0 of 148 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 148 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Does the centre of mass of a body necessarily lie inside the body?
The geometrical centre of each. No, the CM may lie outside the body, as in the case of a ring, a hollow sphere, a hollow cylinder, a hollow cube, etc.
In the \(\mathrm{HCl}\) molecule, the separation between the nuclei of the two atoms is about \(1.27 \left(1 =10^{-10} \mathrm{~m}\right)\). Find the approximate location of the CM of the molecule, given that a chlorine atom is about \(35.5\) times as massive as a hydrogen atom and nearly all the mass of an atom is concentrated in its nucleus.
\(
r=1.27 ;Â r_{c m} = \frac{m_1 r_1+m_2 r_2}{m_1+m_2}
\)
Since centre of mass cannot go beyond bond legth
\(
\begin{aligned}
&r_{\mathrm{cm}} = \frac{0+35.5 \times 1.27}{35.5+1}=\frac{35.5 \times 1.27}{36.5} \\
&=1.24Â
\end{aligned}
\)
A child sits stationary at one end of a long trolley moving uniformly with speed v on a smooth horizontal floor. If the child gets up and runs about on the trolley in the forward direction with speed u. The centre of mass of the system (child + trolley) will move with what speed?
The speed of the centre of mass of the system remain unchanged (equal to v) because no external force acts on the system. The force involved such as action and reaction, friction, etc when the child runs on the trolley are internal to the (trolley+child) system.
The area of the triangle contained between the vectors \(\vec{a}\) and \(\vec{b}\) is equal to what?
Consider two vectors \(\mathrm{OK}=\) vector \(\vec{a}\) and \(\mathrm{OM}=\) \(\vec{b}\), inclined at an angle \(\theta\) as shown in the following figure.
In \(\triangle \mathrm{OMN}\), we can write the relation:
\(
\begin{aligned}
&\sin \theta=\frac{\mathrm{MN}}{\mathrm{OM}}=\frac{\mathrm{MN}}{|\vec{b}|} \\
&\Rightarrow \mathrm{MN}=|\overrightarrow{\mathrm{b}}| \sin \theta
\end{aligned}
\)
\(
\begin{aligned}
|\vec{a} \times \vec{b}| &=|\vec{a}||\vec{b}| \sin \theta \\
&=O K \times M N
\end{aligned}
\)
\(
\begin{aligned}
=2 \times \frac{1}{2} \times \mathrm{OK} \times \mathrm{MN} \\
=& 2 \times \text { Area of } \triangle \mathrm{OMK}
\end{aligned}
\)
\(
\Longrightarrow \text { Area of } \triangle \mathrm{OMK}=\frac{1}{2} \times|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|
\)
What is the volume of the parallelepiped formed on the three vectors, \(\vec{a}\) , \(\vec{b}\) and \(\vec{c}\)?
A parallelepiped with origin O and sides a, b, and c is shown in the following figure.
Volume of the given parallelepiped \(=a b c\)
\(
\begin{aligned}
&\overrightarrow{\mathrm{OC}}=\vec{a} \\
&\overrightarrow{\mathrm{OB}}=\vec{b} \\
&\overrightarrow{\mathrm{OC}}=\vec{c}
\end{aligned}
\)
Let cap \(\mathbf{n}\) be a unit vector perpendicular to both b and \(\mathrm{c}\). Hence, cap \(\mathbf{n}\) and a have the same direction
\(
\begin{aligned}
&\therefore \vec{b} \times \vec{c}=b c \sin \theta \hat{\mathbf{n}} \\
&=b c \sin 90^{\circ} \hat{\mathbf{n}} \\
&=b c \hat{n}
\end{aligned}
\)
\(\vec{a} \cdot(\vec{b} \times \vec{c})\)
\(=a \cdot(b c \hat{\mathbf{n}})\)
\(=a b c \cos \theta \hat{\mathbf{n}}\)
\(=a b c \cos 0^{\circ}\)
\(=a b c\)
\(=\) Volume of the parallelepiped
A non-uniform bar of weight \(\mathrm{W}\) is suspended at rest by two strings of negligible weight as shown in Figure below. The angles made by the strings with the vertical are \(36.9^{\circ}\) and \(53.1^{\circ}\) respectively. The bar is \(2 \mathrm{~m}\) long. Calculate the distance \(\mathrm{d}\) of the centre of gravity of the bar from its left end.
\(T_1\) and \(T_2\) are the tensions produced in the left and right strings respectively.
At translational equilibrium, we have:
\(
\begin{aligned}
&T_1 \sin 36.9^{\circ}=T_2 \sin 53.1 \\
&\frac{T_1}{T_2}=\frac{\sin 53.1^{\circ}}{\sin 36.9} \\
&=\frac{0.800}{0.600}=\frac{4}{3} \\
&\Rightarrow T_1=\frac{4}{3} T_2
\end{aligned}
\)
For rotational equilibrium, on taking the torque about the centre of gravity, we have:
\(
T_1 \cos 36.9 \times d=T_2 \cos 53.1(2-d)
\)
\(
\begin{aligned}
&T_1 \times 0.800 d=T_2 0.600(2-d) \\
&\frac{4}{3} \times T_2 \times 0.800 d=T_2[0.600 \times 2-0.600 d] \\
&1.067 d+0.6 d=1.2
\end{aligned}
\)
\(
\begin{aligned}
&\therefore d=\frac{1.2}{1.67} \\
&=0.72 \mathrm{~m}
\end{aligned}
\)
Hence, the C.G. (centre of gravity) of the given bar lies \(0.72 \mathrm{~m}\) from its left end.
A car weighs \(1800 \mathrm{~kg}\). The distance between its front and back axles is \(1.8 \mathrm{~m}\). Its centre of gravity is \(1.05 \mathrm{~m}\) behind the front axle. What is the force exerted by the level ground on each front wheel and each back wheel?
Mass of the car, \(m=1800 \mathrm{~kg}\)
Distance between the front and back axles, \(d=1.8 \mathrm{~m}\)
Distance between the centre of gravity and the back axle \(=1.05 \mathrm{~m}\)
The various forces acting on the car are shown in the following figure.
\(R_{\mathrm{f}}\) and \(R_{\mathrm{b}}\) are the forces exerted by the level ground on the front and back wheels respectively.
At translational equilibrium,
\(
\begin{aligned}
R_{\mathrm{f}}+R_{\mathrm{b}} &=\mathrm{mg} \\
&=1800 \times 9.8 \\
&=17640 \mathrm{~N} \dots(i)
\end{aligned}
\)
For rotational equilibrium, on taking the torque about the C.G., we have
\(
\begin{aligned}
R_{\mathrm{f}}(1.05) &=R_{\mathrm{b}}(1.8-1.05) \\
\frac{R_{\mathrm{b}}}{R_{\mathrm{f}}} &=\frac{7}{5} \\
R_{\mathrm{b}} &=1.4 R_{\mathrm{f}} \dots(ii)
\end{aligned}
\)
Solving equations ( \(i\) ) and (ii), we get
\(
1.4 R_{\mathrm{f}}+R_{\mathrm{f}}=17640
\)
\(
R_{\mathrm{f}}=7350 \mathrm{~N}
\)
\(
\begin{aligned}
\therefore \quad R_{\mathrm{b}} &=17640-7350 \\
&=10290 \mathrm{~N}
\end{aligned}
\)
Therefore, the force exerted on each front wheel \(=\frac{7350}{2}=3675 \mathrm{~N}\). The force exerted on each back wheel \(=\frac{10290}{2}=5145 \mathrm{~N}\)
Torques of equal magnitude are applied to a hollow cylinder and a solid sphere, both having the same mass and radius. The cylinder is free to rotate about its standard axis of symmetry, and the sphere is free to rotate about an axis passing through its centre. Which of the two will acquire a greater angular speed after a given time?
The moment of inertia for the hollow cylinder \(=\mathrm{I}_1=\mathrm{mr}^2\)
The moment of inertia for the solid sphere \(=\mathrm{I}_2=\frac{2}{5} \mathrm{mr}^2\)
For hollow sphere we have \(\tau=\mathrm{I}_1 \alpha_1\)
For solid sphere we have \(\tau=\mathrm{I}_2 \alpha_2\)
\(
\Rightarrow \frac{\alpha_2}{\alpha_1}=\frac{I_1}{I_2}=\frac{5}{2}>1
\)
Thus \(\alpha_2>\alpha_1\)
\(
\omega(\mathrm{t})=\omega_0+\alpha \mathrm{t}
\)
The angular velocity( \(\omega)\) at a certain time will be greater for solid sphere.
A solid cylinder of mass \(20 \mathrm{~kg}\) rotates about its axis with angular speed \(100 \mathrm{rad} \mathrm{s}^{-1}\). The radius of the cylinder is \(0.25 \mathrm{~m}\). What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of angular momentum of the cylinder about its axis?
The moment of inertia of a solid cylinder \(=\mathrm{mr}^2 / 2\)
\(
\begin{aligned}
&=\frac{1}{2} \times 20 \times(0.25)^2 \\
&=0.625 \mathrm{kgm}^2
\end{aligned}
\)
Therefore kinetic energy \(=\frac{1}{2} I \omega^2\) \(=3125 \mathrm{~J}\)
Angular momentum , \(\mathrm{L}=\mathrm{I} \omega\)
\(
=0.625 \times 100
\)
\(
=62.5 \mathrm{~J} \mathrm{~s}
\)
A child stands at the centre of a turntable with his two arms outstretched. The turntable is set rotating with an angular speed of \(40 \mathrm{rev} / \mathrm{min}\). How much is the angular speed of the child if he folds his hands back and thereby reduces his moment of inertia to \(2 / 5\) times the initial value? Assume that the turntable rotates without friction.
Since no external force acts on the boy, the angular momentum is constant.
Thus \(I_1 \omega_1=I_2 \omega_2\)
\(
\Longrightarrow \omega_2=\frac{I_1}{I_2} \omega_1=\frac{5}{2} \times 40Â \mathrm{rev} / \mathrm{min}=100Â \mathrm{rev} / \mathrm{min}
\)
A rope of negligible mass is wound round a hollow cylinder of mass \(3 \mathrm{~kg}\) and radius \(40 \mathrm{~cm}\). What is the angular acceleration of the cylinder if the rope is pulled with a force of \(30 \mathrm{~N}\)? What is the linear acceleration of the rope? Assume that there is no slipping.
Here, \(M=3 \mathrm{~kg}, \mathrm{R}=40 \mathrm{~cm}=0.4 \mathrm{~m}\)
Moment of inertia of the hollow cylinder about its axis \(l=M R^2=3(0.4)^2=0.48 \mathrm{kgm}^2\)
Force applied \(\mathrm{F}=30 \mathrm{~N}\)
\(\therefore \quad\) Torque, \(\tau=F \times R=300 \times 0.4=12 Nm\).
If \(\alpha\) is angular acceleration produced, then from \(\tau=I \alpha\), \(\alpha=\frac{\tau}{I}=\frac{12}{0.48}=25\) rads \(^{-2}\)
Linear acceleration, \(a=R \alpha=0.4 \times 25=10 \mathrm{~ms}^{-2}\).
To maintain a rotor at a uniform angular speed of \(200 \mathrm{rad} \mathrm{s}^{-1}\), an engine needs to transmit a torque of \(180 \mathrm{~N} \mathrm{~m}\). What is the power required by the engine? (Note: uniform angular velocity in the absence of friction implies zero torque. In practice, applied torque is needed to counter frictional torque). Assume that the engine is \(100 \%\) efficient.
Given: The angular speed of the rotor is \(200 \mathrm{rad} / \mathrm{s}\).
The torque needed to be transmitted by the engine is \(180 \mathrm{Nm}\).
The power of the rotor required to transmit energy to apply a torque \(\tau\) to rotate a motor with angular speed \(\omega\),
\(
\begin{aligned}
&\mathrm{P}=\tau \omega \\
&=180 \times 200 \mathrm{~W} \\
&=36 \mathrm{~kW}
\end{aligned}
\)
From a uniform disk of radius \(R\), a circular hole of radius \(R / 2\) is cut out. The centre of the hole is at \(R / 2\) from the centre of the original disc. What is the centre of gravity of the resulting flat body?
Given that,
Radius of uniform disc \(=\mathrm{R}\)
Radius of the smaller disc \(=\frac{\mathrm{R}}{2}\)
Let the mass per unit area of the original disc \(=\sigma\)
Therefore mass of the uniform disc \(=\mathrm{M}=\sigma \pi \mathrm{R}^2\)
And the mass of the small disc \(=\sigma \pi\left(\frac{\mathrm{R}}{2}\right)^2=\frac{\sigma \pi \mathrm{R}^2}{4}=\frac{\mathrm{M}}{4}\)
Now as the small disc has been cut from the uniform disc, the remaining portion is considered to be a system of two masses.
The two masses are: \(M\) (concentrated at \(O)\)Â & \(-M\) (concentrated at \(O^{\prime}\) )
(negative sign indicating above that the portion is removed from the uniform disc)
Let \(\mathrm{x}\) be the distance through which the centre of mass of the remaining portion shifts from point \(\mathrm{O}\).
The relation between the centre of masses of two masses is give as:
\(
\begin{aligned}
\mathrm{x} &=\frac{\left(\mathrm{m}_1 \mathrm{r}_1+\mathrm{m}_2 \mathrm{r}_2\right)}{\left(\mathrm{m}_1+\mathrm{m}_2\right)} \\
\mathrm{x} &=\frac{\left[\left(\mathrm{M} \times 0-\frac{\mathrm{M}}{4}\right) \times\left(\frac{\mathrm{R}}{2}\right)\right]}{\left(\mathrm{M}-\frac{\mathrm{M}}{4}\right)} \\
&=\frac{\left(\frac{-\mathrm{MR}}{8}\right)}{\left(\frac{3 \mathrm{M}}{4}\right)} \\
=& \frac{-4 \mathrm{R}}{24} \\
\mathrm{x} &=\frac{-\mathrm{R}}{6}
\end{aligned}
\)
Note: The relation between the centre of masses of two masses is calculated by the formula \(\mathrm{x}=\frac{\left(\mathrm{m}_1 \mathrm{r}_1+\mathrm{m}_2 \mathrm{r}_2\right)}{\left(\mathrm{m}_1+\mathrm{m}_2\right)}\) which is found to be \(\frac{-\mathrm{R}}{6}\) here the negative sign indicates that the centre of gravity of the resulting flat body gets shifted towards the left point \(O\).
A metre stick is balanced on a knife edge atits centre. When two coins, each of mass \(5 \mathrm{~g}\) are put one on top of the other at the \(12.0 \mathrm{~cm}\) mark, the stick is found to be balanced at \(45.0 \mathrm{~cm}\). What is the mass of the metre stick?
Let \(W\) and \(W^{\prime}\) be the respective weights of the metre stick and the coin.
The mass of the metre stick is concentrated at its mid-point, i.e., at the \(50 \mathrm{~cm}\) mark.
Mass of the meter stick \(=\mathrm{m}\) ‘
Mass of each coin, \(m=5 \mathrm{~g}\)
When the coins are placed \(12 \mathrm{~cm}\) away from the end \(P\), the centre of mass gets shifted by \(5 \mathrm{~cm}\) from point \(\mathrm{R}\) toward the end \(\mathrm{P}\). The centre of mass is located at a distance of \(45 \mathrm{~cm}\) from point \(P\).
The net torque will be conserved for rotational equilibrium about point R.
\(
10 \times \mathrm{g}(45-12)-m^{\prime} \mathrm{g}(50-45)=0
\)
\(
\therefore m^{\prime}=\frac{10 \times 33}{5}=66 \mathrm{~g}
\)
Hence, the mass of the metre stick is \(66 \mathrm{~g}\).
A solid sphere rolls down two different inclined planes of the same heights but different angles of inclination. Will it reach the bottom with the same speed in each case?
Using law of conservation of energy,
\(
\frac{1}{2} m v^2+\frac{1}{2} I \omega^2=m g h
\)
\(
\text { or } \frac{1}{2} m v^2+\frac{1}{2}\left(\frac{2}{5} m R^2\right) \frac{v^2}{R^2}=m g h
\)
or \(7 / 10 v^{\wedge} 2=\) gh or \(v=\sqrt{\frac{10 g h}{7}}\)
Hence, the velocity of the sphere at the bottom depends only on height \((h)\) and acceleration due to gravity \((g)\). Both these values are constants. Therefore, the velocity at the bottom remains the same from whichever inclined plane the sphere is rolled.
A hoop of radius \(2 \mathrm{~m}\) weighs \(100 \mathrm{~kg}\). It rolls along a horizontal floor so that its centre of mass has a speed of \(20 \mathrm{~cm} / \mathrm{s}\). How much work has to be done to stop it?
Given,
Radius of the hoop, \(r=2 \mathrm{~m}\)
Mass of the hoop, \(m=100 \mathrm{~kg}\)
Velocity of the hoop, \(v=20 \mathrm{~cm} / \mathrm{s}=0.2 \mathrm{~m} / \mathrm{s}\)
Total energy of the hoop \(=\) Translational K.E. + Rotational K.E.
\(
E_{\mathrm{T}}=\frac{1}{2} m v^2+\frac{1}{2} I \omega^2
\)
Moment of inertia of the hoop about its centre, \(I=m r^2\)
\(
E_T=\frac{1}{2} m v^2+\frac{1}{2}\left(m r^2\right) \omega^2
\)
Using the relation, \(v=r \omega\)
\(
\begin{aligned}
E_{\mathrm{T}} &=\frac{1}{2} m v^2+\frac{1}{2} m r^2 \omega^2 \\
&=\frac{1}{2} m v^2+\frac{1}{2} m v^2 \\
&=m v^2
\end{aligned}
\)
The work required to be done for stopping the hoop is equal to the total energy of the hoop.
\(\therefore\) Required work to be done, \(W=m v^2\)
\(
\begin{aligned}
&=100 \times(0.2)^2 \\
&=4 \mathrm{~J} .
\end{aligned}
\)
The oxygen molecule has a mass of \(5.30 \times 10^{-26} \mathrm{~kg}\) and a moment of inertia of \(1.94 \times 10^{-46} \mathrm{~kg} \mathrm{\textrm {m } ^ { 2 }}\) about an axis through its centre perpendicular to the lines joining the two atoms. Suppose the mean speed of such a molecule in a gas is \( 500 \mathrm{~m} / \mathrm{s}\) and that it’s kinetic energy of rotation is two-thirds of its kinetic energy of translation. Find the average angular velocity of the molecule.
Given, \(m=5.30 \times 10^{-26} \mathrm{~kg}\),
\(
\begin{aligned}
&\mathrm{I}=1.94 \times 10^{-26} \mathrm{kgm}^2 \text { and } \\
&\mathrm{V}=500 \mathrm{~m} / \mathrm{s} \\
&\mathrm{KE}(\text { translation })=\frac{1}{2} \mathrm{mv}^2 \\
&=\frac{1}{2} \times\left(5.30 \times 10^{-26}\right)(500)^2 \\
&=6.625 \times 10^{-21} \mathrm{~J}
\end{aligned}
\)
given that,
\(\mathrm{KE}(\) rotation \()=\left(\frac{2}{3}\right) \mathrm{KE}\) (translation)
\(\frac{1}{2} l \omega^2=\left(\frac{2}{3}\right) \frac{1}{2} m v^2\)
\(\therefore \omega=\sqrt{2 / 3 \frac{m v^2}{1}}\)
\(=\sqrt{\frac{2 / 3 \times 6.625 \times 10^{-21}}{1.94 \times 10^{-46}}}\)
\(=6.75 \times 10^{12} \mathrm{rad} / \mathrm{sec}\).
A solid cylinder rolls up an inclined plane of angle of inclination \(30^{\circ}\). At the bottom of the inclined plane the centre of mass of the cylinder has a speed of \(5 \mathrm{~m} / \mathrm{s}\).
(a) How far will the cylinder go up the plane?
(b) How long will it take to return to the bottom?
(a) From the figure \(\mathrm{h}=\mathrm{I} \sin \theta \ldots \ldots \ldots \ldots . . .(1)\)
Using the principle of conservation of energy,
\(
\begin{aligned}
&\mathrm{mgh}=\frac{1}{2} \mathrm{mv}^2+1 \omega^2 \\
&=\frac{1}{2} \mathrm{mv}^2+\frac{1}{2}\left(\frac{\mathrm{mv}^2}{2}\right)\left(\frac{\mathrm{V}^2}{\mathrm{r}^2}\right)
\end{aligned}
\)
[Assuming no slipping of cylinder]
\(
\begin{aligned}
&\mathrm{mgh}=\frac{3}{4} \mathrm{mv}^2 \\
&\Rightarrow \mathrm{h}=\frac{3 \mathrm{~V}^2}{4 \mathrm{~g}}=\frac{3 \times(5)^2}{4 \times 9.8}=1.91 \mathrm{~m} \\
&\mathrm{I}=\frac{\mathrm{h}}{\sin \left(30^{\circ} 0\right.}=3.83 \mathrm{~m}
\end{aligned}
\)
(b) Time taken to reach the bottom \(=2 \mathrm{~T}\). The acceleration of cylinder along plane \(=a\)
\(
\therefore=u \mathrm{~T}+\frac{\mathrm{h}}{\sin \left(30^{\circ}\right)}(\mathrm{a}) \mathrm{T}^2 \ldots \ldots \ldots \ldots(2)
\)
\(
\therefore T=\sqrt{\frac{2 I}{a}}
\)
f.r. \(=1 a=\frac{m^2}{2} \times \frac{a}{r}\)
\(
\therefore \mathrm{f}=\frac{\mathrm{ma}}{2}
\)
\(
\Rightarrow \mathrm{mg} \quad \sin \theta=\frac{3 \mathrm{ma}}{2}
\)
\(
\therefore a=\frac{2}{3} \mathrm{~g} \quad \sin \theta
\)
\(\therefore\) Time taken to reach botton \(=2 \mathrm{~T}\)
\(
\begin{aligned}
&=2 \sqrt{\frac{21}{(2 / 3) g \sin \theta}} \\
&=\sqrt[2]{\frac{(3.83)}{(9.8)^{1 / 2}}} \\
&=3.06 \mathrm{sec}
\end{aligned}
\)
A man stands on a rotating platform, with his arms stretched horizontally holding a \(5 \mathrm{~kg}\) weight in each hand. The angular speed of the platform is 30 revolutions per minute. The man then brings his arms close to his body with the distance of each weight from the axis changing from \(90 \mathrm{~cm}\) to \(20 \mathrm{~cm}\). The moment of inertia of the man together with the platform may be taken to be constant and equal to \(7.6 \mathrm{~kg} \mathrm{~m}^2\).
(a) What is his new angular speed (Neglect friction.)
(b) Is kinetic energy conserved in the process? If not, from where does the change come about?
(a) Moment of inertia of man+platform system \(=7.6 \mathrm{kgm}^2\)
Moment of inertia of the weights \(=2 \times \mathrm{mr}^2=2 \times 5 \times 0.9^2=8.1 \mathrm{kgm}^2\)
total initial \(\mathrm{MOI}=7.6+8.1=15.7 \mathrm{kgm}^2\)
Initial angular momentum of system \(=\mathrm{I}_{\mathrm{i}} \omega_{\mathrm{i}}=15.7 \times 30\)
Moment of inertia of weights when man brings arms close \(=2 \times \mathrm{mr}^2\) \(=2 \times 5 \times(0.2)^2=0.4 \mathrm{kgm}^2\)
Thus the final moment of inertia \(=7.6+0.4=8.0 \mathrm{kgm}^2\)
Let the final angular momentum be \(\omega^{\prime}\)
Then from conservation of angular momentum,
\(
\begin{aligned}
&\mathrm{I}_{\mathrm{i}} \omega_{\mathrm{i}}=\mathrm{I}_{\mathrm{f}} \omega^{\prime} \\
&\Rightarrow \omega^{\prime}=\frac{15.7 \times 30}{8}=58.88 \mathrm{rev} / \mathrm{min}
\end{aligned}
\)
(b) Kinetic energy is not conserved in the given process. In fact, with the decrease in the moment of inertia, kinetic energy increases. The additional kinetic energy comes from the work done by the man to fold his hands toward himself.
A bullet of mass \(10 \mathrm{~g}\) and speed \(500 \mathrm{~m} / \mathrm{s}\) is fired into a door and gets embedded exactly at the centre of the door. The door is \(1.0 \mathrm{~m}\) wide and weighs \(12 \mathrm{~kg}\). It is hinged at one end and rotates about a vertical axis practically without friction. Find the angular speed of the door just after the bullet embeds into it. (Hint: The moment of inertia of the door about the vertical axis at one end is \(M L^2 / 3\). )
Mass of the bullet, \(m=10 \mathrm{~g}=10 \times 10^{-3} \mathrm{~kg}\)
Velocity of the bullet, \(v=500 \mathrm{~m} / \mathrm{s}\)
Thickness of the door, \(L=1 \mathrm{~m}\)
Radius of the door, \(r=\frac{1}{2} \mathrm{~m}\)
Mass of the door, \(M=12 \mathrm{~kg}\)
Angular momentum imparted by the bullet on the door:
\(
\begin{aligned}
&\alpha=m v r \\
&=\left(10 \times 10^{-3}\right) \times(500) \times \frac{1}{2}=2.5 \mathrm{~kg} \mathrm{~m}^2 \mathrm{~s}^{-1} \ldots(i)
\end{aligned}
\)
Moment of inertia of the door:
\(
\begin{aligned}
&I=\frac{1}{3} M L^2 \\
&=\frac{1}{3} \times 12 \times(1)^2=4 \mathrm{~kg} \mathrm{~m}^2
\end{aligned}
\)
But \(\alpha=I \omega\)
\(
\begin{aligned}
\therefore \omega &=\frac{\alpha}{I} \\
&=\frac{2.5}{4}=0.625 \mathrm{rad} \mathrm{s}^{-1}
\end{aligned}
\)
A disc rotating about its axis with angular speed \(\omega_O\) is placed lightly (without any translational push) on a perfectly frictionless table. The radius of the disc is \(R\). What are the linear velocities of the points \(\mathrm{A}, \mathrm{B}\) and \(\mathrm{C}\) on the disc shown in Figure below? Will the disc roll in the direction indicated?
