg}\)
\(m=\) Mass of the body
\(R=\) Radius of the star \(=12 \mathrm{~km}=1.2 \times 10^4 \mathrm{~m}\)
\(\therefore f_g=\frac{6.67 \times 10^{-11} \times 5 \times 10^{30} \times m}{\left(1.2 \times 10^4\right)^2}=2.31 \times 10^{11} \mathrm{mN}\)
Centrifugal force, \(f_{\mathrm{c}}=m r \omega^2\)
\(\omega=\) Angular speed \(=2 \pi v\)
\(v=\) Angular frequency \(=1.2 \mathrm{rev} \mathrm{s}^{-1}\)
\(f_c=m R(2 \pi v)^2\)
\(=m \times\left(1.2 \times 10^4\right) \times 4 \times(3.14)^2 \times(1.2)^2=1.7 \times 10^5 \mathrm{mN}\)
Since \(f_g>f_{c^{\prime}}\) the body will remain stuck to the surface of the star
Two spherical balls of mass \(10 \mathrm{~kg}\) each are placed \(10 \mathrm{~cm}\) apart. Find the gravitational force of attraction between them.
The gravitational force of attraction,
\(
\begin{aligned}
&F=\frac{G M m}{r^2} \\
&=\frac{6.67 \times 10^{-11} \times 10 \times 10}{(0.1)^2}=6.67 \times 10^{-7} \mathrm{~N}
\end{aligned}
\)
Four particles having masses \(m, 2 m, 3 m\), and \(4 m\) are placed at the four corners of a square of the edge \(a\). Find the gravitational force acting on a particle of mass \(m\) placed at the centre.
To calculate the gravitational force on ‘m’ due to other force,
Distance of the corner from the mid point of the square is half of the diagonal
So, \(r=\frac{a \sqrt{2}}{2}=\frac{a}{\sqrt{2}}\)
Now,Force due to the mass \(m\) placed at the corner \(A\)
\(\vec{F}_{O A}=\frac{G . m \cdot m}{r^2}\)
Force due to the mass \(2 \mathrm{~m}\) placed at the corner \(B\)
\(\vec{F}_{O B}=\frac{G \cdot m \cdot 2 m}{r^2}\)
Force due to the mass \(3 \mathrm{~m}\) placed at the corner \(\mathrm{C}\)
\(\vec{F}_{\text {OC }}=\frac{G . m .3 \mathrm{~m}}{\mathrm{r}^2}\)
Force due to the mass \(4 \mathrm{~m}\) placed at the corner \(D\) and \(\vec{F}_{O D}=\frac{G . m \cdot 4 m}{r^2}\)
Now,
Resultant force \(=\vec{F}_{O A}+\vec{F}_{O B}+\vec{F}_{O C}+\vec{F}_{O D}\)
Or,
We have already calculated the value of distance \(r=\frac{a \sqrt{2}}{2}=\frac{a}{\sqrt{2}}\)
\(
=\frac{2 G m m}{a^2}\left[-\frac{\vec{i}}{\sqrt{2}}+\frac{\vec{j}}{\sqrt{2}}\right]+\frac{4 G m m}{a^2}\left[\frac{\vec{i}}{\sqrt{2}}+\frac{\vec{j}}{\sqrt{2}}\right]+\frac{6 G m m}{a^2}\left[\frac{\vec{i}}{\sqrt{2}}-\frac{\vec{j}}{\sqrt{2}}\right]+\frac{8 G m m}{a^2}\left[\frac{-\vec{i}}{\sqrt{2}}-\frac{-\vec{j}}{\sqrt{2}}\right]
\)
After solving
\(F=\frac{4 \sqrt{2} G^2}{a^2}\).
Hence, the force at the mass placed in the middle of the square is \(F=\frac{4 \sqrt{2} \mathrm{Gm}^2}{a^2}\).
Three equal masses \(m\) are placed at the three corners of an equilateral triangle of side \(a\). Find the force exerted by this system on another particle of mass \(m\) placed at (a) the mid-point of a side, (b) at the centre of the triangle.
(a) Consider that mass ‘ \(m\) ‘ is placed at the midpoint \(O\) of side \(A B\) of equilateral triangle \(A B C\).
\(
\begin{aligned}
&\mathrm{AO}=\mathrm{BO}=\frac{a}{2} \\
&\text { Then } \vec{F}_{O A}=\frac{4 G m^2}{a^2} \text { along } \mathrm{OA}
\end{aligned}
\)
Also, \(\vec{F}_{O B}=\frac{4 G m^2}{a^2}\) along \(O B\)
\(
\begin{aligned}
&\mathrm{OC}=\frac{\sqrt{3} a}{2} \\
&\vec{F}_{O C}=\frac{4 G m^2}{\left\{(3) a^2\right\}}=\frac{4 G m^2}{3 a^2} \text { along OC }
\end{aligned}
\)
The net force on the particle at \(\mathrm{O}\) is \(\vec{F}=\vec{F}_{O A}+\vec{F}_{O B}+\vec{F}_{O C}\)
Since equal and opposite forces cancel each other, we have :
\(
\vec{F}=\vec{F}_{O C}=\frac{\mathrm{Gm}^2}{[(\sqrt{3} / 2) \mathrm{a}]^2}=\frac{4 \mathrm{Gm}^2}{3 \mathrm{a}^2} \text { along OC }
\)
(b) If the particle placed at \(O\) (centroid)
All the forces are equal in magnitude but their directions are different as shown in the figure. Equal and opposite forces along \(\mathrm{OM}\) and \(\mathrm{ON}\) cancel each other.
i.e., \(F \cos 30^{\circ}=F \cos 30^{\circ}\)
\(\therefore\) Resultant force \(=F-2 F \sin 30=0\)
Three uniform spheres each having a mass \(M\) and radius \(a\) are kept in such a way that each touches the other two. Find the magnitude of the gravitational force on any of the spheres due to the other two.
Three spheres are placed with their centres at \(\mathrm{A}, \mathrm{B}\), and \(\mathrm{C}\) as shown in the figure.
