0 of 80 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 80 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
The moment of the force, \(\vec{F}=4 \hat{i}+5 \hat{j}-6 \hat{k}\) at \((2,0,-3)\), about the point \((2,-2,-2)\), is given by [NEET 2018]
\(\text { (c) Moment of force, } \vec{\tau}=\vec{r} \times \vec{F}\)
\(\begin{aligned}
&\begin{aligned}
\vec{\tau} &=\left(\vec{r}-\vec{r}_{0}\right) \times \vec{F} \\
\vec{r}-\vec{r}_{0} &=(2 \hat{i}+0 \hat{j}-3 \hat{k})-(2 \hat{i}-2 \hat{j}-2 \hat{k}) \\
&=0 \hat{i}+2 \hat{j}-\hat{k}
\end{aligned} \\
&\vec{\tau}=(0 \hat{i}+2 \hat{j}-\hat{k})(4 \hat{i}+5 \hat{j}-6 \hat{k}) \\
&\vec{\tau}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & 2 & -1 \\
4 & 5 & -6
\end{array}\right|=-7 \hat{i}-4 \hat{j}-8 \hat{k}
\end{aligned}\)
If the magnitude of the sum of two vectors is equal to the magnitude of the difference of the two vectors, the angle between these vectors is: [NEET 2016]
(b) \(|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|\)
Squaring on both sides
\(
\begin{aligned}
&|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|^{2}=|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|^{2} \\
&\Rightarrow \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}+2 \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{B}} \\
&\quad=\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}-2 \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{B}} \\
&\Rightarrow 4 \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=0 \Rightarrow 4 \mathrm{AB} \cos \theta=0 \\
&\Rightarrow \cos \theta=0 \Rightarrow \theta=90^{\circ}
\end{aligned}
\)
If vectors \(\vec{A}=\cos \omega t \hat{i}+\sin \omega t \hat{j} \quad\) and \(\vec{B}=\cos \frac{\omega t}{2} \hat{i}+\sin \frac{\omega t}{2} \hat{j}\) are functions of time, then the value of \(t\) at which they are orthogonal to each other is: [CBSE AIPMT 2015]
(b) Two vectors are
\(
\begin{aligned}
&\overrightarrow{\mathrm{A}}=\cos \omega t \hat{i}+\sin \omega t \hat{j} \\
&\overrightarrow{\mathrm{B}}=\cos \frac{\omega t}{2} \hat{i}+\sin \frac{\omega t}{2} \hat{j}
\end{aligned}
\)
For two vectors \(\overrightarrow{\mathrm{A}}\) and \(\overrightarrow{\mathrm{B}}\) to be orthogonal \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=0\)
\(
\begin{aligned}
\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}} &=0=\cos \omega t \cdot \cos \frac{\omega t}{2}+\sin \omega t \cdot \sin \frac{\omega t}{2} \\
&=\cos \left(\omega t-\frac{\omega t}{2}\right)=\cos \left(\frac{\omega t}{2}\right)
\end{aligned}
\)
So, \(\frac{\omega t}{2}=\frac{\pi}{2} \therefore \mathrm{t}=\frac{\pi}{\omega}\)
A particle is moving such that its position coordinates \((x, y)\) are \((2 \mathrm{~m}, 3 \mathrm{~m})\) at time \(t=0\), \((6 \mathrm{~m}, 7 \mathrm{~m})\) at time \(t=2 \mathrm{~s}\) and \((13 \mathrm{~m}, 14 \mathrm{~m})\) at time \(t=5 \mathrm{~s}\).
Average velocity vector \(\left(\vec{V}_{a v}\right)\) from \(t=0\) to \(t=5 \mathrm{~s}\) is: [CBSE AIPMT 2014]
\(\begin{aligned}
&\text { (d) } \quad \vec{v}_{a v}=\frac{\Delta \vec{r}(\text { displacement })}{\Delta t(\text { time taken })} \\
&=\frac{(13-2) \hat{i}+(14-3) \hat{j}}{5-0}=\frac{11}{5}(\hat{i}+\hat{j})
\end{aligned}\)
Vectors \(\vec{A}, \vec{B}\) and \(\vec{C}\) are such that \(\vec{A} \cdot \vec{B}=0\) and \(\vec{A} \cdot \vec{C}=0\). Then the vector parallel to \(\vec{A}\) is [NEET Kar. 2013]
(d) Vector triple product
\(
\begin{aligned}
&\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})=0 \\
&\Rightarrow \vec{A} \|(\vec{B} \times \vec{C})
\end{aligned}
\)
Six vectors, \(\vec{a}\) through \(\vec{f}\) have the magnitudes and directions indicated in the figure. Which of the following statements is true? [CBSE AIPMT 2010]
(c) If two non-zero vectors are represented by the two adjacent sides of a parallelogram, then the resultant is given by the diagonal of the parallelogram passing through the point of intersection of the two vectors. Using the law of vector addition, \(\vec{d}+\vec{e}=\vec{f}\)
\(\vec{A}\) and \(\vec{B}\) are two vectors and \(\theta\) is the angle between them, if \(|\vec{A} \times \vec{B}|=\sqrt{3}(\vec{A} \cdot \vec{B})\), the value of \(\theta\) is [CBSE AIPMT 2007]
\(\begin{aligned}
&\text { (b) } \quad|\vec{A} \times \vec{B}|=\sqrt{3}(\vec{A} \cdot \vec{B}) \\
&\Rightarrow A B \sin \theta=\sqrt{3} A B \cos \theta \\
&\Rightarrow \tan \theta=\sqrt{3} \Rightarrow \theta=60^{\circ}
\end{aligned}\)
The vectors \(\vec{A}\) and \(\vec{B}\) are such that \(|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|\). The angle between the two vectors is [NEET 2006, 2001, 1996, 1991]
\(\begin{aligned}
&\text { (c) }|\vec{A}+\vec{B}|^{2}=|\vec{A}-\vec{B}|^{2} \\
&=|\vec{A}|^{2}+|\vec{B}|^{2}+2 \vec{A} \cdot \vec{B}=A^{2}+B^{2}+2 A B \cos \theta \\
&=|\vec{A}-\vec{B}|^{2}=|\vec{A}|^{2}+|\vec{B}|^{2}-2 \vec{A} \cdot \vec{B} \\
&=A^{2}+B^{2}-2 A B \cos \theta \\
&\text { So, } A^{2}+B^{2}+2 A B \cos \theta \\
&=A^{2}+B^{2}-2 A B \cos \theta \\
&4 A B \cos \theta=0 \Rightarrow \cos \theta=0 \\
&\theta=90^{\circ} \\
&\text { So, angle between } A \& B \text { is } 90^{\circ} .
\end{aligned}\)
If a vector \(2 \hat{i}+3 \hat{j}+8 \hat{k}\) is perpendicular to the vector \(4 \hat{j}-4 \hat{i}+\alpha \hat{k}\), then the value of \(\alpha\) is [CBSE AIPMT 2005]
(b) For two vectors to be perpendicular to each other
\(
\begin{aligned}
&\vec{A} \cdot \vec{B}=0 \\
&(2 \hat{i}+3 \hat{j}+8 \hat{k}) \cdot(4 \hat{j}-4 \hat{i}+\alpha \hat{k})=0 \\
&-8+12+8 \alpha=0 \\
&\alpha=-\frac{4}{8}=-\frac{1}{2}
\end{aligned}
\)
If the angle between the vectors \(\vec{A}\) and \(\vec{B}\) is \(\theta\), the value of the product \((\vec{B} \times \vec{A}) \cdot \vec{A}\) is equal to [CBSE AIPMT 2005]
(d) \((\vec{B} \times \vec{A}) \cdot \vec{A}=\vec{C} \cdot \vec{A}=C A \cos 90^{\circ}=0\)
The dot product of any two perpendicular vectors is zero.
