Imaginary numbers:
Square root of a negative number is called an imaginary number., for example,
\(
\sqrt{-9}=\sqrt{-1} \sqrt{9}=i 3, \sqrt{-7}=\sqrt{-1} \sqrt{7}=i \sqrt{7}
\)
Integral powers of \(i\)
\(To compute \(i^n\) for \(n>4\), we divide \(n\) by 4 and write it in the form \(n=4 m+r\), where \(m\) is quotient and \(r\) is remainder \((0 \leq r \leq 4)\)
Hence \(i^n=i^{4 m+r}=\left(i^4\right)^m \cdot(i)^r=(1)^m(i)^r=i^r\)
For example,
\(
(i)^{39}=(i)^{4 \times 9+3}=\left(i^4\right)^9 \cdot(i)^3=i^3=-i
\)
and
\(
\begin{aligned}
(i)^{-435}=(i)^{-(4 \times 108+3)} & =(i)^{-(4 \times 108)} \cdot(i)^{-3} \\
& =\frac{1}{\left(i^4\right)^{108}} \cdot \frac{1}{(i)^3}=\frac{i}{(i)^4}=i
\end{aligned}
\)
(i) If \(a\) and \(b\) are positive real numbers, then
\(
\sqrt{-a} \times \sqrt{-b}=\sqrt{-1} \sqrt{a} \times \sqrt{-1} \sqrt{b}=i \sqrt{a} \times i \sqrt{b}=-\sqrt{a b}
\)
(ii) \(\sqrt{a} \cdot \sqrt{b}=\sqrt{a b}\) if \(a\) and \(b\) are positive or at least one of them is negative or zero. However, \(\sqrt{a} \sqrt{b} \neq \sqrt{a b}\) if \(a\) and \(b\), both are negative.
Complex numbers
Algebra of complex numbers
Addition of complex numbers satisfies the following properties
Multiplication of complex numbers
Let \(z_1=a+i b\) and \(z_2=c+i d\), be two complex numbers. Then \(z_1 \cdot z_2=(a+i b)(c+i d)=(a c-b d)+i(a d+b c)\)
Conjugate of a complex number
Let \(z=a+i b\) be a complex number. Then a complex number obtained by changing the sign of imaginary part of the complex number is called the conjugate of \(z\) and it is denoted by \(\bar{z}\), i.e., \(\bar{z}=a-i b\).
Note that additive inverse of \(z\) is \(-a-i b\) but conjugate of \(z\) is \(a-i b\).
We have :
Modulus of a complex number
Let \(z=a+i b\) be a complex number. Then the positive square root of the sum of square of real part and square of imaginary part is called modulus (absolute value) of \(z\) and it is denoted by \(|z|\) i.e., \(|z|=\sqrt{a^2+b^2}\)
In the set of complex numbers \(z_1>z_2\) or \(z_1<z_2\) are meaningless but
\(
\left|z_1\right|>\left|z_2\right| \text { or }\left|z_1\right|<\left|z_2\right|
\)
are meaningful because \(\left|z_1\right|\) and \(\left|z_2\right|\) are real numbers.
Properties of modulus of a complex number
Argand Plane
A complex number \(z=a+i b\) can be represented by a unique point \(P (a, b)\) in the cartesian plane referred to a pair of rectangular axes. The complex number \(0+0 i\) represent the origin \(O(0,0)\). Apurely real number \(a\), i.e., \((a+0 i)\) is represented by the point \((a, 0)\) on \(x\)-axis. Therefore, \(x\)-axis is called real axis. Apurely imaginary number \(i b\), i.e., \((0+i b)\) is represented by the point \((0, b)\) on \(y\)-axis. Therefore, \(y\)-axis is called imaginary axis.
Similarly, the representation of complex numbers as points in the plane is known as Argand diagram. The plane representing complex numbers as points is called complex plane or Argand plane or Gaussian plane.
If two complex numbers \(z_1\) and \(z_2\) be represented by the points \(P\) and \(Q\) in the complex plane, then
\(
\left|z_1-z_2\right|= PQ
\)
Polar form of a complex number
Let \(P\) be a point representing a non-zero complex number \(z=a+i b\) in the Argand plane. If OP makes an angle \(\theta\) with the positive direction of \(x\)-axis, then \(z=r(\cos \theta+i \sin \theta)\) is called the polar form of the complex number, where \(r=|z|=\sqrt{a^2+b^2}\) and \(\tan \theta=\frac{b}{a}\). Here \(\theta\) is called argument or amplitude of \(z\) and we write it as \(\arg (z)=\theta\).
The unique value of \(\theta\) such that \(-\pi \leq \theta \leq \pi\) is called the principal argument.
\(
\begin{aligned}
\arg \left(z_1 \cdot z_2\right) & =\arg \left(z_1\right)+\arg \left(z_2\right) \\
\arg \left(\frac{z_1}{z_2}\right) & =\arg \left(z_1\right)-\arg \left(z_2\right)
\end{aligned}
\)
0 of 167 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 167 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
\(
\text { If } \frac{3+i \sin \theta}{4-i \cos \theta} \theta \in[0,2 \pi] \text {, is a real number, then an argument of } \sin \theta+i \cos \theta \text { is : }
\) [Main Jan. 7, 2020 (II)]
(b) Let \(z=\frac{3+i \sin \theta}{4-i \cos \theta}\), after rationalising \(z=\frac{(3+i \sin \theta)}{(4-i \cos \theta)} \times \frac{(4+i \cos \theta)}{(4+i \cos \theta)}\)
As \(z\) is purely real
\(
\begin{aligned}
&\Rightarrow \quad 3 \cos \theta+4 \sin \theta=0 \quad \Rightarrow \tan \theta=-\frac{3}{4} \\
&\arg (\sin \theta+i \cos \theta)=\pi+\tan ^{-1}\left(\frac{\cos \theta}{\sin \theta}\right) \\
&=\pi+\tan ^{-1}\left(-\frac{4}{3}\right)=\pi-\tan ^{-1}\left(\frac{4}{3}\right)
\end{aligned}
\)
If the four complex numbers \(z, \bar{z}, \bar{z}-2 \operatorname{Re}(\bar{z})\) and \(z-2 \operatorname{Re}(z)\) represent the vertices of a square of side 4 units in the Argand plane, then \(|z|\) is equal to: [Main Sep. 05, 2020 (I)]
Let \(z=x+i y\)
Length of side \(=4\)
\(
\mathrm{AB}=4
\)
\(
\begin{aligned}
&|\mathrm{z}-\overline{\mathrm{z}}|=4 \\
&|2 \mathrm{y}|=4 ;|\mathrm{y}|=2Â \\
&\mathrm{BC}=4
\end{aligned}
\)
\(
\mid \overline{\mathrm{z}}-(\overline{\mathrm{z}}-2 \operatorname{Re}(\overline{\mathrm{z}})) \mid=4
\)
\(
|2 x|=4 ;|x|=2
\)
\(
|z|=\sqrt{x^2+y^2}=\sqrt{4+4}=2 \sqrt{2}
\)
The value of \(\left(\frac{-1+i \sqrt{3}}{1-i}\right)^{30}\) is : [Main Sep. 05, 2020 (II)]
(c) \(\because-1+\sqrt{3} i=2 \cdot e^{\frac{2 \pi}{3} i}\) and \(1-i=\sqrt{2} \cdot e^{-\frac{i \pi}{4}}\)
\(
\therefore\left(\frac{-1+\sqrt{3} i}{1-i}\right)^{30}=\left(\sqrt{2} e^{\left(\frac{2 \pi}{3}+\frac{\pi}{4}\right) i}\right)^{30}
\)
\(
=2^{15} \cdot e^{-\frac{\pi}{2} i}=-2^{15} \cdot i
\)
If \(z_1, z_2\) are complex numbers such that \(\operatorname{Re}\left(z_1\right)=\left|z_1-1\right|, \operatorname{Re}\left(z_2\right)=\mid z_2-1 \mid\)Â and \(\arg \left(z_1-z_2\right)=\frac{\pi}{6}\), then \(\operatorname{Im}\left(z_1+z_2\right)\) is equal to [Main Sep. 03, 2020 (II)]
(b) Let \(z_1=x_1+i y_1\) and \(z_2=x_2+i y_2\)
\(
\begin{aligned}
&\because\left|z_1-1\right|=\operatorname{Re}\left(z_1\right) \\
&\Rightarrow\left(x_1-1\right)^2+y_1^2=x_1^2 \\
&\Rightarrow y_1^2-2 x_1+1=0 \dots(i)\\
&\left|z_2-1\right|=\operatorname{Re}\left(z_2\right) \Rightarrow\left(x_2-1\right)^2+y_2^2=x_2^2 \\
&\Rightarrow y_2^2-2 x_2+1=0 \dots(ii)
\end{aligned}
\)
From eqn. (i) – (ii),
\(
\begin{aligned}
&y_1^2-y_2^2-2\left(x_1-x_2\right)=0 \\
&\Rightarrow y_1+y_2=2\left(\frac{x_1-x_2}{y_1-y_2}\right) \\
&\because \arg \left(z_1-z_2\right)=\frac{\pi}{6} \\
&\Rightarrow \tan ^{-1}\left(\frac{y_1-y_2}{x_1-x_2}\right)=\frac{\pi}{6} \\
&\Rightarrow \frac{y_1-y_2}{x_1-x_2}=\frac{1}{\sqrt{3}} \\
&\Rightarrow \frac{2}{y_1+y_2}=\frac{1}{\sqrt{3}} \quad\left[\text { From, } \frac{y_1-y_2}{x_1-x_2}=\frac{2}{y_1+y_2}\right] \\
&\therefore y_1+y_2=2 \sqrt{3} \Rightarrow \operatorname{lm}\left(z_1+z_2\right)=2 \sqrt{3}
\end{aligned}
\)
Let \(z\) be a complex number such that \(\left|\frac{z-i}{z+2 i}\right|=1\) and \(|z|=\frac{5}{2}\). Then the value of \(|z+3 i|\) is: [Main Jan. 9, 2020 (I)]
\(
\text { (c) Let } z=x+i y
\)
\(
\begin{aligned}
&\text { Then, }\left|\frac{z-i}{z+2 i}\right|=1 \Rightarrow x^2+(y-1)^2 \\
&=x^2+(y+2)^2 \Rightarrow-2 y+1=4 y+4 \\
&\Rightarrow \quad 6 y=-3 \Rightarrow y=-\frac{1}{2} \\
&\therefore \quad|z|=\frac{5}{2} \Rightarrow x^2+y^2=\frac{25}{4} \\
&\Rightarrow \quad x^2=\frac{24}{4}=6 \\
&\therefore \quad z=x+i y \Rightarrow z=\pm \sqrt{6}-\frac{i}{2} \\
&|\mathrm{z}+3 i|=\sqrt{6+\frac{25}{4}}=\sqrt{\frac{49}{4}} \\
&\Rightarrow \quad|z+3 i|=\frac{7}{2}
\end{aligned}
\)
If \(z\) be a complex number satisfying \(|\operatorname{Re}(z)|+|\operatorname{Im}(z)|=4\), then \(|z|\) cannot be: [Main Jan. 9, 2020 (II)]
\(
\begin{aligned}
&z=x+i y \\
&\operatorname{Re}(z)=z \\
&\operatorname{Im}(z)=y
\end{aligned}
\)
\(
\begin{aligned}
&|\operatorname{Re}(z)|+|\operatorname{Im}(z)|=4 \\
&|x|+|y|=4 \\
&\text { If } x=0:|y|=4 \rightarrow y=\pm 4 \\
&y=0:|x|=4 \Rightarrow x=\pm 4
\end{aligned}
\)
\(
|z|=\sqrt{x^2+y^2}
\)
Minimum value of \(|z|=2 \sqrt{2}\)
Maximum value of \(|z|=4\)
\(
|z| \in[\sqrt{8}, \sqrt{16}]
\)
So, \(|z|\) can’t be \(\sqrt{7}\).
The equation \(|z-i|=|z-1|, i=\sqrt{-1}\), represents: [Main April 12, 2019 (I)]
(b) Given equation is, \(|z-1|=|z-i|\)
\(\Rightarrow \quad(x-1)^2+y^2=x^2+(y-1)^2\)
\([\) Here, \(z=x+i y]\)
\(\Rightarrow \quad 1-2 x=1-2 y \Rightarrow x-y=0\)
Hence, locus is straight line with slope 1.
If \(\mathrm{a}>0\) and \(\mathrm{z}=\frac{(1+i)^2}{\mathrm{a}-i}\), has magnitude \(\sqrt{\frac{2}{5}}\), then \(\overline{\mathrm{z}}\) is equal to: [Main April 10, 2019(I)]
\(
\text { (a) } z=\frac{(1+i)^2}{a-i} \times \frac{a+i}{a+i}
\)
\(
\begin{aligned}
& z=\frac{(1-1+2 i)(a+i)}{a^2+1}=\frac{2 a i-2}{a^2+1} \\
|z|=& \sqrt{\left(\frac{-2}{a^2+1}\right)^2+\left(\frac{2 a}{a^2+1}\right)^2}=\sqrt{\frac{4+4 a^2}{\left(a^2+1\right)^2}} \\
& \Rightarrow|z|=\sqrt{\frac{4\left(1+a^2\right)}{\left(1+a^2\right)^2}}=\frac{2}{\sqrt{1+a^2}} \dots(i)
\end{aligned}
\)
Since, it is given that \(|z|=\sqrt{\frac{2}{5}}\)
Then, from equation (i),
\(
\sqrt{\frac{2}{5}}=\frac{2}{\sqrt{1+a^2}}
\)
Now, square on both side; we get
\(
\Rightarrow 1+a^2=10 \Rightarrow a=\pm 3
\)
since, it is given that \(a>0 \Rightarrow a=3\)
Then, \(z=\frac{(1+i)^2}{a-i}=\frac{1+i^2+2 i}{3-i}=\frac{2 i}{3-i}\)
\(
=\frac{2 i(3+i)}{10}=\frac{-1+3 i}{5}
\)
Hence, \(\bar{z}=\frac{-1}{5}-\frac{3}{5} i\)
\(
\text { Let } z \in C \text { be such that }|z|<1 \text {. If } \omega=\frac{5+3 z}{5(1-z)} \text {, then : }
\) [Main April 09, 2019(II)]
\(
\begin{aligned}
&\text { (c) } \omega=\frac{5+3 z}{5-5 z} \Rightarrow 5 \omega-5 \omega z=5+3 z \\
&\Rightarrow 5 \omega-5=z(3+5 \omega) \Rightarrow z=\frac{5(\omega-1)}{3+5 \omega} \\
&\therefore|z|<1, \therefore 5|\omega-1|<|3+5 \omega| \\
&\Rightarrow 25(\omega \bar{\omega}-\omega-\bar{\omega}+1)<9+25 \omega \bar{\omega}+15 \omega+15 \bar{\omega} \\
&\quad(|z| = \quad z \bar{z})
\end{aligned}
\)
\(
\begin{aligned}
&16<40 \omega+40 \bar{\omega} \Rightarrow \omega+\bar{\omega}>\frac{2}{5} \Rightarrow 2 \operatorname{Re}(\omega)>\frac{2}{5} \\
&\operatorname{Re}(\omega)>\frac{1}{5}
\end{aligned}
\)
If \(\frac{z-\alpha}{z+\alpha}(\alpha \in \mathrm{R})\) is a purely imaginary number and \(|\mathrm{z}|=2\), then a value of \(\alpha\) is: [Main Jan. 12,2019({I)]
(a) Let \(t=\frac{z-\alpha}{z+\alpha}\)
\(\quad t\) is purely imaginary number.
\(
\begin{array}{ll}
\therefore t+\bar{t}=0 \\
\Rightarrow \quad \frac{z-\alpha}{z+\alpha}+\frac{\bar{z}-\alpha}{\bar{z}+\alpha}=0 \\
\Rightarrow \quad(z-\alpha)(\bar{z}+\alpha)+(\bar{z}-\alpha)(z+\alpha)=0 \\
\Rightarrow \quad z \bar{z}-\alpha^2+z \bar{z}-\alpha^2=0 \\
\Rightarrow \quad z \bar{z}-\alpha^2=0 \\
\Rightarrow \quad|z|^2-\alpha^2=0 \\
\Rightarrow \quad \alpha^2=4 \\
\Rightarrow \quad \alpha=\pm 2
\end{array}
\)
Let \(\mathrm{z}\) be a complex number such that \(|\mathrm{z}|+\mathrm{z}=3+\mathrm{i}\) \((\) where \(\mathrm{i}=\sqrt{-1})\). Then \(|z|\) is equal to : [Main Jan. 11, 2019 (II)]
\(
\begin{aligned}
&|z|+z=3+i \\
&z=3-|z|+i \\
&\text { Let } 3-|z|=a \\
&\Rightarrow|z|=(3-a) \\
&\Rightarrow z=a+i \\
&\Rightarrow|z|=\sqrt{a^2+1} \\
&\Rightarrow 9+a^2-6 a=a^2+1 \\
&\Rightarrow a=\frac{8}{6}=\frac{4}{3} \\
&\Rightarrow|z|=3-\frac{4}{3}=\frac{5}{3}
\end{aligned}
\)
Let \(z_1\) and \(z_2\) be any two non-zero complex numbers such that \(3\left|z_1\right|=\) \(4\left|z_2\right|\). If \(z=\frac{3 z_1}{2 z_2}+\frac{2 z_2}{3 z_1}\) then: [Main Jan. 10 2019 (II)]
Answer is a \(\operatorname{Re}(z)=0\)
From the question, the condition given is:
\(
\begin{aligned}
&3\left|\mathrm{z}_1\right|=4\left|\mathrm{z}_2\right| \\
&\Rightarrow \frac{\left|z_1\right|}{\left|z_2\right|}=\frac{4}{3} \\
&\because\left[\mathrm{z}=|\mathrm{z}|(\cos \theta+i \sin \theta)=|\mathrm{z}| \mathrm{e}^{i \theta}\right] \\
&\Rightarrow \frac{z_1}{z_2}=\left|\frac{z_1}{z_2}\right| e^{i \theta} \text { and } \frac{z_2}{z_1}=\left|\frac{z_2}{z_1}\right| e^{-i \theta} \\
&\Rightarrow \frac{z_1}{z_2}=\frac{4}{3} e^{i \theta} \text { and } \frac{z_2}{z_1}=\frac{3}{4} e^{-i \theta} \\
&\Rightarrow \frac{3}{2} \frac{z_1}{z_2}=2 e^{i \theta} \text { and } \frac{2}{3} \frac{z_2}{z_1}=\frac{1}{2} e^{-i \theta}
\end{aligned}
\)
On adding these two,
\(
\begin{aligned}
&\Rightarrow z=\frac{3}{2} \frac{z_1}{z_2}+\frac{2}{3} \frac{z_2}{z_1}=2 e^{i \theta}+\frac{1}{2} e^{-i \theta} \\
&\because\left[\mathrm{e}^{\pm i \theta}=\cos \theta \pm i \sin \theta\right] \\
&\Rightarrow z=2 \cos \theta+2 i \sin \theta+\frac{1}{2} \cos \theta-\frac{1}{2} i \sin \theta \\
&\Rightarrow z=\frac{5}{2} \cos \theta+\frac{3}{2} i \sin \theta \\
&\Rightarrow|z|=\sqrt{\left(\frac{5}{2}\right)^2+\left(\frac{3}{2}\right)^2} \\
&\Rightarrow|z|=\sqrt{\frac{34}{4}} \\
&\therefore|z|=\sqrt{\frac{17}{2}}
\end{aligned}
\)
Note that ‘z’ is neither purely imaginary and nor purely real.
Let \(\mathrm{A}=\left\{\theta \in\left(-\frac{\pi}{2}, \pi\right): \frac{3+2 \mathrm{i} \sin \theta}{1-2 \mathrm{i} \sin \theta}\right.\) is purely imaginary \(\}\). Then the sum of the elements in A is: [Main Jan. 92019 (I)]
(d) Suppose \(z=\frac{3+2 i \sin \theta}{1-2 i \sin \theta}\)
Since, \(z\) is purely imaginary, then \(z+\bar{z}=0\)
\(
\begin{aligned}
&\Rightarrow \quad \frac{3+2 i \sin \theta}{1-2 i \sin \theta}+\frac{3-2 i \sin \theta}{1+2 i \sin \theta}=0 \\
&\Rightarrow \quad \frac{(3+2 i \sin \theta)(1+2 i \sin \theta)+(3-2 i \sin \theta)(1-2 i \sin \theta)}{1+4 \sin ^2 \theta} \\
&=0 \\
&\Rightarrow \quad \sin ^2 \theta=\frac{3}{4} \Rightarrow \sin \theta=\frac{\sqrt{3}}{2} \\
&\Rightarrow \quad \theta=-\frac{\pi}{3}, \frac{\pi}{3}, \frac{2 \pi}{3}
\end{aligned}
\)
Now, the sum of elements in \(A=-\frac{\pi}{3}+\frac{\pi}{3}+\frac{2 \pi}{3}=\frac{2 \pi}{3}\)
The set of all \(\alpha \in R\), for which \(w=\frac{1+(1-8 \alpha) z}{1-z}\) is a purely imaginary number, for all \(z \in C\) satisfying \(|z|=1\) and \(\operatorname{Re} z \neq 1\), is [Main Online April 15, 2018]
(a) \(|z|=1 \& \operatorname{Re} z \neq 1\)
Suppose \(z=x+i y \Rightarrow x^2+y^2=1\)…..(i)
Now, \(w=\frac{1+(1-8 \alpha) z}{1-z}\)
\(
\begin{aligned}
\Rightarrow & w=\frac{1+(1-8 \alpha)(x+i y)}{1-(x+i y)} \\
\Rightarrow \quad w &=\frac{1+(1-8 \alpha)(x+i y))((1-\mathrm{x})+\mathrm{iy})}{1-(x+i y))((1-\mathrm{x})+\mathrm{iy})} \\
\Rightarrow \quad & w=\frac{\left[\left(1+x(1-8 \alpha)(1-x)-(1-8 \alpha) y^2\right]\right.}{(1-x)^2+y^2} \\
&+i \frac{[(1+x(1-8 \alpha)) y-(1-8 \alpha) y(1-x)]}{(1-x)^2+y^2}
\end{aligned}
\)
As, \(w\) is purely imaginary. So,
\(
\begin{aligned}
&\operatorname{Re} w=\frac{\left[(1+x(1-8 \alpha))(1-x)-(1-8 \alpha) y^2\right]}{(1-x)^2+y^2}=0 \\
&\Rightarrow(1-x)+x(1-8 \alpha)(1-x)=(1-8 \alpha) y^2 \\
&\Rightarrow(1-x)+x(1-8 \alpha)-x^2(1-8 \alpha)=(1-8 x) y^2 \\
&\Rightarrow(1-x)+x(1-8 \alpha)=1-8 \alpha\left[\operatorname{From}(i), x^2+y^2=1\right] \\
&\Rightarrow 1-8 \alpha=1 \\
&\Rightarrow \alpha=0 \\
&\therefore \alpha \in\{0\}
\end{aligned}
\)
\(
\text { A value of } \theta \text { for which } \frac{2+3 i \sin \theta}{1-2 i \sin \theta} \text { is purely imaginary, is : }
\) [Main 2016]
(b) Rationalizing the given expression
\(
\frac{(2+3 i \sin \theta)(1+2 i \sin \theta)}{1+4 \sin ^2 \theta}
\)
For the given expression to be purely imaginary, real part of the above expression should be equal to zero.
\(
\begin{aligned}
&\Rightarrow \frac{2-6 \sin ^2 \theta}{1+4 \sin ^2 \theta}=0 \quad \Rightarrow \sin ^2 \theta=\frac{1}{3} \\
&\Rightarrow \sin \theta=\pm \frac{1}{\sqrt{3}} \Rightarrow \theta=\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)
\end{aligned}
\)
If \(\mathrm{z}\) is a non-real complex number, then the minimum value of \(\frac{\operatorname{lm} z^5}{(l m z)^5}\) is: [Main Online April 11, 2015]
Let, \(z=r(\cos \theta+i \sin \theta)\)
\(z^5=r^5(\cos 5 \theta+i \sin 5 \theta)\)
\(\operatorname{Im}\left((z)^5\right)=r^5 \sin 5 \theta\)
and \((\operatorname{Im} z)^5=r^5(\sin )^5 \theta\)
\(\frac{\operatorname{Im}\left(z^5\right)}{(\operatorname{Im} z)^5}=\frac{\sin 5 \theta}{(\sin )^5 \theta}=A\) (Let)
\(\Rightarrow \frac{d A}{d \theta}=\frac{5(\sin )^5 \theta \cos 5 \theta-5 \sin 5 \theta(\sin )^4 \theta \cos \theta}{\left((\sin )^5 \theta\right)^2}\)
\(\Rightarrow \frac{d A}{d \theta}=\frac{5(\sin )^4 \theta(\sin \theta \cos 5 \theta-\sin 5 \theta \cos \theta)}{(\sin )^{10} \theta}\)
\(\Rightarrow \frac{d A}{d \theta}=\frac{5}{(\sin )^6 \theta}[\sin (-4 \theta)]=0\)
\(\Rightarrow \theta=\frac{\pi}{4}\)
The minimum value of \(A\) will be at \(\theta=\frac{\pi}{4}\).