Gravitational force on sphere \(C\) due to sphere \(B\) is given by
\(\overrightarrow{F_{C B}}=\frac{G m^2}{4 a^2} \cos 60^{\circ} \hat{i}+\frac{G m^2}{4 a^2} \cdot \sin 60^{\circ} \hat{j}\)
Gravitational force on sphere \(C\) due to sphere A is given by \(\vec{F}_{C A}=-\frac{G m^2}{4 a^2} \cos 60^{\circ} \hat{i}+\frac{G m^2}{4 a^2} \cdot \sin 60^{\circ} \hat{j}\)
\(\therefore \vec{F}_{C B}=\vec{F}_{C B}+\vec{F}_{C A}\)
\(
\begin{aligned}
&=+\frac{2 G m^2}{4 a^2} \sin 60^{\circ} \hat{j} \\
&=+\frac{2 G m^2}{4 a^2} \times \frac{\sqrt{3}}{2}
\end{aligned}
\)
i.e., magnitude \(=\frac{\sqrt{3} G m^2}{4 a^2}\) along \(C O\)
Four particles of equal masses \(M\) move along a circle of radius \(R\) under the action of their mutual gravitational attraction. Find the speed of each particle.
Force on \(M\) at \(C\) due to gravitational attraction.
\(
\begin{aligned}
&\overrightarrow{F_{C B}}=\frac{G m^2}{2 R^2} \hat{j} \\
&\overrightarrow{F_{C D}}=\frac{-G M^2}{4 R^2} \hat{i} \\
&\overrightarrow{F_{C A}}=\frac{-G M^2}{4 R^2} \cos 45 \hat{j}+\frac{G M^2}{4 R^2} \sin 45 \hat{j} \\
&\text { So, resultant force on } C, \\
&\therefore \overrightarrow{F_C}=\overrightarrow{F_{C A}}+\overrightarrow{F_{C B}}+\overrightarrow{F_{C D}} \\
&=-\frac{G M^2}{4 R^2}\left(2+\frac{1}{\sqrt{2}}\right) \hat{i}+\frac{G M^2}{4 R^2}\left(2+\frac{1}{\sqrt{2}}\right) \hat{j} \\
&\therefore F_C=\frac{G M^2}{4 R^2}(2 \sqrt{2}+1)
\end{aligned}
\)
For moving along the circle, \(\vec{F}=\frac{m v^2}{R}\)
\(
\text { or } \frac{G M^2}{4 R^2}(2 \sqrt{2}+1)=\frac{M V^2}{R} \text { or } V=\sqrt{\frac{G M}{R}\left(\frac{2 \sqrt{2}+1}{4}\right)}
\)
Find the acceleration due to gravity of the moon at a point \(1000 \mathrm{~km}\) above the moon’s surface. The mass of the moon is \(7 \cdot 4 \times 10^{22} \mathrm{~kg}\) and its radius is \(1740 \mathrm{~km}\).
Acceleration due to gravity at a height \(=\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^2}=\frac{6.67 \times 10^{-11} \times 7.4 \times 10^{22}}{(1740+1000)^2 \times 10^6}\)
\(
\begin{aligned}
&=\frac{49.358 \times 10^{11}}{2740 \times 2740 \times 10^6} \\
&=\frac{49.358 \times 10^{11}}{0.75 \times 10^{13}}=65.3 \times 10^{-2}=0.65 \mathrm{~m} / \mathrm{s}^2
\end{aligned}
\)
Two small bodies of masses \(10 \mathrm{~kg}\) and \(20 \mathrm{~kg}\) are kept a distance \(1.0 \mathrm{~m}\) apart and released. Assuming that only mutual gravitational forces are acting, find the speeds of the particles when the separation decreases to \(0.5 \mathrm{~m}\).
The linear momentum of 2 bodies is o initially. Since gravitational force is internal, final momentum is also zero
So \((10 \mathrm{~kg}) \mathrm{v}_1=(20 \mathrm{~kg}) \mathrm{v}_2\)
Or
\(
\mathrm{v}_1=\mathrm{v}_2
\)
Since P.E conserved
initial P.E \(=\frac{-6.67 \times 10^{-11} \times 10 \times 20}{1}=-13.34 \times 10^{-9} \mathrm{~J}\)
When separation is \(0.5 \mathrm{~m}\),
\(
\Rightarrow-13.34 \times 10^{-9}+0=\frac{-13.34 \times 10^{-9}}{(1 / 2)}+(1 / 2) \times 10 \mathrm{v}_1^2+(1 / 2) \times 20 \mathrm{v}_2^2
\)
\(
\Rightarrow-13.34 \times 10^{-9}=26.68 \times 10^{-9}+5 \mathrm{v}_1^2+10 \mathrm{v}_2^2
\)
\(
\Rightarrow-13.34 \times 10^{-9}=-26.68 \times 10^{-9}+30 \mathrm{v}_2^2
\)
\(
\Rightarrow \mathrm{v}_2^2=\frac{13.34 \times 10^{-9}}{30}=4.44 \times 10^{-10}
\)
\(
\Rightarrow \mathrm{v}_2=2.1 \times 10^{-5} \mathrm{~m} / \mathrm{s}
\)
\(
\text { So, } \mathrm{v}_1=4.2 \times 10^{-5} \mathrm{~m} / \mathrm{s}
\)
A semicircular wire has a length \(L\) and mass \(M\). A particle of mass \(m\) is placed at the centre of the circle. Find the gravitational attraction on the particle due to the wire.
Consider a small mass element of length \(d\) subtending \(d \theta\) angle at the centre.
In the semicircle, we can consider a small element \(d \theta\).
Then length of the element, \(d=R d \theta\)
Mass of the element, \(\mathrm{dm}=\left(\frac{M}{L}\right) R d \theta\)
Force on the mass element is given by
\(
d F=\frac{G m}{R^2} d m=\frac{G M R m}{L R^2} d \theta
\)
The symmetric components along \(A B\) cancel each other.
Now, net gravitational force on the particle at \(O\) is given by
\(
\begin{aligned}
&F=\int 2 d F \sin \theta \\
&=\int \frac{2 G M m}{L R} \sin \theta d \theta \\
&\therefore F=\int_0^\pi / 2 \frac{-2 G M m}{L R} \sin \theta d \theta \\
&=\frac{2 G M m}{L R}[-\cos \theta]_0^\pi / 2 \\
&=-2 \frac{G M m}{L R}(-1) \\
&=\frac{2 G M m}{L R}=\frac{2 G M m}{L L / \pi} \\
&=\frac{2 \pi G M m}{L^2}
\end{aligned}
\)
Derive an expression for the gravitational field due to a uniform rod of length \(L\) and mass \(M\) at a point on its perpendicular bisector at a distance \(d\) from the centre.
