Overview
Binomial theorem
If a and b are real numbers and n is a positive integer, then (a+b)n=nC0an+nC1an−1b1+nC2an−2b2+…
…+nCran−rbr+…+nCnbn, where nCr=n!r!(n−r)! for 0≤r≤n
The general term or (r+1)th term in the expansion is given by
Tr+1=nCran−rbr
Some important observations
Each coefficient of any row is obtained by adding two coefficients in the preceding row, one on the immediate left and the other on the immediate right and each row is bounded by 1 on both sides.
The (r+1)th term or general term is given by
Tr+1=nCran−rbr
Some particular cases
If n is a positive integer, then
(a+b)n=nC0anb0+nC1anb1+nC2an−2b2+…+nCran−rbr+…+nCna0bn…(1)
In particular
The p th term from the end
The p th term from the end in the expansion of (a+b)n is (n−p+2)th term from the beginning.
Middle terms
The middle term depends upon the value of n.
Binomial coefficient
In the Binomial expression, we have
(a+b)n=nC0an+nC1an−1b+nC2an−2b2+…+nCnbn…(1)
The coefficients nC0,nC1,nC2,…,nCn are known as binomial or combinatorial coefficients.
Putting a=b=1 in (1), we get
nC0+nC1+nC2+…+nCn=2n
Thus the sum of all the binomial coefficients is equal to 2n.
Again, putting a=1 and b=−1 in (1), we get
nC0+nC2+nC4+…=nC1+nC3+nC5+…
Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to 2n2=2n−1.
nC0+nC2+nC4+…=nC1+nC3+nC5+…=2n−1
0 of 209 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 209 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If {p} denotes the fractional part of the number p, then {32008}, is equal to : [Main Sep. 06, 2020 (I)]
(d)
32008=18(9100)=18(1+8)100=18[1+n⋅8+n(n+1)2⋅82+…]=18+ Integer ∴{32008}={18+ integer }=18
If α and β be the coefficients of x4 and x2 respectively in the expansion of (x+√x2−1)6+(x−√x2−1)6, then: [Main Jan. 8, 2020 (II)]
(x+a)n+(x−a)n=2(T1+T3+T5+…..)
(x+√x2−1)6+(x−√x2−1)6=2[T1+T3+T5+T7]=2[6C0x6+6C2x4(x2−1)+6C4x2(x2−1)2+6C6(x2−1)3]=2[x6+15(x6−x4)+15x2(x4−2x2+1)+(−1+3x2−3x2+x6)]=2[32x6−48x4+18x2−1]=64x6−96x4+36x2−2α=−96β=36∴α−β=−96−36=−132
The smallest natural number n, such that the coefficient of x in the expansion of (x2+1x3)n is nC23, is : [Main April 10, 2019 (II)]
Given,
(x2+1x3)n, its (r+1)th term, is
Tr+1=nCrx2n−2r⋅x−3r=nCrx2n−5r
∴2n−5r=1⇒r=2n−15
∴ Coeff. of x=nC(2n−15)=nC23∴2n−15=23 or n−(2n−15)=23⇒n=58 or n=38
Minimum value is n=38
If the fourth term in the Binomial expansion of (2x+xlog8x)6(x>0) is 20×87, then a value of x is: [Main April 9, 2019 (I)]
(2x+xlog8x)6(x>0)⇒T4=20×87⇒6C3(2x)3(xlog8x)3=20×87⇒160x3x3log8x=20×87⇒x3log8x−3=86⇒xlog2x−3=86=218⇒log2(xlog2x−3)=log2218⇒(log2x−3)(log2x)=18 Let log2x=t⇒t2−3t−18=0⇒t=6,−3⇒log2x=6⇒x=26=82⇒log2x=−3⇒x=2−3=1/8
The sum of the coefficients of all even degree terms in x in the expansion of (x+√x3−1)6+(x−√x3−1)6,(x>1) is equal to: [Main April 8, 2019 (I)]
(x+√x3−1)6+(x−√x3−1)6=2[6C0x6+6C2x4(x3−1)+6C4x2(x3−1)2+6C6(x3−1)3]=2[6C0x6+6C2x7–6C2x4+6C4x8+6C4x2−26C4x5+(x9−1−3x6+3x3)]⇒ sum of coefficient of even powers of x=2[1−15+15+15−1−3]=24
Let (x+10)50+(x−10)50=a0+a1x+a2x2+….+a50x50, for all x∈R; then a2a0 is equal to : [Main Jan. 11, 2019 (II)]
(x+10)50=50C0(10)50+50C1x⋅1049+50C2x2⋅1048+⋯(1)(x−10)50=50C0(10)50−50C1x⋅1049+50C2x2⋅1048−⋯(2)
Add equation (1) and (2)
(x+10)50+(x−10)50=2⋅50C0⋅(10)50+2⋅50C2(10)48⋅x2+⋯∴a0=2⋅50C0(10)50,a2=2⋅50C2(10)48⇒a2a0=2⋅50C2(10)482⋅50C0(10)50∴a2a0=50×492×100=12.25
If the third term in the binomial expansion of (1+xlog2x)5 equals 2560 , then a possible value of x is: [Main Jan. 10, 2019 (I)]
(a) Third term of (1+xlog2x)5=5C2(xlog2x)5−3
=5C2(xlog2x)2
Given, 5C2(xlog2x)2=2560
⇒(xlog2x)2=256=(±16)2⇒xlog2x=16 or xlog2x=−16 (rejected) ⇒xlog2x=16⇒log2xlog2x=log216=4⇒log2x=±2⇒x=22 or 2−2⇒x=4 or 14
If the fractional part of the number 240315 is k15, then k is equal to: [Main Jan. 9, 2019 (I)]
240315=23×(240015)=8×(1610015)=815(1+15)100
Using binomial theorem we can write above expression as
815(1+15.n),n∈N=815+8.n
So the fractional part is 815=k15
Hence, the value of k=8
The coefficient of x2 in the expansion of the product (2−x2).((1+2x+ 3x2)6+(1−4x2)6) is [Main Online April 16, 2018]
(a) Let a=((1+2x+3x2)6+(1−4x2)6)
∴ Coefficient of x2 in the expansion of the product (2−x2)((1+2x+3x2)6+(1−4x2)6) =2 (Coefficient of x2 in a) −1 (Constant of expansion) In the expansion of ((1+2x+3x2)6+(1−4x2)6).
Constant =1+1=2
Coefficient of x2=[ Coefficient of x2 in (6C0(1+2x)6(3x2)0)]+[ Coefficient of x2 in (6C1(1+2x)5(3x2)1)]
– Coefficient of x2 in [6C1(4x2)]
=60+6×3−24=54
∴ The coefficient of x2 in
(2−x2)((1+2x+3x2)6+(1−4x2)6)=2×54−1(2)=108−2=106
The sum of the co-efficients of all odd degree terms in the expansion of (x+√x3−1)5+(x−√x3−1)5,(x>1) is : [Main 2018]
(c) Since we know that,
(x+a)5+(x−a)5=2[5C0x5+5C2x3⋅a2+5C4x⋅a4]∴(x+√x3−1)5+(x−√x3−1)5=2[5C0x5+5C2x3(x3−1)+5C4x(x3−1)2]⇒2[x5+10x6−10x3+5x7−10x4+5x]
∴ Sum of coefficients of odd degree terms =2.
The coefficient of x−5 in the binomial expansion of (x+1x23−x13+1−x−1x−x12)10 where x≠0,1, is : [Main Online April 9, 2017]
(a) [(x1/3+1)(x2/3−x1/3+1)(x2/3−x1/3+1)−(√x−1)(√x+1)√x(√x−1)]10
=(x1/3+1−1−1/x1/2)10=(x1/3−1/x1/2)10 Tr+1=10Cr20−5r6 for r=10 T11=10C10x−5
Coefficient of x−5=10C10(1)(−1)10=1
If the coefficients of x−2 and x−4 in the expansion of (x13+12x13)18,(x >0 ), are m and n respectively, then mn is equal to : [Main Online April 10, 2016]
(b) Tr+1=18Cr(x13)18−r(12x13)r=18Crx6−2r312r{6−2r3=−2⇒r=12&6−2r3=−4⇒r=15}
⇒ coefficient of x−2 coefficient of x−4=18C12121218C151215=182
If the coefficents of x3 and x4 in the expansion of (1+ax+bx2)(1−2x)18 in powers of x are both zero, then (a,b) is equal to: [Main 2014]
(1+ax+bx2)(1−2x)18=1(1−2x)18+ax(1−2x)18+bx2(1−2x)18 Coefficient of x3:(−2)318C3+a(−2)218C2+b(−2)18C1=04×(17×16)(3×2)−2a×172+b=0−(1) Coefficient of x4:(−2)418C4+a(−2)318C3+b(−2)218C2=0(4×20)−2a×163+b=0−(2) From equations (1) and (2), we get 4(17×83−20)+2a(163−172)=0⇒a=16⇒b=2×16×163−80=2723
If X={4n−3n−1:n∈N} and Y={9(n−1):n∈N}, where N is the set of natural numbers, then X∪Y is equal to: [Main 2014]
∵X={4n−3n−1:n∈N}X={0,9,54,243,…} [put n=1,2,3,…]Y={9(n−1):n∈N}Y={0,1,18,27,…}
It is clear that X⊂Y.
∴X∪Y=Y
The number of terms in the expansion of (1+x)101(1+x2−x)100 in powers of x is: [Main Online April 9, 2014]
(c) Given expansion is
(1+x)101(1−x+x2)100=(1+x)(1+x)100(1−x+x2)100=(1+x)[(1+x)(1−x+x2)]100=(1+x)[(1−x3)100]
Expansion (1−x3)100 will have 100+1=101 terms.
So, (1+x)(1−x3)100 will have 2×101=202 terms
The sum of the rational terms in the binomial expansion of (212+315)10 is : [Main Online April 23, 2013]
(d) (21/2+31/5)10=10C0(21/2)10+10C1(21/2)9(31/5)+……+10C10(31/5)10
There are only two rational terms – first term and last term. Now sum of two rational terms
=(2)5+(3)2=32+9=41
For r=0,1,…,10, let Ar,Br and Cr denote, respectively, the coefficient of xr in the expansions of (1+x)10, [2010]
(1+x)20 and (1+x)30. Then ∑10r=1Ar(B10Br−C10Ar) is equal to
Let y=∑10r=1Ar(B10Br−C10Ar).
Now, ∑10r=1ArBr= coefficient of x10 in [(1+x)10(1+x)20]−1
⇒∑10r=1 ArBr=C20−1=C10−1
And ∑10r=1A2r= coefficient of x10 in [(1+x)10(1+x)10]−1 ⇒∑10r=1 A2r=B10−1
Therefore, y=B10(C10−1)−C10( B10−1)=C10−B10.
Coefficient of t24 in (1+t2)12(1+t12)(1+t24) is [2003S]
(d) (1+t2)12(1+t12)(1+t24)
=(1+t12+t24+t36)(1+t2)12∴ Coeff. of t24=1× Coeff. of t24 in (1+t2)12+1× Coeff. of t12 in (1+t2)12+1× constant term in (1+t2)12=12C12+12C6+12C0=1+12C6+1=12C6+2
In the binomial expansion of (a−b)n,n≥5, the sum of the 5th and 6th terms is zero. Then a/b equals [2001S]
(b) In binomial expansion (a−b)n,n≥5;
T5+T6=0⇒nC4an−4b4−nC5an−5b5=0⇒nC4nC5⋅ab=1⇒5n−4⋅ab=1⇒ab=n−45
The coefficient of x4 in (x2−3x2)10 is [1983- 1 Mark]
(a) General term in the expansion (x2−3x2)10 is
Tr+1=10Cr(x2)10−r(−3x2)r=10Crx10−3r(−1)r3r210−r
To find coeff of x4, put 10−3r=4⇒r=2
∴ Coeff of x4=10C2(−1)23228=405256
Given positive integers r>1,n>2 and that the coefficient of (3r) th and (r+2) th terms in the binomial expansion of (1+x)2n are equal . Then [1983 – 1 Mark]
(a) Given : r and n are positive integers such that r>1,n>2
Also, in the expansion of (1+x)2n
Coeff. of (3r)th term = Coeff. of (r+2)th term
⇒2nC3r−1=2nCr+1⇒3r−1=r+1 or 3r−1+r+1=2n[∵ If nCp=nCq, then p=q or p+q=n]⇒r=1 or 2r=n
But r>1∴n=2r
Let X=(10C1)2+2(10C2)2+3(10C3)2+⋯+10(10C10)2,
where 10Cr,r∈{1,2,⋯,10} denote binomial coefficients. Then, the value of 11430X is [Adv. 2018]
n∑r=0r(nCr)2=nn∑r=0nCrn−1Cr−1=nn∑r=1nCn−rn−1Cr−1=2n−1Cn−1
Now,
X=(10C1)2+2(10C2)2+3(10C3)2+…+10(10C10)2=10∑n=0r(10Cr)2=1019C9∴X1430=114319C9=646
Let m be the smallest positive integer such that the coefficient of x2 in the expansion of (1+x)2+(1+x)3+…+(1+x)49+(1+mx)50 is (3n+ 1) 51C3 for some positive integer n. Then the value of n is [Adv. 2016]
(5) (1+x)2+(1+x)3+….+(1+x)49+(1+mx)50
=(1+x)2[(1+x)48−1(1+x)−1]+(1+mx)50=1x[(1+x)50−(1+x)2]+(1+mx)50
Coeff. of x2 in the above expansion
= Coeff. of x3 in (1+x)50+ Coeff. of x2 in (1+mx)50=50C3+50C2 m2∴(3n+1)51C3=50C3+50C2 m2⇒(3n+1)=50C351C3+50C251C3 m2⇒3n+1=1617+117 m2⇒n=m2−151
∴ Least positive integer m for which n is an integer is m =16 and then n=5
The coefficients of three consecutive terms of (1+x)n+5 are in the ratio 5:10:14. Then n= [Adv. 2013]
(6) Let the coefficients of three consecutive terms of (1+x)n+5 be n+ 5Cr−1,n+5Cr,n+5Cr+1, then we have
n+5Cr−1:n+5Cr:n+5Cr+1=5:10:14n+5Cr−1n+5Cr=510⇒rn+6−r=12
⇒n−3r+6=0 Also n+5Crn+5Cr+1=1014⇒r+1n−r+5=57⇒5n−12r+18=0
Solving (i) and (ii), we get n=6.
The natural number m, for which the coefficient of x in the binomial expansion of (xm+1x2)22 is 1540 , is [Main Sep. 05, 2020 (I)]
(13)
Tr+1=22Cr⋅(xm)22−r⋅(1x2)rTr+1=22Cr⋅x22m−mr−2r∵22m−mr−2r=1⇒r=22m−1m+2⇒r=22−3⋅3⋅5m+2
So, possible value of m=1,3,7,13,43
But 22Cr=1540
∴ Only possible value of m=13.
The coefficient of x4 in the expansion of (1+x+x2+x3)6 in powers of x, is [Main Sep. 05, 2020 (II)]
Coefficient of x4 in (1−x41−x)6= coefficient of x4 in (1−6x4)(1−x)−6= coefficient of x4 in (1−6x4)[1+6C1x+7C2x2+…]=9C4−6⋅1=126−6=120
Let (2x2+3x+4)10=∑20r=0arxr. Then a7a13 is equal to [Main Sep. 04, 2020 (I)]
Finding the value of a7a13 :
Given, (2x2+3x+4)10=∑20r=0arxr……(1)
To obtain the symmetry, replace x by 2x in above equation we get,
[2(2x)2+3(2x)+4]10=20∑r=0ar2rxr⇒[8x2+6x+4]10=20∑r=0ar×2r(1xr)⇒210x20[2x2+3x+4]10=20∑r=0ar2r(1xr)⇒[2x2+3x+4]10=20∑r=0ar2(r−10)x(20−r)
Substituting equation (1) in equation (2), we get
∑20r=0arxr=∑20r=0ar2(r−10)x(20−r)
Put r=7 in LHS and r=13 on RHS to find the coefficients of x7 on both sides and compare them we get,
a7=a13(2)3⇒a7a13=8
Hence, the value of the ratio a7a13=8.
The sum of the rational terms in the expansion of (√2+31/5)10 is [1997 – 2 Marks]
Given expression : (√2+31/5)10
∴Tr+1=10Cr(√2)10−r⋅(31/5)r⋅(0≤r≤10)=10!r!(10−r)!⋅25−r/2⋅3r/5
Tr+1 will be rational if 25−r/2 and 3r/5 are rational numbers.
⇒5−r2 and r5 are integers
⇒r=0 and r=10⇒T1 and T11 are rational terms.
Now, T1+T11=10C025−0⋅30+10C1025−5⋅32
=1.32.1+1.1.9=32+9=41
Let n be positive integer. If the coefficients of 2nd, 3rd, and 4 th terms in the expansion of (1+x)n are in A.P., then the value of n is [1994- 2 Marks]
We know that for a positive integer n
(1+x)n=nC0+nC1x+nC2x2+…..+nCnxn
Since coefficients of 2nd ,3rd and 4th terms are in A.P.
∴nC1,nC2,nC3 are in A.P. ⇒2⋅nC2=nC1+nC3⇒2×n(n−1)2=n+n(n−1)(n−2)3!⇒n−1=1+n2−3n+26⇒n2−9n+14=0⇒(n−7)(n−2)=0⇒n=7 or 2
But for the existence of 4th term, n=7.
The larger of 9950+10050 and 10150 is …… [1982- 2 Marks]
(101)50−{(99)50+(100)50}=(100+1)50−(100−1)50−(100)50=(100)50[(1+0.01)50−(1−0.01)50−1]=(100)50[2((50C1(0.01)+50C3(0.01)3+….)−1]=(100)50[2×50×1100+2(50C3(0.01)3+….)−1]=(100)50[2((50C3(0.01)3+….)]>0∴(101)50>(99)50+(100)50∴(101)50 is greater.
If an=∑nr=01nCr, then ∑nr=0rnCr equals [1998 – 2 Marks]
(c) Let b=n∑r=0rnCr=n∑r=0n−(n−r)nCr=nan−n∑r=0n−rnCn−r[∵nCr=nCn−r]=nan−b⇒2b=nan⇒b=n2an
If the constant term in the binomial expansion of (√x−kx2)10 is 405 , then |k| equals: [Main Sep. 06, 2020 (II)]
(c) General term =Tr+1=10Cr(√x)10−r⋅(−kx2)r=10Cr(−k)r⋅x10−r2−2r=10Cr(−k)r⋅x10−5r2
Since, it is constant term, then
10−5r2=0⇒r=2∴10C2(−k)2=405⇒k2=405×210×9=819=9∴|k|=3
If for some positive integer n, the coefficients of three consecutive terms in the binomial expansion of (1+x)n+5 are in the ratio 5:10:14, then the largest coefficient in this expansion is : [Main Sep. 04, 2020 (II)]
Let the three consecutive terms in the binomial expansion of (1+x)n+5 are n+5Cr−1,n+5Cr and n+5Cr+1
Now, according to the given information n+5Cr−1:n+5Cr:n+5Cr+1=5:10:14
⇒(n+5)!(r−1)!(n−r+6)!:(n+5)!r!(n−r+5)!:(n+5)!(r+1)!(n−r+4)!=5:10:14
⇒1(n−r+6)(n−r+5):1r(n−r+5):1(r+1)r So, rn−r+6=510⇒2r=n−r+6⇒n+6=3r…(i) and r+1n−r+5=57⇒7r+7=5n−5r+25⇒5n+18=12r…(ii)
From Eqs. (i) and (ii), we have n=6.
So, the largest coefficient in the expansion is same as the greatest binomial coefficient
=11C5 or 11C6=11!5!6!=11×10×9×8×75×4×3×2=462
If the number of integral terms in the expansion of (31/2+51/8)n is exactly 33 , then the least value of n is : [Main Sep. 03, 2020 (I)]
(c) Here, (312+518)n
Tr+1=nCr(3)n−r2(5)r8
∵n−r2 and r8 are integer
So, r must be 0,8,16,24……
Now n=t33=a+(n−1)d=0+32×8=256
⇒n=256
If the term independent of x in the expansion of (32x2−13x)9 is k, then 18k is equal to : [Main Sep. 03, 2020 (II)]
(c) General term =Tr+1=9Cr(3x22)9−r(−13x)r
=9Cr(32)9−r(−13)rx18−3r
The term is independent of x, then
18−3r=0⇒r=6∴T7=9C6(32)3(−13)6=9C3(16)3=9×8×73×2×1(16)3=(718).∴18k=18×718=7.
Let α>0,β>0 be such that α3+β2=4. If the maximum value of the term independent of x in the binomial expansion of (αx19+βx−16)10 is 10k, then k is equal to : [Main Sep. 02, 2020 (I)]
(a) General term of
(αx19+βx−16)10=10Cr(αx19)10−r(βx−16)r=10Crα10−rβr(x)10−r9−r6
Term independent of x if 10−r9−r6=0⇒r=4.
∴ Term independent of x=10C4α6β4
Since α3+β2=4
Then, by AM-GM inequality
α3+β22≥(α3b2)12⇒(2)2≥α3β2⇒α6β4≤16
∵ The maximum value of the term independent of x=10k
∴10k=10C4⋅16⇒k=336.
In the expansion of (xcosθ+1xsinθ)16, if l1 is the least value of the term independent of x when π8≤θ≤π4 and l2 is the least value of the term independent of x when π16≤θ≤π8, then the ratio l2:l1 is equal to : [Main Jan. 9, 2020 (II)]
(b) General term of the given expansion
Tr+1=16Cr(xsinθ)16−r(1xcosθ)r
For r=8 term is free from ‘ x ‘
T9=16C81sin8θcos8θT9=16C828(sin2θ)8
When θ∈[π8,π4], then least value of the term independent of x,
l1=16C828
[Q min. value of l1 at θ=π/4 ]
When θ∈[π16,π8], then least value of the term independent of x,
l2=16C8=28(1√2)8=16C8⋅28⋅24
[Q min. value of l2 at θ=π/8 ]
Now, l2l1=16C8⋅28⋅2416C8⋅28=16:1
The total number is irrational terms in the binomial expansion of (715−3110)60 is: [Main Jan. 12, 2019 (II)]
(d) Let the general term of the expansion
Tr+1=60Cr(715)60−r(−3110)r=60Cr⋅(7)12−r5(−1)r⋅(3)r10
Then, for getting rational terms, r should be multiple of L.C.M. of (5,10) Then, r can be 0,10,20,30,40,50,60.
Since, total number of terms =61
Hence, total irrational terms =61−7=54
A ratio of the 5th term from the beginning to the 5 th term from the end in the binomial expansion of (213+12(3)13)10 is: [Main Jan. 12, 2019 (I)]
(c) (213+12(3)13)10=10C0(213)0(12(3)1/3)10+
⋯+10C10(213)10(12(3)1/3)0
5th term from beginning T5=10C4(213)61(2.313)4+10C10(213)10(12(3)1/3)0 and 5th term from end T11−5+1=10C6(213)4(12.313)6∴T5:T7=10C4(213)6(12.313)4:10C6(213)4(12.313)6=(213)2:(12.313)2
=223⋅22⋅3231=4(6)23:1=4⋅(36)13:1
The term independent of x in expansion of (x+1x2/3−x1/3+1−x−1x−x1/2)10 is [Main 2013]
(c) Given expression can be written as
[(x1/3)3+13x2/3−x1/3+1−(√x)2−12√x(√x−1)]10=((x1/3+1)−(√x+1√x))10=(x1/3+1−1−1√x)10=(x1/3−x−1/2)10 General term =Tr+1=10Cr(x1/3)10−r(−x−1/2)r=10Crx10−r3⋅(−1)r⋅x−r2=10Cr(−1)r⋅x10−r3−r2
Term will be independent of x when 10−r3−r2=0
⇒r=4
So, required term =T5=10C4=210
For a positive integer n,(1+1x)n is expanded in increasing powers of x. If three consecutive coefficients in this expansion are in the ratio, 2 :5:12, then n is equal to [Main Sep. 02, 2020 (II)]
According to the question,
nCr−1:nCr:nCr+1=2:5:12⇒nCrnCr−1=52⇒n−r+1r=52⇒2n−7r+2=0…(i)nCr+1nCr=125⇒n−rr+1=125⇒5n−17r−12=0…(ii)
Solving eqns. (i) and (ii),
n=118,r=34
∑kr=1(−3)r−13nC2r−1=0, where k=(3n)/2 and n is an even positive integer. Is this statement true? [1993 – 5 Marks]
Given, n is an even positive integer.
Let n=2m,∴k=3m,n∈N
LHS k∑r=1(−3)r−1⋅3nC2r−1=3m∑r=1(−3)r−16mC2r−1=6mC1−3⋅6mC3+32⋅6mC5−…+(−3)3m−16mC6m−1… (i)
Consider (1+i√3)6m=6mC0+6mC1(i√3)+6mC2(i√3)2
+6mC3(i√3)3+6mC4(i√3)4+6mC5(i√3)5
+…+6mC6m−1(i√3)6m−1+6mC6m(i√3)6m…(ii)
Now, (1+i√3)6m={(−2)(−1−i√3(2))}6m=(−2ω2)6m =26m, where ω is cube root of unity.
Then, Eq . (ii) can be written as
26m={6mC0−6mC2⋅3+6mC4⋅32−…+(−3)3m⋅6mC6m}+i√3{6mC1−6mC3⋅3++6mC5⋅32−…+(−3)3m−1⋅6mC6m−1}
On comparing the imaginary part on both sides, we get
√3(6mC1−3+6mC3+32⋅6mC5−…+(−3)3m−1⋅6mC6m−1)=0
or 6mC1−3+6mC3+32⋅6mC5−…+(−3)3m−1⋅6mC6m−1=0
⇒∑3mr=1(−3)3m−1⋅3nC2r−1=0
or ∑kr=1(−3)r−1⋅3nC2r−1=0, where n=2 m and k=3 m.