\(
v_{\mathrm{A}}=R \omega_{\mathrm{o}} ; v_{\mathrm{B}}=R \omega_{\mathrm{o}} ; v_c=\left(\frac{R}{2}\right) \omega_o ; \text { The disc will not roll }
\)
Angular speed of the disc \(=\omega_0\)
Radius of the disc \(=R\)
Using the relation for linear velocity, \(v=\omega_0 R\)
For point A:
\(v_A=R \omega_0 ;\) in the direction tangential to the right
Forpoint B:
\(v_{\mathrm{B}}=R \omega_0\); in the direction tangential to the left
For point \(C\) :
\(v_c=\left(\frac{R}{2}\right) \omega_o\); in the direction same as that of \(v_{\mathrm{A}}\)
The directions of motion of points \(A, B\), and \(C\) on the disc are shown in the following figure below
Since the disc is placed on a frictionless table, it will not roll. This is because the presence of friction is essential for the rolling of a body.
A cylinder of mass \(10 \mathrm{~kg}\) and radius \(15 \mathrm{~cm}\) is rolling perfectly on a plane of inclination 300 . The coefficient of static friction \(\mu_{\mathrm{S}}=0.25\).
(a) How much is the force of friction acting on the cylinder?
(b) What is the work done against friction during rolling?
(c) If the inclination \(\theta\) of the plane is increased, at what value of \(\theta\) does the cylinder begin to skid, and not roll perfectly?
Here, \(m=10 \mathrm{~kg}, r=15 \mathrm{~cm}=0.15 \mathrm{~m}\)
\(
\theta=30^{\circ}, \mu_s=0.25
\)
Acceleration of the cylinder down the incline,
\(
a=\frac{2}{3} g \sin \theta=\frac{2}{3} \times 9.8 \sin 30^{\circ}=\frac{9.8}{3} \mathrm{~m} / \mathrm{s}^2
\)
(a) Force of friction,
\(
F=m g \sin \theta-m a=m(g \sin \theta-a)=10\left(9.8 \sin 30^{\circ}-\frac{9.8}{3}\right)=16.4 N
\)
(b) During rolling, the point of contact is at rest. Therefore, work done against friction is zero.
(c) For rolling without slipping/skidding, \(\mu=\frac{1}{3} \tan \theta\) \(\tan \theta=3 \mu=3 \times 0.25=0.75\) \(\theta=37^{\circ}\)
Read each statement below carefully, and state, with reasons, if it is true or false;
(a) During rolling, the force of friction acts in the same direction as the direction of motion of the CM of the body.
(b) The instantaneous speed of the point of contact during rolling is zero.
(c) The instantaneous acceleration of the point of contact during rolling is zero.
(d) For perfect rolling motion, work done against friction is zero.
(e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling) motion.
(a) False
Frictional force acts opposite to the direction of motion of the centre of mass of a body. In the case of rolling, the direction of motion of the centre of mass is backward. Hence, frictional force acts in the forward direction.
(b) True
Rolling can be considered as the rotation of a body about an axis passing through the point of contact of the body with the ground. Hence, its instantaneous speed is zero.
(c) False
This is because when a body is rolling, its instantaneous acceleration is not equal to zero. It has some value.
(d) True
This is because once the perfect rolling begins, force of friction becomes zero. Hence work done against friction is zero.
(e) True
This is because rolling occurs only on account of friction which is a tangential force capable of providing torque. When the inclined plane is perfectly smooth, the wheel will simply slip under the effect of its own weight.
Find the centre of mass of three particles at the vertices of an equilateral triangle. The masses of the particles are \(100 \mathrm{~g}, 150 \mathrm{~g}\), and \(200 \mathrm{~g}\) respectively. Each side of the equilateral triangle is \(0.5 \mathrm{~m}\) long.
With the \(x\)-and \(y\)-axes chosen as shown in Fig. above, the coordinates of points \(\mathrm{O}\), A and \(\mathrm{B}\) forming the equilateral triangle are respectively \((0,0)\), \((0.5,0)\), \((0.25,0.25 \sqrt{3})\). Let the masses \(100 \mathrm{~g}\), \(150 \mathrm{~g}\) and \(200 \mathrm{~g}\) be located at \(\mathrm{O}, \mathrm{A}\) and \(\mathrm{B}\) be respectlvely. Then,
\(
\begin{gathered}
X=\frac{m_1 x_1+m_2 x_2+m_3 x_3}{m_1+m_2+m_3} \\
=\frac{100(0)+150(0.5)+200(0.25) \quad g \mathrm{~m}}{(100+150+200) \mathrm{g}} \\
=\frac{75+50}{450} \mathrm{~m}=\frac{125}{450} \mathrm{~m}=\frac{5}{18} \mathrm{~m} \\
Y=\frac{100(0)+150(0)+200(0.25 \sqrt{3}) \quad \mathrm{gm}}{450 \mathrm{~g}} \\
=\frac{50 \sqrt{3}}{450} \mathrm{~m}=\frac{\sqrt{3}}{9} \mathrm{~m}=\frac{1}{3 \sqrt{3}} \mathrm{~m}
\end{gathered}
\)
The centre of mass \(C\) is shown in the figure.
Find the scalar and vector products of two vectors. \(\mathbf{a}=(3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})\) and \(\mathbf{b}=(-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}})\)
\(
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} &=(3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}) \cdot(-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-3 \hat{\mathbf{k}}) \\
&=-6-4-15 \\
&=-25
\end{aligned}
\)
\(
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & -4 & 5 \\
-2 & 1 & -3
\end{array}\right|=7 \hat{\mathbf{i}}-\hat{\mathbf{j}}-5 \hat{\mathbf{k}}
\)
Note \(\mathbf{b} \times \mathbf{a}=-7 \hat{\mathbf{i}}+\hat{\mathbf{j}}+5 \hat{\mathbf{k}}\)
Find the torque of a force \(7 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\) about the origin. The force acts on a particle whose position vector is \(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\).
Answer Here \(\mathbf{r}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}\) and \(\mathbf{F}=7 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-5 \hat{\mathbf{k}}\).
We shall use the determinant rule to find the torque \(\boldsymbol{\tau}=\mathbf{r} \times \mathbf{F}\)
\(
\tau=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & -1 & 1 \\
7 & 3 & -5
\end{array}\right|=(5-3) \hat{\mathbf{i}}-(-5-7) \hat{\mathbf{j}}+(3-(-7)) \hat{\mathbf{k}}
\)
or \(\tau=2 \hat{\mathbf{i}}+12 \hat{\mathbf{j}}+10 \hat{\mathbf{k}}\)
A \(3 \mathrm{~m}\) long ladder weighing \(20 \mathrm{~kg}\) leans on a frictionless wall. Its feet rest on the floor \(1 \mathrm{~m}\) from the wall as shown in Figure below. Find the reaction forces of the wall and the floor.
The ladder AB is 3 m long, and its foot A is at a distance AC = 1 m from the wall. From Pythagoras theorem,
\(\mathrm{BC}=2 \sqrt{2} \mathrm{~m}\). The forces on the ladder are its weight \(\mathrm{W}\) acting at its centre of gravity D, reaction forces \(F_1\) and \(F_2\) of the wall and the floor respectively. Force \(F_1\) is perpendicular to the wall, since the wall is frictionless. Force \(F_2\) is resolved into two components, the normal reaction \(N\) and the force of friction \(F\). Note that \(F\) prevents the ladder from sliding away from the wall and is therefore directed toward the wall.
For translational equilibrium, taking the forces in the vertical direction,
\(N-W=0 \dots(i)\)
Taking the forces in the horizontal direction,
\(F-F_1=0 \dots(ii)\)
For rotational equilibrium, taking the moments of the forces about A,
\(2 \sqrt{2} F_1-(1 / 2) W=0 \dots(iii)\)
Now \(\quad W=20 \mathrm{~g}=20 \times 9.8 \mathrm{~N}=196.0 \mathrm{~N}\)
From (i) \(N=196.0 \mathrm{~N}\)
From (iii) \(F_1=W / 4 \sqrt{2}=196.0 / 4 \sqrt{2}=34.6 \mathrm{~N}\)
From (ii) \(F=F_1=34.6 \mathrm{~N}\)
\(
F_2=\sqrt{F^2+N^2}=199.0 \mathrm{~N}
\)
The force \(F_2\) makes an angle \(\alpha\) with the horizontal,
\(
\tan \alpha=N / F=4 \sqrt{2}, \quad \alpha=\tan ^{-1}(4 \sqrt{2}) \approx 80^{\circ}
\)
What is the moment of inertia of a rod of mass \(M\), length \(l\) about an axis perpendicular to it through one end?
For the rod of mass \(M\) and length \(l\), \(I=M l^2 / 12\). Using the parallel axes theorem, \(I^{\prime}=I+M a^2\) with \(a=l / 2\) we get,
\(
I^{\prime}=M \frac{l^2}{12}+M\left(\frac{l}{2}\right)^2=\frac{M l^2}{3}
\)
We can check this independently since \(I\) is half the moment of inertia of a rod of mass \(2 M\) and length \(2 l\) about its midpoint,
\(
I^{\prime}=2 M \cdot \frac{4 l^2}{12} \times \frac{1}{2}=\frac{M l^2}{3}
\)
What is the moment of inertia of a ring about a tangent to the circle of the ring?
The tangent to the ring in the plane of the ring is parallel to one of the diameters of the ring. The distance between these two parallel axes is R, the radius of the ring. Using the parallel axes
theorem,
\(
I_{\text {tangent }}=I_{\text {dia }}+M R^2=\frac{M R^2}{2}+M R^2=\frac{3}{2} M R^2 .
\)
The angular speed of a motor wheel is increased from \(1200 \mathrm{rpm}\) to \(3120 \mathrm{rpm}\) in 16 seconds. (i) What is its angular acceleration, assuming the acceleration to be uniform? (ii) How many revolutions does the engine make during this time?
(i) We shall use \(\omega=\omega_0+\alpha t\)
\(\omega_0=\) initial angular speed in rad/s
\(=2 \pi \times\) angular speed in rev \(/ \mathrm{s}\)
\(=\frac{2 \pi \times \text { angular speed in rev } / \mathrm{min}}{60 \mathrm{~s} / \mathrm{min}}\)
\(=\frac{2 \pi \times 1200}{60} \mathrm{rad} / \mathrm{s}\)
\(=40 \pi \mathrm{rad} / \mathrm{s}\)
Similarly \(\omega=\) final angular speed in rad/s
\(
=\frac{2 \pi \times 3120}{60} \mathrm{rad} / \mathrm{s}
\)
\(=2 \pi \times 52 \mathrm{rad} / \mathrm{s}\)
\(=104 \pi \mathrm{rad} / \mathrm{s}\)
\(\therefore \quad\) Angular acceleration
\(
\alpha=\frac{\omega-\omega_0}{t} \quad=4 \pi \mathrm{rad} / \mathrm{s}^2
\)
The angular acceleration of the engine \(=4 \pi \mathrm{rad} / \mathrm{s}^2\)
(ii) The angular displacement in time \(t\) is given by
\(\theta=\omega_0 t+\frac{1}{2} \alpha t^2\)
\(=\left(40 \pi \times 16+\frac{1}{2} \times 4 \pi \times 16^2\right) \mathrm{rad}\)
\(=(640 \pi+512 \pi) \mathrm{rad}\)
\(=1152 \pi \mathrm{rad}\)
Number of revolutions \(=\frac{1152 \pi}{2 \pi}=576\)
A cord of negligible mass is wound round the rim of a flywheel of mass \(20 \mathrm{~kg}\) and radius \(20 \mathrm{~cm}\). A steady pull of \(25 \mathrm{~N}\) is applied on the cord as shown in F1gure below. The flywheel is mounted on a horizontal axle with frictionless bearings.
(a) Compute the angular acceleration of the wheel.
(b) Find the work done by the pull, when \(2 \mathrm{~m}\) of the cord is unwound.
(c) Find also the kinetic energy of the wheel at this point. Assume that the wheel starts from rest.
\(
\begin{array}{ll}
\text { (a) We use } & I \alpha=\tau \\
\text { the torque } & \tau=F R \\
& =25 \times 0.20 \mathrm{Nm} \text { (as } R=0.20 \mathrm{~m}) \\
& =5.0 \mathrm{Nm}
\end{array}
\)
\(I=\) Moment of inertia of flywheel about its
\(
\begin{aligned}
&\text { axls }=\frac{M R^2}{2} \\
&=\frac{20.0 \times(0.2)^2}{2}=0.4 \mathrm{~kg} \mathrm{~m}^2 \\
&\alpha=\text { angular acceleration } \\
&\quad=5.0 \mathrm{~N} \mathrm{~m} / 0.4 \mathrm{~kg} \mathrm{~m}^2=12.5 \mathrm{~s}^{-2} \\
&\text { (b) Work done by the pull unwinding } 2 \mathrm{~m} \text { of the } \\
&\text { cord } \\
&=25 \mathrm{~N} \times 2 \mathrm{~m}=50 \mathrm{~J}
\end{aligned}
\)
(c) Let \(\omega\) be the final angular velocity. The kinetic energy galned \(=\frac{1}{2} I \omega^2\), since the wheel starts from rest. Now, \(\omega^2=\omega_0^2+2 \alpha \theta, \quad \omega_0=0\)
The angular displacement \(\theta=\) length of unwound string / radius of wheel \(=2 \mathrm{~m} / 0.2 \mathrm{~m}=10 \mathrm{rad}\)
\(
\omega^2=2 \times 12.5 \times 10.0=250(\mathrm{rad} / \mathrm{s})^2
\)
\(\therefore\) K.E. gained \(=\frac{1}{2} \times 0.4 \times 250=50 \mathrm{~J}\)
The structure of a water molecule is shown in Figure (9-E1). Find the distance of the centre of mass of the molecule from the centre of the oxygen atom.
Let us take the mass of Hydrogen atom as 1 unit and Oxygen atom as 16 units. From the symmetry, it is clear that the CoM will lie on the perpendicular bisector of the line joining Hydrogen atoms which will pass through the oxygen atom. Let the distance of CoM from Oxygen atom be \(Y\).
Taking a horizontal line passing through the center of oxygen atom as an axis. \(\mathrm{OH}=\) \(r, m=\) mass of hydrogen atom, \(m^{\prime}=\) mass of Oxygen atom. \(M=2+16=18\) unit.
\(
\begin{aligned}
& Y=(1 / M) \times \left(2 \times \mathrm{~m r} \times \cos 52^{\circ}+16 \times 0\right) \\
& =0.066 \times 10^{-10} \mathrm{~m} . \\
& =6.6 \times 10^{-12} \mathrm{~m}
\end{aligned}
\)
Hence distance of the center of mass of the molecule from the center of oxygen atom is \(6.6 \times 10^{-12} \mathrm{~m}\)
Seven homogeneous bricks, each of length \(L\), are arranged as shown in figure (9-E2). Each brick is displaced with respect to the one in contact by \(L / 10\). Find the \(x\)-coordinate of the centre of mass relative to the origin shown.
Let ‘ \(O\) ‘ \((0,0)\) be the origin of the system.
Each brick is mass ‘ \(M\) ‘ \& length ‘ \(L\) ‘.
Each brick is displaced w.r.t. one in contact by ‘ \(L / 10\) ‘
\(\therefore\) The \(\mathrm{X}\) coordinate of the centre of mass
\(
{X}_{c m}=\frac{m\left(\frac{L}{2}\right)+m\left(\frac{L}{2}+\frac{L}{10}\right)+m\left(\frac{L}{2}+\frac{2 L}{10}\right)+m\left(\frac{L}{2}+\frac{3 L}{10}\right)+m\left(\frac{L}{2}+\frac{3 L}{10}-\frac{L}{10}\right)+m\left(\frac{L}{2}+\frac{L}{10}\right)+m\left(\frac{L}{2}\right)}{7 m}
\)
\(
\begin{aligned}
& =\frac{\frac{L}{2}+\frac{L}{2}+\frac{L}{10}+\frac{L}{2}+\frac{L}{5}+\frac{L}{2}+\frac{3 L}{10}+\frac{L}{2}+\frac{L}{5}+\frac{L}{2}+\frac{L}{10}+\frac{L}{2}}{7} \\
& =\frac{\frac{7 \mathrm{~L}}{2}+\frac{5 \mathrm{~L}}{10}+\frac{2 \mathrm{~L}}{5}}{7}=\frac{35 \mathrm{~L}+5 \mathrm{~L}+4 \mathrm{~L}}{10 \times 7}=\frac{44 \mathrm{~L}}{70}=\frac{22}{35} \mathrm{~L}
\end{aligned}
\)
Two blocks of masses \(10 \mathrm{~kg}\) and \(20 \mathrm{~kg}\) are placed on the \(X\)-axis. The first mass is moved on the axis by a distance of \(2 \mathrm{~cm}\). By what distance should the second mass be moved to keep the position of the centre of mass unchanged?
Two masses \(m_1 \& m_2\) are placed on the \(X\)-axis
\(
\mathrm{m}_1=10 \mathrm{~kg} \text {, } \quad \mathrm{m}_2=20 \mathrm{~kg} \text {. }
\)
The first mass is displaced by a distance of \(2 \mathrm{~cm}\)
\(
\begin{aligned}
& \therefore \overline{\mathrm{x}}_{\mathrm{cm}}=\frac{\mathrm{m}_1 \mathrm{x}_1+\mathrm{m}_2 \mathrm{x}_2}{\mathrm{~m}_1+\mathrm{m}_2}=\frac{10 \times 2+20 \mathrm{x}_2}{30} \\
& \Rightarrow 0=\frac{20+20 \mathrm{x}_2}{30} \Rightarrow 20+20 \mathrm{x}_2=0 \\
& \Rightarrow 20=-20 \mathrm{x}_2 \Rightarrow \mathrm{x}_2=-1 .
\end{aligned}
\)
\(\therefore\) The \(2^{\text {nd }}\) mass should be displaced by a distance \(1 \mathrm{~cm}\) towards left so as to kept the position of centre of mass unchanged.
Two blocks of masses \(10 \mathrm{~kg}\) and \(30 \mathrm{~kg}\) are placed along a vertical line. The first block is raised through a height of \(7 \mathrm{~cm}\). By what distance should the second mass be moved to raise the centre of mass by \(1 \mathrm{~cm}\)?
Two masses \(m_1 \& m_2\) are kept in a vertical line
\(
\mathrm{m}_1=10 \mathrm{~kg}, \quad \mathrm{~m}_2=30 \mathrm{~kg}
\)
The first block is raised through a height of \(7 \mathrm{~cm}\).
The centre of mass is raised by \(1 \mathrm{~cm}\).
\(
\begin{aligned}
& \therefore 1=\frac{\mathrm{m}_1 \mathrm{y}_1+\mathrm{m}_2 \mathrm{y}_2}{\mathrm{~m}_1+\mathrm{m}_2}=\frac{10 \times 7+30 \mathrm{y}_2}{40} \\
& \Rightarrow 1=\frac{70+30 \mathrm{y}_2}{40} \Rightarrow 70+30 \mathrm{y}_2=40 \Rightarrow 30 \mathrm{y}_2=-30 \Rightarrow \mathrm{y}_2=-1 .
\end{aligned}
\)
The \(30 \mathrm{~kg}\) body should be displaced \(1 \mathrm{~cm}\) downward in order to raise the centre of mass through \(1 \mathrm{~cm}\).
Consider a gravity-free hall in which a tray of mass \(M\), carrying a cubical block of ice of mass \(m\) and edge \(L\), is at rest in the middle (figure 9-E4). If the ice melts, by what distance does the centre of mass of “the tray plus the ice” system descend?
As the hall is gravity free, after the ice melts, it would tend to acquire a spherical shape. But, there is no external force acting on the system. So, the centre of mass of the system would not move. Zero cm is the answer.
Mr. Verma \((50 \mathrm{~kg})\) and \(\mathrm{Mr}\). Mathur \((60 \mathrm{~kg})\) are sitting at the two extremes of a \(4 \mathrm{~m}\) long boat \((40 \mathrm{~kg}\) ) standing still in water. To discuss a mechanics problem, they come to the middle of the boat. Neglecting friction with water, how far does the boat move on the water during the process?
\(
\mathrm{m}_1=60 \mathrm{~kg}, \quad \mathrm{~m}_2=40 \mathrm{~kg}, \quad \mathrm{~m}_3=50 \mathrm{~kg},
\)
Let \(\mathrm{A}\) be the origin of the system.
Initially Mr. Verma \& Mr. Mathur are at extreme position of the boat.
\(\therefore\) The centre of mass will be at a distance
\(
=\frac{60 \times 0+40 \times 2+50 \times 4}{150}=\frac{280}{150}=1.87 \mathrm{~m} \text { from ‘ } \mathrm{A} \text { ‘ }
\)
When they come to the mid point of the boat the \(\mathrm{CM}\) lies at \(2 \mathrm{~m}\) from ‘ \(\mathrm{A}\) ‘.
\(\therefore\) The shift in \(\mathrm{CM}=2-1.87=0.13 \mathrm{~m}\) towards right.
But as there is no external force in longitudinal direction their \(\mathrm{CM}\) would not shift. So, the boat moves \(0.13 \mathrm{~m}\) or \(13 \mathrm{~cm}\) towards right.
A cart of mass \(M\) is at rest on a frictionless horizontal surface and a pendulum bob of mass \(m\) hangs from the roof of the cart (figure 9-E6). The string breaks, the bob falls on the floor, makes several collisions on the floor and finally lands up in a small slot made in the floor. The horizontal distance between the string and the slot is \(L\). Find the displacement of the cart during this process.
Let the bob fall at \(A,\). The mass of bob \(=m\).
The mass of cart \(=M\).
Initially their centre of mass will be at
\(
\frac{m \times L+M \times 0}{M+m}=\left(\frac{m}{M+m}\right) L
\)
Distance from \(P\)
When, the bob falls in the slot the \(\mathrm{CM}\) is at a distance ‘ \(\mathrm{O}\) ‘ from \(\mathrm{P}\).
Shift in \(\mathrm{CM}=0-\frac{\mathrm{mL}}{M+\mathrm{m}}=-\frac{\mathrm{mL}}{\mathrm{M}+\mathrm{m}}\) towards left \(=\frac{m L}{M+m}\) towards right.
But there is no external force in horizontal direction.
So the cart displaces a distance \(\frac{\mathrm{mL}}{\mathrm{M}+\mathrm{m}}\) towards right.
The balloon, the light rope and the monkey shown in figure (9-E7) are at rest in the air. If the monkey reaches the top of the rope, by what distance does the balloon descend? Mass of the balloon \(=M\), mass of the monkey \(=m\) and the length of the rope ascended by the monkey \(=L\)
Initially, the monkey & balloon are at rest.
So the CM is at ‘ \(\mathrm{P}\) ‘
When the monkey descends through a distance ‘ \(L\) ‘
The CM will shift
\(t_0=\frac{m \times L+M \times 0}{M+m}=\frac{m L}{M+m}\) from \(P\)
So, the balloon descends through a distance \(\frac{m L}{M+m}\)
Find the ratio of the linear momenta of two particles of masses \(1.0 \mathrm{~kg}\) and \(4.0 \mathrm{~kg}\) if their kinetic energies are equal.
Let the mass of the to particles be \(m_1 \& m_2\) respectively \(\mathrm{m}_1=1 \mathrm{~kg}\),
\(
\mathrm{m}_2=4 \mathrm{~kg}
\)
\(\therefore\) According to question
\(
\begin{aligned}
& 1 / 2 m_1 v_1^2=1 / 2 m_2 v_2^2 \\
& \Rightarrow \frac{m_1}{m_2}=\frac{v_2^2}{v_1^2} \Rightarrow \frac{v_2}{v_1}=\sqrt{\frac{m_1}{m_2}} \Rightarrow \frac{v_1}{v_2}=\sqrt{\frac{m_2}{m_1}} \\
& \text { Now, } \frac{m_1 v_1}{m_2 v_2}=\frac{m_1}{m_2} \times \sqrt{\frac{m_2}{m_1}}=\frac{\sqrt{m_1}}{\sqrt{m_2}}=\frac{\sqrt{1}}{\sqrt{4}}=1 / 2 \\
& \Rightarrow \frac{m_1 v_1}{m_2 v_2}=1: 2
\end{aligned}
\)
A uranium-238 nucleus, initially at rest, emits an alpha particle with a speed of \(1.4 \times 10^7 \mathrm{~m} / \mathrm{s}\). Calculate the recoil speed of the residual nucleus thorium-234. Assume that the mass of a nucleus is proportional to the mass number.
As uranium 238 nucleus emits a \(\alpha\)-particle with a speed of \(1.4 \times 10^7 \mathrm{~m} / \mathrm{sec}\). Let \(v_2\) be the speed of the residual nucleus thorium 234 .
\(
\begin{aligned}
& \therefore m_1 v_1=m_2 v_2 \\
& \Rightarrow 4 \times 1.4 \times 10^7=234 \times v_2 \\
& \Rightarrow v_2=\frac{4 \times 1.4 \times 10^7}{234}=2.4 \times 10^5 \mathrm{~m} / \mathrm{sec}
\end{aligned}
\)
A man of mass \(50 \mathrm{~kg}\) starts moving on the earth and acquires a speed of \(1.8 \mathrm{~m} / \mathrm{s}\). With what speed does the earth recoil? Mass of earth \(=6 \times 10^{24} \mathrm{~kg}\).
\(
\begin{aligned}
& m_1 v_1=m_2 v_2 \\
& \Rightarrow 50 \times 1.8=6 \times 10^{24} \times v_2 \\
& \Rightarrow v_2=\frac{50 \times 1.8}{6 \times 10^{24}}=1.5 \times 10^{-23} \mathrm{~m} / \mathrm{sec}
\end{aligned}
\)
so, the earth will recoil at a speed of \(1.5 \times 10^{-23} \mathrm{~m} / \mathrm{sec}\).
