0 of 154 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 154 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
The resistance of a coil for DC is \(5 \Omega\). In case of AC, the resistance will
(c) In case of \(\mathrm{AC}, Z=\sqrt{R^2+(\omega L)^2}\), while in case of DC , it is only \(R\). So, in AC resistance increases.
In non-resonant circuit, what will be the nature of the circuit for frequencies higher than the resonant frequency?
(c) At frequencies higher than resonant frequency, \(X_L>X_C\) i.e. circuit behaves as inductive circuit.
A circuit contains a capacitor and inductance each with negligible resistance. The capacitor is initially charged and the charging battery is disconnected. At subsequent time, the charge on the capacitor will
(c)Â The correct answer is decrease sinusoidally. In an RLC circuit with negligible resistance, the charge on the capacitor oscillates and decreases sinusoidally as energy transfers between the capacitor and the inductor.
Explanation:
Initial State:
The capacitor is initially charged, meaning it stores electrical energy.
Energy Transfer:
When the charging battery is disconnected, the capacitor begins to discharge, transferring its stored electrical energy to the inductor. The inductor, in turn, stores this energy as a magnetic field.
No Resistance:
In a circuit with negligible resistance, there is no mechanism for energy dissipation. Therefore, the oscillations continue indefinitely, and the amplitude of the oscillations remains constant.
A choke is preferred to a resistance for limiting current in AC circuit because
(b) The power factor of choke coil is given by
\(
\cos \phi=\frac{R}{\sqrt{R^2+\omega^2 L^2}} \approx \frac{R}{\omega L} \quad(\text { as } R \ll \omega L)
\)
As \(R \ll \omega L, \cos \phi\) is very small. Thus, the power absorbed by the coil is very small. The only loss of energy is due to hysteresis in the iron core, which is much less than the loss of energy in the resistance.
Which of the following curves correctly represent the variation of capacitive reactance ( \(X_C\) ) with frequency ( \(f\) )?
(c) \(X_C=\frac{1}{\omega C}=\frac{1}{2 \pi f C}\)
\(
X_C \propto \frac{1}{f}
\)
Therefore, \(X_C-f\) curve represents a hyperbola.
An AC source is connected to a capacitor. The current in the circuit is \(I\). Now a dielectric slab is inserted into the capacitor, then the new current is
(b) By introducing the slab, \(C\) will increase. Therefore, \(X_C\) will decrease and new current will be more than \(I\).
An alternating voltage is connected in series with a resistance \(R\) and an inductance \(L\). If the potential drop across the resistance is 200 V and across the inductance is 150 V, then the applied voltage is
\(
\begin{aligned}
&\text { (b) Applied voltage, } V=\sqrt{V_R^2+V_L^2}\\
&\therefore \quad V=\sqrt{(200)^2+(150)^2}=250 \mathrm{~V}
\end{aligned}
\)
An \(L-R\) circuit has \(R=10 \Omega\) and \(L=2 \mathrm{H}\). If 120 V, 60 Hz AC voltage is applied, then current in the circuit will be
(b)
\(
\begin{aligned}
I & =\frac{V}{Z}=\frac{V}{\sqrt{R^2+(2 \pi f L)^2}} \\
& =\frac{120}{\sqrt{(10)^2+(2 \pi \times 60 \times 2)^2}}=0.16 \mathrm{~A}
\end{aligned}
\)
A complex current wave is given by \(i=(5+5 \sin 100 \pi t) \mathrm{A}\). Its average value over one time period is given as
(b) \(I_{avg}=5+0=5 \mathrm{~A}\)
The peak value of an alternating \(\operatorname{emf} E\) given by
\(
E=E_0 \cos \omega t
\)
is 10 V and frequency is 50 Hz . At time \(t=(1 / 600) \mathrm{s}\), the instantaneous value of emf is
(b)
\(
\begin{aligned}
E & =10 \cos (2 \pi f t)=10 \cos \left[2 \pi \times 50 \times \frac{1}{600}\right] \\
& =10 \cos \frac{\pi}{6}=5 \sqrt{3} \mathrm{~V}
\end{aligned}
\)
Current and voltage in AC are \(I=I_0 \sin (\omega t-\pi / 4)\) and \(V=V_0 \sin (\omega t+\pi / 4)\), Then
(c) Phase difference between current and voltage is \(\pi / 2\), with voltage leading, so \(X_L>X_C\) and \(R=0\).
A \(10 \Omega\) resistance, 5 mH coil and \(10 \mu \mathrm{~F}\) capacitor are joined in series. When a suitable frequency alternating current source is joined to this combination, the circuit resonates. If the resistance is halved, the resonance frequency
(c) Resonant frequency, \(f=\frac{1}{2 \pi \sqrt{L C}}\)
It does not depend on resistance.
The resonant frequency of a circuit is \(f\). If the capacitance is made 4 times the initial value, then the resonant frequency will become
(a) Resonant frequency, \(f=\frac{1}{2 \pi \sqrt{L C}}\)
\(
\begin{aligned}
& f \propto \frac{1}{\sqrt{C}} \text { or } \frac{f_1}{f_2}=\sqrt{\frac{C_2}{C_1}} \\
& \frac{f}{f_2}=\sqrt{\frac{4 C}{C}} \Rightarrow f_2=\frac{f}{2}
\end{aligned}
\)
An alternating emf is applied across a parallel combination of a resistance \(R\), capacitance \(C\) and an inductance \(L\). If \(I_R, I_L\) and \(I_C\) are the currents through \(R, L\) and \(C\) respectively, then the diagram which correctly represents, the phase relationship among \(I_R, I_L, I_C\) and source emf \(E\), is given by
(c) Current in inductance \(I_L\) lags behind the voltage by \(\pi / 2\).
Current in resistance \(I_R\) is in phase with voltage, while current in capacitance \(I_C\) leads the voltage by a phase of \(\pi / 2\).
An AC supply gives 30 V which passes through a \(10 \Omega\) resistance. The power dissipated in it is
\(
\begin{aligned}
&\text { (b) Power dissipated in circuit, }\\
&P=\frac{V_{\mathrm{rms}}^2}{R}=\frac{(30)^2}{10}=90 \mathrm{~W}
\end{aligned}
\)
An alternating potential \(V=V_0 \sin \omega t\) is applied across a circuit. As a result the current \(I=I_0 \sin \left(\omega t-\frac{\pi}{2}\right)\) flows in it. The power consumed in the circuit per cycle is
(a) In the circuit, voltage \(V=V_0 \sin \omega t\) and current
\(
I=T_0 \sin \left(\omega t-\frac{\pi}{2}\right)
\)
Phase different between voltage and current at any time would be \(\phi=\frac{\pi}{2}\)
So power consumed,
\(
\begin{aligned}
& P=\frac{I_0 V_0}{2} \cos \phi \\
& =\frac{I_0 V_0}{2} \cos \left(\frac{\pi}{2}\right) \\
& =P=0
\end{aligned}
\)
A direct current of 2 A and an alternating current having a maximum value of 2 A flow through two identical resistances. The ratio of heat produced in the two resistances will be
(c) \(\frac{H_{\mathrm{DC}}}{H_{\mathrm{AC}}}=\left(\frac{i_{\mathrm{DC}}}{i_{\mathrm{rms}}}\right)^2=\left(\frac{2}{\sqrt{2}}\right)^2=2: 1\)
\(\left(\because H \propto i^2\right)\)
In a heating arrangement, an alternating current having a peak value of 28 A is used. To produce the same heat energy, if the constant current is used, its magnitude must be
(c)
\(
\begin{aligned}
I_0 & =28 \mathrm{~A} \\
I_{\mathrm{rms}} & =\frac{I_0}{\sqrt{2}} \approx 20 \mathrm{~A}
\end{aligned}
\)
A lamp consumes only \(50 \%\) of peak power in an AC circuit. What is the phase difference between the applied voltage and circuit current?
(b)
\(
\begin{aligned}
P & =\frac{1}{2} V_0 I_0 \cos \phi \\
P & =P_{\text {peak }} \cos \phi \\
\frac{1}{2}\left(P_{\text {peak }}\right) & =P_{\text {peak }} \cos \phi \\
\cos \phi & =\frac{1}{2} \\
\phi & =\frac{\pi}{3}
\end{aligned}
\)
110 V is applied across a series circuit having resistance \(11 \Omega\) and impedance \(22 \Omega\). The power consumed is
(a)
\(
\begin{aligned}
P & =V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi \\
& =V_{\mathrm{rms}}\left(\frac{V_{\mathrm{rms}}}{Z}\right)\left(\frac{R}{Z}\right) \\
& =\frac{(110)^2(11)}{(22)^2}=275 \mathrm{~W}
\end{aligned}
\)
Â
A 20 V AC is applied to a circuit consisting of a resistance and a coil with a negligible resistance. If the voltage across the resistance is 12 V, the voltage across the coil is
\(
\begin{aligned}
&\text { (a) Here, } \quad V^2=V_R^2+V_L^2\\
&\therefore \quad V_L=\sqrt{V^2-V_R^2}=\sqrt{\left(20^2-(12)^2\right.}=16 \mathrm{~V}
\end{aligned}
\)
An alternating voltage is given by
\(
e=e_1 \sin \omega t+e_2 \cos \omega t
\)
Then, the root-mean-square value of voltage is given by
(d) The given voltage \(e=e_1 \sin \omega t+e_2 \cos \omega t\) can be written as \(e=E_0 \sin (\omega t+\phi)\).
The peak value \(E_0\) is given by \(E_0=\sqrt{e_1^2+e_2^2}\).
The RMS value of a sinusoidal voltage is its peak value divided by \(\sqrt{2}\).
\(
e_{r m s}=\frac{E_0}{\sqrt{2}}
\)
Substitute the expression for \(E_0: e_{r m s}=\frac{\sqrt{e_1^2+e_2^2}}{\sqrt{2}}\).
The output sinusoidal current versus time curve of a rectifier is shown in the figure. The average value of output current in this case is
\(
\begin{aligned}
&\text { (c) Average value of output current is given by }\\
&\begin{aligned}
I_{\mathrm{av}} & =\frac{\int_0^{T / 2} d t}{\int_0^{T / 2} d t}=\frac{\int_0^{T / 2} I_0 \sin \omega t d t}{T / 2} \\
& =\frac{2 I_0}{T}\left[-\frac{\cos \omega t}{\omega}\right]_0^{T / 2} \\
& =\frac{2 I_0}{T}\left[-\frac{\cos (\omega T / 2)}{\omega}+\frac{\cos 0^{\circ}}{\omega}\right] \\
& =\frac{2 I_0}{\omega T}\left[-\cos \pi+\cos 0^{\circ}\right]=\frac{2 I_0}{2 \pi}[1+1]=\frac{2 I_0}{\pi}
\end{aligned}
\end{aligned}
\)
Voltage and current in an AC circuit are given by \(V=5 \sin \left(100 \pi t-\frac{\pi}{6}\right)\) and \(I=4 \sin \left(100 \pi t+\frac{\pi}{6}\right)\)
(c) Phase different between current and voltage,
\(
\Delta \phi=\phi_2-\phi_1=\frac{\pi}{6}-\left(-\frac{\pi}{6}\right)=\frac{\pi}{3} \text { or } 60^{\circ} .
\)
Hence, current leads voltage by \(60^{\circ}\).
An alternating voltage \(E=200 \sqrt{2} \sin (100 t)\) is connected to a \(1 \mu \mathrm{~F}\) capacitor through an AC ammeter. The reading of the ammeter shall be
\(
\begin{aligned}
& \text { (b) Reading of ammeter }=i_{\text {rms }} \\
& \qquad \begin{aligned}
i_{\text {rms }} & =\frac{V_{\text {rms }}}{X_C}=\frac{V_0}{\sqrt{2}} \times \omega C \\
& =\frac{200 \sqrt{2} \times 100 \times\left(1 \times 10^{-6}\right)}{\sqrt{2}} \\
& =2 \times 10^{-2} \mathrm{~A}=20 \mathrm{~mA}
\end{aligned}
\end{aligned}
\)
A choke coil and capacitor are connected in series and the current through the combination is maximum for AC of frequency \(n\). If they are connected in parallel, at what frequency the current through the combination is minimum?
(a) In a series RLC circuit, current is maximum at resonance.
Resonance occurs when inductive reactance \(X_L\) equals capacitive reactance \(X_C\).
\(
\begin{aligned}
& X_L=\omega L=2 \pi n L \\
& X_C=\frac{1}{\omega C}=\frac{1}{2 \pi n C}
\end{aligned}
\)
At series resonance, \(2 \pi n L=\frac{1}{2 \pi n C}\).
The series resonance frequency is \(n=\frac{1}{2 \pi \sqrt{L C}}\).
In a parallel LC circuit, current is minimum at resonance (anti-resonance).
This also occurs when \(X_L=X_C\).
Let the parallel resonance frequency be \(n^{\prime}\).
\(
2 \pi n^{\prime} L=\frac{1}{2 \pi n^{\prime} C}
\)
The parallel resonance frequency is \(n^{\prime}=\frac{1}{2 \pi \sqrt{L C}}\).
The series resonance frequency \(n\) is \(\frac{1}{2 \pi \sqrt{L C}}\). The parallel resonance frequency \(n^{\prime}\) is \(\frac{1}{2 \pi \sqrt{L C}}\). Therefore, \(n^{\prime}=n\).
