0 of 71 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 71 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
The thermal conductivity of a rod depends on
\(
\frac{\Delta Q}{\Delta t}=-k A \frac{d T}{d x}
\)
Here, the thermal conductivity \((k)\) depends on the material, and not the dimensions and mass of the body.
In a room containing air, heat can go from one place to another
In conduction, heat is transferred from one place to other by the vibration of the molecules. In this process, the average position of a molecule does not change. Hence, there is no mass movement of matter.
In convection, heat is transferred from one place to other by the actual motion of particles of the medium. When water is heated, hot water moves upwards and cool water moves downwards.
In radiation process, the transfer of heat does not require any material medium.
For a room containing air, heat can be transferred via radiation (no medium required) and convection (by the movement of air molecules) and by conduction (due to the collision of hot air molecules with other molecules).
A solid at a temperature \(T_1\) is kept in an evacuated chamber at a temperature \(T_2>T_1\). The rate of increase of temperature of the body is proportional to
From Stefan-Boltzmann law, the energy of thermal radiation emitted per unit time by a blackbody of surface area \(A\) is given by \(u=\sigma A T^4\)
Here, \(\sigma \sigma\) is the Stefan-Boltzmann constant.
Since the temperature of the solid is less than the surroundings, the temperature of the solid will increase with time until it reaches equilibrium with the surroundings. The rate of emission from the solid will be proportional to \(T_1^4\) and rate of emission from the surroundings will be proportional to \(T_2^4\).
So, the net rate of increase in temperature will be proportional to \(T_2^4-T_1^4\).
The thermal radiation emitted by a body is proportional to \(T^n\) where \(T\) is its absolute temperature. The value of \(n\) is exactly 4 for
From Stefan-Boltzmann law, the energy of the thermal radiation emitted per unit time by a blackbody of surface area \(A\) is given by \(u=\sigma A T^4\) here, \(\sigma\) is Stefan-Boltzmann constant. This law holds true for all the bodies.
Two bodies \(A\) and \(B\) having equal surface areas are maintained at temperatures \(10^{\circ} \mathrm{C}\) and \(20^{\circ} \mathrm{C}\). The thermal radiation emitted in a given time by \(A\) and \(B\) are in the ratio
From Stefan-Boltzmann law, energy of the thermal radiation emitted per unit time by a blackbody of surface area \(A\) is given by \(u=\sigma A T^4\)
Here, \(\sigma\) is Stefan-Boltzmann constant.
\(
\begin{aligned}
\frac{u A}{u B} & =\frac{\mathrm{T}_{\mathrm{A}}^4}{T_B^4} \\
\frac{u_A}{u_B} & =\frac{(273+10)^4}{(273+20)^4}= 1/1.15
\end{aligned}
\)
One end of a metal rod is kept in a furnace. In steady state, the temperature of the rod
In a steady state, the temperature of the rod is nonuniform maximum at the end near the furnace and minimum at the end that is away from the furnace.
Newton’s law of cooling is a special case of
From Stefan-Boltzman’s law, the energy of the thermal radiation emitted per unit time by a blackbody of surface area \(A\) is given by, \(u=\sigma A T^4\)
Where \(\sigma\) is Stefan’s constant.
Suppose a body at temperature \(T\) is kept in a room at temperature \(T_0\).
According to Stefan’s law, energy of the thermal radiation emitted by the body per unit time is \(u=e \sigma A T^4\) Here, \(e\) is the emissivity of the body.
The energy absorbed per unit time by the body is (due to the radiation emitted by the walls of the room \(\Delta u=e \sigma A T_0^4\)
Thus, the net loss of thermal energy per unit time is
\(\Delta u=e \sigma A\left(T^4-T_0^4\right) \dots(i)\)
Newton law of cooling is given by
\(
\frac{d T}{d t}=-b A\left(T-T_0\right)
\)
This can be obtained from equation (i) by considering the temperature difference to be small and doing the binomial expansion.
A hot liquid is kept in a big room. Its temperature is plotted as a function of time. Which of the following curves may represent the plot?
When a hot liquid is kept in a big room, the liquid will loose its temperature with time. The thermal energy emitted by the liquid will be gained by the walls of the room. As the room is big, we can assume that the temperature difference between the room and the liquid is large. From Stephen’s law, the liquid emits thermal energy in proportion to \(T^4\), where \(T\) is the initial temperature of the liquid.
As the temperature decreases, the rate of loss of thermal energy will also decrease. So, the slope of the curve will also decrease. Therefore, the plot of temperature with time is best represented by the curve (a).
A hot liquid is kept in a big room. The logarithm of the numerical value of the temperature difference between the liquid and the room is plotted against time. The plot will be very nearly
When a hot liquid is kept in a big room, then the liquid will lose temperature with time. The thermal energy emitted by the liquid will be gained by the walls of the room. As the room is big, we can assume that the temperature difference between the room and the liquid is large. From Stephen’s law, the liquid emits thermal energy in proportion to \(T^4\), where \(T\) is the initial temperature of the liquid. As the temperature decreases, the rate of loss will also decrease. So, the slope of the curve will also decrease. Finally, at equilibrium, the temperature of the room will become equal to the new temperature of the liquid. So, in steady state, the difference between the temperatures of the two will become zero.
A graph is plotted between the logarithm of the numerical value of the temperature difference between the liquid and the room is plotted against time. The logarithm converts the fourth power dependence into a linear dependence with some coefficient (property of log). So, the plot satisfying all the above properties will be a straight line.
A body cools down from \(65^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\) in 5 minutes. It will cool down from \(60^{\circ} \mathrm{C}\) to \(55^{\circ} \mathrm{C}\) in
Let the temperature of the surrounding be \(T^{\circ} \mathrm{CAverage}\) temperature of the liquid in first case \(=62.5^{\circ}\mathrm{C}\)
Average temperature difference from the surroundings \(=(62.5-T)^{\circ} \mathrm{C}\)
From newton’s law of cooling,
\(
\begin{aligned}
& 1^{\circ} \mathrm{C} \min ^{-1}=-\mathrm{bA}(62.5-\mathrm{T})^{\circ} \mathrm{C} \\
& \Rightarrow-b A=\frac{1}{62.5-t} {\min} ^{-1} \dots(i)
\end{aligned}
\)
For the second case,
Average temperature \(=57.5^{\circ} \mathrm{C}\)
Temperature difference from the surroundings \(=(57.5-7)^{\circ} \mathrm{C}\)
From Newton’s law of cooling and equation (i),
\(
\begin{aligned}
& \frac{5^{\circ} \mathrm{C}}{t}=-b A(57.5-T)^{\circ} \mathrm{C} \\
& \Rightarrow \frac{5^{\circ} \mathrm{C}}{t}=\frac{1}{62.5-t}(57.5-T)^{\circ} \mathrm{C} \\
& \Rightarrow t=\frac{5(62.5-T)}{(57.5-T)} \\
& \Rightarrow t>5 \text { minutes }
\end{aligned}
\)
One end of a metal rod is dipped in boiling water and the other is dipped in melting ice.
The heat transfer will take place from the hot end to the cold end of the rod via conduction. So, with time, the temperature of the rod will increase from the end dipped in boiling water to the end dipped in melting, until it comes in equilibrium with its surroundings. In steady state, the temperature of the rod is nonuniform and constant, maximum at the end dipped in boiling water and minimum at the end dipped in melting ice. Equilibrium means that the system is stable. So, all the macroscopic variables describing the system will not change with time. Hence, the temperature of the rod will become constant once equilibrium is reached, but its value is different at different positions of the rod.
A blackbody does not
(c) reflect radiation
(d) refract radiation
A black body is an ideal concept. A black body is the one that absorbs all the radiation incident on it. So, a black body does not reflect and refract radiation.
In summer, a mild wind is often found on the shore of a calm river. This is caused due toÂ
Convection current is the movement of air (or any fluid) due to the difference in the temperatures. During summer days, there is temperature difference of air above the land and river. Due to this, a convection current is set from the river to the land during daytime. On the other hand, during night, a convection current is set from the land to the river. Therefore, a mild air always flows on the shore of a calm river due to the convection current.
A piece of charcoal and a piece of shining steel of the same surface area are kept for a long time in an open lawn in bright sun.
(c) If both are picked up by bare hands, the steel will be felt hotter than the charcoal
(d) If the two are picked up from the lawn and kept in a cold chamber, the charcoal will lose heat at a faster rate than the steel.
In steel, conductivity is higher than charcoal. So, if both are picked up by bare hands, then heat transfer from the body (steel or charcoal) to our hand will be larger in the case of steel. Hence, steel will be hotter than charcoal.
On the other hand, the emissivity of charcoal is higher as compared to steel. So, if the two are picked up from the lawn and kept in a cold chamber, charcoal will lose heat at a faster rate than steel.
A heated body emits radiation which has maximum intensity near the frequency \(v_0\). The emissivity of the material is \(0.5\). If the absolute temperature of the body is doubled.
(a) the maximum intensity of radiation will be near the frequency \(2 v_0\)
(c) the total energy emitted will increase by a factor of 16
From Wein’s displacement law,
\(
\lambda \mathrm{mT}=\mathrm{b} \text { ( a constant) }
\)
or \(\frac{c T}{V m}=b\)
Here, \(T\) is the absolute temperature of the body.
So, as the temperature is doubled to keep the product on the left-hand side constant, frequency is also doubled.
From Stefan’s law, we know that the rate of energy emission is proportional to \(\mathrm{T}^4\)
This implies that total energy emitted will increase by a factor of \((2)^4\), which is equal to 16.
A solid sphere and a hollow sphere of the same material and of equal radii are heated to the same temperature.
(a) Both will emit equal amount of radiation per unit time in the beginning.
(b) Both will absorb equal amount of radiation from the surrounding in the beginning.
Let the temperature of the surroundings be \(T_0\)
From the Stefan-Boltzmann law, the energy of thermal radiation emitted per unit time by a blackbody of surface area \(A\) is given by \(u=\sigma A T^4\)
Here, \(\sigma\) is Stephen’s constant.
Also, the energy absorbed per unit time by the body is given by
\(
u_0=e \sigma A T_0^4
\)
As the two spheres have equal radii and temperatures, their rate of absorption and emission will be equal in the beginning.
A uniform slab of dimension \(10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 1 \mathrm{~cm}\) is kept between two heat reservoirs at temperatures \(10^{\circ} \mathrm{C}\) and \(90^{\circ} \mathrm{C}\). The larger surface areas touch the reservoirs. The thermal conductivity of the material is \(0.80 \mathrm{~W} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\). Find the amount of heat flowing through the slab per minute.
Given:
Thermal conductivity of the material, \(k=0.80 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{c}^{-1}\)
Area of the cross section of the slab, \(A=100 \mathrm{~cm}^2=10^{-2} \mathrm{~m}^2\)
Thickness of the slab, \(\Delta \mathrm{x}=1 \mathrm{~cm}=10^{-2} \mathrm{~m}\)
\(
\begin{aligned}
& \text { Rate of flow of heat }=\frac{\text { Temperature difference }}{\text { Thermal resisstance }} \\
& \Rightarrow \frac{\Delta Q}{\Delta t}=\frac{\Delta T}{\frac{\Delta x}{k A}} \\
& \frac{\Delta Q}{\Delta t}=\frac{(90-10) k . A}{\Delta x} \\
& \frac{\Delta Q}{\Delta t}=\frac{(80) \times 0.8 \times 10^{-2}}{\Delta x} 1 \\
& \frac{\Delta Q}{\Delta t}=64 J / s \\
& \frac{\Delta Q}{\Delta t}=64 \times 60=3840 \mathrm{~J} / \mathrm{min}
\end{aligned}
\)
A liquid-nitrogen container is made of a \(1-\mathrm{cm}\) thick styrofoam sheet having thermal conductivity \(0.025 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{C}^{-1}\). Liquid nitrogen at \(80 \mathrm{~K}\) is kept in it. A total area of \(0.80 \mathrm{~m}^2\) is in contact with the liquid nitrogen. The atmospheric temperature is \(300 \mathrm{~K}\). Calculate the rate of heat flow from the atmosphere to the liquid nitrogen.
\(
\text { Rate of flow of heat }=\frac{\text { Temperature differences }}{\text { Thermal resistance }}
\)
Thickness of the container, \(l=1 \mathrm{~cm}=10^{-2} \mathrm{~m}\)
Thermal conductivity of the styrofoam sheet, \(\mathrm{k}=0.025 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}\)
Area, \(A=0.80 \mathrm{~m}^2\)
Thermal resistance, \(\frac{l}{K A}=\frac{10^2}{0.025 \times 0.80}\)
Temperature difference, \(\Delta T=T_1-T_2=300-80=220 \mathrm{~K}\)
Rate of flow of heat, \(\left(\frac{\Delta Q}{\Delta t}\right)=\frac{T 1-T 2}{\frac{l}{K} A}\)
\(
\Rightarrow\left(\frac{\Delta Q}{\Delta t}\right)=440 \mathrm{~J} / \mathrm{s}=440 W
\)
The normal body-temperature of a person is \(97^{\circ} \mathrm{F}\). Calculate the rate at which heat is flowing out of his body through the clothes assuming the following values. Room temperature \(=47^{\circ} \mathrm{F}\), surface of the body under clothes \(=1.6 \mathrm{~m}^2\) conductivity of the cloth \(=0.04 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\), thickness of the cloth \(=0.5 \mathrm{~cm}\).
Rate of how of heat \(=\frac{\text { tempreature diffrences }}{\text { Thermal resistance }}\)
Temperature of the body, \(T_1=97^{\circ} \mathrm{F}=36.11^{\circ} \mathrm{C}\)
Temperature of the surroundings, \(T_2=47^{\circ} \mathrm{F}=8.33^{\circ} \mathrm{C}\) ‘
Conductivity of the cloth, \(\mathrm{K}=0.04 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}\)
Thickness of the cloth \(\mathrm{I}=0.5 \mathrm{~cm}=0.005 \mathrm{~m}\)
Area of the cloth, \(A=1.6 \mathrm{~m}^2\)
Difference in the temperature \(\Delta T=T_1-T_2=36.11-8.33=27.78^{\circ} \mathrm{C}\)
Thermal resistance \(=\frac{l}{K A}=\frac{0.005}{(0.04) \times 1.6}=0.078125\)
Rate at which heat is flowing out is given by
\(
\begin{aligned}
& \frac{\Delta Q}{\Delta t}=\frac{T_1-T_2}{\frac{l}{K A}} \\
& \frac{\Delta Q}{\Delta t}=\frac{27.78}{0.078125} \\
& \frac{\Delta Q}{\Delta t}=356 \mathrm{~J} / \mathrm{s}
\end{aligned}
\)
Water is boiled in a container having a bottom of surface area \(25 \mathrm{~cm}^2\), thickness \(1.0 \mathrm{~mm}\) and thermal conductivity \(50 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{C}^{-1} .100 \mathrm{~g}\) of water is converted into steam per minute in the steady state after the boiling starts. Assuming that no heat is lost to the atmosphere, calculate the temperature of the lower surface of the bottom. Latent heat of vaporization of water \(=2.26 \times 10^6 \mathrm{~J} \mathrm{~kg}^{-1}\).
