TRIGONOMETRIC EQUATIONS
An equation involving one or more trigonometrical ratios of unknown angle is called a trigonometric equation, e.g., \(\cos ^2 x-4 \sin x=1\). It is to be noted that a trigonometrical identity is satisfied for every value of the unknown angle, whereas a trigonometric equation is satisfied only for some values (finite or infinite in number) of unknown angle, e.g., \(\sin ^2 x+\cos ^2 x=1\) is a trigonometrical identity as it is satisfied for every value of \(x \in R\).
Solution or Root of a Trigonometric Equation
The value of an unknown angle which satisfies the given trigonometric equation is called a solution or root of the equation. For example, \(2 \sin \theta=1\), clearly \(\theta=30^{\circ}\) and \(\theta=150^{\circ}\) satisfies the equation; therefore, \(30^{\circ}\) and \(150^{\circ}\) are solutions of the equation \(2 \sin \theta=1\) between \(0^{\circ}\) and \(360^{\circ}\).
Principal Solution of a Trigonometric Equation
The solutions of a trigonometric equation lie in the interval \([0,2 \pi)\). For example, \(\sin \theta=1 / 2\), then the two values of \(\theta\) between 0 and \(2 \pi\) are \(\pi / 6\) and \(5 \pi / 6\). Thus, \(\pi / 6\) and \(5 \pi / 6\) are the principal solutions of equation \(\sin \theta=1 / 2\).
General Solution of a Trigonometric Equation
It is known that trigonometric ratios are periodic functions. In fact, \(\sin x, \cos x, \sec x\) and \(\operatorname{cosec} x\) are periodic functions with a period \(2 \pi\), and \(\tan x\) and \(\cot x\) are periodic functions with a period \(\pi\). Therefore, solutions of trigonometric equations can be generalized with the help of the period of trigonometric functions. The solution consisting of all possible solutions of a trigonometric equation is called its general solution.
Clearly, general solution of a trigonometric equation will involve integral \(n \in Z\). The general solution of a trigonometric equation is also called a ‘solution’.
Here set of all integers is denoted by \(Z . n \in Z\) means \(n=0, \pm 1, \pm 2, \ldots\). For example, the general solution of the equation \(\cos \theta=1\) is \(\theta=2 n \pi\).
Some Important General Solutions of Equations
\(Points to Remember
Example 3.1: Solve the equation \(\sin x+\cos x=1\).
Solution: Square both sides of the equation.
If we square we have \((\sin x+\cos x)^2=1\)
\(
\begin{aligned}
& \Rightarrow 1+\sin 2 x=1 \\
& \Rightarrow \sin 2 x=0 \\
& \Rightarrow 2 x=n \pi, n \in Z \\
& \Rightarrow x=n \pi / 2, n \in Z
\end{aligned}
\)
But for \(n=2,6,10, \ldots\)
\(\sin x+\cos =-1\) which contradicts the given equation.
Also for \(x=3,7,11, \ldots\)
\(
\sin x+\cos x=-1
\)
Hence, the solution is \(x=2 n \pi\) or \(x=(4 n+1) \frac{\pi}{2}\).(sinx+cosx)2=12sin2x+2sinxcosx+cos2x=1
Example 3.2: Solve \(\frac{\tan 3 x-\tan 2 x}{1+\tan 3 x \tan 2 x}=1\).
Solution: \(\tan (3 x-2 x)=\tan x=1\)
Therefore, \(x=n \pi+(\pi / 4)\) but this values does not define \(\tan 2 x\). Hence, there is no solution.
Explanation: The tangent subtraction identity is \(\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}\).
The general solution for \(\tan \theta=1\) is \(\theta=n \pi+\frac{\pi}{4}\), where \(n\) is an integer.
The left side of the equation matches the form of \(\tan (A-B)\).
Let \(A=3 x\) and \(B=2 x\).
The equation becomes \(\tan (3 x-2 x)=1\).
This simplifies to \(\tan x=1\).
The general solution for \(\tan x=1\) is \(x=n \pi+\frac{\pi}{4}\).
Here, \(n\) represents any integer, i.e., \(n \in \mathbb{Z}\).
Next, we need to check the validity of this solution in the context of the original equation. Specifically, we must ensure that \(\tan (2 x)\) is defined for our solution.
Substituting \(x=n \pi+\frac{\pi}{4}\) into \(2 x\) :
\(
2 x=2\left(n \pi+\frac{\pi}{4}\right)=2 n \pi+\frac{\pi}{2}
\)
The tangent function is undefined for odd multiples of \(\frac{\pi}{2}\). Since \(2 n \pi+\frac{\pi}{2}\) is indeed an odd multiple of \(\frac{\pi}{2}\) for any integer \(n, \tan (2 x)\) is undefined.
Example 3.3: Find the values of \(\theta\) which satisfy \(r \sin \theta=3\) and \(r=4(1+\sin \theta), 0 \leq \theta \leq 2 \pi\).
Solution:
\(
\begin{aligned}
&0 \leq \theta \leq 2 \pi\\
&\text { Eliminating } r \text {, we have } 4 \sin ^2 \theta+4 \sin \theta-3=0\\
&\Rightarrow \sin \theta=\frac{1}{2},-\frac{3}{2} \text { (not possible) } \quad \Rightarrow \quad \theta=\frac{\pi}{6}, \pi-\frac{\pi}{6}=\frac{5 \pi}{6}
\end{aligned}
\)0≤θ≤2π Eliminating r, we have 4sin2θ+4sinθ−3=0⇒sinθ=12,−32 (not possible) ⇒θ=π6,π−π6=5π6
Example 3.4: Solve \(16^{\sin ^2 x}+16^{\cos ^2 x}=10,0 \leq x<2 \pi\).
Solution: \(16^{\sin ^2 x}+16^{1-\sin ^2 x}=10 \dots(i)\)
If \(16^{\sin ^2 x}=t\), then \(t+\frac{16}{t}=10\)
Then Eq. (i) becomes
\(
\begin{aligned}
&\text { Then Eq. (i) becomes }\\
&\begin{aligned}
& \Rightarrow \quad t^2-10 t+16=0 \\
& \Rightarrow \quad t=2,8 \\
& \Rightarrow \quad 16^{\sin ^2 x}=16^{1 / 4} \text { or } 16^{3 / 4} \\
& \Rightarrow \quad \sin x= \pm \frac{1}{2}, \pm \frac{\sqrt{3}}{2}
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
& \text { Now } \sin x=\frac{1}{2}, \text { then } x=\frac{\pi}{6}, \frac{5 \pi}{6} \\
& \sin x=-\frac{1}{2}, \text { then } x=\frac{7 \pi}{6} \text { or } \frac{11 \pi}{6} \\
& \sin x=\frac{\sqrt{3}}{2} \quad \Rightarrow \quad x=\frac{\pi}{3}, \frac{2 \pi}{3} \\
& \sin x=-\frac{\sqrt{3}}{2} \quad \Rightarrow \quad x=\frac{4 \pi}{3}, \frac{5 \pi}{3}
\end{aligned}
\)
Hence, there will be eight solutions in all.
Example 3.5: Find general value of \(\theta\) which satisfies both \(\sin \theta=-1 / 2\) and \(\tan \theta=1 / \sqrt{3}\), simultaneously.
Solution: Here \(\sin \theta<0\) and \(\tan \theta>0\), then \({\theta}\) lies in the third quadrant.
Now \(\sin \theta=-\frac{1}{2} \quad \Rightarrow \quad \theta=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}\)
Generalizing, we have \(\theta=2 n \pi+\frac{7 \pi}{6}, n \in Z\).
Explanation: You are finding the general value of \(\theta\) that simultaneously satisfies \(\sin \theta=-\frac{1}{2}\) and \(\tan \theta=\frac{1}{\sqrt{3}}\).
The equation \(\sin \theta=-\frac{1}{2}\) is given.
The equation \(\tan \theta=\frac{1}{\sqrt{3}}\) is given.
How to Solve?
Find the angles satisfying each equation separately, then identify the common general solution.
Step 1: Find the general solution for \(\sin \theta=-\frac{1}{2}\).
The reference angle for \(\sin \theta=\frac{1}{2}\) is \(\frac{\pi}{6}\).