If \(|\vec{A} \times \vec{B}|=\sqrt{3} \vec{A} \cdot \vec{B}\) then the value of \(|\vec{A}+\vec{B}|\) is [CBSE AIPMT 2004]
\(\begin{aligned}
&\text { (c) }|\vec{A} \times \vec{B}|=A B \sin \theta \\
&\vec{A} \cdot \vec{B}=A B \cos \theta \\
&|\vec{A} \times \vec{B}|=\sqrt{3} \vec{A} \cdot \vec{B} \Rightarrow A B \sin \theta=\sqrt{3} A B \cos \theta \\
&\text { or, } \tan \theta=\sqrt{3}, \quad \therefore \theta=60^{\circ} \\&\therefore|\vec{A}+\vec{B}|=\sqrt{A^{2}+B^{2}+2 A B \cos 60^{\circ}} \\
& =\sqrt{A^{2}+B^{2}+A B}
\end{aligned}\)
The vector sum of two forces is perpendicular to their vector differences. In that case, the forces [CBSE AIPMT 2003]
(b) \(\vec{P}=\) vector sum \(=\vec{A}+\vec{B}\)
\(\vec{Q}=\) Vector differences \(=\vec{A}-\vec{B}\)
Since \(\vec{P}\) and \(\vec{Q}\) are perpendicular
\(
\begin{aligned}
&\therefore \vec{P} \cdot \vec{Q}=0 \Rightarrow(\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B})=0 \\
&\Rightarrow A^{2}=B^{2} \Rightarrow|\vec{A}|=|\vec{B}|
\end{aligned}
\)
The angle between the two vectors \(\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}\) and \(\vec{B}=3 \hat{i}+4 \hat{j}-5 \hat{k}\) will be [CBSE AIPMT 2001, 1994]
(b) Angle between two vectors is given as from dot product \(\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta\)
\(
\begin{aligned}
\cos \theta &=\frac{\vec{A} \cdot \vec{B}}{A B} \\
\text { Here, } \vec{A} &=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}} \\
\vec{B} &=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-5 \hat{\mathrm{k}} \\
\therefore \quad A &=\sqrt{(3)^{2}+(4)^{2}+(5)^{2}}=\sqrt{50} \\
B &=\sqrt{(3)^{2}+(4)^{2}+(-5)^{2}}=\sqrt{50} \\
\text { and } \vec{A} \cdot \vec{B} &=(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}) \cdot(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}) \\
&=9+16-25=0 \\
\therefore \quad |\vec{A}||\vec{B}|\cos \theta &=\frac{0}{\sqrt{50} \cdot \sqrt{50}}=0 \\
\Rightarrow \quad \theta &=90^{\circ}
\end{aligned}
\)
A particle moves with a velocity \(\vec{v}=6 \hat{i}-4 \hat{j}+3 \hat{k} \mathrm{~m} / \mathrm{s}\) under the influence of a constant force \(\vec{F}=20 \hat{i}+15 \hat{j}-5 \hat{k} \mathrm{~N}\). The instantaneous power applied to the particle is [CBSE AIPMT 2000]
(a) As we know,
\(
\begin{aligned}
&P=\vec{F} \cdot \vec{v}=(6 \hat{i}-4 \hat{j}+3 \hat{k}) \cdot(20 \hat{i}+15 \hat{j}-5 \hat{k}) \\
&=6 \times 20-4 \times 15-3 \times 5=45 \mathrm{~J} / \mathrm{s}
\end{aligned}
\)
Instantaneous power can be calculated by
\(\mathrm{P}_{\text {ins }}=\mathrm{F} \cdot \cos \theta v=\vec{F} \cdot \vec{v}\)
which is the scalar product of force and velocity vector.
What is the linear velocity if angular velocity vector \(\vec{\omega}=3 \hat{i}-4 \hat{j}+\hat{k}\) and position vector \(\vec{r}=5 \hat{i}-6 \hat{j}+6 \hat{k}\) [CBSE AIPMT 1999]
(c) \(v=\omega \times r\)
\(\begin{aligned}
&=(3 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+\hat{\mathbf{k}}) \times(5 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}+6 \hat{\mathbf{k}}) \\
&=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & -4 & 1 \\
5 & -6 & 6
\end{array}\right| \\
&=\hat{\mathbf{i}}\left|\begin{array}{ll}
-4 & 1 \\
-6 & 6
\end{array}\right|-\hat{\mathbf{j}}\left|\begin{array}{ll}
3 & 1 \\
5 & 6
\end{array}\right|+\hat{\mathbf{k}}\left|\begin{array}{cc}
3 & -4 \\
5 & -6
\end{array}\right| \\
=&(-24+6) \hat{\mathbf{i}}-(18-5) \hat{\mathbf{j}}+(-18+20) \hat{\mathbf{k}} \\
&=-18 \hat{\mathbf{i}}-13 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}
\end{aligned}\)
The angle between two vectors of magnitude 12 and 18 units when their resultant is 24 units, is [CBSE AIPMT 1999]
(b) We know that, \(R^{2}=A^{2}+B^{2}+2 A B \cos \theta\)
\((24)^{2}=(12)^{2}+(18)^{2}+2(12)(18) \cos \theta\)
\(
\cos \theta=\frac{108}{432} \Rightarrow \theta=75^{\circ} 52^{\prime}
\)
If a unit vector is represented by \(0.5 \hat{i}+0.8 \hat{j}+c \hat{k}\), the value of \(\mathrm{c}\) is [CBSE AIPMT 1999]
\(
\begin{aligned}
&\text { (a) } \hat{r}=0.5 \hat{i}+0.8 \hat{j}+c \hat{k} \\
&|\hat{r}|=1=\sqrt{(0.5)^{2}+(0.8)^{2}+c^{2}} \\
&(0.5)^{2}+(0.8)^{2}+c^{2}=1 \\
&c^{2}=0.11 \Rightarrow c=\sqrt{0.11}
\end{aligned}
\)
A unit vector is a vector that has a magnitude of one. It is a vector divided by its magnitude. Unit vector for
\(\vec{A}\) is \(\hat{A}: \hat{A}=\frac{\vec{A}}{A}\)
Unit vector gives direction.
Find the torque of a force \(\vec{F}=-3 \hat{i}+\hat{j}+5 \hat{k}\) acting at the point \(\vec{r}=7 \hat{i}+3 \hat{j}+\hat{k}\). [CBSE AIPMT 1997]
\(\begin{aligned}
&\text { (c) } \quad \vec{F}=-3 \hat{i}+\hat{j}+5 \hat{k} ; \vec{r}=7 \hat{i}+3 \hat{j}+\hat{k} \\
&\text { Torque }(\vec{\tau})=\vec{r} \times \vec{F} \\
&=(7 \hat{i}+3 \hat{j}+\hat{k}) \times(-3 \hat{i}+\hat{j}+5 \hat{k}) \\
&=7 \hat{k}+35(-\hat{j})-9(-\hat{k})+15 \hat{i}-3 \hat{j}+(-\hat{i}) \\
&=14 \hat{i}-38 \hat{j}+16 \hat{k}
\end{aligned}\)
Which of the following is not a vector quantity? [CBSE AIPMT 1996]
Which of the following is not a vector quantity? [CBSE AIPMT 1995]
A body constrained to move in \(y\)-direction, is subjected to a force given by \(\vec{F}=(-2 \hat{i}+15 \hat{j}+6 \hat{k}) N\). What is the work done by this force in moving the body through a distance of \(10 \mathrm{~m}\) along \(y\)-axis? [CBSE AIPMT 1994]
(c) Since displacement is along the \(y\)-direction, hence displacement \(\vec{s}=10 \hat{j}\).
Work done \(=\vec{F} \cdot \vec{s}\)
\(
=(-2 \hat{i}+15 \hat{j}+6 \hat{k}) \cdot 10 \hat{j}=150 J
\)
The resultant of \((\vec{A} \times 0)\) will be equal to [CBSE AIPMT 1992]
From the properties of vector product, the cross product of any vector with zero is a null vector or zero vector.
The angle between \(\vec{A}\) and \(\vec{B}\) is \(\theta\). The value of the triple product \(\vec{A} \cdot(\vec{B} \times \vec{A})\) is [CBSE AIPMT 1989]
(b) Note that \((\vec{B} \times \vec{A}) \perp \vec{A}\). Hence their dot product is zero.
