0 of 84 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 84 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
A block of mass \(2 \mathrm{~kg}\) placed on a long frictionless horizontal table is pulled horizontally by a constant force \(F\). It is found to move \(10 \mathrm{~m}\) in the first two seconds. What is the magnitude of \(F\)?
(a)
\(\begin{aligned}
&\mathrm{m}=2 \mathrm{~kg} \\
&\mathrm{~s}=10 \mathrm{~m} \\
&\text { Let, acceleration }=a, \text { Initial velocity } u=0 \\
&\mathrm{~S}=\mathrm{ut}+1 / 2 \mathrm{at}^{2} \\
&\Rightarrow 10=1 / 2 a\left(2^{2}\right) \Rightarrow 10=2 a \Rightarrow a=5 \mathrm{~m} / \mathrm{s}^{2} \\
&\text { Force: } F=m a=2 \times 5=10 \mathrm{~N}
\end{aligned}\)
A car moving at \(40 \mathrm{~km} / \mathrm{h}\) is to be stopped by applying brakes in the next \(4.0 \mathrm{~m}\). If the car weighs \(2000 \mathrm{~kg}\), what average force must be applied on it?
(c) Given, Initial speed of the car, \(u=40 \mathrm{~km} / \mathrm{hr}\)
\(
=\frac{4000}{3600}=11.11 \mathrm{~m} / \mathrm{s}
\)
Final speed of the car, \(v=0\)
Mass of the car, \(m=2000 \mathrm{~kg}\)
Distance to be travelled by the car before coming to rest, \(s=4 \mathrm{~m}\)
Acceleration,
\(
\begin{aligned}
&a=\frac{v^{2}-u^{2}}{2 s} \\
&\Rightarrow a=\frac{0^{2}-(11.11)^{2}}{2 \times 4}=\frac{-123.43}{8}=-15.42 \mathrm{~m} / \mathrm{s}^{2} \\
&\therefore \text { Average force to be applied to stop the car, } \mathrm{F}=\mathrm{ma} \\
&\Rightarrow \mathrm{F}=2000 \times 15.42 \approx 3.1 \times 10^{4} \mathrm{~N}
\end{aligned}
\)
In a TV picture tube electrons are ejected from the cathode with negligible speed and reach a velocity of \(5 \times 10^{6} \mathrm{~m} / \mathrm{s}\) in travelling one centimeter. Assuming straight line motion, find the constant force exerted on the electron. The mass of the electron is \(9 \cdot 1 \times 10^{-31} \mathrm{~kg}\).
(b) Initial velocity \(\quad u=0\) (negligible)
\(v=5 \times 10^{6} \mathrm{~m} / \mathrm{s} .\)
\(\mathrm{s}=1 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m} .\)
acceleration \(a=\frac{v^{2}-u^{2}}{2 \mathrm{~s}}=\frac{\left(5 \times 10^{6}\right)^{2}-0}{2 \times 1 \times 10^{-2}}=\frac{25 \times 10^{12}}{2 \times 10^{-2}}=12.5 \times 10^{14} \mathrm{~ms}^{-2}\)
\(\mathrm{~F}=\mathrm{ma}=9.1 \times 10^{-31} \times 12.5 \times 10^{14}=113.75 \times 10^{-17}=1.1 \times 10^{-15} \mathrm{~N} .\)
A block of mass \(0.2 \mathrm{~kg}\) is suspended from the ceiling by a light string. A second block of mass \(0.3 \mathrm{~kg}\) is suspended from the first block through another string. What is the tensions in the two strings? Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\).
(d) The free body diagram for the problem is shown below
From the free-body diagram of the \(0.3 \mathrm{~kg}\) block,
\(
\begin{aligned}
&\mathrm{T}=0.3 \mathrm{~g} \\
&\Rightarrow \mathrm{T}=0.3 \times 10=3 \mathrm{~N}
\end{aligned}
\)
Now, from the free-body diagram of the \(0.2 \mathrm{~kg}\) block,
\(
\begin{aligned}
&\mathrm{T}_{1}=0.2 \mathrm{~g}+\mathrm{T} \\
&\Rightarrow \mathrm{T}_{1}=0.2 \times 10+3=5 \mathrm{~N}
\end{aligned}
\)
\(\therefore\) The tensions in the two strings are \(5 \mathrm{~N}\) and \(3 \mathrm{~N}\), respectively.
Two blocks of equal mass \(m\) are tied to each other through a light string and placed on a smooth horizontal table. One of the blocks is pulled along the line joining them with a constant force \(F\). What is the tension in the string joining the blocks?
(a) Let a be the common acceleration of the blocks.
For block-1,
\(F-T=m a \dots (1)\)
For block-2,
\(\mathrm{T}=\mathrm{ma} \quad . .(2)\)
Subtracting equation (2) from (1), we get:
\(
\begin{aligned}
&F-2 T=0 \\
&\Rightarrow T=\frac{F}{2}
\end{aligned}
\)
A particle of mass \(50 \mathrm{~g}\) moves on a straight line. The variation of speed with time is shown in the figure below. What is the force acting on the particle at \(t=2,4\) and 6 seconds?
(a) Given, Mass of the particle, \(\mathrm{m}=50 \mathrm{~g}=5 \times 10^{-2} \mathrm{~kg}\)
Slope of the v-t graph gives acceleration.
At \(t=2 \mathrm{~s}\),
Slope \(=\frac{15}{3}=5 \mathrm{~m} / \mathrm{s}^{2}\)
So, acceleration, \(a=5 \mathrm{~m} / \mathrm{s}^{2}\)
\(F=m a=5 \times 10^{-2} \times 5\)
\(\Rightarrow \mathrm{F}=0.25 \mathrm{~N}\) along the motion.
At \(t=4 \mathrm{~s}\),
Slope \(=0\)
So, acceleration, \(a=0\)
\(
\Rightarrow F=0
\)
At \(t=6 \mathrm{sec}\),
Slope \(=\frac{-15}{3}=-5 m / \mathrm{s}^{2}\)
So, acceleration, \(a=-5 \mathrm{~m} / \mathrm{s}^{2}\)
\(
\mathrm{F}=\mathrm{ma}=-5 \times 10^{-2} \times 5
\)
\(\Rightarrow F=-0.25 \mathrm{~N}\) along the motion
or, \(F=0.25 \mathrm{~N}\) opposite the motion.
Two blocks A and B of mass \(m_{A}\) and \(m_{B}\) respectively are kept in contact on a frictionless table. The experimenter pushes block A from behind so that the blocks accelerate. If block A exerts a force F on block B, what is the force exerted by the experimenter on A?
(b) Let, \(F \rightarrow\) contact force between \(m_{A} \& m_{B}\).
And, \(f \rightarrow\) force exerted by experimenter.
\(\mathrm{F}+\mathrm{m}_{\mathrm{A}} \mathrm{a}-\mathrm{f}=0\) \(\Rightarrow \mathrm{F}=\mathrm{f}-\mathrm{m}_{\mathrm{A}} \mathrm{a} \ldots \ldots \ldots\)….(i)
\(m_{B} a-f=0\)
\(\Rightarrow F=m_{B} a \dots (ii)\)
From eqn (i) and eqn (ii)
\(\Rightarrow f-m_{A} a=m_{B} a \Rightarrow f=m_{B} a+m_{A} a \Rightarrow f=a\left(m_{A}+m_{B}\right)\).
\(\Rightarrow f=\frac{F}{m_{B}}\left(m_{B}+m_{A}\right)=F\left(1+\frac{m_{A}}{m_{B}}\right)\) [because \(a=F / m_{B}\) ]
\(\therefore\) The force exerted by the experimenter is \(F\left(1+\frac{m_{A}}{m_{B}}\right)\)
Raindrops of radius \(1 \mathrm{~mm}\) and mass \(4 \mathrm{mg}\) are falling with a speed of \(30 \mathrm{~m} / \mathrm{s}\) on the head of a bald person. The drops splash on the head and come to rest. Assuming equivalently that the drops cover a distance equal to their radii on the head, estimate the force exerted by each drop on the head.
(c) \(\mathrm{r}=1 \mathrm{~mm}=10^{-3}\) m \(=4 \mathrm{mg}=4 \times 10^{-6} \mathrm{~kg}\) \(\mathrm{~s}=10^{-3} \mathrm{~m}\) \(\mathrm{v}=0\) \(\mathrm{u}=30 \mathrm{~m} / \mathrm{s} .\) So, \(a=\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2 \mathrm{~s}}=\frac{-30 \times 30}{2 \times 10^{-3}}=-4.5 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}\) (decelerating)
Taking magnitude only deceleration is \(4.5 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}\)
So, force \(F=4 \times 10^{-6} \times 4.5 \times 10^{5}=1.8 \mathrm{~N}\)
A particle of mass \(0.3 \mathrm{~kg}\) is subjected to a force \(F=-k x\) with \(k=15 \mathrm{~N} / \mathrm{m}\). What will be its initial acceleration if it is released from a point \(x=20 \mathrm{~cm}\)?
(d) Displacement of the particle from the mean position, \(x=20 \mathrm{~cm}=0.2 \mathrm{~m}\)
\(
\mathrm{k}=15 \mathrm{~N} / \mathrm{m}
\)
Mass of the particle, \(m=0.3 \mathrm{~kg}\)
\(
\begin{aligned}
&\text { Acceleration, } a=\frac{|F|}{m} \\
&\Rightarrow a=\frac{k x}{m}=\frac{15(0.2)}{0.3}=\frac{3}{0.3}=10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\)
So, the initial acceleration when the particle is released from a point \(x=20 \mathrm{~cm}\) is \(10 \mathrm{~m} / \mathrm{s}^{2}\).
Both the springs shown in the figure below are unstretched. If the block is displaced by a distance \(x\) and released, what will be the initial acceleration?
(a) Let the block \(m\) be displaced towards left by displacement \(x\).
\(
\begin{aligned}
&\therefore F_{1}=-k_{1} X \text { (compressed) } \\
&F_{2}=-k_{2} X \text { (expanded) } \\
&m a=F_{1}+F_{2} \\
&\Rightarrow a=\frac{-x\left(k_{1}+k_{2}\right)}{m}
\end{aligned}
\)
i.e. \(\left(k_{1}+k_{2}\right) \frac{x}{m}\) opposite the displacement or towards the mean position.
A small block B is placed on another block A of mass \(5 \mathrm{~kg}\) and length \(20 \mathrm{~cm}\). Initially, the block B is near the right end of block A (shown in the figure below). A constant horizontal force of \(10 \mathrm{~N}\) is applied to the block A. All the surfaces are assumed frictionless. Find the time elapsed before the block B separates from A.
(c) Mass of block \(A, m=5 \mathrm{~kg}\)
\(
\begin{aligned}
&\mathrm{F}=m a=10 \mathrm{~N} \\
&\Rightarrow a=\frac{10}{5}=2 m / \mathrm{s}^{2}
\end{aligned}
\)
As there is no friction between A and B, when block A moves, block B remains at rest in its position. The initial velocity of \(A, u=0\)
Distance covered by A to separate out,
\(
\mathrm{s}=0.2 \mathrm{~m}
\)
Using \(s=u t+\frac{1}{2} a t^{2}\)
\(
\begin{aligned}
&0.2=0+\frac{1}{2} \times 2 t^{2} \\
&\Rightarrow t^{2}=0.2
\end{aligned}
\)
\(
\Rightarrow t=0.44 \mathrm{~s} \approx 0.45 \mathrm{~s}
\)
A man has fallen into a ditch of width \(d\) and two of his friends are slowly pulling him out using a light rope and two fixed pulleys as shown in the figure below. Show that the force (assumed equal for both the friends) exerted by each friend on the rope increases as the man moves up. What is the force when the man is at a depth \(h\)?
(b) At any depth let the ropes make angle \(\theta\) with the vertical
From the free body diagram
\(F \cos \theta+F \cos \theta-m g=0\)
\(\Rightarrow 2 \mathrm{~F} \cos \theta=\mathrm{mg} \Rightarrow \mathrm{F}=\frac{\mathrm{mg}}{2 \cos \theta}\)
As the man moves up. \(\theta\) increases i.e. \(\cos \theta\) decreases. Thus \(F\) increases.
When the man is at depth \(\mathrm{h}\)
\(
\begin{aligned}
\cos \theta &=\frac{h}{\sqrt{(d / 2)^{2}+h^{2}}} \\
\text { Force } &=\frac{\mathrm{mg}}{\frac{h}{\sqrt{\frac{d^{2}}{4}+h^{2}}}}=\frac{m g}{4 h} \sqrt{d^{2}+4 h^{2}}
\end{aligned}
\)
The elevator shown in figure below is descending with an acceleration of \(2 \mathrm{~m} / \mathrm{s}^{2}\). The mass of the block A is \(0.5 \mathrm{~kg}\). What force is exerted by the block A on the block B?
(b) From the free body diagram
\(
\begin{aligned}
&\therefore \mathrm{R}+0.5 \times 2-\mathrm{w}=0 \\
&\Rightarrow \mathrm{R}=\mathrm{w}-0.5 \times 2 \\
&=0.5(10-2)=4 \mathrm{~N}
\end{aligned}
\)
So, the force exerted by the block A on the block B, is \(4 \mathrm{~N}\).
A pendulum bob of mass \(50 \mathrm{~g}\) is suspended from the ceiling of an elevator. Find the tension in the string if the elevator (a) goes up with acceleration \(1.2 \mathrm{~m} / \mathrm{s}^{2}\), (b) goes up with deceleration \(1.2 \mathrm{~m} / \mathrm{s}^{2}\), (c) goes up with uniform velocity, (d) goes down with acceleration \(1 \cdot 2 \mathrm{~m} / \mathrm{s}^{2}\), (e) goes down with deceleration \(1 \cdot 2 \mathrm{~m} / \mathrm{s}^{2}\) and (f) goes down with uniform velocity.