A coil having an inductance of \(\frac{1}{\pi} \mathrm{H}\) is connected in series with a resistance of \(300 \Omega\). If 20 V and a 200 Hz source are impressed across the combination, the value of the tangent of the phase angle between the voltage and the current is
(d) \(\tan \phi=\frac{X_L}{R}\) (In case of \(L-R\) circuit)
\(
=\frac{L \omega}{R}=\frac{L 2 \pi f}{R}=\frac{2 \times 200}{300}=\frac{4}{3}
\)
A condenser of capacity \(20 \mu \mathrm{~F}\) is first charged and then discharged through a 10 mH inductance. Neglecting the resistance of the coil, the frequency of the resulting vibrations will be
\(
\text { (a) } \omega=\frac{1}{\sqrt{L C}}
\)
\(
\begin{aligned}
f & =\frac{1}{2 \pi \sqrt{L C}} \\
& =\frac{1}{2 \pi \sqrt{20 \times 10^{-6} \times 10 \times 10^{-3}}}=356 \mathrm{~Hz} \text { or cycles } / \mathrm{s}
\end{aligned}
\)
An electric current has both DC and AC components. DC component of 8 A and AC component is given as \(I=6 \sin \omega t\). So, \(I_{\mathrm{rms}}\) value of resultant current is
\(
\begin{aligned}
& \text { (b) } I_{\mathrm{rms}}=\sqrt{\left(I^2\right)}=\sqrt{(8+6 \sin \omega t)^2} \\
& \Rightarrow I_{\mathrm{rms}}=\sqrt{\left(\left(64+96 \sin \omega t+36 \sin ^2 \omega t\right)\right)} \\
& \Rightarrow I_{\mathrm{rms}}=\sqrt{(64)+96<\sin \omega t>+36<\sin ^2 \omega t>} \\
& \Rightarrow I_{\mathrm{rms}}=\sqrt{64+0+36 \times 0.5}=9.05 \mathrm{~A} \text { Since, }\left\langle\sin ^2 \omega t\right\rangle=0.5
\end{aligned}
\)
Which of the shown graphs may represent the reactance of a series \(L-C\) combination?
(d) Reactance of series L-C circuit \(=X_L+X_C\)
\(
=j\left(\omega L-\frac{1}{\omega C}\right)
\)
So, its value is infinite at both zero and infinite frequency. It is shown in graph (d).
Two coils have a mutual inductance 0.005 H. The alternating current changes in the first coil according to equation \(I=I_0 \sin \omega t\), where \(I_0=10 \mathrm{~A}\) and \(\omega=100 \pi \mathrm{rads}^{-1}\). The maximum value of emf in the second coil is (in volt)
\(
\begin{aligned}
&\text { (b) Value of induced emf in coil, }\\
&\begin{aligned}
e & =M \frac{d I}{d t} \\
& =0.005 \times \frac{d}{d t}\left(I_0 \sin \omega t\right) \\
& =0.005 \times I_0 \omega \cos \omega t \\
\therefore \quad e_{\max } & =0.005 \times 10 \times 100 \pi \\
& =5 \pi \mathrm{~V}
\end{aligned}
\end{aligned}
\)
Two identical electric heaters each marked 1000 W , 220 V are connected in series. This combination is connected to an AC supply of 220 V. What will be their combined rate of heating? (Assume that resistance of each heater remains constant)
(c) For only a resistance, it hardly matters, whether the source is DC or AC . In series,
\(
P=\frac{P_1 P_2}{P_1+P_2}=\frac{1000 \times 1000}{2000}=500 \mathrm{~W}
\)
In an \(L-R\) circuit, the inductive reactance is equal to the resistance \(R\) of the circuit. An emf \(E=E_0 \cos (\omega t)\) is applied to the circuit. The power consumed in the circuit is
\(
\begin{aligned}
& \text { (b) } X_L=R \\
& \therefore \quad Z=\sqrt{2} R
\end{aligned}
\)
\(
P=\left(\frac{V_{\mathrm{rms}}}{Z}\right)^2 \cdot R=\left(\frac{E_0 / \sqrt{2}}{\sqrt{2} R}\right)^2 \cdot R=\frac{E_0^2}{4 R}
\)
In a transformer, the coefficient of mutual inductance between the primary and the secondary coil is 0.2 H . When the current changes by \(5 \mathrm{~A} / \mathrm{s}\) in the primary, the induced emf in the secondary will be
\(
\text { (b) Induced emf in the circuit, } e=M \frac{d i}{d t}=(0.2)(5)=1 \mathrm{~V}
\)
In a transformer, number of turns in the primary are 140 and that in the secondary are 280. If current in primary is 4 A, then that in the secondary is
\(
\begin{aligned}
& \text { (b) } \frac{N_P}{N_S}=\frac{V_P}{V_S}=\frac{i_S}{i_P} \\
& \therefore \quad i_S=\frac{N_P i_P}{N_S}=\frac{4 \times 140}{280}=2 \mathrm{~A}
\end{aligned}
\)
A circuit contains resistance \(R\) and an inductance \(L\) in series. An alternating voltage \(V=V_0 \sin \omega t\) is applied across it. The currents in \(R\) and \(L\) respectively will be
(d) Here, \(I_R=I_L=I\)
and they have a phase difference \(0<\phi<90^{\circ}\), with applied voltage.
In the series \(L-C-R\) circuit shown, the impedance is
\(
\begin{aligned}
& \text { (d) } X_L=2 \pi f L=2 \pi\left(\frac{50}{\pi}\right) \times 1=100 \Omega \\
& \quad X_C=\frac{1}{2 \pi f C}=\frac{1}{2 \pi\left(\frac{50}{\pi}\right) 20 \times 10^{-6}}=500 \Omega \\
& \text { Impedance, } \quad Z=\sqrt{R^2+\left(X_C-X_L\right)^2} \\
& \Rightarrow \quad Z=\sqrt{(300)^2+(400)^2}=500 \Omega
\end{aligned}
\)
An alternating current \(I\) in an inductance coil varies with time according to the graph given below. Which one of the following graphs gives the variation of voltage with time?
(c) As, emf induced in coil is \(e=-\frac{L d I}{d t}\)
\(\therefore\) Voltage versus time curve is a straight line with negative slope.
A resistor and a capacitor are connected in series with an AC source. If the potential drop across the capacitor is 5 V and that across resistor is 12 V , then applied voltage is
(a) Let the applied voltage be \(V\) volt
\(
\begin{aligned}
&\text { Here, }\\
&\begin{aligned}
V_R & =12 \mathrm{~V}, V_C=5 \mathrm{~V} \\
V & =\sqrt{V_R^2+V_C^2}=\sqrt{(12)^2+(5)^2} \\
& =\sqrt{144+25} \\
& =\sqrt{169}=13 \mathrm{~V}
\end{aligned}
\end{aligned}
\)
The rms voltage of the waveform shown is
\(
\text { (a) } V_{\mathrm{rms}}=\sqrt{V_{\mathrm{av}}}=\sqrt{\frac{1}{T} \int_0^T V^2 d t}=\sqrt{\frac{1}{T} \int_0^T 10^2 d t}=10 \mathrm{~V}
\)
Using an AC voltmeter, the potential difference in the electrical line in a house is found to be 234 V. If the line frequency is known to be 50 cycles per second, the equation for the line voltage is
\(
\begin{aligned}
&\text { (c) Peak voltage, } V_0=\sqrt{2} V_{\mathrm{rms}}=331 \mathrm{~V}\\
&\begin{array}{ll}
\text { and } & \omega=2 \pi f=100 \pi \\
\Rightarrow & V_L=331 \sin (100 \pi t)
\end{array}\\
&\text { where, } V_L \text { is line voltage. }
\end{aligned}
\)
The voltage across a pure inductor is represented in figure. Which one of the following curves in the figure will represent the current?
(d) In pure inductor, voltage leads the current. So, correct graph is (d).
A constant voltage at different frequencies is applied across a capacitance \(C\) as shown in the figure. Which of the following graphs correctly depicts the variation of current with frequency?
\(
\begin{aligned}
&\text { (b) }\\
&\begin{aligned}
& \text { For capacitive circuits, } X_C=\frac{1}{\omega C} \\
& \therefore \quad I=\frac{V}{X_C}=V \omega C \Rightarrow I \propto \omega
\end{aligned}
\end{aligned}
\)
The rms value of an AC of 50 Hz is 10 A . The time taken by an alternating current in reaching from zero to maximum value and the peak value of current will be
(d) Time taken by the current to reach the maximum value.
\(
\begin{aligned}
t & =\frac{T}{4}=\frac{1}{4 f}=\frac{1}{4 \times 50}=5 \times 10^{-3} \mathrm{~s} \\
I_0 & =\sqrt{2} I_{\mathrm{rms}}=10 \sqrt{2}=14.14 \mathrm{~A}
\end{aligned}
\)
An inductance of 1 mH, a condenser of \(10 \mu \mathrm{~F}\) and a resistance of \(50 \Omega\) are connected in series. The reactances of inductor and condensers are same. The reactance of either of them will be
\(
\begin{aligned}
&\text { (d) According to problem, } X_L=X_C\\
&\begin{array}{ll}
& \omega L=\frac{1}{\omega C} \\
\therefore & \omega^2=\frac{1}{L C}=\frac{1}{\sqrt{10^{-3} \times 10 \times 10^{-6}}} \\
& \omega=\frac{1}{\sqrt{10^{-8}}}=10^4 \\
\therefore & X_L=\omega L=10^4 \times 10^{-3}=10 \Omega
\end{array}
\end{aligned}
\)
An AC source of variable frequency \(f\) is connected to an \(L-C-R\) series circuit. Which one of the graphs in the figure represents the variation of current \(I\) in the circuit with frequency \(f\)?
(c) At resonance frequency, current is maximum.
The armature of DC motor has \(20 \Omega\) resistance. It draws current of 1.5 A when run by 220 V DC supply. The value of back emf induced in it will be
A group of electric lamps having a total power rating of 1000 W is supplied by an AC voltage \(E=200 \sin \left(310 t+60^{\circ}\right)\), then the rms value of the circuit current is
\(
\begin{aligned}
& \text { (b) } P=V_{\mathrm{rms}} I_{\mathrm{rms}}=\frac{V_0}{\sqrt{2}} I_{\mathrm{rms}} \\
& \therefore \quad I_{\mathrm{rms}}=\frac{1000 \sqrt{2}}{200}=5 \sqrt{2} \mathrm{~A}
\end{aligned}
\)
An alternating voltage \(V=30 \sin 50 t+40 \cos 50 t\) is applied to a resistor of resistance \(10 \Omega\). The rms value of current through resistor is
\(
\text { (a) } V=30 \sin 50 t+40 \cos 50 t=50 \sin \left(50 t+53^{\circ}\right)
\)
\(
\therefore \quad I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{Z}=\frac{50 / \sqrt{2}}{10}=\frac{5}{\sqrt{2}} \mathrm{~A}
\)
Â
An alternating voltage \(V=140 \sin 50 t\) is applied to a resistor of \(10 \Omega\). This voltage produces \(\Delta H\) heat in the resistor in time \(\Delta t\). To produce the same heat in the same time, required DC current is
\(
\begin{aligned}
&\begin{aligned}
& \text { (c) } I_0=\frac{140}{10}=14 \mathrm{~A} \\
& \therefore \quad I_{\mathrm{rms}}=\frac{I_0}{\sqrt{2}} \approx 10 \mathrm{~A}
\end{aligned}\\
&\therefore I_{\mathrm{DC}} \text { required will be approximately } 10 \mathrm{~A} \text {. }
\end{aligned}
\)
In a certain circuit, current changes with time according to \(i=2 \sqrt{t}\). Root mean square value of current between \(t=2\) to \(t=4 \mathrm{~s}\) will be
(c)
\(
\begin{aligned}
\begin{aligned}
i_{\mathrm{rms}}^2 & =\frac{\int i^2 d t}{\int d t} \\
& =\frac{\int_2^4(4 t) d t}{\int_2^4 d t}=\frac{4 \int_2^4 t d t}{2}=2\left[\frac{t^2}{2}\right]_2^4=12 \mathrm{~A}^2 \\
\Rightarrow i_{\mathrm{rms}} & =2 \sqrt{3} \mathrm{~A}
\end{aligned}
\end{aligned}
\)
The power factor of an \(R-L\) circuit is \(\frac{1}{\sqrt{2}}\). If the frequency of AC is doubled, what will be the power factor?
(b) Power factor, \(\cos \phi=\frac{1}{\sqrt{2}}=\frac{R}{\sqrt{R^2+\omega^2 L^2}}\)
This gives, \(\omega L=R\)
When \(\omega\) is doubled, we get
\(
\cos \phi^{\prime}=\frac{R}{\sqrt{R^2+4 \omega^2 L^2}}=\frac{R}{\sqrt{R^2+4 R^2}}=\frac{1}{\sqrt{5}}
\)
When a DC voltage of 200 V is applied to a coil of self inductance \((2 \sqrt{3} / \pi) \mathrm{H}\), a current of 1A flows through it. But by replacing DC source with AC source of 200 V, the current in the coil is reduced to 0.5 A. Then, the frequency of AC supply is
(d) Resistance of coil \((R)=\frac{200}{1}=200 \Omega\)
With AC source, \(I=\frac{200}{\sqrt{R^2+X_L^2}} \quad\) or \(\quad 0.5=\frac{200}{\sqrt{R^2+X_L^2}}\)
\(
\begin{aligned}
R^2+(2 \pi f L)^2 & =(400)^2 \\
\left(2 \pi f \times \frac{2 \sqrt{3}}{\pi}\right)^2 & =(400)^2-(200)^2=200 \times 600 \\
4 \sqrt{3} f & =\sqrt{12} \times 100 \Rightarrow f=50 \mathrm{~Hz}
\end{aligned}
\)
One \(10 \mathrm{~V}, 60 \mathrm{~W}\) bulb is to be connected to 100 V line. The required self-inductance of induction coil will be ( \(f=50 \mathrm{~Hz}\) )
\(
\begin{aligned}
&\begin{array}{ll}
\text { (a) From, } & P=V I=\frac{V^2}{R} \\
\Rightarrow & I=\frac{P}{V}=6 \mathrm{~A} \Rightarrow R=\frac{V^2}{P}=\frac{100}{60}=\frac{5}{3} \Omega \\
\text { Now, } & I=\frac{V}{Z} \\
\Rightarrow & 6=\frac{100}{\sqrt{\left(\frac{5}{3}\right)^2+(2 \pi f L)^2}}
\end{array}\\
&\text { Solving this equation, we get }\\
&L=0.052 \mathrm{H}
\end{aligned}
\)
The reading of ammeter in the circuit shown will be
(a) Given, \(X_L=X_C=5 \Omega\), this is the condition of resonance. So \(V_L=V_C\), or net voltage across \(L\) and \(C\) combination will be zero.
