0 of 60 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 60 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
The unit of thermal conductivity is:Â [NEET 2019]
In steady-state, the amount of heat flowing from one face to the other face in time \(d t\) is given by
\(
\begin{aligned}
&\mathrm{H}=\frac{\mathrm{kA}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) \mathrm{dt}}{\ell} \\
&\Rightarrow \frac{\mathrm{dH}}{\mathrm{dt}}=\frac{\mathrm{kA}}{\ell} \Delta \mathrm{T}(k=\text { coefficient of thermal conductivity})
\end{aligned}
\)
\(
\therefore \mathrm{k}=\frac{\ell \mathrm{dH}}{\mathrm{A} \text { dt } \Delta \mathrm{T}}
\)
Unit of \(k=\mathrm{Wm}^{-1} \mathrm{~K}^{-1}\)
The density of material in CGS system of units is \(4 \mathrm{~g} / \mathrm{cm}^{3}\). In a system of units in which unit of length is \(10 \mathrm{~cm}\) and unit of mass is \(100 \mathrm{~g}\), the value of density of material will be [2011M]
In CGS system, density \(d=4 \frac{\mathrm{g}}{\mathrm{cm}^{3}}\)
unit of length \(=1 \mathrm{~cm}\)
unit of mass \(=1 \mathrm{~g}\)
The unit of mass is \(100 \mathrm{~g}\) and unit of length is 10 \(\mathrm{cm}\), so substitute these values
\(
\begin{aligned}
\text { Density } &=\frac{4\left(\frac{100 \mathrm{~g}}{100}\right)}{\left(\frac{10}{10} \mathrm{~cm}\right)^{3}}=\frac{\left(\frac{4}{100}\right)}{\left(\frac{1}{10}\right)^{3}} \frac{(100 \mathrm{~g})}{(10 \mathrm{~cm})^{3}} \\
=\frac{4}{100} \times(10)^{3} \cdot \frac{100 \mathrm{~g}}{(10 \mathrm{~cm})^{3}}=40 \text { unit }
\end{aligned}
\)
The unit of permittivity of free space, \(\varepsilon_{0}\) is [2004]
\(\varepsilon_{o}=\frac{q^{2}}{\left(r^{2}\right) 4 \pi F}\)
\(\Rightarrow\) unit of \(\varepsilon_{0}\) is (coulomb) \({ }^{2} /\) newton-metre \({ }^{2}\)
The unit of the Stefan-Boltzmann’s constant is [2002]
According to Stefan’s law, \(\mathrm{E}=\sigma \mathrm{AT}^{4}\) where, \(E\) is energy dissipated per second, \(\mathrm{A}=\) surface area
\(\mathrm{T}=\) absolute temperature
\(
\sigma=\frac{E}{A T^{4}}=\frac{W}{\mathrm{~m}^{2} K^{4}}
\)
In a particular system, the unit of length, mass and time are chosen to be \(10 \mathrm{~cm}, 10 \mathrm{~g}\) and \(0.1\) s respectively. The unit of force in this system will be equivalent to [1994]
As we know force \(=\) Mass \(\times\) Acceleration \(=\) Mass \(\times\) length \(\times\) time\(^{-2}=(10 \mathrm{~g})(10 \mathrm{~cm})(0.1 \mathrm{~s})^{-2}\) \(=\left(10^{-2} \mathrm{~kg}\right)\left(10^{-1} \mathrm{~m}\right)\left(10^{-1} \mathrm{~s}\right)^{-2}=10^{-1} \mathrm{~N}\).
Dimensions of stress are: [2020]
Stress \(=\frac{\text { Force }}{\text { Area }}\)
Dimensions of force \(=\left[\mathrm{MLT}^{-2}\right]\)
Dimensions of area \(=\left[\mathrm{L}^{2}\right]\)
\(\therefore\) Stress \(=\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\)
If \(x=a t+b t^{2}\), where \(x\) is the distance travelled by the body in kilometers while \(t\) is the time in seconds, then the unit of \(b\) is [1989]
As \(x=a t+b t^{2}\)
According to the concept of dimensional analysis and principle of homogeneity \(\therefore \quad\) unit of \(x=\) unit of \(b t^{2}\)
\(\therefore \quad\) unit of \(b=\frac{\text { unit of } x}{\text { unit of } t^{2}}=\mathrm{km} / \mathrm{s}^{2}\)
A physical quantity of the dimensions of length that can be formed out of \(c, G\) and \(\frac{e^{2}}{4 \pi \varepsilon_{0}}\) is [ \(c\) is velocity of light, \(G\) is universal constant of gravitation and \(e\) is charge] [NEET 2017]
As force \(F=\frac{e^{2}}{4 \pi \varepsilon_{0} r^{2}} \Rightarrow \frac{e^{2}}{4 \pi \varepsilon_{0}}=r^{2} \cdot F\)
Putting dimensions of \(r\) and \(F\), we get,
\(\Rightarrow\left[\frac{e^{2}}{4 \pi \varepsilon_{0}}\right]=\left[M L^{3} T^{-2}\right]\)
\(\begin{aligned}
&\text { Also, force, } F=\frac{G m^{2}}{r^{2}} \\
&\Rightarrow \quad[G]=\frac{\left[M L T^{-2}\right]\left[L^{2}\right]}{\left[M^{2}\right]} \\
&\Rightarrow \quad\left[\frac{1}{c^{2}}\right]=\frac{1}{\left[L^{2} T^{-2}\right]}=\left[L^{-2} T^{2}\right] \\
&\text { and } \quad \\
&\text { Now, checking optionwise} \\
&=\frac{1}{c^{2}}\left(\frac{G e^{2}}{4 \pi \varepsilon_{0}}\right)^{1 / 2}=\left[L^{-2} T^{2}\right]\left[L^{6} T^{-4}\right]^{1 / 2}=[L]
\end{aligned}\)
If energy \((E)\), velocity \((v)\) and time \((T)\) are chosen as the fundamental quantities, the dimensional formula of surface tension will be  [CBSE AIPMT 2015]
We know that
Surface tension \((S)=\frac{\text { Force }[F]}{\text { Length }[L]}\)
So, \(\quad[S]=\frac{\left[M L T^{-2}\right]}{[L]}=\left[M L^{0} T^{-2}\right]\)
Energy \((E)=\) Force \(\times\) displacement
\(\Rightarrow \quad[E]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
Velocity \((v)=\frac{\text { displacement }}{\text { time }}\)
\(\Rightarrow \quad[\mathrm{V}]=\left[\mathrm{LT}^{-1}\right]\)
As, \(\quad S \propto E^{a} v^{b} T^{c}\)
where, \(a, b, c\) are constants.