The magnitudes of vectors \(\vec{A}, \vec{B}\) and \(\vec{C}\) are 3,4 and 5 units respectively. If \(\vec{A}+\vec{B}=\vec{C}\), then the angle between \(\vec{A}\) and \(\vec{B}\) is [CBSE AIPMT 1988]
(a)
In figure shown, \(\vec{A}+\vec{B}=\vec{C}\)
Also, \(\quad|\vec{A}|=3,|\vec{B}|=4,|\vec{C}|=5\)
As \(\vec{A}+\vec{B}=\vec{C}\)
So, \(\quad 5^{2}=3^{2}+4^{2}+2 \cdot 4 \cdot 3 \cos \theta\)
\(
\cos \theta=0 \Rightarrow \theta=\frac{\pi}{2}
\)
\(\Rightarrow \vec{A}\) is perpendicular to \(\vec{B}.\)
The \(x\) and \(y\) coordinates of the particle at any time are \(x=5 t-2 t^{2}\) and \(y=10 t\) respectively, where \(x\) and \(\mathbf{y}\) are in meters and \(t\) in seconds. The acceleration of the particle at \(t=2 \mathrm{~s}\) is [NEET 2017]
(d) Given:
\(
\begin{array}{ll}
x=5 t-2 t^{2} & y=10 t \\
v_{x}=\frac{d x}{d t}=5-4 t & v_{y}=\frac{d y}{d t}=10 \\
a_{x}=\frac{d v_{x}}{d t}=-4 & a_{y}=\frac{d v_{y}}{d t}=0 \\
\vec{a}=a_{x} i+a_{y} j & \vec{a}=-4 i \mathrm{~m} / \mathrm{s}^{2}
\end{array}
\)
Hence, acceleration of particle at \((t=2 \mathrm{~s})=-4 \mathrm{~m} / \mathrm{s}^{2}\)
A particle starting from the origin \((0,0)\) moves in the \((x, y)\) plane. Its coordinates at a later time are \((\sqrt{3}, 3)\). The path of the particle makes with the \(x\)-axis an angle of [CBSE AIPMT 2007]
(d) Let \(\theta\) be the angle that the particle makes with \(x\)-axis.
From figure below, \(\tan \theta=\frac{3}{\sqrt{3}}=\sqrt{3}\) \(\Rightarrow \theta=\tan ^{-1}(\sqrt{3})=60^{\circ}\)
If a vector \(\vec{R}\) in \(x-y\) plane then its orthogonal vector \(R_{x}=R \cos \theta\) and \(R_{y}=R \sin \theta\).
And \(\frac{R \sin \theta}{R \cos \theta}=\tan \theta=\frac{R_{y}}{R_{x}}\)
A particle moves in a plane with constant acceleration in a direction different from the initial velocity. The path of the particle is [CBSE AIPMT 2005]
A body of \(3 \mathrm{~kg}\) moves in the \(x y\) plane under the action of a force given by \(6 t^{2} \hat{i}+4 t \hat{j}\).Assuming that the body is at rest at time \(t=0\), the velocity of the body at \(t=3 \mathrm{~s}\) is [CBSE AIPMT 2002]
\(\begin{aligned}
&\text { (b) } \vec{F}=6 t \hat{i}+4 t \hat{j} \\
&F_{x}=6 t, F_{y}=4 t \\
&a_{x}=\frac{6 t}{3}=2 t, a_{y}=\frac{4 t}{3} \\
&\frac{d v_{x}}{d t}=2 t^{2} \\
&v_{x} d V_{x}=\int_{0}^{t} 2 t^{2} d t \\
&\Rightarrow \quad v_{x}=\frac{2}{3} t^{3}=\frac{2}{3} \cdot 3^{3}=18 \\
&\quad \frac{d V_{y}}{d t}=\frac{4}{3} t \Rightarrow \quad \int_{0}^{V_{y}} d V_{y}=\frac{4}{3} \int_{0}^{t} t d t
\end{aligned}\)
\(\begin{aligned}
&\Rightarrow \quad V_{y}=\frac{4}{3} \frac{t^{2}}{2}=\frac{4}{3} \cdot \frac{3^{2}}{2}=6 \\
&\Rightarrow \quad \mathrm{V}=18 \vec{i}+6 \vec{j}
\end{aligned}\)
Two particles \(A\) and \(B\) are connected by a rigid rod \(\mathrm{AB}\). The rod slides along perpendicular rails as shown here. The velocity of \(A\) to the left is \(10 \mathrm{~m} / \mathrm{s}\). What is the velocity of B when angle \(\alpha=60^{\circ}\)? [CBSE AIPMT 1998]
(a) Given,
\(\mathrm{V}\)elocity \(=10 \mathrm{~m} / \mathrm{s} \quad \alpha=60^{\circ}\)
\(\mathrm{L}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}\)
On differentiating we get,
\(
0=2 x \frac{d x}{d t}+2 y \frac{d y}{d t}
\)
The Velocity of \(\mathrm{A}=\frac{\mathrm{dx}}{\mathrm{dt}}=-10 \mathrm{~m} / \mathrm{s}\)
Thus the velocity of particle \(B\) is:
\(
\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{-\mathrm{x}}{\mathrm{y}} \frac{\mathrm{dx}}{\mathrm{dt}}=\cot 60^{0} \times 10=\frac{1}{\sqrt{3}} \times 10=5.8 \mathrm{~m} / \mathrm{s}
\)
The position vector of a particle is \(\vec{r}=(a \cos \omega t) \hat{i}+(a \sin \omega t) \hat{j}\). The velocity of the particle is [CBSE AIPMT 1995]
(d) Position vector,
\(\vec{r}=(a \cos \omega t) \hat{i}+(a \sin \omega t) \hat{j}\)
Velocity vector,
\(
\begin{aligned}
&\vec{v}=\frac{d(\vec{r})}{d t}=\frac{d}{d t}\{(a \cos \omega t) \hat{i}+(a \sin \omega t) \hat{j}\} \\
&=(-a \omega \sin \omega t) \hat{i}+(a \omega \cos \omega t) \hat{j} \\
&=\omega[(-a \sin \omega t) \hat{i}+(a \cos \omega t) \hat{j}]
\end{aligned}
\)
Slope of position vector \(=\frac{a \sin \omega t}{a \cos \omega t}=\tan \omega t\)
Slope of velocity vector, \(=\frac{-a \cos \omega t}{a \sin \omega t}=\frac{-1}{\tan \omega t}\)
\(\therefore\) velocity is perpendicular to the displacement.
A bullet is fired from a gun with a speed of 1000 \(\mathrm{m} / \mathrm{s}\) in order to hit a target \(100 \mathrm{~m}\) away. At what height above the target should the gun be aimed? (The resistance of air is negligible and \(g=10 \mathrm{~m} / \mathrm{s}^{2}\) ) [CBSE AIPMT 1995]
(a) Speed of the bullet \((\mathrm{v})=1000 \mathrm{~m} / \mathrm{s}\) and horizontal distance of the target \((\mathrm{s})=100 \mathrm{~m}\). Time taken to cover the horizontal distance \((t)\) \(=\frac{100}{1000}=0.1 \mathrm{sec}\).
During this time, the bullet will fall down vertically due to gravitational acceleration.
\(\therefore\) height \((h)=u t+\frac{1}{2} g t^{2}\)
\(\begin{aligned}
&=(0 \times 0.1)+\frac{1}{2} \times 10(0.1)^{2} \\
&=0.05 \mathrm{~m}=5 \mathrm{~cm}
\end{aligned}\)
A projectile is fired from the surface of the earth with a velocity of \(5 \mathrm{~ms}^{-1}\) and angle \(\theta\) with the horizontal. Another projectile fired from another planet with a velocity of \(3 \mathrm{~ms}^{-1}\) at the same angle follows a trajectory that is identical to the trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on the planet is (in \(\mathrm{ms}^{-2}\) ) given \(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\) [CBSE AIPMT 2014]
(b) Trajectory is identical for both horizontal
range \(=\frac{u^{2} \sin 2 \theta}{g}\)
So that, \(\frac{g_{\text {planet }}}{g_{\text {earth }}}=\frac{\left(u_{\text {planet }}\right)^{2}}{\left(u_{\text {earth }}\right)^{2}}\)
Therefore, \(g_{\text {planet }}=\left(\frac{3}{5}\right)^{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\) \(=3.5 \mathrm{~m} / \mathrm{s}^{2}\)
The velocity of a projectile at the initial point \(A\) is \((2 \hat{i}+3 \hat{j}) \mathrm{m} / \mathrm{s}\). It’s velocity (in \(\mathrm{m} / \mathrm{s})\) at point \(\mathrm{B}\) is [CBSE AIPMT 2013]
(b) At point B the direction of velocity component of the projectile along with the \(y\)-component reverses, while the \(x\)-component remains unchanged.
