Roots of \(a x^{2}+b x+c=0\) are \(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\)
Sum of roots \(x_{1}+x_{2}=-\frac{b}{a}\);
Product of roots \(x_{1} x_{2}=\frac{\mathrm{c}}{\mathrm{a}}\)
For real roots, \(b^{2}-4 a c \geq 0\)
For imaginary roots, \(b^{2}-4 a c<0\)
\(a, a+d, a+2 d, a+3 d, \ldots \ldots a+(n-1) d\), here \(\mathrm{d}=\) common difference
Sum of \(n\) terms \(S_{n}=\frac{n}{2}[2 a+(n-1) d]\), \(n^{\text {th }}\) term: \(a_{n}=a+(n-1) d\)
(i) \(1+2+3+4+5 \ldots+\mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)}{2} \\\)
(ii) \(1^{2}+2^{2}+3^{2}+\ldots+\mathrm{n}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6} \\\)
(iii) \(1^{3}+2^{2}+3^{2}+\ldots+\mathrm{n}^{3}=\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]^{2}\)
\((1+x)^{n}=1+n x+\frac{n(n-1)}{2} x^{2}+\frac{n(n-1)(n-2)}{6} x^{3}+\ldots \\\)
\((1-\mathrm{x})^{\mathrm{n}}=1-\mathrm{nx}+\frac{\mathrm{n}(\mathrm{n}-1)}{2} \mathrm{x}^{2}-\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)}{6} \mathrm{x}^{3}+\ldots \ldots \left(x^{2}<1\right)\\\)
\((1-x)^{-n}=1 – \frac{n x}{1 !}+\frac{n(n+1) x^{2}}{2 !}+\ldots . .\left(x^{2}<1\right) \\\)
\(\text { If } x<<1 \text { then }(1+x)^{n} \approx 1+n x \&(1-x)^{n} \approx 1-n x\)
\(\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \mathrm{ar}^{3}, \ldots \ldots\) here, \(\mathrm{r}=\mathrm{common}\) ratio, \(n^{\text {th }}\) term, \(a_{n}=a \cdot r^{n-1} \\\)
Sum of \(n\) terms \(S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\\)
Sum of \(\infty\) terms \(S_{\infty}=\frac{a}{1-r} \quad\) [where \(|r|<1\) ]
Trigonometry
Pythagorean Theorem: In this right triangle, \(a^{2}+b^{2}=c^{2}\)
\(\(
\(
\(
Trlangles
Angles are \(A, B, C\)
Opposite sides are \(a, b, c\)
Angles \(A+B+C=180^{\circ}\)
\(
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
\)
\(c^{2}=a^{2}+b^{2}-2 a b \cos C\)
Exterior angle \(D=A+C\)
\(y=x^{n} \rightarrow \frac{d y}{d x}=n x^{n-1} \quad \quad y=\ell n x \rightarrow \frac{d y}{d x}=\frac{1}{x} \\\)
\(y=\sin x \rightarrow \frac{d y}{d x}=\cos x \quad \quad y=\cos x \rightarrow \frac{d y}{d x}=-\sin x \\\)
\(y=e^{\alpha x+\beta} \rightarrow \frac{d y}{d x}=\alpha e^{\alpha x+\beta} \quad \quad y=u v \rightarrow \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x} \\\)
\(y=f(g(x)) \Rightarrow \frac{d y}{d x}=\frac{d f(g(x))}{d g(x)} \times \frac{d(g(x))}{d x} \\\)
\(\mathrm{y}=\mathrm{k}(\) constant \() \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=0 \\\)
\(y=\frac{u}{v} \Rightarrow \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\\)
\(\mathrm{C}=\) Arbitrary constant, \(k=\) constant
\(\int f(x) d x=g(x)+C \\\)
\(\quad \frac{d}{d x}(g(x))=f(x) \\\)
\(\int k f(x) d x=k \int f(x) d x \\\)
\(\int(u+v+w) d x=\int u d x+\int v d x+\int w d x \\\)
\(\int e^{x} d x=e^{x}+C \\\)
\(\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1 \\\)
\(\int \frac{1}{\mathrm{x}} \mathrm{dx}=\ln \mathrm{x}+\mathrm{C} \\\)