From the principle of homogeneity,
\(
\begin{gathered}
{[\mathrm{LHS}]=[\mathrm{RHS}]} \\
\Rightarrow \quad\left[M L^{0} \mathrm{~T}^{-2}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]^{a}\left[\mathrm{LT}^{-1}\right]^{b}\left[\mathrm{~T}^{c}\right. \\
\Rightarrow \quad\left[M L^{0} \mathrm{~T}^{-2}\right]=\left[\mathrm{M}^{a} \mathrm{~L}^{2 a+b} \mathrm{~T}^{-2 a-b+c}\right]
\end{gathered}
\)
Equating the power on both sides, we get
\(
\begin{array}{ll}
& a=1,2 a+b=0, b=-2 \\
\Rightarrow & -2 a-b+c=-2 \\
\Rightarrow & c=(2 a+b)-2=0-2=-2 \\
\text { So } & {[S]=\left[E v^{-2} T^{-2}\right]=\left[E v^{-2} T^{-2}\right]}
\end{array}
\)
If dimensions of critical velocity \(v_{c}\) of a liquid flowing through a tube are expressed as \(\left[\eta^{x} \rho^{y} r^{z}\right]\), where \(\eta \rho\) and \(r\) are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of \(x_{1} y\) and \(z\) are given by [CBSE AIPMT 2015]
Key Concept According to the principle of homogeneity of dimension states that a physical quantity equation will be dimensionally correct if the dimensions of all the terms occurring on both sides of the equations are the same. Given the critical velocity of the liquid flowing through a tube are expressed as
\(
v_{c} \propto \eta^{n} \rho^{y} r^{z}
\)
Coefficient of viscosity of liquid,
\(
\eta=\left[M L^{-1} \mathrm{~T}^{-1}\right]
\)
Density of liquid, \(\rho=\left[\mathrm{ML}^{-3}\right]\)
Radius of a tube \(r=[L]\)
Critical velocity of liquid \(v_{c}=\left[M L^{0} \mathrm{~T}^{-1}\right]\)
\(\Rightarrow\left[M^{0} L^{1} T^{-1}\right]=\left[M L^{-1} T^{-1}\right]^{x}\left[M L^{-3}\right]^{y}[L]^{z}\)
\(\left[M^{0} L^{1} T^{-1}\right]=\left[M^{x+y} L^{-x-3 y+z} T^{-x}\right]\)
Comparing exponents of \(M, L\) and \(L\), we get
\(
\begin{gathered}
x+y=0,-x-3 y+z=1,-x=-1 \\
\Rightarrow \quad z=-1, x=1, y=-1
\end{gathered}
\)
If force \((F)\), velocity \((v)\) and time \((T)\) are taken as fundamental units, then the dimensions of mass are  [CBSE AIPMT 2014]
We know that
\(F=m a\)
\(\Rightarrow F=\frac{m v}{t} \Rightarrow m=\frac{F t}{v}\)
\([M]=\frac{[F][T]}{[v]}=\left[\mathrm{Fv}^{-1} \mathrm{~T}\right]\)
The pair of quantities having the same dimensions is  [NEET Kar: 2013]
Work \(=\) Force \(\times\) displacement
\(
\begin{aligned}
&=\left[\mathrm{MLT}^{-2}\right][\mathrm{L}] \\
&=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right] \\
&\text { Torque }=\text { Force } \times \text { force arm } \\
&\quad=\text { mass } \times \text { acceleration } \times \text { length } \\
&\quad=[\mathrm{M}] \times\left[\mathrm{LT}^{-2}\right] \times[\mathrm{L}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]
\end{aligned}
\)
The dimensions of \(\left(\mu_{0} \in_{0}\right)^{\frac{-1}{2}}\) are [2012M, 2011]
\(\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \Rightarrow c=\) speed of light where \(\varepsilon_{0}=\) permittivity of free space \(\mu_{0}=\) permeability of free space So dimensions of \(\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}\) will be \(\left[\mathrm{LT}^{-1}\right]\)
The dimensions of \(\frac{1}{2} \varepsilon_{0} E^{2}\), where \(\varepsilon_{0}\) is permittivity of free space and \(E\) is electric field, are  [CBSE AIPMT 2010]
As we know that,
Dimension of \(\varepsilon_{0}=\left[M^{-1} L^{-3} T^{4} A^{2}\right]\)
Dimension of \(E=\left[M L T^{-3} A^{-1}\right]\)
So, dimension of
\(
\begin{aligned}
\frac{1}{2} \varepsilon_{0} E^{2} &=\left[M^{-1} L^{-3} T^{4} A^{2}\right] \times\left[M L T^{-3} A^{-1}\right]^{2} \\
&=\left[M L^{-1} T^{-2}\right]
\end{aligned}
\)
If the dimensions of a physical quantity are given by \(\left[\mathrm{M}^{a} \mathrm{~L}^{b} \mathrm{~T}^{c}\right]\), then the physical quantity will be  [CBSE AIPMT 2009]
\(\begin{aligned}
&\text { (d) Pressure }=\frac{\text { Force }}{\text { Area }} \\
&\Rightarrow \frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right] \\
&\Rightarrow a=1, b=-1, c=-2 .