Let R=(5√5+11)2n+1 and f=R−[R], where [] denotes the greatest integer function. Then Rf=42n+1. Is this statement true? [1988 – 5 Marks]
Given, G=(5√5+11)2n+1,0<G<1
and R=(5√5+11)2n+1
∴R−G=2{2n+1C1(5√5)2n⋅11+2n+1C3(5√5)2n−2⋅(11)3+…}
⇒R−G= even integer.
or I+f−G= even integer
f−G= integer .. (i)
where 0≤f<1 and 0<G<1
∴−i<f−G<1…(ii)
From Eqs. (i) and (ii), we get
f−G=0∴f=G Thus, R⋅f=R⋅G=(5√5+11)2n+1⋅(5√5−11)2n+1=42n+1
The value of ∑20r=050−rC6 is equal to: [Main Sep. 04, 2020 (I)]
20∑r=050−rC6=50C6+49C6+48C6+…..+30C6=50C6+49C6+…..+31C6+(30C6+30C7)−30C7=50C6+49C6+…..+(31C6+31C7)−30C7=50C6+50C7−30C7=51C7−30C7nCr+nCr−1=n+1Cr
If 20C1+(22)20C2+(32)20C3+…….+(202)20C20=A(2b), then the ordered pair (A,b) is equal to: [Main April 12, 2019 (II)]
(b) Given, 20C1+22⋅20C2+3220C3+…+202⋅20C20 =A(2b)
Taking L.H.S.,
=20∑r=1r2⋅20Cr=2020∑r=1r⋅19Cr−1=20[20∑r=1(r−1)19Cr−1+20∑r=119Cr−1]=20[1920∑r=218Cr−2+219]=20[19⋅218+219]
=420×218
Now, compare it with R.H.S., A=420 and b=18
If the coefficients of x2 and x3 are both zero, in the expansion of the expression (1+ax+bx2)(1−3x)15 in powers of x, then the ordered pair (a,b) is equal to: [Main April 10, 2019 (I)]
(c) Given expression is (1+ax+bx2)(1−3x)15
Co-efficient of x2=0
⇒15C2(−3))2+a⋅15C1(−3)+b⋅15C0=0⇒15×142×9−15×3a+b=0⇒945−45a+b=0…(i)
Now, co-efficient of x3=0
⇒15C3(−3)3+a⋅15C2(−3)2+b⋅15C1(−3)=0⇒15×14×133×2×(−3×3×3)+a×15×14×92−b×3×15=0⇒15×3[−3×7×13+a×7×3−b]=0⇒21a−b=273…(ii)
From (i) and (ii), we get,
a=28,b=315⇒(a,b)≡(28,315)
The sum of the series 2⋅20C0+5⋅20C1+8⋅20C2+11⋅20C3+…+62⋅20C20 is equal to: [Main April 8, 2019 (I)]
(b) 2.20C0+5.20C1+8.20C2+……..+62.20C20
=20∑r=0(3r+2)20Cr=320∑r=0r⋅20Cr+220∑r=020Cr=6020∑r=119Cn−1+220∑r=020Cr=60×219+2×220=221[15+1]=225
The value of r for which 20Cr20C0+20Cr−120C1+20Cr−220C2+… +20C020Cr is maximum, is : [Main Jan. 11, 2019 (I)]
Let S=20Cr20C0+20Cr−120C1+20Cr−220C2+…+20C020Cr The sum S is the coefficient of xr in the expansion of (1+x)20(x+1)20=(1+x)40 ∴S=40Cr
S is maximum when r=20
If ∑25r=0{50Cr⋅50−rC25−r}=K(50C25), then K is equal to: [Main Jan. 10, 2019 (II)]
From question, the summation given is:
25∑r=0{50Cr⋅50−rC25−r}=K(50C25)∵[nCr=n!r!(n−r)!]⇒25∑r=0(50!r!(50−r)!×(50−r)!(25−r)!25!)=K50C25⇒25∑r=0(50!25!25!×25!r!(25−r)!)=K50C25
[On multiplying 25! numerator and denominator]
∵[50C25=5025!25!]⇒50C2525∑r=025Cr=K50C25∵[nC0+nC1+nC2+…+nCn=2n]⇒K=25∑r=025Cr∴K=225
The coefficient of t4 in the expansion of (1−t61−t)3 [Main Jan. 09, 2019 (II)]
(b) Consider the expression
(1−t61−t)3=(1−t6)3(1−t)−3=(1−3t6+3t12−t18)(1+3t+3⋅42!t2+3⋅4⋅53!t3+3⋅4⋅5⋅64!t4+…∞)
Hence, the coefficient of t4=1⋅3⋅4⋅5⋅64!
=3×4×5×64×3×2×1=15
The value of
(21C1−10C1)+(21C2−10C2)+(21C3−10C3)+(21C4−10C4)+…..+(2C10−10C10) is : [Main 2017]
(a) We have (21C1+21C2……..+21C10)
−(10C1+10C2….10C10)=12[(21C1+….+21C10)+(21C11+….21C20)]−(210−1)(∵10C1+10C2+….+10C10=210−1)=12[221−2]−(210−1)=(220−1)−(210−1)=220−210
If the number of terms in the expansion of (1−2x+4x2)n, x≠0, is 28 , then the sum of the coefficients of all the terms in this expansion, is : [Main 2016]
(b) Total number of terms =n+2C2=28 (n+2)(n+1)=56;n=6
∴ Put x=1 in expansion (1−2x+4x2)6,
we get sum of coefficient =(1−2+4)6 =36=729.
The sum of coefficients of integral power of x in the binomial expansion (1−2√x)50 is : [Main 2015]
(c) We know that (a+b)n+(a−b)n
=2[nC0anb0+nC2an−2b2+nC4an−4b4…](1−2√x)50+(1+2√x)502[50C0+50C2(2√x)2+50C4(2√x)4…]=2[50C0+50C222x+50C424x2+…]
Putting x=1, we get,
50C0+50C222+50C424…=350+12
Coefficient of x11 in the expansion of (1+x2)4(1+x3)7(1+x4)12 is [Adv. 2014]
(c) Coeff. of x11 in exp. of (1+x2)4(1+x3)7(1+x4)12 =[ Coeff. of xa in (1+x2)4]×[ Coeff. of xb in (1+x3)7]
Such that a+b+c=11
Here a=2m,b=3n,c=4p
∴2m+3n+4p=11
Case I : m=0,n=1,p=2
Case II : m=1,n=3,p=0
Case III : m=2,n=1,p=1
Case IV : m=4,n=1,p=0
∴ Required coefficient.
=4C0×7C1×12C2+4C1×7C3×12C0+4C2×7C1×12C1+4C4×7C1×12C0
[Coeff. of xc in (1+x)4]
=462+140+504+7=1113
The value of (300)(3010)−(301)(3011)+(302)(3012)…..+(3020)(3030) is where (nr)=nCr[2005 S]
(1−x)30=30C0x0−30C1x1+30C2x2+…………+(−1)3030C30x30…………(i)(x+1)30=30C0x3O−30C1x29+30C2x28+…………+30C10x20+………..+30C30x0……(ii)
Multiplying (i) and (ii) and equating the coefficient of x20 on both sides, we get the required sum = coefficient of x20 in (1−x2)30=30C10.
The sum∑mi=0(10i)(20m−i), (where (pq)=0 if p>q ) is maximum when m is [2002S]
(c) m∑i=010C20iCm−i=10C020Cm+10C120Cm−1+10C220Cm−2+…..+10Cm20C0 = Coeff. of xm in the expansion of product (1+x)10
= Coeff. of xm in the expansion of (1+x)30 =30Cm
∑ni=010Ci20Cm−1 will be maximum, if 30Cm will be maximum.
Clearly, 30Cm will be maximum when m=302=15
[∵Max⋅(nCr)={nCn/2 if n is even nCn+12 if n is odd ]
For 2≤r≤n,(nr)+2(nr−1)+(nr−2)=
(d) (nr)+2(nr−1)+(nr−2)
=[(nr)+(nr−1)]+[(nr−1)+(nr−2)}]=[ Here [nr],[nr−1] and [nr−2] represent nCr,nCr−1 and nCr−2]
=(n+1r)+(n+1r)=(n+2r)[∵nCr+nCr−1=n+1Cr]
If in the expansion of (1+x)m(1−x)n, the coefficients of x and x2 are 3 and −6 respectively, then m is [1999 – 2 Marks]
(c) (1+x)m(1−x)n
=[1+mx+m(m−1)2!x2+…][1−nx+n(n−1)2!x2−…]=1+(m−n)x+[m(m−1)2+n(n−1)2−mn]x2+…
Given, m−n=3…(i)
and 12m(m−1)+12n(n−1)−mn=−6⇒m2+n2−2mn−(m+n)=−12⇒(m−n)2−(m+n)=−12⇒m+n=9+12=21…(ii)
From (i) and (ii), we get m=12
The expression (x+(x3−1)12)5+(x−(x3−1)12)5 is a polynomial of degree [1992 – 2 Marks]
(c) Given expression:
(x+√x3−1)5+(x−√x3−1)5
We know that using binomial theorem,
(x+a)n+(x−a)n=2[nC0xn+nC2xn−2a2
∴ The given expression
=2[5C0x5+5C2x3(x3−1)+5C4x(x3−1)2]
since maximum power of x involved in the expansionis 7 . Also, only +ve integral powers of x are involved in the expansion, therefore given expression is a polynomial of degree 7.
The coefficient of x4 in the expansion of (1+x+x2)10 is ….. [Main Jan. 9, 2020 (I)]
(615) General term of the expansion =10!α!β!γ!xβ+2γ
For coefficient of x4;β+2γ=4
Here, three cases arise
Case-1: When γ=0,β=4,α=6
⇒10!α!β!γ!xβ+2γ
Case-2: When γ=1,β=2,α=7
⇒10!7!2!1!=360
Case-3: When γ=2,β=0,α=8
⇒10!8!0!2!=45
Hence, total =615
If the sum of the coefficients of all even powers of x in the product (1+x+x2+…+x2n)(1−x+x2−x3+…+x2n) is 61, then n is equal to …. [Main Jan. 7, 2020 (I)]
(30)Let (1−x+x2……x2n)(1+x+x2……x2n) =a0+a1x+a2x2+……
put x=1
1(2n+1)=a0+a1+a2+….a2n…(i)
put x=−1
1(2n+1)=a0+a1+a2+……a2n…(ii)
Adding (i) and (ii), we get,
4n+2=2(a0+a2+….)=2×61⇒2n+1=61⇒n=30.
Suppose
det[∑nk=0k∑nk=0nCkk2∑nk=0nCkk∑nk=0nCk3k]=0
holds for some positive integer n. The ∑nk=0nCkk+1 equals …… [Adv. 2019]
Finding the value of ∑nk=0nCkk+1
Step 1: Consider the given determinant as,
|∑nk=0k∑nk=0nCkk2∑nk=0nCkk∑nk=0nCk3k|=0
From the standard formula, we can write the above determinant as,
|n(n+1)2n(n+1)2n−2n.2n−14n|=0
Step 2: Simplify the above determinant as,
⇒n(n+1)2⋅4n−n2(n+1)22n−3=0⇒4n2−n4n−12=0⇒4n2=n4n−12⇒n=24n−1×4n2⇒n=4n−n+1⇒n=4
Step 3: Find the value of ∑nk=0nCkk+1
n∑k=0nCkk+1=4∑k=04Ckk+1=154∑k=05Ck+1=15(25−1)=15(32−1)=315=6.20 Therefore, the value of n∑k=0nCkk+1=6.20
The sum of the coefficients of the polynomial (1+x−3x2)2163 is [1982 – 2 Marks]
Sum of coefficients is obtained by putting x=1
ie, (1+1−3)2163=−1
Thus, sum of the coefficients of the polynomial
(1+x−3x2)2163 is −1
If Cr stands for nCr, then the sum of the series
2(n2)!(n2)!n![C20−2C21+3C22−………+(−1)n(n+1)C2n]
where n is an even positive integer, is equal to [1986 – 2 Marks]
C20−2C21+3C22−4C23+…+(−1)n(n+1)C2n=[C20−C21+C22−C23+…+(−1)nC2n]−[C21−2C22+3C23−…+(−1)nnC2n]=(−1)n2n!(n2)!(n2)!−(−1)n2−1n2⋅nCn2=(−1)n2n!(n2)!(n2)!(1+n2)∴2(n2)!(n2)![C20−2C21+3C22−…+(−1)n(n+2)C2n]=(−1)n2(n+2)
If the following statement true?
2k(n0)(nk)−2k−1(n1)(n−1k−1)+2k−2(n2)(n−2k−2)−…..(−1)k(nk)(n−k0)=(nk)
To show that
2k,nC0⋅nCk−2k−1⋅nC1⋅n−1Ck−1+2k−2⋅nC2⋅n−2Ck−2−…..+(−1)knCkn−kC0=nCk
Taking LHS
2k⋅nC0⋅nCk−2k−1⋅nC1⋅n−1Ck−1+…+(−1)k⋅nCk⋅n−kC0=k∑r=0(−1)r⋅2k−r⋅nCr⋅k−rCk⋅n−kCk−r=k∑r=0(−1)r2k−r⋅n!r!(n−r)!⋅(n−r)!(k−r)!(n−k)!
=k∑r=0(−1)r⋅2k−r⋅n!(n−k)!⋅k!⋅k!r!(k−r)!=k∑r=0(−1)r⋅2k−rnCk⋅kCr=2k⋅nCk{k∑r=0(−1)r⋅12r⋅kCr}=2k⋅nCk(1−12)k=nCk= R.H.S.
For any positive integer m,n( with n≥m ), let (nm)=nCm. Given that (nm)+(n−1m)+(n−2m)+…..+(mm)=(n+1m+2). Given that
(nm)+2(n−1m)+3(n−2m)+…..+(n−m+1)(mm)=(n+2m+2). Are these statements true? [2000 – 6 Marks]
Given that for positive integers m and n such that n≥m, then to prove that
nCm+n−1Cm+n−2Cm+….+mCm=n+1Cm+1 L.H.S. mCm+m+1Cm+m+2Cm+….+n−1Cm+nCm [writing L.H.S. in reverse order] (m+1Cm+1+m+1Cm)+m+2Cm+….+n−1Cm+nCm[∵mCm=m+1Cm+1]=(m+2Cm+1+m+2Cm)+m+3Cm+….+nCm[∵nCr+1+nCr=n+1Cr+1]
Combining in the same way we get
=nCm+1+nCm=n+1Cm+1= R.H.S.
Again we have to prove
nCm+2n−1Cm+3n−2Cm+…+(n−m+1)mCm=n+2Cm+2=[nCm+n−1Cm+n−2Cm+…+mCm]+[n−1Cm+n−2Cm+….+mCm]+[n−2Cm+….+mCm]+….+[mCm][n−m+1 bracketed terms ]=n+1Cm+1+nCm+1n−1Cm+1…+m+1Cm+1=n+2Cm+2[ Replacing n by n+1 and m by m+1 in the previous result.] = R.H.S.
Let n be a positive integer and
(1+x+x2)n=a0+a1x+………..+a2nx2n
It is given that a20−a21+a22…………..+a22n=an. Is this statement true or false? [1994 – 5 Marks]
Given : (1+x+x2)n=a0+a1x+….+a2nx2n…(i)
where n is a +ve integer.
On replacing x by −1x in equation(i), we get
(1−1x+1x2)n=a0−a1x+a2x2−a3x3+….+a2nx2n…(ii)
Multiplying equation (i) and (ii) :
(1+x+x2)n(x2−x+1)nx2n=(a0+a1x+….+a2nx2n)(a0−a1x+a2x2+…+a2nx2n)
Equating the constant terms on both sides we get
a20−a21+a22−a23+….+a22n= constant term in the expansion of
[(1+x+x2)(1−x+x2)]nx2n
= Coeff. of x2n in the expansion of (1+x2+x4)n
But replacing x by x2 in equation (i), we have
(1+x2+x4)n=a0+a1x2+…+a2n(x2)2n∴ Coeff. of x2n=an∴a20−a21+a22−a23+….+a22n=an
If ∑2nr=0ar(x−2)r=∑2nr=0br(x−3)r and ak=1 for all k≥n, then bn=2n+1Cn+1. Is this statement true or false? [1992 – 6 Marks]
Given : ∑2nr=0ar(x−2)r=∑2nr=0br(x−3)r…(i)
and ak=1,∀k≥n
To prove :bn=2n+1Cn+1
In the given equation (i) let us put x−3=y
⇒x−2=y+1∴2n∑r=0ar(1+y)r=2n∑r=0br(y)r[ From (i) ]⇒a0+a1(1+y)+….+an−1(1+y)n−1+(1+y)n+(1+y)n+1+….+(1+y)2n
=∑2nr=0bryr
[Using ak=1,∀k≥n ]
Equating the coefficients of yn on both sides we get
⇒nCn+n+1Cn+n+2Cn+….+2nCn=bn⇒(n+1Cn+1+n+1Cn)+n+2Cn+….+2nCn=bn
[nCn=n+1Cn+1=1]
⇒bn=n+2Cn+1+n+2Cn+….+2nCn
[mCr+mCr−1=m+1Cr]
Combining the terms in similar way, we get
⇒bn=2nCn+1+2nCn⇒bn=2n+1Cn+1
Given that
C0−22C1+32C2−………..+(−1)n(n+1)2Cn=0,
n>2, where Cr=nCr.
[1989 – 5 Marks] . Is this statement true or false?
We know
(1−x)n=C0−C1x+C2x2−C3x3+….+(−1)nCnxn
On multiplying both sides by x,
x(1−x)n=C0x−C1x2+C2x3−C3x4+….+(−1)nCnxn+1
On differentiating both sides w.r. to x,
(1−x)n−nx(1−x)n−1=C0−2C1x+3C2x2−4C3x3+….+(−1)n(n+1)Cnxn
Again on multiplying both sides by x,
x(1−x)n−nx2(1−x)n−1=C0x−2C1x2+3C2x3−4C3x4+….+(−1)n(n+1)Cnxn+1
On differentiating both sides with respect to x,
(1−x)n−nx(1−x)n−1−2nx(1−x)n−1+nx2(n−1)(1−x)n−2=C0−22C1x+32C2x2−42C3x3+….+(−1)n(n+1)2Cnxn
Putting x=1, in above, we get
0=C0−22C1+32C2−42C3+….+(−1)n(n+1)2Cn
Given sn=1+q+q2+……+qn
Sn=1+q+12+(q+12)2+…..+(q+12)n,q≠1 Given that n+1C1+n+1C2s1+n+1C3s2+…..+n+1Cn+1sn=2nSn
[1984 – 4 Marks]. Is this statement true or false?
n+1C1+n+1C2s1+n+1C3s2+….+n+1Cn+1sn=n+1∑r=1n+1Crsr−1,
where
sn=1+q+q2+…+qn=1−qn+11−q∴n+1∑r=1n+1Cr(1−qr1−q)=11−q(n+1∑r=1n+1Cr−n+1∑r=1n+1Crqr)=11−q[(1+1)n+1−(1+q)n+1]=11−q[2n+1−(1+q)n+1]… (i)
Also, Sn=1+(q+12)+(q+12)2+…+(q+12)n
=1−(q+12)n+11−(q+12)=2n+1−(q+1)n+12n(1−q)…(ii)
From equations (i) and (ii),
n+1C1+n+1C2s1+n+1C3s2+…+n+1Cn+1sn=2nSn
If (1+x)n=C0+C1x+C2x2+……+Cnxn then Given that the sum of the products of the Ci ‘s taken two at a time, represented by ∑0≤i<j≤n∑CiCj is equal to 22n−1−(2n)!2(n!)2. Is this true? [1983 – 3 Marks]
S=∑∑CiCj0≤i<j≤n⇒S=C0(C1+C2+C3+….+Cn)+C1(C2+C3+….+Cn)+C2(C3+C4+C5+…Cn)+…Cn−1(Cn)⇒S=C0(2n−C0)+C1(2n−C0−C1)+C2(2n−C0−C1−C2)+….+Cn−1(2n−C0−C1….Cn−1)+Cn(2n−C0−C1…Cn)⇒S=2n(C0+C1+C2+….+Cn−1+Cn)−(C20+C21+C22+….+C2n)−S⇒2S=2n⋅2n−2n!(n!)2=22n−2n!(n!)2
Given that
C1+2C2x+3C3x2+………..+2nC2nx2n−1=2n(1+x)2n−1
where Cr=(2n)!r!(2n−r)!r=0,1,2,……………,2n
then
C21−2C22+3C23−……………….2nC22n=(−1)nnCn. .
Is this statement true? [1979]
Given : C1+2C2x+3C3x2+…..+2nC2nπ2n−1=2n(1+x)2n−1….(i)
where Cr=2n!r!(2n−r)!
Integrating both sides with respect to x, under the limits 0 to x, we get
[C1x+C2x2+C3x3+….+C2πx2n]x0=[(1+x)2n]x0⇒C1x+C2x2+C3x3+….+C2nx2n=(1+x)2n−1⇒C0+C1x+C2x2+C3x3+….+C2πx2n=(1+x)2n…(ii)
Changing x by −1x, we get
⇒C0−C1x+C2x2−C3x3+….+(−1)2nC2nx2n=(1−1x)2n⇒C0x2n−C1x2n−1+C2x2n−2−C3x2n−3+…..+C2n=(x−1)2n…(iii)
Multiplying eqn. (i) and (iii) and equating the coefficients of x2n−1 on both sides, we get
C21+2C22−3C23+…+2nC22n= coeff.of x2n−1 in 2n(x−1)(x2−1)2n−1=2n [coeff. of x2n−2 in (x2−1)2n−1− coeff. of x2n−1 in (x2−1)2n−1]=2n[[2n−1Cn−1(−1)n−1−0]=(−1)n−1⋅2n2n−1Cn−1⇒− coeff. of x2n−1 in (x2−1)2n−1]=(−1)n⋅2n2n−1Cn−1=(−1)nn⋅(2nn⋅2n−1Cn−1)=(−1)nn⋅2nCn=(−1)nn⋅Cn.(∵3C23+….+2nCnCn)
The remainder when 4282024 is divided by 21 is ____. [JEE Main 2024 (Online) 9th April Morning Shift]
(a)
428=21×20+8⇒(428)2024=(20×21+8)2024=82024(mod21)82=21×3+182024=(21×3+1)1012⇒82024=(21×3+1)1012(mod21)=12012(mod21)4282024=1(mod21)
If the second, third and fourth terms in the expansion of (x+y)n are 135,30 and 103, respectively, then 6(n3+x2+y) is equal to ______. [JEE Main 2024 (Online) 6th April Morning Shift]
T2=nC1y1⋅xn−1=135…(i)T3=nC2y2⋅xn−2=30…(ii)T4=nC3y3xn−3=103…(iii)
By (i) (ii)
nC1nC2xy=92…(iv)
By (ii) (iii) nC2nC3xy=9…(v)
By (iv)(v)nC1nC3nC2nC2=122n2(n−1)(n−2)6=n(n−1)2n(n−1)24n−8=3n−3⇒n=5 put in (v) xy=9x=9y put in (i) 5C1x4(x9)=135x5=27×9⇒x=3,y=136(n3+x2+y)=6(125+9+13)=806
If the constant term in the expansion of (1+2x−3x3)(32x2−13x)9 is p, then 108p is equal to ____. [JEE Main 2024 (Online) 5th April Morning Shift]
General term of (32x2−13x)9
Tr+1=9Cr(32x2)9−r(−13x)r=9Cr(−1)r39−2r2r−9x18−35
Constant term in expansion of (1+2x−3x3)
(32x2−13x)9=T7−3T8=9C63−3⋅2−3+39C7⋅3−5⋅2−2=3×4×733⋅23+3×9×435×22=p=42+12108=54108108p=54
Let a=1+2C23!+3C24!+4C25!+…,b=1+1C0+1C11!+2C0+2C1+2C22!+3C0+3C1+3C2+3C33!+…
Then 2ba2 is equal to ____. [JEE Main 2024 (Online) 4th April Morning Shift]
a=1+2C23!+3C24!+4C25!+…b=1+1C0+1C11!+2C0+2C1+2C22!+…b=1+21!+222!+23!+…=e2 Using ex=1+x1!+x22!+x3!+…a=1+∞∑r=2rC2(r+1)!=1+∑r=2r(r−1)2(r+1)!=1+12∞∑r=2(r+1)r−2r(r+1)!=1+12∞∑r=21(r−1)!−12∑r=22r(r+1)!=1+12(11!+12!+…)−∞∑r=2(r+1)−1(r+1)!=1+12(e−1)−∞∑r=21r!+∑r=21(r+1)!=1+12(e−1)−(e−11!−10!)+(e−11!−10!−12!)=1+e2−12−e+2+e−2−12=e2⇒2ba2=2e2e24=8
If the Coefficient of x30 in the expansion of (1+1x)6(1+x2)7(1−x3)8;x≠0 is α, then |α| equals _____. [JEE Main 2024 (Online) 1st February Morning Shift]
(b) We are given the product of three binomial expansions:
(1+1x)6(1+x2)7(1−x3)8
We need to find the coefficient of x30 in the expansion of this product.
Step 1: Expanding each binomial term
1. Expand (1+1x)6 : The general term for (1+1x)6 is:
2. Expand (1+x2)7 : The general term for (1+x2)7 is:
3. Expand (1−x3)8 : The general term for (1−x3)8 is:
Step 2: Finding the coefficient of x30
Now, we need to find the values of r,s, and t such that the exponents of x from all three expansions sum to 30 :
−r+2s+3t=30
We need to solve for r,s, and t such that this equation holds.
Case 1: r=6
For r=6, we have:
2s+3t=36
Solving this equation for integer values of s and t, we get: s=12,t=8. The corresponding terms are:
\binom{6}{6} \times\binom{ 7}{12} \times\binom{ 8}{8}=678
Thus, the coefficient \alpha is 678 .