A neutron initially at rest, decays into a proton, an electron and an antineutrino. The ejected electron has a momentum of \(1.4 \times 10^{-25} \mathrm{~kg}-\mathrm{m} / \mathrm{s}\) and the antineutrino \(6.4 \times 10^{-27} \mathrm{~kg}-\mathrm{m} / \mathrm{s}\). Find the recoil speed of the proton (a) if the electron and the antineutrino are ejected along the same direction and (b) if they are ejected along perpendicular directions. Mass of the proton \(=1.67 \times 10^{-27} \mathrm{~kg}\).
Mass of proton \(=1.67 \times 10^{-27}\)
Let ‘ \(V_p\) ‘ be the velocity of proton
Given momentum of electron \(=1.4 \times 10^{-26} \mathrm{~kg} \mathrm{~m} / \mathrm{sec}\)
Given momentum of antineutrino \(=6.4 \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{sec}\)
a) The electron & the antineutrino are ejected in the same direction. As the total momentum is conserved the proton should be ejected in the opposite direction.
\(
1.67 \times 10^{-27} \times V_p=1.4 \times 10^{-26}+6.4 \times 10^{-27}=20.4 \times 10^{-27}
\)
\(\Rightarrow V_p=(20.4 / 1.67)=12.2 \mathrm{~m} / \mathrm{sec}\) in the opposite direction.
b) The electron \& antineutrino are ejected \(\perp^{\mathrm{r}}\) to each other. Total momentum of electron and antineutrino,
\(
\begin{aligned}
& =\sqrt{(14)^2+(6.4)^2} \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{s}=15.4 \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{s} \\
& \text { Since, } 1.67 \times 10^{-27} \mathrm{~V}_{\mathrm{p}}=15.4 \times 10^{-27} \mathrm{~kg} \mathrm{~m} / \mathrm{s} \\
& \text { So } V_p=9.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
A ball of mass \(50 \mathrm{~g}\) moving at a speed of \(2.0 \mathrm{~m} / \mathrm{s}\) strikes a plane surface at an angle of incidence \(45^{\circ}\). The ball is reflected by the plane at equal angle of reflection with the same speed. Calculate (a) the magnitude of the change in momentum of the ball (b) the change in the magnitude of the momentum of the ball.
\(
\begin{aligned}
& \text { Mass }=50 \mathrm{~g}=0.05 \mathrm{~kg} \\
& \mathrm{v}=2 \cos 45^{\circ} \hat{\mathrm{i}}-2 \sin 45^{\circ} \hat{\mathrm{j}} \\
& \mathrm{v}_1=-2 \cos 45^{\circ} \hat{\mathrm{i}}-2 \sin 45^{\circ} \hat{\mathrm{j}}
\end{aligned}
\)
(a) change in momentum \(=m \vec{v}-m \vec{v}_1\)
\(
\begin{aligned}
& =0.05\left(2 \cos 45^{\circ} \hat{i}-2 \sin 45^{\circ} \hat{j}\right)-0.05\left(-2 \cos 45^{\circ} \hat{i}-2 \sin 45^{\circ} \hat{j}\right) \\
& =0.1 \cos 45^{\circ} \hat{i}-0.1 \sin 45^{\circ} \hat{j}+0.1 \cos 45^{\circ} \hat{i}+0.1 \sin 45^{\circ} \hat{j} \\
& =0.2 \cos 45^{\circ} \hat{i} \\
& \therefore \text { magnitude }=\sqrt{\left(\frac{0.2}{\sqrt{2}}\right)^2}=\frac{0.2}{\sqrt{2}}=0.14 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
(b) The change in magnitude of the momentum of the ball
\(
=\left|\vec{P}_i\right|-\left|\vec{P}_f\right|=2 \times 0.5-2 \times 0.5=0
\)
i.e. There is no change in magnitude of the momentum of the ball.
Light in certain cases may be considered as a stream of particles called photons. Each photon has a linear momentum \(h / \lambda\) where \(h\) is the Planck’s constant and \(\lambda\) is the wavelength of the light. A beam of light of wavelength \(\lambda\) is incident on a plane mirror at an angle of incidence \(\theta\). Calculate the change in the linear momentum of a photon as the beam is reflected by the mirror.
It is given that:
Wavelength of light \(=\lambda\)
Momentum of each photon \(=h / \lambda\)
Angle of incidence \(=\theta\)
\(
\begin{aligned}
& \vec{P}_{\text {incidence }}=(h / \lambda) \cos \theta \hat{i}-(h / \lambda) \sin \theta \hat{j} \\
& \vec{P}_{\text {Reflected }}=-(h / \lambda) \cos \theta \hat{i}-(h / \lambda) \sin \theta \hat{j}
\end{aligned}
\)
The change in momentum will be only in the \(x[latex]-axis direction. i.e.
[latex]
\begin{aligned}
& |\Delta P|=\left(\frac{h}{\lambda}\right) \cos \theta-\left(-\frac{h}{\lambda} \cos \theta\right) \\
& =\left(\frac{2 h}{\lambda}\right) \cos \theta
\end{aligned}
\)
Two fat astronauts each of mass \(120 \mathrm{~kg}\) are travelling in a closed spaceship moving at a speed of \(15 \mathrm{~km} / \mathrm{s}\) in the outer space far removed from all other material objects. The total mass of the spaceship and its contents including the astronauts is \(660 \mathrm{~kg}\). If the astronauts do slimming exercise and thereby reduce their masses to \(90 \mathrm{~kg}\) each, with what velocity will the spaceship move?
Since the spaceship is removed from any material object \& totally isolated from surrounding, the missions by astronauts couldn’t slip away from the spaceship. So the total mass of the spaceship remain unchanged and also its velocity.
\(
\text { Hence, the spaceship moves with the speed of } 15 \mathrm{~km} / \mathrm{s} \text {. }
\)
During a heavy rain, hailstones of average size \(1.0 \mathrm{~cm}\) in diameter fall with an average speed of \(20 \mathrm{~m} / \mathrm{s}\). Suppose 2000 hailstones strike every square meter of a \(10 \mathrm{~m} \times 10 \mathrm{~m}\) roof perpendicularly in one second and assume that the hailstones do not rebound. Calculate the average force exerted by the falling hailstones on the roof. Density of a hailstone is \(900 \mathrm{~kg} / \mathrm{m}^3\).
It is given that:
Diameter of hailstone \(=1 \mathrm{~cm}=0.01 \mathrm{~m}\)
\(\Rightarrow\) Radius of hailstone, \(r=0.005 \mathrm{~m}\)
Average speed of hailstone \(=20 \mathrm{~m} / \mathrm{s}\)
Density of hailstone \(=900 \mathrm{~kg} / \mathrm{m} 3=0.9 \mathrm{~g} / \mathrm{cm} 3\)
Volume of the hailstones is given as,
\(
V=\frac{4}{3} \pi r^3
\)
\(\Rightarrow V=\frac{4}{3} \pi(0.005)^3=5.235 \times 10^{-7} \mathrm{~m}^3\)
Mass \(=\) volume \(\times\) density \(=5.235 \times 10^{-7} \times 900\)
\(=4.711 \times 10^{-4} \mathrm{~kg}\)
\(\therefore\) Mass of 2000 hailstone \(=2000 \times 4.711 \times 10^{-4}=0.9422\)
Rate of change of momentum \(=0.9422 \times 20 \approx 19 \mathrm{~N} / \mathrm{m}^2\)
\(\therefore\) The total force exerted on the roof \(=19 \times 100=1900 \mathrm{~N}\)
A ball of mass \(m\) is dropped onto a floor from a certain height. The collision is perfectly elastic and the ball rebounds to the same height and again falls. Find the average force exerted by the ball on the floor during a long time interval.
It is given that the mass of the ball is \(m\).
Let the ball be dropped from a height \(h\).
The speed of ball before the collision is \(v_1\).
\(
\therefore \mathrm{v}_1=\sqrt{2 \mathrm{gh}}
\)
The speed of ball after the collision is \(v_2\).
\(
v_2=-\sqrt{2 g h}
\)
Rate of change of velocity \(=\) acceleration
\(
\Rightarrow a=\frac{2 \sqrt{2 g h}}{t}
\)
\(\therefore\) Force, \(F=\frac{m \times 2 \sqrt{2 g h}}{t} \dots(1)\)
Using Newton’s laws of motion, we can write:
\(
\begin{aligned}
& v=\sqrt{2 g h}, s=h, u=0 \\
& \Rightarrow \sqrt{2 g h}=g t \\
& \Rightarrow t=\sqrt{\frac{2 h}{g}} \\
& \therefore \text { Total time }=2 \sqrt{\frac{2 h}{g}}
\end{aligned}
\)
\(
\text { Substituting this value of time } t \text { in equation (1), we get: }
\)
\(
\therefore F=\frac{m \times 2 \sqrt{2 g h}}{2 \sqrt{\frac{2 h}{g}}}=m g
\)
A railroad car of mass \(M\) is at rest on frictionless rails when a man of mass \(m\) starts moving on the car towards the engine. If the car recoils with a speed \(v\) backward on the rails, with what velocity is the man approaching the engine?
A railroad car of mass \(M\) is at rest on frictionless rails when a man of mass \(m\) starts moving on the car towards the engine. The car recoils with a speed \(v\) backward on the rails.
Let the mass is moving with a velocity \(x\) w.r.t. the engine.
\(\therefore\) The velocity of the mass w.r.t earth is \((x-v)\) towards right
\(\mathrm{V}_{\mathrm{cm}}=0\) (Initially at rest)
\(
\therefore 0=-\mathrm{Mv}+\mathrm{m}(\mathrm{x}-\mathrm{v})
\)
\(\Rightarrow M v=m(x-v) \Rightarrow m x=M v+m v \Rightarrow x=\left(\frac{M+m}{m}\right) v \Rightarrow x=\left(1+\frac{M}{m}\right) v\)
A gun is mounted on a railroad car. The mass of the car, the gun, the shells and the operator is \(50 \mathrm{~m}\) where \(\mathrm{m}\) is the mass of one shell. If the velocity of the shell with respect to the gun (in its state before firing) is \(200 \mathrm{~m} / \mathrm{s}\), what is the recoil speed of the car after the second shot ? Neglect friction.
A gun is mounted on a railroad car. The mass of the car, the gun, the shells and the operator is \(50 \mathrm{~m}\) where \(m\) is the mass of one shell. The muzzle velocity of the shells is \(200 \mathrm{~m} / \mathrm{s}\).
Initial, \(\mathrm{V}_{\mathrm{cm}}=0\).
On applying the law of conservation of linear momentum, we get:
\(
\therefore 0=49 \mathrm{~m} \times \mathrm{V}+\mathrm{m} \times 200 \Rightarrow \mathrm{V}=\frac{-200}{49} \mathrm{~m} / \mathrm{s}
\)
\(\therefore \frac{200}{49} \mathrm{~m} / \mathrm{s}\) towards left.
When another shell is fired, then the velocity of the car, with respect to the platform is, \(\Rightarrow \mathrm{V}^{\prime}=\frac{200}{49} \mathrm{~m} / \mathrm{s}\) towards left.
When another shell is fired, then the velocity of the car, with respect to the platform is, \(\Rightarrow \mathrm{V}^{\prime}=\frac{200}{48} \mathrm{~m} / \mathrm{s}\) towards left
\(\therefore\) Velocity of the car w.r.t the earth is \(\left(\frac{200}{49}+\frac{200}{48}\right) \mathrm{m} / \mathrm{s}\) towards left.
Figure (9-E11) shows a small block of mass \(m\) which is started with a speed \(v\) on the horizontal part of the bigger block of mass \(M\) placed on a horizontal floor. The curved part of the surface shown is semicircular. All the surfaces are frictionless. Find the speed of the bigger block when the smaller block reaches the point \(A\) of the surface.
A small block of mass \(m\) which is started with a velocity \(\vee\) on the horizontal part of the bigger block of mass \(\mathrm{M}\) placed on a horizontal floor.
Since the small body of mass \(m\) is started with a velocity \(\mathrm{V}\) in the horizontal direction, so the total initial momentum at the initial position in the horizontal direction will remain same as the total final momentum at the point \(\mathrm{A}\) on the bigger block in the horizontal direction.
Using the law of conservation of linear momentum, we can write:
Initial momentum = final momentum
\(
\begin{aligned}
& \mathrm{MV}+\mathrm{M} \times \mathrm{O}=(\mathrm{m}+\mathrm{M}) \mathrm{V} \\
& \Rightarrow \mathrm{V}=\frac{m v}{m+M}
\end{aligned}
\)
Therefore, the speed of the bigger block when the smaller block reaches point \(A\) of the surface is \(\frac{m v}{m+M}\).
In a typical Indian Bugghi (a luxury cart drawn by horses), a wooden plate is fixed on the rear on which one person can sit. A bugghi of mass \(200 \mathrm{~kg}\) is moving at a speed of \(10 \mathrm{~km} / \mathrm{h}\). As it overtakes a school boy walking at a speed of \(4 \mathrm{~km} / \mathrm{h}\), the boy sits on the wooden plate. If the mass of the boy is \(25 \mathrm{~kg}\), what will be the new velocity of the bugghi?
It is given that:
Mass of the bugghi, \(\mathrm{m}_{\mathrm{b}}=200 \mathrm{~kg}\)
Velocity of the bugghi, \(V_b=10 \mathrm{~km} / \mathrm{h}\)
Mass of the boy, \(\mathrm{m}_{\text {boy }}=25 \mathrm{~kg}\)
Velocity of the boy, \(\mathrm{V}_{\text {Boy }}=4 \mathrm{~km} / \mathrm{h}\)
Consider the boy and the bugghi as a system.
The total momentum before the process of sitting remains same after the process of sitting.
Using the law of conservation of momentum, we can write:
\(
\begin{aligned}
& m_b V_b+m_{\text {boy }} V_{\text {boy }}=\left(m_b+m_{\text {boy }}\right) V \\
& \Rightarrow 200 \times 10+25 \times 4=(200+25) \times V \\
& \Rightarrow V=\frac{2100}{225}=\frac{28}{3} \mathrm{Km} / \mathrm{h}
\end{aligned}
\)
A ball of mass \(0.50 \mathrm{~kg}\) moving at a speed of \(5.0 \mathrm{~m} / \mathrm{s}\) collides with another ball of mass \(1.0 \mathrm{~kg}\). After the collision, the balls stick together and remain motionless. What was the velocity of the \(1.0 \mathrm{~kg}\) block before the collision?
Mass of the ball \(=m_1=0.5 \mathrm{~kg}\), velocity of the ball \(=5 \mathrm{~m} / \mathrm{s}\)
Mass of the another ball \(m_2=1 \mathrm{~kg}\)
Let it’s velocity \(=v^{\prime} \mathrm{m} / \mathrm{s}\)
Using law of conservation of momentum,
\(
0.5 \times 5+1 \times v^{\prime}=0 \Rightarrow v^{\prime}=-2.5
\)
\(\therefore\) Velocity of second ball is \(2.5 \mathrm{~m} / \mathrm{s}\) opposite to the direction of motion of \(1^{\text {st }}\) ball.
A \(60 \mathrm{~kg}\) man skating with a speed of \(10 \mathrm{~m} / \mathrm{s}\) collides with a \(40 \mathrm{~kg}\) skater at rest and they cling to each other. Find the loss of kinetic energy during the collision.
It is given that:
Mass of the skater who is skating, \(m_1=60 \mathrm{~kg}\)
Initial speed of this man, \(\mathrm{v}_1=10 \mathrm{~m} / \mathrm{s}\)
Mass of the skater at rest, \(m_2=40 \mathrm{~kg}\)
Initial speedof this man, \(v_2=0\)
Let the velocity of both men after collision be \(v\).
Using the law of conservation of momentum, we can write:
\(
\begin{aligned}
& m_1 v_1+m_2 v_2=\left(m_1+m_2\right) v \\
& \Rightarrow 60 \times 10+0=100 \times v \\
& \Rightarrow v=6 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
The loss in kinetic energy during collision is given as,
\(
\begin{aligned}
& \Delta K E=\frac{1}{2} m_1 v_1^2-\frac{1}{2}\left(m_1+m_2\right) v^2 \\
& \Rightarrow \Delta K E=\frac{1}{2} \times 60 \times(10)^2-\frac{1}{2} \times 100 \times 36 \\
& \Rightarrow \Delta K E=1200 J
\end{aligned}
\)
Consider a head-on collision between two particles of masses \(m_1\) and \(m_2\). The initial speeds of the particles are \(u_1\) and \(u_2\) in the same direction. The collision starts at \(t=0\) and the particles interact for a time interval \(\Delta t\). During the collision, the speed of the first particle varies as
\(
v(t)=u_1+\frac{t}{\Delta t}\left(v_1-u_1\right) .
\)
Find the speed of the second particle as a function of time during the collision.
It is given that:
Speed of the first particle during collision, \(v(t)=u_1+\frac{t}{\Delta t}\left(v_1-u_1\right) \vee\)
Let \(v^{\prime}\) be the speed of the second particle, during collision.
On applying the law of conservation of linear momentum on both particles, we get:
\(
\begin{aligned}
& \mathrm{m}_1 \mathrm{u}_1+\mathrm{m}_2 \mathrm{u}_2=\mathrm{m}_1 \mathrm{v}(\mathrm{t})+\mathrm{m}_2 \mathrm{v}^{\prime} \\
& \Rightarrow m_1 u_1+m_2 u_2=m_1 u_1+m_1 \times\left(\frac{t}{\Delta t}\right)\left(v_1-u_1\right)+m_2 v^{\prime}
\end{aligned}
\)
On dividing both the sides by \(m_2\), we get:
\(
\begin{aligned}
& u_2=\frac{m_1}{m_2}\left(\frac{t}{\Delta t}\right)\left(v_1-u_1\right)+v^{\prime} \\
& \Rightarrow v^{\prime}=u_2-\frac{m_1}{m_2}\left(\frac{t}{\Delta t}\right)\left(v_1-u_1\right)
\end{aligned}
\)
The speed of the second particle during collision can be written as a function of time and is given by the expression, \(u_2-\frac{m_1}{m_2}\left(\frac{t}{\Delta t}\right)\left(v_1-u_1\right)\).
A ball of mass \(m\) moving at a speed \(v\) makes a head-on collision with an identical ball at rest. The kinetic energy of the balls after the collision is three-fourths of the original. Find the coefficient of restitution.
Given:
The mass of the both balls is \(m\).
Initial speed of first ball \(=\mathrm{v}\)
Initial speed of second ball \(=0\)
Let the final of balls be \(v_1\) and \(v_2\) respectively.
\(
\begin{aligned}
& e=\frac{\text { velocity of separation }}{\text { velocity of approach }} \\
& \Rightarrow e=\frac{v_1-v_2}{v} \\
& \Rightarrow v_1-v_2=e v \ldots \text { (1) }
\end{aligned}
\)
On applying the law of conservation of linear momentum, we get:
\(
\begin{aligned}
& m\left(v_1+v_2\right)=m v \\
& \Rightarrow v_1+v_2=v \dots(2)
\end{aligned}
\)
According to the given condition,
Final K.E. \(=\frac{3}{4}\) Initial K.E.
\(
\begin{aligned}
& \Rightarrow \frac{1}{2} m v_1^2+\frac{1}{2} m v_2^2=\frac{3}{4} \times \frac{1}{2} m v^2 \\
& \Rightarrow v_1^2+v_2^2=\frac{3}{4} v^2 \\
& \Rightarrow \frac{\left(v_1+v_2\right)^2+\left(v_1-v_2\right)^2}{2}=\frac{3}{4} v^2 \\
& \Rightarrow \frac{\left(1+e^2\right) v^2}{2}=\frac{3}{4} v^2[\text { using the equations (1) and }(2)] \\
& \Rightarrow 1+e^2=\left(\frac{3}{2}\right) \\
& \Rightarrow e^2=\frac{1}{2} \\
& \Rightarrow e=\frac{1}{\sqrt{2}}
\end{aligned}
\)
Hence, the coefficient of restitution is found to be \(\frac{1}{\sqrt{2}}\)
A block of mass \(2.0 \mathrm{~kg}\) moving at \(2.0 \mathrm{~m} / \mathrm{s}\) collides head on with another block of equal mass kept at rest. (a) Find the maximum possible loss in kinetic energy due to the collision. (b) If the actual loss in kinetic energy is half of this maximum, find the coefficient of restitution.
(a) It is given that:
Mass of first block, \(m_1=2 \mathrm{~kg}\)
Initial speed, \(\mathrm{v}_1=2.0 \mathrm{~m} / \mathrm{s}\)
Mass of second block, \(m_2=2 \mathrm{~kg}\)
Initial speed of this block \(=0\)
For maximum possible loss in kinetic energy, we assume that the collision is elastic and both the blocks move with same final velocity \(\mathrm{v}\) (say).
On applying the law of conservation of linear momentum, we get:
\(
\begin{aligned}
& m_1 v_1+m_2 \times 0=\left(m_1+m_2\right) v \\
& 2 \times 2=(2+2) v \\
& \Rightarrow v=1 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
Loss in K.E. in elastic collision is give by,
\(
\begin{aligned}
& =\frac{1}{2} m_1 v_1^2-\frac{1}{2}\left(m_1+m_2\right) v \\
& =\left(\frac{1}{2}\right) \times 2 \times 2^2-\left(\frac{1}{2}\right)(2+2) \times(1)^2 \\
& =4-2=2 J
\end{aligned}
\)
(b) The actual loss in K.E. \(=\frac{\text { Maximum loss in K.E. }}{2}=1 J\)
Let the final velocities of the blocks be \(v_1\) and \(v_2\) respectively. The coefficient of restitution is e.
\(\therefore\) The loss in K.E. is given by,
\(\therefore\) The loss in K.E. is given by,
\(
\begin{aligned}
& \left(\frac{1}{2}\right) \times 2 \times(2)^2-\left(\frac{1}{2}\right) 2 \times v_1^2-\left(\frac{1}{2}\right) \times 2 v_2^2=1 \\
& \Rightarrow 4-\left(v_1^2+v_2^2\right)=1 \\
& \Rightarrow 4-\frac{\left(1+e^2\right) \times 4}{2}=1 \\
& \Rightarrow 2\left(1+e^2\right)=3 \\
& \Rightarrow 1+e^2=\frac{3}{2} \\
& \Rightarrow e^2=\frac{1}{2} \\
& \Rightarrow e=\frac{1}{\sqrt{2}}
\end{aligned}
\)
A particle of mass \(100 \mathrm{~g}\) moving at an initial speed \(u\) collides with another particle of same mass kept initially at rest. If the total kinetic energy becomes \(0.2 \mathrm{~J}\) after the collision, what could be the minimum and the maximum value of \(u\).
It is given that:
Mass of particles \(=100 \mathrm{~g}\)
Initial speed of the first particle \(=u\)
Final K.E. of the system after collision \(=0.2 \mathrm{~J}\)Initial K.E. of the system, before collision \(=\frac{1}{2} m u^2+0\) i.e. Initial K.E. \(=\frac{1}{2} \times 0.1 \times u^2=0.05 u^2\)
Let \(v_1\) and \(v_2\) be the final velocities of the first and second block respectively.
\(
\begin{aligned}
& m v_1+m v_2=m u \\
& \Rightarrow v_1+v_2=u \ldots(1) \\
& \left(v_1-v_2\right)+e\left(u_1-u_2\right)=0 \\
& \Rightarrow e u=v_2-v_1 \ldots(2)\left[\text { Putting } u_2=0, u_1=u\right]
\end{aligned}
\)
Adding the equations (1) and (2), we get:
\(
\begin{aligned}
& 2 v_2=(1+e) u \\
& \Rightarrow v_2=\left(\frac{u}{2}\right)(1+e) \\
& \therefore v_1=u-\frac{u}{2}(1+e) \\
& v_1=\frac{u}{2}(1-e)
\end{aligned}
\)
According to given condition,
\(
\begin{aligned}
& \frac{1}{2} m v_1^2+\frac{1}{2} m v_2^2=0.2 \\
& \Rightarrow v_1^2+v_2^2=4 \\
& \Rightarrow \frac{u^2}{2}\left(1+e^2\right)=4 \\
& \Rightarrow u^2=\frac{8}{1+e^2}
\end{aligned}
\)
For maximum value of \(u\), denominator should be minimum in the above equation.
\(
\begin{aligned}
& \text { i.e. } \mathrm{e}=0 \\
& \Rightarrow \mathrm{u}^2=8 \\
& \Rightarrow u=2 \sqrt{2} \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
For minimum value of \(u\), denominator should have maximum value.
i.e. \(\mathrm{e}=1\)
\(
\begin{aligned}
& \Rightarrow u^2=4 \\
& \Rightarrow u=2 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\)
A ball falls on the ground from a height of \(2.0 \mathrm{~m}\) and rebounds up to a height of \(1.5 \mathrm{~m}\). Find the coefficient of restitution.
Let the velocity of the ball falling from height \(h_1\) be \(u\) (when it approaches the ground). Velocity on the ground, \(u=\sqrt{2 g h_1}\)
\(
\Rightarrow u=\sqrt{2 \times 9.8 \times 2}
\)
Let the velocity of ball when it separates from the ground be \(v\). (Assuming it goes up to height \(h_2\) )
\(
\begin{aligned}
& \Rightarrow v=\sqrt{2 g h_2} \\
& =\sqrt{2 \times 9.8 \times 1.5}
\end{aligned}
\)
Let the coefficient of restitution be e.
We know, \(v=\) eu
\(
\Rightarrow e=\frac{\sqrt{2 \times 9.8 \times 1.5}}{\sqrt{2 \times 9.8 \times 2}}=\frac{\sqrt{3}}{2}
\)
Hence, the coefficient of restitution is \(\frac{\sqrt{3}}{2}\).