\(
\begin{aligned}
\therefore \quad Z & =R=55 \Omega \\
I & =\frac{V}{Z}=\frac{110}{55}=2 \mathrm{~A}
\end{aligned}
\)
In series \(L-C-R\) circuit voltage drop across resistance is 8 V and across inductor is 6 V and across capacitor is 12 V. Then
(d) Since, \(V_C>V_L\)
\(
\therefore \quad X_C>X_L
\)
Hence, current will lead the voltage.
\(
\begin{aligned}
V & =\sqrt{V_R^2+\left(V_C-V_L\right)^2}=10 \mathrm{~V}<V_C \\
\cos \phi & =\frac{R}{Z}=\frac{V_R}{V}=\frac{8}{10}=\frac{4}{5}
\end{aligned}
\)
In a series \(L-C-R\) circuit, resistance \(R=10 \Omega\) and the impedance \(Z=10 \Omega\). The phase difference between the current and the voltage is
\(
\begin{array}{ll}
\text { (a) Impedance, } Z=\sqrt{R^2+\left(X_L-X_C\right)^2} \\
\therefore 10=\sqrt{(10)^2+\left(X_L-X_C\right)^2} \\
\Rightarrow 100=100+\left(X_L-X_C\right)^2 \\
\Rightarrow X_L-X_C=0 \dots(i)
\end{array}
\)
Let \(\phi\) is the phase difference between current and voltage,
\(
\therefore \quad \tan \phi=\frac{X_L-X_C}{R}
\)
\(
\tan \phi=\frac{0}{R} \quad \text { [from Eq. (i)] }
\)
\(
\phi=0
\)
For the series \(L-C-R\) circuit shown in the figure, what is the resonance frequency and the current at the resonating frequency?
(b) Resonance frequency,
\(
\begin{aligned}
& y, \omega=\frac{1}{\sqrt{L C}} \\
& =\frac{1}{\sqrt{8 \times 10^{-3} \times 20 \times 10^{-6}}} \\
& =2500 \mathrm{rads}^{-1}
\end{aligned}
\)
Resonance current, \(I=\frac{V}{R}=\frac{220}{44}=5 \mathrm{~A}\)
The figure shows variation of \(R, X_L\) and \(X_C\) with frequency \(f\) in a series \(L, C, R\) circuit. Then, for what frequency point, the circuit is inductive?
(c) At point \(A, \quad X_C>X_L\)
at point \(B, \quad X_C=X_L\)
at point \(C, \quad X_C<X_L\)
So at \(C\), circuit is inductive.
In the given figure, a series \(L-C-R\) circuit is connected to a variable frequency source of 230 V. The impedance and amplitude of the current at the resonating frequency will be
\(
\begin{aligned}
& \text { (d) At resonance, } X_L=X_C \\
& \therefore \quad Z=R=40 \Omega \\
& \text { and } \quad I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{Z}=\frac{230}{40}=5.75 \mathrm{~A}
\end{aligned}
\)
In the figure, which voltmeter reads zero, when \(\omega\) is equal to the resonant frequency of series \(L-C-R\) circuit?
(b) At resonance,
\(
\begin{aligned}
& & X_L & =X_C \\
\therefore & & V_1 & =V_3
\end{aligned}
\)
Hence, \(V_2\) will be zero.
An \(R\) – \(L\) – \(C\) circuit containing a \(52 \Omega\) resistor, a 230 mH inductor, and a \(8.8 \mu \mathrm{~F}\) capacitor is driven by an AC voltage source that has an amplitude of 150 V and frequency \(f=80 \mathrm{~Hz}\). How much average power is dissipated by this circuit?
(a)
\(
\begin{aligned}
Z & =\sqrt{(52)^2+\left[230 \times 10^{-3} \times 2 \pi \times 80-\frac{1}{2 \pi \times 80 \times 8.8 \times 10^{-6}}\right]^2} \\
& =122 \Omega \\
P & =\left(\frac{V_{\mathrm{rms}}}{Z}\right)^2 \cdot R=\left(\frac{150}{122}\right)^2(52)=78.6 \mathrm{~W}
\end{aligned}
\)
The natural frequency of the circuit shown in the figure is
\(
\begin{aligned}
&\text { (a) } C_{\text {net }}=C / 2 \text { (in series) and } L_{\text {net }}=2 L \text { (in series) }\\
&\begin{aligned}
& \therefore \quad \omega=\frac{1}{\sqrt{L_{\text {net }} C_{\text {net }}}} \\
& \text { or } \quad f=\frac{1}{2 \pi \sqrt{(2 L) \cdot\left(\frac{C}{2}\right)}} \text { or } f=\frac{1}{2 \pi \sqrt{L C}}
\end{aligned}
\end{aligned}
\)
In the circuit shown what is the energy stored in the coil at steady state?
(c) Four resistances form a balanced Wheatstone bridge. Current flowing in the coil will be zero and hence energy stored in the coil is zero.
A loss-free transformer having 100 turns in primary is used to transmit 10 kW of power. The input voltage is 200 V and power is transmitted at 5 kV. The currents in the primary and secondary of the transformer are
\(
\begin{aligned}
&\begin{aligned}
& \text { (b) } N_P=100, P_i=10 \mathrm{~kW}, V_i=200 \mathrm{~V} \\
& \therefore I_P=\frac{P_i}{V_i}=\frac{10000}{200}=50 \mathrm{~A}
\end{aligned}\\
&\text { Input power }=\text { Output power }(\text { Neglecting all losses })\\
&\therefore \quad I_S=\frac{P_i}{V_o}=\frac{10000}{5000}=2 \mathrm{~A}
\end{aligned}
\)
A pure resistive circuit element \(X\) when connected to an AC supply of peak voltage 200 V , gives a peak current of 5 A . A second circuit element \(Y\), when connected to the same AC supply also gives the same value of peak current but the current lags behind by \(90^{\circ}\). If the series combination of \(X\) and \(Y\) is connected to the same supply, what will be the rms value of current?
\(
\begin{array}{ll}
\text { (c) } R=X_L=\frac{V_o}{I_o}=\frac{200}{5}=40 \Omega \\
\therefore Z=\sqrt{R_f^2+X_L^2}=40 \sqrt{2} \Omega \\
\Rightarrow I_{\text {rms }}=\frac{V_{\text {rms }}}{Z}=\frac{200 / \sqrt{2}}{40 \sqrt{2}}=\frac{5}{2} \mathrm{~A}
\end{array}
\)
A coil, a capacitor and an AC source of rms voltage 24 V are connected in series. By varying the frequency of the source, a maximum rms current of 6 A is observed. If this coil is connected to a battery of emf 12 V and internal resistance \(4 \Omega\), the maximum current through it will be
(c) Let \(R\) be the resistance of coil and capacitor. Then,
\(
R=\frac{24}{6}=4 \Omega
\)
In the second case,
\(
I_{\max }=\frac{12}{4+4}=\frac{12}{8}=1.5 \mathrm{~A}
\)
In the \(L-C-R\) circuit as shown in the figure.
\(
\begin{aligned}
&\text { (d) } X_C>X_L \text {. Hence, current will lead the voltage. }\\
&Z=\sqrt{R^2+\left(X_C-X_L\right)^2}=10 \sqrt{2} \Omega
\end{aligned}
\)
\(
\begin{aligned}
& I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{Z}=\frac{400 / \sqrt{2}}{10 \sqrt{2}}=20 \mathrm{~A} \\
& \cos \phi=\frac{R}{Z}=\frac{1}{\sqrt{2}} \\
& V_R=I_{\mathrm{rms}} R=(20)(10)=200 \mathrm{~V}
\end{aligned}
\)
In the circuit shown below, what will be the reading of the voltmeter and ammeter?
(d) Taking, \(V^2=V_R^2+\left(V_L-V_C\right)^2\)
According to the figure, we conclude that
\(
V_L=V_C
\)
\(
\begin{aligned}
& \therefore \quad V_R=V=220 \mathrm{~V} \\
& \text { Reading of voltmeter }=220 \mathrm{~V} \\
& \text { Reading of ammeter, } I=\frac{220}{100}=2.2 \mathrm{~A}
\end{aligned}
\)
In the circuit shown in the figure, neglecting source resistance, the voltmeter and ammeter readings will be respectively
(d) The voltages \(V_L\) and \(V_C\) are equal and opposite, so, voltmeter reading will be zero.
Also, \(R=30 \Omega, X_L=X_C=25 \Omega\)
So,
\(
\begin{aligned}
I & =\frac{V}{\sqrt{R^2+\left(X_L-X_C\right)^2}} \\
& =\frac{V}{R}=\frac{240}{30}=8 \mathrm{~A}
\end{aligned}
\)
The following series \(L-C-R\) circuit, when driven by an emf source of angular frequency 70 kilo-radians per second, the circuit effectively behaves like
\(
\begin{aligned}
&\text { (b) Resonance frequency, }\\
&\omega_0=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{100 \times 10^{-6} \times 1 \times 10^{-6}}}=10^5 \mathrm{rads}^{-1}
\end{aligned}
\)
\(
\begin{aligned}
& \text { Now, given } \omega=70 \text { kilo-rads }^{-1}=70000 \text { rads }^{-1} \\
& \Rightarrow \quad \omega_0>\omega
\end{aligned}
\)
\(
\begin{aligned}
&\begin{array}{ll}
\text { As } & X_L \propto \omega \text { and } X_C \propto \frac{1}{\omega} \\
\therefore & X_L>X_C
\end{array}\\
&\text { The circuit will be series } R \text { – } L \text { circuit. }
\end{aligned}
\)
In the circuit shown in the figure, the alternating currents through inductor and capacitor are 1.2 A and 1.0 A, respectively. The current drawn from the generator is
\(
\begin{aligned}
\text { (b) } I_L= & I_{O L} \sin \left(\omega t-\frac{\pi}{2}\right)=-1.2 \cos \omega t \\
& I_C=I_{O C} \sin \left(\omega t+\frac{\pi}{2}\right)=1.0 \cos \omega t \\
\therefore & I=I_L+I_C=-0.2 \cos \omega t \Rightarrow|I|=0.2 \mathrm{~A}
\end{aligned}
\)
In the circuit shown in the figure, the supply has a constant rms value \(V\) but variable frequency \(f\). The frequency at which the voltage drop across \(R\) is maximum is
\(
\begin{aligned}
&\text { (b) Voltage drop across } R \text { is maximum at resonance, i.e. at }\\
&\begin{aligned}
& \omega=\frac{1}{\sqrt{L C}} \text { or } f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi \sqrt{L C}} \\
& =\frac{1}{2 \pi \sqrt{\left(\frac{1}{\pi}\right)\left(\frac{1}{\pi} \times 10^{-6}\right)}}=500 \mathrm{~Hz}
\end{aligned}
\end{aligned}
\)
When an AC voltage, of variable frequency is applied to series \(L-C-R\) circuit, the current in the circuit is the same at 4 kHz and 9 kHz . The current in the circuit is maximum at
(d) Given, \(I_1=I_2\)
\(
\therefore \quad \omega_1 L-\frac{1}{\omega_1 C}=\frac{1}{\omega_2 C}-\omega_2 L
\)
Solving this, we get
\(
\frac{1}{\sqrt{L C}}=\text { resonance frequency }=\sqrt{\omega_1 \omega_2}=\sqrt{9 \times 4}=6 \mathrm{kHz}
\)
At resonance frequency, current will be maximum.
In the given AC circuit,
(a) The given AC circuit is the combination of two pure parallel circuits with the applied voltage. In this, \(I_2\) is in phase with \(V\) and \(I_1\) leads \(V\) by \(90^{\circ}\).
An ideal resistance \(R\), ideal inductance \(L\), ideal capacitance \(C\) and AC voltmeters \(V_1, V_2, V_3\) and \(V_4\) are connected to an AC source as shown. At resonance,
(d) At resonance, Voltage across \(L=\) Voltage across \(C\)
\(\therefore \quad\) Reading in \(V_2=\) Reading in \(V_3\).
An AC voltage source of variable angular frequency \(\omega\) and fixed amplitude \(V\) connected in series with a capacitance \(C\) and an electric bulb of resistance \(R\) (inductance zero). When \(\omega\) is increased,
(b) \(I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{\sqrt{R^2+\frac{1}{\omega^2 C^2}}}\)
When \(\omega\) increases, \(I_{\text {rms }}\) increases, so the bulb glows brighter.