Let the coefficient of x^r in the expansion of (x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+3)^{n-3}(x+2)^2+\ldots \ldots \ldots \ldots+(x+2)^{n-1} be \alpha_r. If \sum_{r=0}^n \alpha_r=\beta^n-\gamma^n, \beta, \gamma \in N, then the value of \beta^2+\gamma^2 equals _____. [JEE Main 2024 (Online) 31st January Evening Shift]
\begin{aligned} & (x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+3)^{n-3} \\ & (x+2)^2+\ldots \ldots+(x+2)^{n-1} \\ & \sum \alpha_r=4^{n-1}+4^{n-2} \times 3+4^{n-3} \times 3^2 \ldots \ldots+3^{n-1} \\ & =4^{n-1}\left[1+\frac{3}{4}+\left(\frac{3}{4}\right)^2 \ldots+\left(\frac{3}{4}\right)^{n-1}\right] \\ & =4^{n-1} \times \frac{1-\left(\frac{3}{4}\right)^n}{1-\frac{3}{4}} \\ & =4^n-3^n=\beta^n-\gamma^n \\ & \beta=4, \gamma=3 \\ & \beta^2+\gamma^2=16+9=25 \end{aligned}
In the expansion of (1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0, the sum of the coefficients of x^3 and x^{-13} is equal to ____. [JEE Main 2024 (Online) 31st January Morning Shift]
\begin{aligned} & (1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5 \\ & =(1+x)\left(1-x^2\right)\left(\left(1+\frac{1}{x}\right)^3\right)^5 \\ & =\frac{(1+x)^2(1-x)(1+x)^{15}}{x^{15}} \\ & =\frac{(1+x)^{17}-x(1+x)^{17}}{x^{15}} \end{aligned}
=\operatorname{coeff}\left( x ^3\right) in the expansion \approx \operatorname{coeff}\left( x ^{18}\right) in
\begin{aligned} & (1+x)^{17}-x(1+x)^{17} \\ & =0-1 \\ & =-1 \end{aligned}
coeff \left( x ^{-13}\right) in the expansion \approx \operatorname{coeff}\left( x ^2\right) in
\begin{aligned} & (1+x)^{17}-x(1+x)^{17} \\ & =\binom{17}{2}-\binom{17}{1} \\ & =17 \times 8-17 \\ & =17 \times 7 \\ & =119 \end{aligned}
Hence Answer =119-1=118
Let \alpha=\sum_{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right) and \beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right) If 5 \alpha=6 \beta, then n equals ____. [JEE Main 2024 (Online) 30th January Evening Shift]
\begin{aligned} \alpha= & \sum_{k=0}^n \frac{{ }^n C_k \cdot{ }^n C_k}{k+1} \cdot \frac{n+1}{n+1} \\ & =\frac{1}{n+1} \sum_{k=0}^n{ }^{n+1} C_{k+1} \cdot{ }^n C_{n-k} \\ \alpha & =\frac{1}{n+1} \cdot{ }^{2 n+1} C_{n+1} \\ \beta & =\sum_{k=0}^{n-1} C_k \cdot \frac{{ }^n C_{k+1}}{k+2} \frac{n+1}{n+1} \\ & \frac{1}{n+1} \sum_{k=0}^{n-1}{ }^n C_{n-k} \cdot{ }^{n+1} C_{k+2} \\ & =\frac{1}{n+1} \cdot{ }^{2 n+1} C_{n+2} \\ \frac{\beta}{\alpha} & =\frac{2 n+1}{2 n+1} C_{n+2} \\ \frac{\beta}{\alpha} & =\frac{2 n+1-(n+2)+1}{n+2}=\frac{5}{6} \\ n & =10 \end{aligned}
Number of integral terms in the expansion of \left\{7^{\left(\frac{1}{2}\right)}+11^{\left(\frac{1}{6}\right)}\right\}^{824} is equal to ____. [JEE Main 2024 (Online) 30th January Morning Shift]
General term in expansion of \left((7)^{1 / 2}+(11)^{1 / 6}\right)^{824} is
t _{ r +1}={ }^{824} C _{ r }(7)^{\frac{824- r }{2}}(11)^{ r / 6}
For integral term, r must be multiple of 6 .
Hence r=0,6,12, \ldots \ldots .822
Total = 138.
Remainder when 64^{32^{32}} is divided by 9 is equal to ____. [JEE Main 2024 (Online) 29th January Evening Shift]
Let 32^{32}= t
\begin{aligned} & 64^{32^{32}}=64^t=8^{2 t}=(9-1)^{2 t} \\ & =9 k +1 \end{aligned}
Hence remainder =1
If \frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots+\frac{{ }^{11} C_9}{10}=\frac{n}{m} with \operatorname{gcd}(n, m)=1, then n+m is equal to ____. [JEE Main 2024 (Online) 29th January Morning Shift]
\begin{aligned} & \sum_{ r =1}^9 \frac{{ }^{11} C _{ r }}{ r +1} \\ & =\frac{1}{12} \sum_{ r =1}^9{ }^{12} C _{ r +1} \\ & =\frac{1}{12}\left[2^{12}-26\right]=\frac{2035}{6} \\ & \therefore m + n =2041 \end{aligned}
The coefficient of x^{2012} in the expansion of (1-x)^{2008}\left(1+x+x^2\right)^{2007} is equal to ____. [JEE Main 2024 (Online) 27th January Evening Shift]
\begin{aligned} & (1-x)(1-x)^{2007}\left(1+x+x^2\right)^{2007} \\ & (1-x)\left(1-x^3\right)^{2007} \\ & (1-x)\left({ }^{2007} C_0-{ }^{2007} C_1\left(x^3\right)+\ldots \ldots\right) \end{aligned}
General term
\begin{aligned} & (1-x)\left((-1)^{r 2007} C_r x^{3 r}\right) \\ & (-1)^{r 2007} C_r x^{3 r}-(-1)^{r 2007} C_r x^{3 r+1} \\ & 3 r=2012 \\ & r \neq \frac{2012}{3} \\ & 3 r+1=2012 \\ & 3 r=2011 \\ & r \neq \frac{2011}{3} \end{aligned}
Hence there is no term containing x ^{2012}.
So coefficient of x^{2012}=0
The remainder, when 7^{103} is divided by 17 , is ____. [JEE Main 2023 (Online) 13th April Evening Shift]
\begin{aligned} & 7^{103}=7 \times 7^{102} \\ & =7 \times(49)^{51} \\ & =7 \times(51-2)^{51} \\ & \text { Remainder }=7 \times(-2)^{51} \\ & =-7\left(2^3 \cdot(16)^{12}\right) \\ & =-56(17-1)^{12} \\ & \text { Remainder }=-56 \times(-1)^{12}=-56+68=12 \end{aligned}
Let \alpha be the constant term in the binomial expansion of \left(\sqrt{x}-\frac{6}{x^{\frac{3}{2}}}\right)^n, n \leq 15. If the sum of the coefficients of the remaining terms in the expansion is 649 and the coefficient of x^{-n} is \lambda \alpha, then \lambda is equal to ____. [JEE Main 2023 (Online) 13th April Morning Shift]
Given expression \left(\sqrt{x}-\frac{6}{x^{3 / 2}}\right)^n. Here, a=\sqrt{x} and b=-\frac{6}{x^{3 / 2}}.
The r-th term of the binomial expansion of (a+b)^n is given by
T_r={ }^n C_r a^{n-r} b^r \text {. }
Substitute a and b in this formula, we get:
T_r={ }^n C_r(\sqrt{x})^{n-r}\left(-\frac{6}{x^{3 / 2}}\right)^r={ }^n C_r(-6)^r x^{\frac{n-4 r}{2}} .
The constant term in the binomial expansion is obtained when the power of x in the terms equals zero.
This happens when \frac{n-4 r}{2}=0, which gives n=4 r.
\begin{aligned} & { }^n C_{\frac{n}{4}}(-6)^{\frac{n}{4}}=\alpha \\ & (-5)^n-{ }^n C_{\frac{n}{4}}(-6)^{n / 4}=649 \end{aligned}
By observation (625+24=649), we get n=4
\therefore \alpha=-24
Now, for coefficient of x^{-4}
\begin{aligned} & \frac{n-4 r}{2}=-4 \\ & n=4 r-8 \Rightarrow r=3 \\ & \lambda(-24)=(-6)^3 \cdot{ }^4 C_3 \\ & \Rightarrow \lambda=36 \end{aligned}
The mean of the coefficients of x, x^2, \ldots, x^7 in the binomial expansion of (2+x)^9 is ____. [JEE Main 2023 (Online) 11th April Morning Shift]
We have, binomial coefficient, (2+x)^9
T_{r+1}={ }^n C_r 2^{n-r} \times x^r
Coefficient of x\left(T_1\right)={ }^9 C_1 \times 2^8
Coefficient of x^2\left(T_2\right)={ }^9 C_2 \times 2^7
Coefficient of x^3\left(T_3\right)={ }^9 C_3 \times 2^6
. .
. .
. .
Coefficient of x^7\left(T_7\right)={ }^9 C_7 \times 2^2
Mean =\frac{{ }^9 C_1 \times 2^8+{ }^9 C_2 \times 2^7+{ }^9 C_3 \times 2^6+\ldots+{ }^9 C_7 \times 2^2}{7}
\begin{aligned} & { }^9 C_0 \times 2^9+{ }^9 C_1 \times 2^8+{ }^9 C_2 \times 2^7+{ }^9 C_3 \times 2^6+\ldots+{ }^9 C_7 \times 2^2 \\ & =\frac{+{ }^9 C_8 \times 2^1+{ }^9 C_9 \times 2^0-{ }^9 C_0 \times 2^9-{ }^9 C_8 \times 2^1-{ }^9 C_9 \times 2^0}{7} \\ & =\frac{(1+2)^9-2^9-18-1}{7}=\frac{19152}{7}=2736 \end{aligned}
The number of integral terms in the expansion of \left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680} is equal to ____. [JEE Main 2023 (Online) 11th April Morning Shift]
General term of the expansion \left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680}
={ }^{680} C_r\left(3^{1 / 2}\right)^{680-r}\left(5^{1 / 4}\right)^r={ }^{680} C_r \times 3^{\frac{680-r}{2}} \times 5^{\frac{r}{4}}
The term will be integral if r is a multiple of 4 .
\therefore r=0,4,8,12, \ldots, 680 (which is an AP)
\begin{aligned} & 680=0+(n-1) 4 \\ & n=\frac{680}{4}+1=171 \end{aligned}
The coefficient of x^7 in \left(1-x+2 x^3\right)^{10} is ______. [JEE Main 2023 (Online) 10th April Morning Shift]
Given expression is \left(1-x+2 x^3\right)^{10}
So, general term is \frac{10!}{r_{1}!r_{2}!r_{3}!}(1)^{r_1}(-1)^{r_2} \cdot(2)^{r_3} \cdot(x)^{r_2+r_3}
Where, r_1+r_2+r_3=10 and r_2+3 r_3=7
\begin{aligned} &\text { Now, for possibility, }\\ &\begin{array}{ccc} r_1 & r_2 & r_3 \\ 3 & 7 & 0 \\ 7 & 1 & 2 \\ 5 & 4 & 1 \end{array} \end{aligned}
Thus, required co-efficient
\begin{aligned} & =\frac{10!}{3!7!}(-1)^7+\frac{10!}{5!4!}(-1)^4(2)+\frac{10!}{7!2!}(-1)^1(2)^2 \\ & =-120+2520-1440 \\ & =2520-1560=960 \end{aligned}
Let [t] denote the greatest integer \leq t. If the constant term in the expansion of \left(3 x^2-\frac{1}{2 x^5}\right)^7 is \alpha, then [\alpha] is equal to ____. [JEE Main 2023 (Online) 8th April Morning Shift]
Let T _{r+1} be the constant term.
T _{r+1}={ }^7 C _r\left(3 x^2\right)^{7-r}\left(\frac{-1}{2 x^5}\right)^r
For constant term, power of x should be zero.
i.e., 14-2 r-5 r=0
\Rightarrow 14=7 r \Rightarrow r=2
Now, constant term =\alpha
\begin{aligned} & \Rightarrow{ }^7 C_2(3)^5\left(\frac{-1}{2}\right)^2=\alpha \\ & \Rightarrow 21 \times 243 \times \frac{1}{4}=\alpha \\ & \Rightarrow[\alpha]=[1275.75]=1275 \end{aligned}
The largest natural number n such that 3^n divides 66 ! is ____. [JEE Main 2023 (Online) 8th April Morning Shift]
We have,
\begin{aligned} & {\left[\frac{66}{3}\right]=22} \\ & {\left[\frac{66}{3^2}\right]=7} \\ & {\left[\frac{66}{3^3}\right]=2} \end{aligned}
Highest powers of 3 is greater than 66 . So, their g.i.f. is always 0 .
\therefore Required natural number =22+7+2=31
The coefficient of x^{18} in the expansion of \left(x^4-\frac{1}{x^3}\right)^{15} is ___. [JEE Main 2023 (Online) 6th April Morning Shift]
\begin{aligned} T_{r+1} & ={ }^{15} C_r\left(x^4\right)^{15-r}\left(-\frac{1}{x^3}\right)^r={ }^{15} C_r(-1)^r x^{60-4 r-3 r} \\ & ={ }^{15} C_r(-1)^r x^{60-7 r} \end{aligned}
\begin{array}{r} \therefore 60-7 r=18 \\ \Rightarrow 7 r=42 \\ \Rightarrow r=6 \end{array}
\therefore The coefficient of x^{18}
={ }^{15} C_6(-1)^6=\frac{15 \times 14 \times 13 \times 12 \times 11 \times 10}{6 \times 5 \times 4 \times 3 \times 2 \times 1}=5005
Let the sixth term in the binomial expansion of \left(\sqrt{2^{\log _2\left(10-3^x\right)}}+\sqrt[5]{2^{(x-2) \log _2 3}}\right)^m in the increasing powers of 2^{(x-2) \log _2 3}, be 21 . If the binomial coefficients of the second, third and fourth terms in the expansion are respectively the first, third and fifth terms of an A.P., then the sum of the squares of all possible values of x is ____. [JEE Main 2023 (Online) 1st February Evening Shift]
{ }^m C_1,{ }^m C_2,{ }^m C_3 are first, third and fifth term of A P
\begin{aligned} \therefore \quad & a={ }^m C_1 \\ & a+2 d={ }^m C_2 \\ & a+4 d={ }^m C_3 \end{aligned}
\begin{gathered} \therefore \quad 2{ }^m C_2-{ }^m C_3=m \\ \Rightarrow m=7 \text { or } m=2 \end{gathered}
\because m=2 is not possible
\therefore m=7
T _6={ }^{ m } C _5\left(10-3^{ x }\right)^{\frac{ m -5}{2}} \cdot\left(3^{ x -2}\right)=21
Putting value of m=7, we get
\begin{aligned} & T_{5+1}={ }^7 C_5\left(10-3^x\right)^{\frac{7-5}{2}} 3^{x-2}=21 \\ & \Rightarrow \frac{10.3^x-\left(3^x\right)^2}{3^2}=1 \\ & \Rightarrow\left(3^x\right)^2-10 \cdot 3^x+9=0 \\ & \Rightarrow 3^x=9,1 \\ & \Rightarrow x=0,2 \end{aligned}
Sum of squares of values of x=0^2+2^2=4
If the term without x in the expansion of \left(x^{\frac{2}{3}}+\frac{\alpha}{x^3}\right)^{22} is 7315 , then |\alpha| is equal to ____. [JEE Main 2023 (Online) 1st February Evening Shift]
Given expansion \left(x^{\frac{2}{3}}+\frac{\alpha}{x^3}\right)^{22}
T_{r+1}={ }^{22} C_r\left(x^{\frac{2}{3}}\right)^{22-r}\left(\frac{\alpha}{x^3}\right)^r
For constant term
\begin{aligned} & \frac{44-2 r}{3}-3 r=0 \\ & \Rightarrow r=4 \end{aligned}
Now { }^{22} C _4 \alpha^4=7315
\frac{22 \times 21 \times 20 \times 19}{4 \times 3 \times 2 \times 1} \alpha^4=7315
\begin{aligned} & \therefore \alpha^4=1 \\ & \therefore|\alpha|=1 \end{aligned}
The remainder, when 19^{200}+23^{200} is divided by 49 , is ____. [JEE Main 2023 (Online) 1st February Morning Shift]
\begin{aligned} & 19^{200}+23^{200} \\ & =(21-2)^{200}+(21+2)^{200}=49 \lambda+2^{201} \end{aligned}
Now, 2^{201}=8^{67}=(7+1)^{67}=49 \lambda+7 \times 67+1
\begin{aligned} & =49 \lambda+470 \\ & =49(\lambda+9)+29 \\ & \therefore \text { Remainder }=29 \end{aligned}
The coefficient of x^{-6}, in the expansion of \left(\frac{4 x}{5}+\frac{5}{2 x^2}\right)^9, is ____. [JEE Main 2023 (Online) 31st January Evening Shift]
Coeff of x^{-6} in \left(\frac{4 x}{5}+\frac{5}{2 x^2}\right)^9
\begin{aligned} T_{r+1} & ={ }^9 C_r\left(\frac{4 x}{5}\right)^{9-r}\left(\frac{5}{2 x^2}\right)^r \\ 9-3 r & =-6 \\ r & =5 \end{aligned}
Coeff of x^{-6}={ }^9 C_5\left(\frac{4}{5}\right)^4\left(\frac{5}{2}\right)^5=5040
If the constant term in the binomial expansion of \left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^l}\right)^9 is -84 and the coefficient of x^{-3 l} is 2^\alpha \beta, where \beta<0 is an odd number, then |\alpha l-\beta| is equal to ____. [JEE Main 2023 (Online) 31st January Evening Shift]
Given binomial expansion of \left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^l}\right)^9
\begin{aligned} T_{r+1} & ={ }^9 C_r\left(\frac{x^{\frac{5}{2}}}{2}\right)^{9-r}\left(\frac{-4}{x^l}\right)^r \\ & ={ }^9 C_r x^{\frac{45-5 r}{2}-l r} \cdot 2^{r-9} \cdot 4^r \cdot(-1)^r \end{aligned}
For constant term, power of x is zero.
So, \frac{45-5 r}{2}=l r \Rightarrow 2 l r+5 r=45
Now constant term =-84
and { }^9 C_r \cdot 2^{3 r-9}(-1)^r=-84
So, r=3 and l=5
Now for x^{-15}, \frac{45-5 r}{2}-5 r=-15
\begin{aligned} & \Rightarrow 45-15 r=-30 \\ & \Rightarrow r=5 \end{aligned}
\therefore Coefficient =-{ }^9 C_5 2^6=-63.2^7
\therefore \alpha=7, \beta=-63
and |\alpha l-\beta|=|7 \times 5+63|=98
The remainder on dividing 5^{99} by 11 is ____. [JEE Main 2023 (Online) 31st January Morning Shift]
\begin{aligned} & 5^{99}=5^4 \cdot 5^{95} \\ & =625\left[5^5\right]^{19} \\ & =625[3125]^{19} \\ & =625[3124+1]^{19} \\ & =625[11 k \times 19+1] \\ & =625 \times 11 k \times 19+625 \\ & =11 k _1+616+9 \\ & =11\left( k _2\right)+9 \\ & \text { Remainder }=9 \end{aligned}
Let \alpha>0, be the smallest number such that the expansion of \left(x^{\frac{2}{3}}+\frac{2}{x^3}\right)^{30} has a term \beta x^{-\alpha}, \beta \in N. Then \alpha is equal to ____. [JEE Main 2023 (Online) 31st January Morning Shift]
\begin{aligned} & T _{ r +1}={ }^{30} C _{ r }\left( x ^{2 / 3}\right)^{30- r }\left(\frac{2}{ x ^3}\right)^{ r } \\ & ={ }^{30} C _{ r } \cdot 2^{ r } \cdot x ^{\frac{60-11 r }{3}} \\ & \frac{60-11 r }{3}<0 \\ & \Rightarrow 11 r >60 \\ & \Rightarrow r >\frac{60}{11} \\ & \Rightarrow r =6 \\ & T _7={ }^{30} C _6 \cdot 2^6 x ^{-2} \end{aligned}
We have also observed \beta={ }^{30} C _6(2)^6 is a natural number.
\therefore \alpha=2
50^{\text {th }} root of a number x is 12 and 50^{\text {th }} root of another number y is 18 . Then the remainder obtained on dividing (x+y) by 25 is ____. [JEE Main 2023 (Online) 30th January Evening Shift]
\begin{aligned} & \text { Given } x^{\frac{1}{50}}=12 \Rightarrow x=12^{50} \\ & y^{\frac{1}{50}}=18 \Rightarrow y=18^{50} \\ & 12 \equiv 13(\operatorname{Mod} 25) \\ & 12^2 \equiv 19(\operatorname{Mod} 25) \\ & 12^3 \equiv-3(\operatorname{Mod} 25) \\ & 12^9 \equiv-2(\operatorname{Mod} 25) \\ & 12^{10} \equiv-1(\operatorname{Mod} 25) \\ & 12^{50} \equiv-1(\operatorname{Mod} 25) \dots(i) \end{aligned}
Now
18 \equiv 7(\operatorname{Mod} 25)
18^2 \equiv-1(\operatorname{Mod} 25)
18^{-50} \equiv-1(\operatorname{Mod} 25) \dots(ii)
\therefore 12^{50}+18^{50} \equiv-2(\operatorname{Mod} 25)
\equiv 23(\operatorname{Mod} 25)
\therefore Answer =23
Let the coefficients of three consecutive terms in the binomial expansion of (1+2 x)^n be in the ratio 2: 5: 8. Then the coefficient of the term, which is in the middle of those three terms, is ____. [JEE Main 2023 (Online) 29th January Morning Shift]
\begin{aligned} & t _{ r +1}={ }^{ n } C _{ r }(2 x )^{ r } \\ & \Rightarrow \frac{{ }^{ n } C _{ r -1}(2)^{ r -1}}{{ }^{ n } C _{ r }(2)^{ r }}=\frac{2}{5} \\ & \Rightarrow \frac{\frac{n!}{(r-1)!(n-r+1)!}}{\frac{n!(2)}{r!(n-r)!}}=\frac{2}{5} \\ & \Rightarrow \frac{ r }{ n – r +1}=\frac{4}{5} \Rightarrow 5 r =4 n -4 r +4 \\ & \Rightarrow 9 r =4( n +1) \quad \ldots(1) \end{aligned}
\begin{aligned} & \Rightarrow \frac{{ }^n C_r(2)^{ r }}{{ }^{ n } C _{ r +1}(2)^{ r +1}}=\frac{5}{8} \\ & \Rightarrow \frac{\frac{n!}{r!(n-r)!}}{\frac{n!}{(r+1)!(n-r-1)!}}=\frac{5}{4} \Rightarrow \frac{r+1}{n-r}=\frac{5}{4} \end{aligned}
\Rightarrow 4 r+4=5 n-5 r \Rightarrow 5 n-4=9 r \dots(2)
From (1) and (2)
\Rightarrow 4 n +4=5 n -4 \Rightarrow n =8
(1) \Rightarrow r=4
so, coefficient of middle term is
{ }^8 C _4 2^4=16 \times \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}=16 \times 70=1120
If the co-efficient of x^9 in \left(\alpha x^3+\frac{1}{\beta x}\right)^{11} and the co-efficient of x^{-9} in \left(\alpha x-\frac{1}{\beta x^3}\right)^{11} are equal, then (\alpha \beta)^2 is equal to ____. [JEE Main 2023 (Online) 29th January Morning Shift]
Coefficient of x ^9 in \left(\alpha x^3+\frac{1}{\beta x}\right)={ }^{11} C_6 \cdot \frac{\alpha^5}{\beta^6}
\because Both are equal
\begin{aligned} & \therefore { }^{11} C_6 \cdot \frac{\alpha^5}{\beta^6}=-{ }^{11} C_6 \cdot \frac{\alpha^6}{\beta^5} \\ & \Rightarrow \frac{1}{\beta}=-\alpha \\ & \Rightarrow \alpha \beta=-1 \\ & \Rightarrow(\alpha \beta)^2=1 \end{aligned}
The remainder when (2023)^{2023} is divided by 35 is ____. [JEE Main 2023 (Online) 25th January Evening Shift]
\begin{aligned} & (2023)^{2023} \\ & =(2030-7)^{2023} \\ & =(35 K -7)^{2023} \end{aligned}
={ }^{2023} C _0(35 K )^{2023}(-7)^0+{ }^{2023} C _1(35 K )^{2022}(-7)+\ldots \ldots+\ldots \ldots .+{ }^{2023} C _{2023}(-7)^{2023}
=35 N -7^{2023}
Now,-7^{2023}=-7 \times 7^{2022}=-7\left(7^2\right)^{1011}
=-7(50-1)^{1011}
=-7\left({ }^{1011} C _0 50^{1011}-{ }^{1011} C _1(50)^{1010}+\ldots . .{ }^{1011} C _{1011}\right)
\begin{aligned} & =-7(5 \lambda-1) \\ & =-35 \lambda+7 \end{aligned}
\therefore when (2023)^{2023} is divided by 35 remainder is 7.