\(
\begin{aligned}
&\Rightarrow \frac{\sin 5 \frac{\pi}{4}}{\left(\sin \frac{\pi}{4}\right)^5} \\
&=\frac{\frac{-1}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)^5} \\
&=-(\sqrt{2})^4=-4
\end{aligned}
\)
If \(z\) is a complex number such that \(|z| \geq 2\), then the minimum value of \(\left|z+\frac{1}{2}\right|:\) [Main 2014]
(d) We know minimum value of \(\left|Z_1+Z_2\right|\) is ||\(Z_1|-| Z_2||\). Thus minimum value of \(\left|Z+\frac{1}{2}\right|\) is \(\left|Z\right|-\frac{1}{2}\) \(\leq\left|Z+\frac{1}{2}\right| \leq|Z|+\frac{1}{2}\)
Since, \(|Z| \geq 2\) therefore
\(
\begin{aligned}
& 2-\frac{1}{2}<\left|Z+\frac{1}{2}\right|<2+\frac{1}{2} \\
\Rightarrow \quad \frac{3}{2} &<\left|Z+\frac{1}{2}\right|<\frac{5}{2}
\Rightarrow \quad 1 <\left|Z\right|<2
\end{aligned}
\)
If \(z\) is a complex number of unit modulus and argument \(\theta\), then arg \(\left(\frac{1+z}{1+\bar{z}}\right)\) equals: [Main 2013]
(c) \(\operatorname{Given}|\mathrm{z}|=1, \arg z=\theta\)
\(
\begin{aligned}
&\Rightarrow \bar{z}=\frac{1}{z} \\
&\therefore \arg \left(\frac{1+z}{1+\bar{z}}\right)=\arg \left(\frac{1+z}{1+\frac{1}{z}}\right)=\arg (z)=\theta
\end{aligned}
\)
If \(\frac{w-\bar{w} z}{1-z}\) is purely real where \(w=\alpha+i \beta, \beta \neq 0\) and \(z \neq 1\), then the set of the values of \(z\) is [2006 – 3M, -1]
\(
\text { (d) } \because \frac{w-\bar{w} z}{1-z} \text { is purely real }
\)
\(
\begin{aligned}
&\therefore \overline{\left(\frac{w-\bar{w} z}{1-z}\right)}=\left(\frac{w-\bar{w} z}{1-z}\right) \Rightarrow \frac{\bar{w}-w \bar{z}}{1-\bar{z}}=\frac{w-\bar{w} z}{1-z} \\
&\Rightarrow \bar{w}-\bar{w} z-w \bar{z}+w z \bar{z}=w-w \bar{z}-\bar{w} z+\bar{w} z \bar{z} \\
&\Rightarrow w-\bar{w}=(w-\bar{w})|z|^2 \\
&\Rightarrow|z|^2=1 \quad(\because w=\alpha+\mathrm{i} \beta \text { and } \beta \neq 0) \\
&\Rightarrow|z|=1 \text { and also given that } z \neq 1
\end{aligned}
\)
For all complex numbers \(z_1, z_2\) satisfying \(\left|z_1\right|=12\) and \(\left|z_2-3-4 i\right|=5\), the minimum value of \(\left|z_1-z_2\right|\) is [2002S]
(b) \(\left|z_1\right|=12 \Rightarrow z_1\) lies on a circle with centre \((0,0)\) and radius 12 units.
And \(\left|z_2-3-4 i\right|=5 \Rightarrow z_2\) lies on a circle with centre \((3,4)\) and radius 5 units.
From figure, it is clear that \(\left|z_1-z_2\right|\) i.e., distance between \(z_1\) and \(z_2\) will be min when they lie at \(A\) and \(\mathrm{B}\) respectively i.e., \(O, C, B, A\) are collinear as shown.
Then \(z_1-z_2=A B=O A-O B=12-2(5)=2\). As above is the minimum value, we must have \(\left|z_1-z_2\right| \geq 2\).
If \(z_1, z_2\) and \(z_3\) are complex numbers such that \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=\left|\frac{1}{z_1}+\frac{1}{z_2}+\frac{1}{z_3}\right|=1\), then \(\left|z_1+z_2+z_3\right|\) is [2000S]
(a) Given: \(\quad\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=1\)
Now, \(\left|z_1\right|=1 \Rightarrow\left|z_1\right|^2=1 \Rightarrow z_1 \bar{z}_1=1\)
Similarly \(z_2 \bar{z}_2=1, z_3 \bar{z}_3=1\)
Now, \(\left|\frac{1}{z_1}+\frac{1}{z_2}+\frac{1}{z_3}\right|=1 \Rightarrow\left|\bar{z}_1+\bar{z}_2+\bar{z}_3\right|=1\)
\(
\begin{aligned}
&\Rightarrow\left|\overline{z_1+z_2+z_3}\right|=1 \\
&\Rightarrow\left|z_1+z_2+z_3\right|=1
\end{aligned}
\)
\(
\text { If } \arg (z)<0 \text {, then } \arg (-z)-\arg (z)=
\) [2000 S]
\(
\text { (a) Given: } \arg (z)<0 \text { (given) } \Rightarrow \arg (z)=-\theta
\)
Now, \(z=r \cos (-\theta)+i \sin (-\theta)=r[\cos (\theta)-i \sin (\theta)]\)
Again \(-z=-r[\cos (\theta)-i \sin (\theta)]\)
\(
\begin{aligned}
&\quad=r[\cos (\pi-\theta)+i \sin (\pi-\theta)] \\
&\therefore \quad \arg (-z)=\pi-\theta ;
\end{aligned}
\)
Thus \(\arg (-z)-\arg (z)=\pi-\theta-(-\theta)=\pi-\theta+\theta=\pi\)
For positive integers \(n_1, n_2\) the value of the expression \((1+i)^{n_1}+\left(1+i^3\right)^{n_1}+\left(1+i^5\right)^{n_2}+\left(1+i^7\right)^{n_2}\), where \(i=\sqrt{-1}\) is a real number if and only if [1996 – 1 Marks]
(d) \((1+i)^{n_1}+\left(1+i^3\right)^{n_1}+\left(1+i^5\right)^{n_2}+\left(1+i^7\right)^{n_2}\) \(=(1+i)^{n_1}+(1-i)^{n_1}+(1+i)^{n_2}+(1-i)^{n_2}\)
Using \(1+i=\sqrt{2}(\cos \pi / 4+i \sin \pi / 4)\)
and \(1-i=\sqrt{2}(\cos \pi / 4-i \sin \pi / 4)\)
We get the given expression as
\(=(\sqrt{2})^{n_1}\left[\cos \frac{n_1 \pi}{4}+i \sin \frac{n_1 \pi}{4}\right]\)
\(+(\sqrt{2})^{n_2}\left[\cos \frac{n_2 \pi}{4}+i \sin \frac{n_2 \pi}{4}\right]\)
\(+(\sqrt{2})^{n_2}\left[\cos \frac{n_2 \pi}{4}-i \sin \frac{n_2 \pi}{4}\right]\)
\(=(\sqrt{2})^{n_1}\left[2 \cos \frac{n_1 \pi}{4}\right]+(\sqrt{2})^{n_2}\left[2 \cos \frac{n_2 \pi}{4}\right]\)
\(=\) real number irrespective the values of \(n_1\) and \(n_2\)
\(\therefore(d)\) is the most appropriate answer.
Let \(z\) and \(\omega\) be two complex numbers such that \(|z| \leq 1,|\omega| \leq 1\) and \(|z+i \omega|=|z-i \bar{\omega}|=2\) then \(z\) equals [1995 S]
(c) Given that \(|z+i \omega|=|z-i \bar{\omega}|\)
\(
\Rightarrow|z-(-i \omega)|=|z-(-\overline{i \omega})|
\)
\(\Rightarrow z\) lies on perpendicular bisector of the line segment joining \((-i \omega)\) and \((-\overline{i \omega})\), which is real axis, \((-i \omega)\) and \((-\overline{i \omega})\) being mirror images of each other.
\(\therefore \quad \operatorname{Im}(z)=0\).
If \(z=x\), then \(|z| \leq 1 \Rightarrow x^2 \leq 1 \Rightarrow-1 \leq x \leq 1\)
\(\therefore \quad\) (c) is the correct option.
Let \(z\) and \(\omega\) be two non zero complex numbers such that \(|z|=\mid \omega\) \(\mid\) and \(\operatorname{Arg} z+\operatorname{Arg} \omega=\pi\), then \(z\) equals [1995 S]
(d) \(\because|z|=|\omega|\) and \(\arg z=\pi-\arg \omega\)
Let \(\omega=r e^{i \theta}\) then \(z=r e^{i(\pi-\theta)}\)
\(
\begin{gathered}
\Rightarrow z=r e^{i \pi} \cdot e^{-i \theta} \\
=\left(r e^{-i \theta}\right)(\cos \pi+i \sin \pi)=\bar{\omega}(-1)=-\bar{\omega}
\end{gathered}
\)
The smallest positive integer \(\mathrm{n}\) for which [1980]
\(\left(\frac{1+i}{1-i}\right)^n=1\) is
(d) \(\frac{1+i}{1-i}=\frac{(1+i)}{(1-i)(1+i)}=\frac{1-1+2 i}{2}=i\)
Now \(i^n=1 \Rightarrow\) the smallest positive integral value of \(n\) should be 4.
If \(\left(\frac{1+i}{1-i}\right)^{m / 2}=\left(\frac{1+i}{i-1}\right)^{n / 3}=1,(m, n \in \mathbf{N})\), then the greatest common divisor of the least values of \(m\) and \(n\) is [Main Sep. 03, 2020 (I)]
Given that \(\left(\frac{1+i}{1-i}\right)^{m / 2}=\left(\frac{1+i}{i-1}\right)^{n / 3}=1\)
\(
\begin{gathered}
\Rightarrow\left(\frac{(1+i)^2}{2}\right)^{m / 2}=\left(\frac{(1+i)^2}{-2}\right)^{n / 3}=1 \\
\Rightarrow i^{m / 2}=(-i)^{n / 3}=1 \\
m(\text { least })=8, n \text { (least) }=12 \\
\operatorname{GCD}(8,12)=4
\end{gathered}
\)
For any integer \(k\), let \(\alpha_k=\cos \left(\frac{k \pi}{7}\right)+\mathrm{i} \sin \left(\frac{k \pi}{7}\right)\), where \(\mathrm{i}=\sqrt{-1}\). The value of the expression \(\frac{\sum_{k=1}^{12}\left|\alpha_{k+1}-\alpha_k\right|}{\sum_{k=1}^3\left|\alpha_{4 k-1}-\alpha_{4 k-2}\right|}\) is [Adv. 2015]
Given : \(\alpha_{\mathrm{k}}=\cos \frac{k \pi}{7}+i \sin \frac{k \pi}{7}=e^{\frac{i \pi k}{7}}\)
\(
\alpha_{k+1}-\alpha_k=e^{\frac{i \pi(k+1)}{7}}-e^{\frac{i \pi k}{7}}=e^{\frac{i \pi k}{7}}\left(e^{i \pi / 7}-1\right)
\)
\(
\left|\alpha_{k+1}-\alpha_k\right|=\left|e^{i \pi / 7}-1\right|
\)
\(
\begin{gathered}
\Rightarrow \sum_{k=1}^{12}\left|\alpha_{k+1}-\alpha_k\right|=12\left|e^{i \pi / 7}-1\right| \\
\text { Similarly, } \sum_{k=1}^3\left|\alpha_{4 k-1}-\alpha_{4 k-2}\right|=3\left|e^{i \pi / 7}-1\right| \\
\therefore \quad \frac{\sum_{k=1}^{12}\left|\alpha_{k+1}-\alpha_k\right|}{\sum_{k=1}^3\left|\alpha_{4 k-1}-\alpha_{4 k-2}\right|} \\
= 4
\end{gathered}
\)
If \(z\) is any complex number satisfying \(|z-3-2 i| \leq 2\), then the minimum value of \(|2 z-6+5 i|\) is [2011]
Given : \(|z-3-2 i| \leq 2\),
which represents a circular region with centre \((3,2)\) and radius 2.
Now, \(|2 z-6+5 i|=2\left|z-\left(3-\frac{5}{2} i\right)\right|\)
\(=2 \times\) distance of \(z\) from \(P\)
(where \(z\) lies in or on the circle)
Also min distance of \(z\) from \(P=\frac{5}{2}\)
\(\therefore\) Minimum value of \(|2 z-6+5 i|=5\)
If the expression
\(
\frac{\left[\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)+i \tan (x)\right]}{\left[1+2 i \sin \left(\frac{x}{2}\right)\right]}
\) [1987 – 2 Marks]
is real, then the set of all possible values of \(x\) is
Let \(z=\frac{\sin x / 2+\cos x / 2+i \tan x}{1+2 i \sin x / 2}\) \(=\frac{(\sin x / 2+\cos x / 2+i \tan x)(1-2 i \sin x / 2)}{(1+2 i \sin x / 2)(1-2 i \sin x / 2)}\)
\(
=\frac{\begin{array}{l}
{[\sin x / 2+\cos x / 2+2 \sin x / 2 \tan x)} \\
\left.+i\left(\tan x-2 \sin ^2 x / 2-2 \sin x / 2 \cos x / 2\right)\right]
\end{array}}{\left(1+4 \sin ^2 x / 2\right)}
\)
But it is given that \(z\) is real.
\(
\begin{aligned}
&\therefore I_m(z)=0 \\
&\Rightarrow \tan x-2 \sin \frac{x}{2}\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)=0
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow \frac{\sin x}{\cos x}-2 \sin ^2 x / 2-2 \sin x / 2 \cos x / 2=0 \\
&\Rightarrow \frac{\sin x}{\cos x}-(1-\cos x)-\sin x=0 \\
&\Rightarrow \sin x\left[\frac{1}{\cos x}-1\right]-[1-\cos x]=0 \\
&\Rightarrow \quad\left(\frac{1-\cos x}{\cos x}\right) \sin x-[1-\cos x]=0 \\
&\Rightarrow \quad(1-\cos x)\left(\frac{\sin x}{\cos x}-1\right)=0 \\
&\Rightarrow \quad \cos x=1 \quad \Rightarrow \quad x=2 n \pi \\
&\text { and } \tan x=1 \Rightarrow x=n \pi+\pi / 4 \\
&\therefore \quad x=2 n \pi, n \pi+\pi / 4
\end{aligned}
\)
For complex number \(z_1=x_1+i y_1\) and \(z_2=x_2+i y_2\), we write \(z_1 \cap z_2\), if \(x_1 \leq x_2\) and \(y_1 \leq y_2\). Then for all complex numbers \(z\) with \(1 \cap z\), we have \(\frac{1-z}{1+z} \cap 0\). [1981 – 2 Marks]
Is this statement true or false?
(True) Let \(z=x+i y\), then \(1 \cap z \Rightarrow 1 \leq x \& 0 \leq y\) (by def.) Consider,
\(\frac{1-z}{1+z}=\frac{1-(x+i y)}{1+(x+i y)}=\frac{(1-x)-i y}{(1+x)+i y} \times \frac{(1+x)-i y}{(1+x)-i y}\)
\(=\frac{1-x^2-y^2}{(1+x)^2+y^2}-\frac{i y(1-x+1+x)}{(1+x)^2+y^2}\)
\(=\frac{1-x^2-y^2}{(1+x)^2+y^2}-\frac{2 i y}{(1+x)^2+y^2}\)
\(\frac{1-z}{1+z} \cap 0 \Rightarrow \frac{1-x^2-y^2}{(1+x)^2+y^2} \leq 0\)
and \(\frac{-2 y}{(1+x)^2+y^2} \leq 0\)
\(\Rightarrow 1-x^2-y^2 \leq 0\) and \(-2 y \leq 0\)
\(\Rightarrow x^2+y^2 \geq 1\) and \(y \geq 0\), which is true as
\(x \geq 1\) and \(y \geq 0\)
Hence, the given statement is true \(\forall z \in C\).
Let \(S\) be the set of all complex numbers \(z\) satisfying \(\left|z^2+z+1\right|=1\). Then which of the following statements is/are TRUE? [Adv. 2020]
\(
\text { (b, c) } \quad\left|z^2+z+1\right|=1
\)
\(
\begin{aligned}
&\Rightarrow\left|\left(z+\frac{1}{2}\right)^2+\frac{3}{4}\right|=1\\
&\Rightarrow\left|\left(z+\frac{1}{2}\right)^2+\frac{3}{4}\right| \leq\left|z+\frac{1}{2}\right|^2+\frac{3}{4}\\
&\Rightarrow\left|\left(z+\frac{1}{2}\right)\right|^2 \geq \frac{1}{4}\\
&\Rightarrow\left|z+\frac{1}{2}\right| \geq \frac{1}{2}\\
&\text { also }\left|\left(z^2+z\right)+1\right|=1 \geq|| z^2+z|-1|\\
&\Rightarrow\left|z^2+z\right|-1 \leq 1\\
&\Rightarrow\left|z^2+z\right| \leq 2\\
&\Rightarrow|| z^2|-| z|| \leq\left|z^2+z\right| \leq 2\\
&\Rightarrow\left|r^2-r\right| \leq 2\\
&\Rightarrow r=|z| \leq 2 ; \quad \forall \quad z \in \mathrm{S}\\
&\text { Hence, set ‘ } \mathrm{S} \text { ‘ is infinite }
\end{aligned}
\)
Let \(s, t, r\) be non-zero complex numbers and \(L\) be the set of solutions \(z\) \(=x+i y(x, y, \in \mathbb{R}, i=\sqrt{-1})\) of the equation \(s z+t \bar{z}+r=0\), where \(\bar{z}\) \(=x-i y\). Then, which of the following statement(s) is (are) TRUE? [Adv. 2018]
We have,
\(
s z+t \bar{z}+r=0 \dots(i)
\)
On taking conjugate
\(
\overline{s z}+\overline{t z}+\bar{r}=0 \dots(ii)
\)
On solving Eqs. (i) and (ii), we get
\(
z=\frac{\bar{r} t-r \bar{s}}{|s|^2-|t|^2}
\)
(a) For unique solutions of \(z\)
\(
|s|^2-|t|^2 \neq 0 \Rightarrow|s| \neq|t|
\)
It is true.
(b) If \(|s|=|t|\), then \(\bar{r} t-r \bar{s}\) may or may not be zero.
So, \(z\) may have no solution.
\(\therefore L\) may be an empty set.
It is false.
(c) If elements of set \(L\) represents line, then this line and given circle intersect at maximum two-point.
Hence, it is true.
(d) In the case locus of \(z\) is a line, so \(L\) has infinite elements. Hence, it is true.
For a non-zero complex number \(z\), let \(\arg (\mathrm{z})\) denote the principal argument with \(-\pi<\arg (z) \leq \pi\). Then, which of the following statement (s) is (are) FALSE? [Adv. 2018]
(a, b, d)
(a) \(\arg (-1-i)=\frac{-3 \pi}{4}\)
\(\therefore\) (a) is false
(b) \(f(t)=\arg (-1+i t)=\left[\begin{array}{l}\pi-\tan ^{-1}(t), t \geq 0 \\ -\pi+\tan ^{-1}(t), t<0\end{array}\right.\) \(\lim _{t \rightarrow 0^{-}} f(t)=-\pi\) and \(\lim _{t \rightarrow 0^{+}} f(t)=\pi\)
LHL \(\neq\) RHL \(\Rightarrow f\) is discontinuous at \(t=0\) \(\therefore\) (b) is false.
(c) \(\arg \left(\frac{z_1}{z_2}\right)-\arg z_1+\arg z_2\)
\(=2 n \pi+\arg z_1-\arg z_2-\arg z_1+\arg z_2\)
\(=2 n \pi\), multiple of \(2 \pi\)
\(\therefore\) (c) is true.
(d) \(\arg \left(\frac{\left(z-z_1\right)\left(z_2-z_3\right)}{\left(z-z_3\right)\left(z_2-z_1\right)}\right)=\pi \quad \Rightarrow \frac{\left(z-z_1\right)\left(z_2-z_3\right)}{\left(z-z_3\right)\left(z_2-z_1\right)}=k, \quad k \in R\)
\(
\Rightarrow\left(\frac{z-z_1}{z-z_3}\right)=k\left(\frac{z_2-z_1}{z_2-z_3}\right)
\)
\(\Rightarrow \quad z, z_1, z_2, z_3\) are concyclic. i.e. z lies on a circle. \(\therefore \quad\) (d) is false.
Let \(\mathrm{a}, \mathrm{b}, \mathrm{x}\) and \(\mathrm{y}\) be real numbers such that \(\mathrm{a}-\mathrm{b}=1\) andy \(\neq 0\). If the complex number \(\mathrm{z}=\mathrm{x}+\) iy satisfies \(\operatorname{Im}\left(\frac{\mathrm{az}+\mathrm{b}}{\mathrm{z}+1}\right)=\mathrm{y}\), then which of the following is(are) possible value(s) of \(x\)? [Adv. 2017]
\((\mathbf{a}, \mathbf{b}) \quad \mathrm{a}-\mathrm{b}=1, \mathrm{y} \neq 0\)
\(\operatorname{Im}\left(\frac{a z+b}{z+1}\right)=y\)
\(
\Rightarrow \operatorname{Im}\left[\frac{a(x+i y)+b}{(x+1)+i y} \times \frac{(x+1)-i y}{(x+1)-i y}\right]=y
\)
\(
\begin{aligned}
&\Rightarrow \frac{-(a x+b) y+a y(x+1)}{(x+1)^2+y^2}=y \\
&\Rightarrow \frac{-a x y-b y+a x y+a y}{(x+1)^2+y^2}=y \\
&\Rightarrow \mathrm{a}-\mathrm{b}=(\mathrm{x}+1)^2+\mathrm{y}^2 \\
&\Rightarrow 1=(\mathrm{x}+1)^2+\mathrm{y}^2, \quad \therefore \mathrm{x}=-1 \pm \sqrt{1-\mathrm{y}^2}
\end{aligned}
\)
Let \(z_1\) and \(z_2\) be two distinct complex numbers and letz \(=(1-t) z_1+\) \(t z_2\) for some real number \(t\) with \(0<t<1\). If \(\operatorname{Arg}(w)\) denotes the principal argument of a non-zero complex number \(\mathrm{w}\), then [2010]
(a,c,d) Given : \(z=(1-t) z_1+t z_2\), where \(0<t<1\) \(\Rightarrow z=\frac{(1-t) z_1+t z_2}{(1-t)+t}\)
\(\Rightarrow \mathrm{Z}\) divides the join of \(z_1\) and \(z_2\) internally in the ratio \(t:(1-t)\).
\(
\therefore z_1, z \text { and } z_2 \text { are collinear }
\)
\(
\Rightarrow\left|z-z_1\right|+\left|z-z_2\right|=\left|z_1-z_2\right|
\)
Also \(z=(1-t) z_1+t z_2\)
\(
\begin{aligned}
&\Rightarrow \frac{z-z_1}{z_2-z_1}=t \text {, which is purely real number } \\
&\therefore \arg \left(\frac{z-z_1}{z_2-z_1}\right)=0 \Rightarrow \arg \left(z-z_1\right)=\arg \left(z_2-z_1\right)
\end{aligned}
\)
Also \(\frac{z-z_1}{z_2-z_1}=t \Rightarrow \frac{\bar{z}-\bar{z}_1}{\bar{z}_2-\bar{z}_1}=t\)
\(
\Rightarrow \frac{z-z_1}{z_2-z_1}=\frac{\bar{z}-\bar{z}_1}{\bar{z}_2-\bar{z}_1}
\)
\(
\Rightarrow\left(z-z_1\right)\left(\bar{z}_2-\bar{z}_1\right)=\left(\bar{z}-\bar{z}_1\right)\left(z_2-z_1\right)
\)
\(
\Rightarrow\left|\begin{array}{ll}
z-z_1 & \bar{z}-\bar{z}_1 \\
z_2-z_1 & \bar{z}_2-\bar{z}_1
\end{array}\right|=0
\)
\(
\text { If }\left|\begin{array}{ccc}
6 i & -3 i & 1 \\
4 & 3 i & -1 \\
20 & 3 & i
\end{array}\right|=x+i y \text {, then }\) [1998 – 2 Marks]
\(
\text { (d) Taking }-3 i \text { common from } C_2 \text {, we get }
\)
\(
\begin{aligned}
&-3 i\left|\begin{array}{ccc}
6 i & 1 & 1 \\
4 & -1 & -1 \\
20 & i & i
\end{array}\right|=0 \quad\left(\because C_2 \equiv C_3\right) \\
&\Rightarrow x=0, \quad y=0
\end{aligned}
\)
The value of the sum \(\sum_{n=1}^{13}\left(i^n+i^{n+1}\right)\), where \(i=\sqrt{-1}\), equals [1998 – 2 Marks]
(b) \(\sum_{i=1}^{13}\left(i^n+i^{n+1}\right)=\sum_{i=1}^{13} i^n(1+i)=(1+i) \sum_{i=1}^{13} i^n\),
Which forms a G.P.
