Quiz

Summary

  • The logarithm of the number \(n\) to the base ‘ \(a\) ‘ is the exponent indicating the power to which the base ‘\(a\)‘ must be raised to obtain the number \(n\). This number is designated as \(\log _{ a } n\).
  • \(\log _a n= x\), read as \(\log\) of \(n\) to the base \(a \Leftrightarrow a ^{ x }= n\), If \(a =10\) then we write \(\log n\) or \(\log _{10} n\) and if \(a =e\) we write \(\ln n\) or \(\log _e n\) (Natural log), \(\text { Necessary conditions : } n >0 ; a >0 ; a \neq 1\)
  • \(\log _a(x . y)=\log _a x+\log _a y ; x, y>0\)
  • \(\log _a\left(\frac{x}{y}\right)=\log _a x-\log _a y ; x, y>0\)
  • \(\log _b\left(x^p\right)=p \log _b(x); x>0\)
  • \(\log _{ a ^q} x=\frac{1}{ q } \log _{ a } x ; \quad x >0\)
  • \(\log _{ a } x=\frac{1}{\log _x a} ; x>0, x \neq 1\)
  • \(\log _a x=\log _b x / \log _b a ; x >0, a , b >0, b \neq 1, a \neq 1\)
  • \(\log _{ a } b \cdot \log _{ b } c \cdot \log _{ c } d =\log _{ a } d ; a , b , c , d >0, \neq 1\)
  • \(a^{\log _a x}=x ; a>0, a \neq 1\)
  • \(a^{\log _b c}=c^{\log _b a} ; a, b, c>0 ; b \neq 1\)
  • \(\log _{a^q} x^p=\frac{p}{q} \log _a x\)
  • \(
    \log _a x<\log _a y \Leftrightarrow\left[\begin{array}{llc}
    x<y & \text { if } & a>1 \\
    x>y & \text { if } & 0<a<1
    \end{array}\right.
    \)
  • \(\log _a x=\log _a y \Rightarrow x=y ; x, y>0 ; a>0, a \neq 1\)
  • \(e^{\ln a^x}=a^x\)
  • \({mlog}_a(x)+{nlog}_a(y)=\log _a\left(x^m y^n\right)\)
  • \(\log _a(m+n)=\log _a m+\log _a\left(1+\frac{n}{m}\right)\)
  • \(\log _a(m-n)=\log _a m+\log _a\left(1-\frac{n}{m}\right)\)
  • \(\log _a a=1\)
  • \(\log _{1 / a} a=-1\)
  • \(\log _a 1=0\)
  • \(\log _{10} 2=0.3010 ; \log _{10} 3=0.4771 ; \ell n 2=0.693, \ell n 10=2.303\)
  • \(\text { If } a >1 \text { then } \log _{ a } x < p \Rightarrow 0< x < a ^{ p }\)
  • \(\text { If } a>1 \text { then } \log _a x>p \Rightarrow x>a^p\)
  • \(\text { If } 0< a <1 \text { then } \log _{ a } x < p \Rightarrow x > a ^{ p }\)
  • \(\text { If } 0< a <1 \text { then } \log _{ a } x > p \Rightarrow 0< x < a ^{ p }\)
  • If \(a_x=n\), then \(x=\log _a n\), where \(n>0, a>0\) and \(a \neq 1\).
  • Exponential function is always positive.
  • \(\log _a 0= \pm \infty\)
  • \(\log _a \infty=\infty\)
  • \(\log _a b \times \log _b a=1\)
  • \(\log _a b \times \log _b c \times \log _c d \times \log _d a=1\)
  • \(\log _a b \times \log _b c \times \log _c d \times \ldots \times \log _d a=1\)
  • \(\log _{a^\alpha} b=\frac{1}{\alpha} \log _a b\)
  • \(\log _{a^\alpha}\left(b^\beta\right)=\frac{\beta}{\alpha} \log _a b\)

You cannot copy content of this page