The constant term in the expansion of \left(2 x+\frac{1}{x^7}+3 x^2\right)^5 is ____. [JEE Main 2023 (Online) 25th January Morning Shift]
\begin{aligned} & \left(2 x+\frac{1}{x^7}+3 x^2\right)^5 \\ & \frac{1}{x^{35}}\left(2 x^8+1+3 x^9\right)^5 \\ & \frac{1}{x^{35}}\left(1+x^8(3 x+2)\right)^5 \end{aligned}
Term independent of x= coefficient of x^{35} in
\begin{aligned} & { }^5 C_4\left(x^8(3 x+2)\right)^4 \\ = & { }^5 C_4 \text { coefficient of } x^3 \text { in }(2+3 x)^4 \\ = & { }^5 C_4 \times{ }^4 C_3(2)^1(3)^3 \\ = & 5 \times 4 \times 2 \times 27 \\ = & 1080 \end{aligned}
Let the sum of the coefficients of the first three terms in the expansion of \left(x-\frac{3}{x^2}\right)^n, x \neq 0 . n \in N, be 376. Then the coefficient of x^4 is ______. [JEE Main 2023 (Online) 24th January Evening Shift]
\begin{aligned} & S=1-3 n+\frac{9 n(n-1)}{2}=376 \\ & 3 n^2-5 n-250=0 \\ & n=10, \frac{-25}{3} \text { (Rejected) } \\ & T_{r+1}={ }^n C_r \cdot x^{n-r}\left(\frac{-3}{x^2}\right)^r \\ & ={ }^n C_r x^{n-3 r}(-3)^r \\ & ={ }^{10} C_r x^{10-3 r}(-3)^r \end{aligned}
Here r=2
\begin{aligned} \text { Required coefficient } & ={ }^{10} C _2(-3)^2 \\ & =45 \times 9 \\ & =405 \end{aligned}
Suppose \sum_{r=0}^{2023} r^2{ }^{2023} C_r=2023 \times \alpha \times 2^{2022}. Then the value of \alpha is ____. [JEE Main 2023 (Online) 24th January Morning Shift]
\begin{aligned} & \text { (1) }{ }^n C_r=\frac{n}{r} \cdot{ }^{n-1} C_{r-1} \\ & \text { Given, } \\ & \sum_{r=0}^{2023} r^2 \cdot{ }^{2023} C_r \\ & =\sum_{r=0}^{2023} r^2 \cdot \frac{2023}{r} \cdot{ }^{2022} C_{r-1} \\ & =2023 \sum_{r=0}^{2023} r \cdot{ }^{2022} C_{r-1} \\ & =2023 \sum_{r=0}^{2023}[(r-1)+1] \cdot{ }^{2022} C_{r-1} \\ & =2023\left[\sum_{r=0}^{2023}(r-1) \cdot{ }^{2022} C_{r-1}+\sum_{r=0}^{2023}{ }^{2022} C_{r-1}\right] \\ & =2023\left[\sum_{r=0}^{2023}(r-1) \cdot \frac{2022}{(r-1)} \cdot{ }^{2021} C_{r-2}+2^{2022}\right] \\ & =2023\left[2022 \sum_{r=0}^{2023}{ }^{2021} C_{r-2}+2^{2022}\right] \\ & =2023\left[2022 \cdot 2^{2021}+2^{2022}\right] \\ & =2023 \cdot 2^{2021}[2022+2] \\ & =2023 \cdot 2^{2021} \cdot 2024 \end{aligned}
\begin{aligned} & =2023 \cdot \frac{2^{2022}}{2} \cdot 2024 \\ & =2023 \cdot 2^{2022} \cdot 1012 \\ & \therefore \alpha=1012 \end{aligned}
If \sum_{k=1}^{10} K^2\left({ }^{10}{C_K}\right)^2=22000 L, then L is equal to ____. [JEE Main 2022 (Online) 29th July Evening Shift]
Given,
\begin{aligned} & \sum_{k=1}^{10} k^2\left({ }^{10} C_k\right)^2=2200 L \\ & \Rightarrow \sum_{k=1}^{10}\left(k \cdot{ }^{10} C_k\right)^2=22000 L \\ & \Rightarrow \sum_{k=1}^{10}\left(k \cdot \frac{10}{k} \cdot{ }^9 C_{k-1}\right)^2=22000 L \\ & \Rightarrow \sum_{k=1}^{10}\left(10 \cdot{ }^9 C_{k-1}\right)^2=22000 L \end{aligned}
\begin{aligned} & \Rightarrow 100 \cdot \sum_{k=1}^{10}\left({ }^9 C_{k-1}\right)^2=22000 L \\ & \Rightarrow 100\left(\left({ }^9 C_0\right)^2+\left({ }^9 C_1\right)^2+\ldots .+\left({ }^9 C_9\right)^2\right)=22000 L \\ & \Rightarrow 100\left({ }^{18} C_9\right)=22000 L \end{aligned}
[Note : \left({ }^n C_1\right)^2+\left({ }^n C_2\right)^2+\ldots+\left({ }^n C_n\right)^2={ }^{2 n} C_n ]
\begin{aligned} & \Rightarrow 100 \times \frac{18!}{9!9!}=22000 L \\ & \Rightarrow L=221 \end{aligned}
Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of \left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^n, in the increasing powers of \frac{1}{\sqrt[4]{3}} be \sqrt[4]{6}: 1. If the sixth term from the beginning is \frac{\alpha}{\sqrt[4]{3}}, then \alpha is equal to _____. [JEE Main 2022 (Online) 29th July Morning Shift]
Fifth term from beginning ={ }^n C_4\left(2^{\frac{1}{4}}\right)^{n-4}\left(3^{\frac{-1}{4}}\right)^4
Fifth term from end =(n-5+1)^{\text {th }} term from begin ={ }^n C_{n-4}\left(2^{\frac{1}{4}}\right)^3\left(3^{\frac{-1}{4}}\right)^{n-4}
\begin{aligned} & \text { Given } \frac{{ }^n C_4 2^{\frac{n-4}{4}} \cdot 3^{-1}}{{ }^n C_{n-3} 2^{\frac{4}{4}} \cdot 3^{-\left(\frac{n-4}{4}\right)}}=6^{\frac{1}{4}} \\ & \Rightarrow 6^{\frac{n-8}{4}}=6^{\frac{1}{4}} \\ & \Rightarrow \frac{n-8}{4}=\frac{1}{4} \Rightarrow n=9 \\ & T_6=T_{5+1}={ }^9 C_5\left(2^{\frac{1}{4}}\right)^4\left(3^{\frac{-1}{4}}\right)^5 \\ & =\frac{{ }^9 C_5 \cdot 2}{3^{\frac{1}{4}} \cdot 3}=\frac{84}{3^{\frac{1}{4}}}=\frac{\alpha}{3^{\frac{1}{4}}} \\ & \Rightarrow \alpha=84 \end{aligned}
Let the coefficients of the middle terms in the expansion of \left(\frac{1}{\sqrt{6}}+\beta x\right)^4,(1-3 \beta x)^2 and \left(1-\frac{\beta}{2} x\right)^6, \beta>0, respectively form the first three terms of an A.P. If d is the common difference of this A.P. , then 50-\frac{2 d}{\beta^2} is equal to _______. [JEE Main 2022 (Online) 28th July Evening Shift]
Coefficients of middle terms of given expansions are { }^4 C_2 \frac{1}{6} \beta^2,{ }^2 C_1(-3 \beta),{ }^6 C_3\left(\frac{-\beta}{2}\right)^3 form an A.P.
\begin{aligned} & \therefore 2.2(-3 \beta)=\beta^2-\frac{5 \beta^3}{2} \\ & \Rightarrow-24=2 \beta-5 \beta^2 \\ & \Rightarrow 5 \beta^2-2 \beta-24=0 \\ & \Rightarrow 5 \beta^2-12 \beta+10 \beta-24=0 \\ & \Rightarrow \beta(5 \beta-12)+2(5 \beta-12)=0 \\ & \beta=\frac{12}{5} \\ & d=-6 \beta-\beta^2 \\ & \therefore 50-\frac{2 d}{\beta^2}=50-2 \frac{\left(-6 \beta-\beta^2\right)}{\beta^2}=50+\frac{12}{\beta}+2=57 \end{aligned}
If 1+\left(2+{ }^{49} C_1+{ }^{49} C_2+\ldots+{ }^{49} C_{49}\right)\left({ }^{50} C_2+{ }^{50} C_4+\ldots+{ }^{50} C_{50}\right) is equal to 2^{ n } \cdot m, where m is odd, then n + m is equal to _____. [JEE Main 2022 (Online) 28th July Evening Shift]
l=1+\left(1+{ }^{49} C_0+{ }^{49} C_1+\ldots+{ }^{49} C_{49}\right)\left({ }^{50} C_2+{ }^{50} C_4+\ldots+{ }^{50} C_{50}\right)
As { }^{49} C_0+{ }^{49} C_1+\ldots \ldots+{ }^{49} C_{49}=2^{49}
and { }^{50} C_0+{ }^{50} C_2+\ldots+{ }^{50} C_{50}=2^{49}
\begin{aligned} & \Rightarrow{ }^{50} C_2+{ }^{50} C_4+\ldots+{ }^{50} C_{50}=2^{49}-1 \\ & \therefore l=1+\left(2^{49}+1\right)\left(2^{49}-1\right) \\ & =2^{98} \\ & \therefore m=1 \text { and } n=98 \\ & m+n=99 \end{aligned}
Let for the 9^{\text {th }} term in the binomial expansion of (3+6 x)^{ n }, in the increasing powers of 6 x, to be the greatest for x=\frac{3}{2}, the least value of n is n _0. If k is the ratio of the coefficient of x^6 to the coefficient of x^3, then k + n _0 is equal to : [JEE Main 2022 (Online) 27th July Evening Shift]
(3+6 x)^n=3^n(1+2 x)^n
If T _9 is numerically greatest term
\begin{aligned} & \therefore T_8 \leq T_9 \leq T_{10} \\ & { }^n C_7 3^{n-7}(6 x)^7 \leq{ }^n C_8 3^{n-8}(6 x)^8 \geq{ }^n C_9 3^{n-9}(6 x)^9 \\ & \Rightarrow \frac{n!}{(n-7)!7!} 9 \leq \frac{n!}{(n-8)!8!} 3 \cdot(6 x) \geq \frac{n!}{(n-9)!9!}(6 x)^2 \\ & \Rightarrow \underbrace{\frac{9}{(n-7)(n-8)}} \leq \underbrace{\frac{18\left(\frac{3}{2}\right)}{(n-8) 8} \geq \frac{36}{9.8} \frac{9}{4}} \end{aligned}
\begin{aligned} & 72 \leq 27(n-7) \text { and } 27 \geq 9(n-8) \\ & \frac{29}{3} \leq n \text { and } n \leq 11 \\ & \therefore n_0=10 \\ & \text { For }(3+6 x)^{10} \\ & T_{r+1}={ }^{10} C_r \\ & 3^{10-r}(6 x)^r \end{aligned}
For coeff. of x^6
r=6 \Rightarrow{ }^{10} C_6 3^4 \cdot 6^6
For coeff. of x^3
\begin{aligned} & r=3 \Rightarrow{ }^{10} C_3 3^7 \cdot 6^3 \\ & \therefore k=\frac{{ }^{10} C_6}{{ }^{10} C_3} \cdot \frac{3^4 \cdot 6^6}{3^7 \cdot 6^3}=\frac{10!7!3!}{6!4!10!} \cdot 8 \\ & \Rightarrow k=14 \\ & \therefore k+n_0=24 \end{aligned}
If the coefficients of x and x^2 in the expansion of (1+x)^{ p }(1-x)^{ q }, p , q \leq 15, are -3 and -5 respectively, then the coefficient of x^3 is equal to _____. [JEE Main 2022 (Online) 26th July Morning Shift]
\begin{aligned} & \text { Coefficient of } x \text { in }(1+x)^p(1-x)^q \\ & -{ }^p C_0{ }^q C_1+{ }^p C_1{ }^q C_0=-3 \Rightarrow p-q=-3 \\ & \text { Coefficient of } x ^2 \text { in }(1+x)^p(1-x)^q \\ & { }^p C_0{ }^q C_2-{ }^p C_1{ }^q C_1+{ }^p C_2{ }^q C_0=-5 \\ & \frac{q(q-1)}{2}-p q+\frac{p(q-1)}{2}=-5 \\ & \frac{q^2-q}{2}-(q-3) q+\frac{(q-3)(q-4)}{2}=-5 \\ & \Rightarrow q=11, p=8 \\ & \text { Coefficient of } x ^3 \text { in }(1+x)^8(1-x)^{11} \\ & =-{ }^{11} C_3+{ }^8 C_1{ }^{11} C_2-{ }^8 C_2{ }^{11} C_1+{ }^8 C_3=23 \end{aligned}
If the maximum value of the term independent of t in the expansion of \left( t ^2 x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{ t }\right)^{15}, x \geqslant 0, is K, then 8 K is equal to _____. [JEE Main 2022 (Online) 25th July Morning Shift]
General term of \left(t^2 x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{15} is
\begin{aligned} & T_{r+1}={ }^{15} C_r \cdot\left(t^2 x^{\frac{1}{5}}\right)^{15-r} \cdot\left(\frac{(1-x)^{\frac{1}{10}}}{t}\right)^r \\ & ={ }^{15} C_r \cdot t^{30-2 r} \cdot x^{\frac{15-r}{5}} \cdot(1-x)^{\frac{r}{10}} \cdot t^{-r} \\ & ={ }^{15} C_r \cdot t^{30-3 r} \cdot x^{\frac{15-r}{5}} \cdot(1-x)^{\frac{r}{10}} \end{aligned}
Term will be independent of t when 30-3 r=0 \Rightarrow r=10
\therefore T_{10+1}=T_{11} will be independent of t
\begin{aligned} & \therefore T_{11}={ }^{15} C_{10} \cdot x^{\frac{15-10}{5}} \cdot(1-x)^{\frac{10}{10}} \\ & ={ }^{15} C_{10} \cdot x^1 \cdot(1-x)^1 \end{aligned}
T _{11} will be maximum when x(1-x) is maximum.
Let f(x)=x(1-x)=x-x^2
f(x) is maximum or minimum when f^{\prime}(x)=0
\therefore f^{\prime}(x)=1-2 x
For maximum / minimum f^{\prime}(x)=0
\begin{aligned} & \therefore 1-2 x=0 \\ & \Rightarrow x=\frac{1}{2} \end{aligned}
Now, f^{\prime \prime}(x)=-2<0
\therefore At x=\frac{1}{2}, f(x) maximum
\therefore Maximum value of T _{11} is
\begin{aligned} & ={ }^{15} C_{10} \cdot \frac{1}{2}\left(1-\frac{1}{2}\right) \\ & ={ }^{15} C_{10} \cdot \frac{1}{4} \end{aligned}
Given K={ }^{15} C_{10} \cdot \frac{1}{4}
Now, 8 K=2\left({ }^{15} C_{10}\right)
=6006
Let the coefficients of x ^{-1} and x ^{-3} in the expansion of \left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x>0, be m and n respectively. If r is a positive integer such that m n^2={ }^{15} C_r \cdot 2^r, then the value of r is equal to _____. [JEE Main 2022 (Online) 29th June Evening Shift]
Given, Binomial expansion
\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}
\therefore General Term
\begin{aligned} & T_{r+1}={ }^{15} C_r \cdot\left(2 x^{\frac{1}{5}}\right)^{15-r} \cdot\left(-\frac{1}{x^{\frac{1}{5}}}\right)^r \\ & ={ }^{15} C_r \cdot 2^{15-r} \cdot x^{\frac{1}{5}(15-r-r)} \cdot(-1)^r \end{aligned}
For x^{-1} term;
\begin{aligned} & \frac{1}{5}(15-2 r)=-1 \\ & \Rightarrow 15-2 r=-5 \\ & \Rightarrow 2 r=20 \\ & \Rightarrow r=10 \end{aligned}
m is the coefficient of x^{-1} term,
\begin{aligned} & \therefore m={ }^{15} C_{10} \cdot 2^{15-10} \cdot(-1)^{10} \\ & ={ }^{15} C_{10} \cdot 2^5 \end{aligned}
For x^{-3} term;
\begin{aligned} & \frac{1}{5}(15-2 r)=-3 \\ & \Rightarrow 15-2 r=-15 \\ & \Rightarrow 2 r=30 \\ & \Rightarrow r=15 \end{aligned}
n is the coefficient of x^{-3} term,
\begin{aligned} & \therefore n={ }^{15} C_{15} \cdot 2^{15-15} \cdot(-1)^{15} \\ & =1 \cdot 1 \cdot-1 \\ & =-1 \end{aligned}
Given,
\begin{aligned} & m n^2={ }^{15} C_r \cdot 2^r \\ & \left.\Rightarrow{ }^{15} C_{10} \cdot 2^5 \cdot(1)^2={ }^{15} C_r \cdot 2^r \text { [putting value of } m \text { and } n \right] \\ & \Rightarrow{ }^{15} C_{15-10} \cdot 2^5={ }^{15} C_r \cdot 2^r \\ & \Rightarrow{ }^{15} C_5 \cdot 2^5={ }^{15} C_r \cdot 2^r \end{aligned}
Comparing both side, we get
r=5
The number of positive integers k such that the constant term in the binomial expansion of \left(2 x^3+\frac{3}{x^k}\right)^{12}, x \neq 0 \text { is } 2^8 . I, \text { where I is an odd integer, is } _____. [JEE Main 2022 (Online) 28th June Morning Shift]
(b) Given Binomial expression is
\left(2 x^3+\frac{3}{x^k}\right)^{12}
General term,
\begin{aligned} & T_{r+1}={ }^{12} C_r\left(2 x^3\right)^r \cdot\left(\frac{3}{x^k}\right)^{12-r} \\ & =\left({ }^{12} C_r \cdot 2^r \cdot 3^{12-r}\right) \cdot x^{3 r-12 k+k r} \end{aligned}
For constant term,
\begin{aligned} & 3 r-12 k+k r=0 \\ & \Rightarrow k(12-r)=3 r \\ & \Rightarrow k=\frac{3 r}{12-r} \end{aligned}
For r =1, k=\frac{3}{11} (not integer)
For r =2, k=\frac{6}{10} (not integer)
For r =3, k=\frac{9}{9}=1 (integer)
For r =6, k=\frac{18}{6}=3 (integer)
For r =8, k=\frac{24}{4}=6 (integer)
For r =9, k=\frac{27}{3}=9 (integer)
For r =10, k=\frac{30}{2}=15 (integer)
For r =11, k=\frac{33}{1}=33 (integer)
So, for r=3,6,8,9,10 and 11, k is positive integer.
When k =1 then r =3 and constant term is
\begin{aligned} & ={ }^{12} C_3 \cdot 2^3 \cdot 3^9 \\ & =\frac{12 \cdot 11 \cdot 10}{3 \cdot 2 \cdot 1} \cdot 2^3 \cdot 3^9 \\ & =2 \cdot 11 \cdot 2 \cdot 5 \cdot 2^3 \cdot 3^9 \\ & =11 \cdot 5 \cdot 2^5 \cdot 3^9 \\ & =2^5 \cdot\left(55 \cdot 3^9\right) \\ & =2^5(I) \\ & \neq 2^8 \cdot I \end{aligned}
When x =3 then r =6 and constant term
\begin{aligned} & ={ }^{12} C_6 \cdot 2^6 \cdot 3^6 \\ & =\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot 2^6 \cdot 3^6 \\ & =2^8 \cdot 231 \cdot 3^6 \\ & =2^8(I) \end{aligned}
When k =6 then r =8 and constant term
\begin{aligned} & ={ }^{12} C_8 \cdot 2^8 \cdot 3^4 \\ & =\frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2 \cdot 1} \cdot 2^8 \cdot 3^4 \\ & =2^8 \cdot 55 \cdot 3^6 \\ & =2^8(I) \end{aligned}
When x=9 then r=9 and constant term
\begin{aligned} & ={ }^{12} C_9 \cdot 2^9 \cdot 3^3 \\ & =\frac{12 \cdot 11 \cdot 10}{3 \cdot 2 \cdot 1} \cdot 2^9 \cdot 3^3 \\ & =2^{11} \cdot 55 \cdot 3^3 \end{aligned}
Here power of 2 is 11 which is greater than 8 . So, k=9 is not possible.
Similarly for k =15 and k =33,2^8 . I form is not possible.
\therefore k =3 and k =6 is accepted.
\therefore For 2 positive integer value of k , 2^8. I form of constant term possible.
If the sum of the coefficients of all the positive powers of x, in the Binomial expansion of \left(x^n+\frac{2}{x^5}\right)^7 is 939 , then the sum of all the possible integral values of n is _____. [JEE Main 2022 (Online) 27th June Evening Shift]
Given, Binomial expression is
\begin{aligned} & =\left(x^n+\frac{2}{x^5}\right)^7 \\ & \therefore \text { General term } \\ & T_{r+1}={ }^7 C_r \cdot\left(x^n\right)^{7-r} \cdot\left(\frac{2}{x^5}\right)^r \\ & ={ }^7 C_r \cdot x^{7 n-n r-5 r} \cdot 2^r \end{aligned}
For positive power of x,
\begin{aligned} & 7 n-n r-5 r>0 \\ & \Rightarrow 7 n>r(n+5) \\ & \Rightarrow r<\frac{7 n}{n+5} \end{aligned}
As r represent term of binomial expression so r is always integer.
Given that sum of coefficient is 939 .
When r=0,
sum of coefficient ={ }^7 C_0 \cdot 2^0=1
when r=1,
sum of coefficient ={ }^7 C_0 \cdot 2^0+{ }^7 C_1 \cdot 2^1=1+14=15
when r=2,
sum of coefficient
={ }^7 C_0 \cdot 2^0+{ }^7 C_1 \cdot 2^1+{ }^7 C_2 \cdot 2^2
=1+14+84
=99
when r=3,
sum of coefficient
={ }^7 C_0 \cdot 2^0+{ }^7 C_1 \cdot 2^1+{ }^7 C_2 \cdot 2^2+{ }^7 C_3 \cdot 2^3
=1+14+84+280
=379
when r=4,
sum of coefficient
\begin{aligned} & ={ }^7 C_0 \cdot 2^0+{ }^7 C_1 \cdot 2^1+{ }^7 C_2 \cdot 2^2+{ }^7 C_3 \cdot 2^3+{ }^7 C_4 \cdot 2^4 \\ & =1+14+84+280+560 \\ & =939 \end{aligned}
\therefore For r=4 sum of coefficient =939
To get value of r=4, value of \frac{7 n}{n+5} should be between 4 and 5 .
\begin{aligned} & \therefore 4<\frac{7 n}{n+5}<5 \\ & \Rightarrow 4 n+20<7 n<5 n+25 \\ & \therefore 4 n+20<7 n \\ & \Rightarrow 3 n>20 \\ & \Rightarrow n>\frac{20}{3} \\ & \Rightarrow n>6.66 \end{aligned}
and
\begin{aligned} & 7 n<5 n+25 \\ & \Rightarrow 2 n<25 \\ & \Rightarrow n<12.5 \\ & \therefore 6.66<n<12.5 \end{aligned}
\therefore Possible integer values of n=7,8,9,10,11,12
\therefore Sum of values of n=7+8+9+10+11+12=57
If the coefficient of x^{10} in the binomial expansion of \left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60} is 5^k . l, where l , k \in N and l is co-prime to 5 , then k is equal to _____ [JEE Main 2022 (Online) 27th June Morning Shift]
Given Binomial Expansion
=\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{x}}{5^{\frac{1}{3}}}\right)^{60}
\therefore General term
\begin{aligned} & T_{r+1}={ }^{60} C_r \cdot\left(\frac{x^{1 / 2}}{5^{1 / 4}}\right)^{60-r} \cdot\left(\frac{5^{1 / 2}}{x^{1 / 3}}\right)^r \\ & ={ }^{60} C_r \cdot 5^{\left(\frac{r}{4}-15+\frac{r}{2}\right)} \cdot x^{\left(30-\frac{r}{2}-\frac{r}{3}\right)} \\ & ={ }^{60} C_r \cdot 5^{\left(\frac{3 r-60}{4}\right)} \cdot x^{\left(\frac{180-5 r}{6}\right)} \end{aligned}
For x ^{10} term,
\begin{aligned} & \frac{180-5 r}{6}=10 \\ & \Rightarrow 5 r=120 \\ & \Rightarrow r=24 \end{aligned}
\begin{aligned} & \therefore \text { Coefficient of } x^{10}={ }^{60} C_{24} \cdot 5\left(\frac{3 \times 24-60}{4}\right) \\ & ={ }^{60} C_{24} \cdot 5^3 \\ & =\frac{60!}{24!36!} \cdot 5^3 \end{aligned}
It is given that,
\frac{60!}{24!36!} \cdot 5^3=5^k \cdot l \dots(1)
Also given that, I is coprime to 5 means I can’t be multiple of 5 . So we have to find all the factors of 5 in 60 !, 24 ! and 36 !
[Note : Formula for exponent or degree of prime number in n!.