Sum of G.P. \(=i(1+i) \frac{\left(1-i^{13}\right)}{1-i}=i-1\) as \(i^{13}=i\)
The value of \(\sum_{k=1}^6\left(\sin \frac{2 \pi k}{7}-i \cos \frac{2 \pi k}{7}\right)\) is [1987 – 2 Marks]
(d) Let \(z=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}\) By DeMoivre’s theorem,
\(
\begin{aligned}
z^k=\cos \frac{2 \pi k}{7}+i \sin \frac{2 \pi k}{7} \\
\text { Now, } & \sum_{k=1}^6\left(\sin \frac{2 \pi k}{7}-i \cos \frac{2 \pi k}{7}\right) \\
=& \sum_{k=1}^6(-i)\left(\cos \frac{2 \pi k}{7}+i \sin \frac{2 \pi k}{7}\right) \\
=&(-i) \sum_{k=1}^6 z^k=-i z \frac{\left(1-z^6\right)}{1-z}=-i\left(\frac{z-z^7}{1-z}\right) \\
=&(-i)\left(\frac{z-1}{1-z}\right)=\left[\because z^7=\cos 2 \pi+i \sin 2 \pi=1\right] \\
=& i\left(\frac{1-z}{1-z}\right)=i
\end{aligned}
\)
If \(z_1\) and \(z_2\) are two nonzero complex numbers such that \(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\), then \(\operatorname{Arg} z_1-\operatorname{Arg} z_2\) is equal to [1987 – 2 Marks]
(c) Let \(z_1=r_1\left(\cos \theta_1+i \sin \theta_1\right)\)
and \(z_2=r_2\left(\cos \theta_2+i \sin \theta_2\right)\)
where \(r_1=\left|z_1\right|, r_2=\left|z_2\right|, \theta_1=\arg \left(z_1\right), \theta_2=\arg \left(z_2\right)\)
\(\therefore z_1+z_2=r_1\left(\cos \theta_1+i \sin \theta_1\right)+r_2\left(\cos \theta_2+i \sin \theta_2\right)\)
\(=\left(r_1 \cos \theta_1+r_2 \cos \theta_2\right)+i\left(r_1 \sin \theta_1+r_2 \sin \theta_2\right)\)
\(
\begin{aligned}
& \left|z_1+z_2\right|^2=r_1^2 \cos ^2 \theta_1+r_2^2 \cos ^2 \theta_2+2 r_1 r_2 \cos \theta_1 \cos \theta_2 \\
&+r_1^2 \sin ^2 \theta_1+r_2^2 \sin ^2 \theta_2+2 r_1 r_2 \sin \theta_1 \sin \theta_2 \\
&=r_1^2+r_2^2+2 r_1 r_2 \cos \left(\theta_1-\theta_2\right) \\
&\text { and }\left|z_1\right|+\left|z_2\right|=r_1+r_2 \\
&\text { Given }\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right| \\
&\quad \Rightarrow\left|z_1+z_2\right|^2=\left|z_1\right|^2+\left|z_2\right|^2+2\left|z_1\right|\left|z_2\right| \\
&\Rightarrow r_1^2+r_2^2+2 r_1 r_2 \cos \left(\theta_1-\theta_2\right)=r_1^2+r_2^2+2 r_1 r_2 \\
&\Rightarrow \cos \left(\theta_1-\theta_2\right)=1 \Rightarrow \theta_1-\theta_2=0 \\
&\therefore \arg \left(z_1\right)=\arg \left(z_2\right)
\end{aligned}
\)
Let \(z_1\) and \(z_2\) be complex numbers such that \(z_1 \neq z_2\) and \(\quad\left|z_1\right|=\) \(\left|z_2\right|\). If \(z_1\) has positive real part and \(z_2\) has negative imaginary part, then \(\frac{z_1+z_2}{z_1-z_2}\) may be [1986 – 2 Marks]
(a, d) Let \(z_1=a+i b, a>0\) and \(b \in R ; z_2=c+i d\), \(d<0, c \in R\), then
\(
\begin{gathered}
\left|z_1\right|^2=\left|z_2\right|^2 \Rightarrow a^2+b^2=c^2+d^2 \\
\Rightarrow a^2-c^2=d^2-b^2
\end{gathered}
\)
Now, \(\frac{z_1+z_2}{z_1-z_2}=\frac{(a+c)+i(b+d)}{(a-c)+i(b-d)}\)
\(
\begin{aligned}
&=\frac{\left[\left(a^2-c^2\right)+\left(b^2-d^2\right)\right]+i[(a-c)(b+d)-(a+c)(b-d)]}{(a-c)^2+(b-d)^2} \\
&=\frac{i[(a-c)(b+d)-(a+c)(b-d)]}{(a-c)^2+(b-d)^2} \quad \text { [Using (i)] }
\end{aligned}
\)
Which is purely imaginary number or zero in case
\(
a+c=b+d=0 .
\)
If \(z_1=a+ib\) and \(z_2=c+id\) are complex numbers such that \(\left|z_1\right|=\) \(\left|z_2\right|=1\) and \(\operatorname{Re}\left(z_1 \bar{z}_2\right)=0\), then the pair of complex numbers \(w_1=a+ic\) and \(w_2=b+id\) satisfies – [1985 – 2 Marks]
(a, b, c) \(z_1=a+i b\) and \(z_2=c+i d\).
Acc. to the ques, \(|z_1|^2=\left|z_2\right|^2=1 \dots(i)\)
\(\Rightarrow a^2+b^2=1\) and \(c^2+d^2=1\).
Also \(\operatorname{Re}\left(z_1 \overline{z_2}\right)=0 \Rightarrow a c+b d=0\)
\(
\Rightarrow \frac{a}{b}=\frac{-d}{c}=\alpha(s a y) \dots(ii)
\)
From (i) and (ii), we get
\(
b^2 \alpha^2+b^2=c^2 \alpha^2+c^2 \Rightarrow b^2=c^2 \text {; }
\)
Similarly, \(\quad a^2=d^2\)
\(\therefore \quad\left|\omega_1\right|=\sqrt{a^2+c^2}=\sqrt{c^2+b^2}=1\)
and \(\left|\omega_2\right|=\sqrt{b^2+d^2}=\sqrt{c^2+d^2}=1\)
Also, \(\operatorname{Re}\left(\omega_1 \bar{\omega}_2\right)=a b+c d=(b \alpha) b+c(-c \alpha)\)
\(
=\alpha\left(b^2-c^2\right)=0
\)
Let \(z_k=\cos \left(\frac{2 k \pi}{10}\right)+i \sin \left(\frac{2 k \pi}{10}\right) ; k=1,2, \ldots, 9\). [Adv. 2014]
   List-I                                      List-II
P. For each \(z_k\) there exists as \(z_j\) such that \(z_k \cdot z_j=1\)Â Â 1. True
Q. There exists a \(k \in\{1,2, \ldots, 9\}\) such that \(z_1 \cdot z=z_k\)Â Â Â 2. False
has no solution \(z\) in the set of complex numbers
R. \(\frac{\left|1-z_1\right|\left|1-z_2\right| \ldots\left|1-z_9\right|}{10}\) equals            3. 1
S. \(1-\sum_{k=1}^9 \cos \left(\frac{2 k \pi}{10}\right)\) equals                  4. 2
(c) (P) \(\rightarrow(1): z_k=\cos \frac{2 k \pi}{10}+i \sin \frac{2 k \pi}{10}, k=1\) to 9
\(
\therefore z_k=e^{i \frac{2 k \pi}{10}}
\)
Now \(z_k \cdot z_j=1 \Rightarrow z_j=\frac{1}{z_k}=e^{-i \frac{2 k \pi}{10}}=\overline{z_k}\)
We know if \(z_k\) is \(10^{\text {th }}\) root of unity so will be \(\bar{z}_k\).
\(\therefore \quad\) For every \(z_k\), there exist \(z_i=\bar{z}_k\)
Such that \(z_k \cdot z_j=z_k \bar{z}_k=1\)
Hence the statement is true.
(Q) \(\rightarrow\) (2) \(z_1=z_k \Rightarrow z=\frac{z_k}{z_1}\) for \(z_1 \neq 0\)
\(\therefore\) We can always find a solution of \(z_1 \cdot z=z_k\)
Hence the statement is false.
\((\mathrm{R}) \rightarrow(3):\) We know \(z^{10}-1=(z-1)\left(z-z_1\right) \ldots\left(z-z_9\right)\)
\(
\Rightarrow\left(z-z_1\right)\left(z-z_2\right) \ldots . .\left(z-z_9\right)=\frac{z^{10}-1}{z-1}
\)
\(=1+z+z^2+\ldots z^9\)
For \(z=1\), we get \(\left(1-z_1\right)\left(1-z_2\right) \ldots .\left(1-z_9\right)=10\)
\(
\therefore \frac{\left|1-z_1\right|\left|1-z_2\right| \ldots .\left|1-z_9\right|}{10}=1
\)
\((\mathrm{S}) \rightarrow(4): 1, Z_1, Z_2, \ldots, Z_9\) are 10 th roots of unity. \(\therefore Z^{10}-1=0\)
From equation \(1+Z_1+Z_2+\ldots .+Z_9=0\),
\(\operatorname{Re}(1)+\operatorname{Re}\left(Z_1\right)+\operatorname{Re}\left(Z_2\right)+\ldots .+\operatorname{Re}\left(Z_9\right)=0\)
\(\Rightarrow \operatorname{Re}\left(Z_1\right)+\operatorname{Re}\left(Z_2\right)+\ldots . \operatorname{Re}\left(Z_9\right)=-1\)
\(\Rightarrow \sum_{K=1}^9 \cos \frac{2 k \pi}{10}=-1 \Rightarrow 1-\sum_{K=1}^9 \cos \frac{2 k \pi}{10}=2\)
Hence (c) is the correct option.
PASSAGE-1
Let \(S=S_1 \cap S_2 \cap S_3\), where
\(
S_1=\{z \in \mathbb{C}:|z|<4\}, S_2=\left\{z \in \mathbb{C}: \operatorname{Im}\left[\frac{z-1+\sqrt{3} i}{1-\sqrt{3} i}\right]>0\right\}
\)
and \(\mathrm{S}_3=\{\mathrm{z} \in \mathbb{C}: \operatorname{Re} z>0\}\). [Adv. 2013]
Area of \(\)S=\(\) [Adv. 2013]
\(
\begin{aligned}
&S_1: x^2+y^2<16 \\
&S_2: \operatorname{Im}\left[\frac{(x-1)+i(y+\sqrt{3})}{1-i \sqrt{3}}\right]>0 \\
&\quad \Rightarrow \sqrt{3}(x-1)+(y+\sqrt{3})>0 \Rightarrow y+\sqrt{3} x>0 \\
&S_3: x>0
\end{aligned}
\)
Then \(S: S_1 \cap S_2 \cap S_3\) is as shown in the figure given below.
(b) Area of shaded region
\(
=\frac{\pi}{4} \times 4^2+\frac{\pi \times 4^2 \times 60^{\circ}}{360^{\circ}}=4 \pi+\frac{8 \pi}{3}=\frac{20 \pi}{3}
\)
PASSAGE-1
Let \(S=S_1 \cap S_2 \cap S_3\), where
\(
S_1=\{z \in \mathbb{C}:|z|<4\}, S_2=\left\{z \in \mathbb{C}: \operatorname{Im}\left[\frac{z-1+\sqrt{3} i}{1-\sqrt{3} i}\right]>0\right\}
\)
and \(\mathrm{S}_3=\{\mathrm{z} \in \mathbb{C}: \operatorname{Re} z>0\}\). [Adv. 2013]
\(\min _{z \in S}|1-3 i-z|=\) [Adv. 2013]
\(
\begin{aligned}
&S_1: x^2+y^2<16 \\
&S_2: \operatorname{Im}\left[\frac{(x-1)+i(y+\sqrt{3})}{1-i \sqrt{3}}\right]>0 \\
&\quad \Rightarrow \sqrt{3}(x-1)+(y+\sqrt{3})>0 \Rightarrow y+\sqrt{3} x>0 \\
&S_3: x>0
\end{aligned}
\)
Then \(S: S_1 \cap S_2 \cap S_3\) is as shown in the figure given below.
(c) \(\min _{z \in s}|1-3 i-z|=\min\) distance between \(z\) and \((1,-3)\)
Clearly (from figure) minimum distance between \(\mathrm{z} \in \mathrm{S}\) and \((1,-3)\) from line \(y+x \sqrt{3}=0\) i.e. \(\left|\frac{\sqrt{3}-3}{\sqrt{3+1}}\right|=\frac{3-\sqrt{3}}{2}\)
PASSAGE-2
Let \(A, B, C\) be three sets of complex numbers as defined below
\(
A=\{z: \operatorname{Im} z \geq 1\}
\)
\(
\begin{aligned}
&B=\{z:|z-2-i|=3\} \\
&C=\{z: \operatorname{Re}((1-i) z)=\sqrt{2}\}
\end{aligned}
\)
\(
\text { The number of elements in the set } A \cap B \cap C \text { is }
\) [2008]
Given : \(A=\{z: \operatorname{Im}(z) \geq 1\}=\{(x, y): y \geq 1\}\)
Clearly \(A\) is the set of all points lying on or above the line \(y=1\) in cartesian plane.
\(
B=\{z:|z-2-i|=3\}=\left\{(x, y):(x-2)^2+(y-1)^2=9\right\}
\)
\(\Rightarrow B\) is the set of all points lying on the boundary of the circle with centre \((2,1)\) and radius 3.
\(C=\{z: \operatorname{Re}[(1-i) z]=\sqrt{2}\}=\{(x, y): x+y=\sqrt{2}\}\)
\(\Rightarrow \mathrm{C}\) is the set of all points lying on the straight line represented by \(x\) \(+y=\sqrt{2}\).
Graphically, the three sets are represented as shown below:
(b) From graph \(A \cap B \cap C\) consists of only one point \(P\) [the common point of the region \(\mathrm{y} \geq 1,(x-2)^2+(y-1)^2=9\) and \(\left.x+y=\sqrt{2}\right] \therefore n(A\) \(\cap B \cap C)=1\)
PASSAGE-2
Let \(A, B, C\) be three sets of complex numbers as defined below
\(
A=\{z: \operatorname{Im} z \geq 1\}
\)
\(
\begin{aligned}
&B=\{z:|z-2-i|=3\} \\
&C=\{z: \operatorname{Re}((1-i) z)=\sqrt{2}\}
\end{aligned}
\)
Let \(z\) be any point in \(A \cap B \cap C\). Then, \(|z+1-i|^2+|z-5-i|^2\) lies between [2008]
Given : \(A=\{z: \operatorname{Im}(z) \geq 1\}=\{(x, y): y \geq 1\}\)
Clearly \(A\) is the set of all points lying on or above the line \(y=1\) in cartesian plane.
\(
B=\{z:|z-2-i|=3\}=\left\{(x, y):(x-2)^2+(y-1)^2=9\right\}
\)
\(\Rightarrow B\) is the set of all points lying on the boundary of the circle with centre \((2,1)\) and radius 3.
\(C=\{z: \operatorname{Re}[(1-i) z]=\sqrt{2}\}=\{(x, y): x+y=\sqrt{2}\}\)
\(\Rightarrow \mathrm{C}\) is the set of all points lying on the straight line represented by \(x\) \(+y=\sqrt{2}\).
Graphically, the three sets are represented as shown below:
(c) Since, \(z\) is a point of \(A \cap B \cap C \Rightarrow z\) represents the point \(P\)
\(
\therefore|z+1-i|^2+|z-5-i|^2
\)
\(
\Rightarrow|z-(-1+i)|^2+|z-(5+i)|^2
\)
\(\Rightarrow \mathrm{PQ}^2+\mathrm{PR}^2=\mathrm{QR}^2=6^2=36\), which lies between 35 and 39
\(\therefore\) (c) is correct option.
PASSAGE-2
Let \(A, B, C\) be three sets of complex numbers as defined below
\(
A=\{z: \operatorname{Im} z \geq 1\}
\)
\(
\begin{aligned}
&B=\{z:|z-2-i|=3\} \\
&C=\{z: \operatorname{Re}((1-i) z)=\sqrt{2}\}
\end{aligned}
\)
Let \(\mathrm{z}\) be any point \(A \cap B \cap C\) and let \(\mathrm{w}\) be any point satisfying \(\mid w-2\) \(-i \mid<3\). Then, \(|z|-|w|+3\) lies between [2008]
Given : \(A=\{z: \operatorname{Im}(z) \geq 1\}=\{(x, y): y \geq 1\}\)
Clearly \(A\) is the set of all points lying on or above the line \(y=1\) in cartesian plane.
\(
B=\{z:|z-2-i|=3\}=\left\{(x, y):(x-2)^2+(y-1)^2=9\right\}
\)
\(\Rightarrow B\) is the set of all points lying on the boundary of the circle with centre \((2,1)\) and radius 3.
\(C=\{z: \operatorname{Re}[(1-i) z]=\sqrt{2}\}=\{(x, y): x+y=\sqrt{2}\}\)
\(\Rightarrow \mathrm{C}\) is the set of all points lying on the straight line represented by \(x\) \(+y=\sqrt{2}\).
Graphically, the three sets are represented as shown below:
(d) Given : \(|w-2-i|<3\)
\(\Rightarrow\) Distance between \(w\) and \(2+i\) i.e. \(S\) is smaller than 3 .
\(\Rightarrow w\) is a point lying inside the circle with centre \(S\) and radius 3 .
\(\Rightarrow\) Distance between \(z\) (i.e. the point \(P\) ) and \(w\) should be smaller than 6 (the diameter of the circle)
i.e. \(|z-w|<6\)
But we know that \(\|\mathrm{z}|-| \mathrm{w}\|<|\mathrm{z}-\mathrm{w}|\)
\(
\Rightarrow|| \mathrm{z}|-| \mathrm{w} \|<6 \Rightarrow-6<|\mathrm{z}|-|\mathrm{w}|<6
\)
\(
-3<|\mathrm{z}|-|\mathrm{w}|+3<9
\)
Let \(z\) satisfy \(|z|=1\) and \(z=1-\bar{z}\).
Statement 1 \(: z\) is a real number.
Statement 2 : Principal argument of \(z\) is \(\frac{\pi}{3}\) [Main Online April 25, 2013]
(b) Let \(z=x+i y, \bar{z}=x-i y\)
Now, \(z=1-\bar{z}\)
\(\Rightarrow x+i y=1-(x-i y)\)
\(\Rightarrow 2 x=1 \Rightarrow x=\frac{1}{2}\)
Now, \(|z|=1 \Rightarrow x^2+y^2=1 \Rightarrow y^2=1-x^2\)
\(
\Rightarrow y=\pm \frac{\sqrt{3}}{2}
\)
Now, \(\tan \theta=\frac{y}{x}\) ( \(\theta\) is the argument \()\)
\(=\frac{\sqrt{3}}{2} \div \frac{1}{2} \quad\) (+ve since only principal argument)
\(
\begin{aligned}
&=\sqrt{3} \\
&\Rightarrow \quad \theta=\tan ^{-1} \sqrt{3}=\frac{\pi}{3}
\end{aligned}
\)
Hence, \(z\) is not a real number
So, statement-1 is false and 2 is true.
If \(z_1\) and \(z_2\) are two complex numbers such that \(\left|z_1\right|<1<\left|z_2\right|\) then \(\left|\frac{1-z_1 \bar{z}_2}{z_1-z_2}\right| = ?\). [2003 – 2 Marks]
\(
\begin{aligned}
&z_1=a+b i \\
&z_2=c+d i
\end{aligned}
\)
By given condition:
\(
a^2+b^2<1<c^2+d^2
\)
To prove: \(\left|1-z_1 \bar{z}_2\right|<\left|z_1-z_2\right|\)
\(
\begin{aligned}
|1-(a+b i)(c-d i)|<|a-c+(b-d) i| \\
|1-a c+b d+(a d-b c) i|<\sqrt{(a-c)^2+(b-d)^2} \\
(1-a c+b d)^2+(a d-b c)^2<(a-c)^2+(b-d)^2 \\
1+\left(a^2+b^2\right)\left(c^2+d^2\right)+4 b d-4 a b c d<a^2+b^2+c^2+d^2 \\
\left(a^2+b^2\right)\left(c^2+d^2\right)<a^2+b^2 \text { From given first half of inequality } \\
1<\mathrm{c}^2+d^2 \text { From second half } \\
b d<a b c d \text { Since its all positive } \\
\Rightarrow \text { LHS }<c^2+d^2+\left(a^2+b^2\right)+0=\text { RHS }
\end{aligned}
\)
Hence proved
Let \(Z_1=10+6 i\) and \(Z_2=4+6 i\). If \(Z\) is any complex number such that the argument of \(\frac{\left(Z-Z_1\right)}{\left(Z-Z_2\right)}\) is \(\frac{\pi}{4}\), then \(|Z-7-9 i|= ?\) [1990 – 4 Marks]
Given \(: z_1=10+6 i\) and \(z_2=4+6 i\)
Also \(\arg \left(\frac{z-z_1}{z-z_2}\right)=\frac{\pi}{4}\)
\(
\begin{aligned}
&\Rightarrow \arg \left(z-z_1\right)-\arg \left(z-z_2\right)=\frac{\pi}{4} \\
&\Rightarrow \quad \arg ((x+i y)-(10+6 i))-\arg ((x+i y)-(4+6 i))=\frac{\pi}{4} \\
&\Rightarrow \quad \arg [(x-10)+i(y-6)]-\arg [(x-4)+i(y-6)]=\frac{\pi}{4} \\
&\Rightarrow \quad \tan ^{-1}\left(\frac{y-6}{x-10}\right)-\tan ^{-1}\left(\frac{y-6}{x-4}\right)=\frac{\pi}{4} \\
&\Rightarrow \quad \tan ^{-1}\left(\frac{\frac{y-6}{x-10}-\frac{y-6}{x-4}}{1+\frac{(y-6)^2}{(x-4)(x-10)}}\right)=\frac{\pi}{4} \\
&\Rightarrow \quad \frac{(x-4)(y-6)-(x-10)(y-6)}{(x-4)(x-10)+(y-6)^2}=\tan \frac{\pi}{4} \\
&\Rightarrow \quad(x-4-x+10)(y-6)=(x-4)(x-10)+(y-6)^2 \\
&\Rightarrow 6 y-36=x^2+y^2-14 x-12 y+40+36 \\
&\Rightarrow \quad x^2+y^2-14 x-18 y+112=0
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow\left(x^2-14 x+49\right)+\left(y^2-18 y+81\right)=18 \\
&\Rightarrow(x-7)^2+(y-9)^2=(3 \sqrt{2})^2 \\
&\Rightarrow|(x+i y)-(7+9 i)|=3 \sqrt{2} \Rightarrow|z-(7+9 i)|=3 \sqrt{2}
\end{aligned}
\)
Find the real values of \(\mathrm{x}\) and \(\mathrm{y}\) for which the following equation is satisfied \(\frac{(1+i) x-2 i}{3+i}+\frac{(2-3 i) y+i}{3-i}=?\) [1980]
\(
\begin{aligned}
&\frac{(1+i) x-2 i}{3+i}+\frac{(2-3 i) y+i}{3-i}=i \\
&\Rightarrow \quad(4+2 i) x-6 i-2+(9-7 i) y+3 i-1=10 i \\
&\Rightarrow \quad(4 x+9 y-3)+(2 x-7 y-3) i=10 i \\
&\Rightarrow 4 x+9 y-3=0 \text { and } 2 x-7 y-3=10
\end{aligned}
\)
On solving these two equations, we get \(x=3, y=-1\)
The area of the triangle on the Argand diagram formed by the complex numbers \(z, i z\) and \(z+i z\) is = ? [1986 – 21/2 Marks]
Let \(A=z=x+i y, B=i z=-y+i x\), \(C=z+i z=(x-y)+i(x+y)\)
Now, area of \(\triangle A B C=\frac{1}{2}\left|\begin{array}{ccc}x & y & 1 \\ -y & x & 1 \\ x-y & x+y & 1\end{array}\right|\)
On applying, \(R_2-R_1, R_3-R_1\), we get
\(
\begin{aligned}
&\Delta=\frac{1}{2}\left|\begin{array}{ccc}
x & y & 1 \\
-y-x & x-y & 0 \\
-y & x & 0
\end{array}\right| \\
&=\frac{1}{2}\left|-x y-x^2+x y-y^2\right|=\frac{1}{2}\left|-x^2-y^2\right| \\
&=\frac{1}{2}\left|x^2+y^2\right|=\frac{1}{2}|z|^2
\end{aligned}
\)
If \(x+i y=\sqrt{\frac{a+i b}{c+i d}}\),then \(\left(x^2+y^2\right)^2=?\). [1979]
Given : \(x+i y=\sqrt{\frac{a+i b}{c+i d}}\)
\(
\Rightarrow(x+i y)^2=\frac{a+i b}{c+i d} \dots(i)
\)
Taking conjugate on both sides, we get
\(
(x-i y)^2=\frac{a-i b}{c-i d} \dots(ii)
\)
On multiplying (i) and (ii), we get
\(
\left(x^2+y^2\right)^2=\frac{a^2+b^2}{c^2+d^2}
\)
\(
\text { Express } \frac{1}{1-\cos \theta+2 i \sin \theta} \text { in the form } x+i y
\) [1978]
\(
\begin{aligned}
\frac{1}{1-\cos \theta+2 i \sin \theta} \\
=\frac{1}{2 \sin ^2 \theta / 2+4 i \sin \theta / 2 \cos \theta / 2} \\
=\frac{1}{2 \sin \theta / 2} \left[\frac{\sin \theta / 2-2 i \cos \theta / 2}{(\sin \theta / 2+2 i \cos \theta / 2)(\sin \theta / 2-2 i \cos \theta / 2)}\right] \\
=\frac{1}{2 \sin \theta / 2}\left[\frac{\sin \theta / 2-2 i \cos \theta / 2}{\left(\sin ^2 \theta / 2+4 \cos ^2 \theta / 2\right.}\right] \\
=\frac{1}{2 \sin \theta / 2}\left[\frac{2 \sin \theta / 2-4 i \cos \theta / 2}{1-\cos \theta+4+4 \cos \theta}\right] \\
=\frac{1}{2 \sin \theta / 2}\left[\frac{2 \sin \theta / 2-4 i \cos \theta / 2}{5+3 \cos \theta}\right] \\
=\left(\frac{1}{5+3 \cos \theta}\right)+\left(\frac{-2 \cot \theta / 2}{5+3 \cos \theta}\right) i \\
\text { which is of the form } x+i y .