A block of mass \(2.0 \mathrm{~kg}\) is moving on a frictionless horizontal surface with a velocity of \(1.0 \mathrm{~m} / \mathrm{s}\) (figure 9-E12) towards another block of equal mass kept at rest. The spring constant of the spring fixed at one end is 100 \(\mathrm{N} / \mathrm{m}\). Find the maximum compression of the spring.
Given,
Mass of each block, \(M_A=M_B=2 \mathrm{~kg}\)
Initial velocities of block \(A, V_a=1 \mathrm{~m} / \mathrm{s}\)
Initial velocity of block \(B, V_b=0\)
Spring constant of the spring \(=100 \mathrm{~N} / \mathrm{m}\)
Block A strikes the spring with a velocity of \(1 \mathrm{~m} / \mathrm{s}\).
After the collision, it’s velocity decreases continuously. At an instant the whole system (Block A + the compound spring + Block
B) moves together with a common velocity \(V\) (say).
Using the law of conservation of energy, we get:
\(
\begin{aligned}
& \left(\frac{1}{2}\right) M_A V_A^2+\left(\frac{1}{2}\right) M_B V_B^2=\left(\frac{1}{2}\right) M_A V^2+\left(\frac{1}{2}\right) M_B V^2+\left(\frac{1}{2}\right) k x^2 \\
& \left(\frac{1}{2}\right) \times 2(1)^2+0=\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right) \times v^2+\left(\frac{1}{2}\right) x^2 \times 100
\end{aligned}
\)
(where \(\mathrm{x}\) is the maximum compression of the spring) \(\Rightarrow 1-2 v^2=50 x^2 \dots(1)\)
As there is no external force acting in the horizontal direction, the momentum is conserved.
\(
\begin{aligned}
& \Rightarrow M_A V_A+M_B V_B=\left(M_A+M_B\right) V \\
& \Rightarrow 2 \times 1=4 \times V \\
& \Rightarrow V=\left(\frac{1}{2}\right) \mathrm{m} / \mathrm{s} \ldots(2)
\end{aligned}
\)
Substituting this value of \(\mathrm{V}\) in equation (1), we get:
\(
\begin{aligned}
& 1=2 \times\left(\frac{1}{4}\right)+50 x^2 \\
& \Rightarrow \frac{1}{4}=50 x^2 \\
& \Rightarrow x^2=\frac{1}{100} \\
& \Rightarrow x=\frac{1}{10} \mathrm{~m} \\
& \Rightarrow x=10 \mathrm{~cm}
\end{aligned}
\)
A bullet of mass \(20 \mathrm{~g}\) travelling horizontally with a speed of \(500 \mathrm{~m} / \mathrm{s}\) passes through a wooden block of mass \(10^{\circ} 0\) \(\mathrm{kg}\) initially at rest on a level surface. The bullet emerges with a speed of \(100 \mathrm{~m} / \mathrm{s}\) and the block slides \(20 \mathrm{~cm}\) on the surface before coming to rest. Find the friction coefficient between the block and the surface (figure 9-E13).
It is given that:
Mass of bullet, \(\mathrm{m}=20 \mathrm{~g}=0.02 \mathrm{~kg}\)
The initial speed, \(v_1=500 \mathrm{~m} / \mathrm{s}\)
Mass of block, \(M=10 \mathrm{~kg}\)
The initial speed of block \(=0\)
Final velocity of bullet, \(\mathrm{v}_2=100 \mathrm{~m} / \mathrm{s}\)
Let the final velocity of block when the bullet emerges out \(=v^{\prime}\)
Applying conservation of linear momentum,
\(
\begin{aligned}
& \mathrm{mv}_1+\mathrm{M} \times 0=\mathrm{mv}_2+\mathrm{Mv}^{\prime} \\
& \Rightarrow 0.02 \times 500=0.02 \times 100+10 \times \mathrm{v}^{\prime} \\
& \Rightarrow \mathrm{v}^{\prime}=0.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
Distance covered by the block, \(d=20 \mathrm{~cm}=0.02 \mathrm{~m}\).
Let friction coefficient between the block and the surface \(=\mu\)
Thus, the value of friction force, \(F=\mu m g\)
Change in K.E. of block = Work done by the friction force
\(
\begin{aligned}
& \Rightarrow \frac{1}{2} \times M \times 0-\frac{1}{2} \times M \times\left(v^{\prime}\right)^2=\mu \mathrm{mgd} \\
& \Rightarrow 0-\left(\frac{1}{2}\right) \times 10 \times(0.8)^2=\mu \times 10 \times 10 \times 0.2 \\
& \Rightarrow \mu=0.16
\end{aligned}
\)
A block of mass \(200 \mathrm{~g}\) is suspended through a vertical spring. The spring is stretched by \(1.0 \mathrm{~cm}\) when the block is in equilibrium. A particle of mass \(120 \mathrm{~g}\) is dropped on the block from a height of \(45 \mathrm{~cm}\). The particle sticks to the block after the impact. Find the maximum extension of the spring. Take \(g=10 \mathrm{~m} / \mathrm{s}^2\).
It is given that:
Mass of block, \(M=200 \mathrm{~g}=0.20 \mathrm{~kg}\)
Mass of the particle, \(m=120 \mathrm{gm}=0.12 \mathrm{~kg}\)
Height of the particle, \(\mathrm{h}=45 \mathrm{~cm}=0.45 \mathrm{~m}\)
According to the question, as the block attains equilibrium, the spring is stretched by a distance, \(x=1.00 \mathrm{~cm}=0.01 \mathrm{~m}\).
i.e. \(M \times g=K \times x\)
\(
\begin{aligned}
& \Rightarrow 0.2 \times g=K \times x \\
& \Rightarrow 2=K \times 0.01 \\
& \Rightarrow K=200 \mathrm{~N} / \mathrm{m}
\end{aligned}
\)
The velocity with which the particle \(m\) strikes \(M\) is given by,
\(
\begin{aligned}
& u=\sqrt{2 g h} \\
& u=\sqrt{2 \times 10 \times 0.45} \\
& =\sqrt{9}=3 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
After the collision, let the velocity of the particle and the block be V.
According to law of conservation of momentum, we can write:
\(
\mathrm{mu}=(\mathrm{m}+\mathrm{M}) \mathrm{V}
\)
Solving for \(V\), we get:
\(
V=\frac{0.12 \times 3}{0.32}=\frac{9}{8} \mathrm{~m} / \mathrm{s}
\)
Let the spring be stretched through an extra deflection of \(\delta\).
On applying the law of conservation of energy, we can write:
Initial energy of the system before collision = Final energy of the system
\(
\Rightarrow \frac{1}{2} m u^2+\frac{1}{2} K x^2=\frac{1}{2}(m+M) V^2+\frac{1}{2} K(x+\delta)^2
\)
Substituting appropriate values in the above equation, we get:
\(
\left(\frac{1}{2}\right) \times 0.12 \times 9+\left(\frac{1}{2}\right) \times 200 \times(0.01)^2=\left(\frac{1}{2}\right) 0.32 \times\left(\frac{81}{64}\right)+\left(\frac{1}{2}\right) \times 200 \times(\delta+0.1)^2
\)
On solving the above equation, we get:
\(
\begin{aligned}
& \delta=0.061 \\
& \mathrm{~m}=6.1 \mathrm{~cm}
\end{aligned}
\)
A bullet of mass \(25 \mathrm{~g}\) is fired horizontally into a ballistic pendulum of mass \(5.0 \mathrm{~kg}\) and gets embedded in it (figure 9-E14). If the centre of the pendulum rises by a distance of \(10 \mathrm{~cm}\), find the speed of the bullet.
Given:
Mass of bullet, \(\mathrm{m}=25 \mathrm{~g}=0.025 \mathrm{~kg}\)
Mass of ballistic pendulum, \(M=5 \mathrm{~kg}\)
Vertical displacement, \(\mathrm{h}=10 \mathrm{~cm}=0.1 \mathrm{~m}\)
Let the bullet strikes the pendulum with a velocity \(u\).
Let the final velocity be \(v\).
Using the law of conservation of linear momentum, we can write:
\(
\begin{aligned}
& m u=(M+m) v \\
& \Rightarrow v=\frac{m}{(M+m)} u \\
& \Rightarrow v=\frac{0.25}{5.025} \times u=\frac{u}{201}
\end{aligned}
\)
Applying the law of conservation of energy, we get:
\(
\begin{aligned}
& \left(\frac{1}{2}\right)(M+m) v^2=(M+m) g h \\
& \Rightarrow \frac{u^2}{(201)^2}=2 \times 10 \times 0.1 \\
& \Rightarrow u=201 \times \sqrt{2}=280 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
The bullet strikes the pendulum with a velocity of \(280 \mathrm{~m} / \mathrm{s}\).
A bullet of mass \(20 \mathrm{~g}\) moving horizontally at a speed of \(300 \mathrm{~m} / \mathrm{s}\) is fired into a wooden block of mass \(500 \mathrm{~g}\) suspended by a long string. The bullet crosses the block and emerges on the other side. If the centre of mass of the block rises through a height of \(20^{\circ} 0 \mathrm{~cm}\), find the speed of the bullet as it emerges from the block.
Given:
Mass of bullet, \(m=20 \mathrm{gm}=0.02 \mathrm{~kg}\)
Horizontal speed of the bullet, \(u=300 \mathrm{~m} / \mathrm{s}\)
Mass of wooden block, \(M=500 \mathrm{gm}=0.5 \mathrm{~kg}\)
Let the bullet emerges out with velocity \(v\).
Let the velocity of the block be \(v^{\prime}\).
Using the law of conservation of momentum, we get:
\(
\mathrm{mu}=\mathrm{M} v^{\prime}+\mathrm{mv} \dots(1)
\)
Now, applying the work-energy principle for the block after the collision, we get:
\(
\begin{aligned}
& 0-\left(\frac{1}{2}\right) M \times\left(v^{\prime}\right)^2=-M g h \\
& \Rightarrow\left(v^{\prime}\right)^2=2 g h \\
& v^{\prime}=\sqrt{2 g h} \\
& =\sqrt{20 \times 10 \times 0.2}=2 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
On substituting the value of \(v^{\prime}\) in equation (1), we get:
\(
\begin{aligned}
& 0.02 \times 300=0.5 \times 2+0.02 \times v \\
& \Rightarrow v=\frac{6-1}{0.02}=\frac{5}{0.02} \\
& \Rightarrow v=250 \mathrm{~m} / \mathrm{s} \\
& 0.02 \times 300=0.5 \times 2+0.02 \times v \\
& \Rightarrow v=\frac{6-1}{0.02}=\frac{5}{0.02} \\
& \Rightarrow v=250 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
Hence, the speed of the bullet as it emerges out from the block is \(250 \mathrm{~m} / \mathrm{s}\).
Consider a gravity-free hall in which an experimenter of mass \(50 \mathrm{~kg}\) is resting on a \(5 \mathrm{~kg}\) pillow, \(8 \mathrm{ft}\) above the floor of the hall. He pushes the pillow down so that it starts falling at a speed of \(8 \mathrm{ft} / \mathrm{s}\). The pillow makes a perfectly elastic collision with the floor, rebounds and reaches the experimenter’s head. Find the time elapsed in the process.
Mass of the man \(\left(\mathrm{M}_{\mathrm{m}}\right)\) is \(50 \mathrm{~kg}\).
Mass of the pillow \(\left(M_p\right)\) is \(5 \mathrm{~kg}\).
When the pillow is pushed by the man, the pillow will go down while the man goes up. It becomes the external force on the system which is zero.
\(\Rightarrow\) acceleration of centre of mass is zero
\(\Rightarrow\) velocity of centre of mass is constant
\(\therefore\) As the initial velocity of the system is zero.
\(\therefore \mathrm{M}_{\mathrm{m}} \times \mathrm{V}_{\mathrm{m}}=\mathrm{M}_{\mathrm{p}} \times \mathrm{V}_{\mathrm{p}} \dots(1)\)
Given the velocity of pillow is \(80 \mathrm{ft} / \mathrm{s}\).
Which is relative velocity of pillow w.r.t. man.
\(
\vec{V}_{p / m}=\vec{V}_p-\vec{V}_m=V_p-\left(-V_m\right)=V_p+V_m \Rightarrow V_p=V_{p / m}-V_m
\)
Putting in equation (1)
\(
\begin{aligned}
& M_m \times V_m=M_p\left(V_{p / m}-V_m\right) \\
& \Rightarrow 50 \times V_m=5 \times\left(8-V_m\right) \\
& \Rightarrow 10 \times V_m=8-V_m \Rightarrow V_m=\frac{8}{11}=0.727 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
\(\therefore\) Absolute velocity of pillow \(=8-0.727=7.2 \mathrm{ft} / \mathrm{sec}\).
\(\therefore\) Time taken to reach the floor \(=\frac{\mathrm{S}}{\mathrm{V}}=\frac{8}{7.2}=1.1 \mathrm{sec}\).
As the mass of wall \(\gg\) then the pillow
The velocity of the block before the collision = velocity after the collision.
\(\Rightarrow\) Times of ascent \(=1.11 \mathrm{sec}\).
\(\therefore\) Total time taken \(=1.11+1.11=2.22 \mathrm{sec}\).
A uniform chain of mass \(M\) and length \(L\) is held vertically in such a way that its lower end just touches the horizontal floor. The chain is released from rest in this position. Any portion that strikes the floor comes to rest. Assuming that the chain does not form a heap on the floor, calculate the force exerted by it on the floor when a length \(x\) has reached the floor.
Given is a uniform chain of mass \(M\) and length \(L\).
Let us consider a small element of chain at a distance \(x\) from the floor having length ‘ \(d x\) ‘.
Therefore, mass of element,
\(
d m=\frac{M}{L} d x \dots91)
\)
The velocity with which the element strikes the floor is,
\(
v=\sqrt{2 g x} \dots(2)
\)
\(\therefore\) The momentum transferred to the floor is,
\(
P=(d m) v=\frac{M}{L} . d x \sqrt{2 g x}
\)
According to the given condition, the element comes to rest.
Thus, the force \(\left(\right.\) say \(F_1\) ) exerted on the floor = Change in momentum
\(
F_1=\frac{d P}{d t}=\frac{M}{L} \times \frac{d x}{d t} \sqrt{2 g x}
\)
(for the chain element)
\(
\begin{aligned}
& A s \frac{d x}{d t}=v \\
& F_1=\frac{M}{L} \times(\sqrt{2 g x})^2[\text { using equation (2)] } \\
& \Rightarrow F_1=\frac{M}{L} 2 g x=\frac{2 M g x}{L}
\end{aligned}
\)
Again, the force exerted due to length \(\mathrm{x}\) of the chain on the floor due to its own weight is given by,
\(
W=\frac{M}{L}(x) \times g=\frac{M g x}{L}
\)
Thus, the total force exerted is given by.
\(
F=F_1+W
\)
where \(W\) is the weight of chain below the element \(d x\) up to the floor.
\(
\Rightarrow F=\frac{2 M g x}{L}+\frac{M g x}{L}=\frac{3 M g x}{L}
\)
The blocks shown in figure (9-E19) have equal masses. The surface of \(A\) is smooth but that of \(B\) has a friction coefficient of \(0^{\circ} 10\) with the floor. Block \(A\) is moving at a speed of \(10 \mathrm{~m} / \mathrm{s}\) towards \(B\) which is kept at rest. Find the distance travelled by \(B\) if (a) the collision is perfectly elastic and (b) the collision is perfectly inelastic. Take \(g\) \(=10 \mathrm{~m} / \mathrm{s}^2\).
Given,
Speed of the block \(A=10 \mathrm{~m} / \mathrm{s}\)
The block \(B\) is kept at rest.
Coefficient of friction between floor and block \(B, \mu=0.10\)
Lets \(\mathrm{v}_1\) and \(\mathrm{v}_2\) be the velocities of \(\mathrm{A}\) and \(\mathrm{B}\) after collision respectively.
(a) If the collision is perfectly elastic, linear momentum is conserved.
Using the law of conservation of linear momentum, we can write:
\(
\begin{aligned}
& m u_1+m u_2=m v_1+m v_2 \\
& \Rightarrow 10+0=v_1+v_2 \\
& v_1+v_2=10 \ldots(1)
\end{aligned}
\)
We know,
Velocity of separation ( after collision ) = Velocity of approach (before collision )
\(
\begin{aligned}
& v_1-v_2=-\left(u_1-v_2\right) \\
& \Rightarrow v_1-v_2=-10 \ldots(2)
\end{aligned}
\)
Substracting equation (2) from (1), we get:
\(
\begin{aligned}
& 2 v_2=20 \\
& \Rightarrow v_2=10 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
The deceleration of block \(\mathrm{B}\) is calculated as follows:
Applying the work energy principle, we get:
\(
\begin{aligned}
& \left(\frac{1}{2}\right) \times m \times(0)^2-\left(\frac{1}{2}\right) \times m \times v^2=-m \times a \times s_1 \\
& \Rightarrow-\left(\frac{1}{2}\right) \times(10)^2=-\mu g \times s_1 \\
& \Rightarrow s_1=\frac{100}{2 \times 1 \times 10}=50 \mathrm{~m}
\end{aligned}
\)
(b) If the collision is perfectly inelastic, we can write:
\(
\begin{aligned}
& m \times u_1+m \times u_2=(m+m) \times v \\
& \Rightarrow m \times 10+m \times 0=2 m \times v \\
& \Rightarrow v=\left(\frac{10}{2}\right)=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
The two blocks move together, sticking to each other.
\(\therefore\) Applying the work-energy principle again, we get:
\(
\begin{aligned}
& \left(\frac{1}{2}\right) \times 2 m \times(0)^2-\left(\frac{1}{2}\right) \times 2 m \times(v)^2=- m \times \mu g \times s_2 \\
& \Rightarrow \frac{(5)^2}{0.1 \times 10}=s_2 \\
& \Rightarrow s_2=25 \mathrm{~m}
\end{aligned}
\)
The friction coefficient between the horizontal surface and each of the blocks shown in figure (9-E20) is 0.20 . The collision between the blocks is perfectly elastic. Find the separation between the two blocks when they come to rest. Take \(g=10 \mathrm{~m} / \mathrm{s}^2\).
Given:
Initial velocity of \(2 \mathrm{~kg}\) block, \(\mathrm{v}_1=1.0 \mathrm{~m} / \mathrm{s}\)
Initial velocity of the \(4 \mathrm{~kg}\) block, \(\mathrm{v}_2=0\)
Let the velocity of \(2 \mathrm{~kg}\) block, just before the collision be \(\mathrm{u}_1\).
Using the work-energy theorem on the block of \(2 \mathrm{~kg}\) mass:
The separation between two blocks, \(\mathrm{s}=16 \mathrm{~cm}=0.16 \mathrm{~m}\)
\(
\begin{aligned}
& \therefore\left(\frac{1}{2}\right) m \times u_1^2-\left(\frac{1}{2}\right) m \times(1)^2=-\mu \times m g \times s \\
& \Rightarrow u_1=\sqrt{(1)^2-2 \times 0.20 \times 10 \times 0.16} \\
& \Rightarrow u_1=0.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
As the collision is perfectly elastic, linear momentum is conserved.
Let \(\mathrm{v}_1, \mathrm{v}_2\) be the velocities of \(2 \mathrm{~kg}\) and \(4 \mathrm{~kg}\) blocks, just after collision.
Using the law of conservation of linear momentum, we can write:
\(
\begin{aligned}
& m_1 u_1+m_2 u_2=m_1 v_1+m_2 v_2 \\
& \Rightarrow 2 \times 0.6+4 \times 0=2 v_1+4 v_2 \\
& \Rightarrow 2 v_1+4 v_2=1.2 \ldots \text { (1) }
\end{aligned}
\)
For elastic collision,
Velocity of separation (after collision) = Velocity of approach (before collision)
\(
\begin{aligned}
i . e . v_1-v_2 & =+\left(u_1-u_2\right) \\
& =+(0.6-0) \\
\Rightarrow v_1-v_2 & =-0.6 \ldots(2)
\end{aligned}
\)
Substracting equation (2) from (1), we get:
\(
\begin{aligned}
& 3 v_2=1.2 \\
& \Rightarrow v_2=0.4 \mathrm{~m} / \mathrm{s} \\
& \therefore v_1=-0.6+0.4=-0.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
Let the \(2 \mathrm{~kg}\) block covers a distance of \(\mathrm{S}_1\).
\(\therefore\) Applying work-energy theorem for this block, when it comes to rest:
\(
\begin{aligned}
& \left(\frac{1}{2}\right) \times 2 \times(0)^2+\left(\frac{1}{2}\right) \times 2 \times(0.2)^2=-2 \times 0.2 \times 10 \times S_1 \\
& \Rightarrow S_1=1 \mathrm{~cm}
\end{aligned}
\)
Let the \(4 \mathrm{~kg}\) block covers a distance of \(\mathrm{S}_2\).
Applying work energy principle for this block:
\(
\begin{aligned}
& \left(\frac{1}{2}\right) \times 4 \times(0)^2-\left(\frac{1}{2}\right) \times 4 \times(0.4)^2=-4 \times 0.2 \times 10 \times S_2 \\
& \Rightarrow 2 \times 0.4 \times 0.4=4 \times 0.2 \times 10 \times S_2 \\
& \Rightarrow S_2=4 \mathrm{~cm}
\end{aligned}
\)
Therefore, the distance between the \(2 \mathrm{~kg}\) and \(4 \mathrm{~kg}\) block is given as, \(S_1+S_2=1+4=5 \mathrm{~cm}\)
A small block of superdense material has a mass of \(3 \times 10^{24} \mathrm{~kg}\). It is situated at a height \(h\) (much smaller than the earth’s radius) from where it falls on the earth’s surface. Find its speed when its height from the earth’s surface has reduced to \(h / 2\). The mass of the earth is \(6 \times 10^{24} \mathrm{~kg}\).
Given \(\mathrm{h}<<\mathrm{R}\)
\(\mathrm{G}\) mass \(=6 \times 10^{24} \mathrm{~kg}\)
\(\mathrm{mb}=3 \times 10^{24} \mathrm{~kg}\)
Let \(V_e \rightarrow\) Velocity of earth
\(V_b \rightarrow\) Velocity of the block
The two blocks are attracted by gravitational force of attraction.The gravitational potential energy stored will be the K.E. of two blocks.
\(
\begin{aligned}
& G M_e m_b \frac{1}{R+\left(\frac{h}{2}\right)}-\frac{1}{R+h} \\
& =\left(\frac{1}{2}\right) m_e \times v_e^2+\left(\frac{1}{2}\right) M_b \times V_b^2 \dots(i)
\end{aligned}
\)
Again As the internal force acts
\(
M_e V_e=M_b V_b
\)
\(
\Rightarrow \quad V_e=\frac{M_b V_b}{M_e} \ldots(ii)
\)
Putting in equation (i),
\(
\begin{aligned}
& G m_e \times m_b\left[\frac{2}{2 R+h}-\frac{1}{R+h}\right] \\
& =\left(\frac{1}{2}\right) \times M_e \times \frac{M_b^2 v_b^2}{M_e^2}+\left(\frac{1}{2}\right) \times M_b \times V_b^2 \\
& =\left(\frac{1}{2}\right) \times V_b^2 \frac{M_b}{M_e}+\frac{1}{2} \times M_b \times v_b^2 \\
& \Rightarrow G M_e \frac{2 r+2 h-2 R-h}{(2 R+h)(R+h)}
\end{aligned}
\)
\(
\begin{aligned}
& =\left(\frac{1}{2}\right) \times V_b^2 \times\left(\frac{3 \times 10^{24}}{6 \times 10^{24}}+1\right) \\
& \Rightarrow\left[\frac{G M \times h}{2 R^2}\right]=\left(\frac{1}{2}\right) \times V_b^2 \times\left(\frac{3}{2}\right) \\
& \Rightarrow \quad g h=V_b^2 \times\left(\frac{3}{2}\right) \\
& \Rightarrow \quad V_b=\frac{2 g h}{3}
\end{aligned}
\)
A wheel is making revolutions about its axis with uniform angular acceleration. Starting from rest, it reaches \(100 \mathrm{rev} / \mathrm{sec}\) in 4 seconds. Find the angular acceleration. Find the angle rotated during these four seconds.
Given
\(
t=4 \mathrm{~s}
\)
Initial angular velocity \(=\omega_0=0\)
Final angular velocity \(=\omega=100 \mathrm{rev} / \mathrm{s}\)
\(
\begin{aligned}
& \omega=\omega_0+\alpha t \\
& \alpha=\frac{\omega}{t} \\
& \alpha=\frac{100}{4} \mathrm{rev} / \mathrm{s}^2=25 \mathrm{rev} / \mathrm{s}^2
\end{aligned}
\)
Now, we have
\(
\begin{aligned}
& \theta=\omega_0 t+\frac{1}{2} \alpha t^2 \\
& \Rightarrow \theta=\frac{1}{2} \times 25 \times 16 \\
& =200^{\circ} \\
& \Rightarrow \theta=200 \times 2 \pi \text { radians } \\
& =400 \pi \text { radians }
\end{aligned}
\)
A wheel rotating with uniform angular acceleration covers 50 revolutions in the first five seconds after the start. Find the angular acceleration and the angular velocity at the end of five seconds.
Given
Angular displacement of the wheel \(=\theta=50 \times 2 \pi=100 \pi\)
Initial angular velocity of the wheel \(=\omega_0=0\)
After, \(t=5\) seconds
\(
\begin{aligned}
& \theta=\omega_0 t+\frac{1}{2} \alpha t^2 \\
& \Rightarrow 100 \pi=\frac{1}{2} \times \alpha \times(5)^2 \\
& \Rightarrow 100 \pi=\frac{1}{2} \times \alpha \times 25 \\
& \Rightarrow \alpha=8 \pi \mathrm{rad} / \mathrm{s}^2 \text { or } 4 \mathrm{rev} / \mathrm{s} \\
& \omega=\omega_0+2 \alpha t \\
& \Rightarrow \omega=0+8 \pi \times 5=40 \pi \mathrm{rad} / \mathrm{s} \\
& \Rightarrow \omega=20 \mathrm{rev} / \mathrm{s}
\end{aligned}
\)
A wheel starting from rest is uniformly accelerated at \(4 \mathrm{rad} / \mathrm{s}^2\) for 10 seconds. It is allowed to rotate uniformly for the next 10 seconds and is finally brought to rest in the next 10 seconds. Find the total angle rotated by the wheel.