Exponent of p in n!=\left\lceil\frac{n}{p}\right\rceil+\left\lceil\frac{n}{p^2}\right\rceil+\left\lceil\frac{n}{p^3}\right\rceil+\ldots .. until 0 comes here p is a prime number. ]
\therefore Exponent of 5 in 60 !
\begin{aligned} & =\left\lceil\frac{60}{5}\right\rceil+\left\lceil\frac{60}{5^2}\right\rceil+\left\lceil\frac{60}{5^3}\right\rceil+\ldots . . \\ & =12+2+0+\ldots . . \\ & =14 \end{aligned}
Exponent of 5 in 24 !
\begin{aligned} & =\left\lceil\frac{24}{5}\right\rceil+\left\lceil\frac{24}{5^2}\right\rceil+\left\lceil\frac{24}{5^3}\right\rceil+\ldots \ldots \\ & =4+0+0 \ldots \ldots \\ & =4 \end{aligned}
Exponent of 5 in 36 !
\begin{aligned} & =\left\lceil\frac{36}{5}\right\rceil+\left\lceil\frac{36}{5^2}\right\rceil+\left\lceil\frac{36}{5^3}\right\rceil+\ldots \ldots . . \\ & =7+1+0 \ldots \ldots \\ & =8 \end{aligned}
\therefore From equation (1), exponent of 5 overall
\begin{aligned} & \frac{5^{14}}{5^4 \cdot 5^8} \cdot 5^3=5^k \\ & \Rightarrow 5^5=5^k \\ & \Rightarrow k=5 \end{aligned}
If \left({ }^{40} C_0\right)+\left({ }^{41} C_1\right)+\left({ }^{42} C_2\right)+\ldots \ldots+\left({ }^{60} C_{20}\right)=\frac{m}{n}{ }^{60} C_{20} m and n are coprime, then m+n is equal to _____. [JEE Main 2022 (Online) 26th June Evening Shift]
Here property used is
{ }^n C_r+{ }^n C_{r+1}={ }^{n+1} C_{r+1}
Given, { }^{40} C_0+{ }^{41} C_1+{ }^{42} C_2+\ldots+{ }^{60} C_{20}=\frac{m}{n}{ }^{60} C_{20}
As { }^{40} C_0={ }^{41} C_0=1
So, we replace { }^{40} C_0 with { }^{41} C_0.
\begin{aligned} & \Rightarrow{ }^{41} C_0+{ }^{41} C_1+{ }^{42} C_2+\ldots \ldots+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\ & \Rightarrow{ }^{42} C_1+{ }^{42} C_2+\ldots \ldots+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\ & \Rightarrow{ }^{43} C_2+{ }^{43} C_3+\ldots \ldots+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\ & \Rightarrow{ }^{44} C_3+{ }^{44} C_4+\ldots \ldots+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\ & \Rightarrow{ }^{45} C_4+{ }^{45} C_5+\ldots \ldots+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \end{aligned}
\vdots
\begin{aligned} & \Rightarrow{ }^{60} C_{19}+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\ & \Rightarrow{ }^{61} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\ & \Rightarrow \frac{61!}{20!41!}=\frac{m}{n} \cdot \frac{60!}{20!40!} \\ & \Rightarrow \frac{61}{41}=\frac{m}{n} \\ & \therefore m=61 \text { and } n=41 \\ & \therefore m+n=61+41=102 \end{aligned}
If the sum of the co-efficient of all the positive even powers of x in the binomial expansion of \left(2 x^3+\frac{3}{x}\right)^{10} is 5^{10}-\beta \cdot 3^9, then \beta is equal to _____. [JEE Main 2022 (Online) 25th June Evening Shift]
Given, Binomial Expansion
\left(2 x^3+\frac{3}{x}\right)^{10}
General term
\begin{aligned} & T_{r+1}={ }^{10} C_r \cdot\left(2 x^3\right)^{10-r} \cdot\left(\frac{3}{x}\right)^r \\ & ={ }^{10} C_r \cdot 2^{10-r} \cdot 3^r \cdot x^{30-3 r} \cdot x^{-r} \\ & ={ }^{10} C_r \cdot 2^{10-r} \cdot 3^r \cdot x^{30-4 r} \end{aligned}
For positive even power of x, 30-4 r should be even and positive.
For r =0,30-4 \times 0=30 (even and positive)
For r =1,30-4 \times 1=26 (even and positive)
For r=2,30-4 \times 2=22 (even and positive)
For r=3,30-4 \times 3=18 (even and positive)
For r=4,30-4 \times 4=14 (even and positive)
For r=5,30-4 \times 5=10 (even and positive)
For r=6,30-4 \times 6=6 (even and positive)
For r =7,30-4 \times 7=2 (even and positive)
For r =8,30-4 \times 8=-2 (even but not positive)
So, for r=1,2,3,4,5,6 and 7 we can get positive even power of x.
\therefore Sum of coefficient for positive even power of x
\begin{aligned} & ={ }^{10} C_0 \cdot 2^{10} \cdot 3^0+{ }^{10} C_1 \cdot 2^9 \cdot 3^1+{ }^{10} C_2 \cdot 2^8 \cdot 3^2+{ }^{10} C_3 \cdot 2^7 \cdot 3^3+{ }^{10} C_4 \cdot 2^6 \\ & ={ }^{10} C_{10} \cdot 2^{10} \cdot 3^0+{ }^{10} C_1 \cdot 2^9 \cdot 3^1+\ldots \ldots+{ }^{10} C_{10} \cdot 2^0 \cdot 3^{10}-\left[{ }^{10} C_8 \cdot 2^2 \cdot 3\right. \\ & =(2+3)^{10}-\left[45 \cdot 4 \cdot 3^8+10 \cdot 2 \cdot 3^9+1 \cdot 1 \cdot 3^{10}\right] \end{aligned}
\begin{aligned} & =5^{10}-\left[60 \times 3^9+20 \cdot 3^9+3 \cdot 3^9\right] \\ & =5^{10}-(60+20+3) 3^9 \\ & =5^{10}-83 \cdot 3^9 \\ & \therefore \beta=83 \end{aligned}
Let C _{ r } denote the binomial coefficient of x ^{ r } in the expansion of (1+x)^{10}. If for \alpha, \beta \in R , C_1+3.2 C_2+5.3 C_3+\ldots . . .. upto 10 terms =\frac{\alpha \times 2^{11}}{2^\beta-1}\left(C_0+\frac{C_1}{2}+\frac{C_2}{3}+\ldots \ldots \text { upto } 10 \text { terms }\right) then the value of \alpha+\beta is equal to ____. [JEE Main 2022 (Online) 25th June Morning Shift]
Given,
C_1+3.2 C_2+5.3 C_3+\ldots . .. upto 10 terms
=\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(C_0+\frac{C_1}{2}+\frac{C_2}{3}+\ldots . . \text { upto } 10 \text { terms }\right)
Now, L.H.S. :
\begin{aligned} & C_1+3 \cdot 2 C_2+5 \cdot 3 C_3+\ldots . . \text { upto } 10 \text { terms } \\ & =1 \cdot 1 C_1+3 \cdot 2 C_2+5 \cdot 3 C_3+\ldots . . \text { upto } 10 \text { terms } \\ & =\sum_{r=1}^{10} r \cdot(2 r-1)^{10} C_r \\ & =\sum_{r=1}^{10}\left(2 r^2-r\right) \cdot{ }^{10} C_r \\ & =2 \cdot \sum_{r=1}^{10} r^2 \cdot{ }^{10} C_r-\sum_{r=1}^{10} r \cdot{ }^n C_r \end{aligned}
[We know, \sum_{r=1}^n r \cdot{ }^n C_r=n \cdot 2^{n-1}
\begin{aligned} & \text { and } \sum_{r=1}^n r^2 \cdot{ }^n C_r=\sum_{r=1}^n\left(r \cdot{ }^n C_r\right) \cdot r \\ & =\sum_{r=1}^n\left(r \cdot \frac{n}{r} \cdot{ }^{n-1} C_{r-1}\right) \cdot r \\ & =\sum_{r=1}^n\left(n \cdot{ }^{n-1} C_{r-1}\right) \cdot r \\ & =n \sum_{r=1}^n(r-1+1)^{n-1} C_{r-1} \\ & =n \cdot \sum_{r=1}^n(r-1) \cdot{ }^{n-1} C_{r-1}+n \cdot \sum_{r=1}^n{ }^{n-1} C_{r-1} \\ & \left.=n \cdot(n-1) \cdot 2^{n-2}+n \cdot 2^{n-1}\right] \\ & =2\left(n(n-1) 2^{n-2}+n \cdot 2^{n-1}\right)-n \cdot 2^{n-1} \end{aligned}
\begin{aligned} & \text { Put } n=10 \\ & =2\left(10 \cdot 9 \cdot 2^8+10 \cdot 2^9\right)-10 \cdot 2^9 \\ & =45 \cdot 2^{10}+10 \cdot 2^{10}-5 \cdot 2^{10} \\ & =2^{10}(45+10-5) \\ & =2^{10} \cdot(50) \\ & =25 \cdot 2^{11} \end{aligned}
R.H.S. :-
\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(C_0+\frac{C_1}{2}+\frac{C_2}{3}+\ldots .\right.. upto 10 terms )
\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{C_0}{1}+\frac{C_1}{2}+\frac{C_2}{3}+\ldots .\right.. upto 10 terms )
\begin{aligned} & \frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\sum_{r=0}^n \frac{{ }^n C_r}{r+1}\right) \\ & =\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\sum_{r=0}^n \frac{{ }^{n+1} C_{r+1}}{n+1}\right) \\ & =\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{{ }^{n+1} C_1+{ }^{n+1} C_2+\ldots .+{ }^{n+1} C_{n+1}}{n+1}\right) \\ & =\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{{ }^{n+1} C_0+{ }^{n+1} C_2+\ldots .+{ }^{n+1} C_{n+1}-{ }^{n+1} C_0}{n+1}\right) \\ & =\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{2^{n+1}-1}{n+1}\right) \end{aligned}
Putting value of n=10, we get
=\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{2^{11}-1}{11}\right)
Using L.H.S. = R.H.S.
\begin{aligned} & \Rightarrow 25 \cdot 2^{11}=\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{2^{11}-1}{11}\right) \\ & \Rightarrow 25 \cdot 2^{11}=2^{11}\left(\frac{\alpha}{11}\right)\left(\frac{2^{11}-1}{2^\beta-1}\right) \end{aligned}
By comparing both sides,
\begin{aligned} & \frac{\alpha}{11}=25 \Rightarrow \alpha=275 \\ & \text { and } \frac{2^{11}-1}{2^\beta-1}=1 \\ & \Rightarrow 2^{11}=2^\beta \\ & \Rightarrow \beta=11 \\ & \therefore \alpha+\beta=275+11=286 \end{aligned}
The remainder on dividing 1+3+3^2+3^3+\ldots . .+3^{2021} by 50 is ____. [JEE Main 2022 (Online) 24th June Evening Shift]
Given,
\begin{aligned} & 1+3+3^2+3^3+\ldots \ldots+3^{2021} \\ & =3^0+3^1+3^2+3^3+\ldots+3^{2021} \end{aligned}
This is a G.P with common ratio =3
\begin{aligned} & \therefore \text { Sum }=\frac{1\left(3^{2022}-1\right)}{3-1} \\ & =\frac{3^{2022}-1}{2} \\ & =\frac{\left(3^2\right)^{2011}-1}{2} \\ & =\frac{(10-1)^{1011}-1}{2} \end{aligned}
=\frac{\left[{ }^{1011} C_0 \cdot 10^{1011} \_{ }^{1011} C_1 \cdot 10^{1010}+\ldots . . \cdot-{ }^{1011} C_{1009} \cdot(10)^2+{ }^{1011} C_{1010} \cdot 10-{ }^{1011} C_{1011}\right]-1}{2}
\begin{aligned} & =\frac{10^2\left[{ }^{1011} C_0 \cdot(10)^{1009} \_{ }^{1011} C_1 \cdot(1008)+\ldots . .{ }^{1011} C_{1000}\right]+10110-1-1}{2} \\ & =\frac{100 k+10110-2}{2} \\ & =\frac{100 k+10108}{2} \\ & =50 k+5054 \\ & =50 k+50 \times 101+4 \\ & =50[k+101]+4 \\ & =50 k^{\prime}+4 \end{aligned}
\therefore By dividing 50 we get remainder as 4 .
If the sum of the coefficients in the expansion of (x+y)^n is 4096 , then the greatest coefficient in the expansion is _____. [JEE Main 2021 (Online) 1st September Evening Shift]
\begin{aligned} & (x+y)^n \Rightarrow 2^n=4096 \\ & 2^{10}=1024 \times 2 \\ & \Rightarrow 2^n=2^{12} \\ & 2^{11}=2048 \\ & n=12 \\ & 2^{12}=4096 \\ & { }^{12} C_6=\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 5 \times 4 \times 3 \times 2 \times 1} \\ & =11 \times 3 \times 4 \times 7 \\ & =924 \end{aligned}
If the coefficient of a^7 b^8 in the expansion of (a+2 b+4 a b)^{10} is K .2^{16}, then K is equal to _____. [JEE Main 2021 (Online) 31st August Evening Shift]
\begin{aligned} & \frac{10!}{\alpha!\beta!\gamma!} a^\alpha(2 b)^\beta \cdot(4 a b)^\gamma \\ & \frac{10!}{\alpha!\beta!\gamma!} a^{\alpha+\gamma} \cdot b^{\beta+\gamma} \cdot 2^\beta \cdot 4^\gamma \end{aligned}
\begin{aligned} &\alpha+\beta+\gamma=10 \ldots (1)\\ &\alpha+\gamma=7 \ldots (2) \\ &\beta+\gamma=8 \ldots (3) \end{aligned}
(2)+(3)-(1) \Rightarrow \gamma=5
\begin{aligned} & \alpha=2 \\ & \beta=3 \\ & \text { so coefficients }=\frac{10!}{2!3!5!} 2^3 .2^{10} \\ & =\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5}{2 \times 3 \times 2 \times 5!} \times 2^{13} \\ & =315 \times 2^{16} \Rightarrow k=315 \end{aligned}
If \left(\frac{3^6}{4^4}\right) k is the term, independent of x, in the binomial expansion of \left(\frac{x}{4}-\frac{12}{x^2}\right)^{12}, then k is equal to _____. [JEE Main 2021 (Online) 31st August Morning Shift]
\begin{aligned} & \left(\frac{x}{4}-\frac{12}{x^2}\right)^{12} \\ & T_{r+1}=(-1)^r \cdot{ }^{12} C_r\left(\frac{x}{4}\right)^{12-r}\left(\frac{12}{x^2}\right)^r \\ & T_{r+1}=(-1)^r \cdot{ }^{12} C_r\left(\frac{1}{4}\right)^{12-r}(12)^r \cdot(x)^{12-3 r} \end{aligned}
Term independent of x \Rightarrow 12-3 r=0 \Rightarrow r=4
\begin{aligned} & T_5=(-1)^r \cdot{ }^{12} C_r\left(\frac{1}{4}\right)^8(12)^4=\frac{3^6}{4^4} \cdot k \\ & \Rightarrow k =55 \end{aligned}
3 \times 7^{22}+2 \times 10^{22}-44 when divided by 18 leaves the remainder ____. [JEE Main 2021 (Online) 27th August Evening Shift]
\begin{aligned} & 3(1+6)^{22}+2 \cdot(1+9)^{22}-44=(3+2-44)+18 \cdot 1 \\ & =-39+18 \cdot 1 \\ & =(54-39)+18(1-3) \\ & =15+18 c_1 \\ & \Rightarrow \text { Remainder }=15 \end{aligned}
Let \binom{n}{k} denotes { }^n C_k and \left[\begin{array}{l}n \\ k\end{array}\right]= \left\{\begin{array}{c} \binom{n}{k}, \quad \text { if } 0 \leq k \leq n \\ 0, \quad \text { otherwise } \end{array}\right.
If A_k=\sum_{i=0}^9\binom{9}{i}\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^8\binom{8}{i}\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right] and A _4- A _3=190 p, then p is equal to :
\begin{aligned} & A_k=\sum_{i=0}^9{ }^9 C_i{ }^{12} C_{k-i}+\sum_{i=0}^8{ }^8 C_i{ }^{13} C_{k-i} \\ & A_k={ }^{21} C_k+{ }^{21} C_k=2 \cdot{ }^{21} C_k \\ & A_4-A_3=2\left({ }^{21} C_4-{ }^{21} C_3\right)=2(5985-1330) \\ & 190 p=2(5985-1330) \Rightarrow p=49 \end{aligned}
Let n \in N and [x] denote the greatest integer less than or equal to x. If the sum of (n+ 1) terms { }^n C_0, 3 \cdot{ }^n C_1, 5 \cdot{ }^n C_2, 7 \cdot{ }^n C_3, \ldots. is equal to 2^{100} \cdot 101, then 2\left[\frac{n-1}{2}\right] is equal to ____. [JEE Main 2021 (Online) 25th July Evening Shift]
\text { 1. }{ }^n C_0+3 \cdot{ }^n C_1+5 \cdot{ }^n C_2+\ldots+(2 n+1) \cdot{ }^n C_n
\begin{aligned} & T_r=(2 r+1)^n C_r \\ & S=\sum T_r \\ & S=\sum(2 r+1)^n C_r=\sum 2 r^n C_r+\sum{ }^n C_r \\ & S=2\left(n .2^{n-1}\right)+2^n=2^n(n+1) \\ & 2^n(n+1)=2^{100} .101 \Rightarrow n=100 \\ & 2\left[\frac{n-1}{2}\right]=2\left[\frac{99}{2}\right]=98 \end{aligned}
If the co-efficient of x^7 and x^8 in the expansion of \left(2+\frac{x}{3}\right)^n are equal, then the value of n is equal to _____. [JEE Main 2021 (Online) 25th July Evening Shift]
\begin{aligned} & { }^n C_7 2^{n-7} \frac{1}{3^7}={ }^n C_8 2^{n-8} \frac{1}{3^8} \\ & \Rightarrow n -7=48 \Rightarrow n =55 \end{aligned}
The ratio of the coefficient of the middle term in the expansion of (1+x)^{20} and the sum of the coefficients of two middle terms in expansion of (1+x)^{19} is _____. [JEE Main 2021 (Online) 25th July Morning Shift]
Coeff. of middle term in (1+ x )^{20}={ }^{20} C_{10} & Sum of coeff. of two middle terms in (1+ x )^{19}={ }^{19} C_9+{ }^{19} C_{10}
\text { So required ratio }=\frac{{ }^{20} C_{10}}{{ }^{19} C_9+{ }^{19} C_{10}}=\frac{{ }^{20} C_{10}}{{ }^{20} C_{10}}=1
The term independent of ‘ x ‘ in the expansion of \left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}, where x \neq 0,1 is equal to ____. [JEE Main 2021 (Online) 25th July Morning Shift]
\begin{aligned} & \left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10} \\ & =\left(\frac{\left(x^{1 / 3}\right)^3+\left(1^{1 / 3}\right)^3}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(\sqrt{x})^2-(1)^2}{x-x^{1 / 2}}\right)^{10} \\ & =\left(\frac{\left(x^{1 / 3}+1\right)\left(x^{2 / 3}-x^{1 / 3}+1\right)}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-1)}\right)^{10} \\ & =\left(\left(x^{1 / 3}+1\right)-\frac{(\sqrt{x}+1)}{\sqrt{x}}\right)^{10} \\ & =\left(\left(x^{1 / 3}+1\right)-\left(1+\frac{1}{\sqrt{x}}\right)\right)^{10} \\ & =\left(x^{1 / 3}-\frac{1}{x^{1 / 2}}\right)^{10} \end{aligned}
[Note:
For \left(x^\alpha \pm \frac{1}{x^\beta}\right)^n the (r+1)^{\text {th }} term with power m of x is
\left.r=\frac{n \alpha-m}{\alpha+\beta}\right]
Here \alpha=\frac{1}{3}, \beta=\frac{1}{2} and m =0 then r=\frac{10 \times \frac{1}{3}-0}{\frac{1}{3}+\frac{1}{2}}=\frac{10}{3} \times \frac{6}{5}=4
\therefore T_5 is the term independent of x.
\therefore T _5={ }^{10} C_4=210
If the constant term, in binomial expansion of \left(2 x^r+\frac{1}{x^2}\right)^{10} is 180 , then r is equal to ____. [JEE Main 2021 (Online) 22th July Evening Shift]
\begin{aligned} & \left(2 x^r+\frac{1}{x^2}\right)^{10} \\ & \text { General term }={ }^{10} C_R\left(2 x^2\right)^{10-R} x^{-2 R} \\ & \Rightarrow 2^{10-R 10} C_R=180 \ldots \ldots .(1) \end{aligned}
\begin{aligned} & \&(10- R ) r -2 R =0 \\ & r=\frac{2 R}{10-R} \\ & r=\frac{2(R-10)}{10-R}+\frac{20}{10-R} \\ & \Rightarrow r=-2+\frac{20}{10-R} \dots(2) \end{aligned}
R=8 or 5 reject equation (1) not satisfied
At R=8
\Rightarrow 2^{10-R} \times{ }^{10} C_R=180 \Rightarrow r=8
The number of elements in the set \left\{n \in\{1,2,3, \ldots \ldots ., 100\} \mid(11)^n>(10)^n+(9)^n\right\} is ____. [JEE Main 2021 (Online) 22th July Evening Shift]
\begin{aligned} & 11^n>10^n+9^n \\ & \Rightarrow 11^n-9^n>10^n \\ & \Rightarrow(10+1)^n-(10-1)^n>10^n \end{aligned}
\Rightarrow 2\left\{{ }^n C_1 \cdot 10^{n-1}+{ }^n C_3 10^{n-10}+{ }^n C_5 10^{n-5}+\ldots \ldots\right\}>10^n
\Rightarrow \frac{1}{5}\left[{ }^n C_1 10^n+{ }^n C_3 10^{n-2}+{ }^n C_5 10^{n-4}+\ldots . .\right]>10^n
\Rightarrow \frac{1}{5}\left[{ }^n C_1+{ }^n C_3 10^{-2}+{ }^n C_5 10^{-4}+\ldots . .\right]>1
Clearly the above inequality is true for n \geq 5
For n=4, we have \frac{1}{5}\left[4+\frac{4}{10^2}\right]=\frac{4}{5}\left(\frac{101}{100}\right)<1
\Rightarrow Inequality does not hold good for n=1,2,3,4
So, required number of elements =\{5,6,7, \ldots 100\}=96
The number of rational terms in the binomial expansion of \left(4^{\frac{1}{4}}+5^{\frac{1}{6}}\right)^{120} is ____. [JEE Main 2021 (Online) 20th July Morning Shift]
\begin{aligned} & \left(4^{\frac{1}{4}}+5^{\frac{1}{6}}\right)^{120} \\ & T_{r+1}={ }^{120} C_r\left(2^{1 / 2}\right)^{120-r}(5)^{r / 6} \end{aligned}
for rational terms r=6 \lambda
0 \leq r \leq 120
So total no of terms are 21.
