These 10 Sample quiz questions are taken from JEE 2021 Mathematics Paper (Section-B)
0 of 10 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 10 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Let \(\mathrm{z}=\frac{1-i \sqrt{3}}{2}, i=\sqrt{-1}\). Then the value of
\(
21+\left(\mathrm{z}+\frac{1}{\mathrm{z}}\right)^{3}+\left(\mathrm{z}^{2}+\frac{1}{\mathrm{z}^{2}}\right)^{3}+\left(\mathrm{z}^{3}+\frac{1}{\mathrm{z}^{3}}\right)^{3}+\ldots+\left(\mathrm{z}^{21}+\frac{1}{\mathrm{z}^{21}}\right)^{3}
\) is _______.
The sum of all integral values of \(k(k \neq 0)\) for which the equation \(\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}\) in \(x\) has no real roots, is _______.
Let the line \(L\) be the projection of the line
\(
\frac{x-1}{2}=\frac{y-3}{1}=\frac{z-4}{2}
\)
in the plane \(\mathrm{x}-2 \mathrm{y}-\mathrm{z}=3\). If \(\mathrm{d}\) is the distance of the point \((0,0,6)\) from \(\mathrm{L}\), then \(\mathrm{d}^{2}\) is equal to _______.
If \({ }^{1} \mathrm{P}_{1}+2 \cdot{ }^{2} \mathrm{P}_{2}+3 \cdot{ }^{3} \mathrm{P}_{3}+\ldots+15 \cdot{ }^{15} \mathrm{P}_{15}={ }^{\mathrm{q}} \mathrm{P}_{\mathrm{r}}-\mathrm{s}, 0 \leq \mathrm{s} \leq 1\), then \({ }^{q+s} C_{r-s}\) is equal to ________.
A wire of length \(36 \mathrm{~m}\) is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is \(\mathrm{k}\) (meter), then \(\left(\frac{4}{\pi}+1\right) \mathrm{k}\) is equal to ______.
The area of the region \(S=\left\{(x, y): 3 x^{2} \leq 4 y \leq 6 x+24\right\}\) is ______.
The locus of a point, which moves such that the sum of squares of its distances from the points \((0,0),(1,0),(0,1)(1,1)\) is 18 units, is a circle of diameter \(\mathrm{d}\). Then \(\mathrm{d}^{2}\) is equal to ______.
Let \(\mathrm{P}(\mathrm{x}, \mathrm{y})\)
\(
\begin{aligned}
&x^{2}+y^{2}+x^{2}+(y-1)^{2}+(x-1)^{2}+y^{2}+(x-1)^{2}+(y-1)^{2} \\
&\quad \Rightarrow 4\left(x^{2}+y^{2}\right)-4 y-4 x=14 \\
&\Rightarrow x^{2}+y^{2}-x-y-\frac{7}{2}=0 \\
&d=2 \sqrt{\frac{1}{4}+\frac{1}{4}+\frac{7}{2}} \\
&\Rightarrow d^{2}=16
\end{aligned}
\)
If \(\mathrm{y}=\mathrm{y}(\mathrm{x})\) is an implicit function of \(\mathrm{x}\) such that \(\log _{\mathrm{e}}(\mathrm{x}+\mathrm{y})=4 \mathrm{xy}\), then \(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\) at \(\mathrm{x}=0\) is equal to ______.
\(\begin{aligned}
&\ln (x+y)=4 x y \\
&x+y=e^{4 x y} \\
&\Rightarrow 1+\frac{d y}{d x}=e^{4 x y}\left(4 x \frac{d y}{d x}+4 y\right) \\
&\text { At } x=0 \quad \frac{d y}{d x}=3 \\
&\frac{d^{2} y}{d x^{2}}=e^{4 x y}\left(4 x \frac{d y}{d x}+4 y\right)^{2}+e^{4 x y}\left(4 x \frac{d^{2} y}{d x^{2}}+4 y\right) \\
&\text { At } x=0, \frac{d^{2} y}{d x^{2}}=e^{0}(4)^{2}+e^{0}(24) \\
&\Rightarrow \frac{d^{2} y}{d x^{2}}=40
\end{aligned}\)
The number of three-digit even numbers, formed by the digits 0, 1, 3, 4, 6, 7 if the repetition of digits is not allowed, is ________.
Let \(a, b \in \mathbf{R}, b \neq 0\), Define a function
\(
f(x)= \begin{cases}a \sin \frac{\pi}{2}(x-1), & \text { for } x \leq 0 \\ \frac{\tan 2 x-\sin 2 x}{b x^{3}}, & \text { for } x>0\end{cases}
\)
If \(\mathrm{f}\) is continuous at \(x=0\), then \(10-a b\) is equal to ______.
\(
f(x)=\left\{\begin{array}{cl}
a \sin \frac{\pi}{2}(x-1), & x \leq 0 \\
\frac{\tan 2 x-\sin 2 x}{b x^{3}}, & x>0
\end{array}\right.
\)
For continuity at ‘ 0 ‘
\(
\begin{aligned}
&\lim _{x \rightarrow 0^{+}} f(x)=f(0) \\
&\Rightarrow \lim _{x \rightarrow 0^{+}} \frac{\tan 2 x-\sin 2 x}{b x^{3}}=-a
\end{aligned}
\)
\(
\Rightarrow \lim _{x \rightarrow 0^{+}} \frac{\frac{8 x^{3}}{3}+\frac{8 x^{3}}{3 !}}{b x^{3}}=-a
\)
\(
\Rightarrow 8\left(\frac{1}{3}+\frac{1}{3 !}\right)=-a b
\)
\(
\Rightarrow 4=-a b
\)
\(
\Rightarrow 10-\mathrm{ab}=14
\)
You cannot copy content of this page