In the circuit shown, the AC source has voltage \(V=20 \cos (\omega t)\) volt with \(\omega=2000\) rads \(^{-1}\). The amplitude of the current will be nearest to
(a) Total resistance of the circuit, \(R=6+4=10 \Omega\) Capacitive reactance, \(X_C=\frac{1}{\omega C}=\frac{1}{2000 \times 50 \times 10^{-6}}=10 \Omega\)
Inductive reactance,
\(
\begin{array}{ll}
& X_L=\omega L=2000 \times 5 \times 10^{-3}=10 \Omega \\
\therefore & Z=\sqrt{R^2+\left(X_L-X_C\right)^2}=10 \Omega
\end{array}
\)
Amplitude of current, \(I_0=\frac{V_0}{Z}=\frac{20}{10}=2 \mathrm{~A}\)
In a series \(L-C-R\) circuit the voltage across resistance, capacitance and inductance is 10 V each. If the capacitance is short-circuited, the voltage across the inductance will be
\(
\begin{aligned}
&\text { (a) }\\
&\begin{aligned}
X_C & =X_L=R \\
V & =\sqrt{V_R^2+\left(V_L-V_C\right)^2}
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
&\begin{array}{ll}
\text { but } & V_L=V_C \\
\therefore & V=V_R=10 \mathrm{~V}
\end{array}\\
&\text { When capacitor is short circuited, } V_C=0
\end{aligned}
\)
\(
\text { and } \quad V_R=V_L \quad\left(\text { as } R=X_L\right)
\)
\(
\begin{aligned}
V & =\sqrt{V_R^2+V_L^2} \quad \text { or } 10=\sqrt{2} V_L \\
V_L & =\frac{10}{\sqrt{2}} \mathrm{~V}
\end{aligned}
\)
In the circuit shown, rms current is 11 A. The potential difference across the inductor is
(d) \(\quad V_C=200 \mathrm{~V} \text { [given] }\)
\(
\begin{aligned}
V_R & =(11)(20)=220 \mathrm{~V} \\
V & =220 \mathrm{~V} \text { [applied] }
\end{aligned}
\)
\(
\begin{aligned}
V & =\sqrt{V_R^2+\left(V_L-V_C\right)^2} \\
V_L & =V_C=200 \mathrm{~V}
\end{aligned}
\)
An inductor of reactance \(1 \Omega\) and a resistor of \(2 \Omega\) are connected in series to the terminals of a 6 V (rms) AC source. The power dissipated in the circuit is
(c) Given, \(X_L=1 \Omega, R=2 \Omega\)
\(
V_{\mathrm{rms}}=6 \mathrm{~V}, P_{\mathrm{av}}=?
\)
Average power dissipated in the circuit,
\(
\begin{aligned}
P_{\mathrm{av}} & =V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi \dots(i) \\
I_{\mathrm{rms}} & =\frac{I_0}{\sqrt{2}}=\frac{V_{\mathrm{rms}}}{Z} \\
Z & =\sqrt{R^2+X_L^2}=\sqrt{4+1}=\sqrt{5} \Omega \\
I_{\mathrm{rms}} & =\frac{6}{\sqrt{5}} \mathrm{~A} \\
\cos \phi & =\frac{R}{Z}=\frac{2}{\sqrt{5}} \\
P_{\mathrm{av}} & =6 \times \frac{6}{\sqrt{5}} \times \frac{2}{\sqrt{5}} \text { [from Eq. (i)] }\\
& =\frac{72}{\sqrt{5} \sqrt{5}}=\frac{72}{5}=14.4 \mathrm{~W}
\end{aligned}
\)
An AC circuit consists of a resistance and a choke coil in series. The resistance is of \(220 \Omega\) and choke coils is of 0.7 H. The power absorbed from 220 V and 50 Hz , source connected with the circuit, is
(b) \(X_L=(2 \pi f L)=2 \pi \times 50 \times 0.7=220 \Omega\)
\(
\begin{aligned}
\therefore \quad Z & =\sqrt{R^2+X_L^2}=220 \sqrt{2} \Omega \\
I_{\mathrm{rms}} & =\frac{V_{\mathrm{rms}}}{Z}=\frac{220}{220 \sqrt{2}}=\frac{1}{\sqrt{2}} \mathrm{~A}
\end{aligned}
\)
\(\therefore\) Power, \(\quad P=I_{\mathrm{rms}}^2 \cdot R=\frac{1}{2} \times 220=110 \mathrm{~W}\)
In the series \(L-C-R\) circuit, the voltmeter and ammeter readings are respectively
\(
\text { (d) } V_L=V_C \Rightarrow X_L=X_C \text { or circuit shown is in resonance. }
\)
\(
\begin{aligned}
V_{\text {applied }} & =V_R=100 \mathrm{~V} \\
I & =\frac{V_R}{R}=2 \mathrm{~A}
\end{aligned}
\)
Current in resistance is 1 A , then
(d) \(V_S^2=(3)^2+(8-4)^2 \Rightarrow V_S=5 \mathrm{~V}\)
Now, \(\quad Z=\frac{V_S}{I}=\frac{5}{1}=5 \Omega\)
Also, \(\quad V_R=I R\) or \(R=\frac{3}{1}=3 \Omega\)
So, \(\quad \mathrm{PF}=\frac{R}{Z}=\frac{3}{5}=0.6 ;\) Also \(V_L>V_C\)
As, \(I\) lags \(V\), so PF is lagging in nature.
An \(L-C-R\) series circuit with a resistance of \(100 \Omega\) is connected to an AC source of 200 V (rms) and angular frequency \(300 \mathrm{rad} \mathrm{s}^{-1}\). When only the capacitor is removed, the current lags behind the voltage by \(60^{\circ}\). When only the inductor is removed the current leads the voltage by \(60^{\circ}\). The average power dissipated in original \(L-C-R\) circuit is
(d) Phase angle, \(\tan \phi=\frac{X_L}{R}=\frac{X_C}{R}\)
\(
\begin{array}{ll}
\Rightarrow & \tan 60^{\circ}=\frac{X_L}{R}=\frac{X_C}{R} \Rightarrow X_L=X_C=\sqrt{3} R \\
\text { i.e., } & Z=\sqrt{R^2+(\sqrt{3} R-\sqrt{3} R)^2} \Rightarrow Z=R
\end{array}
\)
So, average power, \(P=\frac{V^2}{R}=\frac{200 \times 200}{100}=400 \mathrm{~W}\)
A virtual current of 4 A and 50 Hz flows in an AC circuit containing a coil. The power consumed in the coil is 240 W. If the virtual voltage across the coil is 100 V, then its inductance will be
(b) Power consumed in the coil,
\(
\begin{aligned}
& P=I_{\mathrm{rms}}^2 R \\
& R=\frac{P}{I_{\mathrm{rms}}^2}=\frac{240}{16}=15 \Omega \\
& \text { Impedance, } \quad Z=\frac{V}{I}=\frac{100}{4}=25 \Omega \\
& \text { Now, } \\
& X_L=\sqrt{Z^2-R^2} \\
& =\sqrt{(25)^2-(15)^2}=20 \Omega \\
& \therefore \quad 2 \pi f L=20 \\
& L=\frac{20}{2 \pi \times 50}=\frac{1}{5 \pi} \mathrm{H}
\end{aligned}
\)
An inductor \(L\), a capacitor of \(20 \mu \mathrm{~F}\) and a resistor of \(10 \Omega\) are connected in series with an AC source of frequency 50 Hz. If the current is in phase with the voltage, then the inductance of the inductor is
(b) In an L-C-R circuit, the current and the voltage are in phase ( \(\phi=0\) ), when
\(
\begin{aligned}
& \quad \tan \phi=\frac{\omega L-\frac{1}{\omega C}}{R}=0 \text { or } \omega L=\frac{1}{\omega C} \\
& \text { or } \quad L=\frac{1}{\omega^2 C} \\
& \text { Here, } \quad \omega=2 \pi f=2 \times 3.14 \times 50 \mathrm{~s}^{-1}=314 \mathrm{~s}^{-1} \\
& \text { and } \quad C=20 \mu \mathrm{~F}=20 \times 10^{-6} \mathrm{~F} \\
& \therefore \quad L=\frac{1}{(314)^2 \times\left(20 \times 10^{-6}\right)}=0.51 \mathrm{H}
\end{aligned}
\)
An \(L-C-R\) series circuit consists of a resistance of \(10 \Omega\), a capacitor of reactance \(60 \Omega\) and an inductor coil. The circuit is found to resonate when put across a \(300 \mathrm{~V}, 100 \mathrm{~Hz}\) supply. The inductance of coil is (take, \(\pi=3\) )
\(
\begin{aligned}
&\text { (a) Angular velocity, }\\
&\begin{aligned}
\omega_0 & =2 \pi v=2 \pi \times 100 \\
\omega_0 & =2 \times 3 \times 100 \\
& =600 \mathrm{rads}^{-1}
\end{aligned}\\
&[\because \pi=3]
\end{aligned}
\)
Further, \(\omega_0=\frac{1}{\sqrt{L C}} \dots(i)\)
Also, \(X_C=\frac{1}{C \omega_0}=60 \Omega\)
\(
\begin{aligned}
& C=\frac{1}{\omega_0 \times 60}=\frac{1}{600 \times 60} \\
& C=\frac{1}{36 \times 10^3} \mathrm{~F}
\end{aligned}
\)
Putting values of \(C\) in Eq. (i), we get
\(
\begin{aligned}
600 & =\frac{1}{\sqrt{L\left(\frac{1}{36 \times 10^3}\right)}} \\
36 \times 10^4 & =\frac{36 \times 10^3}{L} \\
L & =\frac{36 \times 10^3}{36 \times 10^4}=\frac{1}{10}=0.1 \mathrm{H}
\end{aligned}
\)
A capacitor of capacitance \(1 \mu \mathrm{~F}\) is charged to a potential of 1 V. It is connected in parallel to an inductor of inductance \(10^{-3} \mathrm{H}\). The maximum current that will flow in the circuit has the value
(a) Charge on the capacitor,
\(
q_0=C V=1 \times 10^{-6} \times 1=10^{-6} \mathrm{C}
\)
Here, \(q=q_0 \sin \omega t\)
or \(I_0=\omega q_0=\text { maximum current }\)
Now, \(\omega=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{10^{-9}}}=\left(10^9\right)^{1 / 2}\)
\(
\therefore \quad I_0=\left(10^9\right)^{1 / 2} \times\left(1 \times 10^{-6}\right)=\sqrt{1000} \mathrm{~mA}
\)
Which of the following options is correct with respect to the circuit diagram given below?
\(
\begin{aligned}
&\text { (b) Circuit is in resonance, }\\
&\begin{array}{ll}
\therefore & V=V_R=I R \\
\text { or } & R=\frac{V}{I}=\frac{100}{0.2}=500 \Omega \\
& X_L=\frac{V_L}{I}=\frac{400}{0.2}=2000 \Omega=\omega L \\
\therefore & \omega=1000 \mathrm{rads}^{-1}
\end{array}
\end{aligned}
\)
\(
\begin{array}{ll}
\text { Further, } & X_L=X_C=2000 \Omega=\frac{1}{\omega C} \\
\therefore & C=\frac{1}{2000 \omega}=0.5 \mu \mathrm{~F}
\end{array}
\)
When 100 V DC is applied across a solenoid, a current of 1 A flows in it. When 100 V AC is applied across the same solenoid the current drops to 0.5 A. If the frequency of the AC source is 50 Hz, the impedance and inductance of the solenoid are
\(
\text { (a) Impedance }=\frac{V_{\mathrm{AC}}}{I_{\mathrm{AC}}}=\frac{100}{0.5}=200 \Omega=Z
\)
\(
\begin{aligned}
R & =\frac{V_{\mathrm{DC}}}{I_{\mathrm{DC}}}=\frac{100}{1}=100 \Omega \\
X_L & =\sqrt{Z^2-R^2}=100 \sqrt{3} \Omega=(2 \pi f L) \\
L & =\frac{100 \sqrt{3}}{2 \pi f}=\frac{100 \times 1.732}{2 \times 3.14 \times 50}=0.55 \mathrm{H}
\end{aligned}
\)
An ideal choke takes a current of 8 A when connected to an AC source of 100 V and 50 Hz. A pure resistor under the same conditions takes a current of 10 A. If two are connected in series to an AC supply of 100 V and 40 Hz , then the current in the series combination of above resistor and inductor is
(c) \(X_L=\frac{100}{8} \Omega=12.5 \Omega\) with 50 Hz frequency and with 40 Hz frequency.
\(
X_L^{\prime}=12.5 \times \frac{40}{50}=10 \Omega \quad\left[\text { as } X_L \propto \omega\right]
\)
\(
\begin{aligned}
& R=\frac{100}{10}=10 \Omega \\
& Z=\sqrt{R^2+\left(X_L^{\prime}\right)^2}=10 \sqrt{2} \Omega \\
& I=\frac{100}{10 \sqrt{2}}=5 \sqrt{2} \mathrm{~A}
\end{aligned}
\)
An AC source is connected with a resistance \((R)\) and an uncharged capacitance \(C\), in series. The potential difference across the resistor is in phase with the initial potential difference across the capacitor for the first time at the instant (assume that at \(t=0\), emf is zero) (where, \(\omega\) is the angular frequency)
\(
\text { (d) Let } \quad V=V_0 \sin \omega t \quad \text { [as } V=0 \text { at } t=0 \text { ] }
\)
\(
\text { Then } \quad V_R=V_0 \sin \omega t
\)
and \(\quad V_C=V_0 \sin (\omega t-\pi / 2)\)
\(V\) and \(V_R\) are in same phase. While \(V_C\) lags \(V\) (or \(V_R\) ) by \(90^{\circ}\).