Consider a small mass element of length \(\mathrm{d} x\) at a distance \(\mathrm{x}\) from the centre of the rod. Mass of the mass element, \(d m=(M / L) \times d x\)
\(
\text { Gravitational field due to this element at point } \mathrm{P} \text { is given by } d E_1=\frac{G(d m) \times 1}{\left(d^2+x^2\right)}= d E_2
\)
The components of the gravitational field due to the symmetrical mass element along the length of the rod cancel each other.
Now, resultant gravitational field \(=2 \mathrm{dE_1} \sin \theta\)
\(
\begin{aligned}
&=2 \times \frac{G(d m)}{\left(d^2+x^2\right)} \times \frac{d}{\sqrt{\left(d^2+x^2\right)}} \\
&=\frac{2 \times G M \times d d x}{L\left(d^2+x^2\right)\left\{\left(\sqrt{d^2+x^2}\right)\right\}}
\end{aligned}
\)
Total gravitational field due to the rod at point \(\mathrm{P}\) is given by \(E=\int_0^{L / 2} \frac{2 G m d d x}{L\left(d^2+x^2\right)^{3 / 2}}\)
On integrating the above equation, we get:
\(
E=\frac{2 G m}{d \sqrt{L^2+4 d^2}}
\)
Two concentric spherical shells have masses \(M_1, M_2\) and radii \(R_1, R_2\left(R_1<R_2\right)\). What is the force exerted by this system on a particle of mass \(m\) if it is placed at a distance \(\left(R_1+R_2\right) / 2\) from the centre?
Field due to a spherical shell at an inside point is zero. Hence the field at the point \(P\) will be only due to \(M_1\).
So, the gravitational field at point \(\mathrm{P}\),
\(
E_g=\frac{4 G M_1}{\left(R_1+R_2\right)^2}
\)
Thus, the force on mass \(m\) is given by:
\(
F=m E_g
\)
Substituting the value of \(E_g\),
\(
\therefore F=\frac{4 G M_1 m}{\left(R_1+R_2\right)^2}
\)
A tunnel is dug along a diameter of the earth. Find the force on a particle of mass \(m\) placed in the tunnel at a distance \(x\) from the centre.
Mass of the Earth,
\(
M=\left(\frac{4}{3}\right) \pi R^3 \rho \text {…(i) }
\)
Consider an imaginary sphere of radius \(\mathrm{x}\) with centre \(\mathrm{O}\) as shown in the figure above
Mass of the imaginary sphere,\(M^{\prime}=\left(\frac{4}{3}\right) \pi x^3 \rho \ldots(\) ii \()\)
From (i) and (ii), we have:
\(
\frac{M^{\prime}}{M}=\frac{x^3}{R^3}
\)
\(\therefore\) Gravitational force on the particle of mass \(\mathrm{m}\) is given by \(\mathrm{F}=\frac{G M^{\prime} m}{x^2}\)
\(
\Rightarrow F=\frac{G M x^3 m}{R^3 x^2}=\frac{G M m}{R^3} x
\)
A tunnel is dug along a chord of the earth at a perpendicular distance \(R / 2\) from the earth’s centre. The wall of the tunnel may be assumed to be frictionless. Find the force exerted by the wall on a particle of mass \(m\) when it is at a distance \(x\) from the centre of the tunnel.
Let d be the distance from centre of earth to mass ‘m’ then \(d=\sqrt{x^2+\left(\frac{R^2}{4}\right)}=(1 / 2) \sqrt{4 x^2+R^2}\)
\(M\) be the mass of the earth, \(M^{\prime}\) the mass of the sphere of radius \(d / 2\).
Then \(M=(4 / 3) \pi R^3 \rho\)
\(
\mathrm{M}^{\prime}=(4 / 3) \pi \mathrm{d}^3 \rho
\)
or \(\frac{M^{\prime}}{M}=\frac{d^3}{R^3}\)
\(\therefore\) Gravitational force exerted by the earth on the particle of mass \(m\),
\(
F=\frac{G M^{\prime} m}{d^2}=\frac{G d^3 M m}{R^3 d^2}=\frac{G M m d}{R^3}
\)
So, Normal force exerted by the wall \(=\mathrm{F} \cos \theta\).
\(=\frac{G M m d}{R^3} \times \frac{R}{2 d}=\frac{G M m}{2 R^2} \quad\)
A solid sphere of mass \(m\) and radius \(r\) is placed inside a hollow thin spherical shell of mass \(M\) and radius \(R\) as shown in figure below. A particle of mass \(m^{\prime}\) is placed on the line joining the two centres at a distance \(x\) from the point of contact of the sphere and the shell. Find the magnitude of the resultant gravitational force on this particle due to the sphere and the shell if
(a) \(r<x<2 r\),
(b) \(2 r<x<2 R\) and
(c) \(x>2 R\).
(a) Consider that the particle is placed at a distance \(x\) from \(O\).
Here, \(r<x<2 r\)
Let us consider a thin solid sphere of radius \((x-r)\).
Let’s consider a thin shell of mass
\(
d m=\frac{m}{\left(\frac{4}{3}\right) \pi r^3} \times \frac{4}{3} \pi(x-r)^3=\frac{m(x-r)^3}{r^3}
\)
Then the gravitational force on the particle due to the solid sphere is given by
\(
F=\frac{G m^{\prime} d m}{(x-r)^2}
\)
\(
=\frac{G \frac{m(x-r)^3}{r^3} m^{\prime}}{(x-r)^2}=\frac{G m m^{\prime}(x-r)}{r^3}
\)
\(
\text { Force on the particle due to the shell will be zero because gravitational field intensity inside a shell is zero. }
\)
(b) If \(2 \mathrm{r}<\mathrm{x}<2 \mathrm{R}\),
Force on the body due to the shell will again be zero as particle is still inside the shell. then \(\mathrm{F}\) is only due to the solid sphere.
\(
\therefore F=\frac{G m m^{\prime}}{(x-r)^2}
\)
(c) If \(x>2 R\), then the gravitational force is due to both the sphere and the shell.
Now, we have:
Gravitational force due to shell,
\(
F=\frac{G M m^{\prime}}{(x-R)^2}
\)
Gravitational force due to the sphere \(=\frac{G m m^{\prime}}{(x-r)^2}\)
As both the forces are acting along the same line joining the particle with the centre of the sphere and shell so both the forces can be added directly without worrying about their vector nature.