Area of the bottom of the container, \(A=25 \mathrm{~cm}^2=25 \times 10^{-4} \mathrm{~m}^2\)
Thickness of the vaporisation of water, \(l=1 \mathrm{~mm}=10^{-3} \mathrm{~m}\).
Latent heat of vaporisation of water, \(L=2.26 \times 106 \mathrm{J} \mathrm{Kg}^{-1}\)
Thermal conductivity of the container, \(\mathrm{K}=50 \mathrm{W} \mathrm{m}^{-1_{\circ}} \mathrm{C}^{-1}\) mass \(=100 \mathrm{~g}=0.1 \mathrm{Kg}\) mass \(=100 \mathrm{~g}=0.11 \mathrm{~kg}\)
Rate of heat transfer from the base of the container is given by
\(
\begin{aligned}
& \frac{\Delta Q}{\frac{\Delta}{t}}=\frac{m L}{\Delta t}=\frac{(0.1) \times 2.26 \times 10^6}{1 \mathrm{~min}} \\
& \frac{\Delta Q}{\frac{\Delta}{t}}=0.376 \times 10^4 \mathrm{~J} / \mathrm{s}
\end{aligned}
\)
Also,
\(
\begin{aligned}
& \frac{\Delta Q}{\frac{\Delta}{t}}=\frac{\Delta T}{\frac{l}{K A}} \\
& \Rightarrow 0.376 \times 10^4=\frac{T-100}{\frac{10^{-3}}{50 \times 25 \times 10^{-4}}} \\
& \Rightarrow 0.376 \times 10^4=\frac{50 \times 25 \times 10^{-4}(T-100)}{10^{-3}} \\
& \Rightarrow(\mathrm{T}-100)=3.008 \times 10 \\
& \Rightarrow \mathrm{T}=130^{\circ} \mathrm{C}
\end{aligned}
\)
Alternate:
\(
\begin{aligned}
& \frac{R_l}{K A}=\frac{1 \times 10^{-3}}{50 \times 25 \times 10^{-4}}=\frac{1}{125} \cdot{ }^{\circ} C / W \\
& i=\frac{\theta-100}{R}=125(\theta-100) \\
& i=m L=\frac{0.1}{60} \times 2.26 \times 10^6=3.8 \times 10^3 W \\
& 125(\theta-100)=3.8 \times 10^3 \\
& \theta=130^{\circ} C
\end{aligned}
\)
One end of a steel \(\operatorname{rod}\left(K=46 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\right)\) of length \(1.0 \mathrm{~m}\) is kept in ice at \(0^{\circ} \mathrm{C}\) and the other end is kept in boiling water at \(100^{\circ} \mathrm{C}\). The area of cross-section of the rod is \(0.04 \mathrm{~cm}^2\). Assuming no heat loss to the atmosphere, find the mass of the ice melting per second. Latent heat of fusion of ice \(=3.36 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\).
Given
\(
\begin{aligned}
& \mathrm{k}=45 \mathrm{J} \mathrm{s}^{-1} \mathrm{~m}^{-1_0} \mathrm{C}^{-1} \\
& 1=1 \mathrm{~m} \\
& \mathrm{~A}=0.04 \mathrm{~m}^2=4 \times 10^{-6} \mathrm{~m}^2
\end{aligned}
\)
We know that
\(
\begin{aligned}
& \frac{\mathrm{Q}}{\mathrm{T}}=\frac{\mathrm{kA}\left(\mathrm{T}_1-\mathrm{T}_2\right)}{1} \\
& =\frac{46 \times 4 \times 10^6 \times(100-0)}{1} \\
& =184 \times 10^{-4} \\
& \mathrm{~mL}=184 \times 10^{-4} \\
& \mathrm{~m}=\frac{184 \times 10^{-4}}{33.6 \times 10^5} \\
& \mathrm{~m}=5.5 \times 10^{-5} \mathrm{gm}
\end{aligned}
\)
An icebox almost completely filled with ice at \(0^{\circ} \mathrm{C}\) is dipped into a large volume of water at \(20^{\circ} \mathrm{C}\). The box has walls of surface area \(2400 \mathrm{~cm}^2\), thickness \(2.0 \mathrm{~mm}\) and thermal conductivity \(0.06 \mathrm{~W} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\). Calculate the rate at which the ice melts in the box. Latent heat of fusion of ice \(=3.4 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\).
Area of the walls of the box, \(A=2400 \mathrm{~cm}^2=2400 \times 10^{-4} \mathrm{~m}^2\)
Thickness of the ice box, \(l=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}\)
Thermal conductivity of the material of the box, \(K=0.06 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}\)
Temperature of the water outside the box, \(T_1=20^{\circ} \mathrm{C}\)
Temperature of ice, \(T_2=0^{\circ} \mathrm{C}\)
Rate of flow of heat \(=\frac{\text { Temprature differences }}{\text { Thermal resistance }}\)
\(\Rightarrow \frac{\Delta Q}{\Delta t}=\frac{T_1-T_2}{\frac{l}{K A}}\)
\(\Rightarrow \frac{\Delta Q}{\Delta t}=\left(\frac{20}{2} \times 10^{-3}\right) \times 0.06 \times 2400 \times 10^{-4}\)
\(\Rightarrow \frac{\Delta Q}{\Delta t}=24 \times 6=144 \mathrm{~J} / \mathrm{s}\)
\(
\begin{aligned}
& \text { Rate at which the ice melts }=\frac{m L_f}{t} \\
& \Rightarrow \frac{\Delta Q}{\Delta t}=\left(\frac{m}{t}\right) L_f \\
& \Rightarrow 144=\left(\frac{m}{t}\right) \times 3.4 \times 10^5 \\
& \Rightarrow \frac{m}{t}=\frac{144}{3.4 \times 10^5} \mathrm{~kg} / \mathrm{s} \\
& \Rightarrow \frac{m}{t}=\frac{144 \times 60 \times 60}{3.4 \times 10^5} \mathrm{Kg} / \mathrm{s} \\
& \Rightarrow \frac{m}{t}=1.52 \mathrm{~kg} / \mathrm{h}
\end{aligned}
\)
A pitcher with \(1-\mathrm{mm}\) thick porous walls contains \(10 \mathrm{~kg}\) of water. Water comes to its outer surface and evaporates at the rate of \(0.1 \mathrm{~g} \mathrm{~s}^{-1}\). The surface area of the pitcher (one side) \(=200 \mathrm{~cm}^2\). The room temperature \(=42^{\circ} \mathrm{C}\), latent heat of vaporization \(=2.27 \times 10^6 \mathrm{~J} \mathrm{~kg}^{-1}\), and the thermal conductivity of the porous walls \(=0.80\) \(\mathrm{J} \mathrm{s}^{-1} \mathrm{~m}^{-1_o} \mathrm{C}^{-1}\). Calculate the temperature of water in the pitcher when it attains a constant value.
Thickness of porous walls, \(I=1 \mathrm{~mm}=10-3 \mathrm{~m}\)
mass, \(m=10 \mathrm{~kg}\)
Latent heat of vapourisation, \(L v=2.27 \times 106 \mathrm{~J} / \mathrm{kg}\)
Thermal conductivity, \(\mathrm{K}=0.80 \mathrm{J} \mathrm{s}^{-1} \mathrm{~m}^{-1_{\circ}} \mathrm{C}^{-1}\)
\(
\Delta Q=2.27 \times 106 \times 10 \mathrm{~J}
\)
\(0.1 \mathrm{~g}\) of water evaporate in \(1 \mathrm{sec}\), so \(10 \mathrm{~kg}\) water will evaporate in \(105 \mathrm{~s}\)
\(
\begin{aligned}
& \Rightarrow \frac{\Delta Q}{\Delta t}=\frac{2.27 \times 107}{10^5} \\
& \Rightarrow \frac{\Delta Q}{\Delta t}=2.27 \times 10^2 \mathrm{~J} / \mathrm{s} \\
& \Rightarrow \frac{\Delta Q}{\Delta t}=\frac{\Delta T}{\frac{l}{k A}} \\
& \Rightarrow \frac{\Delta Q}{\Delta t}=\left(\frac{42-T}{10^{-3}}\right) \cdot 0.80 \times 2 \times 10^{-2} \\
& \Rightarrow 2.27 \times 10^2=\frac{42-\mathrm{T}}{10^{-3}} \times 0.80 \times 2 \times 10^{-2} \\
& \Rightarrow \mathrm{T}=27.8^{\circ} \mathrm{C} \\
& \Rightarrow \mathrm{T}=28^{\circ} \mathrm{C}
\end{aligned}
\)
A steel frame \(\left(K=45 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{C}^{-1}\right)\) of total length \(60 \mathrm{~cm}\) and cross sectional area \(0.20 \mathrm{~cm}^2\), forms three sides of a square. The free ends are maintained at \(20^{\circ} \mathrm{C}\) and \(40^{\circ} \mathrm{C}\). Find the rate of heat flow through a cross section of the frame.
Thermal conductivity, \(K=45 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}\)
Length, \(l=60 \mathrm{~cm}=0.6 \mathrm{~m}\)
Area of cross section, \(A=0.2 \mathrm{~cm}^2=0.2 \times 10^{-4} \mathrm{~m}^2\)
Initial temperature, \(T_1=40^{\circ} \mathrm{C}\)
Final temperature, \(T_2=20^{\circ} \mathrm{C}\)
\(
\frac{\Delta Q}{\Delta t}=\frac{K A\left(T_1-T_2\right)}{l}
\)
\(\frac{\Delta Q}{\Delta t}=\frac{45 \times 0.2 \times 10^{-4}(40-20)}{0.6}\)
\(=0.03 W\)
Water at \(50^{\circ} \mathrm{C}\) is filled in a closed cylindrical vessel of height \(10 \mathrm{~cm}\) and cross sectional area \(10 \mathrm{~cm}^2\). The walls of the vessel are adiabatic but the flat parts are made of \(1-\mathrm{mm}\) thick aluminium \(\left(K=200 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1_{\circ}} \mathrm{C}^{-1}\right)\). Assume that the outside temperature is \(20^{\circ} \mathrm{C}\). The density of water is \(1000 \mathrm{~kg} \mathrm{~m}^{-3}\), and the specific heat capacity of water \(=4200 \mathrm{~J} \mathrm{k}^{-1} \mathrm{g} \mathrm{C}^{-1}\). Estimate the time taken for the temperature to fall by \(1 \cdot 0^{\circ} \mathrm{C}\). Make any simplifying assumptions you need but specify them.
Area of cross section, \(A=10 \mathrm{~cm}^2=10 \times 10^{-4} \mathrm{~m}^2\)
Thermal conductivity, \(K=200 \mathrm{Js}^{-1} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}\)
Height, \(H=10 \mathrm{~cm}\)
Length, \(l=1 \mathrm{~mm}=10^{-3} \mathrm{~m}\)
Temperature inside the cylindrical vessel, \(T_1=50^{\circ} \mathrm{C}\)
temperature outside the vessel, \(T_2=30^{\circ} \mathrm{C}\)
\(
\text { Rate of flow of heat from } 1 \text { flat surface will be given by }
\)
\(
\begin{aligned}
& \frac{\Delta Q}{\Delta t}=\frac{T_1-T_2}{\frac{l}{K A}} \\
& \frac{\Delta Q}{\Delta t}=\frac{(50-30) \times 200 \times 10^{-3}}{10^{-3}} \\
& \frac{\Delta Q}{\Delta t}=6000 \mathrm{~J} / \mathrm{s}
\end{aligned}
\)
Heat escapes out from both the flat surfaces.
Net rate of heat flow \(=2 \times 6000=12000 \mathrm{~J} / \mathrm{sec}\)
\(
\begin{aligned}
& \frac{\Delta Q}{\Delta t}=\frac{m . s . \Delta T}{\Delta t} \\
& \text { Mass }=\text { Volume density } \\
& \Rightarrow 10^{-3} \times 0.1 \times 1000=0.1 \mathrm{~g}
\end{aligned}
\)
Using this in the above formula for finding the rate of flow of heat, we get
\(
\begin{aligned}
& 12000=0.1 \times 4200 \times \frac{\Delta T}{t} \\
& \Rightarrow \frac{\Delta T}{\Delta t}=\frac{12000}{420}=28.57
\end{aligned}
\)
As \(\Delta T=1^{\circ} \mathrm{C}\)
\(
\begin{aligned}
& \Rightarrow \frac{1}{t}=28.57 \\
& \Rightarrow t=\frac{1}{28.57}=0.035 \mathrm{sec}
\end{aligned}
\)
The left end of a copper rod (length \(=20 \mathrm{~cm}\), area of cross section \(=0.20 \mathrm{~cm}^2\) ) is maintained at \(20^{\circ} \mathrm{C}\) and the right end is maintained at \(80^{\circ} \mathrm{C}\). Neglecting any loss of heat through radiation, find (a) the temperature at a point \(11 \mathrm{~cm}\) from the left end and (b) the heat current through the rod. Thermal conductivity of copper \(=385 \mathrm{~W} \mathrm{~m}^{-10} \mathrm{C}^{-1}\).
Area of cross section, \(A=0.2 \mathrm{~cm}^2=0.2 \times 10^{-4} \mathrm{~m}^2\)
Thermal conductivity, \(k=385 \mathrm{~W} \mathrm{~m}^{-1}{ }^{\circ} \mathrm{C}^{-1}\)
Rate of flow of heat \(=\frac{\text { temperature diffrences }}{\text { Thermal resistance }}\)
\(
\begin{aligned}
& \frac{\Delta Q}{\Delta t}=\frac{K A\left(T_1-T_2\right)}{l} \\
& \frac{\Delta Q}{\Delta t}=\left(\frac{80-20}{0.2}\right) \times 385 \times 0.2 \times 10^{-4} \\
& =2310 \times 10^{-3} \\
& =2.31 \mathrm{~J} / \mathrm{sec}
\end{aligned}
\)
Let te temperature of point \(C\) be \(T\), which is at a distance of \(11 \mathrm{~cm}\) from the left end. Rate of flow of heat is given by
\(
\begin{aligned}
& \frac{\Delta Q}{\Delta t}=\frac{K A \Delta T}{l} \\
& \Rightarrow \frac{\Delta T}{l}=\left(\frac{\Delta Q}{\Delta t}\right) \times \frac{1}{K A} \\
& \frac{T-20}{11 \times 10^{-2}}=\frac{2.31}{383 \times 0.2 \times 10^{-4}} \\
& \Rightarrow \mathrm{T}=33+20 \\
& \Rightarrow \mathrm{T}=53^{\circ} \mathrm{c}
\end{aligned}
\)
The ends of a metre stick are maintained at \(100^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\). One end of a rod is maintained at \(25^{\circ} \mathrm{C}\). Where should its other end be touched on the metre stick so that there is no heat current in the rod in steady state?