Now \(V_R\) is in same phase with initial potential difference across the capacitor for the first time when,
\(
\begin{array}{ll}
& \omega t=-\frac{\pi}{2}+2 \pi=\frac{3 \pi}{2} \\
\therefore & t=\frac{3 \pi}{2 \omega}
\end{array}
\)
Current through an AC series \(L-C-R\) circuit is 2 A if operated at resonant frequency, and 1 A if operated at \(50 \%\) less than resonant frequency. The current (in A) if the frequency is \(100 \%\) more than the resonant frequency, is
(b) At resonance, \(X_C=X_L\)
If \(\omega\) is reduced to half,
\(
X_C^{\prime}=2 X_C \quad\left[\text { as } X_C \propto \frac{1}{\omega}\right]
\)
and \(X_L^{\prime}=\frac{X_L}{2} \left[\text { as } X_L \propto \omega\right]\)
If \(\omega\) is made two times,
\(
X_C^{\prime}=\frac{X_C}{2}
\)
and \(X_L^{\prime}=2 X_L\)
i.e. Value of \(Z\) will remain unchanged and current should be 1 A.
An AC voltage \(V=V_0 \sin 100 t\) is applied to the circuit, the phase difference between current and voltage is found to be \(\frac{\pi}{4}\), then
(b) In the given graph current is leading the voltage by \(45^{\circ}\). Therefore, circuit is \(C-R\).
\(
\tan \phi=\frac{X_C}{R} \text { and } \phi=\frac{\pi}{4}
\)
\(
\begin{aligned}
&\begin{array}{ll}
\therefore & X_C=R \\
\Rightarrow & \omega C R=1 \\
\Rightarrow & C R=\frac{1}{\omega}=\frac{1}{100}
\end{array}\\
&\text { When } R=1 \mathrm{k} \Omega=10^3 \Omega \text {, then }\\
&C=\frac{1}{100 \times 10^3}=10^{-5} \mathrm{~F}=10 \mu \mathrm{~F}
\end{aligned}
\)
In the given AC circuit, when switch \(S\) is at position 1, the source emf leads current by \(\pi / 6\). Now, if the switch is at position 2, then
\(
\begin{aligned}
&\text { (a) In position-1, }\\
&\tan \frac{\pi}{6}=\frac{\omega L}{R}=\frac{(1000)\left(\sqrt{3} \times 10^{-3}\right)}{R}
\end{aligned}
\)
\(
\begin{gathered}
\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{R} \\
R=3 \Omega
\end{gathered}
\)
\(
\begin{aligned}
&\text { In position-2, }\\
&\begin{aligned}
\tan \phi & =\frac{X_C}{R}=\frac{(1 / \omega C)}{R} \\
& =\frac{1 /\left(1000 \times \frac{1000}{3} \times 10^{-6}\right)}{3}=1 \\
\therefore \quad \phi & =\frac{\pi}{4} ; \text { so current leads source emf. }
\end{aligned}
\end{aligned}
\)
An \(L-C\) circuit contains a 20 mH inductor and a \(50 \mu \mathrm{~F}\) capacitor with an initial charge of 10 mC. The resistance of the circuit is negligible. At the instant the circuit is closed be \(t=0\). At what time is the energy stored completely magnetic?
(b) For L-C, oscillator, \(T=2 \pi \sqrt{L C}\)
From one extreme to another; when electric field is maximum magnetic field is zero. And when electric field is zero, magnetic field is maximum.
At time \(t=\frac{T}{4}\), energy stored is completely magnetic.
\(
\begin{aligned}
&\therefore \quad \text { Time, } t=\frac{T}{4}=\frac{2 \pi \sqrt{L C}}{4}\\
&\begin{array}{ll}
\Rightarrow & t=\frac{\pi \sqrt{20 \times 10^{-3} \times 50 \times 10^{-6}}}{2}=\frac{\pi \sqrt{1 \times 10^{-6}}}{2} \\
\Rightarrow & t=1.57 \mathrm{~ms}
\end{array}
\end{aligned}
\)
When an alternating voltage of 220 V is applied across a device \(P\), a current of 0.25 A flows through the circuit and it leads the applied voltage by an angle \(\frac{\pi}{2}\) radian. When the same voltage source is connected across another device \(Q\), the same current is observed in the circuit but in phase with the applied voltage. What is the current when the same source is connected across a series combination of \(P\) and \(Q\) ?
(b) \(P\) is a capacitor, \(X_C=\frac{220}{0.25}=880 \Omega\)
\(Q\) is resistance, \(R=\frac{220}{0.25}=880 \Omega\)
When \(P\) and \(Q\) are in series.
\(
\begin{aligned}
& Z=\sqrt{R^2+X_C^2} \\
&=880 \sqrt{2} \Omega \\
& \phi=\tan ^{-1}\left(\frac{X_C}{R}\right)=\pi / 4 \quad \text { (current leading) } \\
& I=\frac{V}{Z}=\frac{1}{4 \sqrt{2}} \mathrm{~A}
\end{aligned}
\)
In the circuit shown in the figure, the AC source gives a voltage \(V=20 \cos (2000 t)\). Neglecting source resistance, the voltmeter and ammeter readings will be (approximately)
\(
\begin{aligned}
& \text { (c) } X_L=\omega L=(2000)\left(5 \times 10^{-3}\right)=10 \Omega \\
& \quad X_C=\frac{1}{\omega C}=\frac{1}{(2000)\left(50 \times 10^{-6}\right)}=10 \Omega
\end{aligned}
\)
Since, \(\quad X_C=X_L\)
\(
\therefore \quad I=\frac{V}{Z}=\frac{20 / \sqrt{2}}{10}=\sqrt{2} \mathrm{~A}
\)
or ammeter reading \(=\sqrt{2} \mathrm{~A}\) and voltmeter reading \(=0\)
A fully charged capacitor \(C\) with initial charge \(q_0\) is connected to a coil of self inductance \(L\) at \(t=0\). The time at which the energy is stored equally between the electric and the magnetic fields is
(b) In L-C oscillation energy is transferred from \(C\) to \(L\) or \(L\) to \(C\). Maximum energy in \(L=\frac{1}{2} L I_{\max }^2\) and maximum energy in \(C=\frac{q_{\max }^2}{2 C}\).
Equal energy will be, when
\(
\begin{aligned}
\frac{1}{2} L I^2 & =\frac{1}{2}\left(\frac{1}{2} L I_{\max }^2\right) \\
I & =\frac{1}{\sqrt{2}} I_{\max } \\
I & =I_{\max } \sin \omega t=\frac{1}{\sqrt{2}} I_{\max }
\end{aligned}
\)
\(
\begin{array}{ll}
\Rightarrow & \quad \omega t=\frac{\pi}{4} \\
\text { or } & 2 \frac{\pi}{T} t=\frac{\pi}{4} \quad \text { or } t=\frac{T}{8} \\
\Rightarrow & \quad t=\frac{1}{8} 2 \pi \sqrt{L C}=\frac{\pi}{4} \sqrt{L C}
\end{array}
\)
A circuit draws 330 W from a \(110 \mathrm{~V}, 60 \mathrm{~Hz} \mathrm{AC}\) line. The power factor is 0.6 and the current lags the voltage. The capacitance of a series capacitor that will result in a power factor of unity is equal to
(b) Resistance of circuit,
\(
R=\frac{V^2}{P}=\frac{110 \times 110}{330}=\frac{110}{3} \Omega
\)
Ist case Power factor, \(\cos \phi=0.6\)
Since, current lags the voltage, thus the circuit contains resistance and inductance.
\(
\begin{array}{lr}
\therefore & \cos \phi=\frac{R}{\sqrt{R^2+X_L^2}}=0.6 \\
\Rightarrow & R^2+X_L^2=\left(\frac{R}{0.6}\right)^2 \\
\Rightarrow & X_L^2=\frac{R^2}{(0.6)^2}-R^2 \\
\Rightarrow & X_L^2=\frac{R^2 \times 0.64}{0.36} \\
\therefore & X_L=\frac{0.8 R}{0.6}=\frac{4 R}{3} \dots(i)
\end{array}
\)
IInd case Now \(\cos \phi=1 \text { [given] }\)
Therefore, circuit is purely resistive, i.e. it contains only resistance. This is the condition of resonance in which
\(
\begin{array}{ll}
& X_L=X_C \\
\therefore & X_C=\frac{4 R}{3}=\frac{4}{3} \times \frac{110}{3}=\frac{440}{9} \Omega \quad \text { [from Eq. (i)] } \\
\Rightarrow & \frac{1}{2 \pi f C}=\frac{440}{9} \Omega \\
\therefore & C=\frac{9}{2 \times 3.14 \times 60 \times 440}=0.000054 \mathrm{~F}=54 \mu \mathrm{~F}
\end{array}
\)
An arc lamp requires a direct current of 10 A at 80 V to function. If it is connected to a 220 V (rms), 50 Hz AC supply, the series inductor needed for it to work is close to
\(
\text { (c) } R=\frac{80}{10}=8 \Omega
\)
Also,
\(
\begin{aligned}
V_L^2+80^2 & =220^2 \\
V_L^2 & =(220+80)(220-80) \\
& =300 \times 140
\end{aligned}
\)
\(
\begin{aligned}
V_L & =204.9 \mathrm{~V} \\
I_{\mathrm{rms}} X_L & =204.9 \\
\frac{220}{\sqrt{64+X_L^2}} X_L & =204.9 \\
X_L & =20 \Rightarrow L=\frac{20}{2 \pi f}=0.064 \mathrm{H}
\end{aligned}
\)
In the circuit shown in the figure, the ac source gives a voltage \(V=20 \cos (2000 t)\). Neglecting source resistance, the voltmeter and ammeter readings will be
(\(
\begin{aligned}
&\text { (d) }\\
&\begin{aligned}
Z & =\sqrt{(R)^2+\left(X_L-X_C\right)^2} \\
R & =10 \Omega, X_L=\omega L=2000 \times 5 \times 10^{-3}=10 \Omega
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
X_C & =\frac{1}{\omega C}=\frac{1}{2000 \times 50 \times 10^{-6}} \\
& =10 \Omega \Rightarrow Z=10 \Omega
\end{aligned}
\)
\(
\begin{aligned}
& \text { Maximum current, } i_0=\frac{V_0}{Z}=\frac{20}{10}=2 \mathrm{~A} \\
& \text { Hence, } i_{\text {rms }}=\frac{2}{\sqrt{2}}=1.4 \mathrm{~A} \\
& \text { and } V_{\text {rms }}=4 \times 1.4=5.6 \mathrm{~V}
\end{aligned}
\)
An inductor \(\left(X_L=2 \Omega\right)\), a capacitor \(\left(X_C=8 \Omega\right)\) and a resistance \((R=8 \Omega)\) are connected in series with an AC source. The voltage output of AC source is given by \(\quad V=10 \cos (100 \pi t)\).
The instantaneous potential difference between points \(A\) and \(B\), when the applied voltage is \(3 / 5\) th of the maximum value of applied voltage is
\(
\begin{array}{r}
\text { (b) } Z=\sqrt{R^2+\left(X_C-X_L\right)^2}=10 \Omega \\
\cos \phi=\frac{R}{Z}=\frac{4}{5}
\end{array}
\)
\(
\begin{aligned}
& \phi=37^{\circ} \\
& I_0=\frac{V_0}{Z}=\frac{10}{10}=1 \mathrm{~A} \\
& I=1 \cos \left(100 \pi t+37^{\circ}\right)
\end{aligned}
\)
Given, \(\quad V=10 \cos (100 \pi t)\)
The applied voltage is \(\frac{3}{5}\) th of the maximum applied voltage. Then, \(100 \pi t=\cos ^{-1}(3 / 5)=53^{\circ}\)
\(
\begin{aligned}
I & =1 \cos \left(53^{\circ}+37^{\circ}\right)=0 \\
V_R & =0 \\
V_{\mathrm{AB}} & =V_{\text {applied }}=\frac{3}{5} \times 10=6 \mathrm{~V}
\end{aligned}
\)
A \(L-C-R\) circuit is equivalent to a damped pendulum. In an \(L-C-R\) circuit the capacitor is charged to \(Q_0\) and then connected to the \(L\) and \(R\) as shown below.
If a student plots graphs of the square of maximum charge \(\left(Q_{\max }^2\right)\) on the capacitor with time \((t)\) for two different values \(L_1\) and \(L_2\left(L_1>L_2\right)\) of \(L\), then which of the following represents this graph correctly (plots are schematic and not drawn to scale)
\(
\text { (a) At any time } t \text { apply KVL, } \frac{q}{C}-i R-L \frac{d i}{d t}=0
\)
\(
\begin{array}{lc}
\text { and } & i=-\frac{d q}{d t} \\
\Rightarrow & \frac{q}{C}+\frac{d q}{d t} R+\frac{L d^2 q}{d t^2}=0 \\
\Rightarrow & \frac{d^2 q}{d t^2}+\frac{R}{L} \frac{d q}{d t}+\frac{q}{L C}=0
\end{array}
\)
From damped harmonic oscillator, the amplitude is given by \(A=A_0 e^{-\frac{b t}{2 m}}\), for general equation of double differential
\(
\begin{array}{ll}
\text { equation } \frac{d^2 x}{d t^2}+\frac{b}{m} \frac{d x}{d t}+\frac{k}{m} x=0 \\
\Rightarrow & Q_{\max }=Q_0 e^{-\frac{R t}{2 L}} \\
\Rightarrow & Q_{\max }^2=Q_0^2 e^{-\frac{R t}{L}}
\end{array}
\)
Lesser the self-inductance, faster will be damping, hence correct graph is in option (a).