Since \(\sin \theta\) is negative, \(\theta\) lies in Quadrant III or IV.
In Quadrant III: \(\theta=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}\).
In Quadrant IV: \(\theta=2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6}\).
The general solutions are \(\theta=2 n \pi+\frac{7 \pi}{6}\) or \(\theta=2 n \pi+\frac{11 \pi}{6}\), where \(n \in \mathbb{Z}\).
Step 2: Find the general solution for \(\tan \theta=\frac{1}{\sqrt{3}}\).
The reference angle for \(\tan \theta=\frac{1}{\sqrt{3}}\) is \(\frac{\pi}{6}\).
Since \(\tan \theta\) is positive, \(\theta\) lies in Quadrant I or III.
In Quadrant I: \(\theta=\frac{\pi}{6}\).
In Quadrant III: \(\theta=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}\).
The general solution is \(\theta=n \pi+\frac{\pi}{6}\), where \(n \in \mathbb{Z}\).
Step 3: Find the common general solution.
Compare the solutions from Step 1 and Step 2.
The common angle is \(\frac{7 \pi}{6}\).
The general value satisfying both conditions is \(\theta=2 n \pi+\frac{7 \pi}{6}\), where \(n \in \mathbb{Z}\).
The general value of \(\theta\) satisfying both equations is \(\theta=2 n \pi+\frac{7 \pi}{6}\), where \(n \in \mathbb{Z}\).
Example 3.6: If \(\sin A=\sin B\) and \(\cos A=\cos B\), then find the value of \(A\) in terms of \(B\).
Solution:
\(
\begin{aligned}
&\begin{aligned}
& \sin A-\sin B=0 \text { and } \cos A-\cos B=0 \\
& \Rightarrow 2 \sin \frac{A-B}{2} \cos \frac{A+B}{2}=0 \text { and } 2 \sin \frac{A+B}{2} \sin \frac{B-A}{2}=0
\end{aligned}\\
&\text { We observe that the common factor gives } \sin \frac{A-B}{2}=0\\
&\begin{aligned}
& \Rightarrow \frac{A-B}{2}=n \pi, n \in Z \\
& \Rightarrow A-B=2 n \pi, n \in Z \\
& \Rightarrow A=2 n \pi+B, n \in Z
\end{aligned}
\end{aligned}
\)
Example 3.7: Find the number of solutions of \(\sin ^2 x-\sin x-1=0\) in \(|-2 \pi, 2 \pi|\).
Solution:
\(
\begin{aligned}
&\begin{aligned}
\sin ^2 x-\sin x-1=0 & \\
\Rightarrow \quad \sin x & =\frac{1 \pm \sqrt{5}}{2} \\
& =\frac{1-\sqrt{5}}{2}\left[\sin x=\frac{1+\sqrt{5}}{2}>1 \text { not possible }\right]
\end{aligned}\\
&\Rightarrow x \text { can attain two values in }[0,2 \pi] \text { and two more values in }[-2 \pi, 0) \text {. Thus, there are four solutions. }
\end{aligned}
\)
Example 3.8: Find the number of solutions of the equation \(e^{\sin x}-e^{-\sin x}-4=0\).
Solution:
\(
\begin{aligned}
& \text { Put } e^{\sin x}=t \Rightarrow t^2-4 t-1=0 \\
& \Rightarrow t=e^{\sin x}=2 \pm \sqrt{5}
\end{aligned}
\)
Now \(\sin x \in[-1,1]\)
\(
\Rightarrow e^{\sin x} \in\left[e^{-1}, e^1\right] \text { and } 2 \pm \sqrt{5} \notin\left[e^{-1}, e^1\right]
\)
Hence, there does not exist any solution. Put esinx=t⇒t2−4t−1=0⇒t=esinx=2±5–√
Example 3.9: If the equation \(a \sin x+\cos 2 x=2 a-7\) possesses a solution, then find the values of \(a\).
Solution: The given equation can be written as \(a \sin x+\left(1-2 \sin ^2 x\right)=2 a-7\)
\(
\begin{aligned}
& \Rightarrow \quad 2 \sin ^2 x-a \sin x+2 a-8=0 \\
& \Rightarrow \quad \sin x=\frac{a \pm \sqrt{a^2-8(2 a-8)}}{4}=\frac{a \pm(a-8)}{4} \\
& \quad=(a-4) / 2
\end{aligned} \quad(\because \sin x=2 \text { is not possible })
\)
Equation has solution if \(-1 \leq(a-4) / 2 \leq 1\)
\(
\begin{aligned}
& \Rightarrow \quad-2 \leq(a-4) \leq 2 \\
& \Rightarrow \quad 2 \leq a \leq 6
\end{aligned}
\)
Example 3.10: Solve \(\sin ^2 \theta-\cos \theta=\frac{1}{4}, 0 \leq \theta \leq 2 \pi\).
Solution:
\(
\sin ^2 \theta-\cos \theta=\frac{1}{4}
\)
Use the identity \(\sin ^2 \theta=1-\cos ^2 \theta\).
Substitute into the given equation: \(1-\cos ^2 \theta-\cos \theta=\frac{1}{4}\).
\(
4 \cos ^2 \theta+4 \cos \theta-3=0
\)
Let \(x=\cos \theta\), so \(4 x^2+4 x-3=0\).
Use the quadratic formula \(x=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\).
Substitute values: \(x=\frac{-4 \pm \sqrt{4^2-4(4)(-3)}}{2(4)}\).
Calculate the discriminant: \(\sqrt{16+48}=\sqrt{64}=8\).
Find the values for \(x\) : \(x=\frac{-4 \pm 8}{8}\).
This gives two solutions: \(x_1=\frac{-4+8}{8}=\frac{4}{8}=\frac{1}{2}\) and \(x_2=\frac{-4-8}{8}=\frac{-12}{8}=-\frac{3}{2}\).
Since \(\cos \theta=x\), we have \(\cos \theta=\frac{1}{2}\) or \(\cos \theta=-\frac{3}{2}\).
The range of \(\cos \theta\) is \([-1,1]\), so \(\cos \theta=-\frac{3}{2}\) has no solution.
For \(\cos \theta=\frac{1}{2}\) in the interval \([0,2 \pi]\), the solutions are \(\theta=\frac{\pi}{3}\) and \(\theta=\frac{5 \pi}{3}\).
The solutions for \(\theta\) in the given interval are \(\frac{\pi}{3}\) and \(\frac{5 \pi}{3}\).
Example 3.11: Solve \(\sin 3 \theta-\sin \theta=4 \cos ^2 \theta-2\).
Solution: The equation is \(\sin 3 \theta-\sin \theta=4 \cos ^2 \theta-2\).
\(
\sin 3 \theta-\sin \theta=2 \cos \left(\frac{3 \theta+\theta}{2}\right) \sin \left(\frac{3 \theta-\theta}{2}\right) =2 \cos (2 \theta) \sin (\theta) .
\)
\(
4 \cos ^2 \theta-2=2\left(2 \cos ^2 \theta-1\right) =2 \cos (2 \theta) \cos 2 \theta=2 \cos ^2 \theta-1
\)
\(
2 \cos (2 \theta) \sin (\theta)=2 \cos (2 \theta)
\)
\(
2 \cos (2 \theta) \sin (\theta)-2 \cos (2 \theta)=0
\)
\(
2 \cos (2 \theta)(\sin (\theta)-1)=0
\)
Case 1: \(2 \cos (2 \theta)=0 \Longrightarrow \cos (2 \theta)=0\)
The general solution for \(\cos x=0\) is \(x=\frac{(2 n+1) \pi}{2}\) for integer \(n\).
So, \(2 \theta=\frac{(2 n+1) \pi}{2}\).
Thus, \(\theta=\frac{(2 n+1) \pi}{4}\).
Case 2: \(\sin (\theta)-1=0 \Longrightarrow \sin (\theta)=1\)
The general solution for \(\sin x=1\) is \(x=\frac{\pi}{2}+2 n \pi\) for integer \(n\).
Thus, \(\theta=\frac{\pi}{2}+2 n \pi\).