No heat will flow when, the temp at that points also \(25^{\circ} \mathrm{C}\)
\(
\text { i.e. } Q_{A B}=Q_{B C}
\)
i.e. \(\mathrm{Q}_{\mathrm{AB}}=\mathrm{Q}_{\mathrm{AB}}\)
So, \(\frac{\mathrm{KA}(100-25)}{100-\mathrm{x}}=\frac{\mathrm{KA}(25-0)}{\mathrm{x}}\)
\(\Rightarrow 75 \mathrm{x}=2500-25 \mathrm{x} \Rightarrow 100 \mathrm{x}=2500 \Rightarrow \mathrm{x}=25 \mathrm{~cm}\) from the end with \(0^{\circ} \mathrm{C}\)
A cubical box of volume \(216 \mathrm{~cm}^3\) is made up of \(0.1 \mathrm{~cm}\) thick wood. The inside is heated electrically by a \(100 \mathrm{~W}\) heater. It is found that the temperature difference between the inside and the outside surface is \(5^{\circ} \mathrm{C}\) in steady state. Assuming that the entire electrical energy spent appears as heat, find the thermal conductivity of the material of the box.
\(
\begin{aligned}
& V=216 \mathrm{~cm}^3 \\
& a=6 \mathrm{~cm}, \text { Surface area }=6 \mathrm{a}^2=6 \times 36 \mathrm{~m}^2 \\
& l=0.1 \mathrm{~cm} \\
& \mathrm{Q} / \mathrm{t}=100 \mathrm{~W}, \\
& \mathrm{Q} / \mathrm{t}=\left(\mathrm{KA}\left(\theta_1-\theta_2\right) / {l}\right. \\
& \Rightarrow 100=\left(\mathrm{k} \times 6 \times 36 \times 10^{-4} \times 5\right) /\left(0.1 \times 10^{-2}\right) \\
& \Rightarrow \mathrm{k}=100 /\left(6 \times 36 \times 5 \times 10^{-1}\right)=0.9259 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C} \approx 0.92 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}
\end{aligned}
\)
Figure below shows water in a container having \(2.0 \mathrm{mm}\) thick walls made of a material of thermal conductivity \(0.50 \mathrm{~W} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\). The container is kept in a melting-ice bath at \(0^{\circ} \mathrm{C}\). The total surface area in contact with water is \(0.05 \mathrm{~m}^2\). A wheel is clamped inside the water and is coupled to a block of mass \(M\) as shown in the figure. As the block goes down, the wheel rotates. It is found that after some time a steady state is reached in which the block goes down with a constant speed of \(10 \mathrm{~cm} \mathrm{~s}^{-1}\) and the temperature of the water remains constant at \(1.0^{\circ} \mathrm{C}\). Find the mass \(M\) of the block. Assume that the heat flows out of the water only through the walls in contact. Take \(g=10 \mathrm{~m} \mathrm{~s}^{-2}\).
Temperature of water, \(T_1=1^{\circ} \mathrm{C}\)
Temperature if ice bath, \(T_2=0^{\circ} \mathrm{C}\)
Thermal conductivity, \(K=0.5 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\)
Length through which heat is lost, \(l=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}\)
Area of cross-section, \(A=5 \times 10^{-2} \mathrm{~m}^2\)
Velocity of the block, \(v=10 \mathrm{~cm} / \mathrm{sec}=0.1 \mathrm{~m} / \mathrm{s}\)
Let the mass of the block be \(m\).
Power \(=\mathrm{F} \cdot {v}\)
\(=(\mathrm{mg}) v \dots(1)\)
Also,
\(
\begin{aligned}
& \text { Power }=\frac{\Delta Q}{\Delta t} \ldots \dots (2) \\
& \frac{\Delta Q}{\Delta t}=\frac{k . A\left(T_1-T_2\right)}{l} \dots(3)
\end{aligned}
\)
From equation (1), (2) and (3), we get
\(
\begin{aligned}
& (m g) v=\frac{k . A\left(T_1-T_2\right)}{l} \\
& m=\frac{0.5 \times 5 \times 140^{-2}(1)}{\left(2 \times 10^{-3}\right) \times 10 \times 0.1} \\
& m=12.5 \mathrm{~kg}
\end{aligned}
\)
On a winter day when the atmospheric temperature drops to \(-10^{\circ} \mathrm{C}\), ice forms on the surface of a lake. (a) Calculate the rate of increase of thickness of the ice when \(10 \mathrm{~cm}\) of ice is already formed. (b) Calculate the total time taken in forming \(10 \mathrm{~cm}\) of ice. Assume that the temperature of the entire water reaches \(0^{\circ} \mathrm{C}\) before the ice starts forming. Density of water \(=1000 \mathrm{~kg} \mathrm{~m}^{-3}\), latent heat of fusion of ice \(=3.36 \times 10^5 \mathrm{~J} \mathrm{~kg}^{-1}\) and thermal conductivity of ice \(=1.7 \mathrm{~W} \mathrm{~m}^{-1 \circ} \mathrm{C}^{-1}\). Neglect the expansion of water on freezing.
\(
\begin{aligned}
& \mathrm{K}=1.7 \mathrm{~W} \mathrm{~m}^{-1 \circ} \mathrm{C}^{-1}, \text { Density of water, } \rho_\omega=10^2 \mathrm{~kg} / \mathrm{m}^3 \\
& \mathrm{~L}_{\text {ice }}=3.36 \times 10^5 \mathrm{~J} / \mathrm{kgT}=10 \mathrm{~cm}=10 \times 10^{-2} \mathrm{~m}
\end{aligned}
\)
(a) \(\frac{Q}{t}=\frac{K A\left(\theta_1-\theta_2\right)}{\ell} \Rightarrow \frac{\ell}{\mathrm{t}}=\frac{\operatorname{KA}\left(\theta_1-\theta_2\right)}{Q}=\frac{K A\left(\theta_1-\theta_2\right)}{\mathrm{mL_{ice}}}\)
\(
\begin{aligned}
& =\frac{K A\left(\theta_1-\theta_2\right)}{A l \rho_\omega \mathrm{L_{ice}}}=\frac{1.7 \times[0-(-10)]}{10 \times 10^{-2} \times 1000 \times 3.36 \times 10^5} \\
& =\frac{17}{3.36} \times 10^{-7}=5.059 \times 10^{-7} \approx 5 \times 10^{-7} \mathrm{~m} / \mathrm{sec}
\end{aligned}
\)
(b) let us assume that \(x\) length of ice has become formed to form a small strip of ice of length \(d x, d t\) time is required.
\(
\begin{aligned}
& \frac{d Q}{d t}=\frac{K A(\Delta \theta)}{x} \Rightarrow \frac{d m L}{d t}=\frac{K A(\Delta \theta)}{x} \\
& \Rightarrow \frac{A d x f \omega L}{d t}=\frac{K A(\Delta \theta)}{x}
\end{aligned}
\)
\(
\Rightarrow \frac{d x f \omega L}{d t}=\frac{K(\Delta \theta)}{x} \Rightarrow d t=\frac{x d x f \omega L}{K(\Delta \theta)}
\)
\(
\Rightarrow \int_0^t d t=\frac{f \omega L}{K(\Delta \theta)} \int_0^t x d x \Rightarrow t=\frac{f \omega L}{K(\Delta \theta)}\left[\frac{x^2}{2}\right]_0^T=\frac{f \omega L}{K \Delta \theta} \frac{l}{2}
\)
Putting values
\(
\begin{aligned}
& \Rightarrow t=\frac{1000 \times 3.36 \times 10^5 \times\left(10 \times 10^{-2}\right)^2}{1.7 \times 10 \times 2} \\
& =\frac{3.36}{2 \times 17} \times 10^6 \mathrm{sec} .=\frac{3.36 \times 10^6}{2 \times 17 \times 3600} \mathrm{hrs}=27.45 \mathrm{hrs} \approx 27.5 \mathrm{hrs}
\end{aligned}
\)
Consider the situation of the previous problem. Assume that the temperature of the water at the bottom of the lake remains constant at \(4^{\circ} \mathrm{C}\) as the ice forms on the surface (the heat required to maintain the temperature of the bottom layer may come from the bed of the lake). The depth of the lake is \(1.0 \mathrm{~m}\). Show that the thickness of the ice formed attains a steady state maximum value. Find this value. The thermal conductivity of water \(=0.50 \mathrm{~W} \mathrm{~m}^{-10} \mathrm{C}^{-1}\). Take other relevant data from the previous problem.
Let the point upto which ice is formed is at a distance of \(\mathrm{x} \mathrm{m}\) from the top of the lake.
Under steady state, the rate of flow of heat from ice to this point should be equal to the rate flow of heat from water to this point.
Temperature of the top layer of ice \(=-10^{\circ} \mathrm{C}\)
Temperature of water at the bottom of the lake \(=4^{\circ} \mathrm{C}\)
Temperature at the point upto which ice is formed \(=\left(\frac{\Delta Q}{\Delta t}\right)_{\text {ice }}=\left(\frac{\Delta Q}{\Delta t}\right)_{\text {water }}\)
When heat current in water and ice is same, steady state is reached.
\(
\begin{aligned}
& \frac{k_{\text {ice }}}{\frac{x}{A \times 10}}=\frac{k_{\text {water }}}{\frac{1-x}{A \times 4}} \\
& \frac{1.7 \times 10}{x}=\frac{0.5 \times 4}{1-x} \\
& \frac{1.7}{x}=\frac{0.5 \times 4}{1-x} \\
& \Rightarrow x=\frac{17}{19}=0.89 \mathrm{~m} \\
& \Rightarrow x=89 \mathrm{~cm}
\end{aligned}
\)
Three rods of lengths \(20 \mathrm{~cm}\) each and area of cross section \(1 \mathrm{~cm}^2\) are joined to form a triangle \(A B C\). The conductivities of the rods are \(K_{A B}=50 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{C}^{-1}\), \(K_{B C}=200 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1 o} \mathrm{C}^{-1}\) and \(K_{A C}=400 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1 o} \mathrm{C}^{-1}\). The junctions \(A, B\) and \(C\) are maintained at \(40^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}\) and \(80^{\circ} \mathrm{C}\) respectively. Find the rate of heat flowing through the rods \(A B, A C\), and \(B C\).
Thermal conductivity of \(\operatorname{rod} A B, K_{A B}=50 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\)
Temperature of junction at \(\theta_A=40^{\circ} \mathrm{C}\)
Thermal conductivity of rod BC, \(K_{\mathrm{BC}}=200 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\)
Temperature of junction at \(\theta_{\mathrm{B}}=80^{\circ} \mathrm{C}\)
Thermal conductivity of rod \(\mathrm{BC}, K_{C A}=400 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\)
temperature of junction at \(\theta_{\mathrm{C}}=80^{\circ} \mathrm{C}\)
Length \(=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}\)
\(A=1 \mathrm{~cm}^2=1 \times 10^{-4} \mathrm{~m}^2\)
(a) \(\frac{Q_{A B}}{t}=\frac{K_{A B} \times A\left(\theta_B-\theta_A\right)}{l}=\frac{50 \times 1 \times 10^{-4} \times 40}{20 \times 10^{-2}}=1 \mathrm{~W}\).
(b) \(\frac{Q_{A C}}{t}=\frac{K_{A C} \times A\left(\theta_C-\theta_A\right)}{l}=\frac{400 \times 1 \times 10^{-4} \times 40}{20 \times 10^{-2}}=800 \times 10^{-2}=8 \mathrm{~W}\)
(c) \(\frac{Q_{B C}}{t}=\frac{K_{B C} \times A\left(\theta_B-\theta_C\right)}{l}=\frac{200 \times 1 \times 10^{-4} \times 0}{20 \times 10^{-2}}=0\)
A semicircular rod is joined at its end to a straight rod of the same material and the same cross-sectional area. The straight rod forms a diameter of the other rod. The junctions are maintained at different temperatures. Find the ratio of the heat transferred through a cross-section of the semicircular rod to the heat transferred through a cross-section of the straight rod in a given time.
Let \(A\) be the area of cross section and \(K\) be the thermal conductivity of the material of the rod.
Let \(q_1\) be the rate of flow of heat through a semicircular rod.
Rate of flow of heat is given by
\(
q 1=\frac{d Q}{d t}=\frac{K \cdot A\left(T_1-T_2\right)}{\pi r}
\)
Let \(q_2\) be the rate of flow of heat through a straight rod.
\(
q_2=\frac{d Q}{d t}=\frac{K A\left(T_1-T_2\right)}{2 r}
\)
Ratio of the rate of flow of heat through the 2 rods
\(
=\frac{q 1}{q 2}=\frac{2 r}{\pi r}=\frac{2}{\pi}
\)
A metal rod of cross sectional area \(1.0 \mathrm{~cm}^2\) is being heated at one end. At one time, the temperature gradient is \(5 \cdot 0^{\circ} \mathrm{C} \mathrm{cm}^{-1}\) at cross section \(A\) and is \(2.5^{\circ} \mathrm{Ccm}^{-1}\) at cross section \(B\). Calculate the rate at which the temperature is increasing in the part \(A B\) of the rod. The heat capacity of the part \(A B=0.40 \mathrm{~J}^{\circ} \mathrm{C}^{-1}\), thermal conductivity of the material of the \(\operatorname{rod}=200 \mathrm{~W} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\). Neglect any loss of heat to the atmosphere.
Let the temperatures at the ends \(A\) and \(B\) be \(T_A\) and \(T_B\), respectively.
Rate of flow of heat at the end \(A\) of the rod is given by
\(
\frac{\mathrm{d} Q_{\mathrm{A}}}{\mathrm{d} t}=K \mathrm{~A} \cdot \frac{\mathrm{d}}{\mathrm{d} l}\left(T_{\mathrm{A}}\right)
\)
The rate of flow of heat at the end \(\mathrm{B}\) of the rod is given by
\(
\frac{\mathrm{d} Q_{\mathrm{B}}}{\mathrm{d} t}=K \mathrm{~A} \cdot \frac{\mathrm{d}}{\mathrm{d} l}\left(T_{\mathrm{B}}\right)
\)
Heat absorbed by the rod \(=m s \Delta T\)
Here, \(s\) is the specific heat of the rod, and \(\Delta T\) is the temperature difference between ends \(A\) and \(B\).