(a) Given that, Mass \(\mathrm{m}=50 \mathrm{~kg}\)
Acceleration \(\mathrm{a}=1.2 \mathrm{~m} / \mathrm{s}^{2}\)
Now, we have
\(\mathrm{T}-\mathrm{mg}=\mathrm{ma}\)
\(\mathrm{T}=\mathrm{m}(\mathrm{g}+\mathrm{a})\)
(a) The acceleration is upward
\(\mathrm{T}=\mathrm{m}(\mathrm{g}+\mathrm{a})\)
\(\mathrm{T}=\frac{50}{100}(9.8+1.2)\)
\(\mathrm{T}=0.55 \mathrm{~N}\)
(b) The acceleration is upward but negative
\(\mathrm{T}=\mathrm{m}(\mathrm{g}-\mathrm{a})\)
\(
\begin{aligned}
\mathrm{T} &=\frac{50}{1000}(9.8-1.2) \\
\mathrm{T} &=0.43 \mathrm{~N}
\end{aligned}
\)
(c) The velocity is constant and therefore acceleration is zero
\(
\begin{aligned}
\mathrm{T} &=\frac{50}{1000} \times 9.8 \\
\mathrm{~T} &=0.49 \mathrm{~N}
\end{aligned}
\)
(d) The acceleration is downward
\(
\begin{aligned}
\mathrm{T} &=\frac{50}{1000}(9.8-1.2) \\
\mathrm{T} &=0.43 \mathrm{~N}
\end{aligned}
\)
(e) The acceleration is downward but negative
\(
\begin{aligned}
\mathrm{T} &=\frac{50}{1000}(9.8+1.2) \\
\mathrm{T} &=0.55 \mathrm{~N}
\end{aligned}
\)
(f) The velocity is constant therefore acceleration is zero
\(
\begin{aligned}
\mathrm{T} &=\frac{50}{1000} \times 9.8 \\
\mathrm{~T} &=0.49 \mathrm{~N}
\end{aligned}
\)
Hence, this is the required solution
A person is standing on a weighing machine placed on the floor of an elevator. The elevator starts going up with some acceleration, moves with uniform velocity for a while, and finally decelerates to stop. The maximum and the minimum weights recorded are \(72 \mathrm{~kg}\) and \(60 \mathrm{~kg}\). Assuming that the magnitudes of the acceleration and the deceleration are the same, find (a) the true weight of the person and (b) the magnitude of the acceleration. Take \(g=9.9 \mathrm{~m} / \mathrm{s}^{2}\).
(d) Consider the acceleration of the elevator first upward and then downward in the same magnitude is \(a\) and, \(m\) be the mass of the person standing on the scale.
Then,
\(\mathrm{mg}+\mathrm{ma}=72 \mathrm{~g}\)
and
\(\mathrm{mg}-\mathrm{ma}=60 \mathrm{~g}\)
Now solving
\(
\begin{aligned}
&\mathrm{m}=\frac{132 \mathrm{~g}}{2 \mathrm{~g}} \\
&=66 \mathrm{~kg}
\end{aligned}
\)
and
\(
\begin{aligned}
&2 \mathrm{ma}=12 \mathrm{~g} \\
&\Rightarrow \mathrm{a}=\frac{6 \mathrm{~g}}{\mathrm{~m}}=6 \times \frac{9.9}{66}=0.9 \mathrm{~ms}^{-2}
\end{aligned}
\)
Find the reading of the spring balance shown in the figure below. The elevator is going up with an acceleration of \(g / 10\), the pulley and the string are light and the pulley is smooth.
(c) Let the acceleration of the \(3 \mathrm{~kg}\) mass relative to the elevator is \(\mathrm{a}\) in the downward direction.
As, shown in the free body diagram
\(\mathrm{T}-1.5 \mathrm{~g}-1.5(\mathrm{~g} / 10)-1.5 \mathrm{a}=0 \quad\) from figure (1)
and, \(T-3 g-3(g / 10)+3 a=0 \quad\) from figure \((2)\)
\(\Rightarrow \mathrm{T}=1.5 \mathrm{~g}+1.5(\mathrm{~g} / 10)+1.5 \mathrm{a} \quad \ldots\) (i)
And \(T=3 g+3(g / 10)-3 a \quad\)… (ii)
Equation (i) \(\times 2 \Rightarrow 3 \mathrm{~g}+3(\mathrm{~g} / 10)+3 a=2 \mathrm{~T}\)
Equation (ii) \(\times 1 \Rightarrow 3 \mathrm{~g}+3(\mathrm{~g} / 10)-3 \mathrm{a}=\mathrm{T}\)
Subtracting the above two equations we get, \(T=6 a\)
Subtracting \(T=6 a\) in equation (ii)
\(6 a=3 g+3(g / 10)-3 a\).
\(\Rightarrow 9 a=\frac{33 g}{10} \Rightarrow a=\frac{(9.8) 33}{10}=32.34\)
\(\Rightarrow \mathrm{a}=3.59 \therefore \mathrm{T}=6 \mathrm{a}=6 \times 3.59=21.55\)
\(\mathrm{T}^{1}=2 \mathrm{~T}=2 \times 21.55=43.1 \mathrm{~N}\) cut is \(\mathrm{T}_{1}\) shown in spring.
Mass \(=\frac{\mathrm{wt}}{\mathrm{g}}=\frac{43.1}{9.8}=4.39=4.4 \mathrm{~kg}\)
A block of \(2 \mathrm{~kg}\) is suspended from the ceiling through a massless spring of spring constant \(k=100 \mathrm{~N} / \mathrm{m}\). What is the elongation of the spring? If another \(1 \mathrm{~kg}\) is added to the block, what would be the further elongation?
(d) For equilibrium,
Spring force = Weight of the block
Case(1) \(\mathrm{k} \mathrm{x}_{1}=\mathrm{m}_{1} \mathrm{~g} \Rightarrow \mathrm{x}_{1}=\frac{\mathrm{m}_{1} \mathrm{~g}}{\mathrm{k}} \Rightarrow \frac{2(10)}{100}=0.2 \mathrm{~m}\)
Case (2) \(x_{2}=\frac{m_{2} g}{k}=\frac{3(10)}{100}=0.3 \mathrm{~m}\)
Difference in the elongation \(=0.3-0.2=0.1 \mathrm{~m}\)
The force of buoyancy exerted by the atmosphere on a balloon is B in the upward direction and remains constant. The force of air resistance on the balloon acts opposite to the direction of velocity and is proportional to it. The balloon carries a mass M and is found to fall down near the earth’s surface with a constant velocity \(v\). How much mass should be removed from the balloon so that it may rise with a constant velocity \(v\)?
(c) Let, the air resistance force is \(F\) and the Buoyant force be B.
Given that
\(\mathrm{F}_{\mathrm{a}} \propto \mathrm{v}\), where \(\mathrm{v} \rightarrow\) velocity
\(\Rightarrow F_{a}=k v\), where \(k \rightarrow\) proportionality constant. When the balloon is moving downward,
\(
\begin{aligned}
&\mathrm{B}+\mathrm{kv}=\mathrm{mg} \\
&\Rightarrow \mathrm{M}=\frac{\mathrm{B}+\mathrm{kv}}{\mathrm{g}}
\end{aligned} \dots (i)
\)
For the balloon to rise with a constant velocity \(v\), (upward) let the mass be \(m\)
Here, \(B-(m g+k v)=0 \quad\)..(ii)
\(\Rightarrow B=m g+k v\)
\(\Rightarrow \mathrm{m}=\frac{\mathrm{B}-\mathrm{kw}}{\mathrm{g}}\)
So, the amount of mass that should be removed \(=M-m\).
\(
=\frac{B+k v}{g}-\frac{B-k v}{g}=\frac{B+k v-B+k v}{g}=\frac{2 k v}{g}=\frac{2(M g-B)}{g}=2\{M-(B / g)\}
\)
An empty plastic box of mass \(m\) is found to accelerate up at the rate of \(g / 6\) when placed deep inside the water. How much sand should be put inside the box so that it may accelerate down at the rate of \(g / 6\)?
(b) Let buoyant force be \(\mathrm{F}\).
Now F – mg \(=\mathrm{mg} / 6\)
Which gives \(F=7 \mathrm{mg} / 6\)
Let \(M\) be the mass of sand to be put to give acceleration \(\mathrm{g} / 6\) down. Writing equation of motion, \((\mathrm{m}+\mathrm{M}) \mathrm{g}-\mathrm{F}=(\mathrm{m}+\mathrm{M}) \mathrm{g} / 6\)
Putting value of \(F\) we get,
\((\mathrm{m}+\mathrm{M}) \mathrm{g}-7 \mathrm{mg} / 6=(\mathrm{m}+\mathrm{M}) \mathrm{g} / 6\)
\(\mathrm{mg}+\mathrm{Mg}-7 \mathrm{mg} / 6=\mathrm{mg} / 6+\mathrm{Mg} / 6\)
\(\operatorname{Mg}(1-1 / 6)=\operatorname{mg}(1 / 6+7 / 6-1)\)
\(\mathrm{Mg} \times 5 / 6=\mathrm{mg} \times 2 / 6\)
\(M=2 \mathrm{~m} / 5\)
A force \(\vec{F}=\vec{v} \times \vec{A}\) is exerted on a particle in addition to the force of gravity, where \(\vec{v}\) is the velocity of the particle and \(\vec{A}\) is a constant vector in the horizontal direction. With what minimum speed a particle of mass \(m\) be projected so that it continues to move undeflected with a constant velocity?
(a) Given that, \(\vec{F}=\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{A}}\) and \(\overrightarrow{\mathrm{mg}}\) act on the particle
For the particle to move undeflected with constant velocity, the net force should be zero.
\(
\begin{aligned}
&\therefore(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{A}})+\overrightarrow{\mathrm{m} g}=0 \\
&\therefore(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{A}})=-\overrightarrow{\mathrm{m} g}
\end{aligned}
\)
Because, \((\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{A}})\) is perpendicular to the plane containing \(\overrightarrow{\mathrm{u}}\) and \(\overrightarrow{\mathrm{A}}, \overrightarrow{\mathrm{u}}\) should be the \(x z-\) plane
Again u \(A \sin \theta=m g\)
\(
\mathrm{u}=\frac{\mathrm{mg}}{\mathrm{A} \sin \theta}
\)
\(u\) will be minimum when \(\sin \theta=1 \Rightarrow \theta=90^{\circ}\)
\(
\therefore \mathrm{U}_{\min }=\frac{\mathrm{mg}}{\mathrm{A}} \text { along } \mathrm{Z} \text { – axis. }
\)
In a simple Atwood machine, two unequal masses \(m_{1}\) and \(m_{2}\) are connected by a string going over a clamped light smooth pulley. In a typical arrangement (figure below) \(m_{1}=300 \mathrm{~g}\) and \(m_{2}=600 \mathrm{~g}\). The system is released from rest. (a) Find the distance travelled by the first block in the first two seconds. (b) Find the tension in the string. (c) Find the force exerted by the clamp on the pulley.
(c) \(\mathrm{m}_{1}=0.3 \mathrm{~kg}, \mathrm{~m}_{2}=0.6 \mathrm{~kg}\)
\(\mathrm{~T}-\left(\mathrm{m}_{1} \mathrm{~g}+\mathrm{m}_{1} \mathrm{a}\right)=0 \quad \ldots\) (i) \(\Rightarrow \mathrm{T}=\mathrm{m}_{1} \mathrm{~g}+\mathrm{m}_{1} \mathrm{a}\)
\(\mathrm{T}+\mathrm{m}_{2} \mathrm{a}-\mathrm{m}_{2} \mathrm{~g}=0 \dots (ii)\)
\(\Rightarrow \mathrm{T}=\mathrm{m}_{2} \mathrm{~g}-\mathrm{m}_{2} \mathrm{a}\)
From equation (i) and equation (ii)
\(\mathrm{m}_{1} \mathrm{~g}+\mathrm{m}_{1} \mathrm{a}+\mathrm{m}_{2} \mathrm{a}-\mathrm{m}_{2} \mathrm{~g}=0\), from (i)
\(\Rightarrow \mathrm{a}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)=\mathrm{g}\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)\)
\(\Rightarrow \mathrm{a}=\mathrm{f}\left(\frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)=9.8\left(\frac{0.6-0.3}{0.6+0.3}\right)=3.266 \mathrm{~ms}^{-2}\).
a) \(\mathrm{t}=2\) sec acceleration \(=3.266 \mathrm{~ms} \mathrm{~s}^{-2}\)
Initial velocity u \(=0\)
So, distance travelled by the body is,
\(\mathrm{S}=\) ut \(+1 / 2\) at \({ }^{2} \Rightarrow 0+1 / 2(3.266) 2^{2}=6.5 \mathrm{~m}\)
b) From (i) \(\mathrm{T}=\mathrm{m}_{1}(\mathrm{~g}+\mathrm{a})=0.3(9.8+3.26)=3.9 \mathrm{~N}\)
c) The force exerted by the clamp on the pully is given by
\(\mathrm{F}-2 \mathrm{~T}=0\)
\(\mathrm{~F}=2 \mathrm{~T}=2 \times 3.9=7.8 \mathrm{~N}\).
The figure below shows a uniform rod of length \(30 \mathrm{~cm}\) having a mass of \(3.0 \mathrm{~kg}\). The strings shown in the figure are pulled by constant forces of \(20 \mathrm{~N}\) and \(32 \mathrm{~N}\). Find the force exerted by the \(20 \mathrm{~cm}\) part of the rod on the \(10 \mathrm{~cm}\) part. All the surfaces are smooth and the strings and the pulleys are light.
(d) Mass per unit length \(=\frac{3}{30} \mathrm{~kg} / \mathrm{cm}=0.1 \mathrm{~kg} / \mathrm{cm}\)
Mass of \(10 \mathrm{~cm}\) part \(=\mathrm{m}_{1}=1 \mathrm{~kg}\)
Mass of \(20 \mathrm{~cm}\) part \(=\mathrm{m}_{2}=2 \mathrm{~kg}\)
Let \(F\) be the force of contact between them
From free body diagram,
\(\mathrm{F}-20-\mathrm{a}=0 \dots (1)\)
\(32-F-2 a=0 \dots (2)\)
\(\Rightarrow 32-20-2 a-a=0\)
\(\Rightarrow 12-3 \mathrm{a}=0\)
\(\Rightarrow \mathrm{a}=\frac{12}{3}=4 \mathrm{~ms}^{-2}\)
Contact force F \(=20+\mathrm{a}=20+4=24 \mathrm{~N}\)
\(\therefore\) force exerted \(=24 \mathrm{~N}\)
Consider the situation shown in the figure below. All the surfaces are frictionless and the string and the pulley are light. Find the magnitude of the acceleration of the two blocks.