\end{aligned}\)
Which two of the following five physical parameters have the same dimensions? [CBSE AIPMT 2008]
(i) Energy density
(ii) Refractive index
(iii) Dielectric constant
(iv) Young’s modulus
(v) Magnetic field
Energy density \(=\frac{\text { Energy }}{\text { Volume }}\) \(\Rightarrow \frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{3}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\)
Refractive index and dielectric constant have no dimensions.
Young’s Modulus \(=\frac{F}{A} \times \frac{l}{\Delta l}\)
\(\Rightarrow \frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}[\right.} \cdot \frac{[\mathrm{L}]}{[\mathrm{L}]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\)
Magnetic field, \(B=\frac{F}{i \ell}=\frac{\left[\mathrm{MLT}^{-2}\right]}{[\mathrm{A}][\mathrm{L}]}\) \(=\left[\mathrm{MT}^{-2} \mathrm{~A}^{-1}\right]\).
Dimensions of resistance in an electrical circuit, in terms of dimension of mass \(M\), of length \(L\), of time \(T\) and of current I , would be [CBSE AIPMT 2007]
As we know that
\(
\mathrm{R}=\frac{[\mathrm{V}]}{[\mathrm{I}]}=\frac{w}{q \cdot i}=\frac{w}{i \cdot t \cdot i}
\)
Dimension of Resistance
\(
=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-1}\right]}{[\mathrm{T}][\mathrm{I}]}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-2}\right]
\)
The velocity \(v\) of a particle at time \(t\) is given by \(v=a t+\frac{b}{t+c}\), where \(a, b\) and \(c\) are constant. The dimensions of \(\mathrm{a}, \mathrm{b}\) and \(\mathrm{c}\) are respectively [CBSE AIPMT 2006]
Dimension of a.t = dimension of velocity
\(
a . t=\left[\mathrm{LT}^{-1}\right] \Rightarrow\left[a=\mathrm{LT}^{-2}\right]
\)
Dimension of \(c=\) dimension of \(t\)
(two physical quantity of same dimension can only be added)
So, dimension of \(c=[T]\)
Dimension of \(\frac{b}{t+c}=\) Dimension of velocity
\(
\begin{aligned}
&\frac{b}{\mathrm{~T}+\mathrm{T}}=\left[\mathrm{LT}^{-1}\right]\left[\mathrm{LT}^{-1}\right] \Rightarrow\left[b \cdot \mathrm{T}^{-1}\right]=\left[\mathrm{LT}^{-1}\right] \\
&\Rightarrow b=[\mathrm{L}]
\end{aligned}
\)
So, answer is \(\left[\mathrm{LT}^{-2}\right],[\mathrm{L}]\) and [T]
The ratio of the dimensions of Planck’s constant and that of the moment of inertia is the dimension of [CBSE AIPMT 2005]
Dimension formula for the planck’s constant, \(h=\left[\mathrm{ML}^{2} \mathrm{~T}^{1}\right]\)
Dimension formula for the moment of inertia, \(\mathrm{I}=\left[\mathrm{ML}^{2}\right]\)
So, the ratio between the plank’s constant and moment of inertia is
\(
\begin{aligned}
&\Rightarrow \frac{h}{I}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]}{\left[\mathrm{ML}^{2}\right]} \Rightarrow\left[\mathrm{T}^{-1}\right] \\
&\Rightarrow \frac{\mathrm{h}}{\mathrm{I}}=\left[\mathrm{T}^{-1}\right] \Rightarrow \text { dimension of frequency }
\end{aligned}
\)
The dimensions of universal gravitational constant is [CBSE AIPMT 2004, 1992]
\(\begin{aligned}
&\text { (b) } F=\frac{G M_{1} m_{2}}{r^{2}} \Rightarrow G=\frac{F r^{2}}{M_{1} m_{2}} \\
&\therefore \text { dimension of } \mathrm{G} \text { is } \frac{\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{L}^{2}\right]}{[\mathrm{M}][\mathrm{M}]} \\
&\quad=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]
\end{aligned}\)
The dimensions of Planck’s constant are same as [CBSE AIPMT 2001]
\(\begin{aligned}
E &=h v \\
\Rightarrow & h=\text { Planck’s constant }=\frac{\text { Energy }(E)}{\text { frequency }(v)} \\
\therefore & {[h]=\frac{E}{v}=\frac{\left[M L^{2} T^{-2}\right]}{\left[T^{-1}\right]}=\left[M L^{2} T^{-1}\right] }
\end{aligned}\)
Angular momentum
= Moment of inertia \(\times\) angular velocity
or \(L=1 \times \omega=m r^{2} \omega \quad\left[\because l=m r^{2}\right]\)
\(\therefore \quad[L]=[M]\left[L^{2}\right]\left[\mathrm{T}^{-1}\right]=\left[M L^{2} \mathrm{~T}^{-1}\right]\)
Which one of the following groups have quantities that do not have the same dimensions?  [2000]
Force has dimension [MLT \({ }^{-2}\) ] while impulse has dimension \(\left[\mathrm{MLT}^{-1}\right]\), both have different dimensions.