Hence, \(\vec{V}_{B}=2 \hat{i}-3 \hat{j}\)
The horizontal range and the maximum height of a projectile are equal. The angle of projection of the projectiles is: [CBSE AIPMT 2012]
(b) Horizontal range,
\(R=\frac{u^{2} \sin 2 \theta}{g}\)
Maximum height,
\(
h_{m}=\frac{u^{2} \sin ^{2} \theta}{2 g}
\)
According to the condition,
\( R=h_{m}\)
\(
\begin{aligned}
&\Rightarrow \quad \frac{u^{2} \sin 2 \theta}{g}=\frac{u^{2} \sin ^{2} \theta}{2 g} \\
&\Rightarrow 2 \sin \theta \cos \theta=\frac{\sin ^{2} \theta}{2}
\end{aligned}
\)
\(
\begin{aligned}
& 2 \cos \theta=\frac{\sin \theta}{2} \\
\Rightarrow & \cot \theta=\frac{1}{4} \\
\Rightarrow & \tan \theta=4 \\
\Rightarrow & \theta=\left[\tan ^{-1}(4)\right]
\end{aligned}
\)
Note: In the case of projectile motion range \(R\) is \(n\) times the maximum height \(h_{m}\)
\(
\begin{aligned}
&\text { i.e., } R=n h_{m} \Rightarrow \frac{u^{2} \sin 2 \theta}{g}=n \frac{u^{2} \sin ^{2} \theta}{2 g} \\
&\Rightarrow \operatorname{tan} \theta=\frac{4}{n}, \text { Angle of projection } \theta=\tan ^{-1}\left(\frac{4}{n}\right)
\end{aligned}
\)
A missile is fired for maximum range with an initial velocity of \(20 \mathrm{~m} / \mathrm{s}\). If \(g=10 \mathrm{~m} / \mathrm{s}^{2}\), the range of the missile is [CBSE AIPMT 2011]
For the maximum range of the projectile, \(\theta\) will be \(45^{\circ}\) by the law of projectile motion.
So, maximum range, \(R_{\max }=\frac{u^{2}}{g}\)
Given, \(\quad u=20 \mathrm{~ms}^{-1}\) and \(\mathrm{g}=10 \mathrm{~ms}^{-2}\)
\(
\begin{aligned}
&R_{\max }=\frac{(20)^{2}}{10}=\frac{400}{10} \\
&R_{\max }=40 \mathrm{~m}
\end{aligned}
\)
A projectile is fired at an angle of \(45^{\circ}\) with the horizontal. The elevation angle of the projectile at its highest point as seen from the point of projection is [CBSE AIPMT 2011]
(c) Maximum height,
\(\mathrm{H}=\frac{u^{2} \sin ^{2} 45^{\circ}}{2 g}=\frac{u^{2}}{4 g}\) ..(1)
Range, \(\mathrm{R}=\frac{u^{2} \sin 90^{\circ}}{g}=\frac{u^{2}}{g}\)
\(\therefore \frac{R}{2}=\frac{u^{2}}{2 g}\) …… (2)
According to the rcquircd condition,
\(
\therefore \tan \alpha=\frac{\mathrm{H}}{\mathrm{R} / 2}
\)
Put the volues from equation (1) and (2)
\(
\Rightarrow \frac{\left(\frac{u^{2}}{4 g}\right)}{\left(\frac{u^{2}}{2 g}\right)} \tan \alpha \quad \therefore \alpha=\tan ^{-1}\left(\frac{1}{2}\right)
\)
A particle of mass \(m\) is projected with velocity \(v\) making an angle of \(45^{\circ}\) with the horizontal. When the particle lands on the level ground the magnitude of the change in its momentum will be: [CBSE AIPMT 2008]
(b) Clearly, there is no change in momentum along \(x\)-axis, {latex]=m v \cos \theta-m v \cos \theta=0[/latex]
Momentum changed only in vertical direction or \(y\)-axis.
So, \(\Delta \mathrm{P}=\Delta \mathrm{P}_{\text {vertical }}\)
\(\Rightarrow \mathrm{P}_{\text {final }}=\mathrm{P}_{\text {initial }}\)
\(=m v \sin \theta-(-m v \sin \theta)\)
\(=2 m v \sin \theta=2 m v \times \sin 45^{\circ}\)
\(=2 m v \times \frac{1}{\sqrt{2}}=\sqrt{2} m v\)
Hence, resultant change in momentum \(=\sqrt{2} m v\)
For angles of projection of a projectile \(\left(45^{\circ}-\theta\right)\) and \(\left(45^{\circ}+\theta\right)\), the horizontal ranges described by the projectile are in the ratio of [CBSE AIPMT 2006]
(d) Horizontal range for projection angle
\(
\left(45^{\circ}-\theta\right) \text { is, } \mathrm{R}_{1}=\frac{u^{2} \sin 2(45-\theta)}{g}
\)
Horizontal range projection angle \(\left(45^{\circ}+\theta\right)\) is, \(\mathrm{R}_{2}=\frac{u^{2} \sin 2(45+\theta)}{g}\) According to the condition,
\(
\begin{aligned}
&\Rightarrow \quad \frac{R_{1}}{R_{2}}=\frac{u^{2} \sin 2(45-\theta)}{u^{2} \sin 2(45+\theta)}=\frac{\sin (90-2 \theta)}{\sin (90+2 \theta)} \\
&\Rightarrow \frac{R_{1}}{R_{2}}=\frac{\cos 2 \theta}{\cos 2 \theta}=\frac{1}{1} \\
&\text { So, } R_{1}: R_{2}: 1: 1
\end{aligned}
\)
The angle of elevation ( \(\phi)\) of the highest point of the projectile and the angle of projection \(\theta\) are related to each other as \(\tan \phi=\frac{1}{2} \tan \theta\)
Two projectiles are fired from the same point with the same speed at angles of projection \(60^{\circ}\) and \(30^{\circ}\) respectively. Which one of the following is true? [CBSE AIPMT 2000]
(a) Maximum height in case of the projectile is given by
\(
\begin{aligned}
&h_{m}=\frac{u^{2} \sin ^{2} \theta}{2 g} \Rightarrow \frac{h_{1m}}{h_{2m}}=\frac{\sin ^{2} \theta_{1}}{\sin ^{2} \theta_{2}} \\
&=\frac{\sin ^{2} 30^{\circ}}{\sin ^{2} 60^{\circ}}=\frac{\left(\frac{1}{2}\right)^{2}}{\left(\frac{\sqrt{3}}{2}\right)^{2}}=\frac{1}{3}
\end{aligned}
\)
(b) Range \(R=\frac{u^{2} \sin 2 \theta}{g}\)
\(
\begin{aligned}
&\Rightarrow \frac{R_{1}}{R_{2}}=\frac{\sin \left(2 \times 30^{\circ}\right)}{\sin \left(2 \times 60^{\circ}\right)} \\
&=\frac{\sin 60^{\circ}}{\sin 120^{\circ}}=\frac{\frac{\sqrt{3}}{\sqrt{3}}}{\frac{2}{2}}=1 \Rightarrow R_{1}=R_{2}
\end{aligned}
\)
(c) Time of flight
\(
\begin{aligned}
T_{f} &=\frac{2 u \sin \theta}{g} \Rightarrow \frac{T_{1f}}{T_{2f}}=\frac{\sin \theta_{1}}{\sin \theta_{2}} \\
&=\frac{\sin 30^{\circ}}{\sin 60^{\circ}}=\frac{1 / 2}{\sqrt{3} / 2}=\frac{1}{\sqrt{3}}
\end{aligned}
\)
Hence, their horizontal ranges will be equal. So, answer (b) is correct.
If a body \(A\) of mass \(M\) is thrown with velocity \(v\) at an angle of \(30^{\circ}\) to the horizontal and another body \(B\) of the same mass is thrown with the same speed at an angle of \(60^{\circ}\) to the horizontal, the ratio of the horizontal range of \(A\) to \(B\) will be [CBSE AIPMT 1992]
(c) Horizontal range is same when angle of projection with the horizontal is \(\theta\) and \(\left(90^{\circ}-\theta\right)\). So, the ratio is 1:1.
The maximum range of a gun on horizontal terrain is \(16 \mathrm{~km}\). If \(g=10 \mathrm{~ms}^{-2}\), then the muzzle velocity of a shell must be [CBSE AIPMT 1990]
(d) Here, \(R_{\max }=\frac{u^{2}}{g}=16 \mathrm{~km}=16000 \mathrm{~m}\)
or
\(
\begin{aligned}
u &=\sqrt{16000 \mathrm{~g}}=\sqrt{16000 \times 10} \\
&=400 \mathrm{~ms}^{-1}
\end{aligned}
\)
Two bodies of the same mass are projected with the same velocity at an angle \(30^{\circ}\) and \(60^{\circ}\) respectively. The ratio of their horizontal ranges will be [CBSE AIPMT 1990]
When an object is projected with velocity \(u\) making an angle \(\theta\) with the horizontal direction, then the horizontal range will be
\(
R_{1}=\frac{u^{2} \sin 2 \theta}{g} \text {…(i) }
\)
when an object is projected with velocity \(u\) making an angle \(\left(90^{\circ}-\theta\right)\) with the horizontal direction, then horizontal range will be
\(
R_{2}=\frac{u^{2} \sin 2\left(90^{\circ}-\theta\right)}{g}
\)
\(
\begin{aligned}
&=\frac{u^{2}}{g} \sin \left(180^{\circ}-2 \theta\right) \\
&=\frac{u^{2}}{g} \sin 2 \theta \text {…(ii) }
\end{aligned}
\)
From Eqs. (i) and (ii), we note that \(R_{1}=R_{2}\)
Here, the projection angle is \(30^{\circ}\) and \(60^{\circ}=\left(90^{\circ}-30^{\circ}\right)\), so horizontal range is same for both angles.