The rate of heat absorption by the rod is given by
\(
\begin{aligned}
& \frac{\mathrm{d} Q}{\mathrm{~d} t}=m s \frac{\mathrm{d} T}{\mathrm{~d} t} \therefore m s \frac{\mathrm{dT}}{\mathrm{d} t}=K A \cdot \frac{\mathrm{d} \mathrm{T}_{\mathrm{A}}}{\mathrm{d} l}-K \mathrm{~A} \cdot \frac{\mathrm{dT}_{\mathrm{B}}}{\mathrm{d} l} \\
& \Rightarrow(0.4) \cdot \frac{\mathrm{dT}}{\mathrm{d} t}=200 \times 1 \times 10^{-4}(5-2.5) \\
& \frac{\mathrm{dT}}{\mathrm{d} t}=12.5^{\circ} \mathrm{C} / \mathrm{sec}
\end{aligned}
\)
Steam at \(120^{\circ} \mathrm{C}\) is continuously passed through a \(50 \mathrm{cm}\) long rubber tube of inner and outer radii \(1.0 \mathrm{~cm}\) and \(1.2 \mathrm{~cm}\). The room temperature is \(30^{\circ} \mathrm{C}\). Calculate the rate of heat flow through the walls of the tube. Thermal conductivity of rubber \(=0.15 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{C}^{-1}\).
Given
\(
\begin{aligned}
& \mathrm{K}_{\text {rubber }}==0.15 \mathrm{~J} \mathrm{~s}^{-1} \mathrm{~m}^{-1_0} \mathrm{C}^{-1} \\
& \mathrm{T}_2-\mathrm{T}_1=90^{\circ} \mathrm{C}
\end{aligned}
\)
We know for radial conduction in a Cylinder
\(
\begin{aligned}
& \frac{Q}{t}=\frac{2 \pi \mathrm{Kl}\left(T_2-T_1\right)}{\ln \left(R_2 / R_1\right)} \\
& =\frac{2 \times 3.14 \times 15 \times 10^{-2} \times 50 \times 10^{-1} \times 90}{\ln (1.2 / 1)}=232.5 \approx 233 \mathrm{j} / \mathrm{s}
\end{aligned}
\)
A hole of radius \(r_1\) is made centrally in a uniform circular disc of thickness \(d\) and radius \(r_2\). The inner surface (a cylinder of length \(d\) and radius \(r_1\) ) is maintained at a temperature \(\theta_1\) and the outer surface (a cylinder of length \(d\) and radius \(r_2\) ) is maintained at a temperature \(\theta_2\left(\theta_1>\theta_2\right)\). The thermal conductivity of the material of the disc is \(K\). Calculate the heat flowing per unit time through the disc.
\(\mathrm{dQ} / \mathrm{dt}=\) Rate of flow of heat
Let us consider a strip at a distance \(r\) from the center of thickness dr.
\(d Q / d t=(K \times 2 \pi r d \times d \theta) / d r[d \theta=\) Temperature diff across the thickness \(d r]\)
\(
\Rightarrow C=\frac{\mathrm{K} \times 2 \pi \mathrm{rd} \times \mathrm{d} \theta}{\mathrm{dr}} \quad\left[\mathrm{c}=\frac{\mathrm{d} \theta}{\mathrm{dr}}\right]
\)
\(
\Rightarrow \mathrm{C} \frac{\mathrm{dr}}{\mathrm{r}}=\mathrm{K} 2 \pi \mathrm{d} \mathrm{d} \theta
\)
Integrating
\(
\Rightarrow C \int_{r_1}^{r_2} \frac{d r}{r}=\mathrm{K} 2 \pi d \int_{\theta_1}^{\theta_2} d \theta
\)
\(
C\left(\log r_2-\log r_1\right)=K 2 \pi d\left(\theta_2-\theta_1\right)
\)
\(
C=\frac{\mathrm{K} 2 \pi \mathrm{d}\left(\theta_2-\theta_1\right)}{\log \left(\mathrm{r}_2 / \mathrm{r}_1\right)}
\)
A hollow tube has a length \(l\), inner radius \(R_1\) and outer radius \(R_2\). The material has a thermal conductivity \(K\). Find the heat flowing through the walls of the tube if (a) the flat ends are maintained at temperatures \(T_1\) and \(T_2\left(T_2>T_1\right)\) (b) the inside of the tube is maintained at a temperature \(T_1\) and the outside is maintained at \(T_2\).
When the flat ends are maintained at temperatures \(T_1\) and \(T_2\) (where \(T_2>T_1\) ):
Area of cross-section through which heat is flowing, \(=A=\pi\left(R_2^2-R_1^2\right)\)
\(
\text { So, } Q=\frac{K A\left(T_2-T_1\right)}{l}=\frac{K \pi\left(R_2^2-R_1^2\right)\left(T_2-T_1\right)}{l}
\)
Considering a concentric cylindrical shell of radius ‘ \(r\) ‘ and thickness ‘dr’. The radial heat flow through the shell
\(
H=\frac{d Q}{d t}=-K A \frac{d \theta}{d t} \quad[(-) \text { ve because as } r-\text { increases } \theta \text {decreases}.
\)
\(
\mathrm{A}=2 \pi r {l}
\)
\(\mathrm{H}=-2 \pi \mathrm{rl} \mathrm{K} \frac{\mathrm{d} \theta}{\mathrm{dt}}\)
\(
\text { or } \int_{\mathrm{R}_1}^{\mathrm{R}_2} \frac{\mathrm{dr}}{\mathrm{r}}=-\frac{2 \pi \mathrm{lK}}{\mathrm{H}} \int_{\mathrm{T}_1}^{\mathrm{T}_2} \mathrm{~d} \theta
\)
Integrating and simplifying we get
\(
H=\frac{d Q}{d t}=\frac{2 \pi K l\left(T_2-T_1\right)}{\operatorname{Log_e}\left(R_2 / R_1\right)}=\frac{2 \pi K l\left(T_2-T_1\right)}{\ln \left(R_2 / R_1\right)}
\)
A cmposite slab is prepared by pasting two plates of thicknesses \(L_1\) and \(L_2\) and thermal conductivities \(K_1\) and \(K_2\). The slabs have equal cross-sectional area. Find the equivalent conductivity of the composite slab.
s equivalent to the series combination of 2 resistors.
\(
\therefore R_{\mathrm{S}}=R_1+R_2
\)
Resistance of a conducting slab, \(R=\frac{l}{K A}\)
\(
\frac{L_1+L_2}{K_S A}=\frac{L_1}{K_1 A}+\frac{L_2}{K_2 A}
\)
\(
\begin{aligned}
& \frac{L_1+L_2}{K_s}=\frac{L_1}{K_1}+\frac{L_2}{K_2} \\
& \frac{L_1+L_2}{K_s}=\frac{L_1 K_2+L_2 K_1}{K_1 \times K_2} \\
& K_s=\frac{\left(L_1+L_2\right)\left(K_1 K_2\right)}{L_1 k_2+L_2 K_1}
\end{aligned}
\)
Figure below shows a copper rod joined to a steel rod. The rods have equal length and equal cross sectional area. The free end of the copper rod is kept at \(0^{\circ} \mathrm{C}\) and that of the steel rod is kept at \(100^{\circ} \mathrm{C}\). Find the temperature at the junction of the rods. Conductivity of copper \(=390 \mathrm{~W} \mathrm{~m}^{-1 \circ} \mathrm{C}^{-1}\) and that of steel \(=46 \mathrm{~W} \mathrm{~m}^{-1 \circ} \mathrm{C}^{-1}\)
\(
\begin{aligned}
& \mathrm{K}_{\mathrm{Cu}}=390 \mathrm{~W} \mathrm{~m}^{-1 \circ} \mathrm{C}^{-1} \\
& \mathrm{K}_{\mathrm{St}}=46 \mathrm{~W} \mathrm{~m}^{-1 \circ} \mathrm{C}^{-1}
\end{aligned}
\)
Now, Since they are in series connection, So, the heat passed through the crosssections is the same.
\(
\begin{aligned}
& \text { So, } Q_1=Q_2 \\
& \text { Or } \frac{K_{\mathrm{Cu}} \times \mathrm{A} \times(\theta-0)}{\mathrm{l}}=\frac{\mathrm{K}_{\mathrm{St}} \times \mathrm{A} \times(100-\theta)}{\mathrm{l}} \\
& \Rightarrow 390(\theta-0)=46 \times 100-46 \theta \Rightarrow 436 \theta=4600 \\
& \Rightarrow \theta=\frac{4600}{436}=10.55 \approx 10.6^{\circ} \mathrm{C}
\end{aligned}
\)
An aluminium rod and a copper rod of equal length \(1.0 \mathrm{~m}\) and cross-sectional area \(1 \mathrm{~cm}^2\) are welded together as shown in figure below. One end is kept at a temperature of \(20^{\circ} \mathrm{C}\) and the other at \(60^{\circ} \mathrm{C}\). Calculate the amount of heat taken out per second from the hot end. Thermal conductivity of aluminium \(=200 \mathrm{Wm}^{-1_0} \mathrm{C}^{-1}\) and of copper \(=390 \mathrm{Wm}^{-1_0} \mathrm{C}^{-1}\).
As the Aluminum rod and Copper rod joined are in parallel
\(
\begin{aligned}
& \frac{Q}{t}=\left(\frac{Q}{t}\right)_{\text {Al }}+\left(\frac{Q}{t}\right)_{C u} \\
& \Rightarrow \frac{K A\left(\theta_1-\theta_2\right)}{l}=\frac{K_1 A\left(\theta_1-\theta_2\right)}{l}+\frac{K_2 A\left(\theta_1-\theta_2\right)}{l} \\
& \Rightarrow K=K_1+K_2=(390+200)=590 \\
& \frac{Q}{t}=\frac{K A\left(\theta_1-\theta_2\right)}{l}=\frac{590 \times 1 \times 10^{-4} \times(60-20)}{1} \\
& =590 \times 10^{-4} \times 40=2.36 \mathrm{J}
\end{aligned}
\)
Figure below shows an aluminium rod joined to a copper rod. Each of the rods has a length of \(20 \mathrm{~cm}\) and area of cross section \(0.20 \mathrm{~cm}^2\). The junction is maintained at a constant temperature \(40^{\circ} \mathrm{C}\) and the two ends are maintained at \(80^{\circ} \mathrm{C}\). Calculate the amount of heat taken out from the cold junction in one minute after the steady state is reached. The conductivities are \(K_{A L}=200 \mathrm{W} \mathrm{m}^{-1_0} \mathrm{C}^{-1}\) and \(K_{C u}=400 \mathrm{W} \mathrm{m}^{-1_0} \mathrm{C}^{-1}\).
Area of cross section, \(A=0.20 \mathrm{~cm}^2=0.2 \times 10^{-4} \mathrm{~m}^2\)
Thermal conductivity of aluminium, \(K_{A L}=200 \mathrm{W} \mathrm{m}^{-1_0} \mathrm{C}^{-1}\)
Thermal conductivity of copper, \(K_{C u}=400 \mathrm{W} \mathrm{m}^{-1_0} \mathrm{C}^{-1}\).
\(\mathrm{l}=20 \mathrm{~cm}=2 \times 10^{-1} \mathrm{~m}\)
\(\text { Heat drawn per second }\)
\(
\mathrm{Q}_{\mathrm{Al}}+\mathrm{Q}_{\mathrm{Cu}}
\)
\(
\begin{aligned}
& =\frac{K_{A I} \times A \times(80-40)}{l}+\frac{K_{c u} \times A \times(80-40)}{l} \\
& =\frac{200 \times 0.2 \times 10^{-4} \times 40}{0.2}+\frac{400 \times 0.2 \times 10^{-4} \times 40}{0.2} \\
& =8 \times 10^{-1}+16 \times 10^{-1} \\
& =24 \times 10^{-1} \\
& =2.4 \mathrm{~J} / \mathrm{s}
\end{aligned}
\)
Heat drawn in 1 minute \(=2.4 \times 60=144 \mathrm{~J}\)
Consider the situation shown in the figure below. The frame is made of the same material and has a uniform cross-sectional area everywhere. Calculate the amount of heat flowing per second through a cross-section of the bent part if the total heat taken out per second from the end at \(100^{\circ} \mathrm{C}\) is \(130 \mathrm{~J}\).
\(
(\mathrm{Q} / \mathrm{t})_{\mathrm{AB}}=(\mathrm{Q} / \mathrm{t})_{\mathrm{BE} \text { bent }}+(\mathrm{Q} / \mathrm{t})_{\mathrm{BE}}
\)
\(
(\mathrm{Q} / \mathrm{t})_{\mathrm{BE} \text { bent }}=\frac{\mathrm{KA}\left(\theta_1-\theta_2\right)}{70}
\)
\(
(\mathrm{Q} / \mathrm{t})_{\mathrm{BE}}=\frac{\mathrm{KA}\left(\theta_1-\theta_2\right)}{60}
\)
\(
\frac{(\mathrm{Q} / \mathrm{t})_{\mathrm{BEbent}}}{(\mathrm{Q} / \mathrm{t})_{\mathrm{BE}}}=\frac{60}{70}=\frac{6}{7}
\)
\(
(\mathrm{Q} / \mathrm{t})_{\mathrm{BE} \text { bent }}+(\mathrm{Q} / \mathrm{t})_{\mathrm{BE}}=130
\)
\(
\Rightarrow(Q / t)_{B E} \text { bent }+(Q / t)_{B E} \times 7 / 6=130
\)
\(
\Rightarrow\left(\frac{7}{6}+1\right)(Q / t)_{\mathrm{BE} \text { bent }}=130
\)
\(
(\mathrm{Q} / \mathrm{t})_{\mathrm{BE} \text { bent }}=\frac{130 \times 6}{13}=60 J
\)
Alternate:
Length \(A D=60 \mathrm{~cm}\)
Length of bent part \(=5+60+5=70 \mathrm{~cm}\)
Resistance \(\propto\) length
\(
\begin{aligned}
& R_1=70 R, R_2=60 R \\
& i_1=\frac{R_2}{R_1+R_2} i=\frac{60 R}{70 R+60 R} \times 130 \\
& =60 \mathrm{~J}
\end{aligned}
\)
Suppose the bent part of the frame of the previous problem has a thermal conductivity of \(780 \mathrm{J} \mathrm{s}^{-1} \mathrm{~m}^{-1_{\circ}} \mathrm{C}^{-1}\) whereas it is \(390 \mathrm{J} \mathrm{s}^{-1} \mathrm{~m}^{-1_{\circ}} \mathrm{C}^{-1}\) for the straight part. Calculate the ratio of the rate of heat flow through the bent part to the rate of heat flow through the straight part.