(c) Given Mass of each block is \(1 \mathrm{~kg}\)
\(
\begin{aligned}
&\sin \theta_{1}=\frac{4}{5} \\
&\sin \theta_{2}=\frac{3}{5}
\end{aligned}
\)
The free-body diagrams for both the boxes are shown below:
\(\mathrm{mg} \sin \theta_{1}-\mathrm{T}=\mathrm{ma} \quad \ldots\) (i)
\(
\mathrm{T}-\mathrm{mg} \sin \theta_{2}=\mathrm{ma} \ldots \text { (ii) }
\)
Adding equations (i) and (ii), we get:
\(
\mathrm{mg}\left(\sin \theta_{1}-\sin \theta_{2}\right)=2 \mathrm{ma}
\)
\(
\Rightarrow 2 \mathrm{a}=\mathrm{g}\left(\sin \theta_{1}-\sin \theta_{2}\right)
\)
\(\begin{aligned}
&\Longrightarrow \mathrm{a}=\frac{\mathrm{g}}{5} \times \frac{1}{2} \\
&=\frac{\mathrm{g}}{10} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}\)
A constant force \(F=m_{2} g / 2\) is applied on the block of mass \(m_{1}\) as shown in figure below. The string and the pulley are light and the surface of the table is smooth. Find the acceleration of \(m_{1}\).
(b) From the free-body diagram of block of mass \(m_{1}\),
\(
\mathrm{m}_{1} \mathrm{a}=\mathrm{T}-\mathrm{F} \quad \ldots \text { (i) }
\)
From the free-body diagram of block of mass \(m_{2}\),
\(
m_{2} a=m_{2} g-T \quad \ldots \text { (ii) }
\)
Adding both the equations, we get:
\(
\begin{aligned}
&a\left(m_{1}+m_{2}\right)=m_{2} g-\frac{m_{2} g}{2} \ldots \ldots\left[\text { because } \mathrm{F}=\frac{m_{2} g}{2}\right] \\
&\Rightarrow a=\frac{m_{2} g}{2\left(m_{1}+m_{2}\right)} \\
&\text { So, the acceleration of mass } m_{1} \\
&a=\frac{m_{2} g}{2\left(m_{1}+m_{2}\right)}, \text { towards the right } .
\end{aligned}
\)
In figure below \(m_{1}=5 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}\) and \(F=1 \mathrm{~N}\). Find the acceleration of either block. Describe the motion of \(m_{1}\) if the string breaks but \(F\) continues to act.
(a) Let the acceleration of the blocks be \(a\).
The free-body diagrams for both the blocks are shown below:
From the free-body diagram,
\(
\mathrm{m}_{1} \mathrm{a}=\mathrm{m}_{1} \mathrm{~g}+\mathrm{F}-\mathrm{T} \quad \ldots \text { (i) }
\)
Again, from the free-body diagram,
\(
m_{2} a=T-m_{2} g-F \quad \text {…(ii) }
\)
Adding equations (i) and (ii), we have:
\(
\begin{aligned}
&a=g \frac{m_{1}-m_{2}}{m_{1}+m_{2}} \\
&\Rightarrow a=\frac{3 g}{7}=\frac{29.4}{7} \\
&=4.2 m / s^{2}
\end{aligned}
\)
Hence, acceleration of the block is \(4.2 \mathrm{~m} / \mathrm{s}^{2}\).
After the string breaks, \(m_{1}\) moves downward with force \(F\) acting downward. Then,
\(
\begin{aligned}
&m_{1} a=\mathrm{F}+\mathrm{m}_{1} \mathrm{~g} \\
&5 \mathrm{a}=1+5 \mathrm{~g} \\
&\Rightarrow a=\frac{5 g+1}{5} \\
&=g+0.2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\)
Let \(m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}\) and \(m_{3}=3 \mathrm{~kg}\) in figure below. Find the accelerations of \(m_{1}, m_{2}\) and \(m_{3}\). The string from the upper pulley to \(m_{1}\) is \(20 \mathrm{~cm}\) when the system is released from rest. How long will it take before \(m_{1}\) strikes the pulley?
(d) Suppose the block \(m_{1}\) moves upward with acceleration \(a_{1}\) and the blocks \(m_{2}\) and \(m_{3}\) have relative acceleration \(a_{2}\) due to the difference of weight between them.
So, the actual acceleration of the blocks \(m_{1}, m_{2}\) and \(m_{3}\) will be \(a_{1},\left(a_{1}-a_{2}\right)\) and \(\left(a_{1}+a_{2}\right)\), as shown.
From figure 2, \(T-1 g-1 a_{1}=0 \quad\)…(i)
From figure 3, \(\frac{T}{2}-2 g-2\left(a_{1}-a_{2}\right)=0 . .(i i)\)
From figure 4, \(\frac{T}{2}-3 g-3\left(a_{1}+a_{2}\right)=0 . .(i i i)\)
From equations (i) and (ii), eliminating \(T\), we get:
\(
\begin{aligned}
&1 g+1 a_{2}=4 g+4\left(a_{1}+a_{2}\right) \\
&5 a_{2}-4 a_{1}=3 g \quad \text {…(iv) }
\end{aligned}
\)
From equations (ii) and (iii), we get:
\(
\begin{aligned}
&2 g+2\left(a_{1}-a_{2}\right)=3 g-3\left(a_{1}-a_{2}\right) \\
&5 a_{1}+a_{2}=g \quad \ldots(v)
\end{aligned}
\)
Solving equations (iv) and (v), we get:
\(
a_{1}=\frac{2 g}{29}
\)
and \(a_{2}=g-5 a_{1}\)
\(
\begin{aligned}
&\Rightarrow a_{2}=g-\frac{10 g}{29}=\frac{19 g}{29} \\
&\text { So, } a_{1}-a_{2}=\frac{2 g}{29}-\frac{19 g}{29}=-\frac{17 g}{29}
\end{aligned}
\)
So, accelerations of \(\mathrm{m}_{1}, \mathrm{~m}_{2}\) and \(\mathrm{m}_{3}\) are \(\frac{19 g}{29}(u p), \frac{17 g}{29}\) (down ) and \(\frac{21 g}{29}\) (down)
\(\begin{aligned}
&\text { Now, } \mathrm{u}=0, \mathrm{~s}=20 \mathrm{~cm}=0.2 \mathrm{~m} \\
&a_{2}=\frac{19 g}{29} \\
&\therefore s=u t+\frac{1}{2} a t^{2} \\
&\Rightarrow 0.2=\frac{1}{2} \times \frac{19}{29} g t^{2} \\
&\Rightarrow t=0.25 s
\end{aligned}\)
Calculate the tension in the string shown in the figure below. The pulley and the string are light and all surfaces are frictionless. Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\).
(c) The free-body diagrams for both the bodies are shown below:
\(\mathrm{T}+\mathrm{ma}=\mathrm{mg} \quad\)…(i)
and \(T=\) ma \(\quad\)…(ii)
From equations (i) and (ii), we get:
\(
\begin{aligned}
&m a+m a=m g \\
&\Rightarrow 2 m a=g \\
&\Rightarrow a=\frac{g}{2}=\frac{10}{5}=5 m / s^{2}
\end{aligned}
\)
From equation (ii),
\(
\mathrm{T}=\mathrm{ma}=5 \mathrm{~N}
\)
Consider the situation shown in the figure below. Both the pulleys and the string are light and all the surfaces are frictionless. (a) Find the acceleration of the mass \(M\). (b) Find the tension in the string. (c) Calculate the force exerted by the clamp on the pulley \(A\) in the figure.
(a) Let the acceleration of mass M be a.
So, the acceleration of mass \(2 \mathrm{M}\) will be \(\frac{a}{2}\)
\(
\begin{aligned}
&\text { (a) } 2 \mathrm{M}(\mathrm{a} / 2)-2 \mathrm{~T}=0 \\
&\Rightarrow \mathrm{Ma}=2 \mathrm{~T} \\
&\mathrm{~T}+\mathrm{Ma}-\mathrm{Mg}=0 \\
&\Rightarrow \frac{M a}{2}+M a=M g \\
&\Rightarrow 3 M a=2 M g \\
&\Rightarrow a=\frac{2 g}{3}
\end{aligned}
\)
(b) Tension,
\(
T=\frac{M a}{2}=\frac{M}{2} \times \frac{2 g}{3}=\frac{M g}{3}
\)
(c) Let \(\mathrm{T}^{\prime}=\) resultant of tensions
\(
\begin{aligned}
&\therefore T^{\prime}=\sqrt{T^{2}+T^{2}}=\sqrt{2} T \\
&\therefore T^{\prime}=\sqrt{2} T=\frac{\sqrt{2} M g}{3} \\
&\text { Again, } \tan \theta=\frac{T}{T}=1 \\
&\Rightarrow \theta=45^{\circ}
\end{aligned}
\)
So, the force exerted by the clamp on the pulley is \(\frac{\sqrt{2} \mathrm{Mg}}{3}\) at an angle of \(45^{\circ}\) with the horizontal.
Find the acceleration of the block of mass M in the situation shown in the figure below. All the surfaces are frictionless and the pulleys and the string are light.
(d) Let acceleration of the block of mass \(2 \mathrm{M}\) be \(\mathrm{a}\).
So, the acceleration of the block of mass M will be \(2 a\).
\(
\begin{aligned}
&M(2 a)+M g \sin \theta-T=0 \\
&\Rightarrow T=2 M a+M g \sin \theta \quad \ldots \text { (i) } \\
&2 T+2 M a-2 M g=0
\end{aligned}
\)
From equation (i),
\(
\begin{aligned}
&2(2 \mathrm{Ma}+\mathrm{Mg} \sin \theta)+2 \mathrm{Ma}-2 \mathrm{Mg}=0 \\
&4 \mathrm{Ma}+2 \mathrm{Mg} \sin \theta+2 \mathrm{Ma}-\mathrm{Mg}=0 \\
&6 \mathrm{Ma}+2 \mathrm{Mg} \sin 30^{\circ}+2 \mathrm{Mg}=0 \\
&6 \mathrm{Ma}=\mathrm{Mg} \\
&\Rightarrow a=\frac{g}{6}
\end{aligned}
\)
Hence, the acceleration of mass
\(M=2 a=2 \times \frac{g}{6}=\frac{g}{3}\), up the plane.
Find the mass M of the hanging block in the figure below which will prevent the smaller block from slipping over the triangular block. All the surfaces are frictionless and the strings and the pulleys are light.
(a) Block m will have the same acceleration as that of \( \mathrm{M}^{\prime} \)Â as it does not slip over \( \mathrm{M}^{\prime}.\)
\(\begin{array}{ll}\mathrm{T}+\mathrm{Ma}-\mathrm{Mg}=0Â \ldots \text { (i) (From } Fig(a)) \\ \mathrm{T}-\mathrm{M}^{\prime} \mathrm{a}-\mathrm{R} \sin \theta=0Â \ldots \text { (ii) (From Fig(b)) } \\ \mathrm{R} \sin \theta-\mathrm{ma}=0Â \ldots \text { (iii) (From } Fig(c)) \\ \mathrm{R} \cos \theta-\mathrm{mg}=0Â \ldots \text { (iv) (From Fig(d) } \\ \text {Eliminating } \mathrm{T}, \mathrm{R} \text { and a from the above equation, we get }Â \\M=\frac{\mathrm{M}^{\prime}+\mathrm{m}}{\cot \theta-1}\end{array}\)
Find the acceleration of the \(500 \mathrm{~g}\) block in the figure below.
(b) Given,
\(
\begin{aligned}
&\mathrm{m}_{1}=100 \mathrm{~g}=0.1 \mathrm{~kg} \\
&\mathrm{~m}_{2}=500 \mathrm{~g}=0.5 \mathrm{~kg} \\
&\mathrm{~m}_{3}=50 \mathrm{~g}=0.05 \mathrm{~kg}
\end{aligned}
\)
The free-body diagram for the system is shown below:
From the free-body diagram of the \(500 \mathrm{~g}\) block,
\(
\mathrm{T}+0.5 a-0.5 g=0 \dots (i)
\)
From the free-body diagram of the \(50 \mathrm{~g}\) block,
\(
T_{1}-0.05 g-0.05 a=0 \dots (ii)
\)
From the free-body diagram of the \(100 \mathrm{~g}\) block,
\(
T_{1}+0.1 a-T+0.1 g \sin 30^{\circ}=0 \dots (iii)
\)
Solving equations (i), (i) & (iii)
We get, a = \(\frac{8}{13} g\), downward
A monkey of mass \(15 \mathrm{~kg}\) is climbing on a rope with one end fixed to the ceiling. If it wishes to go up with an acceleration of \(1 \mathrm{~m} / \mathrm{s}^{2}\), how much force should it apply to the rope? If the rope is \(5 \mathrm{~m}\) long and the monkey starts from rest, how much time will it take to reach the ceiling?
(b) From the free-body diagram,
\(
\begin{aligned}
&\mathrm{T}-[15 \mathrm{~g}+15(\mathrm{a})]=0 \\
&\mathrm{~T}-[15 \mathrm{~g}+15(1)]=0 \\
&\Rightarrow \mathrm{T}=15(10+1) \\
&\Rightarrow \mathrm{T}=15 \times 11=165 \mathrm{~N}
\end{aligned}
\)
The monkey should apply a force of \(165 \mathrm{~N}\) to the rope.
Initial velocity, \(u=0\)
\(
\mathrm{s}=5 \mathrm{~m}
\)
Using, \(s=u t+\frac{1}{2} a t^{2}\), we get:
\(
\begin{aligned}
&5=0+\left(\frac{1}{2}\right) \times 1 \times t^{2} \\
&\Rightarrow t^{2}=5 \times 2 \\
&\Rightarrow t=\sqrt{10} s
\end{aligned}
\)
Hence, the time required to reach the ceiling is \(\sqrt{10} s\)
The monkey B shown in the figure below is holding on to the tail of the monkey A which is climbing up a rope. The masses of the monkeys A and B are \(5 \mathrm{~kg}\) and \(2 \mathrm{~kg}\) respectively. If A can tolerate a tension of \(30 \mathrm{~N}\) in its tail, what force should it apply on the rope in order to carry the monkey B with it? Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\).
(c) Let the acceleration of monkey A upwards be a, so that a maximum tension of \(30 \mathrm{~N}\) is produced in its tail.