If maximum energy is stored in a capacitor at \(t=0\), then find the time after which current in the circuit will be maximum.
(b) Given,
\(
\begin{gathered}
L=25 \mathrm{mH}=25 \times 10^{-3} \mathrm{H} \\
C=10 \mu \mathrm{~F}=10^{-5} \mathrm{~F}
\end{gathered}
\)
If \(T\) be the time period of \(L-C\) oscillation, then
\(
\begin{aligned}
T & =2 \pi \sqrt{L C}=2 \pi \sqrt{25 \times 10^{-3} \times 10^{-5}} \\
& =\pi \times 10^{-3} \mathrm{~s}=\pi \mathrm{ms}
\end{aligned}
\)
Current in the circuit will be maximum, when
\(
t=\frac{T}{4}=\frac{\pi}{4} \mathrm{~ms}
\)
In an \(L-C-R\) series circuit, source voltage is 120 V and voltage in inductor is 50 V and in resistance is 40 V , then determine voltage in the capacitor. [AIIMS 2019]
(a) Given, in \(L-C-R\) series circuit,
Source voltage (resultant voltage), \(V=120 \mathrm{~V}\)
Voltage across inductor, \(V_L=50 \mathrm{~V}\)
Voltage across resistor, \(V_R=40 \mathrm{~V}\)
In \(L-C-R\) series circuit,
\(
\begin{aligned}
V & =\sqrt{V_R^2+\left(V_L-V_C\right)^2} \\
120 & =\sqrt{40^2+\left(50-V_C\right)^2} \\
120^2 & =40^2+\left(50-V_C\right)^2 \\
\left(50-V_C\right)^2 & =12800 \\
50-V_C & =80 \sqrt{2} \\
V_C & =10(5-8 \sqrt{2})
\end{aligned}
\)
In the given circuit, find charge on capacitor after 1 s of opening the switch at \(t=\infty\). [AIIMS 2019]
(b) At \(t \rightarrow \infty\), capacitor works as an open circuit as shown in the figure.
Therefore, current flow in the circuit,
\(
\begin{aligned}
I_1 & =\frac{9}{(12+15) \times 10^3}=\frac{1}{3} \times 10^{-3} \mathrm{~A} \\
\therefore \quad V_0 & =I_1 \times 15 \times 10^3 \\
& =\frac{1}{3} \times 10^{-3} \times 15 \times 10^3=5 \mathrm{~V}
\end{aligned}
\)
\(\therefore\) Charge on capacitor of \(5 \mu \mathrm{~F}\),
\(
\begin{aligned}
q_0 & =C V_0=5 \times 10^{-6} \times 5 \\
& =25 \times 10^{-6} \mathrm{C}=25 \mu \mathrm{C}
\end{aligned}
\)
When switch is open, then capacitor starts discharging across \((5+15=20 \mathrm{k} \Omega)\) and instantaneous charge on capacitor is given by
\(
\begin{aligned}
q & =q_0 e^{-t / R C} \\
& =25 e^{-\frac{1}{20 \times 10^3 \times 5 \times 10^{-6}}} [\because t=1 \mathrm{~s}]\\
& =25 e^{-10} \mu \mathrm{C}
\end{aligned}
\)
A transformer with turns ratio \(\frac{N_1}{N_2}=\frac{50}{1}\) is connected to a 120 V AC supply. If primary and secondary circuit resistances are \(1.5 \mathrm{k} \Omega\) and \(1 \Omega\) respectively, then find out power of output. [AIIMS 2019]
(a) Given, turn ratio of a transformer,
\(
\begin{aligned}
& & \frac{N_1}{N_2} & =\frac{50}{1} \\
\Rightarrow & & N_1 & =50 N_2
\end{aligned}
\)
Since, \(\frac{N_1}{N_2}=\frac{V_1}{V_2}\)
\(
50=\frac{120}{V_2} \quad\left[V_1=120 \mathrm{~V}(\text { given })\right]
\)
\(
\begin{aligned}
&\Rightarrow \quad V_2=\frac{12}{5} \mathrm{~V}\\
&\text { Output power at secondary coil, }\\
&\begin{aligned}
P_s & =\frac{V_2^2}{R_2} \\
& =\frac{\left(\frac{12}{5}\right)^2}{1}=\frac{144}{25} \left[R_2=1 \Omega \text { (given) }\right]\\
& =5.76 \mathrm{~W}
\end{aligned}
\end{aligned}
\)
An inductor 20 mH , a capacitor \(100 \mu \mathrm{~F}\) and a resistor \(50 \Omega\) are connected in series across a source of \(\operatorname{emf} V=10 \sin 314 t\). The power loss in the circuit is [AIIMS 2018]
(c) Given, inductance, \(L=20 \mathrm{mH}\)
\(
=20 \times 10^{-3} \mathrm{H}
\)
Capacitance, \(C=100 \mu \mathrm{~F}=100 \times 10^{-6} \mathrm{~F}\)
Resistance, \(R=50 \Omega \mathrm{emf}, V=10 \sin 314 t \dots(i)\)
\(\because\) The general equation of emf is given as \(V=V_0 \sin \omega t \dots(ii)\)
On comparing Eqs. (i) and (ii), we get
\(
\begin{aligned}
V_0 & =10 \mathrm{~V} \\
\omega & =314 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
\)
The power loss associated with the given AC circuit is given as
\(
\begin{aligned}
P & =V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi \\
& =V_{\mathrm{rms}}\left(\frac{V_{\mathrm{rms}}}{Z}\right)\left(\frac{R}{Z}\right) \\
& =\left(\frac{V_{\mathrm{rms}}}{Z}\right)^2 R=\left(\frac{V_0}{\sqrt{2} \cdot Z}\right)^2 R \dots(iii)
\end{aligned}
\)
Impedance,
\(
\begin{aligned}
Z & =\sqrt{R^2+\left(X_L-X_C\right)^2} \\
& =\sqrt{R^2+\left(\omega L-\frac{1}{\omega C}\right)^2}
\end{aligned}
\)
Substituting the given values in the above equation, we get
\(
\begin{aligned}
Z & =\sqrt{(50)^2+\left[\left(314 \times 20 \times 10^{-3}\right)-\frac{1}{314 \times 10^{-4}}\right]^2} \\
& =\sqrt{2500+\left[6280 \times 10^{-3}-0.00318 \times 10^4\right]^2} \\
& =\sqrt{2500+(-25.56)^2} \\
& =56.15 \Omega \simeq 56 \Omega
\end{aligned}
\)
Now, substituting this values in Eq. (iii), we get
\(
P=\left(\frac{10}{\sqrt{2} \times 56}\right)^2 \times 50=\frac{100}{2 \times 3136} \times 50=0.79 \mathrm{~W}
\)
Thus, the power loss in the circuit is 0.79 W.
In a circuit \(L, C\) and \(R\) are connected in series with an alternating voltage source of frequency \(f\). The current leads the voltage by \(45^{\circ}\). The value of \(C\) is [AIIMS 2018]
(c) In an \(L-C-R\) circuit,
\(
\tan \phi=\frac{\omega L-\frac{1}{\omega C}}{R}
\)
\(\phi\) being the angle by which the current leads the voltage.
Given, \(\phi=45^{\circ}\)
\(
\begin{aligned}
\tan 45^{\circ} & =\frac{\omega L-\frac{1}{\omega C}}{R} \\
1 & =\frac{\omega L-\frac{1}{\omega C}}{R} \\
R & =\omega L-\frac{1}{\omega C} \\
\omega C & =\frac{1}{\omega L-R} \\
C & =\frac{1}{\omega(\omega L-R)} \\
& =\frac{1}{2 \pi f(2 \pi f L-R)}
\end{aligned}
\)
In a series \(R-C\) circuit shown in figure, the applied voltage is 10 V and the voltage across capacitor is found to be 8 V. Then, the voltage across \(R\) and the phase difference between current and the applied voltage will respectively be [AIIMS 2018]
(a) We know that, for series \(R\)-C circuit
\(
V^2=V_C^2+V_R^2
\)
\(
\begin{array}{lr}
& 100=64+V_R^2 \\
\Rightarrow & V_R^2=36 \\
\Rightarrow & V_R=\sqrt{36}=6 \mathrm{~V} \\
\text { Also, } & \tan \phi=\frac{V_C}{V_R} \Rightarrow \tan \phi=\frac{8}{6} \\
& \tan \phi=\frac{4}{3} \\
\therefore & \phi=\tan ^{-1}\left(\frac{4}{3}\right)
\end{array}
\)
An ideal coil of 10 H is connected in series with a resistance of \(5 \Omega\) and a battery of 5 V. After 2 s, after the connection is made, the current flowing (in ampere) in the circuit is [AIIMS 2018]
(d) Rise of current in \(L-R\) circuit is given by
\(
I=I_0\left(1-e^{-t / \tau}\right)
\)
where, \(\quad I_0=\frac{E}{R}=\frac{5}{5}=1 \mathrm{~A}\)
Now, \(\quad \tau=\frac{L}{R}=\frac{10}{5}=2 \mathrm{~s}\)
After 2 s , i.e. at \(t=2 \mathrm{~s}\)
Rise of current, \(I=\left(1-e^{-1}\right) \mathrm{A}\)
4 A series \(R[latex] – [latex]C\) circuit is connected to AC voltage source. Consider two cases; (A) When \(C\) is without a dielectric medium and (B) When \(C\) is filled with dielectric of constant 4. The current \(I_R\) through the resistor and voltage \(V_C\) across the capacitor are compared in two cases. Which of the following is true? [AIIMS 2017]
(b) For circuit \(A\),
Impedance, \(Z_A=\sqrt{R^2+\frac{1}{\omega^2 C^2}}\)
Current in circuit, \(I_R^A=\frac{V}{\sqrt{R^2+\left(1 / \omega^2 C^2\right)}} \dots(i)\)
Potential difference across \(C\),
\(
V_C^A=I_R^A \times \frac{1}{\omega C}=\frac{V}{\sqrt{(R \omega C)^2+1}}
\)
For circuit \(B\),
Impedance, \(Z_B=\sqrt{R^2+\frac{1}{(4 \omega)^2 C^2}}\)
Current in circuit, \(I_R^B=\frac{V}{\sqrt{R^2+\left[1 /(4 \omega C)^2\right]}}\)
Potential difference across \(C\),
\(
V_C^B=I_R^B \times \frac{1}{4 \omega C}=\frac{V}{\sqrt{(4 R \omega C)^2+1}} \dots(ii)
\)
Hence, from above Eqs. (i) and (ii), we conclude that as numerator of \(I_R^B\) is increased from \(I_R^A\) by a factor of 2.
So, \(I_R^B>I_R^A\) and \(V_C^A>V_C^B\).
A condenser of 250 pF is connected in parallel to a coil of inductance of 0.16 mH , while its effective resistance is \(20 \Omega\). Determine the resonant frequency. [AIIMS 2015]
(c) The resonant frequency is given by,
\(
f_0=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^2}{L^2}}
\)
where, \(R=\) resistance and \(L=\) inductance
\(
\begin{aligned}
\Rightarrow f_0 & =\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^2}{L^2}} \\
& =\frac{1}{2 \times 3.14} \sqrt{\frac{1}{250 \times 10^{-12} \times 0.16 \times 10^{-3}}-\frac{20 \times 20}{\left(0.16 \times 10^{-3}\right)^2}} \\
& =8 \times 10^5 \mathrm{~Hz}
\end{aligned}
\)
An inductor coil is connected to a 12 V battery and drawing a current 24 A . This coil is connected to capacitor and an AC source of rms voltage rating 24 V in the series connection. The phase difference between current and emf is zero. The rms current through the circuit would found to be [UP CPMT 2015]
(a) The resistance of inductor (coil), \(R=\frac{12}{24}=0.5 \Omega\)
If phase difference between current and emf is zero, then reactance of circuit must be zero.
The impedance of the circuit equals to resistance, i.e.
\(
Z=0.5 \Omega
\)
Now, rms current, \(I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{Z}=\frac{24}{0.5}=48 \mathrm{~A}\)
A transformer is used to light \(100 \mathrm{~W}-110 \mathrm{~V}\) lamp from 220 V mains. If the main current is 0.5 A, the efficiency of the transformer is [KCET 2015]
(b) Given, output power \(=100 \mathrm{~W}\)
\(
V=220 \mathrm{~V}, I=0.5 \mathrm{~A}
\)
We know that, efficiency \(=\frac{\text { Output power }}{\text { Input power }} \times 100 \%\)
\(
=\frac{100}{220 \times 0.5} \times 100=90 \%
\)
An alternating voltage given as, \(V=100 \sqrt{2} \sin 100 t \mathrm{~V}\) is applied to a capacitor of \(1 \mu \mathrm{~F}\). The current reading of the ammeter will be equal to ______ mA. [Guj. CET 2015]
(b) Given,
\(
\begin{aligned}
& V=100 \sqrt{2} \sin 100 t \mathrm{~V} \\
& C=1 \mu \mathrm{~F}
\end{aligned}
\)
The peak voltage, \(V_0=100 \sqrt{2} \mathrm{~V}\) and \(\omega=100 \mathrm{rad} / \mathrm{s}\)
\(
\begin{aligned}
&\therefore \mathrm{rms} \text { voltage, } V_{\mathrm{rms}}=\frac{V_0}{\sqrt{2}}=\frac{100 \sqrt{2}}{\sqrt{2}}=100 \mathrm{~V}\\
&\therefore \text { Current reading of the ammeter, }\\
&\begin{aligned}
I & =\frac{V_{\mathrm{rms}}}{X_C}=\frac{V_{\mathrm{rms}}}{\left(\frac{1}{\omega C}\right)}=\frac{100 \mathrm{~V}}{\frac{1}{100 \times 1 \times 10^{-6}}} \\
& =100 \times 100 \times 10^{-6}=10^{-2} \mathrm{~A} \\
& =10 \times 10^{-3} \mathrm{~A}=10 \mathrm{~mA}
\end{aligned}
\end{aligned}
\)
The electric current in AC circuit is given by the relation \(i=3 \sin \omega t+4 \cos \omega t\). The rms value of the current in the circuit in ampere is [EAMCET 2015]
(a) The current through the AC circuit is given by \(i=3 \sin \omega t+4 \cos \omega t\)
The maximum value of current is
\(
I_{\max }=\sqrt{3^2+4^2}=\sqrt{25}=5 \mathrm{~A}
\)
The rms value of current, \(I_{\mathrm{rms}}=\frac{I_{\max }}{\sqrt{2}}=\frac{5}{\sqrt{2}} \mathrm{~A}\)
In an \(L-C-R\) series resonant circuit, the capacitance is changed from \(C\) to \(4 C\). For the same resonant frequency, the inductance should be changed from \(L\) to [Kerala CEE 2015]
(c) We know that,
In \(L-C-R\) circuit, \(f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}}\)
For the same resonant frequency, the inductance should be changed from \(L\) to \(\frac{L}{4}\).