\end{aligned}
\)
Let \(z=x+i y\) be a non-zero complex number such that \(z^2=i|z|^2\), where \(i=\sqrt{-1}\), then \(z\) lies on the: [Main Sep. 06, 2020 (II)]
(c) Let \(z=x+i y\)
\(
\begin{aligned}
&\because z^2=i|z|^2 \\
&\therefore x^2-y^2+2 i x y=i\left(x^2+y^2\right) \\
&\Rightarrow x^2-y^2=0 \text { and } 2 x y=x^2+y^2 \\
&\Rightarrow(x-y)(x+y)=0 \text { and }(x-y)^2=0 \\
&\Rightarrow x=y
\end{aligned}
\)
If \(a\) and \(b\) are real numbers such that \((2+\alpha)^4=a+b \alpha\), where \(\alpha=\frac{-1+i \sqrt{3}}{2}\), then \(a+b\) is equal to: [Main Sep. 04, 2020 (II)]
\(
\text { (a) Given that, } \alpha=\frac{-1+\sqrt{3} i}{2}=\omega
\)
\(
\begin{aligned}
&\therefore(2+\omega)^4=a+b \omega \Rightarrow\left(4+\omega^2+4 \omega\right)^2=a+b \omega \\
&\Rightarrow\left(\omega^2+4(1+\omega)\right)^2=a+b \omega \\
&\Rightarrow\left(\omega^2-4 \omega^2\right)^2=a+b \omega \quad \quad \quad \quad\left(\because 1+\omega=-\omega^2\right]\\
&\Rightarrow\left(-3 \omega^2\right)^2=a+b \omega \Rightarrow 9 \omega^4=a+b \omega \\
&\Rightarrow 9 \omega=a+b \omega \quad\left(\because \omega^3=1\right)\\
&\text { On comparing, } a=0, b=9 \\
&\Rightarrow a+b=0+9=9 .
\end{aligned}
\)
The value of \(\left(\frac{1+\sin \frac{2 \pi}{9}+i \cos \frac{2 \pi}{9}}{1+\sin \frac{2 \pi}{9}-i \cos \frac{2 \pi}{9}}\right)^3\) [Main Sep. 02, 2020 (I)]
(c) \(\left(\frac{1+\cos \frac{5 \pi}{18}+i \sin \frac{5 \pi}{18}}{1+\cos \frac{5 \pi}{18}-i \sin \frac{5 \pi}{18}}\right)^3\)
\(
=\left(\frac{2 \cos ^2 \frac{5 \pi}{36}+i 2 \sin \frac{5 \pi}{36} \cdot \cos \frac{5 \pi}{36}}{2 \cos ^2 \frac{5 \pi}{36}-i 2 \sin \frac{5 \pi}{36} \cdot \cos \frac{5 \pi}{36}}\right)^3
\)
\(
=\left(\frac{\cos \frac{5 \pi}{36}+i \sin \frac{5 \pi}{36}}{\cos \frac{5 \pi}{36}-i \sin \frac{5 \pi}{36}}\right)^3=\left(\cos \frac{5 \pi}{36}+i \sin \frac{5 \pi}{36}\right)^6
\)
\(
=\cos \left(6 \times \frac{5 \pi}{36}\right)+i \sin \left(6 \times \frac{5 \pi}{36}\right)=\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}
\)
\(
=-\frac{\sqrt{3}}{2}+i \frac{1}{2}=-\frac{1}{2}(\sqrt{3}-i)
\)
The imaginary part of \((3+2 \sqrt{-54})^{1 / 2}-(3-2 \sqrt{-54})^{1 / 2}\) can be: [Main Sep. 02, 2020 (II)]
(b) \(3+2 \sqrt{-54}=3+6 \sqrt{6} i\)
Let \(\sqrt{3+6 \sqrt{6} i}=a+i b\)
\(
\begin{aligned}
&\Rightarrow a^2-b^2=3 \text { and } a b=3 \sqrt{6} \\
&\Rightarrow a^2+b^2=\sqrt{\left(a^2-b^2\right)^2+4 a^2 b^2}=15
\end{aligned}
\)
So, \(a=\pm 3\) and \(b=\pm \sqrt{6}\)
\(
\sqrt{3+6 \sqrt{6} i}=\pm(3+\sqrt{6} i)
\)
Similarly, \(\sqrt{3-6 \sqrt{6} i}=\pm(3-\sqrt{6} i)\)
\(\operatorname{lm}(\sqrt{3+6 \sqrt{6} i}-\sqrt{3-6 \sqrt{6} i})=\pm 2 \sqrt{6}\)
Let \(\alpha=(-1+i \sqrt{3}) / 2\). \(\sum_{k=0}^{100} \alpha^{2 k} \text { and } b=\sum_{k=0}^{100} \alpha^{3 k},\)then \(a\) and \(b\) are the roots of the quadratic equation: [Main Jan. 8, } 2020(II)]
(b) Let \(\alpha=\omega, b=1+\omega^3+\omega^6+\ldots \ldots=101\)
\(a=(1+\omega)\left(1+\omega^2+\omega^4+\ldots \omega \omega^{198}+\omega^{200}\right)\)
\(
\begin{aligned}
&=(1+\omega) \frac{\left(1-\left(\omega^2\right)^{101}\right)}{1-\omega^2}=\frac{(\omega+1)\left(\omega^{202}-1\right)}{\left(\omega^2-1\right)} \\
&\Rightarrow \quad a=\frac{(1+\omega)(1-\omega)}{1-\omega^2}=1
\end{aligned}
\)
Required equation \(=x^2-(101+1) x+(101) \times 1=0\) \(\Rightarrow x^2-102 x+101=0\)
If \(\operatorname{Re}\left(\frac{z-1}{2 z+i}\right)=1\), where \(z=x+i y\), then the point \((x, y)\) lies on \(a\) [Main Jan. 7, 2020 (I)]
(d) \(z=x+i y\)
\(
\begin{aligned}
&\left(\frac{z-1}{2 z+i}\right)=\frac{(x-1)+i y}{2(x+i y)+i} \\
&=\frac{(x-1)+i y}{2 x+(2 y+1) i} \times \frac{2 x-(2 y+1) i}{2 x-(2 y+1) i} \\
&\operatorname{Re}\left(\frac{z+1}{2 z+i}\right)=\frac{2 x(x-1)+y(2 y+1)}{(2 x)^2+(2 y+1)^2}=1 \\
&\Rightarrow\left(x+\frac{1}{2}\right)^2+\left(y+\frac{3}{4}\right)^2=\left(\frac{\sqrt{5}}{4}\right)^2
\end{aligned}
\)
If \(z=\frac{\sqrt{3}}{2}+\frac{i}{2}(i=\sqrt{-1})\), then \(\left(1+i z+z^5+i z^8\right)^9\) is equal to: [Main April 08, 2019 (II)]
(d) \(\frac{\sqrt{3}}{2}+\frac{i}{2}=-i\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=-i \omega\)
where \(\omega\) is imaginary cube root of unity.
Now, \(\left(1+i z+z^5+i z^8\right)^9\)
\(=\left(1+\omega-i \omega^2+i \omega^2\right)^9=(1+\omega)^9\) \(=\left(-\omega^2\right)^9=-\omega^{18}=-1\)
\(\left(\therefore 1+\omega+\omega^2=0\right)\)
Let \(\left(-2-\frac{1}{3} i\right)^3=\frac{x+i y}{27}(i=\sqrt{-1})\), where \(\mathrm{x}\) and \(\mathrm{y}\) are real numbers then \(\mathrm{y}-\mathrm{x}\) equals: [Main Jan. 11, 2019 (I)]
\(
\text { (a) }-(6+i)^3=x+i y
\)
\(
\begin{aligned}
&-\left[216+i^3+18 i(6+i)\right]=x+i y \\
&-[216-i+108 i-18]=x+i y \\
&-216+i-108 i+18=x+i y \\
&-198-107 i=x+i y \\
&x=-198, y=-107 \\
&y-x=-107+198=91
\end{aligned}
\)
Let \(\mathrm{S}\) be the set of all complex numbers \(\mathrm{z}\) satisfying \(|z-2+i| \geq \sqrt{5}\). If the complex number \(\mathrm{z}_0\) is such that \(\frac{1}{\left|z_0-1\right|}\) is the maximum of the set \(\left\{\frac{1}{|z-1|}: z \in S\right\}\), then the principal argument of \(\frac{4-z_0-\bar{z}_0}{z_0-\bar{z}_0+2 i}\) is [Adv. 2019]
(d) \(\mathrm{S}:|\mathrm{z}-2+\mathrm{i}| \geq \sqrt{5}\) represents boundary and outer region of circle with centre \((2,-1)\) and radius \(\sqrt{5}\) units.
\(\mathrm{z}_0 \in \mathrm{S}\), such that \(\sqrt{5}\) is the maximum.
\(\therefore\left|\mathrm{z}_0-1\right|\) is minimum
\(\mathrm{z}_0 \in \mathrm{S}\) with \(\left|\mathrm{z}_0-1\right|\) as minimum will be a point on boundary of circle of region \(\mathrm{S}\) which lies on radius of this circle, which passes through (1, \(0)\).
\(\therefore \quad z_0, 1,2-i\) are collinear, or \(\left(x_0, y_0\right),(1,0),(2,-1)\) are collinear.
\(\therefore \quad\) Using slopes of paralled lines, \(x\) ‘ \(\frac{y_0}{x_0-1}=\frac{-1}{2-1} \Rightarrow y_0=1-x_0\)
Now
\(
\begin{aligned}
&\frac{4-z_0-\bar{z}_0}{z_0-\bar{z}_0+2 i}=\frac{4-\left(z_0+\bar{z}_0\right)}{\left(z_0-\bar{z}_0\right)+2 i} \\
&=\frac{4-2 x_0}{2 i y_0+2 i}=\frac{4-2 x_0}{2 i-2 x_0 i+2 i}
\end{aligned}
\)
\(
\begin{aligned}
==& \frac{4-2 x_0}{2 i y_0+2 i}=\frac{4-2 x_0}{2 i-2 x_0 i+2 i} \\
& \quad \therefore \quad \operatorname{Arg}\left(\frac{4-z_0-\bar{z}_0}{z_0-\bar{z}_0-2 i}\right)=\operatorname{Arg}(-i)=\frac{-\pi}{2}
\end{aligned}
\)
The least positive integer \(\mathrm{n}\) for which \(\left(\frac{1+i \sqrt{3}}{1-i\sqrt{3}}\right)^n=1\), is [Main Online April 16, 2018]
d) Let \(l=\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)\).
\(
\begin{aligned}
&\therefore l=\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{1+i \sqrt{3}}{1+i \sqrt{3}}\right) \\
&=\left(\frac{-2+i 2 \sqrt{3}}{4}\right)=\left(\frac{1-i \sqrt{3}}{-2}\right)
\end{aligned}
\)
Also, \(l=\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{1-i \sqrt{3}}{1-i \sqrt{3}}\right)\)
\(
=\left(\frac{4}{-2-i 2 \sqrt{3}}\right)=\left(\frac{-2}{1+i \sqrt{3}}\right)
\)
\(\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^3=\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)\)
\(
=\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{-2}{1+i \sqrt{3}}\right) \times\left(\frac{1-i \sqrt{3}}{-2}\right)=1
\)
\(\therefore\) least positive integer \(\mathrm{n}\) is 3 .
A complex number \(z\) is said to be unimodular if \(|z|=1\). Suppose \(z_1\) and \(z_2\) are complex numbers such that \(\frac{z_1-2 z_2}{2-z_1 \bar{z}_2}\) is unimodular and \(z_2\) is not unimodular. Then the point \(z_1\) lies on a: [Main 2015]
\(
\begin{aligned}
&(b) \left|\frac{z_1-2 z_2}{2-z_1 \bar{z}_2}\right|=1 \\
&\Rightarrow\left|z_1-2 z_2\right|^2=\left|2-z_1 \bar{z}_2\right|^2 \\
&\Rightarrow \quad\left(z_1-2 z_2\right) \overline{\left(z_1-2 z_2\right)}=\left(2-z_1 \bar{z}_2\right)\left(\overline{2-z_1 \bar{z}_2}\right) \\
&\Rightarrow \quad\left(z_1-2 z_2\right)\left(\bar{z}_1-2 \bar{z}_2\right)=\left(2-z_1 \bar{z}_2\right)\left(2-\bar{z}_1 z_2\right) \\
&\Rightarrow \quad\left(z_1 \bar{z}_1\right)-2 z_1 \bar{z}_2-2 \bar{z}_1 z_2+4 z_2 \bar{z}_2 \\
&=4-2 \bar{z}_1 z_2-2 z_1 \bar{z}_2+z_1 \bar{z}_1 z_2 \bar{z}_2
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow\left|\mathrm{z}_1\right|^2+4\left|\mathrm{z}_2\right|^2=4+\left|\mathrm{z}_1\right|^2\left|\mathrm{z}_2\right|^2 \\
&\Rightarrow\left|\mathrm{z}_1\right|^2+4\left|\mathrm{z}_2\right|^2-4-\left|\mathrm{z}_1\right|^2\left|\mathrm{z}_2\right|^2=0
\end{aligned}
\)
\(
\left(\left|z_1\right|^2-4\right)\left(1-\left|z_2\right|^2\right)=0
\)
\(
\begin{aligned}
&\quad \because \quad\left|z_2\right| \neq 1 \\
&\therefore \quad\left|z_1\right|^2=4 \\
&\Rightarrow \quad\left|z_1\right|=2
\end{aligned}
\)
\(\Rightarrow \quad\) Point \(z_1\) lies on circle of radius 2.
Let complex numbers \(\alpha\) and \(\frac{1}{\bar{\alpha}}\) lie on circles \(\left(x-x_0\right)^2\) \(+\left(\mathrm{y}-\mathrm{y}_0\right)^2=\mathrm{r}^2\) and \(\left(\mathrm{x}-\mathrm{x}_0\right)^2+\left(\mathrm{y}-\mathrm{y}_0\right)^2=4 \mathrm{r}^2\),respectively. If \(\mathrm{z}_0=\mathrm{x}_0+i \mathrm{y}_0\) satisfies the equation \(2\left|\mathrm{z}_0\right|^2=\mathrm{r}^2+2\), then \(|\alpha|=\) [Adv. 2013]
(c) Since, \(\alpha\) lies on the circle \(\left(x-x_0\right)^2+\left(y-y_0\right)^2=r^2\)
\(
\therefore \quad\left|\alpha-z_0\right|^2=r^2
\)
\(
\begin{aligned}
&\Rightarrow\left(\alpha-z_0\right)\left(\bar{a}-\bar{z}_0\right)=r^2 \\
&\Rightarrow \alpha \bar{\alpha}-\alpha \bar{z}_0-\bar{\alpha} z_0+z_0 \bar{z}_0=r^2 \\
&\Rightarrow|\alpha|^2+\left|z_0\right|^2-\alpha \bar{z}_0-\bar{\alpha} z_0=r^2
\end{aligned}
\)
Also \(\frac{1}{\bar{\alpha}}\) lies on the circle \(\left(x-x_0\right)^2+\left(y-y_0\right)^2=4 r^2\)
\(
\therefore\left|\frac{1}{\bar{\alpha}}-z_0\right|^2=4 r^2 \Rightarrow \quad\left(\frac{1}{\bar{\alpha}}-z_0\right)\left(\frac{1}{\alpha}-\bar{z}_0\right)=4 r^2
\)
\(
\begin{aligned}
&\Rightarrow \quad \frac{1}{\alpha \bar{\alpha}}-\frac{z_0}{\alpha}-\frac{\bar{z}_0}{\bar{\alpha}}+z_0 \bar{z}_0=4 r^2 \\
&\Rightarrow \quad \frac{1}{|\alpha|^2}-\frac{z_0 \bar{\alpha}}{|\alpha|^2}-\frac{\bar{z}_0 \alpha}{|\alpha|^2}+\left|z_0\right|^2=4 r^2 \\
&\Rightarrow \quad 1+|\alpha|^2\left|z_0\right|^2-z_0 \bar{\alpha}-\bar{z}_0 \alpha=4 r^2|\alpha|^2
\end{aligned}
\)
On subtracting equation (i) from (ii), we get
\(
1-|\alpha|^2+\left|z_0\right|^2\left(|\alpha|^2-1\right)=r^2\left(4|\alpha|^2-1\right)
\)
or \(\quad\left(|\alpha|^2-1\right)\left(\left|z_0\right|^2-1\right)=r^2\left(4|\alpha|^2-1\right)\)
Using \(\left|z_0\right|^2=\frac{r^2+2}{2}\), we get
\(
\begin{gathered}
\quad\left(|\alpha|^2-1\right) \frac{r^2}{2}=r^2\left(4|\alpha|^2-1\right) \\
\Rightarrow \quad|\alpha|^2-1=8|\alpha|^2-2 \Rightarrow|\alpha|=\frac{1}{\sqrt{7}}
\end{gathered}
\)
Let \(z\) be a complex number such that the imaginary part of \(z\) is nonzero and \(a=z^2+z+1\) is real. Then a cannot take the value [2012]
\(
\begin{aligned}
&\text { Clearly, this equation does not have real roots if }\\
&\begin{aligned}
& \mathrm{D}<0 \\
& \Rightarrow 1-4(1-\mathrm{a})<0 \\
& \Rightarrow 4 \mathrm{a}<3 \\
& \Rightarrow a<3 / 4
\end{aligned}
\end{aligned}
\)
Let \(z=x+i y\) be a complex number where \(x\) and \(y\) are integers. Then the area of the rectangle whose vertices are the roots of the equation : \(z \bar{z}^{-3}+\bar{z} z^3=350\) is [2009]
(a) Given : \(z=x+i y\), where \(x\) and \(y\) are integer
Also, \(z \bar{z}^3+z^3\bar{z}=350 \Rightarrow|z|^2\left(\bar{z}^2+z^2\right)=350\)
\(
\begin{aligned}
&\Rightarrow \quad\left(x^2+y^2\right)\left(x^2-y^2\right)=175 \\
&\Rightarrow \quad\left(x^2+y^2\right)\left(x^2-y^2\right)=25 \times 7Â \dots(i)\\
&\text { or } \quad\left(x^2+y^2\right)\left(x^2-y^2\right)=35 \times 5 \dots(ii)
\end{aligned}
\)
\(\because x\) and \(y\) are integers,
\(\therefore x^2+y^2=25 \quad\) and \(x^2-y^2=7 \quad\) [From eq (i)]
\(\Rightarrow x^2=16\) and \(y^2=9\)
\(\Rightarrow x=\pm 4\) and \(y=\pm 3\)
\(\therefore \quad\) Vertices of rectangle are
\((4,3),(4,-3),(-4,-3),(-4,3)\).
\(\therefore \quad\) Area of rectangle \(=8 \times 6=48\) sq. units
Now from eq. (ii),
\(x^2+y^2=35\) and \(x^2-y^2=5\)
\(\Rightarrow x^2=20\), which is not possible for any integral value of \(x\)
\(
\text { Let } z=\cos \theta+i \sin \theta \text {. Then the value of } \sum_{m=1}^{15} \operatorname{Im}\left(z^{2 m-1}\right)
\) at \(\theta=2^{\circ}\) is [2009]
\(
\begin{aligned}
&\text { (d) } \quad z=\cos \theta+i \sin \theta \\
&\Rightarrow \quad z^{2 m-1}=(\cos \theta+i \sin \theta)^{2 m-1} \\
&=\cos (2 m-1) \theta+i \sin (2 m-1) \theta
\end{aligned}
\)
\(
\begin{aligned}
&\left[\begin{array}{l}
\text { By De Moivre’s theorem : } \\
(\cos \theta+i \sin \theta)^n=\cos n \theta+i \sin n \theta
\end{array}\right]\\
&\therefore \quad \operatorname{Im}\left(z^{2 m-1}\right)=\sin (2 m-1) \theta\\
&\therefore \quad \sum_{m=1}^{15} \operatorname{Im}\left(z^{2 m-1}\right)=\sum_{m=1}^{15} \sin (2 m-1) \theta\\
&=\sin \theta+\sin 3 \theta+\sin 5 \theta+\ldots \ldots+\text { upto } 15 \text { terms }\\
&=\frac{\sin \left[15\left(\frac{2 \theta}{2}\right)\right] \cdot \sin [\theta+14 \times \theta]}{\sin \theta}\\
&\left[\begin{array}{l}
\because \sin \alpha+\sin (\alpha+\beta)+\sin (\alpha+2 \beta)+\ldots n \text { terms } \\
=\frac{\sin (n \beta / 2) \cdot \sin [\alpha+(n-1) \beta / 2]}{\sin (\beta / 2)}
\end{array}\right]\\
&=\frac{\sin 15 \theta \cdot \sin 15 \theta}{\sin \theta}=\frac{\sin 30^{\circ} \cdot \sin 30^{\circ}}{\sin 2^{\circ}}=\frac{1}{4 \sin 2^{\circ}}
\end{aligned}
\)
A particle \(P\) starts from the point \(z_0=1+2 i\), where \(i=\sqrt{-1}\). It moves horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point \(z_1\). From \(z_1\) the particle moves \(\sqrt{2}\) units in the direction of the vector \(\hat{i}+\hat{j}\) and then it moves through an angle \(\frac{\pi}{2}\) in anticlockwise direction on a circle with centre at origin, to reach a point \(z_2\). The point \(z_2\) is given by [2008]
(d) The initial position of point is \(Z_0=1+2 i\)
\(
\therefore Z_1=(1+5)+(2+3) i=6+5 i
\)
Now \(Z_1\) is moved through a distance of \(\sqrt{2}\) units in the direction \(\hat{i}+\hat{j}\). (i.e. by \(1+i)\)
\(\therefore\) It becomes \(Z_1^{\prime}=Z_1+(1+i)=7+6 i\)
Now \(\mathrm{OZ}_1\) ‘ is rotated through an angle \(\frac{\pi}{2}\) in anticlockwise direction, therefore \(Z_2=i Z_1{ }^{\prime}=-6+7 i\)
If \(|z|=1\) and \(z \neq \pm 1\), then all the values of \(\frac{z}{1-z^2}\) lie on [2007-3 marks]
(d) Given : \(|z|=1\) and \(z \neq \pm 1\)
To find the locus of \(\omega=\frac{z}{1-z^2}\)
Now, \(\omega=\frac{z}{1-z^2}=\frac{z}{z \bar{z}-z^2}\)
\(
\left[\because|z|=1 \Rightarrow|z|^2=z \bar{z}=1\right]
\)
\(=\frac{1}{\bar{z}-z}=\) purely imaginary number
\(
\therefore \omega \text { must lie on } y \text {-axis. }
\)
A man walks a distance of 3 units from the origin towards the northeast \(\left(\mathrm{N} 45^{\circ} \mathrm{E}\right)\) direction. From there, he walks a distance of 4 units towards the north-west \(\left(\mathrm{N} 45^{\circ} \mathrm{W}\right)\) direction to reach a point \(P\). Then the position of \(P\) in the Argand plane is [2007-3 marks]
\(
\begin{aligned}
&\text { (d) } \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} \\
&\Rightarrow \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{O B} \\
&\Rightarrow \overrightarrow{O P}=3 e^{i \pi / 4}+4 e^{i(\pi / 2+\pi / 4)} \\
&=3 e^{i \pi / 4}+4 e^{i \pi / 2} \cdot e^{i \pi / 4} \\
&=3 e^{i \pi / 4}+4 i e^{i \pi / 4}=e^{i \pi / 4}(3+4 i) .
\end{aligned}
\)
\(a, b, c\) are integers, not all simultaneously equal and \(\omega\) is cube root of unity \((\omega \neq 1)\), then minimum value of \(\left|a+b \omega+c \omega^2\right|\) is [2005S]
(b) Given that \(a, b, c\) are integers not all equal and \(\omega\) is cube root of unity \(\neq 1\), then \(\left|a+b \omega+c \omega^2\right|\)
\(=\left|a+b\left(\frac{-1+i \sqrt{3}}{2}\right)+c\left(\frac{-1-i \sqrt{3}}{2}\right)\right|\)
\(=\left|\left(\frac{2 a-b-c}{2}\right)+i\left(\frac{b \sqrt{3}-c \sqrt{3}}{2}\right)\right|\)
\(=\frac{1}{2} \sqrt{(2 a-b-c)^2+3(b-c)^2}\)
\(=\sqrt{\frac{1}{2}\left[(a-b)^2+(b-c)^2+(c-a)^2\right]}\)
R.H.S. will be minimum when \(a=b=c\), but according to the question, we cannot take \(a=b=c\).
The minimum value is obtained when any two are zero and third is a minimum magnitude integer i.e. 1.
The locus of \(z\) which lies in a shaded region (excluding the boundaries) is best represented by [2005S]
(a) In the figure, we see that.