The dimensional formula for magnetic flux is  [CBSE AIPMT 1999]
Dimension of magnetic flux
= Dimension of magnetic field \(\times\) Dimension of area
\(
\left[\mathrm{ML}^{0} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]\left[\mathrm{L}^{2}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]
\)
The force \(\mathrm{F}\) on a sphere of radius ‘ \(a\) ‘ is moving in a medium with velocity \(v\) is given by \(\mathrm{F}=\) \(6 \pi \eta\) av. The dimensions of \(\eta\) are [CBSE AIPMT 1997]
The viscous force on a sphere of radius r is
\(\mathrm{F}=6 \pi \eta a v\)
\(
\eta=\frac{F}{6 \pi a v}=\frac{\left[\mathrm{MLT}^{-2}\right]}{[\mathrm{L}]\left[\mathrm{LT}^{-1}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]
\)
An equation is given as : \(\left(P+\frac{a}{V^{2}}\right)=b \frac{\theta}{V}\) where \(P=\) Pressure, \(V=\) Volume \(\& \theta=\) Absolute temperature. If \(a\) and \(b\) are constants, then dimensions of \(a\) will be [CBSE AIPMT 1996]
According to the principle of homogeneity quantity with same dimension can be added or subtracted.
Hence, Dimension of \(\mathrm{P}=\) Dimension of \(\frac{a}{V^{2}}\)
\(
\begin{aligned}
&\Rightarrow \text { Dimension of } \frac{\text { Force }}{\text { Area }}=\text { Dimension of } \frac{a}{V^{2}} \\
&\Rightarrow\left[\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}}\right]=\frac{\mathrm{a}}{\left[\mathrm{L}^{3}\right]^{2}} \Rightarrow a=\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]
\end{aligned}
\)
A screw gauge gives the following readings when used to measure the diameter of a wire
Main scale reading : \(0 \mathrm{~mm}\)
Circular scale reading: 52 divisions
Given that, \(1 \mathrm{~mm}\) on the main scale corresponds to 100 divisions on the circular scale. The diameter of the wire from the above data is [NEET 2021]
Given, the main scale reading, MSR \(=0\)
The circular scale reading, \(\mathrm{CSR}=52\) divisions
Now, we shall determine the least count of the screw gauge,
\(
\mathrm{LC}=\frac{p}{n}
\)
Here, \(p\) is the pitch of the screw, \(n\) is the number of circular divisions in one complete revolution.
\(
\begin{aligned}
&\qquad L C=\frac{1}{100} \mathrm{~mm} \\
&\Rightarrow L C=0.01 \mathrm{~mm} \\
&\Rightarrow L C=0.001 \mathrm{~cm} \\
&\text { Thus, the least count of the screw gauge } \\
&\text { is } 0.001 \mathrm{~cm} \text {. } \\
&\text { Therefore, diameter of the wire of screw } \\
&\text { gauge, } \\
&\qquad D=M S R+(C S R \times L C) \\
&\Rightarrow D=0+(52 \times 0.001) \\
&\Rightarrow D=0.052 \mathrm{~cm}
\end{aligned}
\)
If force \([F]\), acceleration \([a]\) and time [T] are chosen as the fundamental physical quantities. Find the dimensions of energy.  [NEET 2021]
Given, fundamental physical quantities are force \([F]\), acceleration \([a]\) and time \([T]\).
Now, we shall determine the dimensions of the energy.
Energy depends on force, acceleration and time as,
\(
\begin{aligned}
{[E] } &=[F]^{a}[a]^{b}[T]^{c} \\
\Rightarrow\left[M L^{2} T^{-2}\right] &=\left[M L T^{-2}\right]^{a}\left[L T^{-2}\right]^{b}[T]^{c} \\
\Rightarrow\left[M L^{2} T^{-2}\right] &=[M]^{a}[L]^{a+b}[T]^{-2 a-2 b+c}
\end{aligned}
\)
Comparing the powers of \(M, L\) and \(T\) on both sides, we get
\(
\begin{aligned}
&a=1, a+b=2 \\
&\text { and }-2 a-2 b+c=-2 \\
&\Rightarrow 1+b=2 \Rightarrow b=1 \\
&\Rightarrow-2(1)-2(1)+c=-2 \Rightarrow c=2
\end{aligned}
\)
The dimensions of the energy are \(\left[F^{1}\right][a][T]^{2}\).
If \(E\) and \(G\) respectively denote energy and gravitational constant. then \(\frac{E}{G}\) has the dimensions of  [NEET 2021]
The dimensions of energy
\(
\begin{gathered}
{[E]=[F] \cdot[d]} \\
\Rightarrow[E]=\left[M L T^{-2}\right][L] \Rightarrow[E]=\left[M L^{2} T^{-2}\right]
\end{gathered}
\)
As we know that, the expression of gravitational force,
\(
\begin{gathered}
F=\frac{G M_{1} M_{2}}{r^{2}} \Rightarrow G=\frac{F r^{2}}{M_{1} M_{2}} \\
\therefore[G]=\frac{[F]\left[r^{2}\right]}{\left[M_{1}\right]\left[M_{2}\right]} \Rightarrow[G]=\frac{\left[M L T^{-2}\right][L]^{2}}{[M][M]} \\
\Rightarrow[G]=\left[M^{-1} L^{3} T^{-2}\right]
\end{gathered}
\)
The dimensions of
\(
\frac{E}{G}=\frac{\left[M L^{2} T^{-2}\right]}{\left[M^{-1} L^{3} T^{-2}\right]} \Rightarrow\left[\frac{E}{G}\right]=\left[M^{2} L^{-1} T^{0}\right]
\)
Which of the following will have the dimensions of time? [CBSE AIPMT 1996]
\(\frac{L}{R}\) is the time constant of \(R-L\) circuit so, the dimensions of \(\frac{L}{R}\) is same as that of time.