The general solutions for \(\theta\) are \(\theta=\frac{(2 n+1) \pi}{4}\) or \(\theta=\frac{\pi}{2}+2 n \pi\), where \(n\) is an integer.
GENERAL SOLUTION OF SOME STANDARD EQUATIONS
General Solution of the Equation \(\sin \theta=\sin \alpha\).
\(
\begin{aligned}
& \text { Given, } \sin \theta=\sin \alpha \quad \Rightarrow \sin \theta-\sin \alpha=0 \\
& \Rightarrow \quad 2 \cos \frac{\theta+\alpha}{2} \sin \frac{\theta-\alpha}{2}=0 \\
& \Rightarrow \quad \cos \frac{\theta+\alpha}{2}=0 \text { or } \sin \frac{\theta-\alpha}{2}=0
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{\theta+\alpha}{2}=(2 m+1) \frac{\pi}{2}, \frac{\theta-\alpha}{2}=m \pi, m \in Z \\
& \Rightarrow \quad \theta=(2 m+1) \pi-\alpha \text { or } \theta=2 m \pi+\alpha, m \in Z \dots(i) \\
& \Rightarrow \quad \theta=(2 m+1) \pi+(-1)^{2 m+1} \alpha, m \in Z \\
& \text { or } \quad \theta=2 m \pi+(-1)^{2 m} \alpha, m \in Z \dots(ii)
\end{aligned}
\)
Combining Eqs. (i) and (ii), we have \(\theta=n \pi+(-1)^n \alpha, n \in Z\)
Note: For the general solution of the equation \(\sin \theta=k\), where \(-1 \leq k \leq 1\). We have \(\sin \theta=\sin \left(\sin ^{-1} k\right)\) \(\Rightarrow \theta=n \pi+(-1)^n \cdot\left(\sin ^{-1} k\right), n \in Z\).
Example 12: Solve \(2 \cos ^2 \theta+3 \sin \theta=0\).
Solution: We have \(2 \cos ^2 \theta+3 \sin \theta=0\)
\(
\begin{aligned}
&\begin{aligned}
\Rightarrow & 2\left(1-\sin ^2 \theta\right)+3 \sin \theta=0 \\
\Rightarrow & 2 \sin ^2 \theta-3 \sin \theta-2=0 \\
\Rightarrow & (\sin \theta-2)(2 \sin \theta+1)=0 \\
\Rightarrow & 2 \sin \theta+1=0 & [\because \sin \theta \neq 2] \\
\Rightarrow & \sin \theta=-\frac{1}{2}=\sin \left(\frac{-\pi}{6}\right) \\
\Rightarrow & \theta=n \pi+(-\mathrm{i})^n\left(\frac{-\pi}{6}\right), n \in Z \\
& =n \pi+(-1)^{n+1} \frac{\pi}{6}, n \in Z
\end{aligned}\\
\end{aligned}
\)
Example 13: Solve \(4 \cos \theta-3 \sec \theta=\tan \theta\).
Solution:
\(
\begin{aligned}
&\text { We have } 4 \cos \theta-3 \sec \theta=\tan \theta\\
&\begin{gathered}
\Rightarrow 4 \cos \theta-\frac{3}{\cos \theta}=\frac{\sin \theta}{\cos \theta} \\
\Rightarrow 4 \cos ^2 \theta-3=\sin \theta \\
\Rightarrow 4\left(1-\sin ^2 \theta\right)-3=\sin \theta \\
\Rightarrow 4 \sin ^2 \theta+\sin \theta-1=0 \\
\Rightarrow \sin \theta=\frac{-1 \pm \sqrt{1+16}}{8} \\
=\frac{-1 \pm \sqrt{17}}{8} \\
=\frac{-1+\sqrt{17}}{8} \text { or }=\frac{-1-\sqrt{17}}{8}
\end{gathered}
\end{aligned}
\)
Now, \(\sin \theta=\frac{-1+\sqrt{17}}{8}\)
\(\Rightarrow \sin \theta=\sin \alpha\), where \(\sin \alpha=\frac{-1+\sqrt{17}}{8}\)
\(\Rightarrow \theta=n \pi+(-1)^n \alpha\), where \(\sin \alpha=\frac{-1+\sqrt{17}}{8}\) and \(n \in Z\) and \(\sin \theta=\frac{-1-\sqrt{17}}{8}\).
\(\Rightarrow \sin \theta=\sin \beta\), where \(\sin \beta=\frac{-1-\sqrt{17}}{8}\)
\(\Rightarrow \theta=n \pi+(-1)^n \beta\), where \(\sin \beta=\frac{-1-\sqrt{17}}{8}\)
Example 14: Solve \(\sin ^3 \theta \cos \theta-\cos ^3 \theta \sin \theta=1 / 4\)
Solution:
\(
\begin{aligned}
& \sin ^3 \theta \cos \theta-\cos ^3 \theta \sin \theta=1 / 4 \\
& \Rightarrow 4 \sin \theta \cos \theta\left(\sin ^2 \theta-\cos ^2 \theta\right)=1 \\
& \Rightarrow 2 \sin 2 \theta(-\cos 2 \theta)=1 \\
& \Rightarrow-\sin 4 \theta=1 \\
& \Rightarrow \sin 4 \theta=-1 \\
& \Rightarrow 4 \theta=2 n \pi-\frac{\pi}{2} \\
& \Rightarrow \theta=(\pi / 2)+(-\pi / 8), n \in Z
\end{aligned}
\)
General Solution of Equation \(\cos \theta=\cos \alpha\)
\(
\begin{aligned}
&\text { Given, } \cos \theta=\cos \alpha\\
&\begin{aligned}
& \Rightarrow \quad \cos \alpha-\cos \theta=0 \\
& \Rightarrow \quad 2 \sin \frac{\alpha+\theta}{2} \sin \frac{\theta-\alpha}{2}=0 \\
& \Rightarrow \quad \sin \frac{\alpha+\theta}{2}=0 \text { or } \sin \frac{\theta-\alpha}{2}=0 \\
& \Rightarrow \quad \frac{\alpha+\theta}{2}=n \pi \text { or } \frac{\theta-\alpha}{2}=n \pi ; n \in Z \\
& \Rightarrow \quad \theta=2 n \pi-\alpha \text { or } \theta=2 n \pi+\alpha, n \in Z \\
& \quad=2 n \pi \pm \alpha, n \in Z
\end{aligned}
\end{aligned}
\)⇒cosα−cosθ=0⇒2sinα+θ2sinθ−α2=0⇒sinα+θ2=0 or sinθ−α2=0
Note: For the general solution of the equation \(\sin \theta=k\), where \(-1 \leq k \leq 1\). We have \(\cos \theta=\cos \left(\cos ^{-1} k\right)\) \(\Rightarrow \theta=2 n \pi \pm\left(\cos ^{-1} k\right), n \in Z\).
Example 15: Solve \(\sqrt{3} \sec 2 \theta=2\).
Solution: We have \(\sqrt{3} \sec 2 \theta=2\)
\(
\begin{gathered}
\Rightarrow \quad \cos 2 \theta=\frac{\sqrt{3}}{2} \\
=\cos \frac{\pi}{6} \\
\Rightarrow \quad 2 \theta=2 n \pi \pm \frac{\pi}{6}, n \in Z \\
\Rightarrow \quad \theta=n \pi \pm \frac{\pi}{12}, n \in Z
\end{gathered}
\)
Example 16: Solve \(\sin 2 \theta+\cos \theta=0\).
Solution: We have \(\sin 2 \theta+\cos \theta=0\)We have \(\sin 2 \theta+\cos \theta=0\)
\(
\begin{aligned}
& \Rightarrow \cos \theta=-\sin 2 \theta \\
& \quad=\cos \left(\frac{\pi}{2}+2 \theta\right) \\
& \Rightarrow \theta=2 n \pi \pm\left(\frac{\pi}{2}+2 \theta\right) n \in Z
\end{aligned}
\)
Taking positive sign, we have.
\(
\begin{aligned}
\theta & =2 n \pi+\frac{\pi}{2}+2 \theta \\
& =2 n \pi-\frac{\pi}{2}, n \in Z
\end{aligned}
\)
Taking negative sign, we have
\(
\theta=2 n \pi-\left(\frac{\pi}{2}+2 \theta\right) \quad \Rightarrow \quad \theta=\frac{2 n \pi}{3}-\frac{\pi}{6}, n \in Z
\)
Example 17: Solve \(\cos \theta+\cos 3 \theta-2 \cos 2 \theta=0\).