\(
\therefore \quad \frac{R_{1}}{R_{2}}=1
\)
Note: Horizontal range is same when angle of projection is \(\theta\) or \(\left(90^{\circ}-\theta\right)\).
A particle moving in a circle of radius \(R\) with a uniform speed takes a time \(T\) to complete one revolution. If this particle were projected with the same speed at an angle \(\theta\) to the horizontal, the maximum height attained by it equals \(4 R\). The angle of projection \(\theta\) is then given by [NEET 2021]
(d)
Given, the radius of the circular path \(=R\)
The time taken by the particle to complete one revolution \(=T\)
When the particle is projected with the same speed (by which it is moving in a circular orbit) at angle \(\theta\) to the horizontal, the maximum height attained is given as
\(h_{\max }=\frac{u^{2} \sin ^{2} \theta}{2 g}\) …… (i)
\(h_{\max }=4 R \quad\) (given)
Also, we know that,
speed of the particle in a circular path,
\(
u=\frac{2 \pi R}{T}
\)
Substituting the values in the Eq. (i), we get
\(
\begin{gathered}
4 R=\frac{\left(\frac{2 \pi R}{T}\right)^{2} \sin ^{2} \theta}{2 g} \\
\Rightarrow \quad \sin \theta=\left(\frac{2 g T^{2}}{\pi^{2} R}\right)^{1 / 2} \\
\Rightarrow \quad \theta=\sin ^{-1}\left(\frac{2 g T^{2}}{\pi^{2} R}\right)^{1 / 2}
\end{gathered}
\)
The speed of a swimmer in still water is \(20 \mathrm{~m}\) s. The speed of river water is \(10 \mathrm{~m} / \mathrm{s}\) and is flowing due east. If he is standing on the south bank and wishes to cross the river along the shortest path, the angle at which he should make his strokes w.r.t. north is given by: [NEET 2019]
(a) Velocity of swimmer w.r.t. river \(\mathrm{V}_{\mathrm{SR}}=20 \mathrm{~m} / \mathrm{s}\), Velocity of river w.r.t. ground \(V_{R G}=10 \mathrm{~m} / \mathrm{s}\)
\(
\begin{aligned}
&\vec{V}_{S G}=\vec{V}_{S R}+\vec{V}_{R G} \\
&\sin \theta=\left|\frac{\vec{V}_{R G}}{\vec{V}_{S R}}\right| \Rightarrow \sin \theta=\frac{10}{20} \\
&\Rightarrow \sin \theta=\frac{1}{2} \quad \therefore \theta=30^{\circ} \text { west }
\end{aligned}
\)
Therefore to cross the river along the shortest path, the swimmer should make his strokes \(30^{\circ}\) west.
A particle moves so that its position vector is given by \(\vec{r}=\cos \omega t \hat{x}+\sin \omega t \hat{y}\). Where \(\omega\) is a constant. Which of the following is true? [NEET 2016]
(c) Given: The position vector
\(\vec{r}=\cos \omega t \hat{x}+\sin \omega t \hat{y}\)
\(\therefore \quad\) Velocity vector, \(\vec{v}=-\omega \sin \omega t \hat{x}+\omega \cos \omega t\) \(\hat{y}\) acceleration vector,
\(\vec{a}=-\omega^{2} \cos \omega t \hat{x}-\omega^{2} \sin \omega t \hat{y}=-\omega^{2} \vec{r}\)
\(\vec{r} \cdot \vec{v}=0\) hence \(\vec{r} \perp \vec{v}\) and \(\vec{a}\) is directed towards the origin.
Note: Nothing actually moves in the direction of the angular velocity vector \(\vec{\omega}\). The direction of \(\vec{\omega}\) simply represents that the circular motion is taking place in a plane perpendicular to it.
A ship A is moving Westwards with a speed of \(10 \mathrm{~km} \mathrm{~h}^{-1}\) and a ship B \(100 \mathrm{~km}\) South of \(A\), is moving Northwards with a speed of \(10 \mathrm{~km} \mathrm{~h}^{-1}\). The time after which the distance between them becomes shortest is: [CBSE AIPMT 2015]
It is clear from the diagram that the shortest distance between the ship \(A\) and \(B\) is \(P O\).
Here, \(\sin 45^{\circ}=\frac{P Q}{OQ} \Rightarrow P Q=100 \times \frac{1}{\sqrt{2}}\) \(=50 \sqrt{2} \mathrm{~m}\)
Also, \(v_{A B}=\sqrt{v_{A}^{2}+v_{B}^{2}}=\sqrt{10^{2}+10^{2}}\) \(=10 \sqrt{2} \mathrm{~km} / \mathrm{h}\)
So, the time taken for them to reach the shortest path is
\(
t=\frac{P O}{V_{A B}}=\frac{50 \sqrt{2}}{10 \sqrt{2}}=5 \mathrm{~h}
\)
The position vector of a particle \(\vec{R}\) as a function of time is given by:
\(
\vec{R}=4 \sin (2 \pi t) \hat{i}+4 \cos (2 \pi t) \hat{j}
\)
Where \(R\) is in meter, \(t\) in seconds and \(\hat{i}\) and \(\hat{j}\) denote unit vectors along \(x\)-and \(y\)-directions, respectively.
Which one of the following statements is wrong for the motion of particle? [CBSE AIPMT 2015]
(b) Here,
\(\begin{aligned} x &=4 \sin (2 \pi \mathrm{t}) \quad \ldots(i) \\ y &=4 \cos (2 \pi \mathrm{t}) \quad \ldots(\text { ii }) \end{aligned}\)
Squaring and adding equation \((i)\) and \((ii)\) \(x^{2}+y^{2}=4^{2} \Rightarrow \mathrm{R}=4\)
The motion of the particle is circular motion, acceleration vector is along \(\vec{R}\) and its magnitude \(=\frac{V^{2}}{R}\)
Velocity of particle, \(\mathrm{V}=\omega \mathrm{R}=(2 \pi)(4)=8 \pi\)
A particle moves in a circle of radius \(5 \mathrm{~cm}\) with constant speed and time period \(0.2 \pi \mathrm{s}\). The acceleration of the particle is [CBSE AIPMT 2011]
(d) Centripetal acceleration \(a_{c}=\omega^{2} r\)
\(
=\left(\frac{2 \pi}{T}\right)^{2} r=\left(\frac{2 \pi}{0.2 \pi}\right)^{2} \times 5 \times 10^{-2}=5 \mathrm{~m} / \mathrm{s}^{2}
\)
A car runs at a constant speed on a circular track of radius \(100 \mathrm{~m}\), taking \(62.8\) seconds in every circular loop. The average velocity and average speed for each circular loop respectively is [CBSE AIPMT 2006]
(a) Distance covered in one circular loop \(=\) \(2 \pi r\) \(=2 \times 3.14 \times 100=628 \mathrm{~m}\); Avg Speed \(=\frac{628}{62.8}=10 \mathrm{~m} / \mathrm{sec}\); Displacement in one circular loop \(=0\); Avg Velocity \(=\frac{0}{\text { time }}=0\)
Two boys are standing at the ends \(A\) and \(B\) of a ground where \(A B=a\). The boy at \(B\) starts running in a direction perpendicular to \(A B\) with velocity \(v_{1}\). The boy at \(A\) starts running simultaneously with velocity \(v\) and catches the other boy in a time \(t\), where \(t\) is [CBSE AIPMT 2005]
(b) According to the given condition,
Let both \(y\) boy meet at \(c\) : in time \(t\) then,
\(\mathrm{AC}=v t\) and \(\mathrm{BC}=v_{1} t\)
From pythagorus theorem,
\(
\begin{aligned}
&\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC} \\
&v^{2} t^{2}=a^{2}+v_{1}^{2} t^{2} \\
&t^{2}\left(v^{2}-v_{1}^{2}\right)=a^{2} \\
&t^{2}=\frac{a^{2}}{\left(v^{2}-v_{1}^{2}\right)} \\
&t=\sqrt{\frac{a}{\left(v^{2}-v_{1}^{2}\right)}}
\end{aligned}
\)
A stone tied to the end of a string of \(1 \mathrm{~m}\) long is whirled in a horizontal circle with a constant speed. If the stone makes 22 revolutions in 44 seconds, what is the magnitude and direction of acceleration of the stone? [CBSE AIPMT 2005]
(a) Since speed is constant throughout the motion, so, it is a uniform circular motion. Therefore, its radial acceleration is given by
\(
\begin{aligned}
a_{r} &=r \omega^{2} \\
&=r\left(\frac{2 \pi n}{t}\right)^{2}=r \times \frac{4 \pi^{2} n^{2}}{t^{2}} \\
&=\frac{1 \times 4 \times \pi^{2} \times(22)^{2}}{(44)^{2}} \\
=\pi^{2} \mathrm{~m} / \mathrm{s}^{2} &
\end{aligned}
\)
This acceleration is directed along the radius of the circle.