\(
\begin{aligned}
&T-5 g-30-5 a=0 \quad \text {…(i) } \\
&30-2 g-2 a=0 \quad \text {…(ii) }
\end{aligned}
\)
From equations (i) and (ii), we have:
\(
T=105 \mathrm{~N} \text { (max.) }
\)
and \(a=5 \mathrm{~m} / \mathrm{s}^{2}\)
So, A can apply a maximum force of \(105 \mathrm{~N}\) on the rope to carry monkey B with it.
For minimum force, there is no acceleration of A and B.
\(\mathrm{T}_{1}=\) weight of monkey \(\mathrm{B}\)
\(
\Rightarrow \mathrm{T}_{1}=20 \mathrm{~N}
\)
Rewriting equation (i) for monkey A, we get:
\(
\begin{aligned}
&T-5 \mathrm{~g}-20=0 \\
&\Rightarrow T=70 \mathrm{~N}
\end{aligned}
\)
Therefore, to carry monkey B with it, monkey A should apply a force of magnitude between \(70 \mathrm{~N}\) and \(105 \mathrm{~N}\).
Figure below shows a man of mass \(60 \mathrm{~kg}\) standing on a light weighing machine kept in a box of mass \(30 \mathrm{~kg}\). The box is hanging from a pulley fixed to the ceiling through a light rope, the other end of which is held by the man himself. If the man manages to keep the box at rest, what is the weight shown by the machine? What force should he exert on the rope to get his correct weight on the machine?
(d)
(i) Given, Mass of man \(=60 \mathrm{~kg}\).
Let \(\mathrm{R}=\) apparent weight of man in this case.
Now, \(R+T-60 \mathrm{~g}=0\) [From Free body diagram of the man] \(\Rightarrow T=60 g-R \quad\)…(i)
\(T-R-30 g=0 \quad\)…(ii) [ From Free body diagram of the box] \(\Rightarrow 60 \mathrm{~g}-\mathrm{R}-\mathrm{R}-30 \mathrm{~g}=0\) [ From (i)]
\(\Rightarrow R^{\prime}=15 \mathrm{~g}\) The weight shown by the machine is \(15 \mathrm{~kg}\).
(ii) From the Free Body Diagram of the man
\(
\begin{aligned}
&\mathrm{T}+R-60 \mathrm{~g}-60 \mathrm{a}=0 \\
&\Rightarrow \mathrm{T}-60 \mathrm{a}=0[\therefore \mathrm{R}=60 \mathrm{~g}] \\
&\Rightarrow \mathrm{T}=60 \mathrm{a} \dots (i)
\end{aligned}
\)
From the Free Body Diagram of the box
\(
\begin{aligned}
&\mathrm{T}-\mathrm{R}-30 \mathrm{~g}-30 \mathrm{a}=0 \\
&\Rightarrow \mathrm{T}-60 \mathrm{~g}-30 \mathrm{~g}-30 \mathrm{a}=0 \\
&\Rightarrow \mathrm{T}-30 \mathrm{a}=90 \mathrm{~g}=900 \\
&\Rightarrow \mathrm{T}=30 \mathrm{a}-900 \dots (ii)
\end{aligned}
\)
From eqn (i) and eqn (ii) we get \(\mathrm{T}=2 \mathrm{T}-1800 \Rightarrow \mathrm{T}=1800 \mathrm{~N}\).
So, he should exert \(1800 \mathrm{~N}\) force on the rope to get the correct reading.
A block A can slide on a frictionless incline of angle \(\theta\) and length \(l\), kept inside an elevator going up with uniform velocity \(v\) (figure below). Find the time taken by the block to slide down the length of the incline if it is released from the top of the incline.
(b) The force on the block which makes the body move down the plane is the component of its weight parallel to the inclined surface.
\(
\mathrm{F}=\mathrm{mg} \sin \theta
\)
So, acceleration \( a=g \sin \theta\)
Initial velocity of block \(u=0\).
\(
s=\ell, a=g \sin \theta
\)
Now, \(S=u t+1 / 2\) at \({ }^{2}\)
\(
\Rightarrow \ell=0+1 / 2(g \sin \theta) t^{2} \Rightarrow g^{2}=\frac{2 \ell}{g \sin \theta} \Rightarrow t=\sqrt{\frac{2 \ell}{g \sin \theta}}
\)
Time taken is \(\sqrt{\frac{2 \ell}{g \sin \theta}}\)
A car is speeding up on a horizontal road with an acceleration \(a\). Consider the following situations in the car. (i) A ball is suspended from the ceiling through a string and is maintaining a constant angle with the vertical. Find this angle. (ii) A block is kept on a smooth incline and does not slip on the incline. Find the angle of the incline with the horizontal.
(a) Let the pendulum (formed by the ball and the string) make angle \(\theta\) with the vertical. (i) From the free-body diagram,
\(
\begin{aligned}
&\mathrm{T} \cos \theta-\mathrm{mg}=0 \\
&\mathrm{~T} \cos \theta=\mathrm{mg} \\
&\Rightarrow T=\frac{m g}{\cos \theta} \ldots(i) \\
&\text { And, ma-T } \sin \theta=0 \\
&\Rightarrow \mathrm{ma}=\mathrm{T} \sin \theta \\
&\Rightarrow T=\frac{m a}{\sin \theta} \ldots(i i) \\
&\Rightarrow \tan \theta=\frac{a}{g} \\
&\Rightarrow \theta=\tan ^{-1} \frac{a}{g}
\end{aligned}
\)
So, the angle formed by the ball with the vertical is \(\tan ^{-1}\left(\frac{a}{g}\right)\)
(ii) Let the angle of the incline be \(\theta\).
From the diagram,
\(\Rightarrow m a \cos \theta=m g \sin \theta\)
\(
\frac{\sin \theta}{\cos \theta}=\frac{a}{g}
\)
\(\tan \theta=\frac{a}{g} \theta=\tan ^{-1}\left(\frac{a}{g}\right)\)
So, the angle of incline is \(\tan ^{-1}\left(\frac{a}{g}\right)\)
A block is kept on the floor of an elevator at rest. The elevator starts descending with an acceleration of \(12 \mathrm{~m} / \mathrm{s}^{2}\). Find the displacement of the block during the first \(0.2 \mathrm{~s}\) after the start. Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\).
(d) The two bodies are separated because the elevator is moving downward with an acceleration of \(12 \mathrm{~m} / \mathrm{s}^{2}\) (>g) and the body moves with acceleration, \(g=10 \mathrm{~m} / \mathrm{s}^{2}\) [Freely falling body]
Now, for the block:
\(
g=10 \mathrm{~m} / \mathrm{s}^{2}, u=0, t=0.2 \mathrm{~s}
\)
So, the distance travelled by the block is given by
\(
\begin{aligned}
&s=u t+\frac{1}{2} a t^{2} \\
&=0+\frac{1}{2} 10 \times(0.2)^{2}=5 \times 0.04 \\
&=0.2 \mathrm{~m}=20 \mathrm{~cm}
\end{aligned}
\)
The displacement of the body is \(20 \mathrm{~cm}\) during the first \(0.2 \mathrm{~s}\).
A constant retarding force of \(50 \mathrm{~N}\) is applied to a body of mass \(20 \mathrm{~kg}\) moving initially with a speed of \(15 \mathrm{~m} \mathrm{~s}^{-1}\). How long does the body take to stop?
(d) Here \(m=20 \mathrm{~kg}, F=-50 \mathrm{~N}\) (retardation force)
As \(F=m a\)
\(
\Rightarrow a=\frac{F}{m}=\frac{-50}{20}=-2.5 m s^{-2}
\)
Using equation \(v=u+ at\)
Given \(u=15 m s^{-1}, v=0\)
Now, \(0=15+(-2.5) t\)
\(
\text { or } t=6 s
\)
A constant force acting on a body of mass \(3.0 \mathrm{~kg}\) changes its speed from \(2.0 \mathrm{~m} \mathrm{~s}^{-1}\) to \(3.5 \mathrm{~m} \mathrm{~s}^{-1}\) in \(25 \mathrm{~s}\). The direction of the motion of the body remains unchanged. What is the magnitude and direction of the force?
(a) Mass of the body, \(m=3 \mathrm{~kg}\)
Initial speed of the body, \(u=2 \mathrm{~m} / \mathrm{s}\)
Final speed of the body, \(v=3.5 \mathrm{~m} / \mathrm{s}\)
Time, \(t=25 \mathrm{~s}\)
Using the first equation of motion, the acceleration a produced in the body can be calculated as:
\(
\begin{aligned}
&\mathrm{v}=\mathrm{u}+\mathrm{at} \\
&\therefore a=\frac{v-u}{t} \\
&=\frac{3.5-2}{25}=\frac{1.5}{25}=0.06 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\)
As per Newton’s second law of motion, force is given as:
\(
\begin{aligned}
&F=m a \\
&=3 \times 0.06=0.18 \mathrm{~N}
\end{aligned}
\)
Since the application of force does not change the direction of the body, the net force acting on the body is in the direction of its motion.
A body of mass \(5 \mathrm{~kg}\) is acted upon by two perpendicular forces \(8 \mathrm{~N}\) and \(6 \mathrm{~N}\). Give the magnitude and direction of the acceleration of the body.
(b) Here \(m=5 \mathrm{~kg}\)
\(F_{1}=8 N\) and \(F_{2}=6 N\)
The resultant force on the body
\(
\begin{aligned}
&F=\sqrt{F_{1}^{2}+F_{2}^{2}}=\sqrt{8^{2}+6^{2} N} \\
&=>F=\sqrt{64+36} N=10 \mathrm{~N}
\end{aligned}
\)
The acceleration \(a=\frac{F}{m}\)
\(\Rightarrow a=\frac{10}{5}=2 m s^{-2}\) in the same direction as the resultant force
The direction of acceleration
\(
\tan \beta=\frac{6}{8}=\frac{3}{4}=0.75
\)
or \(\beta=\tan ^{-1}(0.75)\)
\(=37^{\circ}\) with \(8 \mathrm{~N}\) force
The driver of a three-wheeler moving with a speed of \(36 \mathrm{~km} / \mathrm{h}\) sees a child standing in the middle of the road and brings his vehicle to rest in \(4.0 \mathrm{~s}\) just in time to save the child. What is the average retarding force on the vehicle? The mass of the three-wheeler is \(400 \mathrm{~kg}\) and the mass of the driver is \(65 \mathrm{~kg}\).
(d) Here mass of three-wheeler \(m_{1}=400 \mathrm{~kg}\), mass of driver \(=m_{2}=65 \mathrm{~kg}\), initial speed of auto, \(u=36 \mathrm{~km} / \mathrm{h}=36 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}\) \(=10 \mathrm{~ms}^{-1}\), final speed, \(v=0\) and \(t=4 \mathrm{~s}\)
As acceleration, \(\quad a=\frac{v-u}{t}=\frac{0-10}{4}=-2.5 \mathrm{~ms}^{-2}\)
Now
\(
\begin{aligned}
F &=\left(m_{1}+m_{2}\right) a=(400+65) \times(-2.5) \\
&=-1162.5 \mathrm{~N}=-1.2 \times 10^{3} \mathrm{~N}
\end{aligned}
\)
The – ve sign shows that the force is retarding force.
A rocket with a lift-off mass \(20,000 \mathrm{~kg}\) is blasted upwards with an initial acceleration of \(5.0 \mathrm{~m} \mathrm{~s}^{-2}\). What is the initial thrust (force) of the blast?
(c) Given \(\mathrm{m}=20000 \mathrm{~kg}\)
\(\mathrm{a}=5 \mathrm{~ms}^{-2}\) (against gravity) since the rocket has to move upwards against gravity the total initial thrust of the blast is given by
\(
\begin{aligned}
&F=m a+m g \\
&=m(a+g)=20000(5+9.8) \\
&=2.96 \times 10^{5} \mathrm{~N}
\end{aligned}
\)
A truck starts from rest and accelerates uniformly at \(2.0 \mathrm{~m} \mathrm{~s}^{-2}\). At \(t=10 \mathrm{~s}\), a stone is dropped by a person standing on the top of the truck ( \(6 \mathrm{~m}\) high from the ground). What are the (a) velocity, and (b) acceleration of the stone at \(t=\) 1 s? (Neglect air resistance.)
(a) Initial velocity of the truck, \(u=0\)
Acceleration, \(a=2 \mathrm{~m} / \mathrm{s}^{2}\)
Time, \(t=10 \mathrm{~s}\)
As per the first equation of motion, the final velocity is given as:
\(
\begin{aligned}
&v=u+a t \\
&=0+2 \times 10=20 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
The final velocity of the truck and hence, of the stone is \(20 \mathrm{~m} / \mathrm{s}\).
At \(t=11 \mathrm{~s}\), the horizontal component \(\left(v_{x}\right)\) of velocity, in the absence of air resistance, remains unchanged, i.e.,
\(
v_{x}=20 \mathrm{~m} / \mathrm{s}
\)
The vertical component \(\left(v_{y}\right)\) of velocity of the stone is given by the first equation of motion as:
\(
v_{y}=u+a_{y} \Delta t
\)
Where, \(\Delta t=11-10=1 \mathrm{~s}\) and \(a_{y}=\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\)
\(
\therefore v_{y}=0+10 \times 1=10 \mathrm{~m} / \mathrm{s}
\)
The resultant velocity \((v)\) of the stone is given as:
\(
\begin{aligned}
\mathrm{v} &=\sqrt{v_{x}^{2}+v_{y}^{2}} \\
&=\sqrt{20^{2}+10^{2}}=\sqrt{400+100} \\
&=\sqrt{500}=22.36 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
Let \(\theta\) be the angle made by the resultant velocity with the horizontal component of velocity, \(v_{x}\)
\(
\begin{aligned}
&\therefore \tan \theta=\frac{v_{y}}{v_{x}} \\
&\theta=\frac{\tan ^{-1}(10)}{20} \\
&=\tan ^{-1}(0.5) \\
&=26.57^{\circ}
\end{aligned}
\)
(b) When the stone is dropped from the truck, the horizontal force acting on it becomes zero. However, the stone continues to move under the influence of gravity. Hence, the acceleration of the stone is \(10 \mathrm{~m} / \mathrm{s}^{2}\) and it acts vertically downward.
A bob of mass \(0.1 \mathrm{~kg}\) hung from the ceiling of a room by a string \(2 \mathrm{~m}\) long is set into oscillation. The speed of the bob at its mean position is \(1 \mathrm{~m} \mathrm{~s}^{-1}\). What is the trajectory of the bob if the string is cut when the bob is (a) at one of its extreme positions, (b) at its mean position
(a) Vertically downward
At the extreme position, the velocity of the bob becomes zero. If the string is cut at this moment, then the bob will fall vertically on the ground.