Alternative
\(\frac{\text { Dimensions of } L}{\text { Dimensions of } R}=\frac{\left[M L^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}{\left[M L^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]}=[\mathrm{T}]\)
Which of the following is a dimensional constant?  [CBSE AIPMT 1995]
Therefore, gravitational constant \((G)\) is a dimensional constant. Value of \(\mathrm{G}=6.67 \times 10^{-}\) \({ }^{11} \mathrm{~m}^{2} / \mathrm{kg} / \mathrm{sec}^{2}\)
dimension of \(G=\left[M^{-1} L^{3} \mathrm{~T}^{-2}\right]\)
The time dependence of a physical quantity \(p\) is given by \(p=p_{0} \exp \left(-\alpha t^{2}\right)\), where \(\alpha\) is a constant and \(t\) is the time. The constant \(\alpha\)Â [NEET 1993]
In \(p=p_{0} \exp \left(-\alpha t^{2}\right)\), where \(\alpha t^{2}\) where is dimensionless
\(
\therefore \alpha=\frac{1}{t^{2}}=\frac{1}{\left[T^{2}\right]}=\left[T^{-2}\right]
\)
Turpentine oil is flowing through a tube of length \(\ell\) and radius [/latex]r[/latex]. The pressure difference between the two ends of the tube is \(p\). The viscosity of oil is given by
\(
\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v l}
\)
where \(v\) is the velocity of oil at a distance \(x\) from the axis of the tube. The dimensions of \(\eta\) are [CBSE AIPMT 1993]
Pressure
\(
(p)=\frac{\text { Force }}{\text { Area }}=\frac{\left[M L T^{-2}\right]}{\left[L^{2}\right]}=\left[M L^{-1} T^{-2}\right]
\)
Velocity, \(\quad v=\left[\mathrm{LT}^{-1}\right]\)
From principle of homogeneity, the dimensions of \(r^{2}\) and \(x^{2}\) are same.
So, the dimensions of viscosity,
\(
\eta=\frac{\left[M L^{-1} T^{-2}\right]\left[L^{2}\right]}{\left[L T^{-1}\right][L]}=\left[M L^{-1} T^{-1}\right]
\)
If \(p\) represents radiation pressure, \(c\) represents speed of light and \(S\) represents radiation energy striking unit area per sec. The non-zero integers \(x, y, z\) such that \(p^{x} S^{y} c^{z}\) is dimensionless are  [CBSE AIPMT 1992]
Let the expression, \(\alpha=P^{x} S^{y} c^{z} \ldots\) (i) and given that dimension of \(\alpha=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right] \ldots\) (ii) \(=\) dimensionless
Dimension fo radiation pressure \(P=\frac{\text { Force }}{\text { Area }}\)
\(
=\frac{\left[\mathrm{MLT}^{-2}\right]}{\left[\mathrm{L}^{2}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]
\)
Dimension of radiation energy/unit area unit time
\(
S=\frac{\text { Energy }}{\text { Area } \times \text { Time }}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{2}\right][\mathrm{T}]}=\left[\mathrm{MT}^{-3}\right]
\)
Dimension of speed of light, \(c=\left[\mathrm{LT}^{-1}\right]\)
By equation (i) we get,
So, the dimension of \(\alpha=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]^{x}\left[\mathrm{MT}^{-3}\right\}^{y}\)
\(\left[\mathrm{LT}^{-1}\right]^{z}\)
According to equation (ii),
\(\Rightarrow\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]^{x}\left[\mathrm{MT}^{-3}\right]^{y}\left[\mathrm{LT}^{-1}\right]^{z}\)
\(\Rightarrow\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]=\left[\mathrm{M}^{x+y} \mathrm{~L}^{-x+z} \mathrm{~T}^{-2 x-3 y-z}\right]\)
Applying the principle of homegenity of dimension we get,
\(x+y=0\)
\(-x+z=0\)
\(-2 x-3 y-z=0 \quad\)…(v)
After solving above three equation we get, \(x=1 ; y=-1 ; z=1\)
The dimensional formula for permeability of free space, \(\mu_{0}\) is [CBSE AIPMT 1991]
From Biot-Savart law
\(
\begin{aligned}
d B &=\frac{\mu_{0}}{4 \pi} \frac{I d l \sin \theta}{r^{2}} \\
|d| &=\text { current element } \\
r &=\text { displacement vector } \\
\mu_{0} &=\frac{4 \pi r^{2}(d B)}{|d| \sin \theta}=\frac{\left[L^{2}\right]\left[M T^{-2} A^{-1}\right]}{[A][L]} \\
&=\left[M L T^{-2} A^{-2}\right]
\end{aligned}
\)
According to Newton, the viscous force acting between liquid layers of area \(A\) and velocity gradient \(\Delta \mathrm{V} / \Delta \mathrm{Z}\) is given by \(\mathrm{F}=-\eta \mathrm{A} \frac{\Delta \mathrm{V}}{\Delta \mathrm{Z}}\) where \(\eta\) is constant called coefficient of viscosity. The dimensional formula of \(\eta\) is  [CBSE AIPMT 1990]
\(\begin{aligned}
&\text { As F }=-\eta A \frac{d v}{d z} \Rightarrow \eta=-\frac{F}{A\left(\frac{d v}{d z}\right)} \\
&\text { As } \quad F=\left[M L T^{-2}\right], A=\left[L^{2}\right] \\
&d v=\left[L T^{-1}\right], d z=[L] \\
&\therefore \quad \eta=\frac{\left[M L T^{-2}\right][L]}{\left[L^{2}\right]\left[L T^{-1}\right]}=\left[M L^{-1} T^{-1}\right]
\end{aligned}\)
The frequency of vibration \(f\) of a mass \(\mathrm{m}\) suspended from a spring of spring constant \(\mathrm{k}\) is given by a relation of the type \(f=c m^{x} k^{y}\), where \(c\) is a dimensionless constant. The values of \(x\) and \(y\) are [CBSE AIPMT 1990]
\(f=c m^{x} k^{y}\);
Spring constant \(k=\) force/length.