\(\therefore\) Resultant force \(=\frac{G m m^{\prime}}{(x-r)^2}+\frac{G M m^{\prime}}{(x-R)^2}\)
A uniform metal sphere of radius \(a\) and mass \(M\) is surrounded by a thin uniform spherical shell of equal mass and radius \(4 a\) (figure below). The centre of the shell falls on the surface of the inner sphere. Find the gravitational field at the points \(P_1\) and \(P_2\) shown in the figure.
At \(\mathrm{P}_1\), Gravitational field due to sphere \(M=\frac{\mathrm{GM}}{(3 \mathrm{a}+\mathrm{a})^2}=\frac{\mathrm{GM}}{16 \mathrm{a}^2}\) At \(\mathrm{P}_2\), Gravitational field is due to sphere \& shell,
\(
=\frac{\mathrm{GM}}{(\mathrm{a}+4 \mathrm{a}+\mathrm{a})^2}+\frac{\mathrm{GM}}{(4 \mathrm{a}+\mathrm{a})^2}=\frac{\mathrm{GM}}{\mathrm{a}^2}\left(\frac{1}{36}+\frac{1}{25}\right)=\left(\frac{61}{900}\right) \frac{\mathrm{GM}}{\mathrm{a}^2}
\)
A thin spherical shell having uniform density is cut in two parts by a plane and kept separated as shown in figure below. The point \(A\) is the centre of the plane section of the first part and \(B\) is the centre of the plane section of the second part. Show that the gravitational field at \(A\) due to the first part is equal in magnitude to the gravitational field at \(B\) due to the second part.
We know in the thin spherical shell of uniform density has gravitational field at its internal point is zero. At A and B point, field is equal and opposite and cancel each other so the Net field is zero.
Hence, \(E_A=E_B\)
Two small bodies of masses \(2.00 \mathrm{~kg}\) and \(4.00 \mathrm{~kg}\) are kept at rest at a separation of \(2.0 \mathrm{~m}\). Where should a particle of mass \(0.10 \mathrm{~kg}\) be placed to experience no net gravitational force from these bodies? The particle is placed at this point. What is the gravitational potential energy of the system of three particles with usual reference level?
Let the mass of \(0.10 \mathrm{~kg}\) be at a distance \(x\) from the \(2 \mathrm{~kg}\) mass and at a distance of \((2-\mathrm{x})\) from the \(4 \mathrm{~kg}\) mass. Force between \(0.1 \mathrm{~kg}\) mass and \(2 \mathrm{~kg}\) mass = force between \(0.1 \mathrm{~kg}\) mass and \(4 \mathrm{~kg}\) mass \(\therefore \frac{2 \times 0.1}{x^2}=-\frac{4 \times 0.1}{(2-x)^2}\)
\(
\begin{aligned}
&\Rightarrow \frac{0.2}{x^2}=\frac{0.4}{(2-x)^2} \\
&\Rightarrow \frac{1}{x^2}=\frac{2}{(2-x)^2} \\
&\Rightarrow(2-x)^2=2 x^2 \\
&\Rightarrow 2-x=\sqrt{2} x \\
&\Rightarrow x(\sqrt{2}+1)=2 \\
&\Rightarrow x=\frac{2}{2.414}
\end{aligned}
\)
\(=0.83 \mathrm{~m}\) from the \(2 \mathrm{~kg}\) mass
Now, gravitation potential energy of the system is given by
\(
\begin{aligned}
&U=-G\left[\frac{0.1 \times 2}{0.83}+\frac{0.1 \times 4}{1.17}+\frac{2 \times 4}{2}\right] \\
&\Rightarrow U=-6.67 \times 10^{11}\left[\frac{0.1 \times 2}{0.83}+\frac{0.1 \times 4}{1.17}+\frac{2 \times 4}{2}\right] \\
&\Rightarrow U=-3.06 \times 10^{-10} \mathrm{~J}
\end{aligned}
\)
Three particles of mass \(m\) each are placed at the three corners of an equilateral triangle of side \(a\). Find the work which should be done on this system to increase the sides of the triangle to \(2 a\).
Initially, the side of \(\Delta\) is a. To increase it to \(2 \mathrm{a}\),
work done \(=\frac{G m^2}{2 a}+\frac{G m^2}{a}=\frac{3 G m^2}{2 a}\)
A particle of mass \(100 \mathrm{~g}\) is kept on the surface of a uniform sphere of mass \(10 \mathrm{~kg}\) and radius \(10 \mathrm{~cm}\). Find the work to be done against the gravitational force between them to take the particle away from the sphere.
Initial distance of the body from the centre of the sphere \(=10 \mathrm{~cm}=0.1 \mathrm{~m}=d_1=10^{-1} \mathrm{~m}\)
and final distance of the body \(=\infty=d_2\)
\(\therefore\) The work done in taking a body far away from the sphere against the gravitational force between them
\(=\) Change in gravitational potential energy
i.e. \(U_2-U_1\)
\(=-\frac{G M m}{d_2}-\left(-\frac{G M m}{d_1}\right)\)
\(=-\frac{G M m}{\infty}+\frac{G M m}{0.1}=0+\frac{G M m}{0.1}\)
\(\therefore U_2-U_1=\frac{G M m}{0.1}\)
\(=\frac{6.67 \times 10^{-11} \times 100 \times 10 \times 10^{-3}}{10^{-1}}[latex] [latex]=6.67 \times 10^{-10} \mathrm{~J}\)
The gravitational field in a region is given by \(\vec{E}=\left(5 \mathrm{~N} \mathrm{~kg}^{-1}\right) \vec{i}+\left(12 \mathrm{~N} \mathrm{~kg}^{-1}\right) \vec{j}\).
(a) Find the magnitude of the gravitational force acting on a particle of mass \(2 \mathrm{~kg}\) placed at the origin.
(b) Find the potential at the points \((12 \mathrm{~m}, 0)\) and \((0,5 \mathrm{~m})\) if the potential at the origin is taken to be zero.
(c) Find the change in gravitational potential energy if a particle of mass \(2 \mathrm{~kg}\) is taken from the origin to the point \((12 \mathrm{~m}, 5 \mathrm{~m})\).
