Quiz

Summary

  • Limit of a function may be a finite or an infinite number.
  • If \(\lim _{x \rightarrow a} f(x)=\infty\), it just implies that the function \(f(x)\) tends to assume extremely large positive values in the vicinity of \(x=\) a i.e. \(\lim _{x \rightarrow 0} 1 /|x|=\infty\).
  • A function is said to be indeterminate at any point if it acquires one of the following values at that particular point:
    \(0 / 0,0 \times \infty, \infty / \infty, \infty-\infty, 0^0, 1^{\infty}, {\infty}^0 \text {. }\)
  • The 0/0 form is the standard indeterminate form.
  • The point ‘ \(\infty\) ‘ cannot be plotted on the paper. It is just a symbol and not a number.
    Infinity ( \({ }^{\infty}\) ) does not obey the laws of elementary algebra.
    • \(\infty+\infty=\infty\)
    • \(\infty \times \infty=\infty\)
    • \((a / \infty)=0,\), if \(a\) is finite
    • \((a / 0)\) is not defined if \(a \neq 0\).
    • \(a b=0\) if either \(a=0\) or \(b=0\) and both’ \(a\) ‘ and ‘ \(b\) ‘ are finite.
  • The limit may exist at a point \(x=a\) even if the function is not defined at that point.
  • Left Hand Limit & Right Hand Limit of a Function:
    Left hand limit \((L H L)=\operatorname{Lim}_{x \rightarrow a^{-}} f(x)=\operatorname{Lim}_{h \rightarrow 0} f(a-h), h>0\).
    Right hand \(\operatorname{limit}(R H L)=\operatorname{Lim}_{x \rightarrow a^{+}} f(x)=\operatorname{Lim}_{h \rightarrow 0} f(a+h), h>0\).
    Limit of a function \(f(x)\) is said to exist as \(x \rightarrow\) a when \(\operatorname{Lim}_{x \rightarrow a^{-}} f(x)=\operatorname{Lim}_{x \rightarrow a^{-}} f(x)=\) Finite and fixed quantity.
  • If a function \(f\) is defined at a point ‘\(a\)‘ i.e. \(f(a)\) exists even then it is not necessary that the limit at ‘ \(a\) ‘ should exist. Moreover, even if the limit exists it need not be equal to \(f(a)\).
  • Fundamental Results on Limits:
    Suppose \(\lim _{x \rightarrow a} f(x)=\alpha\) andlim \({ }_{x \rightarrow a} g(x)=\beta\) then we can define the following rules:
    • \(\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+g(x)=\alpha+\beta\)
    • \(\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=\alpha-\beta\)
    • \(\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)=\alpha \cdot \beta\)
    • \(\quad \lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{\alpha}{\beta}\) (provide \(\beta \neq 0\) )
  • The above rules are applicable only when both the limits i.e. \(\lim f(x)\) and \(g(x)\) exist separately. In addition to above rules, we have two more rules:
    \(\lim _{x \rightarrow a} k f(x)=k \lim _{x \rightarrow a} f(x)\), where \(k\) is a constant
    \(\lim _{x \rightarrow a} f[g(x)]=f\left[\lim _{x \rightarrow a} g(x)\right]=f(m)\), provided \(f\) is continuous at \(g(x)=m\).
  • Some standard limits which should be remembered include:
    • If \(p(x)\) is a polynomial, \(\lim _{x \rightarrow a} p(x)=p(a)\)
    • \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \cos x=1\) (where ‘ \(x\) ‘ is in radians)
    • \(\lim _{x \rightarrow 0}(1+x)^{1 / x}=e=\operatorname{Lim}_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x\)
    • \(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=0\)
    • \(\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1\)
    • \(\lim _{x \rightarrow 0} \frac{(1+x)^n-1}{x}=n\)
    • \(\lim _{x \rightarrow 0} \frac{a^x-1}{x}=\ln (a), a \in R^{+}\)
    • \(\lim _{x \rightarrow 0} \frac{\ln (a+x)}{x}=1/a\)
    • \(\lim _{x \rightarrow 0} \frac{e^x-1}{x}=1\)
    • \(\lim _{x \rightarrow a} \frac{x^n-a^n}{(x-a)}=n \cdot a^{n-1}\)
    • \(\lim _{x \rightarrow 0} \frac{(1+x)^m-1}{x}=m\)