The average power dissipated in a pure inductor is [KCET 2015]
(c) In the inductor circuit, phase difference \((\phi)=90^{\circ}\) or \(\frac{\pi}{2}\)
We know that, \(P_{\mathrm{av}}=V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi\)
\(
=V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \frac{\pi}{2}
\)
\(
\therefore \quad P_{\text {av }}=0
\)
Transformer is used to [Kerala CEE 2014]
(c) Transformer is used to obtain desired AC voltage and current because a transformer is a device based on the principle of mutual induction, which is used for converting large AC at low voltage into small current at high voltage.
A step-up transformer operates on a 230 V line and supplies a current of 2 A. The ratio of primary and secondary winding is \(1: 25\). The primary current is [UK PMT 2014]
(b) As we know that, for transformer, \(\frac{V_1}{V_2}=\frac{I_2}{I_1}=\frac{N_1}{N_2}\) where all the symbols have their usual meanings. (Suffix 1 is for primary and 2 is for the secondary)
\(
\Rightarrow \quad \frac{N_1}{N_2}=\frac{1}{25}=\frac{2}{I}
\)
where, \(I=\) primary side current.
\(
\therefore \quad I=50 \mathrm{~A}
\)
A step-down transformer has 50 turns on secondary and 1000 turns on primary winding. If a transformer is connected to \(220 \mathrm{~V}, 1\) A AC source, then what is output current of the transformer? [KCET 2014]
(b) We know that,
\(
\begin{aligned}
& & V_S \times N_P & =V_P \times N_S \\
\Rightarrow & & \frac{N_S}{N_P} & =\frac{V_S}{V_P}
\end{aligned}
\)
where, \(\quad V_S=\) voltage across secondary coil
\(V_P=\) voltage across primary coil \(=220 \mathrm{~V}\)
\(N_P=\) number of turns is primary coil \(=1000\)
and \(\quad N_S=\) number of turns in secondary coil \(=50\)
\(
\begin{array}{ll}
\Rightarrow & \frac{50}{1000}=\frac{V_S}{220} \\
\Rightarrow & V_S=\frac{50 \times 220}{1000}=11 \mathrm{~V}
\end{array}
\)
Power in the secondary coil = Power in the primary coil
\(
\begin{aligned}
& & V_S I_S & =V_P I_P \\
\Rightarrow & & 11 \times I_S & =220 \times 1 \\
\Rightarrow & & I_S & =\frac{220}{11}=20 \mathrm{~A}
\end{aligned}
\)
In \(L-C-R\) series circuit, an alternating emf \(e\) and current \(i\) are given by the equations
\(
\begin{aligned}
& e=100 \sin (100 t) \mathrm{V} \\
& i=100 \sin \left(100 t+\frac{\pi}{3}\right) \mathrm{mA}
\end{aligned}
\)
The average power dissipated in the circuit will be [MHT CET 2014]
(d) Average power,
\(\begin{aligned} P_{\mathrm{av}} & =E_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi \\ & =\frac{E_0}{\sqrt{2}} \cdot \frac{I_0}{\sqrt{2}} \cos \phi \\ & =\frac{100}{\sqrt{2}} \times \frac{100 \times 10^{-3}}{\sqrt{2}} \cos \frac{\pi}{3} \\ & =\frac{100 \times 100}{2} \times 10^{-3} \times \frac{1}{2}=2.5 \mathrm{~W}\end{aligned}\)
The average power dissipated in AC circuit is 2 W. If a current flowing through a circuit is 2 A, impedance is \(1 \Omega\), then what is the power factor of the circuit? [KCET 2014]
(a) As average power, \(\bar{P}=2 \mathrm{~W}, I_{\mathrm{rms}}=2 \mathrm{~A}\), impedance, \(Z=1 \Omega\)
Power factor \((\cos \phi)=\) ?
We know that, \(\bar{P}=V_{\mathrm{rms}} \times I_{\mathrm{rms}} \cdot \cos \phi\)
\(
\begin{aligned}
\bar{P} & =I_{\mathrm{rms}}^2 Z \cdot \cos \phi \quad\left[\because V_{\mathrm{rms}}=I_{\mathrm{rms}} \cdot Z\right] \\
\cos \phi & =\frac{\bar{P}}{I_{\mathrm{rms}}^2 \cdot Z}=\frac{2}{(2)^2 \times 1}=\frac{2}{4}=\frac{1}{2}=0.5
\end{aligned}
\)
In an \(L-C-R\) series circuit, the potential difference between the terminals of the inductance is 60 V, between the terminals of the capacitor is 30 V and that across the resistance is 40 V. Then, the supply voltage will be equal to [UK PMT 2014]
(b) Given, \(V_L=60 \mathrm{~V}, V_C=30 \mathrm{~V}, V_R=40 \mathrm{~V}\)
In phasor diagram, \(V_C\) and \(V_L\) are in anti-phase to each other due to their \(90^{\circ}\) leading and lagging relationship with the circuit current \(I_S\).
\(
\begin{aligned}
V_S & =\sqrt{\left(V_L-V_C\right)^2+V_R^2}=\sqrt{(60-30)^2+(40)^2} \\
& =\sqrt{(30)^2+(40)^2} \\
& =\sqrt{900+1600} \\
& =\sqrt{2500}=50 \mathrm{~V}
\end{aligned}
\)
An alternating emf given by equation
\(
e=300 \sin [(100 \pi) t] \mathrm{V}
\)
is applied to a resistance \(100 \Omega\). The rms current through the circuit is (in amperes) [EAMCET 2014]
(a) The given equation, \(e=300 \sin [(100 \pi) t] \mathrm{V} \dots(i)\)
We know that, \(e=e_0 \sin \omega t \dots(ii)\)
On comparing Eqs. (i) and (ii), we get
\(
e_0=300 \mathrm{~V} \text { and } R=100 \Omega
\)
The rms current through the circuit,
\(
I_{\mathrm{rms}}=\frac{e_0}{\sqrt{2} R}=\frac{300}{\sqrt{2} \times 100}=\frac{3}{\sqrt{2}} \mathrm{~A}
\)
A series \(L-C-R\) circuit contains inductance 5 mH, capacitance \(2 \mu \mathrm{~F}\) and resistance \(10 \Omega\). If the frequency of AC source is varied, then what is the frequency at which maximum power is dissipated?
(d) We know that,
Resonant frequency is given by
\(
f_0=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{5 \times 10^{-3} \times 2 \times 10^{-6}}}
\)
\(
\begin{aligned}
f_0 & =\frac{1}{2 \pi \sqrt{10^{-8}}}=\frac{1}{2 \pi \times 10^{-4}} \\
& =\frac{10^4}{2 \pi} \mathrm{~Hz}=\frac{5}{\pi} \times 10^3 \mathrm{~Hz}
\end{aligned}
\)
A 50 Hz AC signal is applied in a circuit of inductance of \((1 / \pi) \mathrm{H}\) and resistance \(2100 \Omega\). The impedance offered by the circuit is [J & K CET 2013]
(c) Impedance, \(Z=\sqrt{R^2+X_L^2}, X_L=\omega L=2 \pi f L\)
Given, \(R=2100 \Omega, f=50 \mathrm{~Hz}, L=\frac{1}{\pi} \mathrm{H}\)
\(
\begin{aligned}
\Rightarrow \quad Z & =\sqrt{(2100)^2+(2 \times 50)^2} \\
& =\sqrt{(2100)^2+(100)^2} \\
\Rightarrow \quad Z & =2102 \Omega
\end{aligned}
\)
If the alternating current \(I=I_1 \cos \omega t+I_2 \sin \omega t\), then the rms current is given by [J & K CET 2013]
The RMS value of a function \(f(t)\) over a period \(T\) is \(\sqrt{\frac{1}{T} \int_0^T f(t)^2 d t}\).
(c) The average of \(\cos ^2 \omega t\) and \(\sin ^2 \omega t\) over a full cycle is \(\frac{1}{2}\).
The average of \(\sin \omega t \cos \omega t\) over a full cycle is 0.
\(
\begin{aligned}
& I^2=\left(I_1 \cos \omega t+I_2 \sin \omega t\right)^2 \\
& I^2=I_1^2 \cos ^2 \omega t+I_2^2 \sin ^2 \omega t+2 I_1 I_2 \sin \omega t \cos \omega t
\end{aligned}
\)
The average of \(\cos ^2 \omega t\) is \(\frac{1}{2}\).
The average of \(\sin ^2 \omega t\) is \(\frac{1}{2}\).
The average of \(\sin \omega t \cos \omega t\) is 0.
\(
\begin{aligned}
& \left\langle I^2\right\rangle=I_1^2\left\langle\cos ^2 \omega t\right\rangle+I_2^2\left\langle\sin ^2 \omega t\right\rangle+2 I_1 I_2\langle\sin \omega t \cos \omega t\rangle \\
& \left\langle I^2\right\rangle=I_1^2\left(\frac{1}{2}\right)+I_2^2\left(\frac{1}{2}\right)+2 I_1 I_2(0) \\
& \left\langle I^2\right\rangle=\frac{I_1^2}{2}+\frac{I_2^2}{2}=\frac{I_1^2+I_2^2}{2}
\end{aligned}
\)
\(
\begin{aligned}
& I_{r m s}=\sqrt{\left\langle I^2\right\rangle} \\
& I_{r m s}=\sqrt{\frac{I_1^2+I_2^2}{2}}
\end{aligned}
\)
A 0.01 H inductor and \(\sqrt{3} \pi \Omega\) resistance are connected in series with a \(220 \mathrm{~V}, 50 \mathrm{~Hz}\) AC source. The phase difference between the current and emf is [EAMCET 2013]
(b)
\(
\begin{aligned}
\phi & =\tan ^{-1}\left(\frac{X_L}{R}\right)=\tan ^{-1}\left(\frac{2 \pi v L}{R}\right) \\
& =\tan ^{-1}\left(\frac{2 \pi \times 50 \times 0.01}{\sqrt{3} \pi}\right) \\
& =\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6} \mathrm{rad}
\end{aligned}
\)
For a transformer, the turns ratio is 3 and its efficiency is 0.75 . The current flowing in the primary coil is 2 A and the voltage applied to it is 100 V . Then the voltage and the current flowing in the secondary coil are ______ respectively. [Karnataka CET 2013]
(b)
\(
\begin{aligned}
& \frac{N_S}{N_P}=3 \\
& \frac{V_S}{V_P}=\frac{I_P}{I_S}=\frac{N_S}{N_P} \\
& V_S=V_P \cdot \frac{N_S}{N_P}=100 \times 3=300 \mathrm{~V}
\end{aligned}
\)
\(
\begin{aligned}
& \text { Given, } \frac{V_S I_S}{V_P I_P}=0.75 \\
& \Rightarrow \frac{300 \times I_S}{100 \times 2}=0.75 \\
& \Rightarrow \quad I_S=0.5 \mathrm{~A}
\end{aligned}
\)
In \(R\) – \(L\) – \(C\) series circuit, the potential difference across each element is 20 V. Now the value of the resistance alone is doubled, then PD across \(R, L\) and \(C\) respectively, [Karnataka CET 2013]
(a) Given, the potential difference across each element is same, i.e. 20 V, so the circuit is at resonance.