\(
\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]=\left[\mathrm{M}^{x}\right]\left[\mathrm{MT}^{-2} ]^{y}=\left[\mathrm{M}^{x+y} \mathrm{~T}^{-2 y}\right]\right.
\)
\(\Rightarrow x+y=0,-2 y=-1\) or \(y=\frac{1}{2}\)
Therefore, \(x=-\frac{1}{2}\)
The dimensional formula of pressure is  [CBSE AIPMT 1990]
\(
\begin{aligned}
\text { Pressure } &=\frac{\text { Force }}{\text { Area }}=\frac{F}{A}=\frac{\left[M L T^{-2}\right]}{\left[L^{2}\right]} \\
&=\left[M L^{-1} T^{-2}\right]
\end{aligned}
\)
The dimensional formula of torque is [CBSE AIPMT 1989]
Torque \(\tau=\) Force \(\times\) distance
So dimensional formula,
\(
=\left[\mathrm{MLT}^{-2}\right][\mathrm{L}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]
\)
The dimensional formula of self-inductance is  [CBSE AIPMT 1989]
\(L=\varepsilon\left(\frac{d t}{d I}\right)=\frac{W}{q}\left[\frac{d i}{d t}\right]=\frac{W}{i \cdot t}\left[\frac{d i}{d t}\right]\)
or, \([\mathrm{L}]=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right][\mathrm{T}]}{[\mathrm{AT}][\mathrm{A}]}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]\)
Of the following quantities, which one has dimensions different from the remaining three? [CBSE AIPMT 1989]
For angular momentum, the dimensional formula is \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]\). For other three, it is \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\)
The dimensional formula for angular momentum is [CBSE AIPMT 1988]
Angular momentum
\(=\) Momentum of inertia \(\times\) Angular velocity
So dimensional formula,
\(
\begin{aligned}
&=\left[\mathrm{ML}^{2}\right] \times\left[\mathrm{T}^{-1}\right] \\
&=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]
\end{aligned}
\)
If \(C\) and \(R\) denote capacitance and resistance respectively, then the dimensional formula of \(C R\) is  [CBSE AIPMT 1988]
\(
\begin{aligned}
\mathrm{CR} &=\left(\frac{q}{V}\right)\left(\frac{V}{i}\right) \Rightarrow\left(\frac{i \cdot t}{i}\right) \Rightarrow t=\text { time } \\
&=[\mathrm{T}]=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}\right]
\end{aligned}
\)
\(\mathrm{RC}\) is the time constant of the circuit.
Taking into account of the significant figures, what is the value of \(9.99 \mathrm{~m}-0.0099 \mathrm{~m}\)? [NEET 2020]
The difference between \(9.99 \mathrm{~m}\) and \(0.0099 \mathrm{~m}\) is
\(
=9.99-0.0099=9.9801 \mathrm{~m}
\)
Taking significant figures into account, as both the values have two significant figures after the decimal. So, their difference will also have two significant figures after the decimal, i.e. \(9.98 \mathrm{~m}\).
A screw gauge has the least count of \(0.01 \mathrm{~mm}\) and there are 50 divisions in its circular scale. The pitch of the screw gauge is [NEET 2020]
Least count of screw gauge \(=0.01 \mathrm{~mm}\) Least count
\(
\begin{aligned}
&=\frac{\text { Pitch }}{\text { No. of divisions on circular scale }} \\
&\Rightarrow 0.01 \mathrm{~mm}=\frac{\text { Pitch }}{50} \\
&\Rightarrow \text { Pitch }=0.5 \mathrm{~mm}
\end{aligned}
\)
In an experiment, the percentage of error occurred in the measurement of physical quantities \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) an D are \(1 \%, 2 \%, 3 \%\) and \(4 \%\) respectively. Then the maximum percentage of error in the measurement \(\mathrm{X}\), where \(\mathrm{X}=\) \(\frac{\mathrm{A}^{2} \mathrm{~B}^{1 / 2}}{\mathrm{C}^{1 / 3} \mathrm{D}^{3}}\) will be:Â [NEET 2019]
Given, \(x=\frac{A^{2} B^{1 / 2}}{C^{1 / 3} D^{3}}\)
\(\%\) error, \(\frac{\Delta \mathrm{x}}{\mathrm{x}} \times 100=2 \frac{\Delta \mathrm{A}}{\mathrm{A}} \times 100+\frac{1}{2} \frac{\Delta \mathrm{B}}{\mathrm{B}} \times\)
\(
\begin{aligned}
& 100+\frac{1}{3} \frac{\Delta \mathrm{C}}{\mathrm{C}} \times 100+3 \frac{\Delta \mathrm{D}}{\mathrm{D}} \times 100 \\
=& 2 \times 1 \%+\frac{1}{2} \times 2 \%+\frac{1}{3} \times 3 \%+3 \times 4 \% \\
=& 2 \%+1 \%+1 \%+12 \%=16 \%
\end{aligned}
\)
The main scale of a vernier callipers has \(n\) divisions/cm. \(n\) divisions of the vernier scale coincide with \((n-1)\) divisions of the main scale. The least count of the vernier callipers is [NEET Odisha, 2019]
\(\begin{aligned}
&\text { (d) } n \mathrm{VSD}=(n-1) \mathrm{MSD} \\
&1 \mathrm{VSD}=\frac{(n-1)}{n} \mathrm{MSD} \\
&\text { L.C. }=1 \mathrm{MSD}-1 \mathrm{VSD}=1 \mathrm{MSD}-\frac{(n-1)}{n} \mathrm{MSD} \\