    • \(\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^x=e^a\)
    • \(\lim _{x \rightarrow a} \frac{x^m a^m}{x^n-a^x}=\frac{m}{n} a^{m-n}\)
    • \(\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=1=\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}\)
    • \( \lim _{x \rightarrow+\infty} \ln x=+\infty\)
    • \(\lim _{x \rightarrow 0} \ln x=-\infty\)
    • \(\lim _{x \rightarrow 0} x \ln x=0\)
    • \(\lim _{x \rightarrow 0} x^n \ln x=0\)
    • \(\lim _{x \rightarrow+\infty} \frac{\ln x}{x}=0\)
    • \(\lim _{x \rightarrow+\infty} \frac{\ln x}{x^n}=0\)
    • \(\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=e=\lim _{y \rightarrow 0}(1+y)^{1 / y} \text { where } e=2.71828\)
    • \(\lim _{x \rightarrow 0} \frac{\log _a(1+x)}{x}=\log _a e \text { where } a>0 \text { and } a \neq 1\)
    • If \(\lim _{x \rightarrow a} f(x)=\alpha>0\) and \(\lim _{x \rightarrow a} g(x)=\beta\) (finite number), then \(\lim _{x \rightarrow a}(f(x))^{g(x)}=\alpha^\beta\).
  • Following are some of the frequently used series expansions:
    • \(\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\ldots \ldots \ldots \ldots .\).
    • \(\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^5}{6!}+\ldots \ldots \ldots \ldots .\).
    • \(\tan x=x+\frac{x^3}{3!}+\frac{2 x^5}{15!}+\ldots \ldots \ldots \ldots \cdot\)
    • \(e ^{ x }=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots \ldots \ldots \ldots\)
    • \(a ^{ x }=1+(\operatorname{Ina}) x+(\operatorname{Ina})^2 \frac{x^2}{2!}+\ldots \ldots \ldots \ldots, a \in R ^{+}\)
    • \((1+x)^n=1+n x+\) \(\frac{n(n-1)}{2!} x^2+\frac{n(n-1)(n-2)}{3!} x^3+\ldots \ldots, n \in R .<1, n\) is any real number
    • \(\ln (1+ x )= x -\frac{ x ^2}{2}+\frac{x^3}{3}+\ldots \ldots \ldots \ldots . . . . . \text { for } -1<x \leq 1\)
    • \(\tan ^{-1} x=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\ldots, x \in R\)
    • \(\sin ^{-1} x=x+\frac{1^2}{3!} x^3+\frac{1^2 \cdot 3^2}{5!} x^5+\frac{1^2 \cdot 3^2 \cdot 5^2}{7!} x^7+\ldots, x \in[-1,1]\)
  • The term infinite limit means that when \(x\) tends to a particular value ‘\(a\)‘, then the limit of the function tends to infinity i.e. \(\lim _{x \rightarrow a} f(x)=\infty\).
  • In questions which involve the evaluation if limit at infinity, the function \(f(x)\) should first be changed to \(g(1 / x)\) and then we can evaluate the value at \(\infty\).
  • If while calculating limits, infinite limit is encountered i.e. a zero is obtained in the denominator as \(x \rightarrow a\), then there can be two cases:
    • The term ( \(x-a\) ) gets cancelled from the numerator and denominator both.
    • If it does not get cancelled, then the value of the limit is put as infinity.
    • Such limits are termed as improper limits i.e. \(\lim _{x \rightarrow \infty} 1 / x^2=\infty\).
  • Let \(f(x), g(x)\) and \(h(x)\) be there real numbers having a common domain \(D\) such that \(h(x) \leq f(x) \leq\) \(g(x) \forall x \in D\). If \(\lim _{x \rightarrow a} h(x)=\lim _{x \rightarrow a} g(x)=l\), then \(\lim _{x \rightarrow a} f(x)=l\). This is known as Sandwich Theorem.
  • L’Hospital’s Rule: \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}\)
  • If the sequence of partial sums is a convergent sequence (i.e. its limit exists and is finite) then the series is also called convergent and in this case if \(\lim _{n \rightarrow \infty} s_n=s\) then, \(\sum_{i=1}^{\infty} a_i=s\).
  • If the sequence of partial sums is a divergent sequence (i.e. its limit doesn’t exist or is plus or minus infinity) then the series is also called divergent. 

You cannot copy content of this page