The circular motion of a particle with constant speed is [CBSE AIPMT 2005]
In a circular motion, a particle repeats its motion after equal intervals of time. So, particle moving on a circular path is periodic but not simple harmonic, as it does not execute to and fro motion about a fixed point.
A stone is tied to a string of length \(\ell\) and is whirled in a vertical circle with the other end of the string as the centre. At a certain instant of time, the stone is at its lowest position and has a speed \(u\). The magnitude of the change in velocity as it reaches a position where the string is horizontal ( \(g\) being acceleration due to gravity) is [CBSE AIPMT 2004]
\(\begin{aligned}
&\text { (b) } \mathrm{W}_{\mathrm{mg}}=\Delta K \\
&\Rightarrow-\mathrm{mg} \ell=1 / 2 \mathrm{mv}^{2}-1 / 2 \mathrm{mu}^{2} \\
&\text { or, } m v^{2}=m\left(u^{2}-2 g \ell\right] \\
&\text { or, } v=\sqrt{u^{2}-2 g \ell} \hat{j} \\
&\vec{u}=u \hat{i} \\
&\therefore \vec{v}-\vec{u}=\sqrt{u^{2}-2 g \ell} \hat{j}-u \hat{i} \\
&\therefore|\vec{v}-\vec{u}|=\left[\left(u^{2}-2 g \ell\right)+u^{2}\right]^{1 / 2}=\sqrt{2\left(u^{2}-g \ell\right)}
\end{aligned}\)
A particle moves along a circle of radius \(\left(\frac{20}{\pi}\right) \mathrm{m}\) with constant tangential acceleration. If the velocity of the particle is \(80 \mathrm{~m} / \mathrm{s}\) at the end of the second revolution after motion has begun, the tangential acceleration is [CBSE AIPMT 2003]
The tangential acceleration is given by
\(a_{T}=r \alpha\) ….. (i)
From the 2nd equation of motion for rotational motion,
\(
\omega^{2}=\omega_{0}^{2}+2 \alpha \theta
\)
Here, initial angular velocity, \(\omega_{0}=0\), Final angular velocity,
\(
\begin{aligned}
\omega &=\frac{v}{r}=\frac{80}{20 / \pi} \\
&=4 \pi \mathrm{rad} / \mathrm{s} \\
\theta &=2 \times 2 \pi \mathrm{rad}
\end{aligned}
\)
So, angular acceleration
\(
\alpha=\frac{\omega^{2}}{2 \theta}=\frac{(4 \pi)^{2}}{2 \times(2 \times 2 \pi)}=\frac{16 \pi^{2}}{8 \pi}=2 \pi
\)
Hence, from Eq. (i), we have
\(
a_{T}=r \alpha=\frac{20}{\pi} \times 2 \pi=40 \mathrm{~m} / \mathrm{s}^{2}
\)
Two particles of mass \(M\) and \(m\) are moving in a circle of radii \(R\) and \(r\). If their time periods are the same, what will be the ratio of their linear velocities? [CBSE AIPMT 2001]
(c) Linear velocity \(v=r \omega\)
\(
v_{1}=\omega r_{1}, v_{2}=\omega r_{2}
\)
\([\omega\) is same in both cases because time period is same]
\(
{v_{1}}:{v_{2}}={r_{1}}:{r_{2}}={R}:{r}\)
A small sphere is attached to a cord and rotates in a vertical circle about a point \(O\). If the average speed of the sphere is increased, the cord is most likely to break at the orientation when the mass is at [CBSE AIPMT 2000]
(a) In the case of a body describing a vertical circle,
\(
\mathrm{T}-\mathrm{mg} \cos \theta=\frac{\mathrm{mv}^{2}}{l} ; T=m g \cos \theta+\frac{m v^{2}}{l}
\)
Tension is maximum when \(\cos \theta=+1\) and velocity is maximum
Both conditions are satisfied at \(\theta=0^{\circ}\) (i.e., at lowest point \(B\) ]
A boat which has a speed of \(5 \mathrm{~km} / \mathrm{hr}\) in still water crosses a river of width \(1 \mathrm{~km}\) along the shortest possible path in 15 minutes. The velocity of the river water in \(\mathrm{km} / \mathrm{hr}\) is [CBSE AIPMT 2000,1998]
Let \(v_{r}=\) velocity of river
\(v_{\mathrm{br}}=\) velocity of boat in still water and
\(w=\) width of river
Time taken to cross the river \(=15 \mathrm{~min}\)
\(
=\frac{15}{60} \mathrm{~h}=\frac{1}{4} \mathrm{~h}
\)
Shortest path is taken when \(v_{b}\) is along
\(A B\). In this case,
\(v_{b r}^{2}=v_{r}^{2}+v_{b}^{2}\)
Now, \(\quad t=\frac{W}{v_{b}}=\frac{W}{\sqrt{v_{b r}^{2}-v_{r}^{2}}}\)
\(\therefore \quad \frac{1}{4}=\frac{1}{\sqrt{5^{2}-v_{r}^{2}}}\)
\(\Rightarrow \quad 5^{2}-v_{r}^{2}=16\)
\(\Rightarrow \quad v_{r}^{2}=25-16=9\)
\(\therefore \quad v_{r}=\sqrt{9}=3 \mathrm{~km} / \mathrm{h}\)
A stone tied with a string is rotated in a vertical circle. The minimum speed with which the string has to be rotated [CBSE AIPMT 1999]
(a) Minimum speed with which the string is rotating in a vertical circle \((\mathrm{v})=\sqrt{g r}\)
The minimum speed of stone is independent of the mass of stone.
A person swims in a river aiming to reach exactly the opposite point on the bank of a river. His speed of swimming is \(0.5 \mathrm{~m} / \mathrm{s}\) at an angle \(120^{\circ}\) with the direction of flow of water. The speed of water in the stream is [CBSE AIPMT 1999]
Let \(u\) be the speed of the stream and \(v\) be the speed of the person started from A. He wants to reach at point \(B\) directed opposite to \(A\).
As given, \(v\) makes an angle of \(120^{\circ}\) with direction of flow \(u\), the resultant of \(v\) and \(u\) is along \(A B\). From figure below
\(
\begin{aligned}
u &=v \sin \theta=v \sin 30^{\circ} \\
\therefore \quad u=\frac{v}{2} &=\frac{0.5}{2} \quad(\because v=0.5 \mathrm{~m} / \mathrm{s}) \\
&=0.25 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
A ball of mass \(0.25 \mathrm{~kg}\) attached to the end of a string of length \(1.96 \mathrm{~m}\) is moving in a horizontal circle. The string will break if the tension is more than \(25 \mathrm{~N}\). What is the maximum speed with which the ball can be moved? [CBSE AIPMT 1998]
(a) \(T_{m}=\frac{m v_{m}^{2}}{R}\)
\(
v_{m}=\sqrt{\frac{T R}{m}}=\sqrt{\frac{25 \times 1.96}{0.25}}
\)
\(
=\frac{5 \times 14}{5}=14 \mathrm{~m} / \mathrm{s}
\)
Note: In the horizontal circular motion of the ball tension in the string is balanced by the centrifugal force \(\left(\frac{m v^{2}}{\ell}\right)\) and hence the maximum tension in the string will be for the maximum speed of the ball.