The term independent of x in the expansion of \left[\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right]^{10}, x \neq 1, is equal to ____. [JEE Main 2021 (Online) 18th March Evening Shift]
\begin{aligned} & \left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10} \\ & =\left(\frac{\left(x^{1 / 3}\right)^3+\left(1^{1 / 3}\right)^3}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(\sqrt{x})^2-(1)^2}{x-x^{1 / 2}}\right)^{10} \\ & =\left(\frac{\left(x^{1 / 3}+1\right)\left(x^{2 / 3}-x^{1 / 3}+1\right)}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-1)}\right)^{10} \\ & =\left(\left(x^{1 / 3}+1\right)-\frac{(\sqrt{x}+1)}{\sqrt{x}}\right)^{10} \\ & =\left(\left(x^{1 / 3}+1\right)-\left(1+\frac{1}{\sqrt{x}}\right)\right)^{10} \\ & =\left(x^{1 / 3}-\frac{1}{x^{1 / 2}}\right)^{10}\left(x^{-\frac{1}{2}}\right)^r \end{aligned}
For being independent of x: \frac{10-r}{3}-\frac{r}{2}=0 \Rightarrow r=4
Term independent of x={ }^{10} C_4=210
Let { }^n C_r denote the binomial coefficient of x ^{\Gamma} in the expansion of (1+ x )^n. If \sum_{k=0}^{10}\left(2^2+3 k\right)^{10} C_k=\alpha \cdot 3^{10}+\beta \cdot 2^{10}, \alpha, \beta \in R, then \alpha+\beta is equal to ____. [JEE Main 2021 (Online) 18th March Evening Shift]
\begin{aligned} & \sum_{k=0}^{10}\left(2^2+3 k\right)^{10} C_k \\ & =4 \sum_{k=0}^{10}{ }^{10} C_k+3 \sum_{k=0}^{10} k \cdot{ }^{10} C_k \\ & =4\left(2^{10}\right)+3 \sum_{k=0}^{10} k \cdot \frac{10}{k} \cdot{ }^9 C_{k-1} \\ & =4\left(2^{10}\right)+3 \cdot 10\left(2^9\right) \\ & =4\left(2^{10}\right)+3.5 \cdot 2^{10} \\ & =2^{10}(19) \end{aligned}
According to question,
\begin{aligned} & 19\left(2^{10}\right)=\alpha .3^{10}+\beta \cdot 2^{10} \\ & \therefore \alpha=0, \beta=19 \\ & \Rightarrow \alpha+\beta=19 \end{aligned}
Let the coefficients of third, fourth and fifth terms in the expansion of \left(x+\frac{a}{x^2}\right)^n, x \neq 0, be in the ratio 12: 8: 3. Then the term independent of x in the expansion, is equal to _____. [JEE Main 2021 (Online) 17th March Evening Shift]
\begin{aligned} & T_{r+1}=n_{C_r} x^{n-r} \cdot\left(\frac{a}{x^2}\right)^r \\ & ={ }^n C_r a^r x^{n-3 r} \\ & T_3={ }^n C_2 a^2 x^{n-6}, T_4={ }^n C_3 a^3 x^{n-9}, T_5={ }^n C_4 a^4 x^{n-12} \end{aligned}
\Rightarrow a(n-2)=2 \dots(i)
and \frac{\text { coefficient of } T_4}{\text { coefficient of } T_5}=\frac{{ }^n C_3 \cdot a^3}{{ }^n C_4 \cdot a^4}=\frac{4}{a(n-3)}=\frac{8}{3}
\Rightarrow a(n-3)=\frac{3}{2} \dots(ii)
by (i) and (ii) n=6, a=\frac{1}{2}
for term independent of ‘ x ‘
\begin{aligned} & n-3 r=0 \Rightarrow r=\frac{n}{3} \Rightarrow r=\frac{6}{3}=2 \\ & T_3={ }^6 C_2\left(\frac{1}{2}\right)^2 x^0=\frac{15}{4}=3.75 \approx 4 \end{aligned}
If (2021)^{3762} is divided by 17 , then the remainder is ______. [JEE Main 2021 (Online) 17th March Morning Shift]
\begin{aligned} & 2021=17 m-2 \\ & (2021)^{3762}=(17 m-2)^{3762}=\text { multiple of } 17+2^{3762} \\ & =17 \lambda+2^2\left(2^4\right)^{940} \\ & =17 \lambda+4(17-1)^{940} \\ & =17 \lambda+4(17 \mu+1) \\ & =17 k+4 ;(k \in I) \\ & \therefore \text { Remainder }=4 \end{aligned}
Let n be a positive integer. Let
A=\sum_{k=0}^n(-1)^{k n} C_k\left[\left(\frac{1}{2}\right)^k+\left(\frac{3}{4}\right)^k+\left(\frac{7}{8}\right)^k+\left(\frac{15}{16}\right)^k+\left(\frac{31}{32}\right)^k\right] \text {. If }
63 A=1-\frac{1}{2^{30}}, then n is equal to [JEE Main 2021 (Online) 16th March Evening Shift]
A=\sum(-1)^{k_n} C_k\left(\frac{1}{2}\right)^k+\sum(-1)^{k_n} C_k\left(\frac{3}{4}\right)^k+\ldots \ldots
\begin{aligned} & =\left(1-\frac{1}{2}\right)^n+\left(1-\frac{3}{4}\right)^n+\ldots \ldots+\left(1-\frac{31}{32}\right)^n \\ & =\left(\frac{1}{2}\right)^n+\left(\frac{1}{2}\right)^{2 n}+\left(\frac{1}{2}\right)^{3 n}+\ldots \ldots+\left(\frac{1}{2}\right)^{5 n} \end{aligned}
=\left(\frac{1}{2}\right)^n\left(\frac{1-\left(\frac{1}{2}\right)^{5 n}}{1-\left(\frac{1}{2}\right)^n}\right)=\frac{2^{5 n}-1}{2^{5 n}\left(2^n-1\right)}
\therefore 63 A=\frac{63\left(2^{5 n}-1\right)}{2^{5 n}\left(2^n-1\right)}=\frac{63}{\left(2^n-1\right)}\left(1-\frac{1}{2^{5 n}}\right)
Given, 63 A=1-\frac{1}{2^{30}}
\therefore \frac{63}{\left(2^n-1\right)}\left(1-\frac{1}{2^{5 n}}\right)=1-\frac{1}{2^{30}}
For n=6, L.H.S = R.H.S
\therefore n =6
Let m , n \in N and \operatorname{gcd}(2, n )=1. If 30\binom{30}{0}+29\binom{30}{1}+\ldots \ldots+2\binom{30}{28}+1\binom{30}{29}=n .2^m, then n+m is equal to _____. [JEE Main 2021 (Online) 26th February Morning Shift]
\text { (Here }\binom{n}{k}={ }^n C_k \text { ) }
30\left({ }^{30} C_0\right)+29\left({ }^{30} C_1\right)+\ldots .+2\left({ }^{30} C_{28}\right)+1\left({ }^{30} C_{29}\right)
=30\left({ }^{30} C_{30}\right)+29\left({ }^{30} C_{29}\right)+\ldots \ldots+2\left({ }^{30} C_2\right)+1\left({ }^{30} C_1\right)
\begin{aligned} & =\sum_{r=1}^{30} r\left({ }^{30} C_r\right) \\ & =\sum_{r=1}^{30} r\left(\frac{30}{r}\right)\left({ }^{29} C_{r-1}\right) \\ & =30 \sum_{r=1}^{30}{ }^{29} C_{r-1} \end{aligned}
\begin{aligned} & =30\left({ }^{29} C_0+{ }^{29} C_1+{ }^{29} C_2+\ldots .+{ }^{29} C_{29}\right) \\ & =30\left(2^{29}\right)=15(2)^{30}=n(2)^m \end{aligned}
\begin{aligned} & \therefore n =15, m =30 \\ & \Rightarrow n + m =45 \end{aligned}
If the remainder when x is divided by 4 is 3 , then the remainder when (2020+x)^{2022} is divided by 8 is ____. [JEE Main 2021 (Online) 25th February Evening Shift]
(d)
\begin{aligned} & \text { Let } x=4 k+3 \\ & (2020+x)^{2022} \\ & =(2020+4 k+3)^{2022} \\ & =(4(505)+4 k+3)^{2022} \\ & =(4 P+3)^{2022} \\ & =(4 P+4-1)^{2022} \\ & =(4 A-1)^{2022} \\ & 2022 C_0(4 A)^0(-1)^{2022}+{ }^{2022} C_1(4 A)^1(-1)^{2021}+\ldots . . \\ & =1+2022(4 A)(-1)+\ldots . . \\ & =1+8 \lambda \end{aligned}
\therefore Remainder is 1 .
The total number of two digit numbers ‘ n ‘, such that 3^n+7^n is a multiple of 10 , is ____. [JEE Main 2021 (Online) 25th February Evening Shift]
\begin{aligned} & \because 7^n=(10-3)^n=10 k+(-3)^n \\ & 7^n+3^n=10 k+(-3)^n+3^n \end{aligned}
10 K+(-3)^n+3^n
10 K if n= odd 10 K+2.3^n if n= even
\text { Let } n =2 t ; t \in N
\begin{aligned} & \therefore 3^n=3^{2 t}=(10-1)^t \\ & =10 p+(-1)^t \\ & =10 p \pm 1 \end{aligned}
\therefore if n= even then 7^n+3^n will not be multiply of 10
So if n is odd then only 7^n+3^n will be multiply of 10
\therefore n=11,13,15 \ldots 99
Hence, there are 45 two digit number.
For integers n and r, let \binom{n}{r}=\left\{\begin{array}{cc}{ }^n C_r, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right. The maximum value of k
for which the sum \sum_{i=0}^k\binom{10}{i}\binom{15}{k-i}+\sum_{i=0}^{k+1}\binom{12}{i}\binom{13}{k+1-i} exists, is equal to ____. [JEE Main 2021 (Online) 24th February Evening Shift]
Finding the maximum value for which the sum
\sum_{i=0}^k\binom{10}{i}\binom{15}{k-i}+\sum_{i=0}^{k+1}\binom{12}{i}\binom{13}{k+1-i}:
Given that \binom{n}{r}= \begin{cases}n C_r, & \text { if } n \geq r \geq 0 \\ 0, & \text { Otherwise }\end{cases}
\begin{aligned} & (1+x)^{10}=10 C_0+10 C_1 x+10 C_2 x^2+\ldots \ldots+10 C_{10} x^{10} \\ & (1+x)^{15}=15 C_0+15 C_1 x+15 C_2 x^2+\ldots \ldots+15 C_{k-1} x^{k-1}+15 C_{k+1} \\ & x^{k+1}+\ldots 15 C_{15} x^{15} \\ & \sum_{i=0}^k\left(10 C_i\right)\left(15 C_{k-i}\right)=10 C_0 15 C_k+10 C_1 15 C_{k-1}+\ldots+10 C_k 15 C_0 \end{aligned}
Coefficient of x_k in (1+x)^{25}=25 C_k
\sum_{i=0}^{k+1}\left(12 C_i\right)\left(13 C_{k+1-i}\right)=12 C_0 13 C_{k+1}+12 C_1 13 C_k+\ldots+12 C_{k+1} 13 C_0
Coefficient of x^{k+1} in (1+x)^{25}=25 C_{k+1}
25 C_k+25 C_{k+1}=26 C_{k+1}
For maximum value
As per given, k can be as large as possible.
Hence, k can be as large as possible .
The sum of the coefficient of x^{2 / 3} and x^{-2 / 5} in the binomial expansion of \left(x^{2 / 3}+\frac{1}{2} x^{-2 / 5}\right)^9 is [JEE Main 2024 (Online) 9th April Evening Shift]
\begin{aligned} & T_{r+1}={ }^9 C_r\left(\frac{x^{-2 / 5}}{2}\right)^r\left(x^{2 / 3}\right)^{9-r} \\ & ={ }^9 C_r \frac{1}{2^r} x^{\frac{2}{3}(9-r)+\left(\frac{-2 r}{5}\right)} \\ & ={ }^9 C_r \cdot \frac{1}{2^r} \cdot x^{6-\frac{16 r}{15}} \end{aligned}
For coefficient of x^{2 / 3}
\begin{aligned} & \Rightarrow 6-\frac{16 r}{15}=\frac{2}{3} \\ & \Rightarrow 90-16 r=10 \\ & \Rightarrow r=5 \end{aligned}
For coefficient of x^{-2 / 5}
\begin{aligned} & \Rightarrow 6-\frac{16 r}{15}=\frac{-2}{5} \\ & \Rightarrow 90-16 r=-6 \\ & \Rightarrow r=6 \end{aligned}
Sum of coefficient of x^{2 / 3} \& x^{-2 / 5}
\begin{aligned} & ={ }^9 C_5 \cdot \frac{1}{2^5}+{ }^9 C_6 \cdot \frac{1}{2^6} \\ & =\frac{9!}{5!4!}\left(\frac{1}{2^5}\right)+\frac{9!}{6!3!}\left(\frac{1}{2^6}\right)=\frac{21}{4} \end{aligned}
The coefficient of x^{70} in x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46} is { }^{99} C _{ p }-{ }^{46} C_{q}. Then a possible value of p + q is : [JEE Main 2024 (Online) 9th April Morning Shift]
x^2(1+x)^{98}+x^3(1+x)^{97}+\ldots+x^{54}(1+x)^{46}
It is a G.P. with first term =x^2(1+x)^{98} and common ratio =\frac{x}{1+x}
sum of these term =x^2(1+x)^{98}\left(\frac{\left(\frac{x}{1+x}\right)^{53}-1}{\frac{x}{1+x}-1}\right)
=x^2(1+x)^{98}\left((1+x)-x^{53}(1+x)^{-52}\right)
=x^2(\underbrace{1+x)^{99}}_{\begin{array}{l} \text { Coeff } \\ \text { of } x^{68} \end{array}}-x^{55} \underbrace{(1+x)^{46}}_{\text {Coeff of } x^{15}}
\begin{aligned} & ={ }^{99} C _{68}-{ }^{46} C _{15} \\ & \Rightarrow p=68, q=15 \\ & \Rightarrow p+q=83 \end{aligned}
If the term independent of x in the expansion of \left(\sqrt{ a } x^2+\frac{1}{2 x^3}\right)^{10} is 105 , then a ^2 is equal to : [JEE Main 2024 (Online) 8th April Evening Shift]
\begin{aligned} & \left(\sqrt{a} x^2+\frac{1}{2 x^3}\right)^{10} \\ & T_{r+1}={ }^{10} C_r\left(\sqrt{a} x^2\right)^{10-r}\left(\frac{1}{2 x^3}\right)^r \end{aligned}
Independent of x \Rightarrow 20-2 r-3 r=0
r=4
Independent of x is { }^{10} C_4(\sqrt{a})^6\left(\frac{1}{2}\right)^4=105
\begin{gathered} \frac{210}{2 \times 8} a^3=105 \\ \Rightarrow \quad a=2 \\ a^2=4 \end{gathered}
If the constant term in the expansion of \left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[3]{5}}\right)^{12}, x \neq 0, is \alpha \times 2^8 \times \sqrt[5]{3}, then 25 \alpha is equal to : [JEE Main 2024 (Online) 5th April Evening Shift]
\begin{aligned} & \left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[5]{3}}\right)^{12} \\ & T_{r+1}={ }^{12} C r\left(\frac{\sqrt[5]{3}}{x}\right)^{12-r}\left(\frac{2 x}{\sqrt[3]{5}}\right)^r \end{aligned}
For constant term -12+r+r=0
\begin{aligned} & \Rightarrow \quad r=6 \\ & \therefore \quad \text { Constant term }={ }^{12} C_6 \frac{(3)^{\frac{6}{5}}}{(5)^{\frac{6}{3}}}(2)^6 \\ & ={ }^{12} C_6 \times \frac{2^6}{25} \times 3.3^{\frac{1}{5}} \\ & =\frac{231}{25} \times 2^8 \cdot 3^{\frac{1}{5}} \cdot 3 \\ & =\frac{693}{25} \cdot 2^8 \sqrt[5]{3} \\ & \therefore \quad \alpha=\frac{693}{25} \\ & 25 \alpha=693 \end{aligned}
If the coefficients of x^4, x^5 and x^6 in the expansion of (1+x)^n are in the arithmetic progression, then the maximum value of n is: [JEE Main 2024 (Online) 4th April Evening Shift]
\begin{aligned} & (1+x)^n={ }^n C_0+{ }^n C_1 x^1+{ }^n C_2 x^2+\ldots{ }^n C_n x^n \\ & { }^n C_4,{ }^n C_5 \text { and } { }^n C_6 \text { are in A. P. } \Rightarrow { }^n C_5-{ }^n C_4={ }^n C_6-{ }^n C_5 \\ & \Rightarrow \frac{n!}{5!(n-5)!}-\frac{n!}{4!(n-4)!}=\frac{n!}{6!(n-6)!}-\frac{n!}{5!(n-5)!} \\ & \Rightarrow 30(n-9)(n-6)=5(n-4)(n-11) \\ & \Rightarrow 30 n^2-450 n+1620=5 n^2 \\ & \Rightarrow \frac{1}{n-5}\left[\frac{n-4-5}{5(n-4)}\right]=\frac{1}{5}\left[\frac{n-5-6}{6(n-5)}\right] \\ & \Rightarrow \frac{n-9}{5(n-4)}=\frac{1}{5}\left[\frac{n-11}{6}\right] \\ & \Rightarrow n^2-21 n+98=0 \\ & n_{\max }=14 \end{aligned}
The sum of all rational terms in the expansion of \left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15} is equal to: [JEE Main 2024 (Online) 4th April Morning Shift]
\begin{aligned} & T_{r+1}={ }^{15} C _r\left(2^{1 / 5}\right)^{15-r}\left(5^{1 / 3}\right)^r \\ & ={ }^{15} C_r 5^{r / 3} 2^{\left(3-\frac{r}{5}\right)} \end{aligned}
For rational terms,
\frac{r}{3} and \frac{r}{5} must be integer
3 and 5 divide r \Rightarrow 15 divides r \Rightarrow r=0 and r=15
\begin{aligned} & { }^{15} C_0 5^0 2^3+{ }^{15} C_{15} 5^5 2^{(0)} \\ & =8+3125 \\ & =3133 \end{aligned}
Let m and n be the coefficients of seventh and thirteenth terms respectively in the expansion of \left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}. Then \left(\frac{ n }{ m }\right)^{\frac{1}{3}} is :[JEE Main 2024 (Online) 1st February Evening Shift]
\begin{aligned} & t _7={ }^{18} C _6\left(\frac{ x ^{\frac{1}{3}}}{3}\right)^{12}\left(\frac{ x ^{\frac{-2}{3}}}{2}\right)^6={ }^{18} C _6 \frac{1}{(3)^{12}} \cdot \frac{1}{2^6} \\ & t _{13}={ }^{18} C _{12}\left(\frac{ x ^{\frac{1}{3}}}{3}\right)^6\left(\frac{ x ^{\frac{-2}{3}}}{2}\right)^{12}={ }^{18} C _{12} \frac{1}{(3)^6} \cdot \frac{1}{2^{12}} \cdot x ^{-6} \\ & \therefore m={ }^{18} C_6\left(\frac{1}{3}\right)^{12}\left(\frac{1}{2}\right)^6 \\ & n={ }^{18} C_{12}\left(\frac{1}{3}\right)^6\left(\frac{1}{2}\right)^{12} \end{aligned}
\begin{aligned} \left(\frac{m}{n}\right)^{\frac{1}{3}} & =\left(\frac{{ }^{18} C_6\left(\frac{1}{3}\right)^{12}\left(\frac{1}{2}\right)^6}{{ }^{18} C_{12}\left(\frac{1}{3}\right)^6\left(\frac{1}{2}\right)^{12}}\right)^{\frac{1}{3}} \\ & =\left(\frac{\left(\frac{1}{3}\right)^6}{\left(\frac{1}{2}\right)^6}\right)^{\frac{1}{3}}=\left(\left(\frac{2}{3}\right)^6\right)^{\frac{1}{3}}=\frac{4}{9} \\ \therefore\left(\frac{n}{m}\right)^{\frac{1}{3}} & =\frac{9}{4} \end{aligned}
Let a be the sum of all coefficients in the expansion of \left(1-2 x+2 x^2\right)^{2023}\left(3-4 x^2+2 x^3\right)^{2024} and b=\lim _{x \rightarrow 0}\left(\frac{\int_0^x \frac{\log (1+t)}{t^{2024}+1} d t}{x^2}\right). If the equation c x^2+d x+e=0 and 2 b x^2+a x+4=0 have a common root, where c, d, e \in R, then d : c : e equals [JEE Main 2024 (Online) 31st January Morning Shift]
Put x=1
\begin{aligned} & \therefore a=1 \\ & b=\lim _{x \rightarrow 0} \frac{\int_0^x \frac{\ln (1+t)}{1+t^{2024}} dt }{x^2} \end{aligned}
Using L’ HOPITAL Rule
b =\lim _{ x \rightarrow 0} \frac{\ln (1+ x )}{\left(1+ x ^{2024}\right)} \times \frac{1}{2 x }=\frac{1}{2}
Now, cx ^2+ dx + e =0, x ^2+ x +4=0
\begin{aligned} & ( D <0) \\ & \therefore \frac{ c }{1}=\frac{ d }{1}=\frac{ e }{4} \end{aligned}
Suppose 2-p, p, 2-\alpha, \alpha are the coefficients of four consecutive terms in the expansion of (1+x)^n. Then the value of p^2-\alpha^2+6 \alpha+2 p equals [JEE Main 2024 (Online) 30th January Evening Shift]
2-p, p, 2-\alpha, \alpha
Binomial coefficients are
\begin{aligned} & { }^n C_r,{ }^n C_{r+1},{ }^n C_{r+2},{ }^n C_{r+3} \text { respectively } \\ \Rightarrow \quad & { }^n C_r+{ }^n C_{r+1}=2 \\ \Rightarrow \quad & { }^{n+1} C_{r+1}=2 \quad \ldots \ldots(1) \end{aligned}
Also, { }^{ n } C _{ r +2}+{ }^{ n } C _{ r +3}=2
\Rightarrow \quad{ }^{n+1} C_{r+3}=2 \dots(2)
From (1) and (2)
\begin{aligned} & { }^{n+1} C_{r+1}={ }^{n+1} C_{r+3} \\ & \Rightarrow \quad 2 r +4= n +1 \\ & n =2 r +3 \\ & { }^{2 r +4} C _{ r +1}=2 \end{aligned}
{ }^{n-1} C_r=\left(k^2-8\right)^n C_{r+1} \text { if and only if : } [JEE Main 2024 (Online) 27th January Morning Shift]
\begin{aligned} & { }^{ n -1} C _{ r }=\left( k ^2-8\right)^{ n } C _{ r +1} \\ & \underbrace{ r +1 \geq 0, \quad r \geq 0}_{ r \geq 0} \\ & \frac{{ }^{n-1} C_r}{{ }^n C_{r+1}}=k^2-8 \\ & \frac{r+1}{n}=k^2-8 \\ & \Rightarrow k^2-8>0 \\ & (k-2 \sqrt{2})(k+2 \sqrt{2})>0 \end{aligned}
\begin{aligned} & k \in(-\infty,-2 \sqrt{2}) \cup(2 \sqrt{2}, \infty) \dots(i)\\ & \therefore n \geq r +1, \frac{ r +1}{ n } \leq 1 \\ & \Rightarrow k ^2-8 \leq 1 \\ & \quad k ^2-9 \leq 0 \\ & \quad-3 \leq k \leq 3 \quad \text {…. (ii) } \end{aligned}
From equation (i) and (ii) we get
k \in[-3,-2 \sqrt{2}) \cup(2 \sqrt{2}, 3]
If A denotes the sum of all the coefficients in the expansion of \left(1-3 x+10 x^2\right)^{ n } and B denotes the sum of all the coefficients in the expansion of \left(1+x^2\right)^n, then : [JEE Main 2024 (Online) 27th January Morning Shift]
Sum of coefficients in the expansion of \left(1-3 x+10 x^2\right)^n=A then A=(1-3+10)^n=8^n (put x=1 ) and sum of coefficients in the expansion of
\begin{aligned} & \left(1+x^2\right)^n=B \\ & \text { then } B=(1+1)^n=2^n \\ & A=B^3 \end{aligned}
Let \left(a+b x+c x^2\right)^{10}=\sum_{i=0}^{20} p_i x^i, a, b, c \in N. If p_1=20 and p_2=210, then 2(a+b+c) is equal to : [JEE Main 2023 (Online) 15th April Morning Shift]
We are given that \left(a+b x+c x^2\right)^{10}=\sum_{i=0}^{20} p_i x^i, and we are given that p_1=20 and p_2=210.
We need to find the value of 2(a+b+c).
Using the multinomial theorem, we can express the expansion of \left(a+b x+c x^2\right)^{10} as follows:
\sum_{k_1+k_2+k_3=10} \frac{10!}{k_{1}!k_{2}!k_{3}!} a^{k_1}(b x)^{k_2}\left(c x^2\right)^{k_3}
Now we need to find the coefficients of x^1 and x^2 in the expansion:
For x^1 term, we have:
k_2=1, k_1=9, k_3=0
So, p_1=\frac{10!}{9!1!0!} a^9 b^1=10 a^9 b
For x^2 term, there are two possibilities:
k_2=2, k_1=8, k_3=0 \quad \text { and } \quad k_2=0, k_1=9, k_3=1
So, p_2=\frac{10!}{8!2!!} a^8 b^2+\frac{10!}{9!0!1!} a^9 c=45 a^8 b^2+10 a^9 c
Now we are given p_1=20 and p_2=210. So, 10 a^9 b=20 \Longrightarrow a^9 b=2 and 45 a^8 b^2+10 a^9 c=210
Now, divide the second equation by a^8: 45 b^2+10 a c=210
We know that a^9 b=2. Taking the 9^{\text {th }} root of both sides: a b=\sqrt[9]{2}
Now, let k=a b=\sqrt[9]{2}. We can rewrite the equation for x^2 term as:
45 k^2+10 k^9=210
From the equation a b=k=\sqrt[9]{2}, we know that a and b are positive integers. Thus, k=2 (as both a and b must be factors of 2 ). Now we have:
a+b=2
and from the equation a^9 b=2, we get a=1, b=2 or vice versa.
Now we need to find the value of c. We can use the equation for the x^2 term again:
45 a^8 b^2+10 a^9 c=210
Using a=1 and b=2, we get:
45(1)^8(2)^2+10(1)^9 c=210 \Longrightarrow 180+10 c=210 \Longrightarrow c=3
So, a=1, b=2, and c=3. Now, we need to find the value of 2(a+b+c) :
2(a+b+c)=2(1+2+3)=2(6)=12
The coefficient of x^5 in the expansion of \left(2 x^3-\frac{1}{3 x^2}\right)^5 is: [JEE Main 2023 (Online) 13th April Evening Shift]
Given, \left(2 x^3-\frac{1}{3 x^2}\right)^5
General term,
\begin{aligned} & T_{r+1}={ }^5 C_r\left(2 x^3\right)^{5-r}\left(\frac{-1}{3 x^2}\right)^r={ }^5 C_r \frac{(2)^{5-r}}{(-3)^r}(x)^{15-5 r} \\ & \therefore 15-5 r =5 \\ & \therefore r =2 \\ & T_3=10\left(\frac{8}{9}\right) x^5 \end{aligned}
So, coefficient is \frac{80}{9}.
Fractional part of the number \frac{4^{2022}}{15} is equal to [JEE Main 2023 (Online) 13th April Morning Shift]
\begin{aligned} & \left\{\frac{4^{2022}}{15}\right\}=\left\{\frac{2^{4044}}{15}\right\} \\ & =\left\{\frac{(1+15)^{1011}}{15}\right\} \\ & =\frac{1}{15} \end{aligned}
If \frac{1}{n+1}{ }^n C _n+\frac{1}{n}{ }^n C _{n-1}+\ldots+\frac{1}{2}{ }^n C _1+{ }^n C _0=\frac{1023}{10} then n is equal to : [JEE Main 2023 (Online) 12th April Morning Shift]
\frac{1}{n+1}{ }^n C _n+\frac{1}{n}{ }^n C _{n-1}+\ldots+\frac{1}{2}{ }^n C _1+{ }^n C _0=\frac{1023}{10}
\begin{aligned} & \Rightarrow \sum_{r=0}^n \frac{1}{r+1}{ }^n C_r=\frac{1023}{10} \\ & \left(\because{ }^{n+1} C_{r+1}=\frac{n+1}{r+1}{ }^n C_r\right) \\ & \Rightarrow \sum_{r=0}^n \frac{1}{n+1}^{n+1} C_{r+1}=\frac{1023}{10} \end{aligned}
\begin{aligned} & \Rightarrow \frac{1}{n+1}\left[{ }^{n+1} C_1+{ }^{n+1} C_2+\ldots+{ }^{n+1} C_{n+1}\right]=\frac{1023}{10} \\ & \Rightarrow \frac{2^{n+1}-1}{n+1}=\frac{1023}{10}=\frac{2^{10}-1}{10} \\ & \Rightarrow n+1=10 \\ & \Rightarrow n=9 \end{aligned}
The sum, of the coefficients of the first 50 terms in the binomial expansion of (1-x)^{100}, is equal to [JEE Main 2023 (Online) 12th April Morning Shift]
\begin{aligned} & \left({ }^{100} C_0-{ }^{100} C_1+{ }^{100} C_2-\ldots . .{ }^{100} C_{49}\right)+{ }^{100} C_{50} \\ & +\left(-{ }^{100} C_{51}+{ }^{100} C_{52}-\ldots .+{ }^{100} C_{100}\right)=0 \\ & \lambda_1+{ }^{100} C_{50}+\lambda_2=0 \\ & \lambda_1=-\frac{1}{2}{ }^{100} C_{50} \quad\left(\because \lambda_1=\lambda_2\right) \\ & =-{ }^{99} C_{49} \end{aligned}
The sum of the coefficients of three consecutive terms in the binomial expansion of (1+ x )^{ n +2}, which are in the ratio 1: 3: 5, is equal to : [JEE Main 2023 (Online) 11th April Evening Shift]
The problem asks for the sum of the coefficients of three consecutive terms in the binomial expansion of (1+x)^{n+2}, which are in the ratio 1: 3: 5.