Solution: We have \(\cos \theta+\cos 3 \theta-2 \cos 2 \theta=0\)
\(
\begin{aligned}
& \Rightarrow 2 \cos 2 \theta \cos \theta-2 \cos 2 \theta=0 \\
& \Rightarrow 2 \cos 2 \theta(\cos \theta-1)=0 \\
& \Rightarrow \cos 2 \theta=0 \text { or, } \cos \theta-1=0 \\
& \Rightarrow 2 \theta=(2 n+1) \frac{\pi}{2}, n \in Z \text { or } \theta=2 m \pi, m \in Z \\
& \Rightarrow \theta=(2 n+1) \frac{\pi}{4}, n \in Z \text { or } \theta=2 m \pi, m \in Z
\end{aligned}
\)
Example 18: Solve \(\sec 4 \theta-\sec 2 \theta=2\).
Solution:
\(
\begin{aligned}
& \frac{1}{\cos 4 \theta}-\frac{1}{\cos 2 \theta}=2 \\
& \Rightarrow \cos 2 \theta-\cos 4 \theta=2 \cos 2 \theta \cos 4 \theta=\cos 2 \theta+\cos 6 \theta \\
& \Rightarrow \cos 6 \theta+\cos 4 \theta=0 \\
& \Rightarrow 2 \cos 5 \theta \cos \theta=0 \\
& \Rightarrow \cos 5 \theta=0 \text { or } \cos \theta=0 \\
& \Rightarrow 5 \theta=(2 n+1) \frac{\pi}{2} \text { or } \theta=(2 n+1) \frac{\pi}{2}, n \in Z \\
& \Rightarrow \theta=\left(n+\frac{1}{2}\right) \frac{\pi}{5} \text { or } \theta=\left(n+\frac{1}{2}\right) \pi, n \in Z
\end{aligned}
\)
Example 19: Solve \(5 \cos 2 \theta+2 \cos ^2 \frac{\theta}{2}+1=0,-\pi<\theta<\pi\).
Solution:
\(
\begin{aligned}
&\text { Changing all the values in terms of } \cos \theta \text {, we get }\\
&\begin{aligned}
& 5\left(2 \cos ^2 \theta-1\right)+(1+\cos \theta)+1=0 \Rightarrow 10 \cos ^2 \theta+\cos \theta-3=0 \\
& \Rightarrow \quad(5 \cos \theta+3)(2 \cos \theta-1)=0 \\
& \Rightarrow \quad \theta=\frac{\pi}{3},-\frac{\pi}{3}, \cos ^{-1}\left(-\frac{3}{5}\right)=\pi-\cos ^{-1} \frac{3}{5} \text { and }-\pi+\cos ^{-1} \frac{3}{5} [\because-\pi<\theta<\pi]
\end{aligned}
\end{aligned}
\)
Example 20: Solve \(\cos x \cos 2 x \cos 3 x=1 / 4\).
Solution:
\(
\begin{aligned}
& \cos x \cos 2 x \cos 3 x=1 / 4 \\
& \Rightarrow 2(2 \cos x \cos 3 x) \cos 2 x=1 \\
& \Rightarrow 2(\cos 4 x+\cos 2 x) \cos 2 x=1 \\
& \Rightarrow 2\left(2 \cos ^2 2 x-1+\cos 2 x\right) \cos 2 x=1 \\
& \Rightarrow 4 \cos ^3 2 x+2 \cos ^2 2 x-2 \cos 2 x-1=0 \\
& \Rightarrow\left(2 \cos ^2 2 x-1\right)(2 \cos 2 x+1)=0 \\
& \Rightarrow \cos 4 x(2 \cos 2 x+1)=0 \\
& \Rightarrow \cos 4 x=0 \text { or } \cos 2 x=-1 / 2 \\
& \Rightarrow 4 x=(2 n+1) \frac{\pi}{2} \text { or } 2 x=2 m \pi \pm \frac{2 \pi}{3}, m, n \in Z \\
& \Rightarrow x=(2 n+1) \frac{\pi}{8} \text { or } x=m \pi \pm \frac{\pi}{3}
\end{aligned}
\)
General Solutions of the Equation \(\tan \theta=\tan \alpha\)
\(Note: For the general solution of the equation \(\tan \theta=k\), where \(k \in R\). We have \(\tan \theta=\tan \left(\tan ^{-1} k\right)\) \(\Rightarrow \quad \theta=n \pi+\left(\tan ^{-1} k\right), n \in Z\)
Example 21: Solve \(\tan 3 \theta=-1\).
Solution:
\(Example 22: Solve \(2 \tan \theta-\cot \theta=-1\).
Solution:
\(
\begin{aligned}
& 2 \tan \theta-\cot \theta=-1 \\
& \Rightarrow 2 \tan \theta-\frac{1}{\tan \theta}=-1 \\
& \Rightarrow 2 \tan ^2 \theta+\tan \theta-1=0 \\
& \Rightarrow(\tan \theta+1)(2 \tan \theta-1)=0 \\
& \Rightarrow \tan \theta=-1 \text { or } \tan \theta=\frac{1}{2} \\
& \Rightarrow \tan \theta=\tan \left(\frac{-\pi}{4}\right) \text { or } \tan \theta=\tan \left(\tan ^{-1} \frac{1}{2}\right) \\
& \Rightarrow \theta=n \pi+\left(\frac{-\pi}{4}\right) \text { or } \theta=m \pi+\alpha, \text { where } m, n \in Z \text { and } \tan \alpha=\frac{1}{2}
\end{aligned}
\)
Example 23: Solve \(\tan 5 \theta=\cot 2 \theta\).
Solution:
\(
\begin{aligned}
& \tan 5 \theta=\cot 2 \theta=\tan \left(\frac{\pi}{2}-2 \theta\right) \\
& \Rightarrow 5 \theta=n \pi+\frac{\pi}{2}-2 \theta
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \quad 7 \theta=n \pi+\frac{\pi}{2} \\
& \Rightarrow \quad \theta=\frac{n \pi}{7}+\frac{\pi}{14}, \text { where } n \in Z, \text { but } n \neq 3,10,17, \ldots \text { where } \tan 5 \theta \text { is not defined }
\end{aligned}
\)
Example 24: \(\tan \theta+\tan 2 \theta+\sqrt{3} \tan \theta \tan 2 \theta=\sqrt{3}\).
Solution:
\(
\begin{aligned}
& \tan \theta+\tan 2 \theta+\sqrt{3} \tan \theta \tan 2 \theta=\sqrt{3} \\
& \Rightarrow \quad \tan \theta+\tan 2 \theta=\sqrt{3}(1-\tan \theta \tan 2 \theta) \\
& \Rightarrow \quad \frac{\tan \theta+\tan 2 \theta}{1-\tan \theta \tan 2 \theta}=\sqrt{3} \\
& \Rightarrow \quad \tan 3 \theta=\sqrt{3} \\
& \quad=\tan \frac{\pi}{3} \\
& \Rightarrow \quad 3 \theta=n \pi+\frac{\pi}{3}, n \in Z \\
& \Rightarrow \theta=\frac{n \pi}{3}+\frac{\pi}{9}, n \in Z
\end{aligned}
\)
General Solutions of the Equation \(\sin ^2 \theta=\sin ^2 \alpha\) or \(\cos ^2 \theta=\cos ^2 \alpha\)
Here, both given equations are the same as \(\cos ^2 \theta=\cos ^2 \alpha\)
\(
\begin{aligned}
& \Rightarrow \quad\left(1-\sin ^2 \theta\right)-\left(1-\sin ^2 \alpha\right)=0 \\
& \Rightarrow \sin ^2 \theta=\sin ^2 \alpha \\
& \Rightarrow \sin (\theta+\alpha) \sin (\theta-\alpha)=0 \\
& \Rightarrow \sin (\theta+\alpha)=0 \text { or } \sin (\theta-\alpha)=0 \\
& \Rightarrow \theta+\alpha=n \pi \text { or } \theta-\alpha=n \pi, n \in Z \\
& \Rightarrow \theta=n \pi \pm \alpha, n \in Z
\end{aligned}
\)
General Solutions of the Equation \(\tan ^2 \theta=\tan ^2 \alpha\)
\(
\tan ^2 \theta=\tan ^2 \alpha \quad \Rightarrow \tan \theta= \pm \tan \alpha \quad \Rightarrow \tan \theta=\tan ( \pm \alpha) \quad \Rightarrow \quad \theta=n \pi \pm \alpha, n \in Z
\)
Example 25: Solve \(7 \cos ^2 \theta+3 \sin ^2 \theta=4\).