\(
\begin{aligned}
& \frac{\mathrm{Q}}{\mathrm{t}} \text { bent }=\frac{780 \times \mathrm{A} \times 100}{70} \\
& \frac{\mathrm{Q}}{\mathrm{t}} \mathrm{str}=\frac{390 \times \mathrm{A} \times 100}{60} \\
& \frac{(\mathrm{Q} / \mathrm{t}) \text { bent }}{(\mathrm{Q} / \mathrm{t}) \mathrm{str}}=\frac{780 \times \mathrm{A} \times 100}{70} \times \frac{60}{390 \times \mathrm{A} \times 100}=\frac{12}{7}
\end{aligned}
\)
A room has a window fitted with a single \(1.0 \mathrm{~m} \times 2.0 \mathrm{~m}\) glass of thickness \(2 \mathrm{~mm}\). (a) Calculate the rate of heat flow through the closed window when the temperature inside the room is \(32^{\circ} \mathrm{C}\) and that outside is \(40^{\circ} \mathrm{C}\). (b) The glass is now replaced by two glasspanes, each having a thickness of \(1 \mathrm{~mm}\) and separated by a distance of \(1 \mathrm{~mm}\). Calculate the rate of heat flow under the same conditions of temperature. Thermal conductivity of window glass \(=1.0 \mathrm{J} \mathrm{s}^{-1} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\) and that of air \(=0.025 \mathrm{J} \mathrm{s}^{-1} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\).
(a)
\(
\begin{aligned}
& \frac{Q}{t}=\frac{K A\left(\theta_1-\theta_2\right)}{1} \\
& =\frac{1 \times 2(40-32)}{2 \times 10^{-3}} \\
& =8000 \mathrm{~J} / \mathrm{sec} .
\end{aligned}
\)
(b) Resistance of glass \(=\frac{1}{a k_g}+\frac{1}{a k_g}\)
\(
\begin{aligned}
& \text { Resistance of air }=\frac{1}{a k_a} \\
& \text { Net resistance }=\frac{1}{a k_g}+\frac{1}{a k_g}+\frac{1}{a k_g} \\
& \left(\frac{2}{k_g}+\frac{1}{k_a}\right) \\
& =\frac{1}{a}\left(\frac{2 k_a+k g}{k_g k_a}\right) \\
& =\frac{1 \times 10^{-3}}{2}\left(\frac{2 \times 0.025+}{0.025}\right) \\
& =\frac{1 \times 10^{-3} \times 1.05}{0.05} \\
& \frac{Q}{t}=\frac{\left(\theta_1-\theta_2\right)}{R} \\
& =385.9=381 \mathrm{~W} .
\end{aligned}
\)
The two rods shown in the figure below have identical geometrical dimensions. They are in contact with two heat baths at temperatures \(100^{\circ} \mathrm{C}\) and \(0^{\circ} \mathrm{C}\). The temperature of the junction is \(70^{\circ} \mathrm{C}\). Find the temperature of the junction if the rods are interchanged.
\(
\text { Now; Q/t remains same in both cases }
\)
\(
\begin{aligned}
& \text { In Case I : } \frac{\mathrm{K}_{\mathrm{A}} \times \mathrm{A} \times(100-70)}{\ell}=\frac{\mathrm{K}_{\mathrm{B}} \times \mathrm{A} \times(70-0)}{\ell} \\
& \Rightarrow 30 \mathrm{~K}_{\mathrm{A}}=70 \mathrm{~K}_{\mathrm{B}} \\
& \text { In Case II : } \frac{\mathrm{K}_{\mathrm{B}} \times \mathrm{A} \times(100-\theta)}{\ell}=\frac{\mathrm{K}_{\mathrm{A}} \times \mathrm{A} \times(\theta-0)}{\ell} \\
& \Rightarrow 100 \mathrm{~K}_{\mathrm{B}}-\mathrm{K}_{\mathrm{B}} \theta=\mathrm{K}_{\mathrm{A}} \theta \\
& \Rightarrow 100 \mathrm{~K}_{\mathrm{B}}-\mathrm{K}_{\mathrm{B}} \theta=\frac{70}{30} \mathrm{~K}_{\mathrm{B}} \theta \\
& \Rightarrow 100=\frac{7}{3} \theta+\theta \quad \Rightarrow \theta=\frac{300}{10}=30^{\circ} \mathrm{C}
\end{aligned}
\)
The three rods shown in figure below have identical geometrical dimensions. Heat flows from the hot end at a rate of \(40 \mathrm{~W}\) in the arrangement (a). Find the rates of heat flow when the rods are joined as in arrangement (b) and in (c). Thermal conductivities of aluminium and copper are \(200 \mathrm{~W} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\) and \(400 \mathrm{~W} \mathrm{~m}^{-1_0} \mathrm{C}^{-1}\) respectively.
\(
\begin{aligned}
& \theta_1-\theta_2=100 \\
& \mathrm{Q} / \mathrm{t}=\left(\theta_1-\theta_2\right) / \mathrm{R} \\
& \mathrm{R}=\mathrm{R}_1+\mathrm{R}_2+\mathrm{R}_3=1 / \mathrm{AK}_{\mathrm{Al}}+1 / \mathrm{AK}_{\mathrm{Cu}}+l / \mathrm{AK_{ \textrm {Al } }} \\
& =\frac{\ell}{\mathrm{A}}\left(\frac{2}{200}+\frac{1}{400}\right)=\frac{\ell}{\mathrm{A}}\left(\frac{4+1}{400}\right)=\frac{\ell}{\mathrm{A}} \frac{1}{80} \\
& \frac{\mathrm{Q}}{\mathrm{t}}=\frac{100}{(\ell / \mathrm{A})(1 / 80)} \Rightarrow 40=80 \times 100 \times \frac{\mathrm{A}}{\ell} \\
& \Rightarrow \frac{\mathrm{A}}{\ell}=\frac{1}{200}
\end{aligned}
\)
for (b)
\(
\begin{aligned}
& R=R 1+R 2=R 1+\left(R_{C u} R_{A l}\right) /\left(R_{C u}+R_{A l}\right) \\
& =\frac{l}{K_{Al} A}+\frac{\frac{l}{K_{cu} A} \times \frac{l}{K_{Al} A}}{\frac{l}{K_{c u} A }+\frac{l}{K_{A L} A}}
& =\frac{l}{A \cdot K_{Al}}+\frac{l}{A\left(K_{Al}+K_{cu}\right)}
\end{aligned}
\)
\(
\begin{aligned}
& =\frac{l}{A}\left(\frac{1}{200}+\frac{1}{200+400}\right) \\
& =\frac{l}{A}\left(\frac{1}{200}+\frac{1}{600}\right) \\
& =\frac{4}{600} \frac{l}{A}
\end{aligned}
\)
\(
\frac{Q}{t}=\frac{\theta_1-\theta_2}{R}=\frac{100}{(l / A)(4 / 600)}=\frac{100 \times 600}{4} \frac{A}{l}=\frac{100 \times 600}{4} \times \frac{1}{200}=75
\)
for (c)
\(
\begin{aligned}
& \frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}=\frac{1}{\frac{l}{\mathrm{AK}_{\mathrm{Al}}}}+\frac{1}{\frac{l}{\mathrm{AK}_{\mathrm{Cu}}}}+\frac{1}{\frac{l}{\mathrm{AK}_{\mathrm{Al}}}} \\
& =\frac{A}{l}\left(K_{Al}+K_{Cu}+K_{Al}\right)=\frac{A}{l}(2 \times 200+400)=\frac{A}{l}(800) \\
& \Rightarrow R=\frac{l}{A} \times \frac{1}{800} \\
&
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \frac{Q}{t}=\frac{\theta_1-\theta_2}{R}=\frac{100 \times 800 \times A}{l} \\
& =\frac{100 \times 800}{200}=400 \mathrm{~W}
\end{aligned}
\)
Four identical rods \(A B, C D, C F\) and \(D E\) are joined as shown in the figure below. The length, cross-sectional area and thermal conductivity of each rod are \(l, A\) and \(K\) respectively. The ends \(A, E\) and \(F\) are maintained at temperatures \(T_1, T_2\) and \(T_3\) respectively. Assuming no loss of heat to the atmosphere, find the temperature at \(B\).
\(
\text { Let the temp. at B be } T
\)
\(
\begin{aligned}
& \frac{Q_A}{t}=\frac{Q_B}{t}+\frac{Q_C}{t} \\
& \Rightarrow \frac{T_1-T}{l}=\frac{T-T_3}{3 l / 2}+\frac{T-T_2}{3 l / 2} \\
& \Rightarrow-7 T=-3 T_1-2\left(T_2+T_3\right) \\
& \Rightarrow \frac{K A\left(T_1-T\right)}{l}=\frac{K A\left(T-T_3\right)}{l+(l / 2)}+\frac{K A\left(T-T_2\right)}{l+(l / 2)} \\
& \Rightarrow 3 T_1-3 T=4 T-2\left(T_2+T_3\right) \\
& \Rightarrow T=\frac{3 T_1+2\left(T_2+T_3\right)}{7}
\end{aligned}
\)
Seven rods \(A, B, C, D, E, F\) and \(G\) are joined as shown in figure below. All the rods have equal cross-sectional area \(A\) and length \(l\). The thermal conductivities of the rods are \(K_A=K_C=K_0, K_B=K_D=2 K_0, K_E=3 K_0, K_F=4 K_0\) and \(K_G=5 K_0\). The rod \(E\) is kept at a constant temperature \(T_1\) and the rod \(G\) is kept at a constant temperature \(T_2\left(T_2>T_1\right)\). (a) Show that the rod \(F\) has a uniform temperature \(T=\left(T_1+2 T_2\right) / 3\). (b) Find the rate of heat flowing from the source which maintains the temperature \(T_2\).
(a) The temp at the both ends of bar \(F\) is same
Rate of Heat flow to right \(=\) Rate of heat flow through left
\(
\Rightarrow(\mathrm{Q} / \mathrm{t})_{\mathrm{A}}+(\mathrm{Q} / \mathrm{t})_{\mathrm{C}}=(\mathrm{Q} / \mathrm{t})_{\mathrm{B}}+(\mathrm{Q} / \mathrm{t})_{\mathrm{D}}
\)
\(
\Rightarrow \frac{K_{\mathrm{A}}\left(\mathrm{T}_1-T\right) \mathrm{A}}{l}+\frac{\mathrm{K}_{\mathrm{C}}\left(\mathrm{T}_1-\mathrm{T}\right) \mathrm{A}}{l}=\frac{\mathrm{K}_{\mathrm{B}}\left(T-\mathrm{T}_2\right) \mathrm{A}}{l}+\frac{\mathrm{K}_{\mathrm{D}}\left(T-\mathrm{T}_2\right) \mathrm{A}}{l}
\)
\(
\Rightarrow 2 \mathrm{~K}_0\left(\mathrm{~T}_1-\mathrm{T}\right)=2 \times 2 \mathrm{~K}_0\left(\mathrm{~T}-\mathrm{T}_2\right)
\)
\(
\Rightarrow \mathrm{T}_1-\mathrm{T}=2 \mathrm{~T}-2 \mathrm{~T}_2
\)
\(
\Rightarrow \mathrm{T}=\frac{\mathrm{T}_1+2 \mathrm{~T}_2}{3}
\)
(b) To find the rate of flow of heat from the source (rod G), which maintains a temperature \(T_2\) is given by Rate of flow of heat, \(\mathrm{q}=\frac{\Delta T}{\text { Thermal resistance }}\) . First, we will find the effective thermal resistance of the circuit. From the diagram, we can see that it forms a balanced Wheatstone bridge. Also, as the ends of rod \(\mathrm{F}\) are maintained at the same temperature, no heat current flows through rod \(\mathrm{F}\). Hence, for simplification, we can remove this branch. From the diagram, we find that \(R_A\) and \(R_B\) are connected in series.
\(\therefore \mathrm{R}_{\mathrm{AB}}=\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}\)
\(R_C\) and \(R_D\) are also connected in series.
\(\therefore R_{C D}=R_C+R_D\)
Then, \(R_{A B}\) and \(R_{C D}\) are in parallel connection.
\(
\begin{aligned}
& R_A=\frac{l}{K_0 A} \\
& R_B=\frac{l}{2 K_0 A} \\
& R_C=\frac{l}{K_0 A} \\
& R_D=\frac{l}{2 K_0 A} \\
& R_{A B}=\frac{3 l}{2 k_0 A} \\
& R_{C D}=\frac{3 l}{2 K_0 A} \\
& R_{\text {eff }}=\frac{\frac{3 l}{2 K_0 A} \times \frac{3 l}{2 K_0 A}}{\frac{(3 l)}{2 K_0 A}+\frac{3 l}{2 K_0 A}} \\
& =\frac{3 l}{4 K_0 A} \\
& q=\frac{\Delta T}{\mathrm{R}_{eff}} \\
& =\frac{T_1-T_2}{\frac{3 l}{4 K_0 A}} \\
& \Rightarrow \frac{4 K_0 A\left(T_1-T_2\right)}{3 l}
\end{aligned}
\)
Find the rate of heat flow through a cross-section of the rod shown in the figure below \(\left(\theta_2>\theta_1\right)\). The thermal conductivity of the material of the rod is \(K\).
\(
\begin{aligned}
& \operatorname{Tan} \phi=\frac{r_2-r_1}{L}=\frac{\left(y-r_1\right)}{x} \\
& \Rightarrow x_2-x_1=y L-r_1 L \\
& \text { Differentiating wr to ‘ } x \text { ‘ } \\
& \Rightarrow r_2-r_1=\frac{L d y}{d x}-0 \\
& \Rightarrow \frac{d y}{d x}=\frac{r_2-r_1}{L} \Rightarrow d x=\frac{d y L}{\left(r_2-r_1\right)} \cdots(1) \\
& \text { Now } \frac{Q}{T}=\frac{K \pi y^2 d \theta}{d x} \Rightarrow \frac{Q d x}{T}=k \pi y^2 d \theta \\
& \Rightarrow \frac{Q L d y}{r_2 – r_1}=K \pi y^2 d \theta \\
& \Rightarrow d \theta =\frac{Q L d y}{\left(r_2-r_1\right) K \pi y^2}
\end{aligned}
\)
Integrating both side
\(
\begin{aligned}
& \Rightarrow \int_{\theta_1}^{\theta_2} d \theta=\frac{Q L}{\left(r_2-r_1\right) K \pi} \int_{r_1}^{r_2} \frac{d y}{y} \\
& \Rightarrow\left(\theta_2-\theta_1\right)=\frac{Q L}{\left(r_2-r_1\right) K \pi} \times\left[\frac{-1}{y}\right]_{r_1}^{r_2} \\
& \Rightarrow\left(\theta_2-\theta_1\right)=\frac{Q L}{\left(r_2-r_1\right) K \pi} \times\left[\frac{1}{r_1}-\frac{1}{r_2}\right] \\
& \Rightarrow\left(\theta_2-\theta_1\right)=\frac{Q L}{\left(r_2-r_1\right) K \pi} \times\left[\frac{r_2-r_1}{r_1+r_2}\right] \\
& \Rightarrow Q=\frac{K \pi r_1 r_2\left(\theta_2-\theta_1\right)}{L}
\end{aligned}
\)
A rod of negligible heat capacity has length \(20 \mathrm{~cm}\), area of cross section \(1.0 \mathrm{~cm}^2\) and thermal conductivity \(200 \mathrm{W} \mathrm{m}^{-1_0} \mathrm{C}^{-1}\). The temperature of one end is maintained at \(0^{\circ} \mathrm{C}\) and that of the other end is slowly and linearly varied from \(0^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\) in 10 minutes. Assuming no loss of heat through the sides, find the total heat transmitted through the rod in these 10 minutes.