Given that the ratios of the coefficients are 1:3:5, we let the terms be T_r, T_{r+1}, and T_{r+2}. The coefficients of these terms are { }^{n+2} C_{r-1},{ }^{n+2} C_r, and { }^{n+2} C_{r+1}, respectively.
\begin{aligned} & \frac{T_{r+1}}{T_r}=\frac{{ }^{n+2} C_r}{{ }^{n+2} C_{r-1}}=\frac{n+2-r+1}{r}=\frac{n+3-r}{r}=3 \\ & n-4 r+3=0 \ldots \ldots(1) \\ & \frac{T_{r+2}}{T_{r+1}}=\frac{{ }^{n+2} C_{r+1}}{{ }^{n+2} C_r}=\frac{(n+2)-(r+1)+1}{r+1}=\frac{n-r+2}{r+1}=\frac{5}{3} \\ & 3 n-8 r+1=0 \ldots \ldots(2) \end{aligned}
By solving (1) and (2), we get
\begin{aligned} & \Rightarrow n=5, r=2 \\ & \begin{aligned} T_r+T_{r+1}+T_{r+2} & ={ }^7 C_1+{ }^7 C_2+{ }^7 C_3 \\ & =7+21+35=63 \end{aligned} \end{aligned}
If the 1011^{\text {th }} term from the end in the binominal expansion of \left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{2022} is 1024 times 1011^{\text {th }} term from the beginning, then |x| is equal to [JEE Main 2023 (Online) 11th April Evening Shift]
\begin{aligned} & T _{1011} \text { from beginning }= T _{1010+1} \\ & ={ }^{2022} C _{1010}\left(\frac{4 x }{5}\right)^{1012}\left(\frac{-5}{2 x }\right)^{1010} \\ & T _{1011} \text { from end } \\ & ={ }^{2022} C _{1010}\left(\frac{-5}{2 x }\right)^{1012}\left(\frac{4 x }{5}\right)^{1010} \\ & \text { Given: }{ }^{2022} C _{1010}\left(\frac{-5}{2 x }\right)^{1012}\left(\frac{4 x }{5}\right)^{1010} \\ & =2^{10} \cdot{ }^{2022} C _{1010}\left(\frac{-5}{2 x }\right)^{1010}\left(\frac{4 x }{5}\right)^{1012} \\ & \Rightarrow\left(\frac{-5}{2 x}\right)^2=2^{10}\left(\frac{4 x}{5}\right)^2 \\ & \Rightarrow x^4=\frac{5^4}{2^{16}} \\ & \Rightarrow|x|=\frac{5}{16} \end{aligned}
Let the number (22)^{2022}+(2022)^{22} leave the remainder \alpha when divided by 3 and \beta when divided by 7 . Then \left(\alpha^2+\beta^2\right) is equal to: [JEE Main 2023 (Online) 10th April Evening Shift]
We have, (22)^{2022}+(2022)^{22}
As 2022 is completely divisible by 3
So, (2022)^{22} is also divisible by 3
(22)^{2022}=(21+1)^{2022}=(3 \times 7+1)^{2022}=7 m+1
\Rightarrow(22)^{2022} leave a remainder 1 , when divisible by 3 .
\therefore(22)^{2022}+(2022)^{22} leave a remainder when divisible by 3
\therefore \alpha=1
\begin{aligned} (22)^{2022}+(2022)^{22} & =(21+1)^{2022}+(2023-1)^{22} \\ & =7 K+1+7 \mu+1=7(K+\mu)+2 \end{aligned}
\Rightarrow(22)^{2022}+(2022)^{22} leave a remainder 2 when divisible by 7
\therefore \beta=2
Hence, \alpha^2+\beta^2=1^2+2^2=5
If the coefficients of x and x^2 in (1+x)^{ p }(1-x)^{ q } are 4 and -5 respectively, then 2 p+3 q is equal to : [JEE Main 2023 (Online) 10th April Evening Shift]
We have, coefficient of x in (1+x)^p(1-x)^q=4 and coefficient of x^2 in (1+x)^p(1-x)^q=-5
\begin{aligned} & (1+x)^p(1-x)^q \\ & =\left(1+p x+\frac{p(p-1)}{2} x^2+\ldots\right)\left(1-q x+\frac{q(q-1)}{2} x^2+\ldots\right) \\ & =1+(p-q) x+\left(\frac{p(p-1)}{2}+\frac{q(q-1)}{2}-p q\right) x^2+\ldots \ldots \end{aligned}
Coefficient of x in (1+x)^p(1-x)^q=-q+p
\Rightarrow p-q=4 \dots(i)
Coefficient of x^2 in (1+x)^p(1-x)^q=\frac{q(q-1)}{2}-p q+\frac{p(p-1)}{2}
\begin{aligned} & \Rightarrow \frac{q^2-q-2 p q+p^2-p}{2}=-5 \\ & \Rightarrow \frac{p^2+q^2-2 p q-(p+q)}{2}=-5 \\ & \Rightarrow(p-q)^2-(p+q)=-10 \end{aligned}
\begin{aligned} & \Rightarrow(4)^2-(p+q)=-10 \quad[\because \text { From Eq. (i) }] \\ & \Rightarrow p+q=26 \ldots \ldots \ldots \ldots(i i) \end{aligned}
Form Eqs. (i) and (ii), we get p=15, q=11
\therefore 2 p+3 q=2 \times 15+3 \times 11=30+33=63
If the coefficient of x^7 in \left(a x-\frac{1}{b x^2}\right)^{13} and the coefficient of x^{-5} in \left(a x+\frac{1}{b x^2}\right)^{13} are equal, then a^4 b^4 is equal to : [JEE Main 2023 (Online) 10th April Morning Shift]
The given expression is \left(a x-\frac{1}{b x^2}\right)^{13}
So,
\begin{aligned} T_{r+1} & ={ }^{13} C_r(a x)^{13-r}\left(-\frac{1}{b x^2}\right)^r \\ & ={ }^{13} C_r(a)^{13-r} x^{13-r-2 r}(-1 / b)^r \\ & ={ }^{13} C_r(a)^{13-r}\left(-\frac{1}{b}\right)^r x^{13-3 r} \end{aligned}
For coefficient of x^7 in \left(a x-\frac{1}{b x^2}\right)^{13}
\begin{gathered} 13-3 r=7 \\ \Rightarrow 3 r=6 \Rightarrow r=2 \end{gathered}
\therefore Coefficient of x^7={ }^{13} C_2 \cdot(a)^{11} \cdot \frac{1}{b^2}
Again, the another expression is \left(a x+\frac{1}{b x^2}\right)^{13}
So, T_{n+1}={ }^{13} C_r(a x)^{13-r}\left(\frac{1}{b x^2}\right)^r={ }^{13} C_r(a)^{13-r}\left(\frac{1}{b}\right)^r x^{13-3 r}
For coefficient x^{-5} in \left(a x+\frac{1}{b x^2}\right)^{13}
13-3 r=-5
\Rightarrow r=6
So, coefficient of x^{-5}={ }^{13} C_6(a)^7 \frac{1}{b^6}
Now, according to the question,
\begin{aligned} & { }^{13} C_2(a)^{11} \frac{1}{b^2}={ }^{13} C_6(a)^7 \frac{1}{b^6} \\ & \Rightarrow a^4 b^4=\frac{{ }^{13} C_6}{{ }^{13} C_2} \\ & \therefore a^4 b^4=22 \end{aligned}
25^{190}-19^{190}-8^{190}+2^{190} is divisible by : [JEE Main 2023 (Online) 8th April Evening Shift]
The given expression is divisible by 6 and 17 .
Also, 25^{190}-8^{190} is not divisible by 7
but 19^{190}-2^{190} is divisible by 7 ,
So, 25^{190}-19^{190}-8^{190}+2^{190} is divisible by 34 but not by 14 .
The absolute difference of the coefficients of x^{10} and x^7 in the expansion of \left(2 x^2+\frac{1}{2 x}\right)^{11} is equal to : [JEE Main 2023 (Online) 8th April Evening Shift]
\text { General term of }\left(2 x^2+\frac{1}{2 x}\right)^{11} \text { is : }
\begin{aligned} & T _{ r +1}={ }^{11} C _r\left(2 x^2\right)^{11-r}\left(\frac{1}{2 x}\right)^r \\ & ={ }^{11} C _r 2^{11-r} x^{22-2 r} 2^{-r} x^{-r} \\ & ={ }^{11} C _r 2^{11-2r} x^{22-3 r} \end{aligned}
Now, 22-3 r=10 and 22-3 r=7
\begin{array}{ll} \Rightarrow 3 r=12 & \Rightarrow 3 r=15 \\ \Rightarrow r=4 & \Rightarrow r=5 \end{array}
\therefore \text { Coeff. of } x^{10}={ }^{11} C _4 \cdot 2^{11-8}={ }^{11} C _4 \times 8
Coeff. of x^7={ }^{11} C_5 \cdot 2^{11-10}={ }^{11} C_4 \times 2
Now, required difference
\begin{aligned} & ={ }^{11} C _4 \times 8-{ }^{11} C _5 \times 2 \\ & =\frac{11 \times 10 \times 9 \times 8 \times 7!}{4!\times 7!} \times 8-\frac{11 \times 10 \times 9 \times 8 \times 7 \times 6!\times 2}{5!6!} \\ & =\frac{11 \times 10 \times 9 \times 8 \times 8}{24}-\frac{11 \times 10 \times 9 \times 8 \times 7 \times 2}{120} \\ & =11 \times 10 \times 8 \times 3-11 \times 3 \times 4 \times 7 \\ & =11 \times 3 \times 4[20-7] \\ & =11 \times 12 \times 13=(12-1) \times 12 \times(12+1) \\ & =12\left(12^2-1\right)=12^3-12 \end{aligned}
If the coefficients of three consecutive terms in the expansion of (1+x)^n are in the ratio 1: 5: 20, then the coefficient of the fourth term is [JEE Main 2023 (Online) 8th April Morning Shift]
\begin{aligned} & \text { Given: }{ }^n C _{r-1}:{ }^n C _r:{ }^n C _{r+1} \\ & =1: 5: 20 \\ & \Rightarrow \frac{n!}{(r-1)!(n-r+1)!} \times \frac{r!(n-r)!}{n!}=\frac{1}{5} \\ & \Rightarrow \frac{r}{(n-r+1)}=\frac{1}{5} \\ & \Rightarrow 5 r=n-r+1 \\ & \Rightarrow n=6 r-1 \ldots \ldots . .(i) \end{aligned}
Also, \frac{n!}{r!(n-r)!} \times \frac{(r+1)!(n-r-1)!}{n!}=\frac{5}{20}=\frac{1}{20}
\begin{aligned} & \Rightarrow \frac{(r+1)}{(n-r)}=\frac{1}{4} \\ & \Rightarrow 4 r+4=n-r \\ & \Rightarrow n=5 r+4 \ldots \ldots . .(ii) \end{aligned}
From (i) and (ii), we get
\begin{aligned} & 6 r-1=5 r+4 \\ & \Rightarrow r=5 \end{aligned}
So, n=5(5)+4=29
So, coefficient of 4^{\text {th }} terms ={ }^n C _3={ }^{29} C _3
=\frac{29!}{3!26!}=\frac{29 \times 28 \times 27}{3 \times 2}=3654
If the coefficient of x^7 in \left(a x^2+\frac{1}{2 b x}\right)^{11} and x^{-7} in \left(a x-\frac{1}{3 b x^2}\right)^{11} are equal, then : [JEE Main 2023 (Online) 6th April Evening Shift]
General term of \left(a x^2+\frac{1}{2 b x}\right)^{11} is
T_{r+1}={ }^{11} C_r\left(a x^2\right)^{11-r}\left(\frac{1}{2 b x}\right)^r={ }^{11} C_r(a)^{11-r}\left(\frac{1}{2 b}\right)^r x^{22-3 r}
Now, 22-3 r=7
\begin{aligned} & \Rightarrow 15=3 r \\ & \Rightarrow r=5 \end{aligned}
and general term of \left(a x-\frac{1}{3 b x^2}\right)^{11} is
\begin{aligned} T_{r+1} & ={ }^{11} C_r(a x)^{11-r}\left(-\frac{1}{3 b x^2}\right)^r \\ & ={ }^{11} C_r a^{11-r}\left(-\frac{1}{3 b}\right)^r x^{11-3 r} \end{aligned}
Now, 11-3 r=-7
\Rightarrow 18=3 r \Rightarrow r=6
Since, coefficient of x^7 in \left(a x^2+\frac{1}{2 b x}\right)^{11}
= Coefficient of x^{-7} in \left(a x-\frac{1}{3 b x^2}\right)^{11}
\begin{aligned} & \Rightarrow{ }^{11} C_5(a)^6\left(\frac{1}{2 b}\right)^5={ }^{11} C_6(a)^5\left(-\frac{1}{3 b}\right)^6 \\ & \Rightarrow \frac{a}{32 b^5}=\frac{1}{729 b^6} \Rightarrow 729 a b=32 \end{aligned}
Among the statements :
(S1) : 2023^{2022}-1999^{2022} is divisible by 8
(S2) : 13(13)^n-12 n-13 is divisible by 144 for infinitely many n \in N
\begin{aligned} & \text { We have, } S_1:(2023)^{2022}-(1999)^{2022} \\ & =(1999+24)^{2022}-(1999)^{2022}={ }^{2022} C_0(1999)^{2022}(24)^0 \\ & +{ }^{2022} C_1(1999)^{2021}(24)^1+{ }^{2022} C_2(1999)^{2020}(24)^2 \\ & +\ldots-(1999)^{2022} \end{aligned}
\begin{aligned} & ={ }^{2022} C_1(1999)^{2021}(24)+{ }^{2022} C_2(1999)^{2022}(24)^2 \\ & =24\left({ }^{(2022} C_1(1999)^{2021}+{ }^{2022} C_2(1999)^{2022}(24)+\ldots+\ldots\right) \end{aligned}
\Rightarrow S_1 is divisible by 24
Now, S_2: 13(13)^n-12 n-13
Here, 13^n=(1+12)^n
\begin{aligned} & =1+{ }^n C_1 12+{ }^n C_2(12)^2+{ }^n C_3(12)^3 \\ \therefore S_2 & : 13\left(1+{ }^n C_1(12)+{ }^n C_2(12)^2+{ }^n C_3(12)^3+\ldots\right)-12 n-13 \\ & =13+156 n+13\left({ }^n C_2(12)^2+{ }^n C_3(12)^3+\ldots\right)-12 n-13 \\ & =144 n+144 \times 13\left({ }^n C_2+{ }^n C_3(12)+\ldots\right) \end{aligned}
\Rightarrow S_2 is divisible by 144 for infinitely many n \in N
If { }^{2 n} C_3:{ }^n C_3=10: 1, then the ratio \left(n^2+3 n\right):\left(n^2-3 n+4\right) is: [JEE Main 2023 (Online) 6th April Morning Shift]
We have, { }^{2 n} C_3:{ }^n C_3=10: 1
\begin{aligned} & \Rightarrow \frac{{ }^{2 n} C_3}{{ }^n C_3}=\frac{10}{1} \\ & \Rightarrow \frac{(2 n)!}{3!(2 n-3)!} \times \frac{3!(n-3)!}{n!}=\frac{10}{1} \\ & \Rightarrow \frac{(2 n)(2 n-1)(2 n-2)}{(n)(n-1)(n-2)}=\frac{10}{1} \\ & \Rightarrow 4 n^2-6 n+2=5\left(n^2-3 n+2\right) \\ & \Rightarrow n^2-9 n+8=0 \\ & \Rightarrow n^2-8 n-n+8=0 \\ & \Rightarrow n(n-8)-1(n-8)=0 \\ & \Rightarrow(n-8)(n-1)=0 \\ & \Rightarrow n=8(n=1 \text { not valid }) \\ & \therefore \frac{n^2+3 n}{n^2-3 n+4}=\frac{88}{44}=\frac{2}{1}=2: 1 \end{aligned}
If the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of \left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{ n } is \sqrt{6}: 1, then the third term from the beginning is : [JEE Main 2023 (Online) 6th April Morning Shift]
\begin{aligned} & T _{r+1}={ }^n C _r x^{n-r} a^r \\ & \frac{T_5}{T_5^{\prime}}=\frac{{ }^n C_4 \times\left((2)^{\frac{1}{4}}\right)^{n-4}\left(\frac{1}{3^{1 / 4}}\right)^4}{{ }^n C_4\left(\frac{1}{3^{1 / 4}}\right)^{n-4}\left(2^{1 / 4}\right)^4}=\sqrt{6} \end{aligned}
\left[\because r\right. th term from end in the expansion of (x+y)^n=r th term from beginning in the expansion of (y+x)^n ]
\begin{aligned} & \Rightarrow \frac{{ }^n C_4(2)^{\frac{n-4}{4}}\left(\frac{1}{3}\right)^{4 / 4}}{{ }^n C_4\left(\frac{1}{3}\right)^{\frac{n-4}{4}}(2)^{4 / 4}}=\frac{\sqrt{6}}{1} \\ & \Rightarrow(2)^{\frac{n-8}{4}}(3)^{\frac{n-8}{4}}=6^{1 / 2} \\ & \Rightarrow 6^{\frac{n-8}{4}}=6^{1 / 2} \end{aligned}
\begin{aligned} & \Rightarrow \frac{n-8}{4}=\frac{1}{2} \\ & \Rightarrow n-8=2 \Rightarrow n=10 \\ & \therefore T_3={ }^{10} C_2(\sqrt[4]{2})^8\left(\frac{1}{\sqrt[4]{3}}\right)^2=45(2)^{\frac{8}{4}} \frac{1}{3^{1 / 2}} \\ & =45(4) \times \frac{\sqrt{3}}{3}=60 \sqrt{3} \end{aligned}
Let x=(8 \sqrt{3}+13)^{13} and y=(7 \sqrt{2}+9)^9. If [t] denotes the greatest integer \leq t, then : [JEE Main 2023 (Online) 30th January Evening Shift]
\begin{aligned} & \text { If } I_1+f=(8 \sqrt{3}+13)^{13}, f^{\prime}=(8 \sqrt{3}-13)^{13} \\ & I_1+f-f^{\prime}=\text { Even } \\ & I_1=\text { Even } \\ & I_2+f-f^{\prime}=(7 \sqrt{2}+9)^9+(7 \sqrt{2}-9)^9 \\ & =\text { Even } \\ & I_2=\text { Even } \end{aligned}
If the coefficient of x^{15} in the expansion of \left( a x^3+\frac{1}{ b x^{1 / 3}}\right)^{15} is equal to the coefficient of x^{-15} in the expansion of \left(a x^{1 / 3}-\frac{1}{b x^3}\right)^{15}, where a and b are positive real numbers, then for each such ordered pair ( a , b ) : [JEE Main 2023 (Online) 30th January Morning Shift]
\begin{aligned} & \text { For }\left(a x^3+\frac{1}{b x^{\frac{1}{3}}}\right) \\ & T_{r+1}={ }^{15} C_r\left(a x^3\right)^{15-r}\left(\frac{1}{b x^{\frac{1}{3}}}\right)^1 \\ & \therefore x^{15} \rightarrow 3(15-r)-\frac{r}{3}=15 \\ & \Rightarrow 30=\frac{10 r}{3} \Rightarrow r=9 \end{aligned}
Similarly, for \left(a x^{\frac{1}{3}}-\frac{1}{b x^3}\right)^{15}
T_{r+1}={ }^{15} C_r\left(a x^{\frac{1}{3}}\right)^{15-r}\left(-\frac{1}{b x^3}\right)^r
\therefore For x^{-15} \rightarrow \frac{15-r}{3}-3 r=-15 \Rightarrow r=6
\therefore{ }^{15} C_9 \frac{a^6}{b^9}={ }^{15} C_6 \frac{a^9}{b^6} \Rightarrow a b=1
The coefficient of x^{301} in (1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots+x^{500} is : [JEE Main 2023 (Online) 30th January Morning Shift]
The coefficient of x^{301} in
\begin{aligned} & (1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots+x^{500} \\ & { }^{500} C_{301}+{ }^{499} C_{300}+{ }^{498} C_{299}+\ldots+{ }^{199} C_0 \\ & ={ }^{500} C_{199}+{ }^{499} C_{199}+{ }^{498} C_{199}+\ldots+{ }^{199} C_{199} \\ & ={ }^{501} C_{200} \end{aligned}
Let K be the sum of the coefficients of the odd powers of x in the expansion of (1+x)^{99}. Let a be the middle term in the expansion of \left(2+\frac{1}{\sqrt{2}}\right)^{200}. If \frac{{ }^{200} C_{99} K}{a}=\frac{2^l m}{n}, where m and n are odd numbers, then the ordered pair (l, n ) is equal to [JEE Main 2023 (Online) 29th January Evening Shift]
\begin{aligned} & K=2^{98} \\ & a={ }^{200} C_{100} 2^{50} \\ & \therefore{ }^{200} C_{99} \cdot 2^{98} C_{100} \cdot 2^{50}=\frac{2^l m}{n} \\ & \Rightarrow \frac{100}{101} \cdot 2^{48}=\frac{2^l m}{n} \\ & \Rightarrow \frac{25}{101} \cdot 2^{50}=\frac{2^l m}{n} \\ & \therefore l=50, m=25, n=101 \end{aligned}
If a_r is the coefficient of x^{10-r} in the Binomial expansion of (1+x)^{10}, then \sum_{r=1}^{10} r^3\left(\frac{a_r}{a_{r-1}}\right)^2 is equal to [JEE Main 2023 (Online) 25th January Morning Shift]
\begin{aligned} & a _{ r }={ }^{10} C _{10- r }={ }^{10} C _{ r } \\ & \Rightarrow \sum_{ r =1}^{10} r ^3\left(\frac{{ }^{10} C _{ r }}{{ }^{10} C _{ r -1}}\right)^2=\sum_{ r =1}^{10} r ^3\left(\frac{11- r }{ r }\right)^2=\sum_{ r =1}^{10} r (11- r )^2 \\ & =\sum_{ r =1}^{10}\left(121 r + r ^3-22 r ^2\right)=1210 \end{aligned}
If \left({ }^{30} C_1\right)^2+2\left({ }^{30} C_2\right)^2+3\left({ }^{(30} C_3\right)^2+\ldots+30\left({ }^{30} C_{30}\right)^2=\frac{\alpha 60!}{(30!)^2} then \alpha is equal to : [JEE Main 2023 (Online) 24th January Evening Shift]
\begin{aligned} & S =0 \cdot\left({ }^{30} C _0\right)^2+1 \cdot\left({ }^{30} C _1\right)^2+2 \cdot\left({ }^{30} C _2\right)^2+\ldots \ldots+30 \cdot\left({ }^{30} C _{30}\right)^2 \\ & S =30 \cdot\left({ }^{30} C _0\right)^2+29 \cdot\left({ }^{30} C _1\right)^2+28 \cdot\left({ }^{30} C _2\right)^2+\ldots .+0 \cdot\left({ }^{30} C _0\right)^2 \\ & 2 S =30 \cdot\left({ }^{30} C _0{ }^2+{ }^{30} C _1{ }^2+\ldots \ldots .+{ }^{30} C _{30}{ }^2\right) \\ & S =15 \cdot{ }^{60} C _{30}=15 \cdot \frac{60!}{(30!)^2} \\ & \frac{15 \cdot 10!}{(30!)^2}=\frac{\alpha \cdot 60!}{(30!)^2} \\ & \Rightarrow \alpha=15 \end{aligned}
Alternate:
\begin{aligned} & 1 \cdot\left({ }^{30} C_1\right)^2+2 \cdot\left({ }^{30} C_2\right)^2+3 \cdot\left({ }^{30} C_3\right)^2+\ldots \ldots+30 \cdot\left({ }^{30} C_{30}\right)^2 \\ & =\sum_{r=1}^{30} r \cdot\left({ }^{30} C_r\right)^2 \\ & =\sum_{r=1}^{30} r \cdot{ }^{30} C_r \cdot{ }^{30} C_r \\ & =\sum_{r=1}^{30} r \cdot \frac{30}{r} \cdot{ }^{29} C_{r-1} \cdot{ }^{30} C_r \\ & =30 \sum_{r=1}^{30}{ }^{29} C_{r-1} \cdot{ }^{30} C_r \end{aligned}
\begin{aligned} & =30 \times\left(\text { Coefficient of } x^{29} \text { in }(1+x)^{59}\right) \\ & =30 \times\left({ }^{59} C_{29}\right) \\ & =30 \times \frac{60}{30} \times{ }^{59} C_{29} \times \frac{30}{60} \\ & =30 \times{ }^{60} C_{30} \times \frac{30}{60} \\ & =15 \times \frac{60!}{30!30!} \\ & \therefore \alpha=15 \end{aligned}
The value of \sum_{r=0}^{22}{ }^{22} C_r{ }^{23} C_r is [JEE Main 2023 (Online) 24th January Morning Shift]
\begin{aligned} & \sum_{r=0}^{22}{ }^{22} C_r \cdot{ }^{23} C_r \\ & =\sum_{r=0}^{22}{ }^{22} C_r{ }^{23} C_{23-r}\left[\text { using }{ }^n C_r={ }^n C_{n-r}\right] \\ & ={ }^{22} C_0{ }^{23} C_{23}+{ }^{22} C_1{ }^{23} C_{22}+\ldots+{ }^{22} C_{21}{ }^{23} C_2+{ }^{22} C_{22}{ }^{23} C_1 \end{aligned}
We know,
(1+x)^{22}={ }^{22} C_0+{ }^{22} C_1 x+{ }^{22} C_2 x^2+{ }^{22} C_3 x^3+\ldots+{ }^{22} C_{22} x^{22}
and (1+x)^{23}={ }^{23} C_0+{ }^{23} C_1 x+{ }^{23} C_2 x^2+\ldots+{ }^{23} C_{22} x^{22}+{ }^{23} C_{23} x^{23}
Now coefficient of x^{23} in (1+x)^{22}(1+x)^{23} or (1+x)^{45}
\begin{aligned} & ={ }^{22} C_0{ }^{23} C_{23}+{ }^{22} C_1{ }^{23} C_{22}+\ldots+{ }^{22} C_{21} \cdot{ }^{23} C_2+{ }^{22} C_{22} \cdot{ }^{23} C_1 \\ & =\sum_{r=0}^{22}{ }^{22} C_r \cdot{ }^{23} C_{23-r} \end{aligned}
\therefore Coefficient of x^{23} in (1+x)^{45}={ }^{45} C_{23}
\sum_{r=1}^{20}\left(r^2+1\right)(r!) \text { is equal to } [JEE Main 2022 (Online) 29th July Evening Shift]
Given,
\begin{aligned} & \sum_{r=1}^{20}\left(r^2+1\right)(r!) \\ & \text { Let, } f(r)=\left(r^2+1\right)(r!) \\ & =\left(r^2\right)(r!)+r! \\ & =r(r r!)+r! \\ & =r[(r+1-1) r!]+r! \\ & =r[(r+1) r!-r!]+r! \\ & =r[(r+1)!-(r!)]+r! \\ & =r(r+1)!-r(r!)+r! \\ & =(r+2-2)(r+1)!-r(r!)+r! \\ & =(r+2)(r+1)!-2(r+1)!-[(r+1-1)(r!)]+r! \\ & =(r+2)!-2(r+1)!-(r+1)!+r!+r! \\ & =(r+2)!-3(r+1)!+2 r! \\ & =[(r+2)!-(r+1)!]-2[(r+1)!-r!] \end{aligned}
\begin{aligned} & \therefore \sum_{r=1}^{20} f(r) \\ & =\sum_{r=1}^{20}[(r+2)!-(r+1)!]-2 \sum_{r=1}^{20}[(r+1)!-r!] \end{aligned}
=[(22!+21!+20!+\ldots \ldots+4!+3!)-(21!+20!+19!+\ldots .+3!+2!]-2[(21!+20!+\ldots \ldots+3!+2!)-(20!+19!+\ldots \ldots 1!)]