(d) Find the change in potential energy if the particle is taken from (12 m, 0) to \((0,5 \mathrm{~m})\)
\(\vec{E}=(5 \mathrm{~N} / \mathrm{kg}) \hat{\mathrm{i}}+(12 \mathrm{~N} / \mathrm{kg}) \hat{\mathrm{j}}\)
a) \(\vec{F}=\vec{E} m\)
\(=2 \mathrm{~kg}[(5 \mathrm{~N} / \mathrm{kg}) \hat{i}+(12 \mathrm{~N} / \mathrm{kg}) \hat{j}]=(10 \mathrm{~N}) \hat{i}+(12 \mathrm{~N}) \hat{\mathrm{j}}\)
\(|\vec{F}|=\sqrt{100+576}=26 \mathrm{~N}\)
(b) \(V=-\vec{E} \cdot \vec{r}\)
Potential at \((12 \mathrm{~m}, 0)=-60 J / K g\)
Potential at \((0,5 \mathrm{~m})=-60 \mathrm{~J} / \mathrm{kg}\)
(c)
change in potential= final potential -initial potential
initial potential \(=\) potential at the origin \(=0\) final potential \(=\) potential at \((12,5)\)
\(
\begin{aligned}
&V=-\vec{E} \cdot \vec{r} \\
&=-(10 \hat{i}+24 \widehat{j}) \cdot(12 \hat{i}+5 \widehat{j}) \\
&=-(120+120) J \\
&=-240 \mathrm{~J}
\end{aligned}
\)
(d)
\(
\begin{aligned}
&\Delta V=-\vec{E} \cdot \Delta \vec{r} \\
&\Delta \vec{r}=(12 \widehat{i}+0 \widehat{j})-(0 \widehat{i}+5 \widehat{j}) \\
&=12 \widehat{i}-5 \widehat{j} \\
&\Delta V=-(10 \widehat{i}+24 \widehat{j}) \cdot(12 \widehat{i}-5 \widehat{j}) \\
&=0 J
\end{aligned}
\)
The gravitational potential in a region is given by \(V=20 \mathrm{~N} \mathrm{~kg}^{-1}(x+y)\).
(a) Is the equation is dimensionally correct?
(b) Find the gravitational field at the point \((x, y)\). Leave your answer in terms of the unit vectors \(\overrightarrow{i,} \vec{j}, \vec{k}\).
(c) Calculate the magnitude of the gravitational force on a particle of mass \(500 \mathrm{~g}\) placed at the origin.
\(
\begin{aligned}
&\text { (a) } V=\left(\frac{20 N}{k g}\right)(x+y) \\
&{\left[\frac{G M}{R}\right]=\left[\frac{M L T^{-2}}{M}\right][L]} \\
&\Rightarrow\left[\frac{M^{-1} L^3 T^{-2} M^1}{L}\right]=\left[\frac{M L^2 T^{-2}}{M}\right] \\
&\Rightarrow\left[M^0 L^2 T^{-2}\right]=\left[M^0 L^2 T^{-2}\right] \\
&\therefore L H S=R H S
\end{aligned}
\)
(b) The gravitational field at the point \((x, y)\) is given by \(\vec{E}_{(x, y)}=-20\left(\frac{N}{k g}\right) \hat{i}-\left(\frac{20 N}{k g}\right) \hat{j}\)
\(
\begin{aligned}
&\text { (c) } \vec{F}=\vec{E} m \\
&=0.5 k g\left[-\left(\frac{20 N}{k g}\right) \hat{i}-\left(\frac{20 N}{k g}\right) \hat{j}\right] \\
&=-(10 N) \hat{i}-(10 N) \hat{j} \\
&\therefore|\vec{F}|=\sqrt{(100)+(100)} \\
&=10 \sqrt{2} N
\end{aligned}
\)
The gravitational field in a region is given by \(\vec{E}=(2 \vec{i}+3 \vec{j}) \mathrm{N} \mathrm{kg}^{-1}\). Calculate the work done by the gravitational field when a particle is moved on the line \(3 y+2 x=5\)
[Hint : If a line \(y=m x+c\) makes angle \(\theta\) with the \(X\)-axis, \(m=\tan \theta\).
The gravitational field in a region is given by \(\vec{E}=2 \hat{i}+3 \hat{j}\)
Slope of the electric field, \(m_1=\tan \theta_1=\frac{3}{2}\)
The given line is \(3 y+2 x=5\).
Slope of the line, \(m_2=\tan \theta_2=-\frac{2}{3}\)
We can see that \(m_1 m_2=-1\)
Since the directions of the field and the displacement are perpendicular to earth other, no work is done by the gravitational field when a particle is moved on the given line.
Find the height over the earth’s surface at which the weight of a body becomes half of its value at the surface.
Assume that at height h, the weight of the body becomes half.
Weight of the body at the surface \(=m g\)
Weight of the body at height \(h\) above the Earth’s surface \(=\mathrm{mg}^{\prime}\), where \(\mathrm{g}^{\prime}\) is the acceleration due to gravity at height \(h\)
Now,\(g^{\prime}=\frac{1}{2} g\)
\(
\begin{aligned}
&\therefore\left(\frac{1}{2}\right) \frac{G M}{R^2}=\frac{G M}{(R+h)^2}\left[\because g=\frac{G M}{R^2}\right] \\
&\Rightarrow 2 R^2=(R+h)^2 \\
&\Rightarrow \sqrt{2} R=R+h \\
&\Rightarrow h=(\sqrt{2}-1) R
\end{aligned}
\)
What is the acceleration due to gravity on the top of Mount Everest? Mount Everest is the highest mountain peak of the world at the height of \(8848 \mathrm{~m}\). The value at sea level is \(9.80 \mathrm{~m} \mathrm{~s}^{-2}\).
Let \(\mathrm{g}^{\prime}\) be the acceleration due to gravity on mount Everest.
\(
\begin{aligned}
&g^{\prime}=g\left(1-\frac{2 \mathrm{~h}}{\mathrm{R}}\right) \\
&=9.8\left(1-\frac{17696}{6400000}\right)=9.8(1-0.00276)=9.77 \mathrm{~m} / \mathrm{s}^2
\end{aligned}
\)
Find the acceleration due to gravity in a mine of depth \(640 \mathrm{~m}\) if the value at the surface is \(9.800 \mathrm{~m} \mathrm{~s}^{-2}\). The radius of the earth is \(6400 \mathrm{~km}\).
Let \(\mathrm{g}^{\prime}\) be the acceleration due to gravity in mine.