We have, \(V_R=V_L=V_C=20 \mathrm{~V}\) If the value of \(R\) is doubled, then value of \(I\) reduced to half
\(
\therefore \quad V_L=V_C=\frac{I X_L}{2}=\frac{I X_C}{2}=\frac{20}{2}=10 \mathrm{~V}
\)
[ \(\because\) circuit is at resonance]
and \(V_R=I \times 2 R=20 \mathrm{~V}\)
A series combination of resistor \((R)\), capacitor \((C)\) is connected to an AC source of angular frequency \(\omega\). Keeping the voltage same, if the frequency is changed to \(\omega / 3\), the current becomes half of the original current. Then, the ratio of the capacitive reactance and resistance at the former frequency is [Karnataka CET 2013]
\(
\text { (a) } \quad I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{\sqrt{R^2+\left(\frac{1}{\omega C}\right)^2}} \dots(i)
\)
\(
I_{\mathrm{rms}}^{\prime}=\frac{I_{\mathrm{rms}}}{2}=\frac{V_{\mathrm{rms}}}{\sqrt{R^2+\left[\left(\frac{1}{\omega C / 3}\right)\right]^2}}=\frac{V_{\mathrm{rms}}}{\sqrt{R^2+\frac{9}{\omega^2 C^2}}} \dots(ii)
\)
From Eqs. (i) and (ii), we get
\(
\begin{aligned}
3 R^2 & =\frac{5}{\omega^2 C^2} \\
\frac{1}{\omega C \times R} & =\sqrt{\frac{3}{5}} \\
\frac{X_C}{R} & =\sqrt{\frac{3}{5}} \text { or } \frac{X_C}{R}=\sqrt{0.6}
\end{aligned}
\)
If both the resistance and the inductance in an \(L-R\) AC series circuit are doubled the new impedance will be [Kerala CET 2013]
(c) For \(L-R\) circuit, \(Z=\sqrt{R^2+X_L^2}\)
Here,
\(
Z_1=\sqrt{\left(R_1\right)^2+\left(X_{L_1}\right)^2}
\)
and
\(
Z_2=\sqrt{\left(R_2\right)^2+\left(X_{L_2}\right)^2}
\)
Given,
\(
\begin{aligned}
& R_2=2 R_1 \text { and } X_{L_2}=2 X_{L_1} \\
& Z_2=\sqrt{\left(2 R_1\right)^2+\left(2 X_{L_1}\right)^2}=2 Z_1
\end{aligned}
\)
A \(L-C-R\) circuit with \(L=1.00 \mathrm{mH}, C=1.0 \mu \mathrm{~F}\) and \(R=50 \Omega\), is driven with 5 V AC voltage. At resonance, the current through the circuit is [Kerala CET 2013]
(d) Given, \(L=1.00 \mathrm{mH}, C=1.0 \mu \mathrm{~F}, R=50 \Omega\)
and \(V=5 \mathrm{~V}\) At resonance, \(I=\frac{V}{R}=\frac{5}{50}=0.1 \mathrm{~A}\)
For a series \(L-C-R\) circuit, the rms values of voltage across various components are \(V_L=90 \mathrm{~V}, V_C=60 \mathrm{~V}\) and \(V_R=40 \mathrm{~V}\). The rms value of the voltage applied to the circuit is [MP PMT 2013]
(d) We know that for series \(L-C-R\) circuit,
\(V_{\mathrm{rms}}=\sqrt{V_R^2+\left(V_L-V_C\right)^2}\)
\(
\begin{aligned}
V_L & =90 \mathrm{~V}, V_C=60 \mathrm{~V} \\
V_R & =40 \mathrm{~V} \\
V_{\mathrm{rms}} & =\sqrt{40^2+(90-60)^2}=50 \mathrm{~V}
\end{aligned}
\)
The power factor of an AC circuit having resistance \(R\) and inductance \(L\) connected in series to an AC source of angular frequency \(\omega\) is [UP CPMT 2013]
\(
\text { (c) Power factor, } \cos \phi=\frac{R}{Z}=\frac{R}{\sqrt{R^2+\omega^2 L^2}}
\)
A transformer of \(100 \%\) efficiency has 200 turns in the primary coil and 40000 turns in secondary coil. It is connected to a 220 V main supply and secondary feeds to a \(100 \mathrm{k} \Omega\) resistance. The potential difference per turn is [AIIMS 2012]
(a) From transformer ratio,
\(
\frac{V_S}{V_P}=\frac{N_S}{N_P}
\)
\(
V_S=\frac{V_P \times N_S}{N_P}=\frac{220 \times 40000}{200}=44000 \mathrm{~V}
\)
\(
\text { Potential difference per turn is } \frac{V_S}{N_S}=\frac{44000}{40000}=1.1 \mathrm{~V}
\)
A step down transformer is used on a 1000 V line to deliver 20 A at 120 V at the secondary coil. If the efficiency of the transformer is \(80 \%\), the current drawn from the line is [AIIMS 2012]
\(
\begin{aligned}
& \text { (a) } \quad \eta=\frac{\text { Output power }}{\text { Input power }} \\
& \Rightarrow \frac{80}{100}=\frac{20 \times 120}{1000 \times I} \\
& \Rightarrow \quad I=\frac{20 \times 120 \times 100}{1000 \times 80}=3 \mathrm{~A}
\end{aligned}
\)
The current \((I)\) in the inductance is varying with time according to the plot as shown in figure.
Which one of the following is the correct variation of voltage with time in the coil?
(d) For inductor, as we know, induced voltage leads the current.
For \(t=0[latex] to [latex]t=T / 2\),
\(
V=L \frac{d I}{d t}=L \frac{d}{d t}\left(\frac{2 I_0 t}{T}\right)=\text { constant }
\)
For \(t=T / 2\) to \(t=T\),
\(
\begin{aligned}
&V=\frac{L d I}{d t}\left(\frac{-2 I_0 t}{T}\right)=- \text { constant }\\
&\text { Therefore, answer will be represented by graph (d). }
\end{aligned}
\)
If in a \(L-R\) series circuit the power factor is \(\frac{1}{2}\) and \(R=100 \Omega\), then the value of \(L\) is, when AC mains is used [BCECE (Mains) 2012]
\(
\begin{aligned}
& \text { (b) Power factor, } \cos \phi=\frac{1}{2} \Rightarrow \phi=60^{\circ} \\
& \therefore \quad \tan 60^{\circ}=\frac{\omega L}{R} \Rightarrow \sqrt{3}=\frac{2 \pi v \times L}{100} \\
& L=\frac{\sqrt{3} \times 100}{2 \pi \times 50}=\frac{\sqrt{3}}{\pi} \mathrm{H}
\end{aligned}
\)
The self inductance of a choke coil is 10 mH. When it is connected with a 10 V DC source, then the loss of power is 20 W. When its is connected with 10 V AC source loss of power is 10 W. The frequency of AC source will be [BCECE (Mains) 2012]
\(
\text { (a) With DC power, } P=\frac{V^2}{R}
\)
\(
R=\frac{(10)^2}{20}=5 \Omega
\)
\(
\text { With AC power, } P=\frac{V_{\mathrm{rms}}^2 R}{Z^2}
\)
\(
Z^2=\frac{(10)^2 \times 5}{10}=50 \Omega
\)
\(
\begin{aligned}
&\text { The impedance, }\\
&\begin{aligned}
Z^2 & =R^2+4 \pi^2 v^2 L^2 \\
50 & =(5)^2+4(3.14)^2 \times v^2 \times\left(10 \times 10^{-3}\right)^2 \\
v & \simeq 80 \mathrm{~Hz}
\end{aligned}
\end{aligned}
\)
An electric motor runs on DC source of emf 200 V and draws a current of 10 A . If the efficiency be \(40 \%\), then the resistance of armature is [Manipal 2012]
(c) Input power=
\(
\begin{aligned}
& V I=200 \times 10 \\
& =2000 \mathrm{~W}
\end{aligned}
\)
Output power \(=\) Efficiency \(\times\) Input power
\(
=\frac{40}{100} \times 2000=800 \mathrm{~W}
\)
Power loss in heating the armature
\(
=2000-800=1200 \mathrm{~W}
\)
\(
\begin{aligned}
& I^2 R=1200 \\
& R=\frac{1200}{I^2}=\frac{1200}{10 \times 10} \\
& R=12 \Omega
\end{aligned}
\)
When an \(A C\) source of emf \(E=E_0 \sin (100 t)\) is connected across a circuit, the phase difference between the emf \(E\) and the current \(I\) is observed to be \(\pi / 4\), as shown in the figure. If the circuit consists possibly only of \(R-C\) or \(R-L\) in series, which of the following combinations is possible? [AMU 2012]
(c) Emf of AC source, \(E=E_0 \sin (100 t)\)
We have, \(\omega=100 \mathrm{rad} / \mathrm{s}\) and \(\phi=\frac{\pi}{4}=45^{\circ}\)
\(
\begin{aligned}
\tan \phi & =\frac{\omega L}{R} \Rightarrow 1=\frac{100 \times L}{R} \\
R & =100 \mathrm{~L}
\end{aligned}
\)
If \(L=10 \mathrm{H}\), then \(R=1 \mathrm{k} \Omega\)
As given in the figure, a series circuit connected across a \(200 \mathrm{~V}, 60 \mathrm{~Hz}\) line consists of a capacitor of capacitive reactance \(30 \Omega\), a non-inductive resistor of \(44 \Omega\) and a coil of inductive reactance \(90 \Omega\) and resistance \(36 \Omega\). the power dissipated in the coil is [AMU 2012]
\(
\begin{aligned}
\text { (a) We have, } X_L=90 \Omega, X_C=30 \Omega \\
\begin{aligned}
R & =R_1+R_2=44+36=80 \Omega \\
\text { Impedance, } Z & =\sqrt{R^2+\left(X_L-X_C\right)^2} \\
& =\sqrt{(80)^2+(60)^2} \\
Z & =\sqrt{6400+3600}=100 \Omega \\
I & =\frac{V}{Z}=\frac{200}{100}=2 \mathrm{~A} \\
P_{\mathrm{av}} & =I^2 R=(2)^2 \times 80=320 \mathrm{~W}
\end{aligned}
\end{aligned}
\)
A generator at a utility company produces 100 A of current at 4000 V. The voltage is stepped up to 240000 V by a transformer before it is sent on a high voltage transmission line. The current in transmission line is [AFMC 2012]
(c) For step-up transformer, \(V_S>V_P\) and \(I_S<I_P\)
For an ideal transformer,
\(
\begin{aligned}
& V_S I_S =V_P I_P \\
\therefore & 240000 I_S =100 \times 4000 \\
\text { or } & I_S =1.67 \mathrm{~A}
\end{aligned}
\)
The rms current in an AC circuit is 2 A. If the wattless current be \(\sqrt{3} \mathrm{~A}\), what is the power factor of the circuit? [JCECE 2012]
(a) We know that, \(I_{\mathrm{WL}}=I_{\mathrm{rms}} \sin \phi\) \(\Rightarrow \sqrt{3}=2 \sin \phi\) or \(\sin \phi=\frac{\sqrt{3}}{2} \Rightarrow \phi=60^{\circ}\)
So, power factor \(=\cos \phi=\cos 60^{\circ}=\frac{1}{2}\)
An AC ammeter is used to measure current in a circuit. When a given direct current passes through the circuit, the AC ammeter reads 3 A. When another alternating current passes through the circuit, the AC ammeter reads 4A. Then, the reading of this ammeter, if DC and AC flow through the circuit simultaneously, is [AIIMS 2011]
(d) Quantity of heat liberated in the ammeter of resistance \(R\)
(i) due to direct current of \(3 \mathrm{~A}=(3)^2 R \mathrm{~W}\)
(ii) due to alternating current of \(4 \mathrm{~A}=(4)^2 R \mathrm{~W}\)
\(\therefore\) Total heat produced per second
\(
=(3)^2 R+(4)^2 R=25 R
\)
Let the equivalent alternating current be \(I\) virtual ampere, then
\(
I^2 R=25 R \Rightarrow I=5 \mathrm{~A}
\)
In an AC circuit, \(V\) and \(I\) are given by \(V=150 \sin (150 t)\) volt and \(I=150 \sin \left[150 t+\left(\frac{\pi}{3}\right)\right]\) ampere. The power dissipated in the circuit is [KCET 2011]
(c) Given, \(V=150 \sin (150 t) \mathrm{V}\) and \(I=150 \sin (150 t+\pi / 3) \mathrm{A}\)
\(
\therefore \quad I_0=150 \mathrm{~A} \text { and } V_0=150 \mathrm{~V}
\)
Power, \(\begin{aligned} P & =\frac{1}{2} V_0 I_0 \cos \phi \\ & =0.5 \times 150 \times 150 \times \cos 60^{\circ} \\ & =5625 \mathrm{~W}\end{aligned}\)
An AC source is \(120 \mathrm{~V}-60 \mathrm{~Hz}\). The value of voltage after \((1 / 720) \mathrm{s}\) from start will be [BCECE 2011]
(c) \(V=V_0 \sin \omega t \Rightarrow V=V_{\mathrm{rms}} \sqrt{2} \sin \omega t[latex] After, [latex]t=\frac{1}{720} \mathrm{~s}\)
\(
\begin{aligned}
& V=120 \sqrt{2} \sin 2 \pi f t \\
& =120 \sqrt{2} \sin \left(2 \pi \times 60 \times \frac{1}{720}\right)
\end{aligned}
\)
\(
\begin{aligned}
& =120 \sqrt{2} \sin \frac{\pi}{6}=120 \sqrt{2} \times \frac{1}{2} \\
& =60 \sqrt{2}=84.8 \mathrm{~V}
\end{aligned}
\)
Alternating current is transmitted at far off places
(a) Alternating current is transmitted at far off places at high voltage and low current.
A transformer has 500 primary turns and 10 secondary turns. If the secondary has a resistive load of \(15 \Omega\), the currents in the primary and secondary respectively, are [DUMET 2011]
\(
\text { (b) We have, } \frac{N_s}{N_p}=\frac{i_p}{i_s} \Rightarrow \frac{10}{500}=\frac{i_p}{i_s}
\)
\(
\frac{i_p}{i_s}=\frac{1}{50} \Rightarrow i_s=50 i_p
\)
This condition is satisfied only when current in primary is \(3.2 \times 10^{-3} \mathrm{~A}\) and in secondary is 0.16 A.
You cannot copy content of this page