It is given that the area under the \(\omega-t\) curve gives the total angular displacement.
\(\therefore\) Maximum angular velocity \(=\omega=\alpha t\)
\(
\omega=4 \times 10=40 \mathrm{rad} / \mathrm{s}
\)
The area under the curve
\(
\begin{aligned}
& =\frac{1}{2} \times 10 \times 40+40 \times 10+\frac{1}{2} \times 40 \times 10 \\
& =800 \mathrm{rad}
\end{aligned}
\)
\(\therefore\) Total angle rotated in \(30 \mathrm{~s}=800 \mathrm{rad}\).
A body rotates about a fixed axis with an angular acceleration of one radian/second/second. Through what angle does it rotate during the time in which its angular velocity increases from \(5 \mathrm{rad} / \mathrm{s}\) to \(15 \mathrm{rad} / \mathrm{s}\).
Given
Angular acceleration of the body \(=\alpha=2 \mathrm{rad} / \mathrm{s}^2\)
Initial angular velocity of the body \(=\omega_0=5 \mathrm{rad} / \mathrm{s}^2\)
Final angular velocity of the body \(=\omega=15 \mathrm{rad} / \mathrm{s}\)
We know that:
\(
\begin{aligned}
& \omega=\omega_0+\alpha t \\
& \Rightarrow t=\frac{\left(\omega-\omega_0\right)}{\alpha}=\frac{(15-5)}{1}=10 \mathrm{~s}
\end{aligned}
\)
Also,
\(
\begin{aligned}
& \theta=\omega_0 t+\frac{1}{2} \alpha t^2 \\
& \Rightarrow \theta=5 \times 10+\frac{1}{2} \times 1 \times 100 \\
& \Rightarrow \theta=50+50=100 \mathrm{rad}
\end{aligned}
\)
Find the angular velocity of a body rotating with an acceleration of \(2 \mathrm{rev} / \mathrm{s}^2\) as it completes the 5th revolution after the start.
The angular displacement of the body,
\(
\begin{aligned}
& \theta=5 \mathrm{rev}=10 \pi \mathrm{rad} \\
& \alpha=2 \mathrm{rev} / \mathrm{s}^2=4 \pi \mathrm{rad} / \mathrm{s}^2
\end{aligned}
\)
Initial angular velocity, \(\omega_0=0\)
Final angular velocity, \(\omega=\) ?
\(
\begin{aligned}
& \omega^2=(2 \alpha \theta) \\
& \Rightarrow \omega=\sqrt{2 \times 4 \pi \times 10 \pi} \\
& =4 \pi \sqrt{5} \mathrm{rad} / \mathrm{s} \\
& \Rightarrow \omega=2 \sqrt{5} \mathrm{rev} / \mathrm{s}
\end{aligned}
\)
A disc of radius \(10 \mathrm{~cm}\) is rotating about its axis at an angular speed of \(20 \mathrm{rad} / \mathrm{s}\). Find the linear speed of (a) a point on the rim,
(b) the middle point of a radius.
(a) Radius of disc \(=r=10 \mathrm{~cm}=0.1 \mathrm{~m}\)
Angular velocity of the disc \(=\omega=20 \mathrm{rad} / \mathrm{s}\)
\(\therefore\) Linear velocity of point on the rim \(=v=\omega r\)
\(
\Rightarrow v=20 \times 0.1=2 \mathrm{~m} / \mathrm{s}
\)
(b) Linear velocity of point at the middle of radius
\(
v=\frac{\omega r}{2}=\left(\frac{20 \times 0.1}{2}\right)=1 \mathrm{~m} / \mathrm{s}
\)
A disc rotates about its axis with a constant angular acceleration of \(4 \mathrm{rad} / \mathrm{s}^2\). Find the radial and tangential accelerations of a particle at a distance of \(1 \mathrm{~cm}\) from the axis at the end of the first second after the disc starts rotating.
Angular acceleration of the disc,
\(
\alpha=4 \mathrm{rad} / \mathrm{s}^2
\)
Distance of the particle from the axis of rotation, \(r=1 \mathrm{~cm}=0.01 \mathrm{~m}\)
So, \(\omega=\alpha t=4 \mathrm{rad} / \mathrm{s} \ldots \ldots \ldots \ldots(t=1 s)\)
Radial acceleration,
\(
\begin{aligned}
& \alpha_r=\omega^2 r=4^2 \times 0.01 \\
& =0.16 \mathrm{~m} / \mathrm{s}^2=16 \mathrm{~cm} / \mathrm{s}^2
\end{aligned}
\)
Tangential acceleration,
\(
\begin{aligned}
& \alpha_t=\alpha r=0.04 \mathrm{~m} / \mathrm{s}^2 \\
& =4 \mathrm{~cm} / \mathrm{s}^2
\end{aligned}
\)
A block hangs from a string wrapped on a disc of radius \(20 \mathrm{~cm}\) free to rotate about its axis which is fixed in a horizontal position. If the angular speed of the disc is \(10 \mathrm{rad} / \mathrm{s}\) at some instant, with what speed is the block going down at that instant?
It is given that the string is moving on the rim of the disc and the block is connected with the string.
Therefore, the speeds of the block going down and the rim will be the same.
Angular speed of the disc, \(\omega=10 \mathrm{rad} / \mathrm{s}\)
Radius of the pulley, \(r=20 \mathrm{~cm}\)
Linear velocity of the rim, \(v=\) Tangential velocity \(=r \omega\) \(v=10 \times 20=200 \mathrm{~cm} / \mathrm{s}=2 \mathrm{~m} / \mathrm{s}\)
Therefore, velocity of the block \(=2 \mathrm{~m} / \mathrm{s}\)
Three particles, each of mass \(200 \mathrm{~g}\), are kept at the corners of an equilateral triangle of side \(10 \mathrm{~cm}\). Find the moment of inertia of the system about an axis
(a) joining two of the particles and
(b) passing through one of the particles and perpendicular to the plane of the particles.
(a)
The distance of mass at \(\mathrm{A}\) from the axis passing through side \(\mathrm{BC}\),
\(
(A D)=\frac{\sqrt{3}}{2} \times 10=5 \sqrt{3} \mathrm{~cm}
\)
Therefore, we have
Moment of inertia of mass about the axis \(B C\),
\(
\begin{aligned}
& l=m r^2=200 \times(5 \sqrt{3})^2 \\
& =200 \times 25 \times 3 \\
& =15000 \mathrm{gm}-\mathrm{cm}^2 \\
& =1.5 \times 10^{-3} \mathrm{~kg}-\mathrm{m}^2
\end{aligned}
\)
(b) let the axis of rotation passes through \(\mathrm{A}\) and is perpendicular to the plane of triangle.
Therefore, we have
Net moment of inertia,
\(
\begin{aligned}
& l=m r^2+m r^2 \\
& =2 m r^2 \\
& =2 \times 200 \times 10^2 \\
& =400 \times 100
=40000 \mathrm{gm}-\mathrm{cm}^2=4 \times 10^{-3} \mathrm{~kg}-\mathrm{m}^2
\end{aligned}
\)
Particles of masses \(1 \mathrm{~g}, 2 \mathrm{~g}, 3 \mathrm{~g}, \ldots, 100 \mathrm{~g}\) are kept at the marks \(1 \mathrm{~cm}, 2 \mathrm{~cm}, 3 \mathrm{~cm}, \ldots, 100 \mathrm{~cm}\) respectively on a metre scale. Find the moment of inertia of the system of particles about a perpendicular bisector of the metre scale.
Looking into the figure
Given in the question that a perpendicular line passes through 50th particle.
moment of inertia along BC
\(
I=m \times r^2
\)
Where,
\(\mathrm{m}=\) mass of the particle
\(r=\) distance or radius
Now let us consider those two particles at position \(49 \mathrm{~cm}\) and \(51 \mathrm{~cm}\).
Moment inertial due to these two particles will be
\(
\begin{aligned}
& =(49 \times 1)^2+(51 \times 1)^2 \\
& =100 \mathrm{gm} / \mathrm{cm}^2
\end{aligned}
\)
Thus, we will get 49 such sets and one particle at \(100 \mathrm{~cm}\). Therefore, total moment of inertia,
\(
I=\left(I_1+I_2+I_3 \ldots \ldots+I_{49}\right)+I^{\prime}
\)
Here, \(I^{\prime}\) is the moment of inertia of particle at \(100 \mathrm{~cm}\).
\(
=100\left\{1^2+2^2+3^2+\ldots+49^2\right\}+100(50)^2
\)
Using Arithmetic Progression, the equation for sum of square of \(n\) natural numbers is given by
\(
\sum n^2=\left(\frac{n(n+1)}{2}\right)^2
\)
Solving for moment of Inertia, with \(=50\), we will get-
\(
100 \times\left(\frac{50(51)}{2}\right)^2
\)
\(
\begin{aligned}
&=0.429 \mathrm{~kg}-\mathrm{m}^2\\
&=0.43 \mathrm{~kg}-\mathrm{m}^2 \text {. }
\end{aligned}
\)
Find the moment of inertia of a pair of spheres, each having a mass \(m\) and radius \(r\), kept in contact about the tangent passing through the point of contact.
The two bodies of mass \(\mathrm{m}\) and radius \(\mathrm{r}\) are moving along the common tangent. Therefore moment of inertia of the first body about \(X Y\) tangent. \(I_1=m r^2+2 / 5 \mathrm{mr}^2=\frac{7}{5} m r^2[latex]
[latex]
\text { Moment of inertia of the second body } X Y \text { tangent } I_2=\mathrm{mr}^2+2 / 5 \mathrm{mr}^2=7 / 5 \mathrm{mr}^2
\)
\(
\text { Therefore, net moment of inertia } I=I_1+I_2=7 / 5 \mathrm{mr}^2+7 / 5 \mathrm{mr}^2=14 / 5 \mathrm{mr}^2 \text { units. }
\)
The moment of inertia of a uniform rod of mass \(0.50 \mathrm{~kg}\) and length \(1 \mathrm{~m}\) is \(0.10 \mathrm{~kg}-\mathrm{m}^2\) about a line perpendicular to the rod. Find the distance of this line from the middle point of the rod.
Given Length of the rod, \(l=1 \mathrm{~m}\)
Mass of the rod, \(m=0.5 \mathrm{~kg}\)
Let the rod moves at a distance \(d\) from the centre.
On applying parallel axis theorem, we get
Moment of inertia about that axis,
\(
I=\left(\frac{m l^2}{12}\right)+m d^2=0.10
\)
\(
\begin{aligned}
& I=\frac{0.5 \times l^2}{12}+0.5 \times d^2=0.10 \\
& \Rightarrow \frac{1}{12}+d^2=0.2 \\
& \Rightarrow d^2=0.118 \\
& \Rightarrow d=0.342 \mathrm{~m} \text { from the centre }
\end{aligned}
\)
Find the radius of gyration of a circular ring of radius \(r\) about a line perpendicular to the plane of the ring and passing through one of its particles.
Moment of inertia of the ring about a point on the rim of the ring and the axis perpendicular to the plane of the ring \(=m r^2+m r^2=2 m r^2\) (from parallel axis theorem)
We know that
\(
m K^2=2 m r^2
\)
\({K}=\) Radius of the gyration
\(
\Rightarrow K=\sqrt{2 r^2}=\sqrt{2} r
\)
The radius of gyration of a uniform disc about a line perpendicular to the disc equals its radius. Find the distance of the line from the centre.
Moment of inertia of the disc about the centre and perpendicular to the plane of the disc \(=\frac{1}{2} m r^2\)
Radius of gyration of the disc about a point \(=\) Radius of the disc
Therefore, \(m k^2=\frac{1}{2} m r^2+m d^2\)
( \(k\) = Radius of gyration about acceleration point; \(d\) = Distance of that point from the centre)
\(
\begin{aligned}
& \Rightarrow k^2=\frac{r^2}{2}+d^2 \\
& \Rightarrow r^2=\frac{r^2}{2}+d^2 \\
& \Rightarrow \frac{r^2}{2}=d^2 \\
& \Rightarrow d=\frac{r}{\sqrt{2}}
\end{aligned}
\)
Find the moment of inertia of a uniform square plate of mass \(m\) and edge \(a\) about one of its diagonals.
Let a small cross-sectional area is at a distance \(x\) from \(AB\) axis. Therefore mass of that small section \(=\mathrm{m} / \mathrm{a}^2 \times \mathrm{a} \times \mathrm{~dx}\) Therefore moment of inertia about \(AB\) axis
\(
\begin{aligned}
& I=2 \int_0^{\frac{a}{2}} \frac{m}{a^2} \times\left(a \times x^2 d x\right) \\
& =m \frac{a^2}{12}
\end{aligned}
\)
Therefore, for two lines, the
\(
I=2 \times m \frac{a^2}{12}=m \frac{a^2}{6}
\)
Now, considering diagonals, the moment of inertia for pair of perpendicular diagonals becomes
\(
I^{\prime}=2 \times m \frac{a^2}{12}=m \frac{a^2}{6}
\)
Therefore, by perpendicular axis theorem, moment of inertia becomes-
\(
\begin{aligned}
&\mathrm{I}+\mathrm{I}=\mathrm{I}^{\prime}\\
&\Rightarrow 2 \mathrm{I}=\mathrm{m} \frac{\mathrm{a}^2}{6}\\
&\Rightarrow \mathrm{I}=\mathrm{m} \frac{\mathrm{a}^2}{12}
\end{aligned}
\)
The surface density (mass/area) of a circular disc of radius \(a\) depends on the distance from the centre as \(\rho(r)=A+B r\). Find its moment of inertia about the line perpendicular to the plane of the disc through its centre.
The surface density of a circular disc of radius a depends upon the distance from the centre as \(P(r)=A+B r\)
Therefore the mass of the ring of radius \(r\) will be =(A+B r) \times 2 \pi r d r \times r^2[/latex]
Therefore moment of inertia about the centre will be \(=\int_0^a(A+B r) 2 \pi r \times r^2 \times d r=\int_0^a 2 \pi A r^3 d r+\int_0^a 2 \pi B r^4 d r\)
\(
I=2 \pi\left(\frac{A a^4}{4}+\frac{B a^5}{5}\right)
\)
A particle of mass \(m\) is projected with a speed \(u\) at an angle \(\theta\) with the horizontal. Find the torque of the weight of the particle about the point of projection when the particle is at the highest point.
At the highest point, the total force acting on the particle is its weight acting downward.
\(
\text { Range of the particle }=\left(\frac{u^2 \sin 2 \theta}{g}\right)
\)
At the highest point, we have
Total force acting on the particle \(=m g(\) downward \()\)
Distance between the line of force and the point of projection
\(
\frac{\text { (total range) }}{2}=\frac{u^2 \sin 2 \theta}{2 g}
\)
\(
\begin{aligned}
& \text { So, } \vec{\tau}=\vec{F} \times d_{\perp}=m g \times u^2 \frac{\sin 2 \theta}{2 g} \\
& \vec{\tau}=m u^2 \frac{\sin 2 \theta}{2} \\
& =m u^2 \sin \theta \cos \theta
\end{aligned}
\)
Therefore, the direction of the torque is perpendicular to the plane of the motion.
A simple pendulum of length \(l\) is pulled aside to make an angle \(\theta\) with the vertical. Find the magnitude of the torque of the weight \(w\) of the bob about the point of suspension. When is the torque zero?
Distance between the line of force and point of suspension, \(r=l \sin \theta\)
Torque, \(\vec{\tau}=\vec{F} \times \vec{r}\)
\(
\Rightarrow \tau=w r \sin \theta=w l \sin \theta
\)
Here, \(w\) is the weight of the bob.
The torque will be zero when the force acting on the body passes through the point of suspension, i.e., at the lowest point of suspension.
When a force of \(6.0 \mathrm{~N}\) is exerted at \(30^{\circ}\) to a wrench at a distance of \(8 \mathrm{~cm}\) from the nut, it is just able to loosen the nut. What force \(F\) would be sufficient to loosen it if it acts perpendicularly to the wrench at \(16 \mathrm{~cm}\) from the nut?
The force exerted into the wrench is given as \(F=6 \mathrm{~N}\), the angle of motion is \(30^{\circ}\). The distance from the nut to the wrench end is \(16 \mathrm{~cm}\).
The formula used is that of a torque which tells us the mechanics of force which helps the object to rotate. The formula is
\(
\text { Torque }=\text { F.rsin } \theta
\)
where \(F\) is the force applied on the object; \(r\) is the radius of the object turning. Turning angle is given by \(\theta\)
A force of \(6 \mathrm{~N}\) acting at an angle of \(30^{\circ}\) is just able to loosen the wrench at a distance \(8 \mathrm{~cm}\) from it. Therefore total torque in this case \(=6 \sin 30^{\circ} \times(8 / 100)\)
In this case, the total Torque is
\(
\begin{aligned}
& =\mathrm{F} \times 16 / 100
\end{aligned}
\)
To loosen the nut, torque in both cases should be the same. Thus, we have
\(
\begin{aligned}
& F \times \frac{16}{100}=6 \sin 30^{\circ} \times \frac{8}{100} \\
& F=\frac{(8 \times 3)}{16}=1.5 \mathrm{~N}
\end{aligned}
\)
Calculate the total torque acting on the body shown in figure \((10-\mathrm{E} 2)\) about the point \(O\).
The torque about a point \(=\) Total force \(\times\) perpendicular distance from the point to that force Let anticlockwise torque \(=+\) ve
And clockwise acting torque \(=-\) ve
Force acting at the point \(B\) is \(15 \mathrm{~N}\)
Therefore torque at \(\mathrm{O}\) due to this force
\(
\begin{aligned}
& =15 \times 6 \times 10^{-2} \times \sin 37^{\circ} \\
& =15 \times 6 \times 10^{-2} \times 3 / 5=0.54 \mathrm{~N}-\mathrm{m} \text { (anticlock wise) }
\end{aligned}
\)
Force acting at the point \(\mathrm{C}\) is \(10 \mathrm{~N}\) Therefore, torque at \(O\) due to this force \(=10 \times 4 \times 10^{-2}=0.4 \mathrm{~N}-\mathrm{m}\) (clockwise)
Force acting at the point \(\mathrm{A}\) is \(20 \mathrm{~N}\)
Therefore, Torque at \(O\) due to this force \(=20 \times 4 \times 10^{-2} \times \sin 30^{\circ}\) \(=20 \times 4 \times 10^{-2} \times 1 / 2=0.4 \mathrm{~N}\)-m (anticlockwise)
Therefore resultant torque acting at ‘ \(O\) ‘ \(=0.54-0.4+0.4=0.54 \mathrm{~N}-\mathrm{m}\).
A cubical block of mass \(m\) and edge \(a\) slides down a rough inclined plane of inclination \(\theta\) with a uniform speed. Find the torque of the normal force acting on the block about its centre.
Let \(\mathrm{N}\) be the normal reaction on the block.
From the free body diagram of the block, it is clear that forces \(N\) and mgcos \(\theta\) pass through the same line. So, there will be no torque due to \(\mathrm{N}\) and \(\mathrm{mg} \cos \theta\). The only torque will be produced by \(\mathrm{mg} \sin \theta\).
\(
\therefore \vec{\tau}=\vec{F} \times \vec{r}
\)
a is the edge of the cube.Therefore, we have
\(
\begin{aligned}
& r=\frac{a}{2} \\
& \therefore \tau=m g \sin \theta \times \frac{a}{2} \\
& =\frac{1}{2} m g a \sin \theta
\end{aligned}
\)
A rod of mass \(m\) and length \(L\), lying horizontally, is free to rotate about a vertical axis through its centre. A horizontal force of constant magnitude \(F\) acts on the rod at a distance of \(L / 4\) from the centre. The force is always perpendicular to the rod. Find the angle rotated by the rod during the time \(t\) after the motion starts.
A rod of mass \(m\) and length \(L\), lying horizontally, is free to rotate about a vertical axis passing through its centre.
A force \(F\) is acting perpendicular to the rod at a distance \(L / 4\) from the centre.
Therefore torque about the centre due to this force
\(
\tau=\mathrm{F} \times \mathrm{r}=\mathrm{FL} / 4 .
\)
Let the torque produces an angular acceleration \(\alpha\).
\(
\begin{aligned}
& \tau=I \alpha \\
& \Rightarrow \tau=\frac{m L^2}{12} \times \alpha \ldots \ldots\left(I \text { of a rod }=\frac{m L^2}{12}\right) \\
& \Rightarrow F \frac{L}{4}=\frac{m L^2}{12} \times \alpha \\
& \Rightarrow \alpha=\frac{3 F}{m L}
\end{aligned}
\)
Now, \(\theta=\frac{1}{2} \alpha t^2 \ldots \ldots \ldots\) (initially at rest)
\(
\Rightarrow \theta=\frac{3 F t^2}{2 m L}
\)
A square plate of mass \(120 \mathrm{~g}\) and edge \(5^{\circ} 0 \mathrm{~cm}\) rotates about one of the edges. If it has a uniform angular acceleration of \(0.2 \mathrm{rad} / \mathrm{s}^2\), what torque acts on the plate?
A square plate of mass \(120 \mathrm{gm}\) and edge \(5 \mathrm{~cm}\) rotates about one of the edge.
Let take a small area of the square of width \(\mathrm{dx}\) and length a which is at a distance \(\mathrm{x}\) from the axis of rotation.
Therefore mass of that small area
\(\mathrm{m} / \mathrm{a}^2 \times \mathrm{a} \times \mathrm{dx}(\mathrm{m}=\) mass of the square \(; \mathrm{a}=\) side of the plate \()\)
\(
\begin{aligned}
& l=\int_0^a \frac{m}{a^2} \times a x^2 d x \\
& =\frac{m}{a}\left[\frac{x^3}{3}\right]_0^a=\frac{m a^2}{3}
\end{aligned}
\)
Now, torque produced,
\(
\begin{aligned}
& \tau=\left(\frac{m a^2}{3}\right) \times \alpha \\
& =\left\{\frac{120 \times 10^{-3} \times 5^2 \times 10^{-4}}{3}\right\} \times .02 \\
& =40 \times 25 \times 10^{-7} \times 0.2 \\
& =2 \times 10^{-5} N-m .
\end{aligned}
\)
Calculate the torque on the square plate of the previous problem if it rotates about a diagonal with the same angular acceleration.
Moment of inertia of a square plate about its diagonals,
\(
I=\frac{m a^2}{12}
\)
Therefore, we have
Torque produced,
\(
\begin{aligned}
& \tau=I \alpha \\
& \Rightarrow \tau=\left(\frac{m a^2}{12}\right) \times \alpha \\
& =\frac{120 \times 10^{-3} \times 5^2 \times 10^{-4}}{12} \times 0.2 \\
& =10 \times 25 \times 10^{-4} \times 0.2 \\
& =0.5 \times 10^{-5} \mathrm{~N}-\mathrm{m}
\end{aligned}
\)
A flywheel of moment of inertia \(5.0 \mathrm{~kg}-\mathrm{m}^2\) is rotated at a speed of \(60 \mathrm{rad} / \mathrm{s}\). Because of the friction at the axle, it comes to rest in 5.0 minutes. Find (a) the average torque of the friction, (b) the total work done by the friction and (c) the angular momentum of the wheel 1 minute before it stops rotating.
A flywheel of moment of inertia \(5 \mathrm{~kg} \mathrm{~m}\) is rotated at a speed of \(60 \mathrm{rad} / \mathrm{s}\). The flywheel comes to rest due to the friction at the axle after 5 minutes.
Therefore, the angular deceleration produced due to frictional force \(=\omega=\omega_0+\alpha t\)
\(
\begin{aligned}
\alpha & =-\frac{\omega_0}{t} \\
\alpha & =-\left(\frac{60}{300}\right)=-\frac{1}{5} \mathrm{rad} / \mathrm{s}^2
\end{aligned}
\)
(a)
Therefore torque produced by the frictional force \((R)\) is \(\tau=\mathrm{I} \times \alpha=5 \times(-1 / 5)=\mathrm{1 N}-\mathrm{m}\) opposite to the rotation of wheel.
(b) By conservation of energy,
Total work done in stopping the wheel by frictional force = Change in energy
\(
\begin{aligned}
& W=\frac{1}{2} I \omega^2 \\
& =\frac{1}{2} \times 5 \times(60 \times 60) \\
& =9000 \text { joule }=9 \mathrm{~kJ}
\end{aligned}
\)
(c) Angular velocity after 4 minutes
\(
\Rightarrow \omega=\omega_0+\alpha \mathrm{t}=60-240 / 5=12 \mathrm{rad} / \mathrm{s}
\)
Therefore angular momentum about the centre \(L=I \times \omega=5 \times 12=60 \mathrm{~kg}-\mathrm{m}^2 / \mathrm{s}\).
Because of the friction between the water in oceans with the earth’s surface, the rotational kinetic energy of the earth is continuously decreasing. If the earth’s angular speed decreases by \(0.0016 \mathrm{rad} /\) day in 100 years, find the average torque of the friction on the earth. Radius of the earth is \(6400 \mathrm{~km}\) and its mass is \(6.0 \times 10^{24} \mathrm{~kg}\).
The earth’s angular speed decreases by \(0.0016 \mathrm{rad} /\) day in 100 years.