Solution:
\(
\begin{aligned}
&\text { We have } 7 \cos ^2 \theta+3 \sin ^2 \theta=4\\
&\Rightarrow 7\left(1-\sin ^2 \theta\right)+3 \sin ^2 \theta=4
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \quad 4 \sin ^2 \theta=3 \\
& \Rightarrow \quad \sin ^2 \theta=\frac{3}{4}=\left(\frac{\sqrt{3}}{2}\right)^2 \\
& \Rightarrow \quad \sin ^2 \theta=\sin ^2 \frac{\pi}{3} \\
& \Rightarrow \quad \theta=n \pi \pm \frac{\pi}{3}, n \in Z
\end{aligned}
\)
Example 26: Solve \(2 \sin ^2 x+\sin ^2 2 x=2\).
Solution: We have \(2 \sin ^2 x+\sin ^2 2 x=2\)
\(
\begin{aligned}
&\text { We have } 2 \sin ^2 x+\sin ^2 2 x=2\\
&\begin{aligned}
\Rightarrow & 2 \sin ^2 x+(2 \sin x \cos x)^2=2 \\
\Rightarrow & 2 \sin ^2 x \cos ^2 x+\sin ^2 x=1 \\
\Rightarrow & 2 \sin ^2 x \cos ^2 x-\left(1-\sin ^2 x\right)=0 \\
\Rightarrow & 2 \sin ^2 x \cos ^2 x-\cos ^2 x=0 \\
\Rightarrow & \cos ^2 x\left(2 \sin ^2 x-1\right)=0 \\
\Rightarrow & \cos ^2 x=0 \text { or } \sin ^2 x=\frac{1}{2} \\
\Rightarrow & x=2 n \pi+\frac{\pi}{2} \text { or } \sin ^2 x=\sin ^2 \frac{\pi}{4} \\
& =2 n \pi+\frac{\pi}{2} \text { or } x=m \pi \pm \frac{\pi}{4}, m \in Z, \text { where } m, n \in Z
\end{aligned}
\end{aligned}
\)
Example 27: Solve \(4 \cot 2 \theta=\cot ^2 \theta-\tan ^2 \theta\).
Solution:
\(
\begin{aligned}
& \frac{4}{\tan 2 \theta}=\frac{1}{\tan ^2 \theta}-\tan ^2 \theta \\
& \Rightarrow \frac{4\left(1-\tan ^2 \theta\right)}{2 \tan \theta}=\frac{1-\tan ^4 \theta}{\tan ^2 \theta}\left[\text { put } \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^2 \theta}\right] \\
& \Rightarrow\left(1-\tan ^2 \theta\right)\left[2 \tan \theta-\left(1+\tan ^2 \theta\right)\right]=0 \\
& \Rightarrow\left(1-\tan ^2 \theta\right)\left(\tan ^2 \theta-2 \tan \theta+1\right)=0 \\
& \Rightarrow\left(1-\tan ^2 \theta\right)(\tan \theta-1)^2=0 \\
& \Rightarrow \tan \theta= \pm 1 \\
& \Rightarrow \theta=n \pi \pm \frac{\pi}{4}, n \in Z
\end{aligned}
\)
Example 28: Find the most general solution of \(2^{1+|\cos x|+\cos ^2 x+|\cos x|^3+\cdots \infty}={4}\).
Solution:
\(
\begin{aligned}
&\text { We have } 2^{1+|\cos x|+\cos ^2 x+|\cos x|^3+\cdots \infty}=4\\
&\begin{aligned}
& \Rightarrow \quad 2^{1+|\cos x|+|\cos x|^2+|\cos x|^3+\cdots \infty}=4 \\
& \Rightarrow \quad 2^{\frac{1}{1-|\cos x|}}=2^2
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \frac{1}{1-|\cos x|}=2 \\
& \Rightarrow|\cos x|=\frac{1}{2} \text { or } \cos x= \pm \frac{1}{2} \\
& \Rightarrow x=n \pi \pm \frac{\pi}{3}, n \in Z
\end{aligned}
\)
Solutions of Equations of the Form \(a \cos \theta+b \sin \theta=c\)
To solve equation, let us convert the equation to the form \(\cos \theta=\cos \alpha\) or \(\sin \theta=\sin \alpha\), etc.
For this let us suppose that \(\left.\begin{array}{l}a=r \cos \phi \\ b=r \sin \phi\end{array}\right\} \Rightarrow\left\{\begin{array}{c}r=\sqrt{a^2+b^2} \\ \tan \phi=\frac{b}{a} \text { and. }\end{array}\right.\)
Substituting these values in the equation \(a \cos \theta+b \sin \theta=c\), we have
\(
\begin{aligned}
& r \cos \phi \cos \theta+r \sin \phi \sin \theta=c \\
& \Rightarrow \quad r \cos (\theta-\phi)=c \\
& \Rightarrow \quad \cos (\theta-\phi)=\frac{c}{r}=\frac{c}{\sqrt{a^2+b^2}}=\cos \beta \text { (suppose) } \\
& \Rightarrow \quad \theta-\phi=2 n \pi \pm \beta \\
& \Rightarrow \quad \theta=2 n \pi+\phi \pm \beta, n \in Z
\end{aligned}
\)
Here \(\phi\) and \(\beta\) are known as \(a, b\) and \(c\) are given.
Hence, we can solve the equation of this type by putting
\(
\begin{aligned}
& a=r \cos \phi \text { and } b=r \sin \phi, \text { provided }\left|\frac{c}{\sqrt{a^2+b^2}}\right| \leq 1 \quad[\because \cos \beta \text { lies between }-1 \text { and } 1] \\
& \text { or } \frac{|c|}{\sqrt{a^2+b^2}} \leq 1 \text { or }|c| \leq \sqrt{a^2+b^2}
\end{aligned}
\)
Working Rules for solving such equations
Example 29: Solve \(\sqrt{3} \cos \theta+\sin \theta=\sqrt{2}\).
Solution: We have \(\sqrt{3} \cos \theta+\sin \theta=\sqrt{2} \dots(i)\)
This is of the form \(a \cos \theta+b \sin \theta=c\), where \(a=\sqrt{3}, b=1\) and \(c=\sqrt{2}\)
Let \(\sqrt{3}=r \cos \alpha\) and \(1=r \sin \alpha\)
\(
\Rightarrow r=\sqrt{a^2+b^2}=\sqrt{(\sqrt{3})^2+1^2}=2 \text { and } \tan \alpha=\frac{1}{\sqrt{3}} \quad \Rightarrow \quad \alpha=\frac{\pi}{6}
\)
Substituting \(\sqrt{3}=r \cos \alpha\) and \(1=r \sin \alpha\) in Eq. (i), it reduces to \(r \cos \alpha \cos \theta+r \sin \theta=\sqrt{2}\)
\(
\begin{aligned}
\Rightarrow & r \cos (\theta-\alpha)=\sqrt{2} \\
\Rightarrow & 2 \cos \left(\theta-\frac{\pi}{6}\right)=\sqrt{2} \\
\Rightarrow & \cos \left(\theta-\frac{\pi}{6}\right)=\frac{1}{\sqrt{2}}=\cos \frac{\pi}{4} \\
\Rightarrow & \theta-\frac{\pi}{6}=2 n \pi \pm \frac{\pi}{4}, n \in Z \\
\Rightarrow & \theta=2 n \pi \pm \frac{\pi}{4}+\frac{\pi}{6}, n \in Z \\
& =2 n \pi+\frac{\pi}{4}+\frac{\pi}{6} \text { or, } \theta=2 n \pi-\frac{\pi}{4}+\frac{\pi}{6} \\
& =2 n \pi+\frac{5 \pi}{12} \text { or, } \theta=2 n \pi-\frac{\pi}{12}, \text { where } n \in Z
\end{aligned}
\)
Example 30: Solve \(\sqrt{3} \cos \theta-3 \sin \theta=4 \sin 2 \theta \cos 3 \theta\).