(b) Parabolic path
At the mean position, the velocity of the bob is \(1 \mathrm{~m} / \mathrm{s}\). The direction of this velocity is tangential to the arc formed by the oscillating bob. If the bob is cut at the mean position, then it will trace a projectile path having the horizontal component of velocity only. Hence, it will follow a parabolic path.
Two bodies of masses \(10 \mathrm{~kg}\) and \(20 \mathrm{~kg}\) respectively kept on a smooth, horizontal surface are tied to the ends of a light string. A horizontal force \(\mathrm{F}=600 \mathrm{~N}\) is applied to (i) A, (ii) B along the direction of string. What is the tension in the string in each case?
(a) Accleration \(=\frac{600 N}{10 k g+20 k g}=20 m s^{-2}\)
(i) When force is applied on \(10 \mathrm{~kg}\) mass \(600-T=10 \times 20\) or
\(
\mathrm{T}=400 \mathrm{~N}
\)
(ii) When force is applied on \(20 \mathrm{~kg}\) mass \(600-T=20 \times 20\) or
\(
\mathrm{T}=200 \mathrm{~N}
\)
Two masses \(8 \mathrm{~kg}\) and \(12 \mathrm{~kg}\) are connected at the two ends of a light inextensible string that goes over a frictionless pulley. Find the acceleration of the masses and the tension in the string when the masses are released.
(b) For block \(m_{2} \rightarrow m_{2} g-T=m_{2} a\)
and for block \(\mathrm{m}_{1} \rightarrow \mathrm{T}-\mathrm{m}_{1} \mathrm{~g}=\mathrm{m}_{1} \mathrm{a}\)…(ii)
Adding \(\mathrm{i}\) and ii we obtain
\(
\begin{aligned}
&\left(m_{2}-m_{1}\right) g=\left(m_{2}+m_{1}\right) a \\
&\text { or } a=\left(\frac{m_{2}-m_{1}}{m_{2}+m_{1}}\right) g \\
&=\frac{12-8}{12+8} \times 10 \\
&=\frac{4 \times 10}{20}=2 m s^{-2}
\end{aligned}
\)
Substituting value of a in equation ii we obtain
\(
\begin{aligned}
&T=m_{1}(g+a) \\
&=8 \times(10+2) \\
&=8 \times 12=96 \mathrm{~N}
\end{aligned}
\)
Two billiard balls each of mass \(0.05 \mathrm{~kg}\) moving in opposite directions with speed \(6 \mathrm{~m} \mathrm{~s}^{-1}\) collide and rebound with the same speed. What is the impulse imparted to each ball due to the other?
(c) Initial momentum of each ball before the collision
\(
=0.05 \times 6 \mathrm{~kg} \mathrm{~ms}-1=0.3 \mathrm{~kg} \mathrm{~ms}^{-1}
\)
Final momentum of each ball after collision
\(=-0.05 \times 6 \mathrm{~kg} \mathrm{~ms}^{-1}=-0.3 \mathrm{~kg} \mathrm{~ms}^{-1}\)
Impulse imparted to each ball due to the other
= final momentum – initial momentum \(=-0.3 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}-0.3 \mathrm{~kg} \mathrm{~ms}^{-1}\)
\(=-0.6 \mathrm{~kg} \mathrm{~ms}^{-1}=0.6 \mathrm{~kg} \mathrm{~ms}^{-1}\) (in magnitude)
The two impulses are opposite in direction.
A shell of mass \(0.020 \mathrm{~kg}\) is fired by a gun of mass \(100 \mathrm{~kg}\). If the muzzle speed of the shell is \(80 \mathrm{~m} \mathrm{~s}^{-1}\), what is the recoil speed of the gun?
(d)
\(\begin{aligned}
&\mathrm{m}=0.02 \mathrm{~kg}, \mathrm{M}=100 \mathrm{~kg}, \mathrm{v}=80 \mathrm{~ms}^{-1}, \mathrm{~V}=? \\
&V=-\frac{m v}{M}=-\frac{0.020 \mathrm{~kg} \times 80 \mathrm{~ms}^{-1}}{100 \mathrm{~kg}} \\
&=-0.016 \mathrm{~ms}^{-1}
\end{aligned}
\)
The negative sign indicates that the gun moves in a direction opposite to the direction of motion of the bullet.
A batsman deflects a ball by an angle of \(45^{\circ}\) without changing its initial speed which is equal to \(54 \mathrm{~km} / \mathrm{h}\). What is the impulse imparted to the ball? (Mass of the ball is \(0.15 \mathrm{~kg}\).)
(a) Given: Mass of the ball is \(0.15 \mathrm{~kg}\), its initial speed is \(54 \mathrm{kmh}^{-1}\) and the ball is deflected at an angle of \(45^{\circ}\). The situation is shown in the figure below.
Here, \(A O\) is the original path of the ball, \(O B\) is the path followed by the ball after deflection. Angle \(A O B\) is the angle between the incident and deflected paths of the ball.
From the figure,
\(\angle \mathrm{AOP}=\angle \mathrm{BOP} \angle \mathrm{AOP}+\angle \mathrm{BOP}=45^{\circ} \angle \mathrm{AOP}=22.5^{\circ}\)
The horizontal components of velocities suffer no change. The vertical components of velocities are in opposite directions.
Impulse imparted to the ball is given as,
\(I=m v \cos \theta-(-m v \cos \theta)=2 m v \cos \theta\)
Where, \(m\) is the mass of the ball and \(v\) is the velocity of the ball.
By substituting the given values in the above expression, we get \(\mathrm{I}=2 \times 0.15 \times 54 \times 10003600 \times \cos 22.5=4.16 \mathrm{kgms}^{-1}\)
Thus, the impulse imparted to the ball is \(4.16 \mathrm{kgms}^{-1}\).
A stone of mass \(0.25 \mathrm{~kg}\) tied to the end of a string is whirled round in a circle of radius \(1.5 \mathrm{~m}\) with a speed of \(40 \mathrm{rev} / \mathrm{min}\) in a horizontal plane. What is the tension in the string? What is the maximum speed with which the stone can be whirled around if the string can withstand a maximum tension of \(200 \mathrm{~N}\)?
(b) Mass of the stone, \(\mathrm{m}=0.25 \mathrm{~kg}\)
Radius of the circle, \(\mathrm{r}=1.5 \mathrm{~m}\)
Number of revolution per second, \(n=40 / 60=2 / 3 \mathrm{rps}\)
Angular velocity, \(\omega=2 \pi n\)
The centripetal force for the stone is provided by the tension \(T\), in the string, i.e.,
\(
\begin{aligned}
\mathrm{T} &=m \omega^{2} \mathrm{r} \\
&=0.25 \times 1.5 \times(2 \times 3.14 \times(2 / 3))^{2} \\
&=6.57 \mathrm{~N}
\end{aligned}
\)
Maximum tension in the string, \(\mathrm{T}_{\max }=200 \mathrm{~N}\)
\(
\begin{aligned}
&\mathrm{T}_{\max }=\frac{\mathrm{mv}_{\max }^{2}}{\mathrm{r}} \\
&\mathrm{v}_{\max }=\left(\frac{\mathrm{T}_{\max } \mathrm{r}}{\mathrm{m}}\right)^{1 / 2} \\
&=(200 \times 1.5 / 0.25)^{1 / 2} \\
&=(1200)^{1 / 2}=34.64 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
Therefore, the maximum speed of the stone is \(34.64 \mathrm{~m} / \mathrm{s}\).
A stream of water flowing horizontally with a speed of \(15 \mathrm{~m} \mathrm{~s}^{-1}\) gushes out of a tube of cross-sectional area \(10^{-2} \mathrm{~m}^{2}\), and hits a vertical wall nearby. What is the force exerted on the wall by the impact of water, assuming it does not rebound?
(d) Here, \(v=15 \mathrm{~m} \mathrm{~s}^{-1}\)
Area of cross section, \(A=10^{-2} \mathrm{~m}^{2}\)
Density of water, \(\rho=10^{3} \mathrm{~kg} \mathrm{~m}^{-3}\)
Mass of water hitting the wall per second
\(
\begin{aligned}
&=\rho \times A \times v \\
&=10^{3} \mathrm{~kg} \mathrm{~m}^{-3} \times 10^{-2} \mathrm{~m}^{2} \times 15 \mathrm{~ms}^{-1}=150 \mathrm{~kg} \mathrm{~s}^{-1}
\end{aligned}
\)
Force exerted on the wall = Momentum loss of water per second
\(
=150 \mathrm{~kg} \mathrm{~s}^{-1} \times 15 \mathrm{~ms}^{-1}=2250 \mathrm{~N}=2.25 \times 10^{3} \mathrm{~N}
\)
An aircraft executes a horizontal loop at a speed of \(720 \mathrm{~km} / \mathrm{h}\) with its wings banked at \(15^{\circ}\). What is the radius of the loop?
(b) Here \(v=720 \mathrm{~km} / \mathrm{h}=720 \times \frac{5}{18} \mathrm{~m} / \mathrm{s}=200 \mathrm{~m} / \mathrm{s}\) and angle of banking \(\theta=15^{\circ}\)
From the relation
\(
\begin{aligned}
&\tan \theta=\frac{v^{2}}{r g} \text { we have } \\
&r=\frac{v^{2}}{g \tan \theta}=\frac{200 \times 200}{10 \times \tan 15^{\circ}}=\frac{200 \times 200}{10 \times 0.2679} \\
&\Rightarrow r=14931 \mathrm{~m}=14.9 \mathrm{~km}
\end{aligned}
\)
A \(70 \mathrm{~kg}\) man stands in contact against the inner wall of a hollow cylindrical drum of radius \(3 \mathrm{~m}\) rotating about its vertical axis with \(200 \mathrm{rev} / \mathrm{min}\). The coefficient of friction between the wall and his clothing is 0.15. What is the minimum rotational speed of the cylinder to enable the man to remain stuck to the wall (without falling) when the floor is suddenly removed?
(a) Mass of the man, \(\mathrm{m}=70 \mathrm{~kg}\)
Radius of the drum, \(r=3 \mathrm{~m}\)
Coefficient of friction, \(\mu=0.15\)
Frequency of rotation, \(\omega=200 \mathrm{rev} / \mathrm{min}=200 / 60=10 / 3 \mathrm{rev} / \mathrm{s}\)
The necessary centripetal force required for the rotation of the man is provided by the normal force \(\left(F_{N}\right)\).
When the floor revolves, the man sticks to the wall of the drum. Hence, the weight of the man (mg) acting downward is balanced by the frictional force ( \(\left.f=F_{N}\right)\) acting upward.
Hence, the man will not fall until:
\(\mathrm{mg}<\mathrm{F}_{\mathrm{N}}=\mu \mathrm{mr} \omega^{2}\)
\(
\begin{aligned}
&\omega>\sqrt{\mathrm{g} / \mathrm{r} \mu} \\
&=\left(\frac{10}{(0.15 \times 3)}\right)^{1 / 2}=4.71 \mathrm{rad} / \mathrm{s}
\end{aligned}
\)
A block slides down an incline of angle \(30^{\circ}\) with an acceleration \(g / 4\). Find the kinetic friction coefficient.
(a)
(i) mg downward by the earth (gravity),
(ii) \(N\) normal force by the incline and
(iii) \(f\) up the plane, (friction) by the incline.
Taking components parallel to the incline and writing Newton’s second law,
\(
\begin{array}{r}
m g \sin 30^{\circ}-f=m g / 4 \\
f=m g / 4 .
\end{array}
\)
There is no acceleration perpendicular to the incline. Hence,
\(
=N=m g \cos 30^{\circ}=m g \cdot \frac{\sqrt{3}}{2} .
\)
As the block is slipping on the incline, friction is \(f=\mu_{k} N\).
So, \(\quad \mu_{k}=\frac{f}{N}=\frac{m g}{4 m g \sqrt{3 / 2}}=\frac{1}{2 \sqrt{3}}\).
A block placed on a horizontal surface is being pushed by a force \(F\) making an angle \(\theta\) with the vertical. If the friction coefficient is \(\mu\), how much force is needed to get the block just started?
(b) For vertical equilibrium
\(
F \cos \theta+m g={N} .
\)
Eliminating \({N}\) from these equations,
\(
F \sin \theta=\mu F \cos \theta+\mu m g
\)
or,
\(
F=\frac{\mu m g}{\sin \theta-\mu \cos \theta} .
\)
Find the maximum value of \(M / m\) in the situation shown in the figure below so that the system remains at rest. The friction coefficient at both the contacts is \(\mu\).
(c) Equilibrium of the block \(m\) gives
\(T=\mu N_{1}\) and \(N_{1}=m g\)
which gives
\(T=\mu m g \dots (i)\)
Next, consider the equilibrium of the block \(M\). Taking components parallel to the incline
\(
T+\mu N_{2}=M g \sin \theta .
\)
Taking components normal to the incline
\(N_{2}=M g \cos \theta\)
These give \(\quad T=M g(\sin \theta-\mu \cos \theta) \dots (ii).\)
From (i) and (ii), \(\mu m g=M g(\sin \theta-\mu \cos \theta)\)
\( M / m=\frac{\mu}{\sin \theta-\mu \cos \theta}\)
A body slipping on a rough horizontal plane moves with a deceleration of \(4 \cdot 0 \mathrm{~m} / \mathrm{s}^{2}\). What is the coefficient of kinetic friction between the block and the plane?
(d) From the free body diagram,
\(
\mathrm{R}-\mathrm{mg}=0
\)
(where \(R\) is the normal reaction force and \(g\) is the acceleration due to gravity)
\(
\Rightarrow \mathrm{R}=\mathrm{mg}
\)
Again \(\mathrm{ma}-\mu_{\mathrm{k}} \mathrm{R}=0\)
(where \(\mu_{\mathrm{k}}\) is the coefficient of kinetic friction and a is deceleration)
or ma \(=\mu_{k} R\)
\(
\begin{aligned}
&\mathrm{ma}=\mu_{\mathrm{k}} \mathrm{mg} \\
&\Rightarrow \mathrm{a}=\mu_{\mathrm{k}} \mathrm{g} \\
&\Rightarrow 4=\mu_{\mathrm{k}} \mathrm{g} \\
&\Rightarrow \mu_{\mathrm{k}}=\frac{4}{g}=\frac{4}{10}=0.4
\end{aligned}
\)
Hence, the coefficient of the kinetic friction between the block and the plane is \(0.4\).