Given:
Length of the rod, \(l=20 \mathrm{~cm}=0.2 \mathrm{~m}\)
Area of cross section of the rod, \(A=1.0 \mathrm{~cm}^2=1.0 \times 10^{-4} \mathrm{~m}^2\)
Thermal conductivity of the material of the rod, \(\mathrm{k}=200 \mathrm{~W} \mathrm{~m}^{-1_{\circ}} \mathrm{C}^{-1}\)
The temperature of one end of the rod is increased uniformly by \(60^{\circ} \mathrm{C}\) within 10 minutes.
This mean that the rate of increase of the temperature of one end is \(0.1^{\circ} \mathrm{C}\) per second
\(
\Rightarrow \frac{60}{10 \times 60} { }^{\circ} \mathrm{C} / \mathrm{s}
\)
So, total heat flow can be found by adding heat flow every second.
Rate of flow of heat \(=\frac{d Q}{d t}\)
\(
\mathrm{Q}_{\text {net }}=\Sigma \frac{K A}{d}\left(T_2-T_1\right) \times \Delta t
\)
For each interval,
\(
\begin{aligned}
& \Delta t=1 \\
&\mathrm{Q}_{\text {net }}= \frac{\mathrm{KA} \times 0.1}{\mathrm{~d}}+\frac{\mathrm{KA} \times 0.2}{\mathrm{~d}}+\ldots \ldots .+\frac{\mathrm{KA} \times 60}{\mathrm{~d}} \\
& \mathrm{Q}_{\text {net }}=\frac{K A}{d}(0.1+0.2+\ldots \ldots \ldots+60.0)
\end{aligned}
\)
\(
[\therefore a+2 a+\ldots \ldots \ldots+n a=n / 2\{2 a+(n-1) a\}]
\)
\(
\mathrm{Q}_{\text {net }}=\frac{K A}{d} \times \frac{600}{2}(0.1+60)
\)
\(
=\frac{200 \times-10^{-4}}{20 \times 10^{-2}} \times \frac{600}{2} \times 60.1
\)
\(
\mathrm{Q}_{\text {net }}=1800 \mathrm{~J} \text { (approximately) }
\)
A hollow metallic sphere of radius \(20 \mathrm{~cm}\) surrounds a concentric metallic sphere of radius \(5 \mathrm{~cm}\). The space between the two spheres is filled with a nonmetallic material. The inner and outer spheres are maintained at \(50^{\circ} \mathrm{C}\) and \(10^{\circ} \mathrm{C}\) respectively and it is found that \(100 \mathrm{~J}\) of heat passes from the inner sphere to the outer sphere per second. Find the thermal conductivity of the material between the spheres.
\(
\begin{aligned}
& a=r_1=5 \mathrm{~cm}=0.05 \mathrm{~m} \\
& b=r_2=20 \mathrm{~cm}=0.2 \mathrm{~m} \\
& \theta_1=T_1=50^{\circ} \mathrm{C}, \theta_2=T_2=10^{\circ} \mathrm{C}
\end{aligned}
\)
Now, considering a small strip of thickness ‘dr’ at a distance ‘ \(r\) ‘.
\(
\begin{aligned}
& A=4 \pi r^2 \\
& H=-4 \pi r^2 K \frac{d \theta}{d r}[(-) \text { ve because with increase of } r, \theta \text { decreases }] \\
& =\int_a^b \frac{d r}{r^2}=\frac{-4 \pi K}{H} \int_{\theta_1}^{\theta_2} d \theta \quad \text { On integration, } \\
& H=\frac{d Q}{d t}=K \frac{4 \pi a b\left(\theta_1-\theta_2\right)}{(b-a)}
\end{aligned}
\)
Putting the values we get
\(
\begin{aligned}
& \frac{\mathrm{K} \times 4 \times 3.14 \times 5 \times 20 \times 40 \times 10^{-3}}{15 \times 10^{-2}}=100 \\
& \Rightarrow \mathrm{K}=\frac{15}{4 \times 3.14 \times 4 \times 10^{-1}}=2.985 \approx 3 \mathrm{w} / \mathrm{m}{ }^{\circ} \mathrm{C}
\end{aligned}
\)
Figure below shows two adiabatic vessels, each containing a mass \(m\) of water at different temperatures. The ends of a metal rod of length \(L\), area of cross-section \(A\) and thermal conductivity \(K\), are inserted in the water as shown in the figure. Find the time taken for the difference between the temperatures in the vessels to become half of the original value. The specific heat capacity of water is s. Neglect the heat capacity of the rod and the container and any loss of heat to the atmosphere.
Rate of transfer of heat from the rod is given as
\(
\frac{\Delta Q}{\Delta t}=\frac{K A\left(T_1-T_2\right)}{l}
\)
In time t, the temperature difference becomes half.
In time \(\Delta t\), the heat transfer from the rod will be given by
\(
\Delta Q=\frac{K A\left(T_1-T_2\right)}{l} \Delta t \dots(i)
\)
Heat loss by water at temperature \(T_1\) is equal to the heat gain by water at temperature \(T_2\).
Therefore, heat loss by water at temperature \(T_1\) in time \(\Delta t\) is given by
\(
\Delta Q=m s\left(T_1-T_1 \prime\right) \dots(ii)
\)
From equations (i) and (ii),
\(
\mathrm{ms}\left(T_1-T_1 \prime\right)=\frac{K A\left(T_1-T_2\right)}{l} \Delta t
\)
\(\Rightarrow T_1 \prime=T_1-\frac{K A\left(T_1-T_2\right)}{l(m s) \Delta t}\)
This gives us the fall in the temperature of water at temperature \(T_1\).
Similarly, rise in temperature of water at temperature \(T_2\) is given by
\(
T_2 \prime=T_2+\frac{K A\left(T_1-T_2\right)}{l(m s)} \Delta t
\)
Change in the temperature is given by
\(
\begin{aligned}
& \left(T_1 \prime-T_2 \prime\right)=\left(T_1-T_2\right)-2 \frac{K A\left(T_1-T_2\right)}{l(m s)} \Delta t \\
& \Rightarrow\left(T_1-T_2\right)-\left(T_1 \prime-T_2 \prime\right)=2 \frac{K A\left(T_1-T_2\right)}{l(m s)} \Delta t \\
& \Rightarrow \frac{\Delta T}{\Delta t}=2 \frac{K A\left(T_1-T_2\right)}{l(m s)}
\end{aligned}
\)
Here, \(\frac{\Delta T}{\Delta t}\) is the rate of change of temperature difference.
Taking limit \(\Delta t \rightarrow 0\),
\(
\begin{aligned}
& \Rightarrow \frac{d T}{d t}=2 \frac{K A\left(T_1-T_2\right)}{l(m s)} \\
& \Rightarrow \frac{d T}{T_1-T_2}=2 \frac{K A}{l(m s) d t}
\end{aligned}
\)
On integrating within proper limit, we get
\(
\begin{aligned}
& \int_{\left(T_1-T_2\right)}^{\left(T_1-T_2\right) / 2} \frac{d T}{\left(T_1-T_2\right)}=2 \frac{K A}{l(m s)} \int_0^t d t \\
& \Rightarrow \operatorname{In}\left[\frac{\left(T_1-T_2\right)}{2\left(T_1-t_2\right)}\right]=2=\frac{K A}{l(m s)} t \\
& \Rightarrow \operatorname{In}[2]=2 \frac{K A}{l(m s)} t \\
& \Rightarrow t=\operatorname{In}[2] \frac{l m s}{2 K A}
\end{aligned}
\)
Two bodies of masses \(m_1\) and \(m_2\) and specific heat capacities \(s_1\) and \(s_2\) are connected by a rod of length \(l\), cross-sectional area \(A\), thermal conductivity \(K\) and negligible heat capacity. The whole system is thermally insulated. At time \(t=0\), the temperature of the first body is \(T_1\) and the temperature of the second body is \(T_2\left(T_2>T_1\right)\). Find the temperature difference between the two bodies at time \(t\).
Rate of transfer of heat from the rod is given by
\(
\frac{\Delta Q}{\Delta t}=\frac{K A\left(T_2-T_1\right)}{l}
\)
Heat transfer from the rod in time \(\Delta t\) is given by
\(
\frac{\Delta Q}{\Delta t}=\frac{K A\left(T_2-T_1\right)}{l} \Delta t \dots(1)
\)
Heat loss by the body at temperature \(T_2\) is equal to the heat gain by the body at temperature \(T_1\)
Therefore, heat loss by the body at temperature \(T_2\) in time \(\Delta t\) is given by
\(\Delta Q=m_2 s_2\left(T_2-T_2^{\prime}\right) \ldots(2)\)
From equations (1) and (2)
\(
\begin{aligned}
& m_2 s_2\left(T_2-T_2 \prime\right)=\frac{K A\left(T_2-T_1\right)}{l} \Delta t \\
& \Rightarrow T_2 \prime=T_2-\frac{K A\left(T_2-T_1\right)}{l\left(m_2 s_2\right)} \Delta t
\end{aligned}
\)
This gives us the fall in the temperature of the body at temperature \(T_2\).
Similarly, rise in temperature of water at temperature \(T_1\) is given by
\(T_{1^{\prime}}=T_1+\frac{K A\left(T_2-T_1\right)}{l\left(m_1 s_1\right)} \Delta t\)
Change in the temperature is given by
\(
\begin{aligned}
& \left(T_{2^{\prime}}-T_1 \prime\right)=\left(T_2-T_1\right)-\left[\frac{K A\left(T_2-T_1\right)}{l m_1 s_1} \Delta t+\frac{K A\left(T_2-T_1\right)}{l m_2 s_1} \Delta t\right] \\
& \Rightarrow\left(T_2 \prime-T_1 \prime\right)-\left(T_2-T_1\right)=-\left[\frac{K A\left(T_2-T_1\right)}{l m_1 s_1} \Delta t+\left[\frac{K A\left(T_2-T_1\right)}{l m_2 s_2} \Delta t\right]\right. \\
& \Rightarrow \frac{\Delta T}{\Delta t}=\frac{K A\left(T_2-T_1\right)}{l}\left[\frac{1}{m_1 s_1}+\frac{1}{m_2 s_2}\right] \Delta t \\
& \Rightarrow \frac{1}{T_2-T_1} \Delta T=-\frac{K A}{l}\left[\frac{m_1 s_1+m_2 s_2}{m_1 s_1 m_2 s_2}\right]
\end{aligned}
\)
By integrating both sides, we get
\(\lim \Delta t \rightarrow 0\)
\(
\begin{aligned}
& \int \frac{1}{T_2-T_1} d T=\int-\frac{K A}{l}\left[\frac{m_1 s_1+m_2 s_2}{m_1 s_1 m_2 s_2}\right] d t \\
& \Rightarrow \operatorname{In}\left[T_2-T_1\right]=-\frac{K A}{l}\left[\frac{m_1 s_1+m_2 s_2}{m_1 s_1 m_2 s_2}\right] t \\
& \Rightarrow\left(T_2-T_1\right)=e^{-\lambda t}
\end{aligned}
\)
Here, \(\lambda=\mathrm{KA} / {l}\left[m_1 s_1+m_2 s_2 / m_1 s_1 m_2 s_2\right]\)
An amount \(n\) (in moles) of a monatomic gas at an initial temperature \(T_0\) is enclosed in a cylindrical vessel fitted with a light piston. The surrounding air has a temperature \(\left.T_s>T_0\right)\) and the atmospheric pressure is \(p_a\). Heat may be conducted between the surrounding and the gas through the bottom of the cylinder. The bottom has a surface area \(A\), thickness \(x\) and thermal conductivity \(K\). Assuming all changes to be slow, find the distance moved by the piston in time \(t\).
In time \(d t\), heat transfer through the bottom of the cylinder is given by \(\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{KA}\left(T_s-\mathrm{T}_0\right)}{x}\)
For a monoatomic gas, pressure remains constant.
\(
\begin{aligned}
& \therefore d Q=n C_p d T \\
& \therefore \frac{n C_p d T}{d t}=\frac{\mathrm{KA}\left(\mathrm{T}_2-\mathrm{T}_0\right)}{x}
\end{aligned}
\)
For a monoatomic gas,
\(
C_p=\frac{5}{2} R
\)
\(
\begin{aligned}
& \Rightarrow \frac{\mathrm{n} 5 \mathrm{RdT}}{2 \mathrm{dt}}=K A \frac{T_s-T_0}{x} \\
& \Rightarrow \frac{5 \mathrm{nR}}{2} \frac{\mathrm{dT}}{d t}=\frac{K A\left(T_s-T_0\right)}{x} \\
& \Rightarrow \frac{\mathrm{dT}}{T_s-T_0}=\frac{-2 \mathrm{KAdt}}{5 \mathrm{nRx}}
\end{aligned}
\)
Integrating both the sides with limit \(T_0\) to \(T\),
\(
\begin{aligned}
& \Rightarrow \operatorname{ln}\left(\frac{T_s-T}{T_s-T_0}\right)=\frac{-2 \mathrm{KAt}}{5 \mathrm{nRx}}
\end{aligned}
\)
\(
T_s-T=\left(T_s-T_0\right) e^{\frac{-2 \text { KAt }}{\text { 5nRx }}}
\)
\(
T-T_0=\left(T_s-T_0\right)\left[1-e^{\frac{-2 {KAt}}{5nRx}}\right]
\)
From the gas equation,
\(
\begin{aligned}
& \frac{P_a A l}{n R}=T-T_0 \\
& \therefore \frac{P_a A l}{n R}=\left(T_s-T_0\right)\left[1-e^{\frac{-2 K a t}{5 n R x}}\right] \\
& \Rightarrow l=\frac{n R}{P_a A}\left(T_s-T_0\right)\left[1-e^{\frac{-2 K A t}{5 n R x}}\right]
\end{aligned}
\)
Assume that the total surface area of a human body is \(1.6 \mathrm{~m}^2\) and that it radiates like an ideal radiator. Calculate the amount of energy radiated per second by the body if the body temperature is \(37^{\circ} \mathrm{C}\). Stefan constant \(\sigma\) is \(6.0 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}\).