Rate of change of angular velocity, i.e., angular acceleration,
\(
\begin{aligned}
& \alpha=\left(\frac{0.0016}{100}\right) \mathrm{rad} / \text { day } \\
& \Rightarrow \alpha=\left\{\frac{0.0016}{(86400)^2 \times 100 \times 365}\right\} \ldots \ldots \ldots \cdot[1 \text { year }=365 \text { days }=365 \times 86400 \mathrm{sec}]
\end{aligned}
\)
Torque produced by the ocean water in decreasing the Earth’s angular velocity,
\(
\begin{aligned}
& \tau=I \alpha=\frac{2}{5} m r^2 \alpha \\
& =\frac{2}{5} \times 6 \times 10^{24} \times\left(64 \times 10^5\right)^2 \times\left\{\frac{0.0016}{86400^2 \times 100 \times 365}\right\} \\
& =5.8 \times 10^{20} N-m
\end{aligned}
\)
A wheel rotating at a speed of \(600 \mathrm{rpm}\) (revolutions per minute) about its axis is brought to rest by applying a constant torque for 10 seconds. Find the angular deceleration and the angular velocity 5 seconds after the application of the torque.
Initial angular velocity of the wheel,
\(\omega_0=600 \mathrm{rpm}\)
\(=\frac{600}{60}=10\) revolutions per second
After 10 seconds,
Final angular velocity of the wheel,
\(\omega=0\)
So, \(\omega_0=-a t\)
\(
\Rightarrow \alpha=-\frac{10}{10}=-1 \mathrm{rev} / \mathrm{s}^2
\)
Now, \(t=5 s\)
We know that
\(
\begin{aligned}
& \omega^{\prime}=\omega_0+a t \\
& \Rightarrow \omega^{\prime}=10-1 \times 5=5 \mathrm{rev} / \mathrm{s}
\end{aligned}
\)
A wheel of mass \(10 \mathrm{~kg}\) and radius \(20 \mathrm{~cm}\) is rotating at an angular speed of \(100 \mathrm{rev} / \mathrm{min}\) when the motor is turned off. Neglecting the friction at the axle, calculate the force that must be applied tangentially to the wheel to bring it to rest in 10 revolutions.
Initial angular velocity of the wheel,
\(\omega=100 \mathrm{rev} / \mathrm{min}\)
\(=\frac{100}{60}=\frac{5}{3} \mathrm{rev} / \mathrm{s}=\frac{10 \pi}{3} \mathrm{rad} / \mathrm{s}\)
\(\theta=10 \mathrm{rev}=20 \pi \mathrm{rad}\)
\(r=0.2 m\)
Angular deceleration produced by the tangential force in order to stop the wheel after 10 revolutions,
\(
\alpha=\frac{\omega^2}{2 \theta}
\)
Torque by which the wheel will come to rest,
\(
\tau=I_{c m} \alpha
\)
Or, \(\Rightarrow \tau=F \times r=I_{c m} \alpha\)
Putting the values of \(I_{c m}\) and \(\alpha\), we get
\(
\begin{aligned}
& F \times r=\frac{1}{2} m r^2 \times\left(\frac{10 \pi}{3}\right)^2 \times \frac{1}{2 \times 20 \pi} \\
& \Rightarrow F=\frac{1}{2} \times 10 \times 0.2 \times \frac{100 \pi^2}{(9 \times 2 \times 20 \pi)} \\
& \Rightarrow F=\frac{5 \pi}{18}=\frac{15.7}{18}=0.87 \mathrm{~N}
\end{aligned}
\)
A cylinder rotating at an angular speed of \(50 \mathrm{rev} / \mathrm{s}\) is brought in contact with an identical stationary cylinder. Because of the kinetic friction, torques act on the two cylinders, accelerating the stationary one and decelerating the moving one. If the common magnitude of the acceleration and deceleration be one revolution per second square, how long will it take before the two cylinders have equal angular speed?
Â
A cylinder is moving with an angular velocity \(50 \mathrm{rev} / \mathrm{s}\) brought in contact with another identical cylinder in rest. The first and second cylinder has common acceleration and deacceleration as \(1 \mathrm{rad} / \mathrm{s}^2\) respectively.
After \(t\) seconds, let the angular velocity of two cylinders be \(\omega\).
For the first cylinder,
\(
\begin{aligned}
& \omega_0=50 \mathrm{rev} / \mathrm{s}, \alpha=1 \mathrm{rev} / \mathrm{s}^2 \\
& \therefore \omega=50-\alpha t \\
& \Rightarrow t=\frac{(\omega-50)}{-1}
\end{aligned}
\)
For the second cylinder,
\(
\begin{aligned}
& \omega_0=0, \alpha=1 \mathrm{rev} / \mathrm{s}^2 \\
& \therefore \omega=\alpha t \\
& \Rightarrow t=\frac{\omega}{1}
\end{aligned}
\)
On equating the value of \(t\), we get
\(
\begin{aligned}
& \omega=\left(\frac{\omega-50}{-1}\right) \\
& \Rightarrow 2 \omega=50 \\
& \Rightarrow \omega=25 \mathrm{rev} / \mathrm{s} \\
& \therefore t=\frac{25}{1} s=25 \mathrm{~s}
\end{aligned}
\)
A body rotating at \(20 \mathrm{rad} / \mathrm{s}\) is acted upon by a constant torque providing it a deceleration of \(2 \mathrm{rad} / \mathrm{s}^2\). At what time will the body have kinetic energy same as the initial value if the torque continues to act?
Initial angular velocity \(=20 \mathrm{rad} / \mathrm{s}\)
Therefore \(\alpha=2 \mathrm{rad} / \mathrm{s}^2\)
\(\Rightarrow \mathrm{t}_1=\omega / \alpha=20 / 2=10 \mathrm{sec}\)
Therefore \(10 \mathrm{sec}\) it will come to rest.
Since the same torque is continues to act on the body it will produce same angular acceleration and since the initial kinetic energy = the kinetic energy at a instant.
So initial angular velocity \(=\) angular velocity at that instant
Therefore time require to come to that angular velocity,
\(\mathrm{t}_2=\omega / \alpha=20 / 2=10 \mathrm{sec}\)
therefore time required \(=t_1+t_2=20 \mathrm{sec}\).
A light rod of length \(1 \mathrm{~m}\) is pivoted at its centre and two masses of \(5 \mathrm{~kg}\) and \(2 \mathrm{~kg}\) are hung from the ends as shown in figure (10-E3). Find the initial angular acceleration of the rod assuming that it was horizontal in the beginning.
Total moment of inertia of the system about the axis of rotation,
\(
\begin{aligned}
& I_{\text {net }}=\left(m_1 r_1^2+m_2 r_2^2\right) \\
& \tau_{\text {net }}=F_1 r_1-F_2 r_2 \\
& \text { Also, } \tau_{n e t}=I_{\text {net }} \times \alpha
\end{aligned}
\)
On equating the value of \(\tau_{\text {net }}\) and putting the value of \(I_{\text {net }}\), we get
\(
\begin{aligned}
& F_1 r_1-F_2 r_2=\left(m_1 r_1^2+m_2 r_2^2\right) \times \alpha \\
& (-2 \times 10 \times 0.5)+(5 \times 10 \times 0.5)=\left[5\left(\frac{1}{2}\right)^2+2\left(\frac{1}{2}\right)^2\right] \alpha \\
& \Rightarrow 15=\frac{7}{4} \alpha \\
& \Rightarrow \alpha=\frac{60}{7}=8.57 \mathrm{rad} / \mathrm{s}^2
\end{aligned}
\)
Suppose the rod in the previous problem has a mass of \(1 \mathrm{~kg}\) distributed uniformly over its length.
(a) Find the initial angular acceleration of the rod.
(b) Find the tension in the supports to the blocks of mass \(2 \mathrm{~kg}\) and \(5 \mathrm{~kg}\).
(a) Total moment of inertia of the system about the axis of rotation,
\(
I_{n e t}=\left(m_1 r_1^2+m_2 r_2^2+\frac{m l^2}{12}\right)
\)
\(\mathrm{m}\) and \(\mathrm{I}\) are the mass and length of the rod, respectively.
\(
\tau_{\text {net }}=F_1 r_1-F_2 r_2
\)
Also, \(\tau_{n e t}=I_{n e t} \times \alpha\)
On equating the value of \(\tau_{\text {net }}\) and putting the value of \(l_{\text {net }}\), we get \(F_1 r_1-F_2 r_2=\left(m_1 r_1^2+m_2 r_2^2+\frac{m l^2}{12}\right) \times \alpha\)
\(
(-2 \times 10 \times 0.5)+(5 \times 10 \times 0.5)=\left[5\left(\frac{1}{2}\right)^2+2\left(\frac{1}{2}\right)^2+\frac{(1)^2}{12}\right] \alpha
\)
\(
\begin{aligned}
& \Rightarrow 15=(1.75+0.084) \alpha \\
& \Rightarrow \alpha=\frac{1500}{(175+8.4)}=\frac{1500}{183.4} \\
& =8.1 \mathrm{rad} / \mathrm{s}^2 \ldots \ldots \ldots(g=10) \\
& \left.=8.01 \mathrm{rad} / \mathrm{s}^2 \ldots \ldots \text { (if } g=9.8\right)
\end{aligned}
\)
(b) From the free body diagram of the block of mass \(2 \mathrm{~kg}\),
\(
\begin{aligned}
& T_1-m_1 g=m_1 a \\
& \Rightarrow T_1=2(a+g) \\
& =2(\alpha r+g) \ldots \ldots \text { (using, } a=\alpha r) \\
& =2(8 \times 0.5+9.8) \\
& \Rightarrow T_1=27.6 \mathrm{~N}
\end{aligned}
\)
From the free body diagram of the block of mass \(5 \mathrm{~kg}\),
\(
\begin{aligned}
& m_2 g-T_2=m_2 a \\
& \Rightarrow T_2=m_2(g-a) \\
& =5(g-a)=5(9.8-8 \times 0.5) \ldots \ldots \ldots \ldots(a=\alpha r) \\
& =5 \times 5.8=29 N
\end{aligned}
\)
Figure (10-E4) shows two blocks of masses \(m[latex] and [latex]M\) connected by a string passing over a pulley. The horizontal table over which the mass \(m\) slides is smooth. The pulley has a radius \(r\) and moment of inertia \(I\) about its axis and it can freely rotate about this axis. Find the acceleration of the mass \(M\) assuming that the string does not slip on the pulley.
According to the equation, we have
\(
M g-T_1=M a \dots(1)
\)
\(
T_2=\text { ma………(2) }
\)
\(
\Rightarrow\left(T_1-T_2\right)=\frac{I a}{r^2} \ldots \ldots \ldots(3)[\text { Because, } a=r a]
\)
If we add the equations (1) and (2), we get
\(
\begin{aligned}
& M g+T_2-T_1=M a+m a . \\
& \Rightarrow M g-I \frac{a}{r^2}=M a+m a \\
& \Rightarrow\left(M+m+\frac{I}{r^2}\right) a=M g \\
& \Rightarrow a=\frac{M g}{M+m+\frac{I}{r^2}}
\end{aligned}
\)
A string is wrapped on a wheel of moment of inertia \(0.20 \mathrm{~kg}-\mathrm{m}^2\) and radius \(10 \mathrm{~cm}\) and goes through a light pulley to support a block of mass \(2.0 \mathrm{~kg}\) as shown in figure (10-E5). Find the acceleration of the block.
Moment of inertia of the bigger pulley, \(\mathrm{I}=0.20 \mathrm{~kg}-\mathrm{m}^2\), \(\mathrm{r}=10 \mathrm{~cm}=0.1 \mathrm{~m}\),
The smaller pulley is light. Therefore, on neglecting its moment of inertia, we have Mass of the block, \(m=2 \mathrm{~kg}\)
From the free body diagram, we get
\(
\begin{aligned}
& m g-T=m a \ldots \dots(1) \\
& T r=I \alpha \text { And } \\
& a=\alpha r \\
& \Rightarrow T=\frac{I a}{r^2} \dots(2)
\end{aligned}
\)
Using equations (1) and (2), we get
\(
\begin{aligned}
& m g=\left(m+\frac{I}{r^2}\right) a \\
& \Rightarrow a=\frac{m g}{m+\frac{I}{r^2}} \\
& =\frac{2 \times 9.8}{2+\left(\frac{0.2}{0.01}\right)} \\
& =\frac{19.6}{22}=0.89 \mathrm{~m} / \mathrm{s}^2
\end{aligned}
\)
Suppose the smaller pulley of the previous problem has its radius \(5 \cdot 0 \mathrm{~cm}\) and moment of inertia \(0.10 \mathrm{~kg}-\mathrm{m}^2\). Find the tension in the part of the string joining the pulleys.
Given
\(
\begin{aligned}
& m=2 \mathrm{~kg}, \mathrm{I}_1=0.10 \mathrm{~kg}-\mathrm{m}^2 \\
& \mathrm{r}_1=5 \mathrm{~cm}=0.05 \mathrm{~m} \\
& \mathrm{I}_2=2.20 \mathrm{~kg}-\mathrm{m}^2 \\
& \mathrm{r}_2=10 \mathrm{~cm}=0.1 \mathrm{~m}
\end{aligned}
\)
From the free body diagram, we have
\(
\begin{aligned}
& m g-T_1=m a \ldots(1) \\
& \left(T_1-T_2\right) r_1=I_1 \alpha \ldots \ldots(2) \\
& T_2 r_2=I_2 \alpha \ldots \ldots(3)
\end{aligned}
\)
Substituting the value of \(T_2\) in the equation (2), we get
\(
\begin{aligned}
& \Rightarrow\left(T_1-I_2 \frac{\alpha}{r_2}\right) r_1=I_1 \alpha \\
& \Rightarrow T_1-I_2 \frac{a}{r_2^2}=I_1 \frac{a}{r_1^2} \\
& \Rightarrow T_1=\left\{\left(\frac{I_1}{r_1^2}\right)+\left(\frac{I_2}{r_2^2}\right)\right\} a
\end{aligned}
\)
Substituting the value of \(T_1\) in the equation (1), we get
\(
\begin{aligned}
& m g-\left\{\left(\frac{I_1}{r_1^2}\right)+\left(\frac{I_2}{r_2^2}\right)\right\} a=m a \\
& \Rightarrow \frac{m g}{\left\{\left(\frac{I_1}{r_1^2}\right)+\left(\frac{I_2}{r_2^2}\right)\right\}+m}=a \\
& \Rightarrow a=\frac{2 \times 9.8}{\frac{0.1}{0.0025}+\frac{0.2}{0.01}+2} \\
& =0.316 m / s^2 \\
& \Rightarrow T_2=I_2 \frac{a}{r_2^2} \\
& =\frac{0.20 \times 0.316}{0.01}=6.32 \mathrm{~N}
\end{aligned}
\)
The pulleys in Figure (10-E6) are identical, each having a radius \(R\) and moment of inertia \(I\). Find the acceleration of the block \(M\).
Free the body diagram of the system is given below.
For block of mass \(\mathrm{M}\),
\(
M g-T_1=M a \dots(1)
\)
\(\left(T_1-T_2\right) R=I \alpha\) using,\(a=\alpha r\)
\(\Rightarrow\left(T_1-T_2\right)=I \frac{a}{R^2} \ldots \ldots(2)(\) For pully 1\()\)
\(
\text { Similarly, }\left(T_2-T_3\right)=I \frac{a}{R^2} \ldots \ldots \ldots \text { (3) (For pully 2) }
\)
For block of mass \(\mathrm{m}\),
\(T_3-m g=m a \ldots \ldots \ldots(4)(\) For block \(m)\)
Adding equations (2) and (3), we get
\(
\left(T_1-T_3\right)=\frac{2 I a}{R^2} \dots(5)
\)
Adding equations ( 1 ) and (4), we get
\(
-m g+M g+\left(T_3-T_1\right)=M a+m a \dots(6)
\)
Using equations (5) and (6), we get
\(
\begin{aligned}
& M g-m g=M a+m a+\frac{2 I a}{R^2} \\
& \Rightarrow a=\frac{(M-m) g}{\left(M+m+\frac{2 I}{R^2}\right)}
\end{aligned}
\)
The descending pulley shown in figure (10-E7) has a radius \(20 \mathrm{~cm}\) and moment of inertia \(0.20 \mathrm{~kg}-\mathrm{m}^2\). The fixed pulley is light and the horizontal plane frictionless. Find the acceleration of the block if its mass is \(1^{\circ} 0 \mathrm{~kg}\).
Let the mass of the block be \(m_1\) and mass of pulley be \(m_2\).
The acceleration of the massive pulley will be half of that of the block.
A is light pulley and \(B\) is the descending pulley having \(\mathrm{I}=0.20 \mathrm{~kg}-\mathrm{m}^2\) and \(\mathrm{r}=0.2 \mathrm{~m}\) Mass of the block \(=1 \mathrm{~kg}\)
From the free body diagram, we have
\(
T_1=m_1 a \ldots \ldots \ldots(1)
\)
\(
\begin{aligned}
& \left(T_2-T_1\right) r=I \alpha \\
& T_2-T_1=\frac{I a}{2 r^2}=\frac{5 a}{2} \dots(2)
\end{aligned}
\)
\(
m_2 g-m_2 \frac{a}{2}=T_1+T_2 \dots(3)
\)
Putting the value of mass in equation (1) and using equation (1) in equation (2), we get
\(
\begin{aligned}
& T_1=a \text { and } T_2=\frac{7}{2} a \\
& m_2 g=m_2 \frac{a}{2}+\frac{7}{2} a+a
\end{aligned}
\)
On replacing the value of \(m_2 u \operatorname{sing} \frac{1}{2} m r^2=I\), we get
\(
\begin{aligned}
& \frac{2 I}{r^2} g=\frac{2 I}{r^2} \frac{a}{2}+\frac{9}{2} a \\
& \Rightarrow 98=5 a+4.5 a \\
& \Rightarrow a=\frac{98}{9.5}=10.3 \mathrm{~m} / \mathrm{s}^2
\end{aligned}
\)
The pulley shown in figure \((10-\mathrm{E} 8)\) has a radius \(10 \mathrm{~cm}\) and moment of inertia \(0.5 \mathrm{~kg}-\mathrm{m}^2\) about its axis. Assuming the inclined planes to be frictionless, calculate the acceleration of the \(4.0 \mathrm{~kg}\) block.
From the figure, we have
\(
\begin{aligned}
& T_1-m_1 g \sin \theta=m_1 a \ldots \ldots \ldots(1) \\
& T_2-T_1=I \frac{a}{r^2} \ldots \ldots \ldots(2) \\
& m_2 g \sin \theta-T_2=m_2 a \ldots \ldots \ldots(3)
\end{aligned}
\)
Adding equations (1) and (3), we get
\(
\begin{aligned}
& m_2 g \sin \theta+\left(-T_2+T_1\right)-m_1 g \sin \theta=\left(m_1+m_2\right) a \\
& \Rightarrow\left(m_2-m_1\right) g \sin \theta+\left(-\frac{I}{r^2}\right) a=\left(m_1+m_2\right) a \\
& \Rightarrow\left(m_2-m_1\right) g \sin \theta=\left(m_1+m_2\right) a+\left(\frac{I}{r^2}\right) a
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow a=\frac{\left(m_2-m_1\right) g \sin \theta}{\left(m_2+m_1+\frac{I}{r^2}\right)} \\
& =\frac{(4-2) \times 10 \times(1 \sqrt{2})}{(4+2)+(0.5 / 0.01)} \\
& =\frac{\left(2 \times 10 \times \frac{1}{\sqrt{2}}\right)}{(6+50)} \\
& =0.248=0.25 \mathrm{~m} / \mathrm{s}^2
\end{aligned}
\)
Solve the previous problem if the friction coefficient between the \(2.0 \mathrm{~kg}\) block and the plane below it is 0.5 and the plane below the \(4.0 \mathrm{~kg}\) block is frictionless.
\(
\mathrm{m}_1=4 \mathrm{~kg}, \mathrm{~m}_2=2 \mathrm{~kg}
\)
Frictional co-efficient between \(2 \mathrm{~kg}\) block and surface \(=0.5\)
\(
\begin{aligned}
& \mathrm{I}=0.5 \mathrm{~kg}-\mathrm{m}^2 \\
& \mathrm{~m}_1 \mathrm{~g} \sin \theta-\mathrm{T}_1=\mathrm{m}_1 \mathrm{a} \dots(1)
\end{aligned}
\)
\(
\begin{aligned}
& T_2-\left(m_2 g \sin \theta+\mu m_2 g \cos \theta\right)=m_2 a \dots(2)\\
& \left(T_1-T_2\right)=I a / r^2
\end{aligned}
\)
Adding equation (1) and (2) we will get
\(
\begin{aligned}
& m_1 g \sin \theta-\left(m_2 g \sin \theta+\mu m_2 g \cos \theta\right)+\left(T_2-T_1\right)=m_1 a+m_2 a \\
& \Rightarrow 4 \times 9.8 \times(1 / \sqrt{2})-\{(2 \times 9.8 \times(1 / \sqrt{2})+0.5 \times 2 \times 9.8 \times(1 / \sqrt{2})\}=(4+2+0.5 / 0.01) a \\
& \Rightarrow 27.80-(13.90+6.95)=56 \mathrm{a} \Rightarrow \mathrm{a}=0.125 \mathrm{~ms}^{-2} .
\end{aligned}
\)
A uniform metre stick of mass \(200 \mathrm{~g}\) is suspended from the ceiling through two vertical strings of equal lengths fixed at the ends. A small object of mass \(20 \mathrm{~g}\) is placed on the stick at a distance of \(70 \mathrm{~cm}\) from the left end. Find the tensions in the two strings.
Given
Mass of the stick
\(
m_1=200 g
\)
Mass of the small object \(=m_2=20\)
Length of the string \(=l=1 m\)
As the system is in equilibrium, we have
\(\tau_{\text {total }}=0(\) about \(\mathrm{O})\)
\(
\begin{aligned}
& \left(T_1 \times r_1\right)-\left(T_2 \times r_2\right)-\left(m_1 g \times r_3\right)=0 \\
& \Rightarrow T_1 \times 0.7-T_2 \times 0.3-2 \times 0.2 \times g=0 \\
& \Rightarrow 7 T_1-3 T_2=3.92 \ldots \ldots \ldots \text { (1) }
\end{aligned}
\)
Now, we have
Total upward force \(=\) Total downward force
\(T_1+T_2=m_1 g+m_2 g\)
\(=0.2 \times 9.8+0.02 \times 9.8\)
\(\Rightarrow T_1+T_2=2.156 \dots(2)\)
Solving equations (1) and (2), we get
\(
\begin{aligned}
& T_1=1.038 N \approx 1.04 N \\
& T_2=1.18 \approx 1.12 N
\end{aligned}
\)
A uniform ladder of length \(10^{\circ} 0 \mathrm{~m}\) and mass \(16^{\circ} 0 \mathrm{~kg}\) is resting against a vertical wall making an angle of \(37^{\circ}\) with it. The vertical wall is frictionless but the ground is rough. An electrician weighing \(60^{\circ} 0 \mathrm{~kg}\) climbs up the ladder. If he stays on the ladder at a point \(8.00 \mathrm{~m}\) from the lower end, what will be the normal force and the force of friction on the ladder by the ground? What should be the minimum coefficient of friction for the electrician to work safely?
Let \(\mathrm{N}_2\) be the normal force on the ladder by the ground.
Let \(\mathrm{N}_1\) be the normal force on the ladder by the wall.
Let \(f_r\) be the force of friction on the ladder by the ground.
As system is in translation equilibrium, we have
\(
\begin{aligned}
& N_1=f_r=\mu N_2 \\
& N_2=16 g+60 g=745 N
\end{aligned}
\)
Applying condition of rotational equilibrium at point \(\mathrm{O}\), i.e., about point \(\mathrm{O}\), we have
\(
\begin{aligned}
& \Gamma_{\text {total }}=0 \\
& N_1 \times 10 \cos 37^{\circ}=16 \mathrm{~g} \times 5 \sin 37^{\circ}+60 \mathrm{~g} \times 8 \sin 37^{\circ} \\
& \Rightarrow 8 N_1=48 \mathrm{~g}+288 \mathrm{~g} \\
& \Rightarrow N_1=\frac{336 \times 9.8}{8}=412 \mathrm{~N} \\
& \therefore \mu=\frac{N_1}{N_2}=\frac{412}{745}=0.553
\end{aligned}
\)
Suppose the friction coefficient between the ground and the ladder of the previous problem is 0.540 . Find the maximum weight of a mechanic who could go up and do the work from the same position of the ladder.
Let the maximum mass of a mechanic who could go up be \(\mathrm{m}\).
The system is in translation and rotational equilibrium; therefore, we have \(N_2=16 g+m g \dots(1)\).
\(
N_1=\mu N_2 \dots(2)
\)
\(
\begin{aligned}
& N_1 \times 10 \cos 37^{\circ}=16 g \times 5 \sin 37^{\circ}-m g \times 8 \sin 37^{\circ} \dots(3) \\
& \Rightarrow 8 N_1=48 g+\frac{24}{5} m g
\end{aligned}
\)
From eq. (2), we have
\(
N_2=\frac{48 g+\frac{24}{5} m g}{8 \times 0.54}
\)
Putting the value of \(N_2\) in eq.(1), we have
\(
\begin{aligned}
& 16 g+m g=\frac{24.0 g+24 m g}{5 \times 8 \times 0.54} \\
& \Rightarrow 16+m=\frac{24.0+24 m}{40 \times 0.54} \\
& \Rightarrow m=44 \mathrm{~kg}
\end{aligned}
\)
Therefore, the weight of the mechanic, who can go up and do the work, should be less than \(44 \mathrm{~kg}\).
A \(6.5 \mathrm{~m}\) long ladder rests against a vertical wall reaching a height of \(6.0 \mathrm{~m}\). A \(60 \mathrm{~kg}\) man stands half way up the ladder. (a) Find the torque of the force exerted by the man on the ladder about the upper end of the ladder. (b) Assuming the weight of the ladder to be negligible as compared to the man and assuming the wall to be smooth, find the force exerted by the ground on the ladder.