Then \(g^{\prime}=g\left(1-\frac{d}{R}\right)\)
\(
=9.8\left(1-\frac{640}{6400 \times 10^3}\right)=9.8 \times 0.9999=9.799 \mathrm{~m} / \mathrm{s}^2
\)
A body is weighed by a spring balance to be \(1.000 \mathrm{~kg}\) at the north pole. How much will it weigh at the equator? Account for the earth’s rotation only.
Let \(g^{\prime}\) be the acceleration due to gravity at equator & that of pole \(=g\)
\(
\begin{aligned}
&\mathrm{g}^{\prime}=\mathrm{g}-\omega^2 \mathrm{R} \\
&=9.81-\left(7.3 \times 10^{-5}\right)^2 \times 6400 \times 10^3 \\
&=9.81-0.034 \\
&=9.776 \mathrm{~m} / \mathrm{s}^2 \\
&\mathrm{mg}^{\prime}=1 \mathrm{~kg} \times 9.776 \mathrm{~m} / \mathrm{s}^2 \\
&=9.776 \mathrm{~N} \text { or } 0.997 \mathrm{~kg}
\end{aligned}
\)
The body will weigh \(0.997 \mathrm{~kg}\) at equator.
A body stretches a spring by a particular length at the earth’s surface at the equator. At what height above the south pole will it stretch the same spring by the same length? Assume the earth to be spherical.
At the equator, \(g^{\prime}=g-\omega^2 R \quad \quad\)…(i)
Let \(h\) be the height above the South Pole where the body stretch the spring by the same length. Let \(\mathrm{h}\) be the height above the South Pole where the body stretch The acceleration due to gravity at this point is \(g^{\prime}=g\left(1-\frac{2 h}{R}\right)\)
Weight of the body at the equator = weight of the body at height \(h\) above the South Pole
\(
\begin{aligned}
&\therefore g-\omega^2 r=g\left(1-\left(\frac{2 h}{R}\right)\right) \\
&\Rightarrow 1-\frac{\omega^2 R}{2 g}=1-\frac{2 h}{R} \\
&\Rightarrow h=\frac{\omega^2 R^2}{2 g} \\
&=\frac{\left(7.3 \times 10^{-5}\right)^2 \times\left(6400 \times 10^{-3}\right)^2}{2 \times 9.81} \\
&=\frac{(7.3)^2 \times(64)^2}{19.62} \\
&=11125 \mathrm{~m}=10 \mathrm{~km}(\text { approx. })
\end{aligned}
\)
At what rate should the earth rotate so that the apparent \(g\) at the equator becomes zero? What will be the length of the day in this situation?
The apparent acceleration due to gravity at the equator becomes zero.
\(
\begin{aligned}
&\text { i.e., } g^{\prime}=g-\omega^2 R=0 \\
&\Rightarrow g=\omega^2 R
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow \omega=\sqrt{\frac{g}{R}}=\sqrt{\frac{9.8}{6400 \times 10^3}} \\
&\Rightarrow \omega=\sqrt{\frac{9.8 \times 10^{-5}}{6.4}} \\
&\Rightarrow \omega=1.237 \times 10^{-3} \mathrm{rad} / \mathrm{s} \\
&\therefore T=\frac{2 \pi}{\omega}=\frac{2 \times 3.14}{1.2 \times 10^{-3}} \\
&=\frac{6.28}{1.2 \times 10^{-3}}
\end{aligned}
\)
\(
=1.41 \mathrm{~h}
\)
A pendulum having a bob of mass \(m\) is hanging in a ship sailing along the equator from east to west. When the ship is stationary with respect to water the tension in the string is \(T_0\).
(a) Find the speed of the ship due to the rotation of the earth about its axis.
(b) Find the difference between \(T_0\) and the earth’s attraction on the bob.
(c) If the ship sails at speed \(v\), what is the tension in the string? The angular speed of the earth’s rotation is \(\omega\) and the radius of the earth is \(R\).
(a) Speed of the ship due to rotation of the Earth is \(V=\omega R\), where \(R\) is the radius of the Earth and \(\omega\) is its angular speed.
(b) The tension in the string is given by
\(
\begin{aligned}
&T_0=m g+m \omega^2 R \\
&\therefore T_0-m g=m \omega^2 R
\end{aligned}
\)
(c)
\(
\begin{aligned}
&v=\omega_1 R \\
&V=\omega R
\end{aligned}
\)
Then the tension in the string is given by
\(
\begin{array}{lll}
T=m g+m\left(\omega_1+\omega\right)^2 R \dots(i) \\
T_0=m g+m \omega^2 R \dots(ii)
\end{array}
\)
\(
\begin{aligned}
T-T_0 &=m R\left[\left(\omega_1+\omega\right)^2-\omega^2\right] \\
&=m R\left(\omega_1^2+\omega^2+2 \omega \omega_1-\omega^2\right) \\
T-T_0 &=m R\left(\omega_1^2+2 \omega_1 \omega\right)
\end{aligned}
\)
\(
\omega_1=\frac{v}{R}
\)
As \(R\) is big \(\omega_1^2\) is negligible and we can ignore it.
\(
\begin{aligned}
&T-T_0=m R(2 \omega_1 \omega) \\
&T-T_0=2 \omega m v \\
&T=T_0+2 \omega m v \\
\end{aligned}
\)
The time taken by Mars to revolve round the sun is \(1.88\) years. Find the ratio of the average distance between Mars and the sun to that between the earth and the sun.
According to Kepler’s laws of planetary motion, the time period of revolution of a planet about the Sun is directly proportional to the cube of the distance between their centres.
i.e., \(T^2 \propto R^3\)
\(
\begin{aligned}
&\Rightarrow \frac{T_m^2}{T_e^2}=\frac{R_m^3}{R_e^3} \\
&\Rightarrow\left(\frac{R_m}{R_e}\right)^3=\left(\frac{1.88}{1}\right)^2
\end{aligned}
\)
\(
\therefore \frac{R_m}{R_e}=(1.88)^{2 / 3}=1.52
\)
The moon takes about \(27 \cdot 3\) days to revolve round the earth in a nearly circular orbit of radius \(3.84 \times 10^5 \mathrm{~km}\). Calculate the mass of the earth from these data.