&=\frac{1}{n} \mathrm{MSD}=\frac{1}{n} \times \frac{1}{n}=\frac{1}{n^{2}}
\end{aligned}\)
A student measured the diameter of a small steel ball using a screw gauge of least count \(0.001 \mathrm{~cm}\). The main scale reading is \(5 \mathrm{~mm}\) and zero of circular scale division coincides with 25 divisions above the reference level. If the screw gauge has a zero error of \(-0.004 \mathrm{~cm}\), the correct diameter of the ball is [NEET 2018]
Diameter of the ball
\(
\begin{aligned}
&=\mathrm{MSR}+\operatorname{CSR} \times(\text { least count })-\text { zero error } \\
&=0.5 \mathrm{~cm}+25 \times 0.001-(-0.004) \\
&=0.5+0.025+0.004=0.529 \mathrm{~cm}
\end{aligned}
\)
In an experiment four quantities a, b, \(\mathrm{c}\) and \(\mathrm{d}\) are measured with percentage error \(1 \%, 2 \%\), \(3 \%\) and \(4 \%\) respectively. Quantity \(P\) is calculated as follows \(\mathrm{P}=\frac{a^{3} b^{2}}{c d} \%\) error in \(\mathrm{P}\) is [NEET 2013]
Given, \(\mathrm{P}=\frac{a^{3} b^{2}}{c d}\)
Therefore, \(\frac{\Delta \mathrm{P}}{\mathrm{P}} \times 100 \%=3 \frac{\Delta a}{a} \times 100 \%\)
\(
\begin{aligned}
&+2 \frac{\Delta b}{b} \times 100 \%+\frac{\Delta c}{c} \times 100 \%+\frac{\Delta d}{d} \times 100 \% \\
&=3 \times 1 \%+2 \times 2 \%+3 \%+4 \%=14 \%
\end{aligned}
\)
If the error in the measurement of radius of a sphere is $2 \%$, then the error in the determination of the volume of the sphere will be [CBSE AIPMT 2008]
Volume of a sphere, \(V=\frac{4}{3} \pi r^{3}\)
\(
\therefore \quad \frac{\Delta V}{V} \times 100=\frac{3 \times \Delta r}{r} \times 100
\)
Here \(\frac{\Delta r}{r} \times 100=2 \%\)
\(
\therefore \quad \frac{\Delta V}{V} \times 100=3 \times 2 \%=6 \%
\)
The density of a cube is measured by measuring it’s mass and length of its sides. If the maximum error in the measurement of mass and length are \(4 \%\) and \(3 \%\) respectively, the maximum error in the measurement of density will be [CBSE AIPMT 1996]
As we know, density \(=\frac{\text { mass }}{\text { volume }}\)
Maximum error in the measurement of density \(\rho=\frac{M}{L^{3}}\)
\(
\therefore \quad \frac{\Delta \rho}{\rho}=\frac{\Delta \mathrm{M}}{\mathrm{M}}+3 \frac{\Delta \mathrm{L}}{\mathrm{L}}
\)
\(\%\) error in density \(=\%\) error in Mass
\(
\begin{aligned}
&\quad+3(\% \text { error in length }) \\
&=4+3(3)=13 \%
\end{aligned}
\)
The percentage errors in the measurement of mass and speed are \(2 \%\) and \(3 \%\) respectively. The error in kinetic energy obtained by measuring mass and speed will be [CBSE AIPMT 1995]
Percentage error in mass \(\left(\frac{\Delta m}{m} \times 100\right)=2\) and percentage error in speed \(\left(\frac{\Delta v}{v} \times 100\right)=3\).
Kinetic energy, \(k=\frac{1}{2} m v^{2}\).
\(\therefore\) Error in measurement of kinetic energy \(\frac{\Delta K}{K}=\frac{\Delta m}{m}+2\left(\frac{\Delta v}{v}\right)\)
\(
\begin{aligned}
&=\left(\frac{2}{100}\right)+\left(2 \times \frac{3}{100}\right)=\frac{8}{100}=8 \% \\
&\therefore \% \text { age error }=8 \% .
\end{aligned}
\)
In a vernier calliper \(\mathrm{N}\) divisions of vernier scale coincides with \((\mathrm{N}-1)\) divisions of main scale (in which length of one division is \(1 \mathrm{~mm}\) ). The least count of the instrument should be [CBSE AIPMT 1994]
Least count \(=1 \mathrm{MSD}-1 \mathrm{VSD}\)
\(
\begin{aligned}
&=1 \mathrm{MSD}-\left(\frac{\mathrm{N}-1}{\mathrm{~N}}\right) \mathrm{MSD} \\
&=\frac{1}{\mathrm{~N}} \mathrm{MSD}=\frac{1}{\mathrm{~N}} \times \frac{1}{10} \mathrm{~cm}=\frac{1}{10 \mathrm{~N}}
\end{aligned}
\)
A certain body weighs \(22.42 \mathrm{gm}\) and has a measured volume of \(4.7 \mathrm{cc}\). The possible error in the measurement of mass and volume are \(0.01 \mathrm{gm}\) and \(0.1 \mathrm{cc}\). Then maximum error in the density will be [CBSE AIPMT 1991]
Density, \(\mathrm{D}=\frac{\operatorname{Mass}(\mathrm{M})}{\operatorname{Volume}(\mathrm{V})}\)
\(
\therefore \frac{\Delta \mathrm{D}}{\mathrm{D}}=\frac{\Delta \mathrm{M}}{\mathrm{M}}+\frac{\Delta \mathrm{V}}{\mathrm{V}}=\left(\frac{0.01}{22.42}+\frac{0.1}{4.7}\right) \times 100=2 \%
\)
Match List-I with List-II
\(
\begin{array}{|l|l|l|l|}
\hline & {\begin{array}{l}
\text { List-I } \\
\text { (Electromagnetic waves) }
\end{array}} & {\begin{array}{c}
\text { List-II } \\