Given:
Area of the body, \(A=1.6 \mathrm{~m}^2\)
Temperature of the body, \(T=310 \mathrm{~K}\)
From Stefan-Boltzmann law,
\(\text { { Energy radiated }/{Time} }=\sigma \mathrm{AT}^4\)
Here, \(A\) is the area of the body, and \(\sigma\) is the Stefan-Boltzmann constant.
Energy radiated per second \(=1.6 \times 6 \times 10^{-8} \times(310)^4\)
\(=886.58 \approx 887 \mathrm{~J}\)
Calculate the amount of heat radiated per second by a body of surface area \(12 \mathrm{~cm}^2\) kept in thermal equilibrium in a room at temperature \(20^{\circ} \mathrm{C}\). The emissivity of the surface \(=0.80\) and \(\sigma=6.0 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\).
Given:
Area of the body, \(A=12 \times 10^{-4} \mathrm{~m}^2\) Temperature of the body, \(T=(273+20)=293 \mathrm{~K}\) Emissivity, \(e=0.80\)
Rate of emission of heat, \(R=A e \sigma T^4\)
\(
\begin{aligned}
& R=12 \times 10^{-4} \times 0.80 \times 6.0 \times 10^{-8} \times(293)^4 \\
& R=0.42 \text { J (approximately) }
\end{aligned}
\)
A solid aluminium sphere and a solid copper sphere of twice the radius are heated to the same temperature and are allowed to cool under identical surrounding temperatures. Assume that the emissivity of both the spheres is the same. Find the ratio of (a) the rate of heat loss from the aluminium sphere to the rate of heat loss from the copper sphere and (b) the rate of fall of temperature of the aluminium sphere to the rate of fall of temperature of the copper sphere. The specific heat capacity of aluminium \(=900 \mathrm{~J} \mathrm{~kg}^{-1 \circ} \mathrm{C}^{-1}\) and that of copper \(=390 \mathrm{~J} \mathrm{~kg}^{-1_0} \mathrm{C}^{-1}\). The density of copper \(=3.4\) times the density of aluminium.
\(C\)-cooling rate \(H\) – heat loss
\(
\frac{H_{A l}}{H_{C u}}=\frac{\sigma A_{A I}\left(T_{A I^4-T_0^4}\right)}{\sigma e A_{C u}\left(T_{C u^4-T_0^4}\right)}
\)
\(
\text { at } t=0 T_{A l}=T_{C u}=T=\frac{A_{A l}}{A_{C u}}=\frac{R^2}{(2 R)^2}=\frac{1}{4}
\)
(b) \(C-\) cooling rate
\(
\begin{aligned}
& \frac{C_{A l}}{C_{C u}}=\left(\frac{A_{A l}}{m_{A l} S_{A l}}\right)\left(\frac{m_{C u} S_{C u}}{A_{C u}}\right) \\
& =\left(\frac{A_{A l}}{A_{C u}}\right)\left(\frac{m_{C u}}{m_{A l}}\right)\left(\frac{S_{C u}}{S_{A l}}\right) \\
& =\left(\frac{R}{2 R}\right)^2 \times\left\{\left(\frac{2 R}{R}\right)^3 \times 3.4\right\} \times \frac{390}{900}=2.9:1
\end{aligned}
\)
A \(100 \mathrm{~W}\) bulb has tungsten filament of total length \(1.0 \mathrm{~m}\) and radius \(4 \times 10^{-5} \mathrm{~m}\). The emissivity of the filament is \(0.8\) and \(\sigma=6.0 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^4\). Calculate the temperature of the filament when the bulb is operating at the correct wattage.
Given:
Power of the bulb, \(P=100 \mathrm{~W}\)
Length of the filament, \(l=1.0 \mathrm{~m}\)
Radius of the filament, \(r=4 \times 10^{-5} \mathrm{~m}\)
According to Stefan’s law,
\(\left(\frac{\text { Energy radiated }}{\text { time }}\right)=e \cdot A \sigma T^4\)
Here, \(e\) is the emissivity of the tungsten and \(\sigma\) is Stefan’s constant.
\(
\begin{aligned}
& \therefore P=e \cdot\left(\pi r^2\right) \sigma T^4 \\
& \Rightarrow 100=(0.8) \times 3.14 \times\left(4 \times 10^{-5}\right) \times 6 \times 10^{-8} \times T^4 \\
& \Rightarrow T=1700 K \text { (approximately) }
\end{aligned}
\)
A spherical ball of surface area \(20 \mathrm{~cm}^2\) absorbs any radiation that falls on it. It is suspended in a closed box maintained at \(57^{\circ} \mathrm{C}\). (a) Find the amount of radiation falling on the ball per second. (b) Find the net rate of heat flow to or from the ball at an instant when its temperature is \(200^{\circ} \mathrm{C}\). Stefan constant \(=6.0 \times 10^{-8}\) \(\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-4}\).
(a)
Area of the ball, \(A=20 \times 10^{-4} \mathrm{~m}^2\)
Temperature of the ball, \(T=57^{\circ} \mathrm{C}=57+273=330 \mathrm{~K}\)
Amount of heat radiated per second \(=A \sigma T^4\)
\(
\begin{aligned}
& =20 \times 10^{-4} \times 6 \times 10^{-8} \times(330)^4 \\
& =1.42 \mathrm{~J}
\end{aligned}
\)
(b)
Net rate of heat flow from the ball when its
emperature is \(200^{\circ} \mathrm{C}\) is given by
\(
\begin{aligned}
& \mathrm{eA} \sigma\left(T_1^4-T_2^4\right) \\
& =20 \times 10^{-4} \times 6 \times 10^{-8} \times 1\left((473)^4-(330)^4[\therefore e=1]\right. \\
& =4.58 \mathrm{~W}
\end{aligned}
\)
A spherical tungsten piece of radius \(1.0 \mathrm{~cm}\) is suspended in an evacuated chamber maintained at \(300 \mathrm{~K}\). The piece is maintained at \(1000 \mathrm{~K}\) by heating it electrically. Find the rate at which the electrical energy must be supplied. The emissivity of tungsten is \(0.30\) and the Stefan constant \(\sigma\) is \(6.0 \times 10^{-8} \mathrm{~W} \mathrm{~m}{ }^{-2} \mathrm{~K}^{-4}\).
Given:
Radius of the spherical tungsten, \(r=10^{-2} \mathrm{~m}\)
Emissivity of the tungsten, \(e=0.3\)
Stefan’s constant, \(\sigma=6.0 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\)
The surface area of the spherical tungsten, \(A=4 \pi r^2\)
\(
\begin{aligned}
& A=4 \pi\left(10^{-2}\right)^2 \\
& A=4 \pi \times 10^{-4} \mathrm{~m}^2
\end{aligned}
\)
Rate at which energy must be supplied is given by
\(
\begin{aligned}
& \operatorname{e\sigma A}\left(T_2^4-T_1^4\right) \\
& =(0.3) \times 6 \times 10^{-8} \times 4 \pi \times 10^{-4} \times\left((1000)^4-(300)^4\right) \\
& =22.42 \approx \text { watt }=22 \text { watt }
\end{aligned}
\)
A cubical block of mass \(1.0 \mathrm{~kg}\) and edge \(5.0 \mathrm{~cm}\) is heated to \(227^{\circ} \mathrm{C}\). It is kept in an evacuated chamber maintained at \(27^{\circ} \mathrm{C}\). Assuming that the block emits radiation like a blackbody, find the rate at which the temperature of the block will decrease. Specific heat capacity of the material of the block is \(400 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\).
It is given that a cube behaves like a black body.
\(\therefore\) Emissivity, \(e=1\)
Stefan’s constant, \(\sigma=6 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^2 \mathrm{~K}^4\right)\)
Surface area of the cube, \(A=6 \times 25 \times 10^{-4}\)
Mass of the cube, \(m=1 \mathrm{~kg}\)
Specific heat capacity of the material of the cube, \(s=400 \mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}\)
Temperature of the cube, \(T_1=227+273=500 \mathrm{~K}\)
Temperature of the surrounding, \(T_0=27+273=300 \mathrm{~K}\)
Rate of flow of heat is given by
\(
\begin{aligned}
& \frac{\Delta Q}{\Delta}=\mathrm{eA \sigma}\left(\mathrm{T}^4-\mathrm{T}_0{ }^4\right) \\
& \Rightarrow \mathrm{ms} \cdot \frac{\Delta T}{\Delta t}=1 \times 6 \times 10 \times 25 \times 10^{-4}\left(500^4-300^4\right) \\
& \Rightarrow \frac{\Delta T}{\Delta t}=\frac{36 \times 25 \times\left(500^4-300^4\right) \times 10^{-12}}{400} \\
& \Rightarrow \frac{\Delta T}{\Delta t}=0.12^{\circ} \frac{C}{s}
\end{aligned}
\)
A copper sphere is suspended in an evacuated chamber maintained at \(300 \mathrm{~K}\). The sphere is maintained at a constant temperature of \(500 \mathrm{~K}\) by heating it electrically. A total of \(210 \mathrm{~W}\) of electric power is needed to do it. When the surface of the copper sphere is completely blackened, \(700 \mathrm{~W}\) is needed to maintain the same temperature of the sphere. Calculate the emissivity of copper.
According to Stefan,s law,
power \(=e A \sigma\left(T^4-T_0^4\right)\)
Temperature difference \(=200 \mathrm{~K}\)
Let the emissivity of copper be \(e\).
\(
210=e A \sigma\left(500^4-300^4\right) \dots(1)
\)
When the surface of the copper sphere is completely blackened, \(700 \mathrm{~W}\) is needed to maintain the temperature of the sphere.
For a black body,
\(
\begin{aligned}
& e=1 \\
& 700=1 \cdot A \sigma(5004-3004) \dots(2)
\end{aligned}
\)
On dividing equation (1) by equation (2) we have,
\(
\begin{aligned}
& \frac{200}{700}=\frac{e}{1} \\
& \Rightarrow e=0.3
\end{aligned}
\)
A spherical ball \(A\) of surface area \(20 \mathrm{~cm}^2\) is kept at the centre of a hollow spherical shell \(B\) of area \(80 \mathrm{~cm}^2\). The surface of \(A\) and the inner surface of \(B\) emit as blackbodies. Both \(A\) and \(B\) are at \(300 \mathrm{~K}\). (a) How much is the radiation energy emitted per second by the ball \(A\)? (b) How much is the radiation energy emitted per second by the inner surface of \(B\)? (c) How much of the energy emitted by the inner surface of \(B\) falls back on this surface itself?
Surface area of the spherical ball, \(S_A=20 \mathrm{~cm}^2=20 \times 10^{-4} \mathrm{~m}^{-2}\)
Surface area of the spherical shell, \(S_B=80 \mathrm{~cm}^2=80 \times 10^{-4} \mathrm{~m} 2\)
Temperature of the spherical ball, \(T_{\mathrm{A}}=300 \mathrm{~K}\)
Temperature of the spherical shell, \(T_{\mathrm{B}}=300 \mathrm{~K}\)
Radiation energy emitted per second by the spherical ball A is given by
\(
\begin{aligned}
& \mathrm{E}_{\mathrm{A}}=\sigma \mathrm{S}_{\mathrm{A}} \mathrm{T}_{\mathrm{A}}{ }^4 \\
& \Rightarrow \mathrm{E}_{\mathrm{A}} 6.0 \times 10^{-8} \times 20 \times 10^{-4} \times(300)^4 \\
& \Rightarrow \mathrm{E}_{\mathrm{A}}=0.97 \mathrm{~J}
\end{aligned}
\)
Radiation energy emitted per second by the inner surface of the spherical shell B is given by
\(
\begin{aligned}
& E_B=\sigma S_B T_B^4 \\
& \Rightarrow E_B=6.0 \times 10^{-8} \times 80 \times 10^{-4} \times(300)^4 \\
& \Rightarrow E_B=3.76 \mathrm{~J} \approx 3.8 \mathrm{~J}
\end{aligned}
\)
Energy emitted by the inner surface of \(B\) that falls back on its surface is given by
\(
\begin{aligned}
E & =E_B-E_A=3.76-0.94 \\
& \Rightarrow E=2.82 \mathrm{~J}
\end{aligned}
\)
A cylindrical rod of length \(50 \mathrm{~cm}\) and cross sectional area \(1 \mathrm{~cm}^2\) is fitted between a large ice chamber at \(0^{\circ} \mathrm{C}\) and an evacuated chamber maintained at \(27^{\circ} \mathrm{C}\) as shown in figure below. Only small portions of the rod are inside the chambers and the rest is thermally insulated from the surrounding. The cross-section going into the evacuated chamber is blackened so that it completely absorbs any radiation falling on it. The temperature of the blackened end is \(17^{\circ} \mathrm{C}\) when steady state is reached. Stefan constant \(\sigma=6 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\). Find the thermal conductivity of the material of the rod.
\(
\mathrm{Q} / \mathrm{t}=\mathrm{eA \sigma}\left(\mathrm{T}_2^4-\mathrm{T}_1^4\right)
\)
\(
\begin{aligned}
& \Rightarrow \text { Q/At }=1 \times 6 \times 10^{-8}\left[(300)^4-(290)^4\right] \\
& =6 \times 10^{-8}\left(81 \times 10^8-70.7 \times 10^8\right)=6 \times 10.3
\end{aligned}
\)
\(
\begin{aligned}
& \frac{Q}{t}=\frac{K A\left(\theta_1-\theta_2\right)}{l} \\
& \Rightarrow \frac{Q}{t A}=\frac{K\left(\theta_1-\theta_2\right)}{l}=\frac{K \times 17}{0.5}=6 \times 10.3 \\
& =\frac{K \times 17}{0.5} \Rightarrow K=\frac{6 \times 10.3 \times 0.5}{17}=1.8 \mathrm{~W} \mathrm{~m}^{-1} { }^{\circ} \mathrm{C}^{-1}
\end{aligned}
\)
One end of a rod of length \(20 \mathrm{~cm}\) is inserted in a furnace at \(800 \mathrm{~K}\). The sides of the rod are covered with an insulating material and the other end emits radiation like a blackbody. The temperature of this end is \(750 \mathrm{~K}\) in the steady state. The temperature of the surrounding air is \(300 \mathrm{~K}\). Assuming radiation to be the only important mode of energy transfer between the surrounding and the open end of the rod, find the thermal conductivity of the rod. Stefan constant \(\sigma=6.0 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\)
\(
\text { Heat flowing through the rod per second in steady state, }
\)
\(
\frac{d Q}{d t}=\frac{K A d \theta}{l} \dots(i)
\)
Heat radiated from the open end of the rod per second in steady state,
\(
\frac{d Q}{d t}=A \sigma\left(T^4-T_0^4\right) \dots(ii)
\)
From Eqs. (i) and (ii),
\(
\begin{aligned}
\frac{K d \theta}{l} & =\sigma\left(T^4-T_0^4\right) \\
\frac{K \times 50}{0.2} & =6.0 \times 10^{-8}\left[(7.5)^4-(3)^4\right] \times 10^8 \\
K & =74 \mathrm{W} \mathrm{m}^{-1} \mathrm{~K}^{-1}
\end{aligned}
\)
A calorimeter of negligible heat capacity contains \(100 \mathrm{cc}\) of water at \(40^{\circ} \mathrm{C}\). The water cools to \(35^{\circ} \mathrm{C}\) in 5 minutes. The water is now replaced by \(\mathrm{K}\)-oil of equal volume at \(40^{\circ} \mathrm{C}\). Find the time taken for the temperature to become \(35^{\circ} \mathrm{C}\) under similar conditions. Specific heat capacities of water and \(\mathrm{K}\)-oil are \(4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\) and \(2100 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\) respectively. Density of \(\mathrm{K}\)-oil \(=800 \mathrm{~kg} \mathrm{~m}^{-3}\).