\(
\begin{aligned}
&T=2 \pi \sqrt{\frac{r^3}{G M}} \\
&27.3=2 \times 3.14 \sqrt{\frac{\left(3.84 \times 10^5\right)^3}{6.67 \times 10^{-11} \times M}} \\
&\text { or } 2.73 \times 2.73=\frac{2 \times 3.14 \times\left(3.84 \times 10^5\right)^3}{6.67 \times 10^{-11} \times M} \\
&\text { or } M=\frac{2 \times(3.14)^2 \times(3.84)^3 \times 10^{15}}{3.335 \times 10^{-11}(27.3)^2}=6.02 \times 10^{24} \mathrm{~kg}
\end{aligned}
\)
\(\therefore\) mass of earth is found to be \(6.02 \times 10^{24} \mathrm{~kg}\).
A Mars satellite moving in an orbit of radius \(9.4 \times 10^3 \mathrm{~km}\) takes \(27540 \mathrm{~s}\) to complete one revolution. Calculate the mass of Mars.
Time period of revolution of the satellite around the Mars is give by \(T=2 \pi \sqrt{\frac{r^3}{G M}}\) where \(\mathrm{M}\) is the mass of the Mars and \(r\) is the distance of the satellite from the centre of the planet.
\(
\begin{aligned}
&\text { Now }, 27540=2 \times 3.14 \sqrt{\frac{\left(9.4 \times 10^3 \times 10^3\right)^3}{6.67 \times 10^{-11} \times M}} \\
&\Rightarrow(27540)^2=(6.28)^2 \times \frac{\left(9.4 \times 10^5\right)^3}{6.67 \times 10^{-11} \times M} \\
&\Rightarrow M=\frac{(6.28)^2 \times(9.4)^3 \times 10^{18}}{6.67 \times 10^{-11} \times(27540)^2} \\
&\Rightarrow M=6.5 \times 10^{23} \mathrm{~kg}
\end{aligned}
\)
A satellite of mass \(1000 \mathrm{~kg}\) is supposed to orbit the earth at a height of \(2000 \mathrm{~km}\) above the earth’s surface. Find (a) its speed in the orbit, (b) its kinetic energy, (c) the potential energy of the earth-satellite system and (d) its time period. Mass of the earth \(=6 \times 10^{24} \mathrm{~kg}\).
(a) Speed of the satellite in its orbit \(v=\sqrt{\frac{G M}{r+h}}=\sqrt{\frac{g r^2}{r+h}}\)
\(
\begin{aligned}
&\Rightarrow v=\sqrt{\frac{9.8 \times\left(6400 \times 10^3\right)^2}{10^6 \times(6.4+2)}} \\
&\Rightarrow v=\sqrt{\frac{9.8 \times 6.4 \times 6.4 \times 10^6}{8.4}} \\
&\Rightarrow v=6.9 \times 10^3 \mathrm{~m} / \mathrm{s}=6.9 \mathrm{~km} / \mathrm{s}
\end{aligned}
\)
(b) Kinetic energy of the satellite
\(
\begin{aligned}
&K . E .=\frac{1}{2} m v^2 \\
&=\frac{1}{2} \times 1000 \times\left(6.9 \times 10^3\right)^2 \\
&=\frac{1}{2} \times 1000 \times\left(47.6 \times 10^6\right) \\
&=2.38 \times 10^{10} \mathrm{~J}
\end{aligned}
\)
(c) Potential energy of the satellite
\(
\begin{aligned}
&P . E .=-\frac{G M m}{(R+h)} \\
&=-\frac{6.67 \times 10^{-11} \times 6 \times 10^{24} \times 10^3}{(6400+2000) \times 10^3} \\
&=\frac{40 \times 10^{13}}{8400}=-4.76 \times 10^{10} \mathrm{~J}
\end{aligned}
\)
(d) Time period of the satellite \(T=\frac{2 \pi(r+h)}{v}\)
\(
\begin{aligned}
&=\frac{2 \times 3.14 \times 8400 \times 10^3}{6.9 \times 10^3} \\
&=\frac{6.28 \times 84 \times 10^2}{6.9} \\
&=76.6 \times 10.2 \mathrm{~s} \\
&=2.1 \mathrm{~h}
\end{aligned}
\)
(a) Find the radius of the circular orbit of a satellite moving with an angular speed equal to the angular speed of earth’s rotation. (b) If the satellite is directly above the north pole at some instant, find the time it takes to come over the equatorial plane. Mass of the earth \(=6 \times 10^{24} \mathrm{~kg}\)
(a) The angular speed of the Earth and the satellite will be the same.
i.e., \(\frac{2 \pi}{T_e}=\frac{2 \pi}{T_s}\)
\(
\begin{aligned}
&\Rightarrow \frac{1}{24 \times 3600}=\frac{1}{2 \pi \sqrt{(R+h)^3 / g h^2}} \\
&\Rightarrow 12 \times 3600=3.14 \sqrt{\frac{(R+h)^3}{g R^2}} \\
&\Rightarrow \frac{(R+h)^3}{g R^2}=\frac{(12 \times 3600)^2}{(3.14)^2} \\
&\Rightarrow \frac{\left(6400+h^3\right) \times 10^9}{9.8 \times(6400)^2 \times 10^6}=\frac{(12 \times 3600)^2}{(3.14)^2} \\
&\Rightarrow \frac{(6400+h) \times 10^9}{6272 \times 10^9}=432 \times 10^4 \\
&\Rightarrow(6400+h)^3=6272 \times 432 \times 10^4 \\
&\Rightarrow 6400+h=\left(6272 \times 432 \times 10^4\right)^{1 / 3}-6400 \\
&\Rightarrow h=42300 \mathrm{~km}
\end{aligned}
\)
(b) Time taken from the North Pole to the equatorial plane is given by \(\frac{1}{4} T\)
\(
\begin{aligned}
&=\frac{1}{4} \times 6.28 \sqrt{\frac{(42300+6400)^3}{10 \times(6400)^2 \times 10^6}} \\
&=3.14 \sqrt{\frac{(479)^3 \times 10^6}{(64)^2 \times 10^{11}}} \\
&=3.14 \sqrt{\frac{497 \times 497 \times 497}{64 \times 64 \times 10^5}} \\
&=6 h
\end{aligned}
\)
What is the true weight of an object in a geostationary satellite that weighed exactly \(10.0 \mathrm{~N}\) at the north pole?