\(
A B=A C=A D=2
\)
\(\therefore B C D\) is an arc of a circle with centre at \(A\) and radius 2 . Shaded region is exterior part of this sector \(A B C D A\).
\(\therefore\) For any point represented by \(z\) on arc \(B C D\) we should have \(|z-(-1)|=2\)
and for shaded region, \(|z+1|>2\)
For shaded region, we also have
\(
-\pi / 4<\arg (z+1)<\pi / 4
\)
or \(|\arg (z+1)|<\pi / 4\)
From (i) and (ii), we get (a) is the correct option.
If \(\omega(\neq 1)\) be a cube root of unity and \(\left(1+\omega^2\right)^n=\left(1+\omega^4\right)^n\), then the least positive value of \(n\) is [2004S]
(b) \(\left(1+\omega^2\right)^n=\left(1+\omega^4\right)^n\)
\(
\Rightarrow(-\omega)^n=(1+\omega)^n=\left(-\omega^2\right)^n \Rightarrow \omega^n=1 \Rightarrow n=3
\)
If \(|z|=1\) and \(\omega=\frac{z-1}{z+1}(\) where \(z \neq-1)\), then \(\operatorname{Re}(\omega)\) is [2003 S]
(a) Given that \(|z|=1\) and \(\omega=\frac{z-1}{z+1}(z \neq-1)\)
Now we know that \(z \bar{z}=|z|^2\)
\(
\begin{gathered}
\Rightarrow z \bar{z}=1 \quad(\text { for }|z|=1) \\
\therefore \omega=\left(\frac{z-1}{z+1}\right) \times \frac{(\bar{z}+1)}{(\bar{z}+1)}=\frac{z \bar{z}+z-\bar{z}-1}{z \bar{z}+z+\bar{z}+1}=\frac{2 i y}{2+2 x} \\
{[\quad z \bar{z}=1 \text { and taking } z=x+i y \text { so that }} \\
z+\bar{z}=2 x \text { and } z-\bar{z}=2 i y] \\
\quad \Rightarrow \operatorname{Re}(\omega)=0
\end{gathered}
\)
Let \(\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}\), then the value of the det. \(\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1-\omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4\end{array}\right|\) is [2002 – 2 Marks]
(b) Applying \(R_1 \rightarrow R_1+R_2+R_3\), we get
\(\left|\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1-\omega & \omega^2 \\ 1 & \omega^2 & \omega^4\end{array}\right|=\left|\begin{array}{ccc}3 & 0 & 0 \\ 1 & -1-\omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4\end{array}\right|\)
\(
=3[-\omega-1-\omega]=3\left(\omega^2-\omega\right)
\)
The complex numbers \(z_1, z_2\) and \(z_3\) satisfying \(\frac{z_1-z_3}{z_2-z_3}=\frac{1-i \sqrt{3}}{2}\) are the vertices of a triangle which is [2001S]
\(
\begin{aligned}
&\text { (c) } \frac{z_1-z_3}{z_2-z_3}=\frac{1-i \sqrt{3}}{2} \\
&\Rightarrow \arg \left(\frac{z_1-z_3}{z_2-z_3}\right)=\arg \left(\frac{1-i \sqrt{3}}{2}\right) \\
&\Rightarrow \arg (\cos (-\pi / 3)+i \sin (-\pi / 3)) \\
&\Rightarrow \text { angle between }\left(z_1-z_3\right) \text { and }\left(z_2-z_3\right) \text { is } 60^{\circ}
\end{aligned}
\)
and \(\left|\frac{z_1-z_3}{z_2-z_3}\right|=\left|\frac{1-i \sqrt{3}}{2}\right|\)
\(
\Rightarrow\left|\frac{z_1-z_3}{z_2-z_3}\right|=1 \Rightarrow\left|z_1-z_3\right|=\left|z_2-z_3\right| \quad \text { (Imp Step) }
\)
\(\Rightarrow\) The \(\Delta\) with vertices \(z_1, z_2\) and \(z_3\) is isosceles with vertical angle
\(60^{\circ}\). Hence rest of the two angles should also be \(60^{\circ}\) each.
\(\Rightarrow\) Required triangle is an equilateral triangle.
Let \(z_1\) and \(z_2\) be \(n^{\text {th }}\) roots of unity which subtend a right angle at the origin. Then \(n\) must be of the form [2001S]
(d) Let \(z=(1)^{1 / n}=(\cos 2 k \pi+i \sin 2 k \pi)^{1 / n}\) \(z=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}, k=0,1,2, \ldots ., n-1\).
Let \(z_1=\cos \left(\frac{2 k_1 \pi}{n}\right)+i \sin \left(\frac{2 k_1 \pi}{n}\right)\) and \(z_2=\cos \left(\frac{2 k_2 \pi}{n}\right)+i \sin \frac{2 k_2 \pi}{n}\)
be the two values of \(z\). Such that they subtend right angle at origin.
\(
\therefore \frac{2 k_1 \pi}{n}-\frac{2 k_2 \pi}{n}=\pm \frac{\pi}{2} \Rightarrow 4\left(k_1-k_2\right)=\pm n
\)
As \(k_1\) and \(k_2\) are integers and \(k_1 \neq k_2\)
\(
\therefore \quad n=4 k, k \in \mathrm{I}
\)
If \(i=\sqrt{-1}\), then \(4+5\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{334}+3\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{365}\) is equal to [1999 – 2 Marks]
(c) \(E=4+5(\omega)^{334}+3(\omega)^{365}=4+5 \omega+3 \omega^2\) \(=1+2 \omega+3\left(1+\omega+\omega^2\right)=1+(-1+i \sqrt{3)}=i \sqrt{3}\)
If \(\omega(\neq 1)\) is a cube root of unity and \((1+\omega)^7=A+B \omega\) then \(A\) and \(B\) are respectively [1995S]
\(
\begin{array}{ll}
\text { (b) } & (1+\omega)^7=A+B \omega \\
\Rightarrow & \left(-\omega^2\right)^7=A+B \omega \quad\left(\because 1+\omega+\omega^2=0\right) \\
\Rightarrow & -\omega^{14}=A+B \omega \\
\Rightarrow & -\omega^2=A+B \omega \quad\left(\because \omega^3=1\right) \\
\Rightarrow & 1+\omega=A+B \omega \Rightarrow A=1, B=1
\end{array}
\)
If \(a, b, c\) and \(u, v, w\) are complex numbers representing the vertices of two triangles such that \(c=(1-r) a+r b\) and \(w=(1-r) u+r v\), where \(r\) is a complex number, then the two triangles [1985 – 2 Marks]
(b) Let \(A B C\) be the \(\triangle\) whose vertices are represented by complex numbers \(a, b, c\) and \(P Q R\) be the \(\triangle\) with whose vertices are represented by complex numbers \(u, v, w\).
\(
\text { Then } c=(1-r) a+r b
\)
\(
\begin{aligned}
&\Rightarrow c-a=r(b-a) \Rightarrow \frac{c-a}{b-a}=r\\
&\Rightarrow w=(1-r) u+r v \quad \Rightarrow \frac{w-u}{v-u}=r\\
&\text { From (i) and (ii), } \quad\left|\frac{c-a}{b-a}\right|=\left|\frac{w-u}{v-u}\right|\\
&\text { and } \arg \left(\frac{c-a}{b-a}\right)=\arg \left(\frac{w-u}{v-u}\right)\\
&\Rightarrow \frac{A C}{A B}=\frac{P R}{P Q} \text { and } \angle C A B=\angle R P Q\\
&\Rightarrow \quad \triangle A B C \sim \triangle P Q R
\end{aligned}
\)
The points \(z_1, z_2, z_3 z_4\) in the complex plane are the vertices of a parallelogram taken in order if and only if [1983 – 1 Mark]
(b) If vertices of a parallelogram are \(z_1, z_2, z_3, z_4\) then as diagonals bisect each other
\(
\therefore \frac{z_1+z_3}{2}=\frac{z_2+z_4}{2} \Rightarrow z_1+z_3=z_2+z_4
\)
If \(z=x+iy\) and \(\omega=(1-iz)/(z-i)\), then \(|\omega|=1\) implies that, in the complex plane, [1983 – 1 Mark]
\(
\begin{aligned}
&\text { (b) }|\omega|=1 \Rightarrow\left|\frac{1-i z}{z-i}\right|=1\\
&\Rightarrow|1-i z|=|z-i|\\
&\Rightarrow|1-i(x+i y)|=|x+i y-i|\\
&\Rightarrow|(y+1)-i x|=|x+i(y-1)|\\
&\Rightarrow x^2+(y+1)^2=x^2+(y-1)^2\\
&\Rightarrow 4 y=0 \Rightarrow y=0 \Rightarrow z \text { lies on real axis }
\end{aligned}
\)
The inequality \(|z-4|<|z-2|\) represents the region given by [1982 – 2 Marks]
\(
\begin{aligned}
&\text { (d) }|z-4|<|z-2| \\
&\Rightarrow|(x-4)+i y|<|(x-2)+i y|
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow(x-4)^2+y^2<(x-2)^2+y^2 \\
&\Rightarrow-8 x+16<-4 x+4 \Rightarrow 4 x-12>0 \\
&\Rightarrow x>3 \Rightarrow \operatorname{Re}(z)>3
\end{aligned}
\)
If \(z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\), then [1982 – 2 Marks]
(b) \(\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)=-i\left(\frac{-1}{2}+\frac{i \sqrt{3}}{2}\right)=i \omega\)
\(
\frac{\sqrt{3}}{2}-\frac{i}{2}=i\left(\frac{-1}{2}-\frac{i \sqrt{3}}{2}\right)=i \omega^2
\)
\(
\begin{aligned}
\therefore \quad & z=(-i \omega)^5+\left(i \omega^2\right)^5=-i \omega^2+i \omega \\
=& i\left(\omega-\omega^2\right)=i(i \sqrt{3})=-\sqrt{3}
\end{aligned}
\)
\(\Rightarrow \operatorname{Re}(z)<0\) and \(\operatorname{Im}(z)=0\)
The complex numbers \(z=x+i y\) which satisfy the equation \(\left|\frac{z-5 i}{z+5 i}\right|=1\) lie on [1981 – 2 Marks]
(a) Since, \(\mathrm{z}=x+i y\) satisfies the equation \(\left|\frac{z-5 i}{z+5 i}\right|=1\)
\(
\begin{aligned}
&\therefore |x+i y-5 i|=| x+i y+5 i \mid \\
&\Rightarrow|x+(y-5) i|=|x+(y+5) i| \\
&\Rightarrow x^2+(y-5)^2=x^2+(y+5)^2 \\
&\Rightarrow x^2+y^2-10 y+25=x^2+y^2+10 y+25 \\
&\Rightarrow 20 y=0 \Rightarrow y=0
\end{aligned}
\)
‘ \(a\) ‘ is the correct alternative.
If the cube roots of unity are \(1, \omega, \omega^2\), then the roots of the equation \((x\) \(-1)^3+8=0\) are [1979]
(b) \((x-1)^3+8=0\)
\(
\Rightarrow(x-1)^3=-8=(-2)^3
\)
\(\Rightarrow x-1=-2\) or \(-2 \omega\) or \(-2 \omega^2\)
\(
\Rightarrow \quad x=-1,1-2 \omega, 1-2 \omega^2
\)
For a complex number \(z\), let \(\operatorname{Re}(z)\) denote the real part of \(z\). Let \(S\) be the set of all complex numbers \(z\) satisfying \(z^4-|z|^4=4 i z^2\), where \(i=\sqrt{-1}\). Then the minimum possible value of \(\left|z_1-z_2\right|^2\), where \(z_1, z_2 \in S\) with \(\operatorname{Re}\left(z_1\right)>0\) and \(\operatorname{Re}\left(z_2\right)<0\), is [Adv. 2020]
(b) Let \(z=x+i y\)
\(
z^4-|z|^4=41 z^2
\)
\(
\Rightarrow \mathrm{z}^4-(z \bar{z})^2=4 \mathrm{iz}^2 \Rightarrow \mathrm{z}^2\left(\mathrm{z}^2-\bar{z}^2\right)=4 \mathrm{i} z^2
\)
\(
\begin{aligned}
&\Rightarrow z=0 \text { or } z^2-(\bar{z})^2=4 i \\
&\Rightarrow 4 i x y=4 i \Rightarrow x y=1
\end{aligned}
\)
Locus of \(\mathrm{z}\) is a rectangular hyperbola \(x y=1\)
Given that \(\operatorname{Re}\left(\mathrm{z}_1\right)>0\) and \(\operatorname{Re}\left(\mathrm{z}_2\right)<0\)
\(
\begin{aligned}
&\therefore\left|z_1-z_2\right|_{\min }=\sqrt{(1+1)^2+(1+1)^2}=\sqrt{8} \\
&\Rightarrow\left|z_1-z_2\right|_{\text {min }}^2=8
\end{aligned}
\)
Let \(\omega \neq 1\) be a cube root of unity. Then the minimum of the set \(\left\{\left|a+b \omega+c \omega^2\right|^2: a, b, c\right.\) distinct non-zero integers \(\}\) equals ___ [Adv. 2019]
(c) \(a, b, c\) are distinct non-zero integers
Min. value of \(\left|a+b \omega+c \omega^2\right|^2\) is to be found \(\left|a+b \omega+c \omega^2\right|^2\)
\(
=\left|a+b\left(\frac{-1+i \sqrt{3}}{2}\right)+c\left(\frac{-1-i \sqrt{3}}{2}\right)\right|^2
\)
\(
\begin{aligned}
&=\left|\frac{1}{2}(2 a-b-c)+\frac{i \sqrt{3}}{2}(b-c)\right|^2 \\
&=\frac{1}{4}(2 a-b-c)^2+\frac{3}{4}(b-c)^2 \\
&=\frac{1}{4}\left(4 a^2+b^2+c^2-4 a b+2 b c-4 a c+3 b^2+3 c^2-6 b c\right) \\
&=a^2+b^2+c^2-a b-b c-c a \\
&=\frac{1}{2}\left[(a-b)^2+(b-c)^2+(c-a)^2\right]
\end{aligned}
\)
For minimum value, let us consider \(a=3, b=2, c=1\)
\(
\therefore \quad \text { minimum value }=\frac{1}{2}[1+1+4]=\frac{6}{2}=3
\)
Let \(\omega=e^{\frac{i \pi}{3}}\), and \(a, b, c, x, y, z\) be non-zero complex numbers such that
\(
\begin{aligned}
&a+b+c=x \\
&a+b \omega+c \omega^2=y \\
&a+b \omega^2+c \omega=z
\end{aligned}
\) [2011]
Then the value of \(\frac{|x|^2+|y|^2+|z|^2}{|a|^2+|b|^2+|c|^2}\) is
(a)
As the question is wrong. The answer is not unique for different values, we get different answers.
For \(\omega=e^{i 2 \pi / 3}\) we get a genuine answer
\(\frac{|x|^2+|y|^2+|z|^2}{|a|^2+|b|^2+|c|^2}=\frac{x \bar{x}+y \bar{y}+z \bar{z}}{|a|^2+|b|^2+|c|^2}\)
\((a+b+c)(\bar{a}+\bar{b}+\bar{c})+\left(a+b \omega+c \omega^2\right)+\)
\(=\frac{\left(\bar{a}+\bar{b} \omega^2+\bar{c} \omega\right)+\left(a+b \omega^2+c \omega\right)\left(\bar{a}+\bar{b} \omega+\bar{c} \omega^2\right)}{|a|^2+|b|^2+|c|^2}\)
\(=\frac{3\left(|a|^2+|b|^2+|c|^2\right)}{|a|^2+|b|^2+|c|^2}=3\)
The value of the expression
\(1 (2-\omega)\left(2-\omega^2\right)+2 (3-\omega)\left(3-\omega^2\right)+\ldots+(n-1) \cdot(n-\omega)\left(n-\omega^2\right)\), where \(\omega\) is an imaginary cube root of unity, is….[1996 – 2 Marks]
rth term of the given series
\(
\begin{aligned}
&\left.=r[(r+1)-\omega](r+1)-\omega^2\right] \\
&=r\left[(r+1)^2-\left(\omega+\omega^2\right)(r+1)+\omega^3\right] \\
&=r\left[(r+1)^2-(-1)(r+1)+1\right] \\
&=r\left[\left(r^2+3 r+3\right]=r^3+3 r^2+3 r\right. \\
&\therefore \quad \text { Sum of the given series }=\sum_{r=1}^{(n-1)}\left(\mathrm{r}^3+3 r^2+3 r\right) \\
&=\frac{1}{4}(n-1)^2 n^2+3 \cdot \frac{1}{6}(n-1)(n)(2 n-1)+3 \cdot \frac{1}{2}(n-1) n \\
&=(n-1)(n)\left[\frac{1}{4}(n-1) n+\frac{1}{2}(2 n-1)+\frac{3}{2}\right] \\
&=\frac{1}{4}(n-1) n\left[n^2-n+4 n-2+6\right] \\
&=\frac{1}{4}(n-1) n\left[n^2+3 n+4\right]
\end{aligned}
\)
Suppose \(Z_1, Z_2, Z_3\) are the vertices of an equilateral triangle inscribed in the circle \(|Z|=2\). If \(Z_1=1+i \sqrt{3}\) then \(Z_2=\ldots \ldots ., Z_3=\) [1994 – 2 Marks]
(a) Let \(z_1, z_2, z_3\) be the vertices \(A, B\) and \(C\) respectively of equilateral \(\angle A B C\), inscribed in a circle \(|z|=2\) with centre \((0,0)\) and radius \(=2\)
\(
\begin{aligned}
&\text { Given } \begin{array}{l}
z_1=1+i \sqrt{3} \\
z_2=e^{\frac{2 \pi i}{3}} z_1 \\
=\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)(1+i \sqrt{3)} \\
=\frac{-1-3}{2}=-2 \\
\text { and } z_3=e^{4(\pi / 3) i} z_1 \\
=\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)(1+i \sqrt{3)} \\
=\left(\frac{-1-i \sqrt{3}}{2}\right)(1+i \sqrt{3})=\frac{-1-2 i \sqrt{3}+3}{2}=1-i \sqrt{3}
\end{array}
\end{aligned}
\)
\(A B C D\) is a rhombus. Its diagonals \(A C\) and \(B D\) intersect at the point \(M\) and satisfy \(B D=2 A C\). If the points \(D\) and \(M\) represent the complex numbers \(1+i\) and \(2-i\) respectively, then A represents the complex number ………or………. [1993 – 2 Marks]
(a) As \(D\) and \(m\) are represented by complex numbers \((1+i)\) and \((2-i)\) respectively
\(\therefore \quad D \equiv(1,1)\) and \(M \equiv(2,-1)\)
We know that diagonals of rhombus bisect each other at right angles.
\(\therefore \quad A C\) passes through \(M\) and is \(\perp\) to \(B D\)
\(\therefore \quad\) Eq. of \(A C\) in symmetric form can be written as \(\frac{x-2}{2 / \sqrt{5}}=\frac{y+1}{1 / \sqrt{5}}=r\)
Now for pt. A, as
\(
A M=\frac{1}{2} D M=\frac{1}{2} \sqrt{(2-1)^2+(-1-1)^2}=\sqrt{5} / 2
\)
On putting \(r=\pm \sqrt{5} / 2\), we get
\(
\begin{aligned}
&\frac{x-2}{2 / \sqrt{5}}=\frac{y+1}{1 / \sqrt{5}}=\pm \sqrt{5} / 2 \\
&\Rightarrow x=\pm 1+2, y=\pm \frac{1}{2}-1 \\
&\Rightarrow x=3 \quad \text { or } 1, y=\frac{-1}{2} \text { or } \frac{-3}{2}
\end{aligned}
\)
Therefore, point \(A\) is represented by \(3-i / 2\) or \(1-(3 / 2) i\)
If \(\mathrm{a}\) and \(\mathrm{b}\) are the numbers between 0 and 1 such that the points \(z_1=a\) \(+i, z_2=1+b i\) and \(\mathrm{z}_3=0\) form an equilateral triangle, then \(a=\ldots \ldots\). and \(b=\ldots \ldots \ldots\) [1989-2 Marks]
(c) Distance between two points represented by \(z_1\) and \(z_2\) \(=\left|z_1-z_2\right|\)
Since \(z_1=a+i, \quad z_2=1+b i\) and \(z_3=0\) form an equilateral triangle, therefore \(\left|z_1-z_3\right|=\left|z_2-z_3\right|=\left|z_1-z_2\right|\)
\(
\begin{aligned}
& \Rightarrow|a+i|=|1+b i|=|(a-1)+i(1-b)| \\
& \Rightarrow a^2+1=1+b^2=(a-1)^2+(1-b)^2 \\
& \Rightarrow a^2=b^2=a^2+b^2-2 a-2 b+1 \\
& \Rightarrow a=b \\
(\because \quad a&\neq-b \text { because } 0<a, b<1) \\
\text { and } & b^2-2 a-2 b+1=0 \\
& \Rightarrow a^2-2 a-2 b+1=0 \\
& \Rightarrow a^2-2 a-2 a+1=0 \\
& \Rightarrow a^2-4 a+1=0 \\
& \therefore a=\frac{4 \pm 2 \sqrt{3}}{2}=2 \pm \sqrt{3}
\end{aligned}
\)
But \(0<a, b<1\)
\(
\therefore \quad a=2-\sqrt{3} \quad \because b=a \quad \therefore b=2-\sqrt{3}
\)
\(
\text { For any two complex numbers } z_1, z_2 \text { and any real number a and } \mathrm{b} \text {. }
\)
\(\left|a z_1-b z_2\right|^2+\left|b z_1+a z_2\right|^2= \dots\) [1988 – 2 Marks]
(b) \(\left|a z_1-b z_2\right|^2+\left|b z_1+a z_2\right|^2\)
\(=a^2\left|z_1\right|^2+b^2\left|z_2\right|^2-2 a b \operatorname{Re}\left(z_1 \bar{z}_2\right)+b^2\left|z_1\right|^2\)
\(
+a^2\left|z_2\right|^2+2 a b \operatorname{Re}\left(z_1 \bar{z}_2\right)
\)
\(=\left(a^2+b^2\right)\left(\left|z_1\right|^2+\left|z_2\right|^2\right)\)
The cube roots of unity when represented on the Argand diagram form the vertices of an equilateral triangle. Is the statement true? [1988 – 1 Mark]
(True) \(\because\) Cube roots of unity are \(1, \frac{-1+i \sqrt{3}}{2}, \frac{-1-\sqrt{3}}{2}\)
\(\therefore \quad\) Vertices of triangle are
\(
A(1,0), B\left(\frac{-1}{2}, \frac{\sqrt{3}}{2}\right), C\left(\frac{-1}{2}, \frac{-\sqrt{3}}{2}\right)
\)
\(\Rightarrow A B=B C=C A, \quad \therefore \triangle\) is equilateral.
If three complex numbers are in A.P. then they lie on a circle in the complex plane. Is this statement true? [1985 – 1 Mark]
(False) If \(z_1, z_2, z_3\) are in A.P. then, \(\frac{z_1+z_3}{2}=z_2\) \(\Rightarrow z_2\) is mid pt. of line joining \(z_1\) and \(z_3\).
\(\Rightarrow z_1, z_2, z_3\) lie on a st. line
\(\therefore \quad\) Given statement is false
If the complex numbers, \(Z_1, Z_2\) and \(Z_3\) represent the vertices of an equilateral triangle such that
\(\left|Z_1\right|=\left|Z_2\right|=\left|Z_3\right|\) then \(Z_1+Z_2+Z_3=0\). [1984 – 1 Mark]
(True)
As \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|\)
\(\therefore z_1, z_2, z_3\) are equidistant from origin. Hence \(\mathrm{O}\) is the circumcentre of \(\triangle A B C\).
But \(\triangle A B C\) is equilateral and hence circumcentre and centriod of \(\triangle\) \(A B C\) coincide.
\(\therefore \quad\) Centriod of \(\triangle A B C=0\)
\(\Rightarrow \frac{z_1+z_2+z_3}{3}=0\)
\(\Rightarrow z_1+z_2+z_3=0\)
\(\therefore \quad\) Statement is true.
