The value of \(K_c\) for a reaction does not depend on the rate of the reaction. However, it is directly related to the thermodynamics of the reaction and in particular, to the change in Gibbs energy, \(\Delta G\). If,
A mathematical expression of this thermodynamic view of equilibrium can be described by the following equation:
\(
\Delta G=\Delta G^{\ominus}+\mathrm{RT} \ln Q \dots(7.21)
\)
where, \(G^{\ominus}\) is standard Gibbs energy.
At equilibrium, when \(\Delta G=0\) and \(Q=K_c\), the equation (7.21) becomes,
\(
\begin{aligned}
& \Delta G=\Delta G^{\ominus}+\mathrm{R} T \ln K=0 \\
& \Delta G^{\ominus}=-\mathrm{R} T \ln K \dots(7.22) \\
& \ln K=-\Delta G^{\ominus} / \mathrm{R} T
\end{aligned}
\)
Taking antilog of both sides, we get,
\(K=\mathrm{e}^{-\Delta G^{\ominus} / \mathrm{RT}} \dots(7.23)\)
Hence, using the equation (7.23), the reaction spontaneity can be interpreted in terms of the value of \(\Delta G^{\ominus}\).
Example 7.10: The value of \(\Delta G^{\ominus}\) for the phosphorylation of glucose in glycolysis is \(13.8 \mathrm{~kJ} / \mathrm{mol}\). Find the value of \(K_c\) at \(298 \mathrm{~K}\).
Answer:
\(Example 7.11: Hydrolysis of sucrose gives,
Sucrose \(+\mathrm{H}_2 \mathrm{O} \rightleftharpoons\) Glucose + Fructose
Equilibrium constant \(K_c\) for the reaction is \(2 \times 10^{13}\) at \(300 \mathrm{~K}\). Calculate \(\Delta G^{\ominus}\) at \(300 \mathrm{~K}\).
Answer: \(
\Delta G^{\ominus}=-\mathrm{R} T \ln K_c
\)
\(
\Delta G^{\ominus}=-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)
\)
\(
\Delta G^{\ominus}=-7.64 \times 10^4 \mathrm{~J} \mathrm{~mol}^{-1}
\)
You cannot copy content of this page