For a geostationary satellite, we have:
\(
\begin{aligned}
&\mathrm{R}=6.4 \times 10^3 \mathrm{~km} \\
&\mathrm{~h}=3.6 \times 10^3 \mathrm{~km} \\
&\text { Given: } \mathrm{mg}=10 \mathrm{~N}
\end{aligned}
\)
The true weight of the object in the geostationary satellite is given by
\(
\begin{aligned}
&\mathrm{mg}^{\prime}=\mathrm{mg}-\frac{R^2}{(R+h)^2} \\
&=10-\frac{\left(6400 \times 10^3\right)^2}{\left(6400 \times 10^3+3600 \times 10^3\right)} \\
&=10-\left[\frac{\left(64 \times 10^5\right)^2}{\left(6.4 \times 10^6+36 \times 10^5\right)}\right] \\
&=10-\left[\frac{4096 \times 10^{10}}{(42.4)^2 \times 10^{12}}\right] \\
&=\frac{4096}{17980}=0.23 N
\end{aligned}
\)
The radius of a planet is \(R_1\) and a satellite revolves round it in a circle of radius \(R_2\). The time period of the revolution is \(T\). Find the acceleration due to the gravitation of the planet at its surface.
The time period of revolution of the satellite around a planet in terms of the radius of the planet and radius of the orbit of the satellite is given by \(T=2 \pi \sqrt{\frac{R_2^3}{g R_1^2}}\), where \(\mathrm{g}\) is the acceleration due to gravity at the surface of the planet.
\(
\begin{aligned}
&\text { Now }, T^2=4 \pi^2 \frac{R_2^3}{g R_1^2} \\
&\Rightarrow g=\frac{4 \pi^2}{T^2} \frac{R_2^3}{R_1^2}
\end{aligned}
\)
\(\therefore\) Acceleration due to gravity of the planet \(=\frac{4 \pi^2}{T^2} \frac{R_2^3}{R_1^2}\)
Find the minimum colatitude which can directly receive a signal from a geostationary satellite.
The colattitude is given by \(\phi\).
\(
\angle \mathrm{OAB}=90^{\circ}-\angle \mathrm{ABO}
\)
Again \(\angle \mathrm{OBC}=\phi=\angle \mathrm{OAB}\)
\(
\begin{aligned}
&\therefore \sin \phi=\frac{6400}{42000}=\frac{8}{53} \\
&\therefore \phi=\sin ^{-1}\left(\frac{8}{53}\right)=\sin ^{-1} 0.15
\end{aligned}
\)
A particle is fired vertically upward from earth’s surface and it goes up to a maximum height of \(6400 \mathrm{~km}\). Find the initial speed of particle.
The particle attains maximum height \(=6400 \mathrm{~km}\). On earth’s surface, its P.E. & K.E.
\(
E_e=(1 / 2) m v^2+\left(\frac{-G M m}{R}\right) \dots(1)
\)
In space, its P.E. & K.E.
\(
\begin{aligned}
&E_s=\left(-\frac{G M m}{R+h}\right)+0 \\
&E_s=\left(-\frac{G M m}{2 R}\right) \dots(2)
\end{aligned}
\)\(\quad(\because h=R)\)
Equating (1) & (2)
\(
-\frac{G M m}{R}+\frac{1}{2} m v^2=-\frac{G M m}{2 R}
\)
\(\operatorname{Or}(1 / 2) m v^2=G M m\left(-\frac{1}{2 R}+\frac{1}{R}\right)\)
\(
\begin{aligned}
&\text { Or } v^2=\frac{\mathrm{GM}}{\mathrm{R}} \\
&=\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{6400 \times 10^3} \\
&=\frac{40.02 \times 10^{13}}{6.4 \times 10^6} \\
&=6.2 \times 10^7=0.62 \times 10^8 \\
&\text { Or } v=\sqrt{0.62 \times 10^8}=0.79 \times 10^4 \mathrm{~m} / \mathrm{s}=7.9 \mathrm{~km} / \mathrm{s}
\end{aligned}
\)
A particle is fired vertically upward with a speed of \(15 \mathrm{~km} \mathrm{~s}^{-1}\). With what speed will it move in interstellar space? Assume only the earth’s gravitational field.
Initial velocity of the particle, \(\mathrm{v}=15 \mathrm{~km} / \mathrm{s}\)
Let its speed be \(v^{\prime}\) in interstellar space.
Applying the law of conservation of energy, we have:
\(
\begin{aligned}
&\left(\frac{1}{2}\right) m\left[v-v^{\prime 2}\right]=\int_R^{\infty} \frac{G M m}{x^2} d x \\
&\therefore\left(\frac{1}{2}\right) m\left[15 \times 10^3-v^{\prime 2}\right]=\int_R^{\infty} \frac{G M m}{x^2} d x \\
&\Rightarrow\left(\frac{1}{2}\right) m\left[\left(15 \times 10^3\right)^2-v^{\prime 2}\right]=G M m\left[\frac{-1}{x}\right] \\
&\Rightarrow\left(\frac{1}{2}\right) m\left[\left(225 \times 10^5\right)-v^{\prime 2}\right]=\frac{G M m}{R} \\
&\Rightarrow 225 \times 10^5-v^{\prime 2}=\frac{2 \times 6.67 \times 10^{-11} \times 6 \times 10^{24}}{6400 \times 10^3} \\
&\Rightarrow v^{\prime 2}=225 \times 10^6-\frac{40.02}{32} \times 10^8 \\
&=2.25 \times 10^8-1.2 \times 10^8 \\
&=10^8(1.05) \\
&\text { Or } v^{\prime}=1.01 \times 10^4 \mathrm{~m} / \mathrm{s}=10 \mathrm{~km} / \mathrm{s}
\end{aligned}
\)
A mass of \(6 \times 10^{24} \mathrm{~kg}\) (equal to the mass of the earth) is to be compressed in a sphere in such a way that the escape velocity from its surface is \(3 \times 10^8 \mathrm{~m} \mathrm{~s}^{-1}\). What should be the radius of the sphere?
Mass of the sphere \(=6 \times 10^{24} \mathrm{~kg}\)
Escape velocity \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\)
Escape velocity is given by
\(
\begin{aligned}
&v_e=\frac{2 G M}{R} \\
&\Rightarrow R=\frac{2 G M}{v_e^2} \\
&=\frac{2 \times 6.67 \times 10^{-11} \times 6 \times 10^{24}}{\left(3 \times 10^8\right)^2} \\
&=\frac{2 \times 40.02 \times 10^{13}}{9 \times 10^{16}} \\
&=\frac{80.02}{9} \times 10^{-3} \mathrm{~m} \\
&=8.89 \times 10^{-3} \mathrm{~m} \\
& \approx 9 \mathrm{~mm}
\end{aligned}
\)
You cannot copy content of this page