A block is projected along a rough horizontal road with a speed of \(10 \mathrm{~m} / \mathrm{s}\). If the coefficient of kinetic friction is \(0 \cdot 10\), how far will it travel before coming to rest?
(c) The friction force acting on the block will decelerate it. Let the deceleration be ‘a’.
\(\mathrm{R}-\mathrm{mg}=0\)
(where \(R\) is the normal reaction force)
\(\Rightarrow \mathrm{R}=\mathrm{mg} \dots (i)\)
Again, ma \(-\mu_{k} R=0\)
(where \(\mu_{\mathrm{k}}\) is the coefficient of kinetic friction)
From Equation (i),
\(
\begin{aligned}
\Rightarrow m a &=\mu_{k} \mathrm{mg} \\
\Rightarrow a &=\mu_{k} g=0.1 \times 10 \\
&=1 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\)
Given the initial velocity, \(u=10 \mathrm{~m} / \mathrm{s}\)
final velocity, \(v=0 \mathrm{~m} / \mathrm{s}\) (block comes to rest)
\(
a=-1 \mathrm{~m} / \mathrm{s}^{2} \text { (deceleration) }
\)
Using equation of motion \(v^{2}-u^{2}=2 a s\)
(where \(s\) is the distance travelled before coming to rest)
\(
s=\frac{v^{2}-u^{2}}{2 a}
\)
On substituting the respective values, we get
\(
\begin{aligned}
&=0-\frac{10^{2}}{2}(-1) \\
&=\frac{100}{2}=50 \mathrm{~m}
\end{aligned}
\)
Therefore, the block will travel \(50 \mathrm{~m}\) before coming to rest.
A block of mass \(m\) is kept on a horizontal table. If the static friction coefficient is \(\mu\), what is the frictional force acting on the block.
(a) Body is kept on the horizontal table. If no force is applied, no frictional force will be there. That means the frictional force is zero.
A block slides down an inclined surface of inclination \(30^{\circ}\) with the horizontal. Starting from the rest it covers \(8 \mathrm{~m}\) in the first two seconds. Find the coefficient of kinetic friction between the two.
(d) From the free body diagram,
\(
\mathrm{R}-\mathrm{mg} \cos \theta=0 \Rightarrow \mathrm{R}=\mathrm{mg} \cos \theta \dots (i)\)
For the block
\(u=0, \quad s=8 m, t=2 \mathrm{sec}\)
\(\therefore s=u t+1 / 2 a t^{2} \Rightarrow 8=0+1 / 2 (a 2^{2}) \Rightarrow a=4 \mathrm{~m} / \mathrm{s}^{2}\)
Again, \(\mu R+m a-m g \sin \theta=0\)
\(\Rightarrow \mu \mathrm{mg} \cos \theta+\mathrm{ma}-\mathrm{mg} \sin \theta=0\)
From equation (i)
\(\Rightarrow \mathrm{m}(\mu \mathrm{g} \cos \theta+\mathrm{a}-\mathrm{g} \sin \theta)=0\)
\(\Rightarrow \mu \times 10 \times \cos 30^{\circ}=g \sin 30^{\circ}-a\)
\(\Rightarrow \mu \times 10 \times \sqrt{(3 / 3)}=10 \times(1 / 2)-4\)
\(\Rightarrow(5 / \sqrt{3}) \mu=1 \Rightarrow \mu=1 /(5 / \sqrt{3})=0.11\)
Suppose the block of the previous problem is pushed down the incline with a force of \(4 \mathrm{~N}\). How far will the block move in the first two seconds after starting from rest? The mass of the block is \(4 \mathrm{~kg}\).
(b) From the free body diagram
\(
\begin{aligned}
&4-4 a-\mu R+4 g \sin 30^{\circ}=0Â \dots (1)\\
&R-4 g \cos 30^{\circ}=0 \dots (2)\\
&\Rightarrow R=4 g \cos 30^{\circ}
\end{aligned}
\)
Putting the values of \(R\) in eq. (1)
\(
4-4 a-0.11 \times 4 g \cos 30^{\circ}+4 g \sin 30^{\circ}=0
\)
\(\Rightarrow 4-4 a-0.11 \times 4 \times 10 \times(\sqrt{3} / 2)+4 \times 10 \times(1 / 2)=0\)
\(
\Rightarrow 4-4 a-3.81+20=0 \Rightarrow a \approx 5 \mathrm{~m} / \mathrm{s}^{2}
\)
For the block \(u=0, t=2 \mathrm{sec}, \quad a=5 \mathrm{~m} / \mathrm{s}^{2}\)
Distance \(s=u t+1 / 2\) at \({ }^{2} \Rightarrow s=0+(1 / 2) 5 \times 2^{2}=10 \mathrm{~m}\) The block will move \(10 \mathrm{~m}\).
A body of mass \(2 \mathrm{~kg}\) is lying on a rough inclined plane of inclination \(30^{\circ}\). Find the magnitude of the force parallel to the incline needed to make the block move (a) up the incline (b) down the incline. Coefficient of static friction \(=0 \cdot 2\).
(d)
(case-a) To make the block move up the incline, the applied force should be equal and opposite to the net force acting down the incline.
Applied force \(=\mu \mathrm{R}+2 \mathrm{~g} \sin 30^{\circ}\) \dots(1)
(where \(\mu\) is the coefficient of static friction)
\(R=m g \cos 30^{\circ}\)
Substituting the respective values in Equation (1), we get
\(
\begin{aligned}
&=0.2 \times(9.8) \sqrt{3}+2 \times 9.8 \times\left(\frac{1}{2}\right) \\
&3.39+9.8 \approx 13 \mathrm{~N}
\end{aligned}
\)
With this minimum force, the body moves up the incline with a constant velocity as the net force on it is zero.
(case-b) The net force acting down the incline is given by
\(F=2 g \sin 30^{\circ}-\mu R\)
\(
\begin{aligned}
&=2 \times 9.8 \times \frac{1}{2}-3.99 \\
&=6.41 \mathrm{~N}
\end{aligned}
\)
Because \(F=6.41 \mathrm{~N}\), the body will move down the incline with acceleration, hence the force required is zero.
A body of mass \(2 \mathrm{~kg}\) is lying on a rough inclined plane of inclination \(30^{\circ}\). Find the magnitude of the force if the push is applied horizontally to the incline needed to make the block move up the incline, Coefficient of static friction \(=0 \cdot 2\).
(d) From the free body diagram
\(
\begin{aligned}
&g=10 \mathrm{~m} / \mathrm{s}^{2}, \quad \quad \mathrm{~m}=2 \mathrm{~kg}, \quad \theta=30^{\circ}, \quad \mu=0.2 \\
&R-m g \cos \theta-F \sin \theta=0 \\
&\Rightarrow R=m g \cos \theta+F \sin \theta \quad \ldots(1) \\
&\text { And } m g \sin \theta+\mu R-F \cos \theta=0 \\
&\Rightarrow m g \sin \theta+\mu(\mathrm{mg} \cos \theta+F \sin \theta)-F \cos \theta=0 \\
&\Rightarrow m g \sin \theta+\mu \mathrm{mg} \cos \theta+\mu F \sin \theta-F \cos \theta=0 \\
&\Rightarrow F=\frac{(m g \sin \theta-\mu \mathrm{mg} \cos \theta)}{(\mu \sin \theta-\cos \theta)} \\
&\Rightarrow F=\frac{2 \times 10 \times(1 / 2)+0.2 \times 2 \times 10 \times(\sqrt{3} / 2)}{0.2 \times(1 / 2)-(\sqrt{3} / 2)}\approx17.5N
\end{aligned}
\)
In a children-park, an inclined plane is constructed with an angle of incline \(45^{\circ}\) in the middle part (figure below). Find the acceleration of a boy sliding on it if the friction coefficient between the cloth of the boy and the incline is \(0.6\) and \(g=10 \mathrm{~m} / \mathrm{s}^{2}\).
(a) From the free body diagram:
\(
\begin{aligned}
&R-m g \cos 45^{\circ}=0 \\
&R=m g \cos 45^{\circ}=\frac{m g}{\sqrt{2}}
\end{aligned}
\)
Net force acting on the boy, making him slide down \(=\mathrm{mg} \sin 45^{\circ}-\mu \mathrm{R}\)
\(
\begin{aligned}
&=m g \sin 45^{\circ}-\mu \mathrm{mg} \cos 45^{\circ} \\
&=m \times 10 \times\left(\frac{1}{\sqrt{2}}\right)-0.6 \times m \times 10 \times\left(\frac{1}{\sqrt{2}}\right) \\
&=m(5 \sqrt{2}-3 \sqrt{2})=m \times 2 \times \sqrt{2}
\end{aligned}
\)
The acceleration of the boy \(=\frac{\text { Force }}{\text { Mass }}\)
\(
\begin{aligned}
&=\frac{m(2 \sqrt{2})}{m} \\
&=2 \sqrt{2} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\)
A body starts slipping down an incline and moves half a meter in half-second. How long will it take to move the next half meter?
(c) Let its acceleration be a. For the first half-meter-
\(
\begin{aligned}
&\mathrm{u}=0 \quad \mathrm{t}=0.5 \mathrm{~s} \\
&\mathrm{~s}=\frac{1}{2} \mathrm{at}^{2} \\
&\Rightarrow 0.5=\frac{1}{2} \mathrm{a} \times 0.5^{2} \\
&\Rightarrow \mathrm{a}=4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\)
Now let at time \(\mathrm{t}\) it completes another half meter and hence total distance is \(1 \mathrm{~m}\). This also includes the time taken to cover the first half meter.
\(\mathrm{s}=\frac{1}{2} a \mathrm{t}^{2}\)
\(
\Rightarrow 1=\frac{1}{2} 4 t^{2}
\)
\(
\Rightarrow \mathrm{t}=\frac{1}{\sqrt{2}}=0.707 \mathrm{~s}
\)
Hence time to cover next half meter only \(=0.707 \mathrm{~s}-0.5 \mathrm{~s}=0.21 \mathrm{~s}\)(approx.)
If the tension in the string in the figure below is \(16 \mathrm{~N}\) and the acceleration of each block is \(0.5 \mathrm{~m} / \mathrm{s}^{2}\), find the friction coefficients at the two contacts with the blocks.
(b) From the free body diagram
\(
\begin{aligned}
&\mu_{1} \mathrm{R}+1-16=0 \\
&\Rightarrow \mu_{1}(2 g)+(-15)=0 \\
&\Rightarrow \mu_{1}=15 / 20=0.75 \\
&\mu_{2} R+4 \times 0.5+16-4 g \sin 30^{\circ}=0 \\
&\Rightarrow \mu_{2}(20 \sqrt{3})+2+16-20=0 \\
&\Rightarrow \mu_{2}=\frac{2}{20 \sqrt{3}}=\frac{1}{17.32}=0.057 \approx 0.06
\end{aligned}
\)
\(\therefore\) Co-efficient of friction \(\mu_{1}=0.75 \& \mu_{2}=0.06\)
The friction coefficient between the table and the block shown in the figure below is \(0 \cdot 2\). Find the tensions in the two strings.
(d) From the Free body diagram of blocks ( 15 kg block assumed to move downwards) and writing Newton’s 2nd law of motion, \(F=m a\)
for the 15 kg block : \(15 \mathrm{~g}-\mathrm{T}_{1}=15 \mathrm{a} \ldots\) (1)
for the 5 kg block : \(\mathrm{T}_{2}-5 \mathrm{~g}=5 \mathrm{a} \ldots\) (2)
for \(5 \mathrm{~kg}\) block on the horizontal surface, we use Newton’s second law in two direction (i.e X – axis and Y- axis)
Balancing force along Y-direction: \(N=5 \mathrm{~g}\), and using concept of friction \(\mathrm{f}=\) \(\mu \mathrm{N}\), we get \(\mathrm{f}=0.2 \times 5 \times \mathrm{g}=\mathrm{g}\)
Now along X-direction : \(T_{1}-T_{2}-f=5 a\)….(3)
using value of \(f\) and adding eq-1 , eq-2 and eq-3 we get
\(
\begin{array}{ll}
\Rightarrow & 15 \mathrm{~g}-5 \mathrm{~g}-\mathrm{f}=(15+5+5) \times \mathrm{a} \\
\Rightarrow & 9 \mathrm{~g}=25 \mathrm{a} \\
\Rightarrow & \mathrm{a}=\frac{9 \mathrm{~g}}{25}=\frac{9 \times 10}{25}=\frac{18}{5} \frac{\mathrm{m}}{\mathrm{s}^{2}}(\text { since } \mathrm{g}=10)
\end{array}
\)
now using eq \(1: T_{1}=150-\frac{15 \times 18}{5}=150-54=96 \mathrm{~N}\)
using eq \(2: \mathrm{T}_{2}=50+\frac{5 \times 18}{5}=68 \mathrm{~N}\)
Hence values of \(\mathrm{T}_{1}=96 \mathrm{~N}\) and \(\mathrm{T}_{2}=68 \mathrm{~N}\)
The friction coefficient between a road and the tire of a vehicle is \(4 / 3\). Find the maximum incline the road may have so that once hard brakes are applied and the wheel starts skidding, the vehicle going down at a speed of \(36 \mathrm{~km} / \mathrm{hr}\) is stopped within \(5 \mathrm{~m}\). The free body diagram is shown below.
(a) Given,
initial velocity of the vehicle, \(u=36 \mathrm{~km} / \mathrm{h}=10 \mathrm{~m} / \mathrm{s}\)
final velocity of the vehicle, \(v=0\)
\(\mathrm{s}=5 \mathrm{~m}, \mu=\frac{4}{3}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\)
Let the maximum angle of incline be \(\theta\).