Solution: We have \(\sqrt{3} \cos \theta-3 \sin \theta=2(\sin 5 \theta-\sin \theta)\)
\(
\Rightarrow(\sqrt{3} / 2) \cos \theta-(1 / 2) \sin \theta=\sin 5 \theta
\)
\(
\begin{aligned}
& \Rightarrow \cos (\theta+\pi / 6)=\sin 5 \theta=\cos (\pi / 2-5 \theta) \\
& \Rightarrow \theta+\pi / 6=2 n \pi \pm(\pi / 2-5 \theta) \\
& \Rightarrow \theta=n \pi / 3+\pi / 18 \text { or } \theta=-n \pi / 2+\pi / 6, \forall n \in Z
\end{aligned}
\)
Example 31: Find the total number of integral values of \(n\) so that \(\sin x(\sin x+\cos x)=n\) has at least one solution.
Solution:
\(
\begin{aligned}
& \sin x(\sin x+\cos x)=n \\
& \Rightarrow \sin ^2 x+\sin x \cos x=n \\
& \Rightarrow \frac{1-\cos 2 x}{2}+\frac{\sin 2 x}{2}=n \\
& \Rightarrow \sin 2 x-\cos 2 x=2 n-1 \\
& \Rightarrow-\sqrt{2} \leq 2 n-1 \leq \sqrt{2} \\
& \Rightarrow \frac{1-\sqrt{2}}{2} \leq n \leq \frac{1+\sqrt{2}}{2} \\
& \Rightarrow n=0,1
\end{aligned}
\)
PROBLEMS BASED ON EXTREME VALUES OF FUNCTIONS
Example 32: If \(x, y \in|0,2 \pi|\), then find the total number of ordered pairs \((x, y)\) satisfying the equation \(\sin x \cos y=1\).
Solution: \(\sin x \cos y=1\)
\(
\Rightarrow \sin x=1, \cos y=1 \text { or } \sin x=-1, \cos y=-1
\)
If \(\sin x=1, \cos y=1 \quad \Rightarrow \quad x=\pi / 2, y=0,2 \pi\)
If \(\sin x=-1, \cos y=-1 \quad \Rightarrow \quad x=3 \pi / 2, y=\pi\)
Thus, the possible ordered pairs are \(\left(\frac{\pi}{2}, 0\right),\left(\frac{\pi}{2}, 2 \pi\right)\) and \(\left(\frac{3 \pi}{2}, \pi\right)\).
Example 33: If \(3 \sin x+4 \cos a x=7\) has at least one solution, then find the possible values of \(a\).
Solution: We have \(3 \sin x+4 \cos a x=7\) which is possible only when \(\sin x=1\) and \(\cos a x=1\)
\(
\begin{aligned}
& \Rightarrow \quad x=(4 n+1) \frac{\pi}{2} \text { and } a x=2 m \pi ; m, n \in Z \\
& \Rightarrow \quad(4 n+1) \frac{\pi}{2}=\frac{2 m \pi}{a} \\
& \Rightarrow \quad a=\frac{4 m}{4 n+1}
\end{aligned}
\)
Example 34: Solve \(\cos ^{50} x-\sin ^{50} x=1\).
Solution: \(\cos ^{50} x-\sin ^{50} x=1 \Rightarrow \cos ^{50} x=1+\sin ^{50} x\)
L.H.S. \(\leq 1\) and R.H.S. \(\geq 1\)
Hence, we must have \(\cos ^{50} x=1+\sin ^{50} x=1 \quad \Rightarrow \quad \sin x=0 \quad \Rightarrow \quad x=n \pi\)
Example 35: Solve \(\sin ^2 x+\cos ^2 y=2 \sec ^2 z\) for \(x, y\) and \(z\).
Solution:
\(
\text { L.H.S. }=\sin ^2 x+\cos ^2 y \leq 2 \quad\left[\because \sin ^2 x \leq \text { and } \cos ^2 y \leq 1\right]
\)
\(
\text { R.H.S. }=2 \sec ^2 z \geq 2
\)
Hence, L.H.S: \(=\) R.H.S. only when \(\sin ^2 x=1, \cos ^2 y=1\) and \(2 \sec ^2 z=2\)
\(
\begin{aligned}
& \Rightarrow \quad \cos ^2 x=0, \sin ^2 y=0, \cos ^2 z=1 \\
& \Rightarrow \quad \cos x=0, \sin y=0, \sin z=0
\end{aligned}
\)
\(x=(2 m+1) \frac{\pi}{2}, y=n \pi\) and \(z=t \pi\), where \(m, n\) and \(t\) are integers.
Example 36: Solve \(1+\sin x \sin ^2 \frac{x}{2}=0\).
Solution:
\(
\begin{aligned}
& 1+\sin x \sin ^2 \frac{x}{2}=0 \\
& \Rightarrow 2+2 \sin x \sin ^2 \frac{x}{2}=0 \\
& \Rightarrow 2+\sin x(1-\cos x)=0 \\
& \Rightarrow 4+2 \sin x-\sin 2 x=0 \\
& \Rightarrow \sin 2 x=2 \sin x+4
\end{aligned}
\)
Above is not possible for any value of \(x\) as L.H.S. has maximum value 1 and R.H.S. has minimum value 2.
Hence, there is no solution.
Example 37: Solve \(\cos 4 \theta+\sin 5 \theta=2\).
Solution: The equation \(\cos 4 \theta+\sin 5 \theta=2\) is valid only when \(\cos 4 \theta=1\) and \(\sin 5 \theta=1\).
\(
\begin{aligned}
& \Rightarrow \quad 4 \theta=2 n \pi \text { and } 5 \theta=2 m \pi+\pi / 2, n, m \in Z \\
& \Rightarrow \quad \theta=\frac{2 n \pi}{4} \text { and } \theta=\frac{2 m \pi}{5}+\frac{\pi}{10}, n, m \in Z
\end{aligned}
\)
Putting \(n ; m=0, \pm 1, \pm 2, \ldots\), the common value in \([0,2 \pi]\) is \(\theta=\pi / 2\).
Therefore, the solution is \(\theta=2 k \pi+\pi / 2, k \in Z\).
INEQUALITIES
Trigonometric Inequations
To solve the trigonometric inequation of the type \(f(x) \leq a\), or \(f(x) \geq a\), where \(f(x)\) is some trigonometric ratio, the following steps should be taken:
Example 38: Solve \(\sin x>-\frac{1}{2}\).
Solution: As the function \(\sin x\) has least positive period \(2 \pi\); therefore, it is sufficient to solve the inequality of the form \(\sin x>a, \sin x \geq a, \sin x<a\) and \(\sin x \leq a\) first on the interval of length \(2 \pi\). Then get the solution set by adding numbers of the form \(2 \pi n, n \in z\), to each of the solutions obtained on that interval.
Thus, let us solve this inequality on the interval \(\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]\).

From the above Figure, \(\sin x>-\frac{1}{2}\), when \(-\frac{\pi}{6}<x<\frac{7 \pi}{6}\)
Thus, on generalizing, the above solution is \(2 n \pi-\frac{\pi}{6}<x<2 n \pi+\frac{7 \pi}{6}; n \in Z\).
Example 39: Solve \(2 \cos ^2 \theta+\sin \theta \leq 2\), where \(\pi / 2 \leq \theta \leq 3 \pi / 2\).
Solution:
\(
From the graph,
\(
\begin{aligned}
& \text { Now } \sin \theta \geq 1 / 2 \quad \Rightarrow \quad \pi / 2 \leq \theta \leq 5 \pi / 6 \\
& \text { and } \sin \theta \leq 0 \quad \Rightarrow \quad \pi \leq \theta \leq 3 \pi / 2
\end{aligned}
\)
Hence, the required values of \(\theta\) are given by
\(
\theta \in[\pi / 2,5 \pi / 6] \cup[\pi, 3 \pi / 2]
\)
Example 40: Solve \(\sin \theta+\sqrt{3} \cos \theta \geq 1,-\pi<\theta \leq \pi\).