LetS \(=\{z \in C:|z-1|=1\) and \((\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}\}\). Let \(z_1, \quad z_2 \in S\) be such that \(\left|z_1\right|=\max _{z \in s}|z|\) and \(\left|z_2\right|=\min _{z \in S}|z|\). Then \(\left|\sqrt{2} z_1-z_2\right|^2\) equals: [JEE Main 2024 1st Feb Shift 1]
Let \(Z=x+\) iy
Then \(( x -1)^2+ y ^2=1 \quad \rightarrow(1)\)
& \((\sqrt{2}-1)(2 x)-i(2 i y)=2 \sqrt{2}\)
\(
\Rightarrow(\sqrt{2}-1) x+y=\sqrt{2} \rightarrow(2)
\)
Solving (1) & (2)
we get
Either \(x =1\) or \(x=\frac{1}{2-\sqrt{2}} \rightarrow(3)\)
On solving (3) with (2)
we get
For \(x =1 \Rightarrow y =1 \Rightarrow Z _2=1+ i \&\) for
\(
x=\frac{1}{2-\sqrt{2}} \Rightarrow y=\sqrt{2}-\frac{1}{\sqrt{2}} \Rightarrow Z_1=\left(1+\frac{1}{\sqrt{2}}\right)+\frac{i}{\sqrt{2}}
\)
Now
\(
\begin{aligned}
& \left|\sqrt{2} z_1-z_2\right|^2 \\
& =\left|\left(\frac{1}{\sqrt{2}}+1\right) \sqrt{2}+i-(1+i)\right|^2 \\
& =(\sqrt{2})^2 \\
& =2
\end{aligned}
\)
Let \(P =\{ z \in C :| z +2-3 i | \leq 1\}\) and \(Q=\{z \in C : z(1+i)+\bar{z}(1-i) \leq-8\}\). Let in \(P \cap Q ,| z -3+2 i |\) be maximum and minimum at \(z_1\) and \(z_2\) respectively. If \(\left|z_1\right|^2+2|z_2|^2=\alpha+\beta \sqrt{2}\), where \(\alpha, \beta\) are integers, then \(\alpha+\beta\) equals [JEE Main 2024 1st Feb Shift 1]
Clearly for the shaded region \(z _1\) is the intersection of the circle and the line passing through \(P \left( L _1\right)\) and \(z _2\) is intersection of line \(L _1 \& L _2\)
Circle: \((x+2)^2+(y-3)^2=1\)
\(L _1: x + y -1=0\)
\(L _2: x – y +4=0\)
On solving circle \(\& L _1\) we get
\(
z _1:\left(-2-\frac{1}{\sqrt{2}}, 3+\frac{1}{\sqrt{2}}\right)
\)
On solving \(L _1\) and \(z _2\) is intersection of line \(L _1 \& L _2\) we get \(z _2:\left(\frac{-3}{2}, \frac{5}{2}\right)\)
\(
\begin{aligned}
& \left|z_1\right|^2+2\left|z_2\right|^2=14+5 \sqrt{2}+17 \\
& =31+5 \sqrt{2}
\end{aligned}
\)
So \(\alpha=31\)
\(
\begin{aligned}
& \beta=5 \\
& \alpha+\beta=36
\end{aligned}
\)
If \(z\) is a complex number such that \(|z| \geq 1\), then the minimum value of \(\left| z +\frac{1}{2}(3+4 i)\right|\) is: [JEE Main 2024 1st Feb Shift 2] [We changed options. In official NTA paper no option was correct.]
\(|Z| \geq 1\) is a region outside & periphery of circle with centre \((0,0)\) & radius = 1 unit
Minimum value of \(\left|Z-\left(-\frac{3}{2}-2 i\right)\right|\) is minimum distance of p point in \(|Z| \geq 1\) from \(\left(-\frac{3}{2}-2\right)\)
Therefore minimum value of \(\left|Z+\frac{1}{2}(3+4 i)\right|=0\)
If \(S=\{z \in C:|z-i|=|z+i|=|z-1|\}\), then, \(n(S)\) is: [JEE Main 2024 27th Jan Shift 1]
\(
|z-i|=|z+i|=|z-1|
\)
ABC is a triangle. Hence its circum-centre will be the only point whose distance from \(A , B , C\) will be same.
\(
\text { So } n(S)=1
\)
If \(\alpha\) satisfies the equation \(x^2+x+1=0\) and \((1+\alpha)^7= A + B \alpha+ C ^2, A , B , C \geq 0\), then \(5(3 A -2 B – C )\) is equal to [JEE Main 2024 27th Jan Shift 1]
\(
x^2+x+1=0 \Rightarrow x=\omega, \omega^2=\alpha
\)
Let \(\alpha =\omega\)
Now \((1+\alpha)^7=-\omega^{14}=-\omega^2=1+\omega\)
\(
\begin{aligned}
& A =1, B =1, C =0 \\
& \therefore 5(3 A-2 B-C)=5(3-2-0)=5
\end{aligned}
\)
Let the complex numbers \(\alpha\) and \(\frac{1}{\bar{\alpha}}\) lie on the circles \(\left|z-z_0\right|^2=4\) and \(\left|z- z_0\right|^2=16\) respectively, where \(z_0=1+i\). Then, the value of \(100|\alpha|^2\) is. [JEE Main 2024 27th Jan Shift 2]
\(
\begin{aligned}
& \left|z-z_0\right|^2=4 \\
& \quad \Rightarrow\left(\alpha-z_0\right)\left(\bar{\alpha}-\bar{z}_0\right)=4 \\
& \Rightarrow \alpha \bar{\alpha}-\alpha \bar{z}_0-z_0 \bar{\alpha}+\left|z_0\right|^2=4 \\
& \quad \Rightarrow|\alpha|^2-\alpha \bar{z}_0-z_0 \bar{\alpha}=2 \ldots \ldots \ldots (1)
\end{aligned}
\)
\(
\begin{aligned}
& \left|z-z_0\right|^2=16 \\
& \Rightarrow\left(\frac{1}{\bar{\alpha}}-z_0\right)\left(\frac{1}{\alpha}-\bar{z}_0\right)=16 \\
& \Rightarrow\left(1-\bar{\alpha} z_0\right)\left(1-\alpha \bar{z}_0\right)=16|\alpha|^2 \\
& \Rightarrow 1-\bar{\alpha} z_0-\alpha \bar{z}_0+|\alpha|^2\left|z_0\right|^2=16|\alpha|^2 \\
& \Rightarrow 1-\bar{\alpha} z_0-\alpha \bar{z}_0=14|\alpha|^2 \ldots \ldots \ldots \ldots (2)
\end{aligned}
\)
\(
\begin{aligned}
& \text { From (1) and (2) } \\
& \Rightarrow 5|\alpha|^2=1 \\
& \Rightarrow 100|\alpha|^2=20
\end{aligned}
\)
If \(z=\frac{1}{2}-2 i\), is such that \(|z+1|=\alpha z+\beta(1+i), i=\sqrt{-1}\) and \(\alpha, \beta \in R\), then \(\alpha+\beta\) is equal to [JEE Main 2024 29th Jan Shift 1]
\(
\begin{aligned}
& z =\frac{1}{2}-2 i \\
& | z +1|=\alpha z+\beta(1+ i ) \\
& \left|\frac{3}{2}-2 i \right|=\frac{\alpha}{2}-2 \alpha i +\beta+\beta i \\
& \left|\frac{3}{2}-2 i \right|=\left(\frac{\alpha}{2}+\beta\right)+(\beta-2 \alpha) i \\
& \beta=2 \alpha \text { and } \frac{\alpha}{2}+\beta=\sqrt{\frac{9}{4}+4} \\
& \alpha+\beta=3
\end{aligned}
\)
Let \(\alpha, \beta\) be the roots of the equation \(x^2-x+2=0\) with \(\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)\). Then \(\alpha^6+\alpha^4+\beta^4-5 \alpha^2\) is equal to [JEE Main 2024 29th Jan Shift 1]
\(
\begin{aligned}
& \alpha^6+\alpha^4+\beta^4-5 \alpha^2 \\
& =\alpha^4(\alpha-2)+\alpha^4-5 \alpha^2+(\beta-2)^2 \\
& =\alpha^5-\alpha^4-5 \alpha^2+\beta^2-4 \beta+4 \\
& =\alpha^3(\alpha-2)-\alpha^4-5 \alpha^2+\beta-2-4 \beta+4 \\
& =-2 \alpha^3-5 \alpha^2-3 \beta+2 \\
& =-2 \alpha(\alpha-2)-5 \alpha^2-3 \beta+2 \\
& =-7 \alpha^2+4 \alpha-3 \beta+2 \\
& =-7(\alpha-2)+4 \alpha-3 \beta+2 \\
& =-3 \alpha-3 \beta+16=-3(1)+16=13
\end{aligned}
\)
Let \(r\) and \(\theta\) respectively be the modulus and amplitude of the complex number \(z=2-i\left(2 \tan \frac{5 \pi}{8}\right)\), then \((r, \theta)\) is equal to [JEE Main 2024 29th Jan Shift 2]
\(
\begin{aligned}
z & =2-i\left(2 \tan \frac{5 \pi}{8}\right)=x+i y(\text { let }) \\
r & =\sqrt{x^2+y^2} \& \theta=\tan ^{-1} \frac{y}{x} \\
r & =\sqrt{(2)^2+\left(2 \tan \frac{5 \pi}{8}\right)^2} \\
& =\left|2 \sec \frac{5 \pi}{8}\right|=\left|2 \sec \left(\pi-\frac{3 \pi}{8}\right)\right| \\
& =2 \sec \frac{3 \pi}{8} \\
\& \theta & =\tan ^{-1}\left(\frac{-2 \tan \frac{5 \pi}{8}}{2}\right) \\
& =\tan ^{-1}\left(\tan \left(\pi-\frac{5 \pi}{8}\right)\right) \\
& =\frac{3 \pi}{8}
\end{aligned}
\)
Let \(\alpha, \beta\) be the roots of the equation \(x^2-\sqrt{6} x+3=0\) such that \(\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)\). Let \(a, b\) be integers not divisible by 3 and \(n\) be a natural number such that \(\frac{\alpha^{99}}{\beta}+\alpha^{98}=3^{ n }( a + ib ), i =\sqrt{-1}\). Then \(n + a + b\) is equal to [JEE Main 2024 29th Jan Shift 2]
\(
\begin{aligned}
& x^2-\sqrt{6} x+6=0_{\Delta \beta}^\alpha \\
& x=\frac{\sqrt{6} \pm i \sqrt{6}}{2}=\frac{\sqrt{6}}{2}(1 \pm i) \\
& \alpha=\sqrt{3}\left(e^{i \frac{\pi}{4}}\right), \beta=\sqrt{3}\left(e^{-i \frac{\pi}{4}}\right) \\
& \therefore \frac{\alpha^{99}}{\beta}+\alpha^{98}=\alpha^{98}\left(\frac{\alpha}{\beta}+1\right) \\
& =\frac{\alpha^{98}(\alpha+\beta)}{\beta}=3^{49}\left(e^{i 99 \frac{\pi}{4}}\right) \times \sqrt{2} \\
& =3^{49}(-1+ i ) \\
& =3^{ n }( a + ib ) \\
& \therefore n =49, a =-1, b =1 \\
& \therefore n + a + b =49-1+1=49
\end{aligned}
\)
If \(z=x+i y, x y \neq 0\), satisfies the equation \(z^2+i \bar{z}=0\), then \(\left|z^2\right|\) is equal to : [JEE Main 2024 30th Jan Shift 1]
\(
\begin{aligned}
& z ^2=- i \bar{z} \\
& \left| z ^2\right|=| iz | \\
& \left|z^2\right|=|z| \\
& |z|^2-|z|=0 \\
& |z|(|z|-1)=0 \\
& |z|=0 \text { (not acceptable) }
\end{aligned}
\)
\(
\begin{aligned}
& \therefore|z|=1 \\
& \therefore|z|^2=1
\end{aligned}
\)
If \(z\) is a complex number, then the number of common roots of the equation \(z^{1985}+z^{100}+1=0\) and \(z^3+2 z^2+2 z+1=0\), is equal to : [JEE Main 2024 30th Jan Shift 2]
\(
\begin{array}{ll}
z^{1985}+z^{100}+1=0 \& z^3+2 z^2+2 z+1=0 \\
& (z+1)\left(z^2-z+1\right)+2 z(z+1)=0 \\
& (z+1)\left(z^2+z+1\right)=0 \\
\Rightarrow \quad & z=-1, \quad z=w, w^2
\end{array}
\)
Now putting \(z=-1\) not satisfy
Now put \(z = w\)
\(
\begin{aligned}
& \Rightarrow \quad w^{1985}+w^{100}+1 \\
& \Rightarrow \quad w^2+w+1=0
\end{aligned}
\)
Also, \(z = w ^2\)
\(
\begin{array}{ll}
\Rightarrow & w^{3970}+w^{200}+1 \\
\Rightarrow & w+w^2+1=0
\end{array}
\)
Two common root
If \(\alpha\) denotes the number of solutions of \(|1-i|^x=2^x\) and \(\beta=\left(\frac{|z|}{\arg (z)}\right)\), where \(z=\frac{\pi}{4}(1+i)^4\left(\frac{1-\sqrt{\pi} i }{\sqrt{\pi}+ i }+\frac{\sqrt{\pi}- i }{1+\sqrt{\pi}}\right), i =\sqrt{-1}\), then the distance of the point \((\alpha, \beta)\) from the line \(4 x-3 y=7\) is [JEE Main 2024 31st Jan Shift 1]
\(
\begin{aligned}
& (\sqrt{2})^x=2^x \Rightarrow x=0 \Rightarrow \alpha=1 \\
& z=\frac{\pi}{4}(1+i)^4\left[\frac{\sqrt{\pi}-\pi i-i-\sqrt{\pi}}{\pi+1}+\frac{\sqrt{\pi}-i-\pi i-\sqrt{\pi}}{1+\pi}\right] \\
& =-\frac{\pi i}{2}\left(1+4 i+6 i^2+4 i^3+1\right) \\
& =2 \pi i \\
& \beta=\frac{2 \pi}{\frac{\pi}{2}}=4
\end{aligned}
\)
Distance from \((1,4)\) to \(4 x-3 y=7\)
Will be \(\frac{15}{5}=3\)
Let \(z_1\) and \(z_2\) be two complex number such that \(z_1+z_2=5\) and \(z_1^3+z_2^3=20+15 i\). Then \(\left|z_1^4+z_2^4\right|\) equals- [JEE Main 2024 31st Jan Shift 2]
\(
\begin{aligned}
& z_1+z_2=5 \\
& z_1^3+z_2^3=20+15 i \\
& z_1^3+z_2^3=\left(z_1+z_2\right)^3-3 z_1 z_2\left(z_1+z_2\right) \\
& z_1^3+z_2^3=125-3 z_1 \cdot z_2(5) \\
& \Rightarrow 20+15 i=125-15 z_1 z_2 \\
& \Rightarrow 3 z_1 z_2=25-4-3 i \\
& \Rightarrow 3 z_1 z_2=21-3 i \\
& \Rightarrow z_1 \cdot z_2=7-i \\
& \Rightarrow\left(z_1+z_2\right)^2=25 \\
& \Rightarrow z_1^2+z_2^2=25-2(7-i) \\
& \Rightarrow 11+2 i \\
& \left(z_1^2+z_2^2\right)^2=121-4+44 i \\
& \Rightarrow z_1^4+z_2^4+2(7-i)^2=117+44 i \\
& \Rightarrow z_1^4+z_2^4=117+44 i-2(49-1-14 i) \\
& \Rightarrow\left|z_1^4+z_2^4\right|=75
\end{aligned}
\)
Let \(p , q \in R\) and \((1-\sqrt{3} i )^{200}=2^{199}( p + iq )\), \(i =\sqrt{-1}\) Then \(p + q + q ^2\) and \(p – q + q ^2\) are roots of the equation. [JEE Main 2023 24th Jan Shift 1]
\(
\begin{aligned}
& (1-\sqrt{3} i )^{200}=2^{199}( p + iq ) \\
& 2^{200}\left(\cos \frac{\pi}{3}- i \sin \frac{\pi}{3}\right)^{200}=2^{199}( p + iq ) \\
& 2\left(-\frac{1}{2}- i \frac{\sqrt{3}}{2}\right)= p + iq \\
& p =-1, q =-\sqrt{3} \\
& \alpha= p + q + q ^2=2-\sqrt{3} \\
& \beta= p – q + q ^2=2+\sqrt{3} \\
& \alpha+\beta=4 \\
& \alpha \cdot \beta=1 \\
& \text { equation } x ^2-4 x +1=0
\end{aligned}
\)
The value of \(\left(\frac{1+\sin \frac{2 \pi}{9}+i \cos \frac{2 \pi}{9}}{1+\sin \frac{2 \pi}{9}-i \cos \frac{2 \pi}{9}}\right)^3\) is [JEE Main 2023 24th Jan Shift 2]
\(
\begin{aligned}
& \text { Let } \sin \frac{2 \pi}{9}+ i \cos \frac{2 \pi}{9}= z \\
& \left(\frac{1+ z }{1+\bar{z}}\right)^3=\left(\frac{1+ z }{1+\frac{1}{ z }}\right)^3= z ^3 \\
& \Rightarrow\left( i \left(\cos \frac{2 \pi}{9}- i \sin \frac{2 \pi}{9}\right)\right)^3 \\
& =- i \left(\cos \frac{2 \pi}{3}- i \sin \frac{2 \pi}{3}\right)=- i \left(\frac{-1}{2}- i \frac{\sqrt{3}}{2}\right) \\
& \Rightarrow \frac{-1}{2}(\sqrt{3}-i)
\end{aligned}
\)
Let \(z_1=2+3 i\) and \(z_2=3+4 i\). The set
\(
S=\left\{z \in C:\left|z-z_1\right|^2-\left|z-z_2\right|^2=\left|z_1-z_2\right|^2\right\}
\)
represents a [JEE Main 2023 25th Jan Shift 1]
\(
\begin{aligned}
& (x -2)^2+( y -3)^2-(x -3)^2-( y -4)^2=2 \\
& \Rightarrow(x-2)^2+(y-3)^2-(x-3)^2-(y-4)^2=1+1 \\
& \Rightarrow-4 x+4+9-6 y-9+6 x-16+8 y=2 \\
& \Rightarrow x + y =7 \quad \Rightarrow 2 x+2 y=14
\end{aligned}
\)
Let \(z\) be a complex number such that \(\left|\frac{z-2 i}{z+i}\right|=2, z \neq-i\). Then \(z\) lies on the circle of radius 2 and centre [JEE Main 2023 25th Jan Shift 2]
\(
\begin{aligned}
& (z-2 i)(\bar{z}+2 i)=4(z+i)(\bar{z}-i) \\
& z \bar{z}+4+2 i(z-\bar{z})=4(z \bar{z}+1+i(\bar{z}-z)) \\
& 3 z \bar{z}-6 i(z-\bar{z})=0 \\
& x^2+y^2-2 i(2 i y)=0 \\
& x^2+y^2+4 y=0
\end{aligned}
\)
For two non-zero complex number \(z_1\) and \(z_2\), if \(\operatorname{Re}\left(z_1 z_2\right)=0\) and \(\operatorname{Re}\left(z_1+z_2\right)=0\), then which of the following are possible?
(A) \(\operatorname{Im}\left( z _1\right)>0\) and \(\operatorname{Im}\left( z _2\right)>0\)
(B) \(\operatorname{Im}\left( z _1\right)<0\) and \(\operatorname{Im}\left( z _2\right)>0\)
(C) \(\operatorname{Im}\left( z _1\right)>0\) and \(\operatorname{Im}\left( z _2\right)<0\)
(D) \(\operatorname{Im}\left( z _1\right)<0\) and \(\operatorname{Im}\left( z _2\right)<0\)
Choose the correct answer from the options given below: [JEE Main 2023 29th Jan Shift 1]
\(
\begin{aligned}
& z_1=x_1+i y_1 \\
& z_2=x_2+i y_2 \\
& \operatorname{Re}\left(z_1 z_2\right)=x_1 x_2-y_1 y_2=0 \\
& \operatorname{Re}\left(z_1+z_2\right)=x_1+x_2=0
\end{aligned}
\)
\(x_1 \& x_2\) are of opposite sign \(y _1 \& y _2\) are of opposite sign
\(\text { Let } \alpha=8-14 i, A=\left\{z \in c: \frac{\alpha z-\bar{\alpha} \bar{z}}{z^2-(\bar{z})^2-112 i}=1\right\} \text { and }\)
\(B=\{z \in c:|z+3 i|=4\}\) \(\text { Then } \sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z) \text { is equal to }\) ____. [JEE Main 2023 29th Jan Shift 2]
\(
\begin{aligned}
&\alpha=8-14 i\\
&\begin{aligned}
& z=x+i y \\
& a z=(8 x+14 y)+i(-14 x+8 y) \\
& z+\bar{z}=2 x \quad z-\bar{z}=2 i y
\end{aligned}
\end{aligned}
\)
Set A: \(\frac{2 i(-14 x+8 y)}{i(4 x y-112)}=1\)
\(
(x-4)(y+7)=0
\)
\(x =4 \quad\) or \(y=-7\)
Set B: \(x^2+(y+3)^2=16\)
when \(x=4\)
\(
y=-3
\)
when \(y=-7\)
\(
x =0
\)
\(
\therefore A \cap B=\{4-3 i , 0-7 i \}
\)
So, \(\sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)=4-(-3)+(0-(-7))=14\)
For all \(z \in C\) on the curve \(C _1:| z |=4\), let the locus of the point \(z +\frac{1}{ z }\) be the curve \(C _2\). Then [JEE Main 2023 31st Jan Shift 1]
Let \(w=z+\frac{1}{z}=4 e^{i \theta}+\frac{1}{4} e^{-i \theta}\)
\(
\Rightarrow w =\frac{17}{4} \cos \theta+ i \frac{15}{4} \sin \theta
\)
So locus of \(w\) is ellipse \(\frac{x^2}{\left(\frac{17}{4}\right)^2}+\frac{y^2}{\left(\frac{15}{4}\right)^2}=1\)
Locus of \(z\) is circle \(x^2+y^2=16\)
Let \(z =1+ i\) and \(z _1=\frac{1+ i \overline{ z }}{\bar{z}(1- z )+\frac{1}{z}}\). Then \(\frac{12}{\pi}\) \(\arg \left(z_1\right) \text { is equal to }\) [JEE Main 2023 30th Jan Shift 1]
\(
\begin{aligned}
& z=1+i \\
& z_1=\frac{1+i \bar{z}}{\bar{z}(1-z)+\frac{1}{z}} \\
& z_1=\frac{1+i(1-i)}{(1-i)(1-1-i)+\frac{1}{1+i}} \\
& =\frac{1+i-i^2}{(1-i)(-i)+\frac{1-i}{2}}
\end{aligned}
\)
\(
\begin{aligned}
& =\frac{2+i}{\frac{-3 i-1}{2}}=\frac{4+2 i}{-3 i-1} \\
& =\frac{-(4+2 i)(3 i-1)}{(3 i)^2-(1)^2} \\
& \operatorname{Arg}\left(z_1\right)=\frac{3 \pi}{4} \\
& \therefore \frac{12}{\pi} \arg \left(z_1\right)=\frac{12}{\pi} \times \frac{3 \pi}{4}=9
\end{aligned}
\)
The complex number \(z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \pi}\) is equal to: [JEE Main 2023 31st Jan Shift 2]
\(
\begin{aligned}
& Z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}=\frac{i-1}{\frac{1}{2}+\frac{\sqrt{3}}{2} i} \\
& =\frac{i-1}{\frac{1}{2}+\frac{\sqrt{3}}{2} i} \times \frac{\frac{1}{2}-\sqrt{\frac{3}{2}} i}{\frac{1}{2}-\sqrt{3 / 2} i}=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{3}+1}{2} i
\end{aligned}
\)
Apply polar form,
\(
\begin{aligned}
& r \cos \theta=\frac{\sqrt{3}-1}{2} \\
& r \sin \theta=\frac{\sqrt{3}+1}{2}
\end{aligned}
\)
Now, \(\tan \theta=\frac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(
\theta=\frac{5 \pi}{12}
\)
If the center and radius of the circle \(\left|\frac{z-2}{z-3}\right|=2\) are respectively \((\alpha, \beta)\) and \(\gamma\), then \(3(\alpha+\beta+\gamma)\) is equal to [JEE Main 2023 1st Feb Shift 1]
\(
\begin{aligned}
& \sqrt{(x-2)^2+y^2}=2 \sqrt{(x-3)^2+y^2} \\
= & x^2+y^2-4 x+4=4 x^2+4 y^2-24 x+36 \\
= & 3 x^2+3 y^2-20 x+32=0 \\
= & x^2+y^2-\frac{20}{3} x+\frac{32}{3}=0 \\
= & (\alpha, \beta)=\left(\frac{10}{3}, 0\right)
\end{aligned}
\)
\(
\begin{aligned}
& \gamma=\sqrt{\frac{100}{9}-\frac{32}{3}}=\sqrt{\frac{4}{9}}=\frac{2}{3} \\
& 3(\alpha+ \beta+\gamma)=3\left(\frac{10}{3}+\frac{2}{3}\right) \\
& =12
\end{aligned}
\)
Let \(a , b\) be two real numbers such that \(ab <0\). If the complex number \(\frac{1+a i}{b+i}\) is of unit modulus and \(a + ib\) lies on the circle \(|z-1|=\mid 2 z\), then a possible value of \(\frac{1+[a]}{4 b}\), where \([ t ]\) is greatest integer function, is : [JEE Main 2023 1st Feb Shift 2]
\(
\begin{aligned}
& a b<0\left|\frac{1+a i}{b+i}\right|=1 \\
& |1+a i|=|b+i| \\
& a^2+1=b^2+1 \Rightarrow a= \pm b \Rightarrow b=-a \text { as } a b<0 \\
& (a, b) \text { lies on }|z-1|=|2 z| \\
& |a+i b-1|=2| a+i b \mid \\
& (a-1)^2+b^2=4\left(a^2+b^2\right) \\
& (a-1)^2=a^2=4\left(2 a^2\right) \\
& 1-2 a=6 a^2 \Rightarrow 6 a^2+2 a-1=0 \\
& a=\frac{-2 \pm \sqrt{28}}{12}=\frac{-1 \pm \sqrt{7}}{6} \\
& a=\frac{\sqrt{7}-1}{6} \& b=\frac{1-\sqrt{7}}{6} \\
& {[a]=0} \\
& \therefore \frac{1+a}{4 b}=\frac{6}{4(1-\sqrt{7})}=-\left(\frac{1+\sqrt{7}}{4}\right)
\end{aligned}
\)
\(
\begin{aligned}
& \text { If } a=\frac{-1-\sqrt{7}}{6} ; b=\frac{1+\sqrt{7}}{6} \\
& \text { [a] }=-1 \\
& \text { Then } \frac{1+[a]}{4 b}=0
\end{aligned}
\)
No answer is matching.