Using the equation of motion
\(
\begin{aligned}
&a=\frac{v^{2}-u^{2}}{2 s}=\frac{0-10}{2 \times 5} \\
&=-10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\)
From the free-body diagram
\(R-m g \cos \theta=0\)
\(\Rightarrow R=m g \cos \theta \dots (1)\)
Again, \(
\begin{aligned}
&\mathrm{ma}+\mathrm{mg} \sin \theta-\mu \mathrm{R}=0 \\
&\Rightarrow \mathrm{ma}+\mathrm{mg} \sin \theta-\mu \mathrm{mg} \cos \theta=0 \\
&\Rightarrow \mathrm{a}+\mathrm{g} \sin \theta-\mu \mathrm{g} \cos \theta=0 \\
&\Rightarrow 10+10 \sin \theta-\left(\frac{4}{3}\right) \times 10 \cos \theta=0 \\
&\Rightarrow 30+30 \sin \theta-40 \cos \theta=0 \\
&\Rightarrow 3+3 \sin \theta-4 \cos \theta=0 \\
&\Rightarrow 4 \cos \theta-3 \sin \theta=3 \\
&\Rightarrow 4 \sqrt{1-\sin ^{2} \theta}=3+3 \sin \theta
\end{aligned}
\)
On squaring, we get
\(16\left(1-\sin ^{2} \theta\right)=9+9 \sin ^{2} \theta+18 \sin \theta\)
\(25 \sin ^{2} \theta+18 \sin \theta-7=0\) \(\Rightarrow \sin \theta=\frac{18+\sqrt{18^{2}-4(25)(-7)}}{2 x 25}\)
\(=\frac{-18+32}{50}=\frac{14}{50}=0.28\)
\(\Rightarrow \theta=\sin ^{-1}(0.28)=16^{\circ}\)
Therefore, the maximum incline of the road, \(\theta=16^{\circ}\).
The friction coefficient between an athlete’s shoes and the ground is 0.90. Suppose a superman wears these shoes and races for \(50 \mathrm{~m}\). There is no upper limit on his capacity of running at high speeds. (a) Find the minimum time that he will have to take in completing the \(50 \mathrm{~m}\) starting from rest. (b) Suppose he takes exactly this minimum time to complete the \(50 \mathrm{~m}\), what minimum time will he take to stop?
(b) to reach in minimum time, he has to move with maximum possible acceleration.
Let, the maximum acceleration is \(a\)
\(\therefore \mathrm{ma}-\mu \mathrm{R}=0 \Rightarrow \mathrm{ma}=\mu \mathrm{mg}\)
\(\Rightarrow a=\mu g=0.9 \times 10=9 \mathrm{~m} / \mathrm{s}^{2}\)
a) Initial velocity \(u=0, t=\)?
\(a=9 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~s}=50 \mathrm{~m}\)
\(s=u t+1 / 2 a t^{2} \Rightarrow 50=0+(1 / 2) 9 t^{2} \Rightarrow t=\sqrt{\frac{100}{9}}=\frac{10}{3}\) sec.
b) After covering \(50 \mathrm{~m}\), velocity of the athelete is
\(
V=u+a t=0+9 \times(10 / 3)=30 \mathrm{~m} / \mathrm{s}
\)
He has to stop in minimum time. So deceleration, \( -a=-9 \mathrm{~m} / \mathrm{s}^{2}\) (max)
\(\begin{aligned}
&\mathrm{R}=\mathrm{mg} \\
&\mathrm{ma}=\mu \mathrm{R} \\
&\mathrm{ma}=\mu \mathrm{mg} \\
&\Rightarrow \mathrm{a}=\mu \mathrm{g} \\
&\qquad=9 \mathrm{~m} / \mathrm{s}^{2} \text { (deceleration) } \\
&\begin{aligned}
\mathrm{u}_{1}=& 30 \mathrm{~m} / \mathrm{s}, \mathrm{v}=0 \\
\Rightarrow t=\frac{v_{1}-u_{1}}{a} \\
=\frac{0-30}{-a} \\
=\frac{-30}{-a}=\frac{10}{3} \mathrm{~s}
\end{aligned}
\end{aligned}\)
A car is going at a speed of \(21.6 \mathrm{~km} / \mathrm{hr}\) when it encounters a \(12 \cdot 8 \mathrm{~m}\) long slope of angle \(30^{\circ}\) (figure below). The friction coefficient between the road and the tires is \(1 / 2 \sqrt{3}\). What is the acceleration of the car when hardest break is applied? Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\).
(d) Hardest break means the maximum force of friction is developed between cars tire and the road.
Max frictional force \(=\mu \mathrm{R}\)
From the free-body diagram
\(
\begin{aligned}
&\mathrm{R}-\mathrm{mg} \cos \theta=0 \\
&\Rightarrow \mathrm{R}=\mathrm{mg} \cos \theta \ldots \text { (i) } \\
&\text { and } \mu \mathrm{R}+\mathrm{ma}-\mathrm{mg} \sin )=0 \ldots \text { (ii) } \\
&\Rightarrow \mu \mathrm{mg} \cos \theta+\mathrm{ma}-\mathrm{mg} \sin \theta=0 \\
&\Rightarrow \mu g \cos \theta+\mathrm{a}-10 \times(1 / 2)=0 \\
&\Rightarrow \mathrm{a}=5-\{1-(2 \sqrt{3})\} \times 10(\sqrt{3} / 2)=2.5 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\)
When, hardest brake is applied the car move with acceleration \(2.5 \mathrm{~m} / \mathrm{s}^{2}\)
A car starts from rest on a half-kilometer-long bridge. The coefficient of friction between the tire and the road is \(1 \cdot 0\). Can one drive through the bridge in less than \(10 \mathrm{~s}\)?
(b) Let, a maximum acceleration produced in the car.
\(\therefore \mathrm{ma}=\mu \mathrm{R}\) [For more acceleration, the tyres will slip]
\(\Rightarrow \mathrm{ma}=\mu \mathrm{mg} \Rightarrow a=\mu \mathrm{g}=1 \times 10=10 \mathrm{~m} / \mathrm{s}^{2}\)
For crossing the bridge in minimum time, it has to travel with maximum acceleration
\(
\begin{aligned}
&u=0, \quad s=500 m, \quad a=10 \mathrm{~m} / \mathrm{s}^{2} \\
&\mathrm{~s}=u \mathrm{t}+1 / 2 \text { at }^{2} \\
&\Rightarrow 500=0+(1 / 2) 10 \mathrm{t}^{2} \Rightarrow \mathrm{t}=10 \mathrm{sec} .
\end{aligned}
\)
If acceleration is less than \(10 \mathrm{~m} / \mathrm{s}^{2}\), time will be more than \(10 \mathrm{sec}\). So one can’t drive through the bridge in less than \(10 \mathrm{sec}\).
Figure below shows two blocks in contact sliding down an inclined surface of inclination \(30^{\circ}\). The friction coefficient between the block of mass \(2.0 \mathrm{~kg}\) and the incline is \(\mu_{1}\), and that between the block of mass \(4 \cdot 0 \mathrm{~kg}\) and the incline is \(\mu_{2}\). Calculate the acceleration of the \(2.0 \mathrm{~kg}\) block if (a) \(\mu_{1}=0.20\) and \(\mu_{2}=0.30\), (b) \(\mu_{1}=0.30\) and \(\mu_{2}=0 \cdot 20\). Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\).
(a) Since, \(\mu_{1}<\mu_{2}\), acceleration of \(2-\mathrm{kg}\) block down the plane will be more than the acceleration of \(4 \mathrm{~kg}\) block, if allowed to move separately.
In this case, both blocks are treated as a system of mass \((4+2)=6 \mathrm{~kg}\) and will move down with the same acceleration. Net force down the plane is
\(
\begin{aligned}
F =\left(m_{1}+m_{2}\right) g \sin \theta-\mu_{1} m_{1} g \cos \theta-\mu_{2} m_{2} g \cos \theta \\
=(4+2) g \sin 30^{\circ}-(0.2)(2) g \cos 30^{\circ}-(0.3)(4) g \cos 30^{\circ} \\
=(6)(10)\left(\frac{1}{2}\right)-(0.4)(10)\left(\frac{\sqrt{3}}{2}\right)-(1.2)(10)\left(\frac{\sqrt{3}}{2}\right) \\
\text { Therefore, acceleration } =30-13.76=16.24 \mathrm{~N}
\end{aligned}
\)
Therefore, acceleration of both the blocks down the plane will be \(a=\frac{F}{m_{1}+m_{2}}=\frac{16.24}{4+2}=2.7 \mathrm{~m} \mathrm{~s}^{-2}\)
(b) can be solved. In this case, the \(4 \mathrm{~kg}\) block will travel with more acceleration because, coefficient of friction is less than that of \(2 \mathrm{~kg}\). So, they will move separately. Drawing the free body diagram of \(2 \mathrm{~kg}\) mass only, it can be found that, \(a=2.4 \mathrm{~m} / \mathrm{s}^{2}\).
Two masses \(M_{1}\) and \(M_{2}\) are connected by a light rod and the system is slipping down a rough incline of angle \(\theta\) with the horizontal. The friction coefficient at both the contacts is \(\mu\). Find the acceleration of the system and the force by the rod on one of the blocks.
(c)
\(\begin{aligned}
&R_{1}=M_{1} g \cos \theta \quad \ldots \text { (i) } \\
&R_{2}=M_{2} g \cos \theta \quad \ldots \text { (ii) } \\
&T+M_{1} g \sin \theta-m_{1} a-\mu R_{1}=0 \quad \ldots \text { (iii) }\\
&T-M_{2}-M_{2} a+\mu R_{2}=0 \quad \ldots \text { (iv) }\\
&\text {Eq (iii)} \Rightarrow T+M_{1} g \sin \theta-M_{1} a-\mu M_{1} g \cos \theta=0 \\
&\text {Eq (iv)} \Rightarrow T-M_{2} g \sin \theta+M_{2} a+\mu M_{2} g \cos \theta=0 \dots (v) \\
&\text { Eq (iv) \& (v) }, \sin \theta\left(M_{1}+M_{2}\right)-a\left(M_{1}+M_{2}\right)-\mu g \cos \theta\left(M_{1}+M_{2}\right)=0 \\
& a\left(M_{1}+M_{2}\right)=g \sin \theta\left(M_{1}+M_{2}\right)-\mu g \cos \theta\left(M_{1}+M_{2}\right) \\
&\Rightarrow a=g(\sin \theta-\mu \cos \theta) \\
&\therefore \text { The blocks (system has acceleration } g(\sin \theta-\mu \cos \theta) \\
&\text {The force exerted by the rod on one of the blocks is tension.} \\
&\text { Tension } T=-M_{1} g \sin \theta+M_{1} a+\mu M_{1} g \sin \theta \\
&T=-M_{1} g \sin \theta+M_{1}(g \sin \theta-\mu g \cos \theta)+\mu M_{1} g \cos \theta \\
&\Rightarrow T=0
\end{aligned}\)
A block of mass M is kept on a rough horizontal surface. The coefficient of static friction between the block and the surface is \(\mu\). The block is to be pulled by applying force to it. What minimum force is needed to slide the block? In which direction should this force act?
(d) Let \({p}\) be the force applied to at an angle \(\theta\)
From the free body diagram
\(R+P \sin \theta-m g=0\) \(\Rightarrow R=-P \sin \theta+m g \quad \dots (i);\mu R-P \cos \theta \quad \quad \ldots\) (ii) Eq. (i) is \(\mu(\mathrm{mg}-P \sin \theta)-P \cos \theta=0\) \(\Rightarrow \mu m g=\mu \rho \sin \theta-P \cos \theta \Rightarrow \rho=\frac{\mu m g}{\mu \sin \theta+\cos \theta}\)
Applied force \(P\) should be minimum, when \(\mu \sin \theta+\cos \theta\) is maximum.
Again, \(\mu \sin \theta+\cos \theta\) is maximum when its derivative is zero.
\(\therefore \mathrm{d} / \mathrm{d} \theta(\mu \sin \theta+\cos \theta)=0\)
\(\Rightarrow \mu \cos \theta-\sin \theta=0 \Rightarrow \theta=\tan ^{-1} \mu\)
So, \(P=\frac{\mu \mathrm{mg}}{\mu \sin \theta+\cos \theta}=\frac{\mu \mathrm{mg} / \cos \theta}{\frac{\mu \sin \theta}{\cos \theta}+\frac{\cos \theta}{\cos \theta}}=\frac{\mu \mathrm{mg} \sec \theta}{1+\mu \tan \theta}=\frac{\mu \mathrm{mgsec} \theta}{1+\tan ^{2} \theta}\)
\(
=\frac{\mu \mathrm{mg}}{\sec \theta}=\frac{\mu \mathrm{mg}}{\sqrt{\left(1+\tan ^{2} \theta\right.}}=\frac{\mu \mathrm{mg}}{\sqrt{1+\mu^{2}}}
\)
Minimum force is \(\frac{\mu \mathrm{mg}}{\sqrt{1+\mu^{2}}}\) at an angle \(\theta=\tan ^{-1} \mu\).
The friction coefficient between the board and the floor shown in figure below is \(\mu\). Find the maximum force that the man can exert on the rope so that the board does not slip on the floor.
(b) Let, the max force exerted by the man is T.
From the free-body diagram
\(
\begin{aligned}
&\mathrm{R}+\mathrm{T}-\mathrm{Mg}=0 \\
&\Rightarrow \mathrm{R}=\mathrm{Mg}-\mathrm{T} \dots (i)\\
&\mathrm{R}_{1}-\mathrm{R}-\mathrm{mg}=0 \\
&\Rightarrow \mathrm{R}_{1}=\mathrm{R}+\mathrm{mg} \dots (ii)
\end{aligned}
\)
And \(T-\mu R_{1}=0\)
\(
\begin{aligned}
&\Rightarrow T-\mu(R+m g)=0 \quad \text { [From equn. (ii)] } \\
&\Rightarrow T-\mu R-\mu \mathrm{mg}=0 \\
&\Rightarrow T-\mu(\mathrm{Mg}+\mathrm{T})-\mu \mathrm{mg}=0 \quad \text { [from (i)] } \\
&\Rightarrow T(1+\mu)=\mu \mathrm{Mg}+\mu \mathrm{mg} \\
&\Rightarrow T=\frac{\mu(\mathrm{M}+\mathrm{m}) \mathrm{g}}{1+\mu}
\end{aligned}
\)
Maximum force exerted by man is \(\frac{\mu(M+m) g}{1+\mu}\)
A \(2 \mathrm{~kg}\) block is placed over a \(4 \mathrm{~kg}\) block and both are placed on a smooth horizontal surface. The coefficient of friction between the blocks is \(0 \cdot 20\). Find the acceleration of the two blocks if a horizontal force of \(12 \mathrm{~N}\) is applied to (a) the upper block, (b) the lower block. Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\)
(a)
\(\begin{aligned}
&\mathrm{R}_{1}-2 \mathrm{~g}=0 \\
&\Rightarrow \mathrm{R}_{1}=2 \times 10=20 \\
&2 \mathrm{a}+0.2 \mathrm{R}_{1}-12=0 \\
&\Rightarrow 2 \mathrm{a}+0.2(20)=12 \\
&\Rightarrow 2 \mathrm{a}=12-4=8 \\
&\Rightarrow a=4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}\)
\(\begin{aligned}
&4 a-\mu R_{1}=0 \\
&\Rightarrow 4 a=\mu R_{1}=0.2(20) \\
&\Rightarrow 4 a=4 \\
&\Rightarrow a=1 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}\)
\(2 \mathrm{~kg} \text { block has acceleration } 4 \mathrm{~m} / \mathrm{s}^{2},\text { that of } 4 \mathrm{~kg} \text { is } 1 \mathrm{~m} / \mathrm{s}^{2}\)
Similarly for case (b) we can show that \(a=2 \mathrm{~m} / \mathrm{s}^{2}\)
Find the accelerations \(a_{1}, a_{2}, a_{3}\) of the three blocks shown in figure below if a horizontal force of \(10 \mathrm{~N}\) is applied on (a) \(2 \mathrm{~kg}\) block, (b) \(3 \mathrm{~kg}\) block, (c) \(7 \mathrm{~kg}\) block. Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\).
