The ovules after fertilisation, develop into seeds. A seed is made up of a seed coat and an embryo. The embryo is made up of a radicle, an embryonal axis and one (as in wheat, maize) or two cotyledons (as in gram and pea).
The outermost covering of a seed is the seed coat. The seed coat has two layers, the outer testa and the inner tegmen. The hilum is a scar on the seed coat through which the developing seeds were attached to the fruit. Above the hilum is a small pore called the micropyle. Within the seed coat is the embryo, consisting of an embryonal axis and two cotyledons. The cotyledons are often fleshy and full of reserve food materials. At the two ends of the embryonal axis are present the radicle and the plumule (Figure 5.14). In some seeds such as castor the endosperm formed as a result of double fertilisation, is a food storing tissue and called endospermic seeds. In plants such as bean, gram and pea, the endosperm is not present in mature seeds and such seeds are called non-endospermous.
Generally, monocotyledonous seeds are endospermic but some as in orchids are non-endospermic. In the seeds of cereals such as maize the seed coat is membranous and generally fused with the fruit wall. The endosperm is bulky and stores food. The outer covering of endosperm separates the embryo by a proteinous layer called aleurone layer. The embryo is small and situated in a groove at one end of the endosperm. It consists of one large and shield shaped cotyledon known as scutellum and a short axis with a plumule and a radicle. The plumule and radicle are enclosed in sheaths which are called coleoptile and coleorhiza respectively (Figure 5.15).
You cannot copy content of this page