Let \(A=\{z \in C: 1 \leq|z-(1+i)| \leq 2\}\) and \(B=\{z \in A:|z-(1-i)|=1\}\). Then, \(B\) : [JEE Main 2022 24th June Shift 1]
\(
A=\{z \in C: 1 \leq|z-(1+i)| \leq 2\}
\)
\(
B=\{z \in A:|z-(1-i)|=1\}
\)
\(A \cap B\) has infinite set.
Let \(S=\{z \in C :|z-3| \leq 1\) and \(z(4+3 i)+\bar{z}(4-3 i) \leq 24\}\). If \(\alpha+ i \beta\) is the point in \(S\) which is closest to \(4 i\), then \(25(\alpha+\beta)\) is equal to [JEE Main 2022 24th June Shift 2]
\(
\begin{aligned}
& |z-3| \leq 1 \\
& \text { represent point on circle of radius } 1 \& \text { centred at }(3,0) \\
& z(4+3 i)+\bar{z}(4-3 i) \leq 24 \\
& (x+i y)(4+3 i)+(x-i y)(4-3 i) \leq 24 \\
& 4 x+3 x i+4 i y-3 y+4 x-3 i x-4 i y-3 y \leq 24 \\
& 8 x-6 y \leq 24 \\
& 4 x-3 y \leq 12
\end{aligned}
\)
minimum of \((0,4)\) from circle \(=\sqrt{3^2+4^2}-1=4\)
will lie along line joining \((0,4) \&(3,0)\)
\(\therefore\) equation line
\(
\frac{x}{3}+\frac{y}{4}=1 \Rightarrow 4 x+3 y=12 \ldots (i)
\)
equation circle \((x-3)^2+y^2=1 \dots(ii)\)
\(
\begin{aligned}
& \left(\frac{12-3 y}{4}-3\right)^2+y^2=1 \\
& \left(\frac{-3 y}{4}\right)^2+y^2=1 \\
& \frac{25 y^2}{16}=1 \Rightarrow y= \pm \frac{4}{5}
\end{aligned}
\)
for minimum distance \(y=\frac{4}{5}\)
\(
\begin{aligned}
& \therefore x=\frac{12}{5} \\
& \therefore 25(\alpha+\beta)=25\left(\frac{4}{5}+\frac{12}{5}\right)
\end{aligned}
\)
\(
=16 \times 5=80
\)
Let a circle \(C\) in complex plane pass through the points \(z_1=3+4 i, z_2=4+3 i\) and \(z_3=5 i\). If \(z\left(\neq z_1\right)\) is a point on \(C\) such that the line through \(z\) and \(z _1\) is perpendicular to the line through \(z_2\) and \(z_3\), then \(\arg (z)\) is equal to : [JEE Main 2022 25th June Shift 1]
Slope of BC \(=\frac{3-5}{4-0}=-\frac{1}{2}\)
Slope of AP \(=2\)
equation of AP : \(y-4=2(x-3)\)
\(\Rightarrow y =2( x -1)\)
\(P\) lies on circle \(x^2+y^2=25\)
\(\Rightarrow x ^2+(2( x -1))^2=25\)
\(\Rightarrow x =-\frac{7}{5}\) and \(y =-\frac{24}{5}\)
\(\Rightarrow \arg (z)=\tan ^{-1}\left(\frac{24}{7}\right)-\pi\)
Let \(z_1\) and \(z_2\) be two complex numbers such that \(\overline{ z }_1= i \overline{ z }_2\) and \(\arg \left(\frac{ z _1}{\overline{ z }_2}\right)=\pi\). Then [JEE Main 2022 25th June Shift 2]
\(
\begin{aligned}
& \bar{z}_1=i \bar{z}_2 \\
& z_1=-i z_2 \\
& \arg \left(\frac{z_1}{z_2}\right)=\pi \\
& \arg \left(-i \frac{z_2}{\bar{z}_2}\right)=\pi
\end{aligned}
\)
\(
\arg \left( z _2\right)=\theta
\)
\(
\begin{aligned}
& -\frac{\pi}{2}+\theta+\theta=\pi \\
& 2 \theta=\frac{3 \pi}{2}
\end{aligned}
\)
\(
\arg \left( z _2\right)=\theta=\frac{3 \pi}{4}, \arg z _1=\frac{\pi}{4}
\)
Let \(A =\left\{ z \in C :\left|\frac{ z +1}{ z -1}\right|<1\right\}\) and \(B =\left\{ z \in C : \arg \left(\frac{ z -1}{ z +1}\right)=\frac{2 \pi}{3}\right\}\). Then \(A \cap B\) is : [JEE Main 2022 26th June Shift 1]
Set A
\(
\begin{aligned}
& \Rightarrow\left|\frac{ z +1}{ z -1}\right|<1 \\
& \Rightarrow| z +1|<| z -1| \\
& \Rightarrow( x +1)^2+ y ^2<( x -1)^2+ y ^2 \\
& \Rightarrow x <0
\end{aligned}
\)
Set B
\(
\begin{aligned}
& \Rightarrow \arg \left(\frac{z-1}{z+1}\right)=\frac{2 \pi}{3} \\
& \Rightarrow \tan ^{-1}\left(\frac{y}{x-1}\right)-\tan ^{-1}\left(\frac{y}{x+1}\right)=\frac{2 \pi}{3} \\
& \Rightarrow x^2+y^2+\frac{2 y}{\sqrt{3}}-1=0 \\
& A \cap B \\
& \Rightarrow \text { Centre }\left(0,-\frac{1}{\sqrt{3}}\right)
\end{aligned}
\)
If \(z^2+z+1=0, z \in C\), then \(\left|\sum_{n=1}^{15}\left(Z^n+(-1)^n \frac{1}{Z^n}\right)^2\right|\) is equal to [JEE Main 2022 26th June Shift 2]
\(
\begin{aligned}
& z^2+z+1=0 \Rightarrow z=w, w^2 \\
& \left|\sum_{n=1}^{15}\left(z^n+(-1) \frac{1}{z^n}\right)^2\right|=\left|\sum_{n=1}^{15}\left(z^{2 n}+\frac{1}{z^{2 n}}+2(-1)^n\right)\right|
\end{aligned}
\)
\(
\begin{aligned}
& =\left|\sum_{n=1}^{15} w^{2 n}+\frac{1}{w^{2 n}}+2(-1)^n\right| \\
& =\left|\frac{w^2\left(1-w^{30}\right)}{1-w^2}+\frac{\frac{1}{w^2}\left(1-\frac{1}{w^{30}}\right)}{1-\frac{1}{w^2}}+2(-1)\right|
\end{aligned}
\)
\(
=|0+0-2|=2
\)
The area of the polygon, whose vertices are the non-real roots of the equation \(\bar{z}=i z^2\) is : [JEE Main 2022 27th June Shift 1]
\(
\begin{aligned}
& \Rightarrow \text { Let } z = x + iy , x , y \in R \\
& \text { Now } \bar{z}=i z^2 \\
& \text { then } x – iy = i \left( x ^2- y ^2+2 xyi \right) \\
& x – iy = i \left( x ^2- y ^2\right)-2 xy \\
& \Rightarrow x=-2 x y \&-y=x^2-y^2 \\
& \Rightarrow x (1+2 y )=0 \\
& x =0 \text { or } y=-\frac{1}{2}
\end{aligned}
\)
Put \(x=0\) in \(-y=x^2-y^2\)
We get \(y=y^2\)
\(
\Rightarrow y =0,1
\)
Similarly
Put \(y=-\frac{1}{2}\) in \(-y=x^2-y^2\)
\(
\begin{aligned}
& \Rightarrow \frac{1}{2}=x^2-\frac{1}{4} \\
& \Rightarrow x^2=\frac{3}{4} \\
& x= \pm \frac{\sqrt{3}}{2} \\
& z=\left(0, i, \frac{\sqrt{3}}{2}-\frac{1}{2} i,-\frac{\sqrt{3}}{2}-\frac{1}{2} i\right)
\end{aligned}
\)
\(
\begin{aligned}
\text { Area } & =\frac{1}{2} \cdot(\sqrt{3})\left(\frac{3}{2}\right) \\
& =\frac{3 \sqrt{3}}{4}
\end{aligned}
\)
The number of points of intersection \(|z-(4+3 i)|=2\) and \(|z|+|z-4|=6, z \in C\) is : [JEE Main 2022 27th June Shift 2]
\(
\begin{aligned}
& C:(x-4)^2+(y-3)^2=4 \\
& E: \frac{(x-2)^2}{9}+\frac{y^2}{5}=1
\end{aligned}
\)
Lower Extremity of vertical diameter of circle \(\rightarrow(4,1)\)
Put in ellipse \(\Rightarrow \frac{(4-2)^2}{9}+\frac{1}{5}-1\)
\(
\begin{aligned}
& =\frac{4}{9}+\frac{1}{5}-1 \\
& =\frac{29}{45}-1<0
\end{aligned}
\)
Two solutions
The number of elements in the set \(\{ z = a + ib \in C :a, b \in Z \text { and } 1<|z-3+2 i |<4\} \quad \text { is }\) [JEE Main 2022 28th June Shift 1]
\(
1<|Z-3+2 i|<4
\)
\(
\begin{aligned}
& 1<( a -3)^2+( b +2)^2<16 \\
& (0, \pm 2),( \pm 2,0),( \pm 1, \pm 2),( \pm 2, \pm 1) \\
& ( \pm 2, \pm 3),(3 \pm, \pm 2),( \pm 1, \pm 1),(2 \pm, \pm 2) \\
& ( \pm 3,0),(0, \pm 3),( \pm 3 \pm 1),( \pm 1, \pm 3)
\end{aligned}
\)
Total 40 point.
Sum of squares of modulus of all the complex numbers \(z\) satisfying \(\overline{ Z }= iz ^2+ z ^2- z\) is equal to [JEE Main 2022 28th June Shift 2]
\(
\begin{aligned}
& z+\bar{z}=i z^2+z^2 \\
& \text { Consider } z=x+i y \\
& 2 x=(i+1)\left(x^2-y^2+2 x y i\right) \\
& \Rightarrow 2 x=x^2-y^2-2 x y \text { and } x^2-y^2+2 x y=0 \\
& \Rightarrow 2 x=-4 x y \\
& \Rightarrow x=0 \text { or } y=\frac{-1}{2}
\end{aligned}
\)
Case 1: \(x=0 \Rightarrow y=0\) here \(z=0\)
\(
\begin{aligned}
& \text { Case 2: } y=\frac{-1}{2} \\
& \Rightarrow 4 x^2-4 x-1=0 \\
& (2 x-1)^2=2 \\
& 2 x-1= \pm \sqrt{2} \\
& x=\frac{1 \pm \sqrt{2}}{2}
\end{aligned}
\)
Here \(z=\frac{1+\sqrt{2}}{2}-\frac{i}{2}\) or \(z=\frac{1-\sqrt{2}}{2}-\frac{i}{2}\)
Sum of squares of modulus of \(z\)
\(
=0+\frac{(1+\sqrt{2})^2+1}{4}+\frac{(1-\sqrt{2})^2+1}{4}=\frac{8}{4}=2
\)
Let \(\alpha\) and \(\beta\) be the roots of the equation \(x^2+(2 i-\) \(1)=0\). Then, the value of \(\left|\alpha^8+\beta^8\right|\) is equal to : [JEE Main 2022 29th June Shift 1]
\(
X ^2=1-2 i \quad \Rightarrow \alpha^2=1-2 i , \quad \beta^2=1-2 i
\)
Hence \(\alpha^8=\beta^8\)
\(
\begin{aligned}
& \left|\alpha^8+\beta^8\right|=\left|2 \alpha^8\right|=2\left|\alpha^2\right|^4 \\
& =2 \sqrt{5}^4=50
\end{aligned}
\)
Let \(\quad S=\{z \in C:|z-2| \leq 1, z(1+i)+\bar{z}(1-\text { i) } \leq 2\} \text {. }\) Let \(|z-4 i|\) attains minimum and maximum values, respectively, at \(z_1 \in S\) and \(z_2 \in S\). If \(5\left(\left|z_1\right|^2+\left|z_2\right|^2\right)=\alpha+\beta \sqrt{5}\), where \(\alpha\) and \(\beta\) are integers, then the value of \(\alpha+\beta\) is equal to [JEE Main 2022 29th June Shift 1]
\(
|z-2| \leq 1
\)
\(
\begin{aligned}
& (x-2)^2+y^2 \leq 1 \ldots \ldots \text { (1) }\\
& \& \\
& z(1+i)+\bar{Z}(1-i) \leq 2 \\
& \text { Put } z=x+i y \\
& \therefore x-y \leq 1 \ldots \text { (2) }
\end{aligned}
\)
\(
P A=\sqrt{17}, P B=\sqrt{13}
\)
Maximum is \(P A\) & Minimum is \(P D\)
\(
\begin{aligned}
& \text { Let } D(2+\cos \theta, 0+\sin \theta) \\
& \therefore m_{c p}=\tan \theta=-2 \\
& \cos \theta=-\frac{1}{\sqrt{5}}, \sin \theta=\frac{2}{\sqrt{5}} \\
& \therefore D\left(2-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) \\
& \Rightarrow z_1=\left(2-\frac{1}{\sqrt{5}}\right)+\frac{2 i}{\sqrt{5}} \\
& \left|z_1\right|=\frac{25-4 \sqrt{5}}{5} \& z_2=1 \\
& \therefore\left|z_2\right|^2=1 \\
& \therefore 5\left(\left|z_1\right|^2+\left|z_2\right|^2\right)=30-4 \sqrt{5} \\
& \therefore \alpha=30 \\
& \beta=-4 \\
& \therefore \alpha+\beta=26
\end{aligned}
\)
Let arg (z) represent the principal argument of the complex number \(z\). Then, \(|z|=3\) and \(\arg (z-1)-\) \(\arg (z+1)=\frac{\pi}{4}\) intersect: [JEE Main 2022 29th June Shift 2]
If \(z\) and \(\omega\) are two complex numbers such that \(|z \omega|=1\) and \(\arg (z)-\arg (\omega)=\frac{3 \pi}{2}\), then \(\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)\) is : (Here \(\arg ( z )\) denotes the principal argument of complex number \(z\) ) [JEE Main 2021 20th July Shift 1]
\(
\begin{aligned}
& \text { As }|z \omega|=1 \\
& \Rightarrow \text { If }|z|=r, \text { then }|\omega|=\frac{1}{r} \\
& \text { Let } \arg ( z )=\theta \\
& \therefore \arg (\omega)=\left(\theta-\frac{3 \pi}{2}\right) \\
& \text { So, } z = re ^{ i \theta} \\
& \Rightarrow \overline{ z }= re ^{ i (-\theta)} \\
& \omega=\frac{1}{ r } e ^{i\left(\theta-\frac{3 \pi}{2}\right)}
\end{aligned}
\)
Now, consider
\(
\begin{aligned}
& \frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}=\frac{1-2 e^{i\left(-\frac{3 \pi}{2}\right)}}{1+3 e^{i\left(-\frac{3 \pi}{2}\right)}}=\left(\frac{1-2 i}{1+3 i}\right) \\
& =\frac{(1-2 i)(1-3 i)}{(1+3 i)(1-3 i)}=-\frac{1}{2}(1+i) \\
& \therefore \text { prin arg }\left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right) \\
& =\text { prin arg }\left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right) \\
& =\left(-\frac{1}{2}(1+i)\right) \\
& =-\left(\pi-\frac{\pi}{4}\right)=\frac{-3 \pi}{4}
\end{aligned}
\)
If the real part of the complex number \((1-\cos \theta+2 \operatorname{isin} \theta)^{-1}\) is \(\frac{1}{5}\) for \(\theta \in(0, \pi)\), then the value of the integral \(\int_0^\theta \sin x d x\) is equal to: [JEE Main 2021 20th July Shift 2]
\(
\begin{aligned}
& z=\frac{1}{1-\cos \theta+2 \sin \theta} \\
& =\frac{2 \sin ^2 \frac{\theta}{2}-2 i \sin \theta}{(1-\cos \theta)^2+4 \sin ^2 \theta} \\
& =\frac{\sin \frac{\theta}{2}-2 \cos \frac{\theta}{2}}{4 \sin \frac{\theta}{2}\left(\sin ^2 \frac{\theta}{2}+4 \cos ^2 \frac{\theta}{2}\right)} \\
& \operatorname{Re}(z)=\frac{1}{2\left(\sin ^2 \frac{\theta}{2}+4 \cos ^2 \frac{\theta}{2}\right)}=\frac{1}{5} \\
& \sin \frac{2 \theta}{2}+4 \cos ^2 \frac{\theta}{2}=\frac{5}{2} \\
& 1-\cos ^2 \frac{\theta}{2}+4 \cos \frac{\theta}{2}=\frac{5}{2}
\end{aligned}
\)
\(
\begin{aligned}
& 3 \cos ^2 \frac{\theta}{2}=\frac{3}{2} \\
& \cos ^2 \frac{\theta}{2}=\frac{1}{2} \\
& \frac{\theta}{2}=n \pi \pm \frac{\pi}{4} \\
& \theta=2 n \pi \pm \frac{\pi}{2} \\
& \theta=2 n \pi \pm \frac{\pi}{2} \\
& \theta \in(0, \pi) \\
& \theta=\frac{\pi}{2} \\
& \int_0^{\frac{\pi}{2}} \sin \theta d \theta-[-\cos \theta]_0^{\frac{\pi}{2}} \\
& =-(0-1) \\
& =1
\end{aligned}
\)
Let \(n\) denote the number of solutions of the equation \(z^2+3 \bar{z}=0\), where \(z\) is a complex number. Then the value of \(\sum_{ k =0}^{\infty} \frac{1}{ n ^k}\) is equal to [JEE Main 2021 22nd July Shift 1]
\(
\begin{aligned}
& z ^2+3 \overline{ z }=0 \\
& \text { Put } z = x + iy \\
& \Rightarrow x^2-y^2+2 i x y+3(x-i y)=0 \\
& \Rightarrow\left(x^2-y^2+3 x\right)+i(2 x y-3 y)=0+i 0 \\
& \therefore x^2-y^2+3 x=0 \ldots \ldots(1) \\
& 2 x y-3 y=0 \ldots \text { (2) }
\end{aligned}
\)
\(
x=\frac{3}{2}, y=0
\)
Put \(x =\frac{3}{2}\) in equation (1)
\(
\begin{aligned}
& \frac{9}{4}-y^2+\frac{9}{2}=0 \\
& y^2=\frac{27}{4} \Rightarrow y= \pm \frac{3 \sqrt{3}}{2} \\
& \therefore(x, y)=\left(\frac{3}{2}, \frac{3 \sqrt{3}}{2}\right),\left(\frac{3}{2}, \frac{-3 \sqrt{3}}{2}\right)
\end{aligned}
\)
Put \(y=0 \Rightarrow x^2-0+3 x=0\)
\(
\begin{gathered}
x=0,-3 \\
\therefore(x, y)=(0,0),(-3,0)
\end{gathered}
\)
\(
\begin{aligned}
& \therefore \text { No of solutions }=n=4 \\
& \begin{aligned}
\sum_{ K =0}^{\infty}\left(\frac{1}{n^k}\right) & =\sum_{K=0}^{\infty}\left(\frac{1}{4^k}\right) \\
& =\frac{1}{1}+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots \ldots \\
& =\frac{1}{1-\frac{1}{4}}=\frac{4}{3}
\end{aligned}
\end{aligned}
\)
The equation of a circle is \(\operatorname{Re}\left(z^2\right)+2(\operatorname{Im}(z))^2+2 \operatorname{Re}(z)=0\), where \(z=x+i y\)
A line which passes through the center of the given circle and the vertex of the parabola, \(x^2-6 x-y+13=0\), has \(y\)-intercept equal to [JEE Main 2021 25th July Shift 2]
Equation of circle is \(\left(x^2-y^2\right)+2 y^2+2 x=0 x ^2+ y ^2+2 x =0\)
Centre : \((-1,0)\) Parabola : \(x^2-6 x-y+13=0\)
\(
(x-3)^2=y-4
\)
Vertex : \((3,4)\) Equation of line \(\equiv y-0=\frac{4-0}{3+1}(x+1)\)
\(
y=x+1
\)
\(y\)-intercept \(=1\)
Let \(C\) be the set of all complex numbers. Let \(S _1=\left\{ z \in C \| z -3-\left.2 i \right|^2=8\right\}\) \(S _2=\{ z \in C \mid \operatorname{Re}( z ) \geq 5\}\) and
\(
S _3=\{z \in C || z-\bar{z} \mid \geq 8\}
\)
Then the number of elements in \(S _1 \cap S _2 \cap S _3\) is equal to [JEE Main 2021 27th July Shift 1]
\(
\begin{aligned}
& S_1:|z-3-2 i|^2=8 \\
& |z-3-2 i|=2 \sqrt{2} \\
& (x-3)^2+(y-2)^2=(2 \sqrt{2})^2 \\
& S_2: x \geq 5 \\
& S_3:|z-\bar{z}| \geq 8 \\
& |2 i y| \geq 8 \\
& 2|y| \geq 8 \quad \therefore y \geq 4, y \leq-4
\end{aligned}
\)
\(
n\left(S_1 \cap S_2 \cap S_3\right)=1
\)
Let \(C\) be the set of all complex numbers. Let
\(
\begin{aligned}
& S _1=\{ z \in C :| z -2| \leq 1\} \text { and } \\
& S _2=\{ z \in C : z (1+ i )+\overline{ z }(1- i ) \geq 4\} .
\end{aligned}
\)
Then, the maximum value of \(\left|z-\frac{5}{2}\right|^2\) for \(z \in S _1 \cap S _2\) is equal to : [JEE Main 2021 27th July Shift 2]
\(
|t-2| \leq 1 \text { Put } t=x+i y
\)
\(
(x-2)^2+y^2 \leq 1
\)
Also, \(t(1+i)+t(1-i) \geq 4\)
Gives \(x-y \geq 2\)
Let point on circle be \(A (2+\cos \theta, \sin \theta)\)
\(
\begin{aligned}
& \theta \in\left[-\frac{3 \pi}{4}, \frac{\pi}{4}\right] \\
& ( AP )^2=\left(2+\cos \theta-\frac{5}{2}\right)^2+\sin ^2 \theta \\
& =\cos ^2 \theta-\cos \theta+\frac{1}{4}+\sin ^2 \theta \\
& =\frac{5}{4}-\cos \theta
\end{aligned}
\)
For \(( AP )^2\) maximum \(\theta=-\frac{3 \pi}{4}\)
\(
( AP )^2=\frac{5}{4}+\frac{1}{\sqrt{2}}=\frac{5 \sqrt{2}+4}{4 \sqrt{2}}
\)
If the real part of the complex number \(z=\frac{3+2 i \cos \theta}{1-3 i \cos \theta}, \theta \in\left(0, \frac{\pi}{2}\right)\) is zero, then the value of \(\sin ^2 3 \theta+\cos ^2 \theta\) is equal to [JEE Main 2021 27th July Shift 2]
\(
\begin{aligned}
& \operatorname{Re}( z )=\frac{3-6 \cos ^2 \theta}{1+9 \cos ^2 \theta}=0 \\
& \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
\)
Hence, \(\sin ^2 3 \theta+\cos ^2 \theta=1\)
If for the complex numbers \(z\) satisfying \(|z-2-2 i| \leq 1\), the maximum value of \(|3 i z+6|\) is attained at \(a +i b\), then \(a + b\) is equal to [JEE Main 2021 1st Sept Shift 2]
\(
\begin{aligned}
& |z-2-2 i| \leq 1 \\
& |x+i y-2-2 i| \leq 1 \\
& |(x-2)+i(y-2)| \leq 1 \\
& (x-2)^2+(y-2)^2 \leq 1 \\
& |3 i z+6|_{\max } \text { at } a+i b \\
& \left.|3 i| z+\frac{6}{3 i} \right\rvert\, \\
& 3|z-2 i|_{\max }
\end{aligned}
\)
From Figure maximum distance at \(3+2 i\) \(a+i b=3+2 i=a+b=3+2=5\).