(c)
(a) When the \(10 \mathrm{~N}\) force applied on \(2 \mathrm{~kg}\) block, it experiences maximum frictional force \(\mu R_{1}=\mu \times 2 \mathrm{~kg}=(0.2) \times 20=4 \mathrm{~N}\) from the \(3 \mathrm{~kg}\) block.
So, the \(2 \mathrm{~kg}\) block experiences a net force of \(10-4=6 \mathrm{~N}\)
So, \(a_{1}=6 / 2=3 \mathrm{~m} / \mathrm{s}^{2}\)
But for the \(3 \mathrm{~kg}\) block, (Fig-3) the frictional force from \(2 \mathrm{~kg}\) block (4N) becomes the driving force and the maximum frictional force between \(3 \mathrm{~kg}\) and \(7 \mathrm{~kg}\) block is
\(
\mu_{2} \mathrm{R}_{2}=(0.3) \times 5 \mathrm{~kg}=15 \mathrm{~N}
\)
So, the \(3 \mathrm{~kg}\) block cannot move relative to the \(7 \mathrm{~kg}\) block. The \(3 \mathrm{~kg}\) block and \(7 \mathrm{~kg}\) block both will have same acceleration \(\left(a_{2}=a_{3}\right)\) which will be due to the \(4 \mathrm{~N}\) force because there is no friction from the floor. \(\therefore a_{2}=a_{3}=4 / 10=0.4 \mathrm{~m} / \mathrm{s}^{2}\)
(b) When the \(10 \mathrm{~N}\) force is applied to the \(3 \mathrm{~kg}\) block, it can experience maximum frictional force of \(15+4\) \(=19 \mathrm{~N}\) from the \(2 \mathrm{~kg}\) block and \(7 \mathrm{~kg}\) block.
So, it can not move with respect to them. As the floor is frictionless, all the three bodies will move together
\(
\therefore a_{1}=a_{2}=a_{3}=10 / 12=(5 / 6) \mathrm{m} / \mathrm{s}^{2}
\)
(c) Similarly, it can be proved that when the \(10 \mathrm{~N}\) force is applied to the \(7 \mathrm{~kg}\) block, all the three blocks will move together.
Again \(a_{1}=a_{2}=a_{3}=(5 / 6) \mathrm{m} / \mathrm{s}^{2}\)
A block of mass \(2 \mathrm{~kg}\) is pushed against a rough vertical wall with a force of \(40 \mathrm{~N}\), coefficient of static friction being 0.5. Another horizontal force of \(15 \mathrm{~N}\), is applied on the block in a direction parallel to the wall. Will the block move? If yes, in which direction? If no, find the frictional force exerted by the wall on the block.
(c)
\(\begin{aligned}
&\text { Net force on the block }=\sqrt{20^{2}+15^{2}}-(0.5) \times 40 \\
&=25-20=5 \mathrm{~N} \\
&\therefore \tan \theta=\frac{20}{15}=\frac{4}{3} \\
&\Rightarrow \theta=\tan ^{-1}\left(\frac{4}{3}\right)=53^{\circ}
\end{aligned}
\)
Therefore, the block will move at \(53^{\circ}\) angle with the \(15 \mathrm{~N}\) force.
A person \((40 \mathrm{~kg})\) is managing to be at rest between two vertical walls by pressing one wall A by his hands and feet and the other wall B by his back (fig below). Assume that the friction coefficient between his body and the walls is 0.8 and that limiting friction acts at all the contacts. Show that the person pushes the two walls with equal force. (a) Find the normal force exerted by either wall on the person. Take \(g=10 \mathrm{~m} / \mathrm{s}^{2}\).
(d) Mass of man \(=50 \mathrm{~kg} . \quad \mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\)
Frictional force developed between hands, legs, and backside with the wall the wt of man. So he remains in equilibrium. He gives the equal force on both the walls so gets equal reaction R from both the walls. If he applies unequal forces R should be different he can’t rest between the walls. Frictional force \(2 \mu \mathrm{R}\) balance his weight.
From the free-body diagram
\(
\mu \mathrm{R}+\mu \mathrm{R}=40 \mathrm{~g} \Rightarrow 2 \mu \mathrm{R}=40 \times 10 \Rightarrow \mathrm{R}=\frac{40 \times 10}{2 \times 0.8}=250 \mathrm{~N}
\)
(a) The normal force is \(250 \mathrm{~N}\).
The figure below shows a small block of mass m kept at the left end of a larger block of mass M and length \(l\). The system can slide on a horizontal road. The system is started towards the right with an initial velocity \(v\). The friction coefficient between the road and the bigger block is \(\mu\) and that between the block is \(\mu / 2\). Find the time elapsed before the smaller blocks separate from the bigger block.
(b) Let \(a_{1}\) and \(a_{2}\) be the accelerations of m and M respectively. Here, \(a_{1}>a_{2}\) so that m moves on M
Suppose, after time t m separate from M.
In this time, \(m\) covers \(S_{m}=v t+1 / 2 a_{1} t^{2}\) and \(S_{M}=v t+1 / 2 a_{2} t^{2}\)
For m to separate from M. \(vt +1 / 2 a_{1} t^{2}=v t+1 / 2 a_{2} t^{2}+\ell \dots (1)\)
Again from free body diagram
\(\mathrm{ma}_{1}+\mu / 2 \mathrm{R}=0\)
\(
\Rightarrow \mathrm{ma}_{1}=-(\mu / 2) \mathrm{mg}=-(\mu / 2) \mathrm{m} \times 10 \Rightarrow \mathrm{a}_{1}=-5 \mu
\)
Again,
\(
\begin{aligned}
&\mathrm{Ma}_{2}+\mu(\mathrm{M}+\mathrm{m}) \mathrm{g}-(\mu / 2) \mathrm{mg}=0 \\
&\Rightarrow 2 \mathrm{Ma}_{2}+2 \mu(\mathrm{M}+\mathrm{m}) \mathrm{g}-\mu \mathrm{mg}=0 \\
&\Rightarrow 2 \mathrm{M} \mathrm{a}_{2}=\mu \mathrm{mg}-2 \mu \mathrm{Mg}-2 \mu \mathrm{mg} \\
&\Rightarrow \mathrm{a}_{2} \frac{-\mu \mathrm{mg}-2 \mu \mathrm{Mg}}{2 \mathrm{M}}
\end{aligned}
\)
Putting values of \(a_{1}\) and \(a_{2}\) in equation (1) we can find that
\(
T=\sqrt{\left(\frac{4 m l}{(M+m) \mu g}\right)}
\)
Find the acceleration of the block of mass M in the situation shown in the figure below. The coefficient of friction between the two blocks is \(\mu_{1}\) and that between the bigger block and the ground is \(\mu_{2}\).
(a) Let the acceleration of block M is a towards right. So, the block m must go down with an acceleration 2a. As the block m is in contact with the block M, it will also have acceleration a towards right. So, it will experience two inertia forces as shown in the free body diagram Fig-1. From the free body diagram Fig-1
\(\begin{aligned}
&\mathrm{R}_{1}-\mathrm{ma}=0 \Rightarrow \mathrm{R}_{1}=\mathrm{ma} \dots (i)\\
&\text { Again, } 2 m a+T-m g+\mu_{1} R_{1}=0 \\
&\begin{aligned}
&\Rightarrow T=m g-\left(2-\mu_{1}\right) m a \dots (ii)\\
&\text { From free body diagram Fig-2 }
\end{aligned}\\
&\mathrm{T}+\mu_{1} \mathrm{R}_{1}+\mathrm{mg}-\mathrm{R}_{2}=0\\
&\Rightarrow \mathrm{R}_{2}=\mathrm{T}+\mu_{1} \mathrm{ma}+\mathrm{Mg} \quad \text { [Put } \mathrm{R}_{1} \text { from (i)] }\\
&=\left(\mathrm{mg}-2 \mathrm{ma}-\mu_{1} \mathrm{ma}\right)+\mu_{1} \mathrm{ma}+\mathrm{Mg} \quad \text { [Put } \mathrm{T} \text { from (ii)] }\\
&\therefore R_{2}=M g+m g-2 m a \dots (iii) \\
&\text { Again, form the free body diagram }Fig-2\\
&\mathrm{T}+\mathrm{T}-\mathrm{R}-\mathrm{Ma}-\mu_{2} \mathrm{R}_{2}=0\\
&\Rightarrow 2 \mathrm{~T}-\mathrm{MA}-\mathrm{mA}-\mu_{2}(\mathrm{Mg}+\mathrm{mg}-2 \mathrm{ma})=0 \quad \text { [Put } \mathrm{R}_{1} \text { and } \mathrm{R}_{2} \text { from (i) and (iii)] }\\
&\Rightarrow 2 \mathrm{~T}=(\mathrm{M}+\mathrm{m})+\mu_{2}(\mathrm{Mg}+\mathrm{mg}-2 \mathrm{ma}) \quad \ldots \text { (iv) }\\
&\text { From equation (ii) and (iv) }\\
&2 \mathrm{~T}=2 \mathrm{mg}-2\left(2+\mu_{1}\right) \mathrm{mg}=(\mathrm{M}+\mathrm{m}) \mathrm{a}+\mu_{2}(\mathrm{Mg}+\mathrm{mg}-2 \mathrm{ma})\\
&\Rightarrow 2 \mathrm{mg}-\mu_{2}(\mathrm{M}+\mathrm{m}) \mathrm{g}=\mathrm{a}\left(\mathrm{M}+\mathrm{m}-2 \mu_{2} \mathrm{~m}+4 \mathrm{~m}+2 \mu_{1} \mathrm{~m}\right)\\
&\Rightarrow a=\frac{\left[2 m-\mu_{2}(M+m)\right] g}{M+m\left[5+2\left(\mu_{1}-\mu_{2}\right)\right]}
\end{aligned}\)
A block of mass m slips on a rough horizontal table under the action of a horizontal force applied to it. The coefficient of friction between the block and the table is \(\mu\). The table does not move on the floor. Find the total frictional force applied by the floor on the legs of the table. Do you need the friction coefficient between the table and the floor or the mass of the table?
(d) Because the block slips on the table, maximum frictional force acts on it. From the free body diagram
\(
\mathrm{R}=\mathrm{mg}
\)
\(\therefore F-\mu \mathrm{R}=0 \Rightarrow \mathrm{F}=\mu \mathrm{R}=\mu \mathrm{mg}\)
But the table is at rest. So, the frictional force at the legs of the table is not \(\mu R_{1}\). Let be \(\mathrm{f}\), so form the free body diagram.
\(
f-\mu \mathrm{R}=0 \Rightarrow f=\mu \mathrm{R}=\mu \mathrm{mg} \text {. }
\)
Total frictional force on table by floor is \(\mu \mathrm{mg}\).
The friction coefficient between the two blocks shown in the figure below is \(\mu\) but the floor is smooth. What maximum horizontal force F can be applied without disturbing the equilibrium of the system?
(a)
\(\begin{aligned}
&R_{1}=m g \quad \ldots \text { (i) } \\
&F-\mu R_{1}-T=0 \Rightarrow F-\mu m g-T=0 \quad \ldots \text { (ii) }
\end{aligned}\)
\(\begin{aligned}
&\mathrm{T}-\mu \mathrm{R}_{1}=0 \\
&\Rightarrow \mathrm{T}=\mu \mathrm{mg}
\end{aligned}\)
\(\therefore F=\mu \mathrm{mg}+\mu \mathrm{mg}=2 \mu \mathrm{mg}\)
[putting \(\mathrm{T}=\mu \mathrm{mg}\) ]
Consider the situation shown in the figure below. Suppose a small electric field E exists in the space in the vertically upward direction and the upper block carries a positive charge Q on its top surface. The friction coefficient between the two blocks is \(\mu\) but the floor is smooth. What maximum horizontal force F can be applied without disturbing the equilibrium?
[Hint: The force on a charge Q by the electric field E is \(F=Q E\) in the direction of E.]
(b)
\(\begin{aligned}
&R_{1}+Q E-m g=0 \\
&R_{1}=m g-Q E \dots (i)\\
&F-T-\mu R_{1}=0 \\
&\Rightarrow F-T \mu(\mathrm{mg}-Q E)=0 \\
&\Rightarrow F-T-\mu \mathrm{mg}+\mu Q E=0 \ldots(ii) \\
&T-\mu R_{1}=0 \\
&\Rightarrow T=\mu R_{1}=\mu(\mathrm{mg}-Q E)=\mu \mathrm{mg}-\mu Q E \\
&\text { Now equation (ii) is } F-m g+\mu Q E-\mu \mathrm{mg}+\mu \mathrm{QE}=0 \\
&\Rightarrow F-2 \mu \mathrm{mg}+2 \mu \mathrm{QE}=0 \\
&\Rightarrow F=2 \mu \mathrm{mg}-2 \mu \mathrm{QE} \\
&\Rightarrow F=2 \mu(\mathrm{mg}-\mathrm{QE})
\end{aligned}
\)
The maximum horizontal force that can be applied is \(2 \mu(\mathrm{mg}-Q E)\)
You cannot copy content of this page