A body is whirled in a horizontal circle of radius \(20 \mathrm{~cm}\). It has an angular velocity of \(10 \mathrm{rad} / \mathrm{s}\). What is its linear velocity at any point on circular path [CBSE AIPMT 1996]
(b) Linear speed \(=\) radius \(\times\) angular speed
\(
\begin{array}{ll}
\text { or } & v=r \omega \\
\text { Here, } \quad & r=20 \mathrm{~cm}=0.20 \mathrm{~m} \\
& \omega=10 \mathrm{rad} / \mathrm{s} \\
\therefore & v=0.20 \times 10 \\
\Rightarrow & v=2 \mathrm{~m} / \mathrm{s}
\end{array}
\)
When a body moves with a constant speed along a circle [CBSE AIPMT 1994]
(c) On circular motion, the force acts along the radius, and displacement at a location is perpendicular to the radius i.e., \(\theta=90^{\circ}\)
As work done \(=\vec{F} \cdot \vec{S}=F S \cos 90^{\circ}=0\)
A boat is sent across a river with a velocity of \(8 \mathrm{~km} \mathrm{~h}^{-1}\). If the resultant velocity of boat is \(10 \mathrm{~km} \mathrm{~h}^{-1}\), then the velocity of the river is [CBSE AIPMT 1993]
(b) The situation is depicted in the figure below.
Let \(v_{\mathrm{b}}\) be the velocity of boat, \(v_{r}\) be the velocity of river and \(v_{\text {r }}\) be the resultant velocity of boat.
From the figure and concept of relative velocity
\(
\begin{aligned}
v_{r b}^{2} &=v_{r}^{2}+v_{b}^{2} \\
\therefore \quad v_{r} &=\sqrt{v_{r b}^{2}-v_{b}^{2}} \\
&=\sqrt{10^{2}-8^{2}}=6 \mathrm{~km} \mathrm{~h}^{-1}
\end{aligned}
\)
An electric fan has blades of length \(30 \mathrm{~cm}\) measured from the axis of rotation. If the fan is rotating at \(120 \mathrm{rpm}\), the acceleration of a point on the tip of the blade is [CBSE AIPMT 1990]
\(\begin{aligned}
&\text { (b) Centripetal acc. }=\omega^{2} r=4 \pi^{2} f^{2} r \\
&=4 \times(3.14)^{2} \times \frac{120}{60} \times \frac{30}{100}=23.7 \mathrm{~ms}^{-2} \\
&{[\because \omega=2 \pi f]}
\end{aligned}\)
Two bullets are fired horizontally and simultaneously towards each other from roof tops of two buildings \(100 \mathrm{~m}\) apart and of same height of \(200 \mathrm{~m}\) with the same velocity of \(25 \mathrm{~m} / \mathrm{s}\). When and where will the two bullets collides. \(\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right) \quad\) [NEET (Odisha) 2019]
(a) Given, the distance between the two buildings \(d=100 \mathrm{~m}\)
height of each tower, \(h=200 \mathrm{~m}\)
speed of each bullet, \(v=25 \mathrm{~ms}^{-1}\)
The situation can be shown as below in the figure below
where \(x\) be the vertical distance travelled from the top of the building and \(t\) be the time at which they collide. As two bullets are fired toward each other, So, their relative velocity will be
\(
v_{\text {r }}=25-(-25)=50 \mathrm{~ms}^{-1}
\)
Then, time \(=\frac{d}{v_{\text {r }}}=\frac{100}{50}=2 \mathrm{~s}\)
The distance or height at which they collide is calculated from equation of motion,
\(
x=u t+\frac{1}{2} a t^{2}
\)
The bullet is initially a rest i.e. \(u=0\) and as it is moving under the effect of gravity \(a=-g\), so
\(
\begin{aligned}
&x=-\frac{1}{2} g t^{2} \\
&x=-\frac{1}{2} \times 10(2)^{2}=-20 m
\end{aligned}
\)
The negative sign shows that the bullets will collide \(20 \mathrm{~m}\) below the top of the tower i.e. at a height of \((200-20)=180 \mathrm{~m}\) from the ground after \(2 \mathrm{~s}\).
When an object is shot from the bottom of a long smooth inclined plane kept at an angle of \(60^{\circ}\) with horizontal, it can travel a distance \(x_{1}\) along the plane. But when the inclination is decreased to \(30^{\circ}\) and the same object is shot with the same velocity, it can travel \(x_{2}\) distance. Then \(x_{1}: x_{2}\) will be [NEET 2019]
(b) The motion of the object shot in two cases can be depicted as shown in figure below
Using the third equation of motion,
\(v^{2}=u^{2}-2 g h\) ………. (i)
As the object stops finally, so
\( v=0\)
For inclined motion,
\(
g=g \sin \theta \text { and } h=x
\)
Substituting these values in Eq. (i), we get
\(
\Rightarrow u^{2}=2 g \sin \theta x \Rightarrow x=\frac{u^{2}}{2 g \sin \theta}
\)
For case \((i), \quad x_{1}=\frac{u^{2}}{2 g \sin 60^{\circ}}\)
For case \((ii), x_{2}=\frac{u^{2}}{2 g \sin 30^{\circ}}\)
\(
\begin{aligned}
\Rightarrow \frac{x_{1}}{x_{2}} &=\frac{u^{2}}{2 g \sin 60^{\circ}} \times \frac{2 g \sin 30^{\circ}}{u^{2}} \\
&=\frac{1}{2} \times \frac{2}{\sqrt{3}}=\frac{1}{\sqrt{3}} \text { or } 1: \sqrt{3}
\end{aligned}
\)
A particle has initial velocity \((3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}})\) and has acceleration \((0.4 \hat{\mathbf{i}}+0.3 \hat{\mathbf{j}})\). Its speed after \(10 \mathrm{~s}\) is [CBSE AIPMT 2010]
(b) Given, initial velocity \((u)=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}\)
Acceleration \((a)=(0.4 \hat{\mathbf{i}}+0.3 \hat{\mathrm{j}})\)
Time \((t)=10 \mathrm{~s}\)
From first equation of motion, \(v=u+\) at
\(
\begin{aligned}
&v=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+10(0.4 \hat{\mathbf{i}}+0.3 \hat{\mathbf{j}}) \\
&v=7 \hat{\mathbf{i}}+7 \hat{\mathbf{j}} \Rightarrow|v|=7 \sqrt{2}
\end{aligned}
\)
Two particles \(A\) and \(B\), move with constant velocities \(\mathbf{v}_{1}\) and \(\mathbf{v}_{2}\). At the initial moment, their position vectors are \(\mathbf{r}_{1}\) and \(\mathbf{r}_{2}\) respectively. The condition for particles \(A\) and \(B\) for their collision is [CBSE AIPMT 2015]
(a)
\(
\mathbf{R}=\mathbf{r}_{1}-\mathbf{v}_{1} t=\mathbf{r}_{2}-\mathbf{v}_{2} t
\)
i.e. \(\quad \mathbf{r}_{1}-\mathbf{r}_{2}=\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right) t\)
So, \(\frac{\mathbf{r}_{1}-\mathbf{r}_{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}=\frac{\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right) t}{\left|\mathbf{v}_{2}-\mathbf{v}_{1}\right| t}\)
\(
\frac{\mathbf{r}_{1}-\mathbf{r}_{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}=\frac{\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right)}{\left|\mathbf{v}_{2}-\mathbf{v}_{1}\right|}
\)
A bus is moving on a straight road towards North with a uniform speed of \(50 \mathrm{~km} / \mathrm{h}\). If the speed remains unchanged after turning through \(90^{\circ}\), the increase in the velocity of the bus in the turning process is [CBSE AIPMT 1989]
(a)
The situation is depicted in the figure below.
Here, \(\quad \mathbf{v}=50 \mathrm{~km} / \mathrm{h}\) due North
\(\mathbf{v}_{2}=50 \mathrm{~km} / \mathrm{h}\) due West
From figure it indicates that angle between \(\mathbf{v}_{1}\) and \(\mathbf{v}_{2}\) is \(90^{\circ}\).
Now, \(-\mathbf{v}_{1}=50 \mathrm{~km} / \mathrm{h}\) due South
\(\therefore\) Change in velocity
\(
\begin{aligned}
&=\left|\mathbf{v}_{2}-\mathbf{v}_{1}\right|=\left|\mathbf{v}_{2}+\left(-\mathbf{v}_{1}\right)\right| \\
&=\sqrt{v_{2}^{2}+v_{1}^{2}} \\
&=\sqrt{50^{2}+50^{2}} \\
&=70.7 \mathrm{~km} / \mathrm{h}
\end{aligned}
\)
In the given figure, \(a=15 \mathrm{~m} / \mathrm{s}^{2}\) represents the total acceleration of a particle moving in the clockwise direction in a circle of radius \(R=2.5\) \(\mathrm{m}\) at a given instant of time. The speed of the particle is [NEET 2016]
(c) The centripetal acceleration of a particle moving on a circular path is given by
\(
a_{c}=\frac{v^{2}}{R}
\)
In the given figure,
\(
\begin{aligned}
&a_{c}=a \cos 30^{\circ}=15 \cos 30^{\circ} \mathrm{m} / \mathrm{s}^{2} \\
&\Rightarrow \quad \frac{v^{2}}{R}=15 \cos 30^{\circ} \\
&\Rightarrow \quad v^{2}=R \times 15 \times \frac{\sqrt{3}}{2}=2.5 \times 15 \times \frac{\sqrt{3}}{2} \\
&\therefore \quad v=5.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
\)
Two stones of masses \(m\) and \(2 m\) are whirled in horizontal circles, the heavier one in a radius \(\frac{r}{2}\) and the lighter one in radius \(r\). The tangential speed of lighter stone is \(n\) times that of the value of heavier stone when they experience the same centripetal forces. The value of \(n\) is [CBSE AIPMT 2015]
(a) Given, that two stones of masses \(m\) and \(2 \mathrm{~m}\) are whirled in horizontal circles, the heavier one in a radius \(\frac{r}{2}\) and lighter one in radius \(r\) as shown in figure below.