If \(z\) is a complex number such that \(\frac{z-i}{z-1}\) is purely imaginary, then the minimum value of \(|z-(3+3 i)|\) is: [JEE Main 2021 31st August Shift 2]
\(\frac{z-i}{z-1}\) is purely Imaginary number
Let \(z=x+i y\)
\(
\begin{aligned}
& \therefore \frac{x+i(y-1)}{(x-1)+i(y)} \times \frac{(x-1)-i y}{(x-1)-i y} \\
& \Rightarrow \frac{x(x-1)+y(y-1)+i(-y-x+1)}{(x-1)^2+y^2} \text { is purely Imaginary number }
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow x(x-1)+y(y-1)=0 \\
& \Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\frac{1}{2}
\end{aligned}
\)
\(
\begin{aligned}
\therefore| z -(3+3 i )|_{\min } & =| PC |-\frac{1}{\sqrt{2}} \\
& =\frac{5}{\sqrt{2}}-\frac{1}{\sqrt{2}}=2 \sqrt{2}
\end{aligned}
\)
A point \(z\) moves in the complex plane such that \(\arg \left(\frac{z-2}{z+2}\right)=\frac{\pi}{4}\), then the minimum value of \(|z-9 \sqrt{2}-2 i|^2\) is equal to. [JEE Main 2021 31st August Shift 1]
Let \(z = x + iy\)
\(
\begin{aligned}
& \arg \left(\frac{x-2+i y}{x+2+i y}\right)=\frac{\pi}{4} \\
& \arg (x-2+i y)-\arg (x+2+i y)=\frac{\pi}{4} \\
& \tan ^{-1}\left(\frac{y}{x-2}\right)-\tan ^{-1}\left(\frac{y}{x+2}\right)=\frac{\pi}{4} \\
& \frac{\frac{y}{x-2}-\frac{y}{x+2}}{1+\left(\frac{y}{x-2}\right) \cdot\left(\frac{y}{x+2}\right)}=\tan \frac{\pi}{4}=1 \\
& \frac{x y+2 y-x y+2 y}{x^2-4+y^2}=1 \\
& 4 y=x^2-4+y^2 \\
& x^2+y^2-4 y-4=0
\end{aligned}
\)
locus is a circle with center \((0,2) \&\) radius \(=2 \sqrt{2}\)
\(
\begin{aligned}
& \min . \text { value }=( AP )^2=( OP – OA )^2 \\
& =(9 \sqrt{2}-2 \sqrt{2})^2 \\
& =(7 \sqrt{2})^2=98
\end{aligned}
\)
Let \(z_1\) and \(z_2\) be two complex numbers such that \(\arg \left(z_1-z_2\right)=\frac{\pi}{4}\) and \(z_1, z_2\) satisfy the equation \(|z-3|=\operatorname{Re}(z)\). Then the imaginary part of \(z_1+z_2\) is equal to. [JEE Main 2021 27th Aug Shift 2]
\(
z _1= x _1+ i y _1 \text { and } z _2= x _2+ i y _2 \text { and } z _1- z _2=\left( x _1- x _2\right)+i\left( y _1- y _2\right)
\)
\(
\begin{aligned}
& \arg \left(z_1-z_2\right)=\frac{\pi}{4} \\
& \Rightarrow \tan ^{-1}\left(\frac{y_1-y_2}{x_1-x_2}\right)=\frac{\pi}{4} \\
& \Rightarrow y_1-y_2=x_1-x_2 \cdots(i)
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow|z-3|=\operatorname{Re}(z) \\
& \Rightarrow|(x-3)+2 y|=x \\
& \Rightarrow(x-3)^2+(y)^2=x^2 \\
& \Rightarrow y^2=6\left(x-\frac{3}{2}\right)
\end{aligned}
\)
Let the point on this parabola
\(
\begin{aligned}
& \left(\frac{3}{2}+a t_1^2, 2 a t_1\right) \text { and }\left(\frac{3}{2}+a t_2^2, 2 a t_2\right), \text { where } a=\frac{6}{4} \\
& \because y_1-y_2=x_1-x_2 \\
& \Rightarrow 2 a\left(t_1-t_2\right)=a\left(t_1^2-t_2^2\right) \\
& \Rightarrow t_1+t_2=2
\end{aligned}
\)
Now, \(\operatorname{Im}\left( z _1+ z _2\right)= y _1+ y _2\)
\(
\begin{aligned}
& =2 a\left(t_1+t_2\right) \\
& =2 \times \frac{6}{4}(2)=6
\end{aligned}
\)
If \(S=\left\{z \in C : \frac{z-i}{z+2 i} \in R \right\}\), then : [JEE Main 2021 27th Aug Shift 1]
Given: \(\frac{z-i}{z+2 i}\)
Let \(z=x+i y\)
\(
\begin{aligned}
& \Rightarrow \frac{x+(y-1) i}{x+(y+2) i} \times \frac{x-(y+2) i}{x-(y+2) i} \\
& \Rightarrow \frac{x^2+(y-1)(y+2)+i(x(y-1)-x(y+2))}{x^2+(y+2)^2}
\end{aligned}
\)
Since \(\frac{z-i}{z+2 i}\) is real
\(
\begin{aligned}
& \therefore \frac{(x(y-1)-x(y+2))}{x^2+(y+2)^2}=0 \\
& \Rightarrow x(y-1)-x(y+2)=0 \\
& \Rightarrow-x-2 x=0
\end{aligned}
\)
\(\therefore x =0\), which represents the imaginary axis.
\(\Rightarrow S\) is straight line in complex plane.
The least positive integer \(n\) such that \(\frac{\left(2 i) ^{ n }\right.}{(1- i )^{ n -2}}, i =\sqrt{-1}\) is a positive integer, is. [JEE Main 2021 26th Aug Shift 2]
\(
\frac{(2 i )^{ n }}{(1- i )^{ n -2}}=\frac{(2 i )^{ n }}{(-2 i )^{\frac{ n -2}{2}}}
\)
\(
=\frac{(2 i)^{\frac{n+2}{2}}}{(-1)^{\frac{n-2}{2}}}=\frac{2^{\frac{n+2}{2}} i^{\frac{n+2}{2}}}{(-1)^{\frac{n-2}{2}}}
\)
This is positive integer for \(n =6\)
If \((\sqrt{3}+i)^{100}=2^{99}(p+i q)\), then \(p\) and \(q\) are roots of the equation: [JEE Main 2021 26th Aug Shift 2]
\(
\begin{aligned}
& \left(2 e ^{ i \pi / 6}\right)^{100}=2^{99}( p + i q) \\
& 2^{100}\left(\cos \frac{50 \pi}{3}+i \sin \frac{50 \pi}{3}\right)=2^{99}( p + iq ) \\
& p + iq =2\left(\cos \frac{2 \pi}{3}+ i \sin \frac{2 \pi}{3}\right) \\
& p =-1, q =\sqrt{3} \\
& x^2-(\sqrt{3}-1) x-\sqrt{3}=0 .
\end{aligned}
\)
Let \(z =\frac{1-i \sqrt{3}}{2}, i=\sqrt{-1}\). Then the value of \(21+\left(z+\frac{1}{z}\right)^3+\left(z^2+\frac{1}{z^2}\right)^3+\left(z^3+\frac{1}{z^3}\right)^3+\ldots+\left(z^{21}+\frac{1}{z^{21}}\right)^3\) is. [JEE Main 2021 26th Aug Shift 1]
\(
\begin{aligned}
& Z=\frac{1-\sqrt{3 i}}{2}=e^{-i \frac{\pi}{3}} \\
& z^r+\frac{1}{z^r}=2 \cos \left(-\frac{\pi}{3}\right) r=2 \cos \frac{r \pi}{3}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow 21+\sum_{r=1}^{21}\left(z^r+\frac{1}{z^r}\right)^3=8\left(\cos ^3 \frac{r \pi}{3}\right)=2\left(\cos r \pi+3 \cos \frac{r \pi}{3}\right) \\
& \Rightarrow 21+\left(z+\frac{1}{2}\right)^3+\left(z^2+\frac{1}{z^2}\right)^3+\ldots \ldots\left(z^{21}+\frac{1}{z^{21}}\right)^3 \\
& =21+\sum_{r=1}^{21}\left(z^r+\frac{1}{z^r}\right)^3
\end{aligned}
\)
\(
\begin{aligned}
& =21+\sum_{r=1}^{21}\left(2 \cos r \pi+6 \cos \frac{r \pi}{3}\right) \\
& =21-2-6 \\
& =13
\end{aligned}
\)
The equation \(\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}\) represents a circle with: [JEE Main 2021 26th Aug Shift 1]
\(
\text { In } \triangle OAC
\)
\(
\begin{aligned}
& \sin \left(\frac{\pi}{4}\right)=\frac{1}{ AC } \\
& \Rightarrow AC =\sqrt{2}
\end{aligned}
\)
Also, \(\tan \frac{\pi}{4}=\frac{ OA }{ OC }=\frac{1}{ OC }\)
\(
\Rightarrow OC =1
\)
\(\therefore\) centre \((0,1) ;\) Radius \(\sqrt{2}\)
Let a complex number \(z ,| z | \neq 1\), satisfy \(\log _{\frac{1}{\sqrt{2}}}\left(\frac{|z|+11}{(|z|-1)^2}\right) \leq 2\). Then, the largest value of \(|z|\) is equal to [JEE Main 2021 16th March Shift 1]
\(
\begin{aligned}
& \log _{\frac{1}{\sqrt{2}}}\left(\frac{|z|+11}{(|z|-1)^2}\right) \leq 2 \\
& \frac{|z|+11}{(|z|-1)^2} \geq \frac{1}{2} \\
& 2|z|+22 \geq(|z|-1)^2 \\
& 2|z|+22 \geq|z|^2+1-2|z| \\
& |z|^2-4|z|-21 \leq 0 \\
& \Rightarrow|z| \leq 7
\end{aligned}
\)
\(\therefore \quad\) Largest value of \(|z|\) is 7
Let \(z\) and \(w\) be two complex numbers such that \(w = z \overline{ z }-2 z +2,\left|\frac{ z + i }{ z -3 i }\right|=1 \quad\) and \(\operatorname{Re}( w )\) has minimum value. Then the minimum value of \(n \in N\) for which \(w ^{ n }\) is real, is equal to [JEE Main 2021 16th March Shift 2]
Step 1: Solving \(\left|\frac{(z+i)}{(z-3 i)}\right|=1\)
Considering \(z=x+i y\)
Given that,
\(
\begin{aligned}
& \left|\frac{(z+i)}{(z-3 i)}\right|=1 \\
& \Rightarrow \quad|z+i|=|z-3 i| \\
& \Rightarrow \quad|x+(y+1) i|=|x+(y-3) i| \\
& \Rightarrow \quad \sqrt{x^2+(y+1)^2}=\sqrt{x^2+(y-3)^2} \\
& \Rightarrow \quad x^2+(y+1)^2=x^2+(y-3)^2 \text { [squaring both sides] }\\
& \Rightarrow \quad y^2+1+2 y=y^2+9-6 y \\
& \Rightarrow \quad y=1
\end{aligned}
\)
Step 2: Evaluating expression for \(w\)
Given that \(w=z \bar{z}-2 z+2\)
\(
\begin{aligned}
& \Rightarrow w=(x+i y)(x-i y)-2(x+i y)+2 \quad[\because \overline{(x+i y)}= (x-i y)] \\
& \Rightarrow w=x^2+y^2-2 x-2 i y+2 \\
& \Rightarrow w=\left(x^2-2 x+3\right)-2 i {[\because y=1]} \\
& \therefore \operatorname{Re}(w)=x^2-2 x+3 \\
& \Rightarrow \operatorname{Re}(w)=\left(x^2-2 x+1\right)+2 \\
& \Rightarrow \operatorname{Re}(w)=(x-1)^2+2 \\
& \therefore \operatorname{Re}(w) \min \text { at } x=1 \\
&
\end{aligned}
\)
Step 3: Finding value of \(n \in N\), for which \(w^n\) is real
From minimum value of \(x=1 \& y=1\) we get
\(
z=1+i
\)
Substituting this value of \(z\) into \(w=z \bar{z}-2 z+2\)
\(
\begin{aligned}
& \Rightarrow w=(1+i)(1-i)-2(1+i)+2 \\
& \Rightarrow w=1+1-2-2 i+2 \\
& \Rightarrow w=2(1-i)
\end{aligned}
\)
\(
=\frac{2 \sqrt{2}(1-i)}{\sqrt{2}} \quad[\text { multiplying and dividing by } \sqrt{2}]
\)
\(
=2 \sqrt{2}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right)
\)
\(
=2 \sqrt{2}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right) \quad\left[\because \cos \frac{\pi}{4}=\sin \frac{\pi}{4}=1\right]
\)
\(
\begin{aligned}
& \Rightarrow w=2 \sqrt{2} e^{-i\left(\frac{x}{4}\right)} \\
& \Rightarrow w^4=\left(2 \sqrt{2} e^{-i\left(\frac{x}{4}\right)}\right)^4 \\
& \Rightarrow w^4=16 \times 4 e^{-i \pi} \\
& \Rightarrow w^4=-64 \left[\because e^{-i \pi}=-1\right]
\end{aligned}
\)
Hence, the minimum value of \(n \in N\), for which \(w^n\) is real, is equal to 4.
The least value of \(|z|\) where \(z\) is complex number which satisfies the inequality
\(
\exp \left(\frac{(|z|+3)(|z|-1)}{|| z|+1|} \log _e 2\right) \geq \log _{\sqrt{2}}|5 \sqrt{7}+9 i|
\)
\(i =\sqrt{-1}\), is equal to : [JEE Main 2021 16th March Shift 2]
\(
\exp \left(\frac{(|z|+3)(|z|-1)}{|| z|+1|} \ln 2\right) \geq \log _{\sqrt{2}}|5 \sqrt{7}+9 i|
\)
\(
\begin{aligned}
& \Rightarrow \quad 2^{\frac{(|z|+3)(|z|-1)}{(|z|+1)}} \geq \log _{\sqrt{2}}(16) \\
& \Rightarrow \quad 2^{\frac{(|z|+3)(|z|-1)}{(\mid z+1)}} \geq 2^3 \\
& \Rightarrow \quad \frac{(|z|+3)(|z|-1)}{(|z|+1)} \geq 3
\end{aligned}
\)
\(
\begin{aligned}
\Rightarrow & \quad(|z|+3)(|z|-1) \geq 3(|z|+1) \\
& |z|^2+2|z|-3 \geq 3|z|+3 \\
\Rightarrow & |z|^2+|z|-6 \geq 0 \\
\Rightarrow & (|z|-3)(|z|+2) \geq 0 \Rightarrow|z|-3 \geq 0 \\
\Rightarrow & |z| \geq 3 \quad \Rightarrow|z|_{\min }=3
\end{aligned}
\)
The area of the triangle with vertices \(A ( z ), B ( iz )\) and \(C ( z + iz )\) is : [JEE Main 2021 17th March Shift 1]
Step 1: Illustrating the figure using the given information Firstly, draw the diagram.
Here,
\(
\begin{aligned}
& |O P|=|z| \\
& |O Q|=|i z|=|z| \\
& |P R|=|z+i z-z|=|i z|=|z| \\
& |R Q|=|z+i z-i z|=|z|
\end{aligned}
\)
All sides of the quadrilateral \(O Q R P\) is equal.
And the angle between \(z\) and \(i z\) is \(90^{\circ}\).
Therefore, quadrilateral \(O Q R P\) forms a square.
Step 2: Finding the area
So, the area of triangle \(Q R P\)
Area \(=\frac{1}{2}\) Area of square
\(
=\frac{1}{2}|z|^2
\)
Let \(S_1, S_2\) and \(S_3\) be three sets defined as
\(
\begin{aligned}
& S _1=\{ z \in C :| z -1| \leq \sqrt{2}\} \\
& S _2=\{ z \in C : \operatorname{Re}((1- i ) z ) \geq 1\} \\
& S _3=\{ z \in C : \operatorname{Im}( z ) \leq 1\}
\end{aligned}
\)
Then the set \(S _1 \cap S _2 \cap S _3\) [JEE Main 2021 17th March Shift 2]
\(
\begin{aligned}
& \text { Let, } z=x+i y \\
& S_1 \equiv(x-1)^2+y^2 \leq 2 \\
& S_2 \equiv x+y \geq 1 \quad \cdots(2) \\
& S_3 \equiv y \leq 1 \quad \cdots \text { (3) }
\end{aligned}
\)
\(
\therefore S _1 \cap S _2 \cap S _3 \text { Has infinitely many elements. }
\)
If the equation \(a | z |^2+\overline{\bar{\alpha}} z +\alpha \overline{ z }+ d =0\) represents a circle where \(a , d\) are real constants then which of the following condition is correct? [JEE Main 2021 18th March Shift 1]
\(
\begin{aligned}
& az \overline{ z }+\alpha \overline{ z }+\bar{\alpha} z + d =0 \rightarrow \text { Circle } \\
& \text { centre }=\frac{-\alpha}{ a } \quad 2=\sqrt{\frac{\alpha \bar{\alpha}}{ a ^2}-\frac{ d }{ a }}=\sqrt{\frac{\alpha \bar{\alpha}- ad }{ a ^2}}
\end{aligned}
\)
So \(|\alpha|^2- ad >0 \& a \in R -\{0\}\)
Let \(z_1, z_2\) be the roots of the equations \(z^2+a z+12=0\) and \(z_1, z_2\) form an equilateral triangle with origin. Then, the value of \(|a|\) is [JEE Main 2021 18th March Shift 1]
If \(0, z_1, z_2\) are vertices of equilateral triangles
\(
\begin{aligned}
& \Rightarrow a^2+z_1^2+z_2^2=0\left(z_1+z_2\right)+z_1 z_2 \\
& \Rightarrow\left(z_1+z_2\right)^2=3 z_1 z_2 \\
& \Rightarrow a ^2=3 \times 12 \\
& \Rightarrow| a |=6
\end{aligned}
\)
Let a complex number be \(w=1-\sqrt{3} i\). Let another complex number \(z\) be such that \(| zw |=1\) and \(\arg ( z )-\arg ( w )=\frac{\pi}{2}\). Then the area of the triangle with vertices origin, \(z\) and \(w\) is equal to: [JEE Main 2021 18th March Shift 2]
\(
\begin{aligned}
& w=1-\sqrt{3} i \Rightarrow|w|=2 \\
& \Rightarrow|z w|=1 \\
& \Rightarrow|z|=\frac{1}{|w|}=\frac{1}{2} \\
& \arg (z)-\arg (w)=\frac{\pi}{2}
\end{aligned}
\)
Therefore, the area is
\(
\begin{aligned}
& \Delta=\frac{1}{2} \times \frac{1}{2} \cdot 2 \\
& \therefore \Delta=\frac{1}{2}
\end{aligned}
\)
If the least and the largest real values of \(\alpha\), for which the equation \(z+\alpha|z-1|+2 i=0(z \in C\) and \(i=\sqrt{-1})\) has a solution, are \(p\) and \(q\) respectively; then \(4\left(p^2+q^2\right)\) is equal to [JEE Main 2021 24th Feb Shift 1]
\(
\begin{aligned}
& x+i y+\alpha \sqrt{(x-1)^2+y^2}+2 i=0 \\
& \therefore y+2=0 \text { and } x+\alpha \sqrt{(x-1)^2+y^2}=0 \\
& y=-2 \& x^2=\alpha^2\left(x^2-2 x+1+4\right) \\
& \alpha^2=\frac{x^2}{x^2-2 x+5} \Rightarrow x^2\left(\alpha^2-1\right)-2 x \alpha^2+5 \alpha^2=0 \\
& x \in R \Rightarrow D \geq 0
\end{aligned}
\)
\(
\begin{aligned}
&\begin{aligned}
& \alpha \alpha^4-4\left(\alpha^2-1\right) 5 \alpha^2 \geq 0 \\
& \alpha^2\left[4 \alpha^2-2 \alpha^2+20\right] \geq 0 \\
& \alpha^2\left[-16 \alpha^2+20\right] \geq 0 \\
& \alpha^2\left[\alpha^2-\frac{5}{4}\right] \leq 0 \\
& 0 \leq \alpha^2 \leq \frac{5}{4} \\
& \therefore \alpha^2 \in\left[0, \frac{5}{4}\right] \\
& \therefore \alpha \in\left[-\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}\right]
\end{aligned}\\
&\text { then } 4\left[(q)^2+(p)^2\right]=4\left[\frac{5}{4}+\frac{5}{4}\right]=10
\end{aligned}
\)
Let \(i=\sqrt{-1}\). If \(\frac{(-1+i \sqrt{3})^{21}}{(1-i)^{24}}+\frac{(1+i \sqrt{3})^{21}}{(1+i)^{24}}=k\), and \(n =[|k|]\) be the greatest integral part of \(| k |\). Then \(\sum_{j=0}^{n+5}(j+5)^2-\sum_{j=0}^{n+5}(j+5)\) is equal to [JEE Main 2021 24th Feb Shift 2]
\(
\begin{aligned}
& \frac{\left(2 e^{i \frac{2 \pi}{3}}\right)^{21}}{\left(\sqrt{2} e^{-i \frac{\pi}{4}}\right)^{24}}+\frac{\left(2 e^{i \frac{\pi}{3}}\right)^{21}}{\left(\sqrt{2} e^{i \frac{\pi}{4}}\right)^{24}} \\
& \Rightarrow \frac{2^{21} \cdot e^{114 \pi}}{2^{12} \cdot e^{-i 6 \pi}}+\frac{2^{21}\left(e^{i 7 \pi}\right)}{2^{12}\left(e^{i 6 \pi}\right)} \\
& \Rightarrow 2^9 e^{i(20 \pi)}+2^9 e^{i \pi} \\
& \Rightarrow 2^9+2^9(-1)=0
\end{aligned}
\)
\(
\begin{aligned}
& n=0 \\
& \sum_{j=0}^5(j+5)^2-\sum_{j=0}^5(j+5) \\
& \Rightarrow\left[5^2+6^2+7^2+8^2+9^2+10^2\right]-[5+6+7+8+9+10] \\
& \Rightarrow\left[\left(1^2+2^2+\ldots+10^2\right)-\left(1^2+2^2+3^2+4^2\right)\right]-[(1+2+3+\ldots \ldots+10)-(1+2+3+4)] \\
& \Rightarrow(385-30)-[55-10] \\
& \Rightarrow 355-45 \Rightarrow 310
\end{aligned}
\)
Let the lines \((2-i) z=(2+i) \bar{z}\) and \((2+i) z+(i-2) \bar{z}-4 i=0\), (here \(i^2=-1\) ) be normal to a circle C. If the line \(iz +\overline{ z }+1+ i =0\) is tangent to this circle \(C\), then its radius is : [JEE Main 2021 25th Feb Shift 1]
\(
\begin{aligned}
& (2-i) z=(2+i) \bar{z} \\
& \Rightarrow(2-i)(x+i y)=(2+i)(x-i y) \\
& \Rightarrow 2 x-i x+2 i y+y=2 x+i x-2-i y+y \\
& \Rightarrow 2 i x-4 i y=0 \\
& L_1: x-2 y=0 \\
& \Rightarrow(2+i) z+(i-2) \bar{z}-4 i=0 \\
& \Rightarrow(2+i)(x+i y)+(i-2)(x-i y)-4 i=0 \\
& \Rightarrow 2 x+i x+2 i y-y+i x-2 x+y+2 i y-4 i=0 \\
& \Rightarrow 2 i x+4 i y-4 i=0 \\
& L_2: x+2 y-2=0
\end{aligned}
\)
Solve \(L_1\) and \(L_2 \quad 4 y=2, \quad y=\frac{1}{2}\)
\(
\therefore x =1
\)
Centre \(\left(1, \frac{1}{2}\right)\)
\(
\begin{aligned}
& L _3: iz +\overline{ z }+1+ i =0 \\
& \Rightarrow i ( x + iy )+ x – iy +1+ i =0 \\
& \Rightarrow ix – y + x – iy +1+ i =0 \\
& \Rightarrow( x – y +1)+ i ( x – y +1)=0
\end{aligned}
\)
Radius \(=\) distance from \(\left(1, \frac{1}{2}\right)\) to \(x – y +1=0\)
\(
\begin{aligned}
& r =\frac{1-\frac{1}{2}+1}{\sqrt{2}} \\
& r =\frac{3}{2 \sqrt{2}}
\end{aligned}
\)
The sum of \(162^{\text {th }}\) power of the roots of the equation \(x^3-2 x^2+2 x-1=0\) is [JEE Main 2021 26th Feb Shift 1]
Let roots of \(x^3-2 x^2+2 x-1=0\) are \(\alpha, \beta, \gamma\)
\(
\begin{aligned}
& (x-1)\left(x^2-x+1\right)=0 \\
& \text { Now } \alpha^{162}+\beta^{162}+\gamma^{162} \\
& =1+\omega^{162}+\left(\omega^2\right)^{162}
\end{aligned}
\)
\(
\begin{aligned}
& =1+\left(\omega^3\right)^{54}+\left(\omega^3\right)^{108} \\
& =3
\end{aligned}
\)
Let \(z\) be those complex number which satisfy \(|z+5| \leq 4\) and \(z(1+i)+\bar{z}(1-i) \geq-10, i=\sqrt{-1}\) If the maximum value of \(|z+1|^2\) is \(\alpha+\beta \sqrt{2}\), then the value of \((\alpha+\beta)\) is [JEE Main 2021 26th Feb Shift 2]
Let \(z=x+i y\)
Given, \(|z+5| \leq 4\)
\(
\Rightarrow(x+5)^2+y^2 \leq 16 \dots(1)
\)
Also, \(z(1+i)+\bar{z}(1-i) \geq-10\)
\(
\Rightarrow x-y \geq-5 \text {….(2) }
\)
From (1) and (2), Locus of \(z\) is the shaded region in the diagram.
\(
|z+1| \text { represents distance of ‘ } z \text { ‘ from } Q(-1,0)
\)
Clearly ‘ \(P\) ‘ is the required position of ‘ \(z\) ‘ when \(|z+1|\) is maximum.
\(
\begin{aligned}
& \therefore P \equiv(-5-2 \sqrt{2},-2 \sqrt{2}) \\
& \left.\therefore( PQ )^2\right|_{\max }=32+16 \sqrt{2} \\
& \Rightarrow \alpha=32 \\
& \Rightarrow \beta=16
\end{aligned}
\)
Thus, \(\alpha+\beta=48\)
You cannot copy content of this page