Given:
Volume of water, \(V=100 \mathrm{cc}=100 \times 10^{-3} \mathrm{~m}^3\)
Change in the temperature of the liquid, \(\Delta \theta=5^{\circ} \mathrm{C}\)
Time, \(T=5 \mathrm{~min}\)
For water,
\(
\begin{aligned}
& \frac{m s \Delta \theta}{t}=\frac{K A}{l}\left(T_1-T_0\right) \\
& \Rightarrow \frac{m s}{t}=\frac{K A}{l} \frac{\left(T_1-T_0\right)}{\Delta \theta} \\
& \Rightarrow \frac{100 \times 10^{-3} \times 1000 \times 4200}{5}=\frac{K A}{l} \frac{\left(313-T_0\right)}{\Delta \theta} \dots(i)
\end{aligned}
\)
For K-oil,
\(
\begin{aligned}
& \frac{m s}{t}=\frac{K A}{l} \frac{9\left(T_1-T_0\right)}{\Delta \theta} \\
& \Rightarrow \frac{m s}{t}=\frac{K A}{l} \frac{\left(T_1-T_0\right)}{\Delta \theta} \\
& \Rightarrow \frac{V p s}{t}=\frac{K A}{l} \frac{T_1-T_0}{\Delta \theta} \\
& \Rightarrow \frac{100 \times 10^{-3} \times 800 \times 2100}{t}=\frac{K A}{l} \frac{\left(313-T_0\right)}{\Delta \theta} \dots(ii)
\end{aligned}
\)
From (i) and (ii),
\(
\begin{aligned}
& \frac{100 \times 10^{-} 3 \times 800 \times 2100}{t}=\frac{100 \times 10^{-5} \times 1000 \times 4200}{5} \\
& \Rightarrow \mathrm{t}=\frac{5 \times 800 \times 2100}{1000 \times 4200}=\frac{2000}{1000} \\
& \Rightarrow \mathrm{t}=2 \mathrm{~min}
\end{aligned}
\)
A body cools down from \(50^{\circ} \mathrm{C}\) to \(45^{\circ} \mathrm{C}\) in 5 minutes and to \(40^{\circ} \mathrm{C}\) in another 8 minutes. Find the temperature of the surrounding.
Case-I: Initial temperature of the body \(=50^{\circ} \mathrm{C}\)
Final temperature of the body \(=45^{\circ} \mathrm{C}\)
Average temperature \(=47.5^{\circ} \mathrm{C}\)
Difference in the temperatures of the body and its surrounding \(=(47.5-\mathrm{T})^{\circ} \mathrm{C}\)
Rate of fall of temperature \(=\frac{\Delta t}{t}=\frac{5}{5}=1^{\circ} \mathrm{C} / \mathrm{min}\)
By Newton’s law of cooling,
\(
\frac{d T}{d t}=-K\left[T_{\text {avg }}-T_0\right]
\)
\(1=-K\left[47.5-T_0\right] \ldots \ldots \ldots . .(\mathrm{i})\)
Case-II: Initial temperature of the body \(=45^{\circ} \mathrm{C}\)
Final temperature of the body \(=40^{\circ} \mathrm{C}\)
Average temperature \(=42.5^{\circ} \mathrm{C}\)
Difference in the temperatures of the body and its surrounding \(=\left(42.5-\mathrm{T}_0\right)^{\circ} \mathrm{C}\)
Rate of fall of temperature \(=\frac{\Delta T}{t}=\frac{5}{8}=\frac{5}{8}^{\circ} \mathrm{C} / \mathrm{min}\)
From Newton’s law of cooling,
\(
\begin{aligned}
\frac{d T}{d t} & =-K\left[T_{a v g}-T_0\right] \\
0.625 & =-\mathrm{K}\left[42.5-\mathrm{T}_0\right] \dots(ii)
\end{aligned}
\)
Dividing (i) by (ii),
\(
\begin{aligned}
& \frac{1}{0.625}=\frac{47.5-T_0}{42.5-T_0} \\
& \Rightarrow 42.5-\mathrm{T}_{-} 0=29.68-0.625 \mathrm{~T} \\
& \Rightarrow \mathrm{T}_0=34^{\circ} \mathrm{C}
\end{aligned}
\)
A calorimeter contains \(50 \mathrm{~g}\) of water at \(50^{\circ} \mathrm{C}\). The temperature falls to \(45^{\circ} \mathrm{C}\) in 10 minutes. When the calorimeter contains \(100 \mathrm{~g}\) of water at \(50^{\circ} \mathrm{C}\), it takes 18 minutes for the temperature to become \(45^{\circ} \mathrm{C}\). Find the water equivalent of the calorimeter.
Let water equivalent to calorimeter be \(w\).
Change in temperature \(=5^{\circ} \mathrm{C}\)
Specific heat of water \(=4200 \mathrm{~J} / \mathrm{Kg}^{\circ} \mathrm{C}\)
Rate of flow of heat is given by
\(q=\) Energy per unit time \(=\frac{m s \Delta T}{t}\)
Case 1:
\(q_1=\frac{\left(w+50 \times 10^{-3}\right) \times 4200 \times 5}{10}\)
Case 2
\(
q_2=\frac{\left(w+100 \times 10^{-3}\right) \times 4200 \times 5}{18}
\)
From calorimeter theory, these two rates of flow of heat should be equal to each other.
\(
\begin{aligned}
& \Rightarrow \mathrm{q}_1=\mathrm{q}_2 \\
& \frac{\left(w+50 \times 10^{-3}\right) \times 4200 \times 5}{10}=\frac{\left(w+100 \times 10^{-3}\right) \times 4200 \times 5}{18} \\
& \Rightarrow 18\left(W+50 \times 10^{-3}\right)=10\left(W+100 \times 10^{-3}\right) \\
& \Rightarrow \mathrm{W}=12.5 \times 10^{-3} \mathrm{~kg} \\
& \Rightarrow \mathrm{W}=12.5 \mathrm{~g}
\end{aligned}
\)
A metal ball of mass \(1 \mathrm{~kg}\) is heated by means of a \(20 \mathrm{~W}\) heater in a room at \(20^{\circ} \mathrm{C}\). The temperature of the ball becomes steady at \(50^{\circ} \mathrm{C}\). (a) Find the rate of loss of heat to the surrounding when the ball is at \(50^{\circ} \mathrm{C}\). (b) Assuming Newton’s law of cooling, calculate the rate of loss of heat to the surrounding when the ball is at \(30^{\circ} \mathrm{C}\). (c) Assume that the temperature of the ball rises uniformly from \(20^{\circ} \mathrm{C}\) to \(30^{\circ} \mathrm{C}\) in 5 minutes. Find the total loss of heat to the surrounding during this period. (d) Calculate the specific heat capacity of the metal.
In steady state, the body has reached equilibrium. So, no more heat will be exchanged between the body and the surrounding.
This implies that at steady state, Rate of loss of heat \(=\) Rate at which heat is supplied
Given:
Mass, \(m=1 \mathrm{~kg}\)
Power of the heater \(=20 \mathrm{~W}\)
Room temperature \(=20^{\circ} \mathrm{C}\)
(a)At steady state, Rate of loss of heat \(=\) Rate at which heat is supplied and, rate of loss/gain of heat = Power
\(\therefore \frac{d Q}{d t}=p=20 W\)
(b) By Newton’s law of cooling, rate of cooling is directly proportional to the difference in temperature.
So, when the body is in steady state, then its rate of cooling is given as
\(
\begin{aligned}
& \frac{d Q}{d t}=K\left(T-T_0\right) 20=K(50-20) \\
& \Rightarrow K=\frac{2}{3}
\end{aligned}
\)
When the temperature of the body is \(30^{\circ} \mathrm{C}\), then its rate of cooling is given as
\(
\begin{aligned}
& \frac{d Q}{d t}=K\left(T-T_0\right) =\frac{2}{3}(30-20)=\frac{20}{3} W
\end{aligned}
\)
(c) The initial rate of cooling when the body’s temperature is \(20^{\circ} \mathrm{C}\) is given as
\(
\begin{aligned}
& \left(\frac{d Q}{d t}\right)_{20}=0 \\
& \therefore\left(\frac{d Q}{d t}\right)_{30}=\frac{20}{3} \\
& \left(\frac{d Q}{d t}\right)_{a v g}=\frac{10}{3} \\
& \mathrm{t}=5 \mathrm{~min}=300 \mathrm{~s} \\
& \text { Heat liberated }=\frac{10}{3} \times 300=1000 J \\
& \text { Net heat absorbed }=\text { Heat supplied }-\text { Heat Radiated } \\
& =6000-1000=5000 \mathrm{~J} \\
\end{aligned}
\)
d) Net heat absorbed is used for raising the temperature of the body by \(10^{\circ} \mathrm{C}\).
\(
\begin{aligned}
& \therefore m \mathrm{~S} \Delta \mathrm{T}=5000 \\
& S=\frac{5000}{m \times \Delta T}=\frac{5000}{1 \times 10} =500 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{C}^{-1} \\
\end{aligned}
\)
A metal block of heat capacity \(80 \mathrm{~J}^{\circ} \mathrm{C}^{-1}\) placed in a room at \(20^{\circ} \mathrm{C}\) is heated electrically. The heater is switched off when the temperature reaches \(30^{\circ} \mathrm{C}\). The temperature of the block rises at the rate of \(2{ }^{\circ} \mathrm{C} \mathrm{s}^{-1}\) just after the heater is switched on and falls at the rate of \(0.2{ }^{\circ} \mathrm{C} \mathrm{s}^{-1}\) just after the heater is switched off. Assume Newton’s law of cooling to hold. (a) Find the power of the heater. (b) Find the power radiated by the block just after the heater is switched off. (c) Find the power radiated by the block when the temperature of the block is \(25^{\circ} \mathrm{C}\). (d) Assuming that the power radiated at \(25^{\circ} \mathrm{C}\) represents the average value in the heating process, find the time for which the heater was kept on.
Heat capacity \(=\mathrm{m} \times \mathrm{s}=80 \mathrm{~J} /{ }^{\circ} \mathrm{C}\)
\(
\begin{aligned}
& \left(\frac{\mathrm{d} \theta}{\mathrm{dt}}\right)_{\text {increase }}=2^{\circ} \mathrm{C} / \mathrm{s} \\
& \left(\frac{\mathrm{d} \theta}{\mathrm{dt}}\right)_{\text {decrease }}=0.2^{\circ} \mathrm{C} / \mathrm{s}
\end{aligned}
\)
(a) Power of heater \(=\mathrm{mS}\left(\frac{\mathrm{d} \theta}{\mathrm{dt}}\right)_{\text {increa sing }}=80 \times 2=160 \mathrm{~W}\)
(b) Power radiated \(=\mathrm{ms}\left(\frac{d \theta}{d t}\right)_{\text {decrea sing }}=80 \times 0.2=16 \mathrm{~W}\)
(c) Now \(m S\left(\frac{d \theta}{d t}\right)_{\text {decreasing }}=K\left(T-T_0\right)\)
\(
\Rightarrow 16=\mathrm{K}(30-20) \quad \Rightarrow \mathrm{K}=\frac{16}{10}=1.6
\)
Now, \(\frac{d \theta}{d t}=K\left(T-T_0\right)=1.6 \times(30-25)=1.6 \times 5=8 \mathrm{~W}\)
(d)
As we know that power given by the heater is
\(
\mathrm{P}=160 \mathrm{~W}
\)
now we can use energy equations
Energy given by heater \(=\) Heat absorbed by block \(+\) heat loss \(160 t=80(30-20)+8 t\)
\(152 t=800\)
\(t=5.2 \mathrm{~s}\)
A hot body placed in a surrounding of temperature \(\theta_0\) obeys Newton’s law of cooling \(\frac{d \theta}{d t}=-k\left(\theta-\theta_0\right)\). Its temperature at \(t=0\) is \(\theta_1\). The specific heat capacity of the body is \(s\) and its mass is \(m\). Find (a) the maximum heat that the body can lose and (b) the time starting from \(t=0\) in which it will lose \(90 \%\) of this maximum heat.
According to Newton’s law of cooling,
\(
\frac{d \theta}{d t}=-K\left(\theta-\theta_0\right)
\)
(a) Maximum heat that the body can lose, \(\Delta Q_{\max }=m s\left(\theta_1-\theta_0\right)\)
(b) If the body loses \(90 \%\) of the maximum heat, then the fall in temperature will be \(\theta\).
\(
\begin{aligned}
& \Delta Q_{\max } \times \frac{90}{100}=m s\left(\theta_1-\theta\right) \\
& \Rightarrow m s\left(\theta_1-\theta_0\right) \times \frac{9}{10}=m s\left(\theta_1-\theta\right) \\
& \Rightarrow \theta=\theta_1-\left(\theta_1-\theta_0\right) \times \frac{9}{10} \\
& \Rightarrow \theta=\frac{\theta_1-9 \theta_0}{10} \dots(i)
\end{aligned}
\)
From Newton’s law of cooling,
\(
\frac{d \theta}{d t}=-K\left(\theta_1-\theta\right)
\)
Integrating this equation within the proper limit, we get
At time \(t=0\),
\(
\theta=\theta_1
\)
At time \(t\)
\(
\begin{aligned}
& \theta=\theta \\
& \int_{\theta 1}^\theta \frac{d \theta}{\theta_1-\theta}=-K \int_0^t d t \\
& \Rightarrow \operatorname{ln} \frac{\theta_1-\theta}{\theta_1-\theta_0}=-k t \\
& \Rightarrow \theta_1-\theta=\theta_1-\theta_0 e^{-k t} \dots(ii)
\end{aligned}
\)
From (i) and (ii),
\(
\begin{aligned}
& \frac{\theta_1-9 \theta_0}{10}-\theta_0=\left(\theta_1-\theta_0\right) e^{-k} t \\
& \Rightarrow t=\frac{\operatorname{In}(10)}{k}
\end{aligned}
\)
You cannot copy content of this page