As lighter stone is n times that of the value of heavier stone when they experience the same centripetal forces, we get
\(
\left(F_{c}\right)_{\text {heavier }}=\left(F_{c}\right)_{\text {lighter }}
\)
\(\begin{aligned}
&\Rightarrow \quad \frac{2 m(v)^{2}}{(r / 2)}=\frac{m(n v)^{2}}{r} \\
&\Rightarrow \quad n^{2}=4 \Rightarrow n=2
\end{aligned}\)
\(P\) is the point of contact of a wheel and the ground. The radius of the wheel is \(1 \mathrm{~m}\). The wheel rolls on the ground without slipping. The displacement of point \(P\) when wheel completes half rotation is [CBSE AIPMT 2002]
(b) When the wheel rolls on the ground without slipping and completes half rotation, point \(P\) takes a new position as \(P^{\prime}\) as shown in the figure.
Horizontal displacement, \(x=\pi R\)
Vertical displacement, \(y=2 R\)
Thus, displacement of the point \(P\) when wheel completes half rotation,
\(
\begin{aligned}
& s =\sqrt{x^{2}+y^{2}}=\sqrt{(\pi R)^{2}+(2 R)^{2}} \\
&=\sqrt{\pi^{2} R^{2}+4 R^{2}} \\
\text { but } \quad R &=1 m \\
\therefore \quad & s =\sqrt{\pi^{2}(1)^{2}+4(1)^{2}}=\sqrt{\pi^{2}+4} \mathrm{~m}
\end{aligned}
\)
A particle of mass \(M\) is revolving along a circle of radius \(R\) and another particle of mass \(m\) is revolving in a circle of radius \(r\). If the time periods of both particles are the same, then the ratio of their angular velocities is [CBSE AIPMT 2001]
(a)
Angular velocity of the particle is given by
\(
\begin{aligned}
&\omega=\frac{2 \pi}{T} \\
&\omega \propto \frac{1}{T}
\end{aligned}
\)
or \(\quad \omega \propto \frac{1}{T}\)
[T= time period of the particle ]
It simply implies that \(\omega\) does not depend on the mass of the body and radius of the circle.
\(
\therefore \quad \frac{\omega_{1}}{\omega_{2}}=\frac{T_{2}}{T_{1}}
\)
but given time period is same, i.e. \(T_{1}=T_{2}\) Hence, \(\frac{\omega_{1}}{\omega_{2}}=\frac{1}{1}= 1\)
When milk is churned, cream gets separated due to [CBSE AIPMT 1991]
By the concept of centrifugal force, cream is separated from milk. A mass \(m\) of milk revolving at a distance \(r\) from the axis of rotation of the centrifuge requires a centripetal force \(m r \omega^{2}\), where \(\omega\) is the angular speed of the centrifuge. If in place of this mass of milk, lighter particles of mass (cream) \(m^{\prime}\left(m^{\prime}<m\right)\) are present, then the centripetal force \(\left(m r \omega^{2}\right)\) on the milk will be greater than the centripetal force \(\left(m^{\prime} r \omega^{2}\right)\) on the cream. As a result, the cream moves towards the axis of rotation under the effect of the net force \(\left(m-m^{\prime}\right) r \omega^{2}\). When the centrifuge is stopped, the cream is found at the top and milk at the bottom.
A ball is projected with a velocity, \(10 \mathrm{~ms}^{-1}\), at an angle of \(60^{\circ}\) with the vertical direction. Its speed at the highest point of its trajectory will be [NEET 2022]
At the highest point vertical component of velocity becomes zero.
At highest point only horizontal component of velocity remains
\(
\Rightarrow u_x=u \cos \theta
\)
\(
\begin{aligned}
& u_x=u \cos \theta=10 \cos 30^{\circ} \\
& =5 \sqrt{3} m s^{-1}
\end{aligned}
\)
A football player is moving southward and suddenly turns eastward with the same speed to avoid an opponent. The force that acts on the player while turning is [NEET 2023]
\(
\begin{aligned}
& \Delta \vec{P}=\vec{P}_f-\vec{P}_i \\
& \vec{P}_f=m u \hat{i} \\
& \vec{P}_i=m u(-\hat{j}) \\
& \Delta \vec{P}=m u \hat{i}-m u(-\hat{j}) \\
& \Delta \vec{P}=m u(\hat{i}+\hat{j}) \\
& \vec{F}=\frac{\Delta \vec{P}}{\Delta t}
\end{aligned}
\)
Direction of change of momentum and direction of force acting on the player will be same, so correct answer is North east direction
A bullet is fired from a gun at the speed of \(280 \mathrm{~m} \mathrm{~s}^{-1}\) in the direction \(30^{\circ}\) above the horizontal. The maximum height attained by the bullet is \(\left(g=9.8 \mathrm{~m} \mathrm{~s}^{-2}, \sin 30^{\circ}=0.5\right)\) [NEET 2023]
\(
\begin{aligned}
H & =\frac{u^2 \sin ^2 \theta}{2 g} \\
H & =\frac{(280)^2\left(\sin ^2 30\right)}{2 \times 9.8} \\
& =\frac{280 \times 280 \times 0.5 \times 0.5}{2 \times 9.8} \\
H & =1000 \mathrm{~m}
\end{aligned}
\)
A horizontal bridge is built across a river. A student standing on the bridge throws a small ball vertically upwards with a velocity \(4 \mathrm{~m} \mathrm{~s}^{-1}\). The ball strikes the water surface after \(4 \mathrm{~s}\). The height of the bridge above the water surface is (Take \(g=10 \mathrm{~m} \mathrm{~s}^{-2}\) ) [NEET 2023]
\(
\begin{aligned}
s & =u t-\frac{1}{2} g t^2 \\
& =16-\frac{1}{2} \times 10 \times 16 \\
& =-64 \mathrm{~m}
\end{aligned}
\)
Height of bridge above water surface \(=64 \mathrm{~m}\)
A satellite is orbiting just above the surface of the earth with period \(T\). If \(d\) is the density of the earth and \(G\) is the universal constant of gravitation, the quantity \(\frac{3 \pi}{G d}\) represents [NEET 2023]
Time period of satellite above earth surface
\(
\begin{aligned}
& T=2 \pi \sqrt{\frac{A^3}{G M}}=2 \pi \sqrt{\frac{R^3}{G d \frac{4}{3} \pi R^3}} \\
& T=2 \pi \sqrt{\frac{3}{4 \pi G d}} \\
& T=\sqrt{\frac{3 \pi}{G d}} \quad T^2=\frac{3 \pi}{G d}
\end{aligned}
\)
A bullet from a gun is fired on a rectangular wooden block with velocity \(u\). When a bullet travels \(24 \mathrm{~cm}\) through the block along its length horizontally, the velocity of the bullet becomes \(\frac{U}{3}\). Then it further penetrates into the block in the same direction before coming to rest exactly at the other end of the block. The total length of the block is [NEET 2023]
\(
\text { between } 1 \text { to } 2
\)
\(
\begin{aligned}
& \left(\frac{u}{3}\right)^2=u^2-2 a \times 24 \\
& \Rightarrow 2 a(24)=\frac{8 u^2}{9} \dots(i)
\end{aligned}
\)
between 2 to 3
\(
0=\left(\frac{u}{3}\right)^2-2 a s \dots(ii)
\)
From equation (i) and (ii)
\(
\begin{aligned}
& 2 a s=\frac{2 a(24)}{8} \\
& s=3 \mathrm{~cm}
\end{aligned}
\)
Length of wooden block is \(24+3=27 \mathrm{~cm}\)
You cannot copy content of this page