Given Mass of the \(\operatorname{man}=m=60 \mathrm{~kg}\)
Ladder length \(=6.5 \mathrm{~m}\)
Height of the wall \(=6 \mathrm{~m}\)
(a) We have to find the torque due to the weight of the body about the upper end of the ladder.
\(
\begin{aligned}
& \tau=60 \times 10 \times \frac{6.5}{2} \sin \theta \\
& \Rightarrow \tau=600 \times \frac{6.5}{2} \times \sqrt{\left(1-\cos ^2 \theta\right)} \\
& \Rightarrow \tau=600 \times\left(\frac{6.5}{2}\right) \times \sqrt{\left\{1-\left(\frac{6}{6.5}\right)^2\right\}} \\
& \Rightarrow \tau=740 N-m
\end{aligned}
\)
(b) Let us find the vertical force exerted by the ground on the ladder.
\(
N_2=m g=60 \times 9.8=588 N \approx 590 N
\)
Vertical force exerted by the ground on the ladder \(=\mu R_2=R_1\)
As system is in rotational equilibrium, we have
\(
\tau_{\text {net }}=0 \ldots \ldots \ldots \ldots(\text { about } \mathrm{O})
\)
\(
6.5 N_1 \cos \theta=60 g \times \frac{6.5}{2} \sin \theta
\)
\(
\Rightarrow N_1=\frac{1}{2} 60 g \tan \theta
\)
\(
=\frac{1}{2} 60 g \times\left(\frac{2.5}{6}\right) \ldots \ldots \ldots \ldots\left[\text { using, } \tan \theta=\frac{2.5}{6}\right]
\)
\(
\begin{aligned}
& \Rightarrow N_1=\frac{25}{2} g \\
& \Rightarrow N_1=122.5 N \approx 120 N
\end{aligned}
\)
The door of an almirah is \(6 \mathrm{ft}\) high, \(1.5 \mathrm{ft}\) wide and weighs \(8 \mathrm{~kg}\). The door is supported by two hinges situated at a distance of \(1 \mathrm{ft}\) from the ends. If the magnitudes of the forces exerted by the hinges on the door are equal, find this magnitude.
It is given that the magnitudes of the forces exerted by the hinges on the door are equal.
Therefore, we have
Resultant of \(\mathrm{N}_1\) and \(\mathrm{F}_1\) at point \(\mathrm{A}=\) Resultant of \(\mathrm{N}_2\) and \(\mathrm{F}_2\) at point \(\mathrm{B}\)
\(\text { Since, } R_1=R_2\)
\(
\Rightarrow \sqrt{\left(N_1\right)^2+\left(F_1\right)^2}=\sqrt{\left(N_2\right)^2+\left(F_2\right)^2} \dots(1)
\)
The system is in translation equilibrium. Therefore, we have
The system is in translation equilibrium. Therefore, we have
\(
\begin{aligned}
& \mathrm{N}_1=\mathrm{N}_2 \\
& 8 g=F_1+F_2
\end{aligned}
\)
Putting the value in eq. (1), we get
\(
\begin{aligned}
& \mathrm{F}_1=\mathrm{F}_2 \\
& \Rightarrow 2 F_1=8 \mathrm{~g} \\
& \Rightarrow F_1=40
\end{aligned}
\)
Let us take the torque about point B. We get
\(
\begin{aligned}
& N_1 \times 4=8 g \times 0.75 \\
& \Rightarrow N_1=\frac{(80 \times 3)}{4 \times 4}=15 N
\end{aligned}
\)
Now, the forces exerted by the hinges A on the door,
\(
\sqrt{\left(F_1^2+N_1^2\right)}=\sqrt{\left(40^2+15^2\right)}=42.72=43 N
\)
A uniform rod of length \(L\) rests against a smooth roller as shown in figure (10-E9). Find the friction coefficient between the ground and the lower end if the minimum angle that the rod can make with the horizontal is \(\theta\).
Rod has a length \(=\mathrm{L}\)
It makes an angle \(\theta\) with the floor
The vertical wall has a height \(=h\)
The system is in translational equilibrium; therefore, we get
\(
\begin{aligned}
& N_2=m g-N_1 \cos \theta \dots(1)\\
& N_1 \sin \theta=\mu N_2 \dots(2)
\end{aligned}
\)
\(
\begin{aligned}
& N_1 \cos \theta \times \frac{h}{\tan \theta}+N_1 \sin \theta \times h=m g \times \frac{L}{2} \cos \theta \\
& \Rightarrow N_1=\frac{m g \times \frac{L}{2} \cos \theta}{\left(\frac{\cos ^2 \theta}{\sin \theta}\right) h+h \sin \theta} \\
& \Rightarrow N_1 \cos \theta=\frac{\frac{1}{2} m g L \cos ^2 \theta}{\left\{\left(\frac{\cos ^2 \theta}{\sin \theta}\right) h+h \sin \theta\right\}}
\end{aligned}
\)
From equation (2), we have
\(
\begin{aligned}
& \mu=\frac{N_1 \sin \theta}{N_2} \\
& =\frac{N_1 \sin \theta}{m g-N_1 \cos \theta} \\
& \Rightarrow \mu=\frac{L / 2 \cos \theta \sin \theta \times 2 \sin \theta}{2\left(\cos ^2 \theta+\sin ^2 \theta\right) h-L \cos ^2 \theta \sin \theta} \\
& \Rightarrow \mu=\frac{L \cos \theta \sin ^2 \theta}{2 h-L \cos ^2 \theta \sin \theta}
\end{aligned}
\)
A uniform rod of mass \(300 \mathrm{~g}\) and length \(50 \mathrm{~cm}\) rotates at a uniform angular speed of \(2 \mathrm{rad} / \mathrm{s}\) about an axis perpendicular to the rod through an end. Calculate (a) the angular momentum of the rod about the axis of rotation, (b) the speed of the centre of the rod and (c) its kinetic energy.
Given
Mass of the rod \(=\mathrm{m}=300 \mathrm{gm}\)
Length of the rod \(=I=50 \mathrm{~cm}\)
Angular velocity of the \(\mathrm{rod}=\omega=2 \mathrm{rad} / \mathrm{s}\)
(a) Moment of inertia about one end of the rod,
\(
\begin{aligned}
& I=\frac{m L^2}{3}=\frac{\left\{0.3 \times(0.50)^2\right\}}{3} \\
& \Rightarrow I=\frac{0.25}{10}=0.025 \mathrm{~kg}-\mathrm{m}^2
\end{aligned}
\)
Angular momentum about that point,
\(
\begin{aligned}
& L=I \omega \\
& L=0.025 \times 2=0.05 \mathrm{~kg}-\mathrm{m}^2 / \mathrm{s}
\end{aligned}
\)
(b) Speed of the centre of the rod,
\(
v=\omega r=2 \times \frac{0.50}{2}=0.5 \mathrm{~m} / \mathrm{s}
\)
(c) Kinetic energy,
\(
\begin{aligned}
& K=\frac{1}{2} I \omega^2 \\
& \Rightarrow K=\frac{1}{2} \times 0.025 \times 2^2=\frac{1}{2} \times 0.025 \times 4=0.05 \text { joule }
\end{aligned}
\)
A uniform square plate of mass \(2.0 \mathrm{~kg}\) and edge \(10 \mathrm{~cm}\) rotates about one of its diagonals under the action of a constant torque of \(0.10 \mathrm{~N}-\mathrm{m}\). Calculate the angular momentum and the kinetic energy of the plate at the end of the fifth second after the start.
Given
Torque acting on the plate \(=\tau=0.10 N-m\)
Mass of the plate \(=m=2 \mathrm{~kg}\)
On applying \(\tau=I \alpha\), we get
\(
\begin{aligned}
& \frac{m r^2}{12} \times \alpha=0.10 N-m \\
& \Rightarrow \alpha=60 \mathrm{rad} / \mathrm{s}
\end{aligned}
\)
Let \(\omega\) be the angular velocity after time \(t(t=5 \mathrm{~s})\).
Therefore, we have
\(
\begin{aligned}
& \omega=\omega_0+\alpha t \\
& \Rightarrow \omega=60 \times 5=300 \mathrm{rad} / \mathrm{s}
\end{aligned}
\)
Angular momentum,
\(
\begin{aligned}
& I \omega=\left(\frac{0.10}{60}\right) \times 300 \\
& =0.50 \mathrm{~kg}-\mathrm{m}^2 / \mathrm{s}
\end{aligned}
\)
Kinetic energy,
\(
\begin{aligned}
& \frac{1}{2} I \omega^2=\frac{1}{2} \times\left(\frac{0.10}{60}\right) \times 300^2 \\
& =75 \text { joule }
\end{aligned}
\)
Calculate the ratio of the angular momentum of the earth about its axis due to its spinning motion to that about the sun due to its orbital motion. Radius of the earth \(=6400 \mathrm{~km}\) and radius of the orbit of the earth about the sun \(=1.5 \times 10^8 \mathrm{~km}\).
Given
\(
\begin{aligned}
& r=6400 \mathrm{~km}=6.4 \times 10^6 \mathrm{~m} ; \\
& R=1.5 \times 10^8 \mathrm{~km}=1.5 \times 10^{11} \mathrm{~m}
\end{aligned}
\)
About its axis, we have
\(
\begin{aligned}
& \mathrm{T}=1 \text { day }=86400 \mathrm{~s} ; \\
& \omega=\frac{2 \pi}{T}
\end{aligned}
\)
Angular momentum of the Earth about its axis,
\(
\begin{aligned}
& L=I \omega \\
& =\frac{2}{5} m r^2 \times\left(\frac{2 \pi}{86400}\right)
\end{aligned}
\)
About the Sun’s axis,
\(
T=365 \text { day }=365 \times 86400 \mathrm{~s}
\)
Angular momentum of the Earth about the Sun’s axis,
\(
L^{\prime}=m R^2 \times\left(\frac{2 \pi}{86400 \times 365}\right)
\)
Ratio of angular momentums,
\(
\begin{aligned}
& \frac{L}{L^{\prime}}=\frac{2 / 5 m r^2 \times(2 \pi / 86400)}{m R^2 \times 2 \pi /(86400 \times 365)} \\
& =\frac{\left(2 r^2 \times 365\right)}{5 R^2}=\left(\frac{2 \times\left(6.4 \times 10^6\right)^2 \times 365}{5 \times\left(1.5 \times 10^{11}\right)^2}\right) \\
& =2.65 \times 10^{-7}
\end{aligned}
\)
A dumb-bell consists of two identical small balls of mass \(1 / 2 \mathrm{~kg}\) each connected to the two ends of a \(50 \mathrm{~cm}\) long light rod. The dumb-bell is rotating about a fixed axis through the centre of the rod and perpendicular to it at an angular speed of \(10 \mathrm{rad} / \mathrm{s}\). An impulsive force of average magnitude \(5.0 \mathrm{~N}\) acts on one of the masses in the direction of its velocity for \(0.10 \mathrm{~s}\). Find the new angular velocity of the system.
Moment of inertia of the dumb-bell,
\(
I=m r^2+m r^2=2 m r^2
\)
Torque,
\(
\begin{aligned}
& \tau=I \alpha \\
& \Rightarrow F \times r=\left(m r^2+m r^2\right) \alpha \\
& \Rightarrow 5 \times 0.25=2 m r^2 \times \alpha \\
& \Rightarrow \alpha=\frac{1.25}{2 \times 0.5 \times(0.25)^2}=20 \mathrm{rad} / \mathrm{s}^2
\end{aligned}
\)
Given
Using \(\omega=\omega_0+\alpha t\), we get
\(
\omega=10+20 \times 0.10=10+2=12 \mathrm{rad} / \mathrm{s}
\)
A wheel of moment of inertia \(0.500 \mathrm{~kg}-\mathrm{m}^2\) and radius \(20.0 \mathrm{~cm}\) is rotating about its axis at an angular speed of \(20.0 \mathrm{~rad} / \mathrm{s}\). It picks up a stationary particle of mass \(200 \mathrm{~g}\) at its edge. Find the new angular speed of the wheel.
Given
The initial moment of inertia of the system,
\(
\begin{aligned}
& \mathrm{l}_1=0.500 \mathrm{~kg}-\mathrm{m}^2 ; \\
& r=0.2 \mathrm{~m} ; \\
& \omega=20 \mathrm{rad} / \mathrm{s}
\end{aligned}
\)
Mass of the stationary particle, \(m=0.2 \mathrm{~kg}\)
Final moment of inertia of the system,
\(
\mathrm{I}_2=\mathrm{I}_1+m r^2
\)
It is given
External torque \(=0\)
Angular momentum is conserved; therefore, we have
\(
\begin{aligned}
& I_1 \omega_1=I_2 \omega_2 \\
& \Rightarrow 0.5 \times 20=\left(0.5+0.2 \times(0.2)^2\right) \omega_2 \\
& \Rightarrow \omega_2=\frac{10}{0.508} \approx 19.7 \mathrm{rad} / \mathrm{s}
\end{aligned}
\)
A diver having a moment of inertia of \(6.0 \mathrm{~kg}-\mathrm{m}^2\) about an axis through its centre of mass rotates at an angular speed of \(2 \mathrm{rad} / \mathrm{s}\) about this axis. If he folds his hands and feet to decrease the moment of inertia to \(5^{\circ} 0 \mathrm{~kg}-\mathrm{m}^2\), what will be the new angular speed?
Initial moment of inertia of diver, \(\mathrm{l}_1=6 \mathrm{~kg}-\mathrm{m}^2\)
Initial angular velocity of diver, \(\omega_1=2 \mathrm{rad} / \mathrm{s}\)
Final moment of inertia of diver, \(\mathrm{l}_2=5 \mathrm{~kg}-\mathrm{m}^2\)
Let \(\omega_2\) be the final angular velocity of the diver.
We have
External torque \(=0\)
\(
\begin{aligned}
& \therefore \mathrm{I}_1 \omega_1=\mathrm{I}_2 \omega_2 \\
& \Rightarrow \omega_2=\frac{6 \times 2}{5}=2.4 \mathrm{rad} / \mathrm{s}
\end{aligned}
\)
A boy is seated in a revolving chair revolving at an angular speed of 120 revolutions per minute. Two heavy balls form part of the revolving system and the boy can pull the balls closer to himself or may push them apart. If by pulling the balls closer, the boy decreases the moment of inertia of the system from \(6 \mathrm{~kg}-\mathrm{m}^2\) to \(2 \mathrm{~kg}-\mathrm{m}^2\), what will be the new angular speed?
Given, Initial angular speed of the system,
\(
\omega_1=120 \mathrm{rpm}=120 \times\left(\frac{2 \pi}{60}\right)=4 \pi \mathrm{rad} / \mathrm{s}
\)
Initial moment of inertia of the system,
\(
I_1=6 k g-m^2
\)
Final moment of inertia of the system,
\(
I_2=2 k g-m^2
\)
Two balls are inside the system; therefore, we get
Total external torque \(=0\)
\(
\begin{aligned}
& I_2=2 \mathrm{~kg}-\mathrm{m}^2 \\
& \therefore I_1 \omega_1=I_2 \omega_2 \\
& \Rightarrow 6 \times 4 \pi=2 \omega_2 \\
& \Rightarrow \omega_2=12 \pi \mathrm{rad} / \mathrm{s}
\end{aligned}
\)
Or, \(\omega_2=6 \mathrm{rev} / \mathrm{s}=360 \mathrm{rev} / \mathrm{minute}\)
A boy is standing on a platform which is free to rotate about its axis. The boy holds an open umbrella in his hand. The axis of the umbrella coincides with that of the platform. The moment of inertia of “the platform plus the boy system” is \(3 \cdot 0 \times 10^{-3} \mathrm{~kg}-\mathrm{m}^2\) and that of the umbrella is \(2.0 \times 10^{-3} \mathrm{~kg}-\mathrm{m}^2\). The boy starts spinning the umbrella about the axis at an angular speed of \(2^{\circ} 0\) \(\mathrm{rev} / \mathrm{s}\) with respect to himself. Find the angular velocity imparted to the platform.
Given
Moment of inertia of umbrella \(=\mathrm{l}_1=2 \times 10^{-3} \mathrm{~kg}-\mathrm{m}^2\)
Moment of inertia of the system \(=\mathrm{I}_2=3 \times 10^{-3} \mathrm{~kg}-\mathrm{m}^2\)
Angular speed of the umbrella with respect to the boy \(=\omega_1=2 \mathrm{rev} / \mathrm{s}\)
Let the angular velocity imparted to the platform be \(\omega_2\).
Taking the Earth as the reference, we have
Angular velocity of the umbrella \(=\left(\omega_1-\omega_2\right)\)
Applying conservation of angular momentum, we get
\(
\begin{aligned}
& I_1\left(\omega_1-\omega_2\right)=I_2\left(\omega_2\right) \\
& \Rightarrow 2 \times 10^{-3}\left(2-\omega_2\right)=3 \times 10^{-3} \omega_2 \\
& \Rightarrow 5 \omega_2=4 \\
& \Rightarrow \omega_2=0.8 \mathrm{rev} / \mathrm{s}
\end{aligned}
\)
A wheel of moment of inertia \(0.10 \mathrm{~kg}-\mathrm{m}^2\) is rotating about a shaft at an angular speed of \(160 \mathrm{rev} /\) minute. A second wheel is set into rotation at \(300 \mathrm{rev} / \mathrm{minute}\) and is coupled to the same shaft so that both the wheels finally rotate with a common angular speed of 200 rev/minute. Find the moment of inertia of the second wheel.
Given
For the first wheel,
\(
I_1=10 \mathrm{~kg}-\mathrm{m}^2 \text { and } \omega_1=160 \mathrm{rev} / \mathrm{min}
\)
For the second wheel, \(\omega_2=300 \mathrm{rev} / \mathrm{min}\)
Let \(I_2\) be the moment of inertia of the second wheel.
After they are coupled, we have
\(
\omega=200 \mathrm{rev} / \mathrm{min}
\)
If we take the two wheels to be an isolated system, we get
Total external torque \(=0\)
Therefore, we have
\(
\begin{aligned}
& I_1 \omega_1+I_2 \omega_2=\left(I_1+I_2\right) \omega \\
& \Rightarrow 0.10 \times 160+I_2 \times 300=\left(0.10+I_2\right) \times 200 \\
& \Rightarrow 16+300 I_2=20+200 I_2 \\
& \Rightarrow 100 I_2=4 \\
& \Rightarrow I_2=\frac{4}{100}=0.04 \mathrm{~kg}-\mathrm{m}^2
\end{aligned}
\)
A kid of mass \(M\) stands at the edge of a platform of radius \(R\) which can be freely rotated about its axis. The moment of inertia of the platform is \(I\). The system is at rest when a friend throws a ball of mass \(m\) and the kid catches it. If the velocity of the ball is \(v\) horizontally along the tangent to the edge of the platform when it was caught by the kid, find the angular speed of the platform after the event.
On considering two bodies as a system, we get
Moment of inertia of kid and ball about the axis
\(
=(M+m) R^2
\)
Applying the law of conservation of angular momentum, we have
\(
\begin{aligned}
& m v R=\left\{I+(M+m) R^2\right\} \omega \\
& \Rightarrow \omega=\frac{m v R}{I+(M+m) R^2}
\end{aligned}
\)
Suppose the platform of the previous problem is brought to rest with the ball in the hand of the kid standing on the rim. The kid throws the ball horizontally to his friend in a direction tangential to the rim with a speed \(v\) as seen by his friend. Find the angular velocity with which the platform will start rotating.
Initial angular momentum = Final angular momentum (the total external torque \(=0\) )
Initial angular momentum \(=m v R(m=\) mass of the ball, \(v=\) velocity of the ball, \(R=\) radius of platform \()\)
\(
\text { Therefore angular momentum }=I \times \omega+\mathrm{MR}^2 \omega
\)
Therefore \(\mathrm{mvR}=\mathrm{I} \times \omega+\mathrm{MR}^2 \omega\) \(\Rightarrow \omega=\frac{m v R}{\left(I+M R^2\right)}\)
Suppose the platform with the kid in the previous problem is rotating in anticlockwise direction at an angular speed \(\omega\). The kid starts walking along the rim with a speed \(v\) relative to the platform also in the anticlockwise direction. Find the new angular speed of the platform.
From an inertial frame of reference when we see the (man wheel) system, we can find that the wheel moving at a speed of \(\omega\) and the man with \((\omega^{\prime}+V / R)\) after the man has started walking. \(\left(\omega^{\prime}=\right.\) angular velocity after walking, \(\omega=\) angular velocity of the wheel before walking).
Initial angular momentum of the system \(=\left(I+M R^2\right) \omega\)
Angular velocity of the kid after it starts walking \(=\left(\omega^{\prime}+\frac{V}{R}\right)\)
External torque is zero; therefore, angular momentum is conserved.
\(
\text { Therefore }\left(I+M R^2\right) \omega=I \omega^{\prime}+m R^2\left(\omega^{\prime}+V / R\right)
\)
\(
\Rightarrow \omega^{\prime}=\omega-\frac{m V R}{\left(1+m R^2\right)}
\)
A uniform rod of length \(L\) lies on a smooth horizontal table. A particle moving on the table strikes the rod perpendicularly at an end and stops. Find the distance travelled by the centre of the rod by the time it turns through a right angle. Show that if the mass of the rod is four times that of the particle, the collision is elastic.
Let the initial velocity of the particle \(=u_1\)
Let the final velocity of the particle \(=v_1\)
Let time taken to move \(\frac{\pi}{2}\) angle \(=\mathrm{t}\)
Given \(v_1=0\)
Let initial velocity of \(C M\) of the rod \(=u_2\)
Given \(\mathrm{u}_2=0\)
Let final velocity of the \(C M\) of rod \(=v_2\)
By conservation of linear momentum
\(
\begin{aligned}
& \mathrm{mu}_1+\mathrm{Mu}_2=\mathrm{mv}_1+\mathrm{Mv}_2 \\
& \Rightarrow v_2=\left(\frac{m}{M}\right) u_1 \dots(1)
\end{aligned}
\)
Now by we consider the angular momentum imparted by the particle to the rod.
\(
m u_1\left(\frac{L}{2}\right)=I \omega
\)
For rod about its CM, \(I=\frac{M L^2}{12}\)
\(
\begin{aligned}
& \mathrm{mu}_1(\mathrm{~L} / 2)=\omega \mathrm{ML}_2 / 12 \\
& \Rightarrow \omega=\frac{6 m u_1}{M L} \dots(2)
\end{aligned}
\)
Now we know
\(
\begin{aligned}
& \omega=\theta / t \\
& \theta=\pi / 2 \\
& \Rightarrow t=\frac{\theta}{\omega}=\frac{\frac{\pi}{2}}{\frac{6 m u_1}{M L}} \\
& \Rightarrow t=\frac{\pi M L}{12 m u_1}
\end{aligned}
\)
Linear distance moved by the CM of the rod will be
\(
s=v_2 t
\)
By equation 1.
\(
\begin{aligned}
& s=\left[\frac{\pi M L}{12 m u_1}\right] \times\left(\frac{m}{M}\right) u_1 \\
& =\frac{\pi L}{12}
\end{aligned}
\)
Two small balls \(A\) and \(B\), each of mass \(m\), are joined rigidly by a light horizontal rod of length \(L\). The rod is clamped at the centre in such a way that it can rotate freely about a vertical axis through its centre. The system is rotated with an angular speed \(\omega\) about the axis. A particle \(P\) of mass \(m\) kept at rest sticks to the ball \(A\) as the ball collides with it. Find the new angular speed of the rod.
Since external torque \(=0\)
Let the new angular speed of the rod be \(\omega^{\prime}\).
Here, net torque on the system is zero.
So, the angular momentum is conserved.
Therefore, we get
\(
\begin{aligned}
& I \omega=I^{\prime} \omega^{\prime} \\
& {\left[m\left(\frac{L}{2}\right)^2+m\left(\frac{L}{2}\right)^2\right] \omega=\left[2 m\left(\frac{L}{2}\right)^2+m\left(\frac{L}{2}\right)^2\right] \omega^{\prime}} \\
& 2 m L^2 \omega=3 m L^2 \omega^{\prime} \\
& \Rightarrow \omega^{\prime}=\frac{2}{3} \omega
\end{aligned}
\)
Two blocks of masses \(400 \mathrm{~g}\) and \(200 \mathrm{~g}\) are connected through a light string going over a pulley which is free to rotate about its axis. The pulley has a moment of inertia \(1.6 \times 10^{-4} \mathrm{~kg}-\mathrm{m}^2\) and a radius \(2.0 \mathrm{~cm}\). Find (a) the kinetic energy of the system as the \(400 \mathrm{~g}\) block falls through \(50 \mathrm{~cm}\), (b) the speed of the blocks at this instant.
From the free-body diagram, we have
\(
\begin{aligned}
0.4 g-T_1 & =0.4 a \ldots \ldots \ldots(1) \\
T_2-0.2 g & =0.2 a \ldots \ldots \ldots(2) \\
\left(T_1-T_2\right) r & =\frac{l a}{r} \ldots \ldots \ldots \ldots(3)
\end{aligned}
\)
On solving the above equations, we get
\(
a=\frac{(0.4-0.2) g}{\left(0.4+0.2+\frac{1.6}{0.4}\right)}=\frac{g}{5}
\)
On solving the (b) part of the question first, we have
\(
\text { Speed of the blocks }=v=\sqrt{(2 a h)}=\sqrt{2 \times \frac{g}{5} \times 0.5}=\sqrt{\left(\frac{9.8}{5}\right)}=1.4 \mathrm{~m} / \mathrm{s}
\)
(a) (a) Total kinetic energy of the system
\(
\begin{aligned}
& =\frac{1}{2} m_1 v^2+\frac{1}{2} m_2 v^2+\frac{1}{2} I \omega^2 \\
& =\frac{1}{2} m_1 v^2+\frac{1}{2} m_2 v^2+\frac{1}{2} I\left(\frac{v}{r}\right)^2 \\
& =\left(\frac{1}{2} \times 0.4 \times(1.4)^2\right)+\left(\frac{1}{2} \times 0.2 \times(1.4)^2\right)+\left(\frac{1}{2} \times 1.6 \times 10^{-4} \times\left(\frac{1.4}{2 \times 10^{-2}}\right)^2\right) \\
& =(0.2+0.1+0.2)(1.4)^2 \\
& =0.5 \times 1.96=0.98 \text { joule }
\end{aligned}
\)
The pulley shown in figure \((10-\mathrm{E} 11)\) has a radius of \(20 \mathrm{~cm}\) and moment of inertia \(0^{-} 2 \mathrm{~kg}-\mathrm{m}^2\). The string going over it is attached at one end to a vertical spring of spring constant \(50 \mathrm{~N} / \mathrm{m}\) fixed from below, and supports a \(1 \mathrm{~kg}\) mass at the other end. The system is released from rest with the spring at its natural length. Find the speed of the block when it has descended through \(10 \mathrm{~cm}\). Take \(g=10 \mathrm{~m} / \mathrm{s}^2\).