Solution: The given inequation is
\(
\begin{aligned}
& \sin \theta+\sqrt{3} \cos \theta \geq 1,-\pi<\theta \leq \pi \\
& \Rightarrow \quad \frac{1}{2} \sin \theta+\frac{\sqrt{3}}{2} \cos \theta \geq \frac{1}{2}
\end{aligned}
\)

\(
\Rightarrow \cos \left(\theta-\frac{\pi}{6}\right) \geq \frac{1}{2}=\cos \frac{\pi}{3} \quad \Rightarrow-\frac{\pi}{3} \leq \theta-\frac{\pi}{6} \leq \frac{\pi}{3} \quad \Rightarrow-\frac{\pi}{6} \leq \theta \leq \frac{\pi}{2}
\)
Example 44: Solve \(\cos 2 x>|\sin x|, x \in\left(-\frac{\pi}{2}, \pi\right)\).
Solution: Draw the graph of \(y=\cos 2 x\) and \(y=|\sin x|\)

Let \(\cos 2 x=\sin x\)
\(
\Rightarrow 2 \sin ^2 x+\sin x-1=0 \Rightarrow \sin x=-1, \frac{1}{2}
\)
But \(\sin x \neq-1 \Rightarrow \sin x=\frac{1}{2}\)
Clearly from the graph, graphs of \(y=|\sin x|\) and \(y=\cos 2 x\) intersect at \(x= \pm \frac{\pi}{6}, \frac{5 \pi}{6}\).
Thus, the solution set is \(x \in\left(-\frac{\pi}{6}, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, \pi\right)\).
Example 45: Find the number of solutions of \(\sin x=\frac{x}{10}\).
Solution: Here, let \(f(x)=\sin x\) and \(g(x)=\frac{x}{10}\). Also, we know that \(-1 \leq \sin x \leq 1\).
\(
\Rightarrow-1 \leq \frac{x}{10} \quad \Rightarrow-10 \leq x \leq 10
\)
Thus, sketch both curves when \(x \in[-10,10]\).

From the above, \(f(x)=\sin x\) and \(g(x)=x / 10\) intersect at seven points. So, the number of solutions is 7.
EXERCISES
Q1. Solve \(3 \tan 2 x-4 \tan 3 x=\tan ^2 3 x \tan 2 x\).
Solution:
\(
\begin{aligned}
&\text { We have } 3(\tan 2 x-\tan 3 x)=\tan 3 x(1+\tan 3 x \tan 2 x)\\
&\begin{aligned}
& \Rightarrow 3(\tan 2 x-\tan 3 x) /(1+\tan 3 x \tan 2 x)=\tan 3 x \\
& \Rightarrow 3 \tan (2 x-3 x)=\tan 3 x \\
& \Rightarrow 3 \tan x+\left(3 \tan x-\tan ^3 x\right) /\left(1-3 \tan ^2 x\right)=0 \\
& \Rightarrow \tan x\left[3\left(1-3 \tan ^2 x\right)+3-\tan ^2 x\right]=0 \\
& \Rightarrow \tan x\left(6-10 \tan ^2 x\right)=0 \\
& \Rightarrow \tan x=0 \text { or } \tan ^2 x=3 / 5 \\
& \text { If } \tan x=0 \quad \Rightarrow \quad x=n \pi, n \in Z \\
& \text { and if } \tan { }^2 x=3 / 5 \quad \Rightarrow \quad x=m \pi \pm \alpha=m \pi \pm \tan ^{-1} \sqrt{3 / 5}, m \in Z \\
& \text { Hence, } x=n \pi, m \pi \pm \tan ^{-1} \sqrt{3 / 5}, \forall m, n \in Z .
\end{aligned}
\end{aligned}
\)
Q2. For which values of \(a\), does the equation \(4 \sin (x+\pi / 3) \cos (x-\pi / 6)=a^2+\sqrt{3} \sin 2 x-\cos 2 x\) have solutions? Find the solutions for \(a=0\), if exist.
Solution: The given equation can be rewritten as \(2[\sin (2 x+\pi / 6)+\sin \pi / 2]=a^2+\sqrt{3} \cdot \sin 2 x-\cos 2 x\)
\(
\begin{aligned}
& \Rightarrow \cos 2 x=\left(a^2-2\right) / 2 \\
& \Rightarrow 2 \cos ^2 x=a^2 / 2 \text { or } \cos ^2 x=(a / 2)^2 \\
& \Rightarrow a^2 \leq 4 \text { or }-2 \leq a \leq 2
\end{aligned}
\)
For \(a=0\), the given equation is reduced to
\(
\cos x=0 \text {, i.e., } x=n \pi+(\pi / 2), n \in Z
\)
Q3. Solve \(\sin ^4(x / 3)+\cos ^4(x / 3)>1 / 2\).
Solution:
\(
\begin{aligned}
& \sin ^4(x / 3)+\cos ^4(x / 3)>1 / 2(n \in Z) \\
& \Rightarrow 1-2 \sin ^2(x / 3) \cos ^2(x / 3)>1 / 2 \\
& \Rightarrow 1-\frac{1}{2} \sin ^2(2 x / 3)>\frac{1}{2} . \\
& \Rightarrow \sin ^2(2 x / 3)<1
\end{aligned}
\)
which is always true except when \(\sin ^2(2 x / 3)=1\)
This means \(2 x / 3=n \pi \pm(\pi / 2)\) or \(x=(3 n \pi / 2) \pm(3 \pi / 4), n \in Z\)
Hence, the solution set of the inequality is \(R-\{x: x=(3 n \pi / 2) \pm(3 \pi / 4), n \in Z\}\).
Q4. Solve \(\sin x+\sin y=\sin (x+y)\) and \(|x|+|y|=1\).
Solution:
\(
\begin{aligned}
&\begin{aligned}
& \sin x+\sin y=\sin (x+y) \\
& \Rightarrow 2 \sin \frac{x+y}{2}\left[\cos \frac{x-y}{2}-\cos \frac{x+y}{2}\right]=0 \\
& \Rightarrow 4 \sin \frac{x+y}{2} \sin \frac{x}{2} \sin \frac{y}{2}=0
\end{aligned}\\
&\text { a. } \sin \frac{x+y}{2}=0 \quad \Rightarrow \quad x+y=2 n \pi, n \in Z \quad \Rightarrow \quad x+y=0(\because|x|+|y|=1 \Rightarrow-1 \leq x, y \leq 1)
\end{aligned}
\)
b. \(\sin \frac{x}{2}=0 \quad \Rightarrow \quad x=2 m \pi, m \in Z \quad \Rightarrow \quad x=0\)
c. \(\sin \frac{y}{2}=0 \quad \Rightarrow \quad y=2 p \pi, p \in Z \quad \Rightarrow \quad y=0\)
From \(|x|+|y|=1\)
If \(x=0\), then \(|y|=1 \quad \Rightarrow \quad y= \pm 1\)
If \(y=0\), then \(|x|=1 \quad \Rightarrow \quad x= \pm 1\)
If \(y=-x\), then \(|x|+|-x|=2 \quad \Rightarrow \quad x= \pm \frac{1}{2}\) and \(y=\mp \frac{1}{2}\)
Hence, solutions are \((0,1),(0,-1),(1,0),(-1,0),\left(\frac{1}{2},-\frac{1}{2}\right)\) and \(\left(-\frac{1}{2}, \frac{1}{2}\right)\).
Q5. Solve the equation \(\tan ^4 x+\tan ^4 y+2 \cot ^2 x \cot ^2 y=3+\sin ^2(x+y)\) for the values of \(x\) and \(y\).