\text { (Wavelength) }
\end{array}} \\
\hline \text { (a) } & \text { AM radio waves } & \text { (i) } & 10^{-10} \mathrm{~m} \\
\hline \text { (b) } & \text { Microwaves } & \text { (ii) } & 10^2 \mathrm{~m} \\
\hline \text { (c) } & \text { Infrared radiations } & \text { (iii) } & 10^{-2} \mathrm{~m} \\
\hline \text { (d) } & \text { X-rays } & \text { (iv) } & 10^{-4} \mathrm{~m} \\
\hline
\end{array}
\)
Choose the correct answer from the options given below [NEET 2022]
\(
\begin{array}{|l|l|}
\hline {\text { Waves }} & {\text { Wavelength }} \\
\hline \text { AM radio waves } & 10^2 \mathrm{~m} \\
\hline \text { Microwaves } & 10^{-2} \mathrm{~m} \\
\hline \text { Infrared radiations } & 10^{-4} \mathrm{~m} \\
\hline \text { X-rays } & 10^{-10} \mathrm{~m} \\
\hline
\end{array}
\)
\(
\begin{aligned}
& \text { (a) – (ii) } \\
& \text { (b) – (iii) } \\
& \text { (c) – (iv) } \\
& \text { (d) – (i) }
\end{aligned}
\)
The dimensions \(\left[M L T^{-2} A^{-2}\right]\) belong to the [NEET 2022]
\(
\text { Dimensional formula of magnetic permeability is }\left[M L T^{-2} A^{-2}\right]
\)
Plane angle and solid angle have [NEET 2022]
\(
\begin{aligned}
\text { Plane angle } & =\frac{\text { Arc }}{\text { Radius }}=\frac{[\mathrm{L}]}{[\mathrm{L}]} \longrightarrow \text { Unit }=\text { Radian } \\
& =\left[M^0 L^0 T^0\right]
\end{aligned}
\)
\(
\begin{aligned}
\text { Solid angle } & =\frac{\text { Area }}{(\text { Radius })^2} \longrightarrow \text { Unit }=\text { Steradian } \\
& =\frac{L^2}{L^2}=\left[M^0 L^0 T^0\right]
\end{aligned}
\)
\(\therefore\) Both have units but no dimensions.
Match List-I with List-II [NEET 2022]
\(
\begin{array}{|l|l|l|l|}
\hline & \text { List-1 } & & \text { List-1I } \\
\hline \text { (a) } & \text { Gravitational constant (G) } & \text { (i) } & {\left[\mathrm{L}^2 \mathrm{~T}^{-2}\right]} \\
\hline \text { (b) } & \text { Gravitational potential energy } & \text { (ii) } & {\left[\mathrm{M}^{-1} \mathrm{~L}^3 \mathrm{~T}^{-2}\right]} \\
\hline \text { (c) } & \text { Gravitational potential } & \text { (iii) } & {\left[\mathrm{LT}^{-2}\right]} \\
\hline \text { (d) } & \text { Gravitational intensity } & \text { (iv) } & {\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]} \\
\hline
\end{array}
\)
Choose the correct answer from the options given below
(a)
\(
\begin{aligned}
& {[G]=\frac{F r^2}{m_1 m_2}} \\
& {[G]=\frac{F r^2}{m_1 m_2}=\frac{\left[M L T^{-2}\right] L^2}{[\mathrm{MM}]}=\left[\mathrm{M}^{-1} \mathrm{~L}^3 \mathrm{~T}^{-2}\right]}
\end{aligned}
\)
(b) Gravitational potential energy \(=\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]\)
(c) Gravitational potential \(=\frac{\mathrm{PE}}{m}=\left[\mathrm{L}^2 \mathrm{~T}^{-2}\right]\)
(d) Gravitational field intensity \(=\frac{F}{m}=\left[\mathrm{LT}^{-2}\right]\)
The area of a rectangular field \(\left(\right.\) in \(\left.\mathrm{m}^2\right)\) of length \(55.3 \mathrm{~m}\) and breadth \(25 \mathrm{~m}\) after rounding off the value for correct significant digits is [NEET 2022]
\(
\begin{aligned}
\text { Area } & =\text { Length } \times \text { Breadth } \\
& =55.3 \times 25 \mathrm{~m}^2 \\
& =1382.5 \mathrm{~m}^2 \\
& =14 \times 10^2 \mathrm{~m}^2 \text { (Rounding off of two significant figures) }
\end{aligned}
\)
The errors in the measurement which arise due to unpredictable fluctuations in temperature and voltage supply are [NEET 2023]
The errors which cannot be associated with any systematic or constant cause are called random errors. These errors can arise due to unpredictable fluctuations in experimental conditions. e.g., random change in pressure, temperature, voltage supply, etc.
A metal wire has mass \((0.4 \pm 0.002) \mathrm{g}\), radius \((0.3 \pm 0.001) \mathrm{mm}\) and length \((5 \pm 0.02) \mathrm{cm}\). The maximum possible percentage error in the measurement of density will nearly be [NEET 2023]
\(
\text { We know, } \rho=\frac{\text { Mass }}{\text { Volume }}=\frac{M}{\pi r^2 l}
\)
Using the concept of errors we know,
\(
\begin{aligned}
& \frac{\Delta \rho}{\rho}=\frac{\Delta M}{M}+\frac{2 \Delta r}{r}+\frac{\Delta l}{l}=\left(\frac{0.002}{0.4}+\frac{2 \times 0.001}{0.3}+\frac{0.02}{5}\right) \\
& \frac{\Delta \rho}{\rho}=0.0156 \\
& \frac{\Delta \rho}{\rho} \%=1.56 \% \approx 1.6 \%
\end{aligned}
\)
You cannot copy content of this page