Given
Moment of inertia of the pully \(=1=0.2 \mathrm{~kg}-\mathrm{m}^2\)
Radius of the pully \(=r=0.2 \mathrm{~m}\)
Spring constant of the spring \(=\mathrm{k}=50 \mathrm{~N} / \mathrm{m}\)
Mass of the block \(=\mathrm{m}=1 \mathrm{~kg}\)
\(\mathrm{g}=10 \mathrm{~ms}^2\) and \(\mathrm{h}=0.1 \mathrm{~m}\)
On applying the law of conservation of energy, we get
\(
m g h=\frac{1}{2} m v^2+\frac{1}{2} k x^2+\frac{1}{2} I\left(\frac{\omega}{r}\right)^2
\)
On putting \(x=h=0.1 \mathrm{~m}\), we get
\(
\begin{aligned}
& 1=\frac{1}{2} \times 1 \times v^2+\frac{1}{2} \times 0.2 \times \frac{v^2}{0.04}+\frac{1}{2} \times 50 \times 0.01 \\
& \Rightarrow 1=0.5 v^2+2.5 v^2+\frac{1}{4} \\
& \Rightarrow 3 v^2=\frac{3}{4} \\
& \Rightarrow v^2=\frac{1}{4} \\
& \Rightarrow v=\frac{1}{2}=0.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
A metre stick is held vertically with one end on a rough horizontal floor. It is gently allowed to fall on the floor. Assuming that the end at the floor does not slip, find the angular speed of the rod when it hits the floor.
Let the mass of the rod and its angular velocity be \(m\) and \(\omega\) (when hits the ground), respectively.
It is given that the rod has rotational motion only.
On applying the law of conservation of energy, we get
\(
\begin{aligned}
& \frac{1}{2} I \omega^2=m g \frac{l}{2} \\
& \Rightarrow \frac{m l^2}{3} \times \omega^2=m g l \\
& \Rightarrow \omega^2=\frac{3 g}{l} \\
& \Rightarrow \omega=\sqrt{\frac{3 g}{l}}=\sqrt{\left(3 \times \frac{9.8}{1}\right)} \\
& \Rightarrow \omega=5.42 \mathrm{rad} / \mathrm{s}
\end{aligned}
\)
A metre stick weighing \(240 \mathrm{~g}\) is pivoted at its upper end in such a way that it can freely rotate in a vertical plane through this end (figure 10-E12). A particle of mass \(100 \mathrm{~g}\) is attached to the upper end of the stick through a light string of length \(1 \mathrm{~m}\). Initially, the rod is kept vertical and the string horizontal when the system is released from rest. The particle collides with the lower end of the stick and sticks there. Find the maximum angle through which the stick will rise
Let the angular velocity of the stick after the collision be \(\omega\).
Given
Mass of the stick \(=m=240 \mathrm{~g}\)
Mass of the particle \(=m^{\prime}=100 \mathrm{~g}\)
Length of the string (or rod) \(=r=l=1 \mathrm{~m}\)
Moment of inertia of the particle about the pivoted end \(=I^{\prime}=m^{\prime} r^2\)
\(
\begin{aligned}
& \Rightarrow I^{\prime}=\left(0.1 \times 1^2\right) \\
& \Rightarrow I^{\prime}=0.1 \mathrm{~kg}-\mathrm{m}^2
\end{aligned}
\)
Moment of inertia of the rod about the pivoted end \(=I=\frac{m l^2}{3}\)
\(
\begin{aligned}
& \Rightarrow I=\left(\frac{0.24}{3} \times 1^2\right) \\
& \Rightarrow I=0.08 \mathrm{~kg}-\mathrm{m}^2
\end{aligned}
\)
Applying the law of conservation of energy, we get
Final energy of the particle \(=\) Initial energy of the rod
\(
\begin{aligned}
& m g h=\frac{1}{2} I \omega^2 \\
& \Rightarrow \frac{1}{2} I \omega^2=0.1 \times 10 \times 1 \\
& \Rightarrow \omega=\sqrt{20}
\end{aligned}
\)
For collision, we have
\(
\begin{aligned}
& 0.1 \times 1^2 \times \sqrt{20}+0 \\
& =\left[\left(\frac{0.24}{3}\right) \times 1^2+(0.1)^2(1)^2\right] \omega^{\prime} \\
& \Rightarrow \omega^{\prime}=\frac{\sqrt{20}}{[10 \times(0.18)]}
\end{aligned}
\)
Applying energy principle
\(
\begin{aligned}
& \Rightarrow 0-\frac{1}{2} I \omega^{\prime 2}=-m_1 g l(1-\cos \theta)-m_2 g \frac{1}{2}(1-\cos \theta) \\
& \Rightarrow \frac{1}{2} I \omega^{\prime 2}=-m g l(1-\cos \theta)-m_2 g \frac{1}{2}(1-\cos \theta) \\
& \Rightarrow \frac{1}{2} I \omega^{\prime 2}=0.1 \times 10(1-\cos \theta)-0.24 \times 10 \times 0.5(1-\cos \theta)
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \frac{1}{2} \times 0.18 \times\left(\frac{20}{324}\right)=2.2 \times 9(1-\cos \theta) \\
& \Rightarrow(1-\cos \theta)=\frac{1}{(2.2 \times 1.8)} \\
& \Rightarrow 1-\cos \theta=0.252 \\
& \Rightarrow \cos \theta=1-0.252=0.748 \\
& \Rightarrow \theta=\cos ^{-1}(0.748)=41^{\circ}
\end{aligned}
\)
A uniform rod pivoted at its upper end hangs vertically. It is displaced through an angle of \(60^{\circ}\) and then released. Find the magnitude of the force acting on a particle of mass \(d m\) at the tip of the rod when the rod makes an angle of \(37^{\circ}\) with the vertical.
Let the length of the rod be \(l\).
Mass of the rod be \(m\).
Let the angular velocity of the rod be \(\omega\) when it makes an angle of \(37^{\circ}\) with the vertical.
On applying the law of conservation of energy, we get
\(
\begin{aligned}
& \frac{1}{2} I \omega^2-0=m g \frac{l}{2}\left(\cos 37^{\circ}-\cos 60^{\circ}\right) \\
& \Rightarrow \frac{1}{2} \times \frac{m l^2 \omega^2}{3}=m g \frac{l}{2}\left(\frac{4}{5}-\frac{1}{2}\right) \\
& \Rightarrow \omega^2=\frac{9 g}{10 l}
\end{aligned}
\)
Let the angular acceleration of the rod be \(\alpha\) when it makes an angle of \(37^{\circ}\) with the vertical.
Using \(\tau=I \alpha\), we get
\(
\begin{aligned}
& I \alpha=m g \frac{l}{2} \sin 37^{\circ} \\
& \Rightarrow \frac{m l^2}{3} \alpha=m g \frac{l}{2} \times \frac{3}{5} \\
& \Rightarrow \alpha=0.9\left(\frac{g}{l}\right)
\end{aligned}
\)
So, to find out the force on the particle at the tip of the rod
Force on the particle of mass \(\mathrm{dm}\) at the tip of the rod
\(
\begin{aligned}
& F_c=\text { centrifugal force } \\
& =(d m) \omega^2 l=(d m) \frac{9 g}{10 l} l \\
& \Rightarrow F_c=0.9 g(d m) \\
& F_t=\text { tangential force } \\
& =(d m) \alpha l \\
& \Rightarrow F_t=0.9 g(d m)
\end{aligned}
\)
So, total force on the particle of mass \(\mathrm{dm}\) at the tip of the rod will be the resultant of \(\mathrm{F}_{\mathrm{c}}\) and \(\mathrm{F}_{\mathrm{t}}\).
\(
\begin{aligned}
& \therefore F=\sqrt{\left(F_c^2+F_t^2\right)} \\
& =0.9 \sqrt{2} (d m) g
\end{aligned}
\)
A cylinder rolls on a horizontal plane surface. If the speed of the centre is \(25 \mathrm{~m} / \mathrm{s}\), what is the speed of the highest point?
Let \(\mathrm{v}_{\mathrm{c}}\) be the translational velocity of the cylinder.
Let \(\omega\) be the rotational velocity of the cylinder.
Let \(r\) be the radius of the cylinder.
For rolling, we have
\(
v_c=r \omega
\)
Speed of the highest point \(=v_c+r \omega=2 v_c\)
\(
\Rightarrow 2 \times 25 \mathrm{~m} / \mathrm{s}=50 \mathrm{~m} / \mathrm{s}
\)
A sphere of mass \(m\) rolls on a plane surface. Find its kinetic energy at an instant when its centre moves with speed \(v\).
Let radius of the sphere be \(R\) and its angular speed be \(\omega\).
Moment of inertia of sphere,
\(
I=\frac{2}{5} m R^2
\)
Total kinetic energy,
\(
\begin{aligned}
K & =\frac{1}{2} I \omega^2+\frac{1}{2} m v^2 \\
K & =\frac{1}{2} \times\left(\frac{2}{5} m R^2\right) \times \frac{v^2}{R^2}+\left(\frac{1}{2} m v^2\right) \\
K & =\frac{2}{10} m v^2+\frac{1}{2} m v^2 \\
K & =\frac{(2+5) m v^2}{10}=\frac{7}{10} m v^2
\end{aligned}
\)
A string is wrapped over the edge of a uniform disc and the free end is fixed with the ceiling. The disc moves down, unwinding the string. Find the downward acceleration of the disc.
Let the radius of the disc be \(R\).
Let the tension in the string be \(\mathrm{T}\).
Let the acceleration of the disc be a.
From the free-body diagram, we have
\(
m g-T=m a \dots(1)
\)
The torque about the centre of disc,
\(
\begin{aligned}
& T \times R=I \times \alpha \\
& \Rightarrow T \times R=\frac{1}{2} m R^2 \times \frac{a}{R} \\
& \Rightarrow T=\frac{1}{2} m a \dots(2)
\end{aligned}
\)
Putting this value in equation (1), we get
\(
\begin{aligned}
& m g-\frac{1}{2} m a=m a \\
& \Rightarrow m g=\frac{3}{2} m a \\
& \Rightarrow a=\frac{2 g}{3}
\end{aligned}
\)
A small spherical ball is released from a point at a height \(h\) on a rough track shown in Figure (10-E13). Assuming that it does not slip anywhere, find its linear speed when it rolls on the horizontal part of the track.
Let \(R\) be the radius of the ball.
Let \(v\) be the linear speed of the ball when it rolls on the horizontal part of the track.
Let \(\omega\) be the angular speed of the ball when it rolls on the horizontal part of the track.
A small spherical ball is released from a point at a height on a rough track \& the sphere does not slip. Therefore potential energy it has gained w.r.t the surface will be converted to angular kinetic energy about the centre & linear kinetic energy.
Therefore, we have
\(
\begin{aligned}
& m g h=\frac{1}{2} I \omega^2+m v^2 \\
& \Rightarrow m g h=\frac{1}{2} \times\left(\frac{2}{5} m R^2\right) \times\left(\frac{v}{R}\right)^2+\frac{1}{2} m v^2 \\
& \Rightarrow g h=\frac{1}{5} v^2+\frac{1}{2} v^2 \\
& \Rightarrow v^2=\left(\frac{10}{7}\right) g h \\
& \Rightarrow v=\sqrt{\left(\frac{10 g h}{7}\right)}
\end{aligned}
\)
A small disc is set rolling with a speed \(v\) on the horizontal part of the track of the previous problem from right to left. To what height will it climb up the curved part?
A disc is set rolling with a velocity \(v\) from right to left. Let it has attained a height \(h\).
Let the radius of the disc be \(R\).
Let the angular velocity of the disc \(\omega\).
Let the height attained by the disc be \(h\).
On applying the law of conservation of energy, we get
\(
\begin{aligned}
& \frac{1}{2} m v^2+\frac{1}{2} I \omega^2=m g h \\
& \Rightarrow \frac{1}{2} m v^2+\frac{1}{2} \times \frac{1}{2} m R^2 \times\left(\frac{v}{R}\right)^2=m g h \\
& \Rightarrow \frac{1}{2} v^2+\frac{1}{4} v^2=g h \\
& \Rightarrow \frac{3}{4} v^2=g h \\
& \Rightarrow h=\frac{3 v^2}{4 g}
\end{aligned}
\)
A sphere starts rolling down an incline of inclination \(\theta\). Find the speed of its centre when it has covered a distance \(l\).
A sphere is rolling in the inclined plane with inclination \(\theta\) Therefore according to the principle
\(
\text { Potential energy of the sphere, P.E. }=m g l \sin \theta
\)
\(
\text { Total kinetic energy of the sphere of mass } \mathrm{m} \text { rolling with speed } \mathrm{v}=(1 / 2) I \omega^2+(1 / 2) m v^2=1 / 5 m v^2+(1 / 2) m v^2=\frac{7}{10} m v^2
\)
\(
\begin{aligned}
& g l \sin \theta=\frac{7}{10} v^2 \\
& v=\sqrt{\left(\frac{10}{7} g l \sin \theta\right)}
\end{aligned}
\)
A solid sphere of mass \(m\) is released from rest from the rim of a hemispherical cup so that it rolls along the surface. If the rim of the hemisphere is kept horizontal, find the normal force exerted by the cup on the ball when the ball reaches the bottom of the cup.
Let the ball reaches the bottom of the cup with a velocity \(v\) and angular velocity \(\omega\).
On applying the law of conservation of energy, we get
\(
m g (R-r)=\frac{1}{2} I \omega^2+\frac{1}{2} m v^2
\)
\(
m g(R-r)=\frac{1}{2} \times \frac{2}{5} m v^2+\frac{1}{2} m v^2
\)
\(
\frac{7}{10} m v^2=m g(R-r) \Rightarrow v^2=\frac{10}{7} g(R-r)
\)
\(
\text { Total normal force }=m g+\frac{m v^2}{R-r}
\)
\(
=m g+\frac{m\left(\frac{10}{7} g (R-r)\right)}{R-r}
\)
\(
\begin{aligned}
& =m g+m g\left(\frac{10}{7}\right) \\
& =\frac{17}{7} m g
\end{aligned}
\)
Figure (10-E14) shows a rough track, a portion of which is in the form of a cylinder of radius \(R\). With what minimum linear speed should a sphere of radius \(r\) be set rolling on the horizontal part so that it completely goes round the circle on the cylindrical part.
Let the sphere be thrown with velocity \(v^{\prime}\) and its velocity becomes \(v\) at the top-most point.
From the free-body diagram of the sphere, at the topmost point, we have
\(
\begin{aligned}
& \frac{m v^2}{R-r}=m g \\
& \Rightarrow v^2=g(R-r)
\end{aligned}
\)
On applying the law of conservation of energy, we have
\(
\left(\frac{1}{2} m v^{\prime 2}+\frac{1}{2} I \omega^{\prime 2}\right)=2 m g(R-r)+\left(\frac{1}{2} m v^2+\frac{1}{2} I \omega^2\right)
\)
\(
\begin{aligned}
& \Rightarrow \frac{7}{10} m v^{\prime 2}=2 m g(R-r)+\frac{7}{10} m v^2 \\
& \Rightarrow \frac{7}{10} m v^{\prime 2}=2 m g(R-r)+\frac{7}{10} m g(R-r) \\
& \Rightarrow \frac{7}{10} v^{\prime 2}=\frac{27 g(R-r)}{10} \\
& \Rightarrow v^{\prime}=\sqrt{\frac{27}{7} g(R-r)}
\end{aligned}
\)
A thin spherical shell of radius \(R\) lying on a rough horizontal surface is hit sharply and horizontally by a cue. Where should it be hit so that the shell does not slip on the surface?
If the shell does not slip on the surface, its motion should be pure rolling.
Let the cue hits at a height ‘ \(h\) ‘ above the centre.
Let the centre of shell moves with velocity \(v_c\) and shell rotates with angular velocity \(w\) after hitting.
For pure rolling,
\(
v_c=R \omega
\)
On applying the law of conservation of angular momentum at point \(\mathrm{O}\), we get
\(
\begin{aligned}
& m v_c h=I \omega \\
& m v_c h=\frac{2}{3} m R^2\left(\frac{v_c}{R}\right) \\
& h=\frac{2 R}{3}
\end{aligned}
\)
A uniform wheel of radius \(R\) is set into rotation about its axis at an angular speed \(\omega\). This rotating wheel is now placed on a rough horizontal surface with its axis horizontal. Because of friction at the contact, the wheel accelerates forward and its rotation decelerates till the wheel starts pure rolling on the surface. Find the linear speed of the wheel after it starts pure rolling.
A uniform wheel of radius \(\mathrm{R}\) is set into rotation about its axis at an angular speed \(\omega\) This rotating wheel is now placed on a rough horizontal. Because of its friction at contact, the wheel accelerates forward and its rotation decelerates. As the rotation decelerates the frictional force will act backward.
If we consider the net moment then it is zero.
Therefore the net angular momentum before pure rolling & after pure rolling remains constant
Before rolling the wheel was only rotating around its axis.
Initial angular momentum,
\(
\begin{aligned}
& L=I \omega \\
& =\frac{1}{2} m R^2 \omega
\end{aligned}
\)
Angular momentum after it starts pure rolling,
\(
\begin{aligned}
& L^{\prime}=I \omega^{\prime}+m(v \times R) \\
& =\frac{1}{2} m R^2\left(\frac{v}{R}\right)+m v R \\
& =\frac{3}{2} m v R
\end{aligned}
\)
As no external torque is applied, angular momentum will be conserved.
Therefore, we have
\(
\begin{aligned}
& L=L \prime \\
& \Rightarrow \frac{1}{2} m R^2 \omega=\frac{3}{2} m v R \\
& \Rightarrow v=\frac{\omega R}{3}
\end{aligned}
\)
A thin spherical shell lying on a rough horizontal surface is hit by a cue in such a way that the line of action passes through the centre of the shell. As a result, the shell starts moving with a linear speed \(v\) without any initial angular velocity. Find the linear speed of the shell after it starts pure rolling on the surface.
Initial angular momentum about point A,
\(
L=m v R
\)
Angular momentum about point \(\mathrm{A}^{\prime}\) after it starts pure rolling,
\(
\begin{aligned}
& L^{\prime}=I \omega+m(v \times R) \\
& =\frac{2}{3} m R^2\left(\frac{v^{\prime}}{R}\right)+m v^{\prime} R \\
& =\frac{5}{3} m v^{\prime} R
\end{aligned}
\)
As no external torque is applied, angular momentum will be conserved.
Therefore, we have
\(
\begin{aligned}
& L=L^{\prime} \\
& \Rightarrow m v R=\frac{5}{3} m v^{\prime} R \\
& \Rightarrow v^{\prime}=\frac{3 v}{5}
\end{aligned}
\)
A hollow sphere of radius \(R\) lies on a smooth horizontal surface. It is pulled by a horizontal force acting tangentially from the highest point. Find the distance travelled by the sphere during the time it makes one full rotation.
Let \(\mathrm{M}\) be the mass of the hollow sphere and \(\alpha\) be the angular acceleration produced in the sphere by the tangential force \(F\).
Torque due to this force,
\(
\tau=F \times R
\)
Also, \(\tau=I \alpha\)
So, \(F \times R=\left(\frac{2}{3}\right) M R^2 \alpha\)
\(
\Rightarrow \alpha=\frac{3 F}{2 M R}
\)
Applying \(\theta=\omega_0 t+\frac{1}{2} \alpha t^2\), we get
\(
\begin{aligned}
& 2 \pi=\frac{1}{2} \alpha t^2 \\
& \Rightarrow t^2=\frac{8 \pi M R}{3 F}
\end{aligned}
\)
Let \(d\) be the distance travelled in this time \(t\).
Acceleration,
\(
\begin{aligned}
& a=\frac{F}{M} \\
& \therefore d=\frac{1}{2} a t^2 \\
& =\frac{1}{2} \times \frac{F}{M} \times\left(\frac{8 \pi M R}{3 F}\right) \\
& =\frac{4 \pi R}{3}
\end{aligned}
\)
A solid sphere of mass \(0.50 \mathrm{~kg}\) is kept on a horizontal surface. The coefficient of static friction between the surfaces in contact is \(2 / 7\). What maximum force can be applied at the highest point in the horizontal direction so that the sphere does not slip on the surface?
Let \(\alpha\) be the angular acceleration produced in the sphere.
Rotational equation of motion,
\(
\begin{aligned}
& F \times R-f_r \times R=I \alpha \\
& \Rightarrow F=\frac{2}{5} m R \alpha+\mu m g \dots(1)
\end{aligned}
\)
Translational equation of motion,
\(
\begin{aligned}
& F=m a-\mu m g \\
& \Rightarrow a=\frac{(F+\mu m g)}{m}
\end{aligned}
\)
For pure rolling, we have
\(
\begin{aligned}
& \alpha=\frac{a}{R} \\
& \Rightarrow \alpha=\frac{(F+\mu m g)}{m R}
\end{aligned}
\)
Putting the value of \(\alpha\) in equation (1), we get
\(
\begin{aligned}
& F=\frac{2}{5} \frac{m R(F+\mu m g)}{m R}+\mu m g \\
& \Rightarrow F=\frac{2}{5}(F+\mu m g) \mu m g \\
& \Rightarrow F=\frac{2}{5} F+\left(\frac{2}{5} \times \frac{2}{7} \times 0.5 \times 10\right)+\left(\frac{2}{7} \times 0.5 \times 10\right) \\
& \Rightarrow \frac{3 F}{5}=\frac{4}{7}+\frac{10}{7}=2 \\
& \Rightarrow F=\frac{5 \times 2}{3}=\frac{10}{3}=3.3 N
\end{aligned}
\)
A solid sphere is set into motion on a rough horizontal surface with a linear speed \(v\) in the forward direction and an angular speed \(v / R\) in the anticlockwise direction as shown in figure (10-E16). Find the linear speed of the sphere (a) when it stops rotating and (b) when slipping finally ceases and pure rolling starts.
(a)
If we take moment at \(\mathrm{A}\) then external torque will be zero
Therefore, the initial angular momentum \(=\) the angular momentum after rotation stops (i.e. only linear velocity exits)
Initial angular momentum about point A,
\(
\begin{aligned}
& L=m(v \times R)-I \omega \\
& =m v R-\frac{2}{5} m R^2\left(\frac{v}{R}\right) \\
& =\frac{3}{5} m v R
\end{aligned}
\)
Angular momentum about point \(A^{\prime}\) after it stops rotating,
\(
L^{\prime}=m v^{\prime} R
\)
As no external torque is applied, angular momentum will be conserved.
Therefore, we have
\(
\begin{aligned}
& L=L^{\prime} \\
& \Rightarrow m v R=\frac{5}{3} m v^{\prime} R \\
& \Rightarrow v^{\prime}=\frac{3 v}{5}
\end{aligned}
\)
(b)
Angular momentum about point A after it stops rotating,
\(
L^{\prime}=m v^{\prime} R
\)
Angular momentum about point A’ after it starts pure rolling.
\(
\begin{aligned}
& L^{\prime \prime}=I \omega^{\prime \prime}+m\left(v^{\prime \prime} \times R\right) \\
& =\frac{2}{5} m R^2\left(\frac{v^{\prime \prime}}{R}\right)+m v^{\prime \prime} R \\
& =\frac{7}{5} m V R
\end{aligned}
\)
As no external torque is applied, angular momentum will be conserved.
Therefore, we have
\(
\begin{aligned}
& L^{\prime}=L^{\prime \prime} \\
& \Rightarrow m \frac{3 V}{5} R=\frac{7}{5} m v^{\prime \prime} R \\
& \Rightarrow v^{\prime \prime}=\frac{3 v}{7}
\end{aligned}
\)
A solid sphere rolling on a rough horizontal surface with a linear speed \(v\) collides elastically with a fixed, smooth, vertical wall. Find the speed of the sphere after it has started pure rolling in the backward direction.
Consider two cases:-
(a) Just after the collision with the wall, the sphere rebounds with velocity \(v\) towards left but it continues to rotate in the clockwise direction (as shown in figure)
Angular momentum of the sphere about centre,
\(
\begin{aligned}
& L=m v R-I \omega \\
& =m v R-\frac{2}{5} m R^2 \times \frac{v}{R} \\
& =\frac{3}{5} m v R
\end{aligned}
\)
(b) When pure rolling starts
Let the velocity be \(v^{\prime}\) and the corresponding angular velocity be \(\frac{v^{\prime}}{R}\).
\(
\begin{aligned}
& L^{\prime}=m v^{\prime} R+I \omega^{\prime} \\
& =m v^{\prime} R+\frac{2}{5} m R^2 \times \frac{v^{\prime}}{R} \\
& =\frac{7}{5} m v^{\prime} R
\end{aligned}
\)
Angular momentum is constant.
Therefore, we have
\(
\begin{aligned}
& L=L^{\prime} \\
& \Rightarrow v^{\prime}=\frac{3 v}{7}
\end{aligned}
\)
So, the sphere will move with velocity \(\frac{3 v}{7}\).
You cannot copy content of this page