\(\int \sin x d x=-\cos x+C\)
\(\int \cos x d x=\sin x+C \\\)
\(\int e^{\alpha x+\beta} d x=\frac{1}{\alpha} e^{\alpha x+\beta}+C \\\)
\(\int(\alpha x+\beta)^{n} d x=\frac{(\alpha x+\beta)^{n+1}}{\alpha(n+1)}+C \\\)
\(\int_{a}^{b} f(x) d x=|g(x)|_{a}^{b}=g(b)-g(a) \\\)
Area under the curve \(y=f(x)\) from \(x=a\) to \(a=b\) is
\(
A=\int_{a}^{b} f(x) d x
\)
For maximum value \(\frac{d y}{d x}=0 \& \frac{d^{2} y}{d x^{2}}=-v e \\\)
For minimum value \(\frac{\mathrm{dy}}{\mathrm{dx}}=0 \& \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=+v e \\\)
Area of a square \(=(\text { side })^{2} \\\)
Area of rectangle \(=\) length \(\times\) breadth
Area of a triangle \(=\frac{1}{2} \times\) base \(\times\) height
Area of a trapezoid \(=\frac{1}{2} \times(\) distance between parallel sides \() \times(\) sum of parallel sides \() \\\)
Area enclosed by a circle \(=\pi \mathrm{r}^{2} \quad(\mathrm{r}=\) radius \() \\\)
Surface area of a sphere \(=4 \pi \mathrm{r}^{2}\) ( \(\mathrm{r}=\) radius \() \\\)
Area of a parallelogram \(=\) base \(\times\) height
Area of curved surface of cylinder \(=2 \pi \mathrm{r} \ell \), where \(r=\) radius and \(\ell=\) length
Area of whole surface of cylinder \(=2 \pi r(r+\ell)\) where \(\ell=\) length
Area of ellipse \(=\pi \mathrm{ab}\), (a & b are semi-major and semi-minor axis respectively)
Surface area of a cube \(=6(\text { side })^{2} \\\)
Total surface area of a cone \(=\pi r^{2}+\pi r \ell \\\)
where \(\pi r \ell=\pi r \sqrt{r^{2}+h^{2}}=\) lateral area
Arc length \(s=r . \theta \\\)
Area of sector \(=\frac{r^{2} \theta}{2} \\\)
Plane angle, \(\theta=\frac{\mathrm{s}}{\mathrm{r}}\) radian
Solid angle, \(\Omega=\frac{\mathrm{A}}{\mathrm{r}^{2}}\) steradian
Volume of a rectangular slab\(=\) length \(\times\) breadth \(\times\) height
\(=\mathrm{l w h}\\ \)
Volume of a cube \(=(\text { side })^{3} \\\)
Volume of a sphere \(=\frac{4}{3} \pi r^{3}\) \((r=\) radius)
Volume of a cylinder \(=\pi r^{2} \ell \\\)
( \(\mathrm{r}=\) radius and \(\ell=\) length)
Volume of a cone \(=\frac{1}{3} \pi r^{2} h \\\)
( \(\mathrm{r}=\) radius and \(\mathrm{h}=\) height \()\)
To convert an angle from degree to radian, we have to multiply it by \(\frac{\pi}{180^{\circ}}\) and to convert an angle from radian to degree, we have to multiply it by \(\frac{180^{\circ}}{\pi}\).
By help of differentiation, if \(y\) is given, we can find \(\frac{d y}{d x}\) and by help of integration, if \(\frac{d y}{d x}\) is given, we can find \(y\).
The maximum and minimum values of the function
\(
\begin{array}{ll}
\quad A \cos \theta+B \sin \theta \text { are } \sqrt{A^{2}+B^{2}} \text { and }-\sqrt{A^{2}+B^{2}} \text { respectively. } \\(a+b)^{2}=a^{2}+b^{2}+2 a b & (a-b)^{2}=a^{2}+b^{2}-2 a b \\
(a+b)(a-b)=a^{2}-b^{2} & (a+b)^{3}=a^{3}+b^{3}+3 a b(a+b) \\
(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b) &
\end{array}
\)
You cannot copy content of this page