Solution:
\(
\begin{aligned}
&\begin{aligned}
& \tan ^4 x+\tan ^4 y+2 \cot ^2 x \cot ^2 y=3+\sin ^2(x+y) \\
& \Rightarrow \tan ^4 x+\tan ^4 y+2 \cot ^2 x \cot ^2 y-2=1+\sin ^2(x+y) \\
& \Rightarrow\left(\tan ^2 x-\tan ^2 y\right)^2+2(\tan x \tan y-\cot x \cot y)^2=-1+\sin ^2(x+y)
\end{aligned}\\
&\text { Now L.H.S. } \geq 0 \text { and R.H.S. } \leq 0
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \text { L.H.S. }=\text { R.H.S. }=0 \\
& \Rightarrow \tan ^2 x=\tan ^2 y \text { and } \tan ^2 x \tan ^2 y=1 \text { and } \sin ^2(x+y)=0 \\
& \quad=\tan ^2 y=1 \text { and } x+y=n \pi, n \in Z \\
& \Rightarrow x=n \pi \pm \frac{\pi}{4}, n \in Z \text { and } y=n \pi \mp \frac{\pi}{4}, n \in Z .
\end{aligned}
\)
Q6. Find the smallest positive root of the equation \(\sqrt{\sin (1-x)}=\sqrt{\cos x}\).
Solution: The given equation is possible if \(\sin (1-x) \geq 0\) and \(\cos x \geq 0\). On squaring, we get \(\sin (1-x)=\cos x\)

Q7. Solve the equation \(2 \sin x+\cos y=2\) for the values of \(x\) and \(y\).
Solution:
\(
\begin{aligned}
& 2 \sin x+\cos y=2 \\
& \Rightarrow \cos y=2(1-\sin x), \text { we have } \cos y \in[-1,1] \\
& \Rightarrow-\frac{1}{2} \leq 1-\sin x \leq \frac{1}{2} \quad \Rightarrow \quad \frac{1}{2} \leq \sin x \leq \frac{3}{2} \quad \Rightarrow \quad \frac{1}{2} \leq \sin x \leq 1
\end{aligned}
\)
\(
\begin{aligned}
& \text { Let } t=\sin x \quad \Rightarrow \quad x=\sin ^{-1}(t), t \in[1 / 2,1] \\
& \left.\Rightarrow \quad \cos y=2(1-t) \quad \Rightarrow \quad \begin{array}{l}
y=2 n_1 \pi \pm \cos ^{-1} 2(1-t) \\
\text { and } x=n_2 \pi+(-1)^{n_2} \sin ^{-1}(t)
\end{array}\right\} t \in[1 / 2,1]
\end{aligned}
\)
Q8. Prove that the equation \(2 \sin x=|x|+a\) has no solution for \(a \in\left(\frac{3 \sqrt{3}-\pi}{3}, \infty\right)\).
Solution:
\(\sin x=\frac{1}{2}|x|+\frac{a}{2}\) or \(2 \sin x=|x|+a\). Consider graphs of \(y=2 \sin x\) and \(y=|x|\).

Equation \(2 \sin x=|x|+a\) will have a solution so long as the line \(y=|x|+a\) intersects or at least touches the curve, \(y=2 \sin x\). In this case, we must have \(d y / d x=2 \cos x=1=\) the slope of the line \(\Rightarrow x=\pi / 3\).
Hence, the solution exists if \(\frac{\pi}{3}+a>2 \sin \frac{\pi}{3} \Rightarrow a>\frac{3 \sqrt{3}-\pi}{3}\)
Q9. Solve \(\tan \left(\frac{\pi}{2} \cos \theta\right)=\cot \left(\frac{\pi}{2} \sin \theta\right)\).
Solution:
\(
\begin{aligned}
& \tan \left(\frac{\pi}{2} \cos \theta\right)=\cot \left(\frac{\pi}{2} \sin \theta\right)=\tan \left(\frac{\pi}{2}-\frac{\pi}{2} \sin \theta\right) \\
& \Rightarrow \quad \frac{\pi}{2} \cos \theta=n \pi+\frac{\pi}{2}-\frac{\pi}{2} \sin \theta, n \in Z \\
& \Rightarrow \quad \frac{\pi}{2}(\sin \theta+\cos \theta)=n \pi+\frac{\pi}{2}=\left(n+\frac{1}{2}\right) \pi \\
& \Rightarrow \quad \sin \theta+\cos \theta=(2 n+1) \\
& \Rightarrow \quad \sqrt{2} \sin \left(\theta+\frac{\pi}{4}\right)=(2 n+1) \\
& \Rightarrow \quad n=0,-1 \text { are the only possibilities } \\
& \text { So, } \sin \left(\theta+\frac{\pi}{4}\right)= \pm \frac{1}{\sqrt{2}}=\sin \left( \pm \frac{\pi}{4}\right) \\
& \Rightarrow \quad \theta+\frac{\pi}{4}=m \frac{\pi}{2}+\frac{\pi}{4}, m \in Z \\
& \Rightarrow \quad \theta=m \frac{\pi}{2}, m \in Z
\end{aligned}
\)
However, for the values of \(m=2 k, k \in Z\), the equation is not defined.
Hence, \(\theta=(2 k+1) \frac{\pi}{2}\), where \(k \in Z\).
Q10. Solve \(\sin x+\sin \left(\frac{\pi}{8} \sqrt{(1-\cos 2 x)^2+\sin ^2 2 x}\right)=0, x \in\left[\frac{5 \pi}{2}, \frac{7 \pi}{2}\right]\).
Solution:
\(
\begin{aligned}
& \sin x+\sin \left(\frac{\pi}{8} \sqrt{(1-\cos 2 x)^2+\sin ^2 2 x}\right)=0 \\
& \sin \left(\frac{\pi}{8} \sqrt{(1-\cos 2 x)^2+\sin ^2 2 x}\right)=\sin \frac{\pi}{8} \sqrt{2-2 \cos 2 x}=\sin \left(\frac{\pi}{4}|\sin x|\right) \\
& \text { Now } \sin x+\sin \left(\frac{\pi}{4}|\sin x|\right)=0 \dots(i)
\end{aligned}
\)
The equation has a solution only when \(\sin x \leq 0\).
The graph of \(f(x)=\sin x \leq 0\) is shown in Figure (a)

The graph \(y=\sin [\pi / 4|\sin x|]\) is as shown in Figure (b)

Hence, Eq. (i) has general solution \(x=n \pi, n \in Z\).
Q11. Solve \(\sin ^2 x+\frac{1}{4} \sin ^2 3 x=\sin x \sin ^2 3 x\).
Solution:
\(
\begin{aligned}
& \sin ^2 x+\frac{1}{4} \sin ^2 3 x=\sin x \sin ^2 3 x \\
& \Rightarrow \sin ^2 x-\sin x \sin ^2 3 x+\frac{1}{4} \sin ^2 3 x=0 \\
& \Rightarrow\left(\sin x-\frac{1}{2} \sin ^2 3 x\right)^2+\frac{1}{4} \sin ^2 3 x\left(1-\sin ^2 3 x\right)=0 \\
& \Rightarrow\left(\sin x-\frac{1}{2} \sin ^2 3 x\right)^2+\frac{1}{4} \sin ^2 3 x \cos ^2 3 x=0 \\
& \Rightarrow\left(\sin x-\frac{1}{2} \sin ^2 3 x\right)^2+\frac{1}{16} \sin ^2 6 x=0 \\
& \Rightarrow \sin x-\frac{1}{2} \sin ^2 3 x=0 \text { and } \sin 6 x=0 \\
& \Rightarrow 2 \sin x=\sin ^2 3 x \text { and } \sin 6 x=0 \quad \Rightarrow \text { From } \sin 6 x=0, x=k \pi / 6, k \in Z
\end{aligned}
\)
From here, we choose those values which satisfy the equation, \(2 \sin x=\sin ^2 3 x\)
Now \(\sin ^2 3\left(\frac{k \pi}{6}\right)=+\sin ^2 \frac{k \pi}{2}=\left\{\begin{array}{l}1, \text { if } k \text { is odd } \\ 0, \text { if } k \text { is even }\end{array}\right\}\)
\(
\begin{aligned}
& \Rightarrow \quad \sin x=0 \text { or } 1 / 2 \\
& \Rightarrow \quad x=n \pi \text { or } x=n \pi+\frac{\pi}{6}(-1)^n, n \in Z
\end{aligned}
\)
You cannot copy content of this page