\begin{aligned} & =[(22!)-(2!)]-2[(21)!-(1!)] \\ & =22!-2!-2 \cdot(21)!+2 \cdot 1! \\ & =22!-2 \cdot(21)! \end{aligned}
The remainder when 7^{2022}+3^{2022} is divided by 5 is : [JEE Main 2022 (Online) 28th July Morning Shift]
\begin{aligned} & 7^{2022}+3^{2022} \\ & =\left(7^2\right)^{1011}+\left(3^2\right)^{1011} \\ & =(50-1)^{1011}+(10-1)^{1011} \\ & =\left(50^{1011}-1011.50^{1010}+\ldots-1\right) \\ & +\left(10^{1011}-1011.10^{1010}+\ldots \ldots-1\right) \\ & =5 m-1+5 n-1=5(m+n)-2 \\ & =5(m+n)-5+3=5(m+n-1)+3 \\ & =5 k+3 \\ & \therefore \text { Remainder }=3 \end{aligned}
The remainder when (2021)^{2022}+(2022)^{2021} is divided by 7 is [JEE Main 2022 (Online) 27th July Morning Shift]
\begin{aligned} & (2021)^{2022}+(2022)^{2021} \\ & =(7 k-2)^{2022}+\left(7 k_1-1\right)^{2021} \\ & =\left[(7 k-2)^3\right]^{674}+\left(7 k_1\right)^{2021}-2021\left(7 k_1\right)^{2020}+\ldots .-1 \\ & =\left(7 k_2-1\right)^{674}+(7 m-1) \\ & =(7 n+1)+(7 m-1)=7(m+n) \text { (multiple of } 7 \text { ) } \\ & \therefore \text { Remainder }=0 \end{aligned}
\sum_{i, j=0}^n { }^n C_i{ }^n C_j \text { is equal to }, i \neq j [JEE Main 2022 (Online) 26th July Evening Shift]
\begin{aligned} & \sum_{i, j=0}^n{ }_{i \neq j}^n C_i{ }^n C_j=\sum_{i, j=0}^n{ }^n C_i{ }^n C_j-\sum_{i=j}^n{ }^n C_i{ }^n C_j \\ & =\sum_{j=0}^n{ }^n C_i \sum_{j=0}^n{ }^n C_j-\sum_{i=0}^n{ }^n C_i C_i \\ & =2^n \cdot 2^n-{ }^{2 n} C_n \\ & =2^{2 n}-{ }^{2 n} C_n \\ & \end{aligned}
The remainder when (11)^{1011}+(1011)^{11} is divided by 9 is [JEE Main 2022 (Online) 25th July Evening Shift]
\begin{aligned} & \operatorname{Re}\left(\frac{(11)^{1011}+(1011)^{11}}{9}\right)=\operatorname{Re}\left(\frac{2^{1011}+3^{11}}{9}\right) \\ & \text { For } \operatorname{Re}\left(\frac{2^{1011}}{9}\right) \end{aligned}
2^{1011}=(9-1)^{337}={ }^{337} C_0 9^{337}(-1)^0+{ }^{337} C_1 9^{336}(-1)^1+{ }^{337} C_2 9^{335}(-1)^2+\ldots \ldots+{ }^{337} C_{337} 9^0(-1)^{337}
So, remainder is 8 and \operatorname{Re}\left(\frac{3^{11}}{9}\right)=0
So, remainder is 8.
For two positive real numbers a and b such that \frac{1}{a^2}+\frac{1}{b^3}=4, then minimum value of the constant term in the expansion of \left(a x^{\frac{1}{8}}+b x^{-\frac{1}{12}}\right)^{10} is : [JEE Main 2022 (Online) 30th June Morning Shift]
Given, Binomial expansion,
\left(a x^{\frac{1}{8}}+b x^{-\frac{1}{12}}\right)^{10}
General term,
\begin{aligned} & T_{r+1}={ }^{10} C_r \cdot\left(a x^{\frac{1}{8}}\right)^{10-r} \cdot\left(b x^{-\frac{1}{12}}\right)^r \\ & ={ }^{10} C_r \cdot a^{10-r} \cdot b^r \cdot x^{\frac{10-r}{8}} \cdot x^{-\frac{r}{12}} \\ & ={ }^{10} C_r \cdot a^{10-r} \cdot b^r \cdot x^{\left(\frac{10-r}{8}-\frac{r}{12}\right)} \\ & ={ }^{10} C_r \cdot a^{10-r} \cdot b^r \cdot x^{\frac{30-3 r-2 r}{24}} \\ & ={ }^{10} C_r \cdot a^{10-r} \cdot b^r \cdot x^{\frac{30-5 r}{24}} \end{aligned}
For constant term,
\begin{aligned} & \frac{30-5 r}{24}=0 \\ & \Rightarrow r=6 \end{aligned}
\therefore Constant term,
\begin{aligned} & T_{r+1}=T_{6+1}={ }^{10} C_6 \cdot a^4 \cdot b^6 \\ & =\frac{10!}{6!4!} a^4 \cdot b^6 \\ & =\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} \cdot a^4 \cdot b^6 \\ & =210 a^4 b^6 \end{aligned}
We know, G M \geq H M
For terms a ^2 and b ^3,
\begin{aligned} & \sqrt{a^2 b^3} \geq \frac{2}{\frac{1}{a^2}+\frac{1}{b^3}} \\ & \Rightarrow \sqrt{a^2 b^3} \geq \frac{2}{4} \\ & \Rightarrow a^2 b^3 \geq \frac{1}{4} \\ & \Rightarrow\left(a^2 b^3\right)^2 \geq \frac{1}{16} \\ & \therefore a^4 b^6 \geq \frac{1}{16} \end{aligned}
\therefore Minimum value of a^4 b^6=\frac{1}{16}
\therefore Minimum value of constant term
\begin{aligned} & T_7=210 \times a^4 b^6 \\ & =210 \times \frac{1}{16} \\ & =\frac{105}{8} \end{aligned}
Let n \geq 5 be an integer. If 9^n-8 n-1=64 \alpha and 6^n-5 n-1=25 \beta, then \alpha- \beta is equal to [JEE Main 2022 (Online) 29th June Evening Shift]
Given,
\begin{aligned} & 9^n-8 n-1=64 \alpha \\ & \Rightarrow \alpha=\frac{(1+8)^n-8 n-1}{64} \end{aligned}
=\frac{\left({ }^n C_0 \cdot 1+{ }^n C_1 \cdot 8^1+{ }^n C_2 \cdot 8^2+\ldots . .+{ }^n C_n \cdot 8^n\right)-8 n-1}{8^2}
=\frac{1+8 n+{ }^n C_2 \cdot 8^2+\ldots .+{ }^n C_n \cdot 8^n-8 n-1}{8^2}
=\frac{{ }^n C_2 \cdot 8^2+{ }^n C_3 \cdot 8^3+\ldots . .+{ }^n C_n \cdot 8^n}{8^2}
={ }^n C_2+{ }^n C_3 \cdot 8+{ }^n C_4 \cdot 8^2+\ldots .{ }^n C_n \cdot 8^{n-2}
Also given,
\begin{aligned} & 6^n-5 n-1=25 \beta \\ & \Rightarrow \beta=\frac{(1+5)^n-5 n-1}{25} \end{aligned}
=\frac{{ }^n C_0 \cdot 1+{ }^n C_1 \cdot 5+{ }^n C_2 \cdot 5^2+\ldots . .+{ }^n C_n \cdot 5^n-5 n-1}{5^2}
=\frac{1+5 n+{ }^n C_2 \cdot 5^2+{ }^n C_3 \cdot 5^3+\ldots .+{ }^n C_n \cdot 5^2-5 n-1}{5^2}
=\frac{{ }^n C_2 \cdot 5^2+{ }^n C_3 \cdot 5^3+{ }^n C_4 \cdot 5^4+\ldots .+{ }^n C_n \cdot 5^n}{5^2}
\begin{aligned} & ={ }^n C_2+{ }^n C_3 \cdot 5+{ }^n C_4 \cdot 5^2+\ldots \ldots+{ }^n C_n \cdot 5^{n-2} \\ & \therefore \alpha-\beta \end{aligned}
=\left({ }^n C_2+{ }^n C_3 \cdot 8+{ }^n C_4 \cdot 8^2+\ldots .+{ }^n C_n \cdot 8^{n-2}\right)-\left({ }^n C_2+{ }^n C_3 \cdot 5\right.\left.+{ }^n C_4 \cdot 5^2+\ldots+{ }^n C_n \cdot 5^{n-2}\right)
={ }^n C_3 \cdot(8-5)+{ }^n C_4 \cdot\left(8^2-5^2\right)+\ldots+{ }^n C_n\left(8^{n-2}-5^{n-2}\right)
If the constant term in the expansion of \left(3 x^3-2 x^2+\frac{5}{x^5}\right)^{10} is 2^{ k } . l, where l is an odd integer, then the value of k is equal to: [JEE Main 2022 (Online) 29th June Morning Shift]
The general term of \left(x_1+x_2+\ldots+x_n\right)^n the expansion is
\begin{aligned} & \frac{n!}{n_{1}!n_{2}!\ldots n_{n}!} x_1^{n_1} x_2^{n_2} \ldots x_n^{n_n} \\ & \text { where } n _1+ n _2+\ldots .+ n _{ n }= n \end{aligned}
Given,
\begin{aligned} & \left(3 x^2-2 x^2+\frac{5}{x^5}\right)^{10} \\ & =\frac{\left(3 x^8-2 x^7+5\right)^{10}}{x^{50}} \end{aligned}
Now constant term in \left(3 x^3-2 x^2+\frac{5}{x^5}\right)^{10}=x^{50} term in \left(3 x^8-2 x^7+5\right)^{10}
General term in \left(3 x^8-2 x^7+5\right)^{10} is
\begin{aligned} & =\frac{10!}{n_{1}!n_{2}!n_{3}!}\left(3 x^8\right)^{n_1}\left(-2 x^7\right)^{n_2}(5)^{n_3} \\ & =\frac{10!}{n_{1}!n_{2}!n_{3}!}(3)^{n^1}(-2)^{n_2}(5)^{n^3} \cdot x^{8 n_1+7 n_2} \end{aligned}
\therefore Coefficient of x^{8 n_1+7 n_2} is
=\frac{10!}{n_{1}!n_{2}!n_{3}!}(3)^{n_1}(-2)^{n_2}(5)^{n_3}
where n_1+n_2+n_3=0
For coefficient of x ^{50} :
8 n_1+7 n_2=50
\therefore Possible values of n_1, n_2 and n_3 are
\begin{array}{|c|c|c|} \hline n_1 & n_2 & n_3 \\ \hline 1 & 6 & 3 \\ \hline \end{array}
\begin{aligned} & \therefore \text { Coefficient of } x ^{50} \\ & =\frac{10!}{1!6!3!}(3)^1(-2)^6(5)^3 \\ & =\frac{10 \times 9 \times 8 \times 7}{6} \times 3 \times 5^3 \times 2^6 \\ & =5 \times 3 \times 8 \times 7 \times 3 \times 5^3 \times 2^6 \\ & =7 \times 5^4 \times 3^2 \times 2^9 \\ & =2^k . l \\ & \therefore l=7 \times 5^4 \times 3^2=\text { An odd integer } \\ & \text { and } 2^k=2^9 \\ & \Rightarrow k=9 \end{aligned}
The term independent of x in the expansion of \left(1-x^2+3 x^3\right)\left(\frac{5}{2} x^3-\frac{1}{5 x^2}\right)^{11}, x \neq 0 is : [JEE Main 2022 (Online) 28th June Evening Shift]
General term of Binomial expansion \left(\frac{5}{2} x^3-\frac{1}{5 x^2}\right)^{11} is
\begin{aligned} & T_{r+1}={ }^{11} C_r \cdot\left(\frac{5}{2} x^3\right)^{11-r} \cdot\left(-\frac{1}{5 x^2}\right)^r \\ & ={ }^{11} C_r \cdot\left(\frac{5}{2}\right)^{11-r} \cdot\left(-\frac{1}{5}\right)^r \cdot x^{33-5 r} \end{aligned}
In the term,
\left(1-x^2+3 x^3\right)\left(\frac{5}{2} x^3-\frac{1}{5 x^2}\right)^{11}
Term independent of x is when
(1) 33-5 r=0
\Rightarrow r=\frac{33}{5} \notin integer
(2) 33-5 r=-2
\Rightarrow 5 r=35
\Rightarrow r=7 \in integer
(3) 33-5 r=-3
\Rightarrow 5 r=36
\Rightarrow r=\frac{36}{5} \notin integer
\therefore Only for r=7 independent of x term possible.
\therefore Independent of x term
\begin{aligned} & =-\left({ }^{11} C_7\left(\frac{5}{2}\right)^4 \cdot\left(-\frac{1}{5}\right)^7\right) \\ & =-\left(\frac{11 \cdot 10 \cdot 9 \cdot 8}{4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{5^4}{2^4} \cdot-\frac{1}{5^7}\right) \\ & =\frac{11 \cdot 10 \cdot 3}{2^4 \cdot 5^3} \\ & =\frac{11 \cdot 3}{2^3 \cdot 5^2} \\ & =\frac{33}{200} \end{aligned}
If \sum_{k=1}^{31}\left({ }^{31} C_k\right)\left({ }^{31} C_{k-1}\right)-\sum_{k=1}^{30}\left({ }^{30} C_k\right)\left({ }^{30} C_{k-1}\right)=\frac{\alpha(60!)}{(30!)(31!)} where \alpha \in R, then the value of 16 \alpha is equal to [JEE Main 2022 (Online) 28th June Morning Shift]
Given,
\sum_{k=1}^{31}\left({ }^{31} C_k\right)\left({ }^{31} C_{k-1}\right)-\sum_{k=1}^{30}\left({ }^{30} C_k\right)\left({ }^{30} C_{k-1}\right)=\frac{\alpha(60!)}{(30!)(31!)}
Now,
\begin{aligned} & \sum_{k=1}^{31}\left({ }^{31} C_k\right)\left({ }^{31} C_{k-1}\right) \\ & =\left({ }^{31} C_1 \cdot{ }^{31} C_0+{ }^{31} C_2 \cdot{ }^{31} C_1+{ }^{31} C_3 \cdot{ }^{31} C_2+\ldots \ldots+{ }^{31} C_{31} \cdot{ }^{31} C_{30}\right) \\ & =\left({ }^{31} C_0 \cdot{ }^{31} C_{31-1}+{ }^{31} C_1 \cdot{ }^{31} C_{31-2}+\ldots \ldots+{ }^{31} C_{30} \cdot{ }^{31} C_{31-31}\right) \\ & \text { [using }{ }^n C_r={ }^n C_{n-r} \text { ] } \\ & =\left({ }^{31} C_0 \cdot{ }^{31} C_{30}+{ }^{31} C_1 \cdot{ }^{31} C_{29}+\ldots \ldots+{ }^{31} C_{30} \cdot{ }^{31} C_0\right) \\ & ={ }^{62} C_{30} \end{aligned}
\begin{aligned} & \text { Now, } \sum_{k=1}^{30}{ }^{30} C_k \cdot{ }^{30} C_{k-1} \\ & =\left({ }^{30} C_1 \cdot{ }^{30} C_0+{ }^{30} C_2 \cdot{ }^{30} C_1+\ldots \ldots+{ }^{30} C_{30} \cdot{ }^{30} C_{29}\right) \\ & =\left({ }^{30} C_0 \cdot{ }^{30} C_{29}+{ }^{30} C_1 \cdot{ }^{30} C_{28}+\ldots \ldots+{ }^{30} C_{29} \cdot{ }^{30} C_0\right) \\ & ={ }^{60} C_{29} \end{aligned}
\begin{aligned} & \therefore{ }^{60} C_{30}-{ }^{60} C_{29}=\frac{\alpha(60!)}{30!31!} \\ & \Rightarrow \frac{62.61 \cdot 60!}{30!32!}-\frac{60!}{29!31!}=\frac{\alpha(60!)}{30!31!} \\ & \Rightarrow \frac{62.61 \cdot 60!}{30!32!}-\frac{60!}{\frac{30!}{30} \cdot 31!}=\frac{\alpha(60!)}{30!31!} \end{aligned}
\begin{aligned} & \Rightarrow \frac{60!}{30!31!}\left(\frac{62.61}{32}-30\right)=\frac{\alpha(60!)}{30!31!} \\ & \Rightarrow \alpha=\frac{62.61}{32}-30 \\ & \Rightarrow 16 \alpha=\frac{62.61-30 \times 32}{2} \\ & \Rightarrow 16 \alpha=\frac{2822}{2}=1411 \end{aligned}
The remainder when (2021)^{2023} is divided by 7 is : [JEE Main 2022 (Online) 26th June Morning Shift]
(2021)^{2023}
=(2016+5)^{2023} [here 2016 is divisible by 7]
\begin{aligned} & ={ }^{2023} C_0(2016)^{2023}+\ldots \ldots \ldots .+{ }^{2023} C_{2022}(2016)(5)^{2022}+{ }^{2023} C_{2023}(5)^{2023} \\ & =2016\left[{ }^{2023} C_0 \cdot(2016)^{2022}+\ldots \ldots . .+{ }^{2023} C_{2022} \cdot(5)^{2022}\right]+(5)^{2023} \end{aligned}
\begin{aligned} & =2016 \lambda+(5)^{2023} \\ & =7 \times 288 \lambda+(5)^{2023} \end{aligned}
=7 K+(5)^{2023} \dots(1)
Now, (5)^{2023}
\begin{aligned} & =(5)^{2022} \cdot 5 \\ & =\left(5^3\right)^{674} \cdot 5 \\ & =(125)^{674} \cdot 5 \\ & =(126-1)^{674} \cdot 5 \end{aligned}
=5\left[{ }^{674} C_0(126)^{674}+\ldots \ldots \ldots . .-{ }^{674} C_{673}(126)+{ }^{674} C_{674}\right]
\begin{aligned} & =5 \times 126\left[{ }^{674} C_0(126)^{673}+\ldots \ldots .-{ }^{674} C_{673}\right]+5 \\ & =5.7 .18\left[{ }^{674} C_0(126)^{673}+\ldots \ldots .-{ }^{674} C_{673}\right]+5 \\ & =7 \lambda+5 \end{aligned}
Replacing (5) { }^{2023} in equation (1) with 7 \lambda+5, we get,
\begin{aligned} & (2021)^{2023}=7 K+7 \lambda+5 \\ & =7(K+\lambda)+5 \end{aligned}
\therefore Remainder =5
The coefficient of x ^{101} in the expression (5+x)^{500}+x(5+x)^{499}+x^2(5+x)^{498}+\ldots . .+x^{500}, x >0, is [JEE Main 2022 (Online) 25th June Evening Shift]
Given,
(5+x)^{500}+x(5+x)^{499}+x^2(5+x)^{498}+\ldots \ldots . . x^{500}
This is a G.P. with first term (5+x)^{500}
Common ratio =\frac{x(5+x)^{499}}{(5+x)^{500}}=\frac{x}{5+x} and 501 terms present.
\begin{aligned} & \therefore \text { Sum }=\frac{(5+x)^{500}\left(\left(\frac{x}{5+x}\right)^{501}-1\right)}{\frac{x}{5+x}-1} \\ & =\frac{(5+x)^{500}\left(\frac{x^{501}-(5+x)^{501}}{(5+x)^{501}}\right)}{\frac{x-5-x}{5+x}} \\ & =\frac{\frac{x^{501}-(5+x)^{501}}{5+x}}{\frac{-5}{5+x}} \end{aligned}
\begin{aligned} & =\frac{1}{5}\left((5+x)^{501}-x^{501}\right) \\ & \text { Coefficient of } x ^{101} \text { in }(5+x)^{501} \text { is }={ }^{501} C_{101} \cdot 5^{400} \\ & \therefore \ln \frac{1}{5}\left((5+x)^{500}-x^{501}\right) \text { coefficient of } x { }^{101} \text { is }=\frac{1}{5} \cdot{ }^{501} C_{101} \cdot 5^{400} \\ & ={ }^{501} C_{101} \cdot 5^{399} \end{aligned}
If \frac{1}{2.3^{10}}+\frac{1}{2^2 .3^9}+\ldots \ldots+\frac{1}{2^{10} .3}=\frac{K}{2^{10} .3^{10}}, then the remainder when K is divided by 6 is : [JEE Main 2022 (Online) 25th June Morning Shift]
\begin{aligned} & \frac{1}{2 \cdot 3^{10}}+\frac{1}{2^2 \cdot 3^9}+\ldots+\frac{1}{2^{10} \cdot 3}=\frac{K}{2^{10} \cdot 3^{10}} \\ & \Rightarrow \frac{1}{2 \cdot 3^{10}}\left[\frac{\left(\frac{3}{2}\right)^{10}-1}{\frac{3}{2}-1}\right]=\frac{K}{2^{10} \cdot 3^{10}} \\ & =\frac{3^{10}-2^{10}}{2^{10} \cdot 3^{10}}=\frac{K}{2^{10} \cdot 3^{10}} \Rightarrow K=3^{10}-2^{10} \end{aligned}
Now K=(1+2)^{10}-2^{10}
\begin{aligned} & ={ }^{10} C_0+{ }^{10} C_1 2+{ }^{10} C_2 2^3+\ldots .+{ }^{10} C_{10} 2^{10}-2^{10} \\ & ={ }^{10} C_0+{ }^{10} C_1 2+6 \lambda+{ }^{10} C_9 \cdot 2^9 \\ & =1+20+5120+6 \lambda \\ & =5136+6 \lambda+5 \\ & =6 \mu+5 \\ & \lambda, \mu \in N \\ & \therefore \text { remainder }=5 \end{aligned}
The remainder when 3^{2022} is divided by 5 is : [JEE Main 2022 (Online) 24th June Morning Shift]
\begin{aligned} & 3^{2022} \\ & =\left(3^2\right)^{1011} \\ & =(9)^{1011} \\ & =(10-1)^{1011} \end{aligned}
={ }^{1011} C_0(10)^{1011}+\ldots \ldots+{ }^{1011} C_{1010} \cdot(10)^1-{ }^{1011} C_{1011}
=10\left[{ }^{1011} C_0(10)^{1010}+\ldots \ldots+{ }^{1011} C_{1010}\right]-1
=10 K-1
[As 10\left[{ }^{1011} C_0 \cdot(10)^{1010}+\ldots \ldots+{ }^{1011} C_{1010}\right] is multiple of 10 ]
\begin{aligned} & =10 K+5-5-1 \\ & =10 K-5+5-1 \\ & =5(2 K-1)+4 \end{aligned}
\therefore Unit digit =4 when divided by 5 .
\sum_{k=0}^{20}\left({ }^{20} C_k\right)^2 \text { is equal to : } [JEE Main 2021 (Online) 27th August Morning Shift]
\begin{aligned} & \sum_{k=0}^{20}\left({ }^{20} C_k\right)^2 \\ & =\left({ }^{20} C_0\right)^2+\left({ }^{20} C_1\right)^2+\left({ }^{20} C_2\right)^2+\ldots+\left({ }^{20} C_{20}\right)^2 \\ & ={ }^{40} C_{20} \end{aligned}
Using the formula :
\left({ }^n C_0\right)^2+\left({ }^n C_1\right)^2+\left({ }^n C_2\right)^2+\ldots+\left({ }^n C_n\right)^2={ }^{2 n} C_n
If { }^{20} C_r is the co-efficient of x ^{r} in the expansion of (1+ x )^{20}, then the value of \sum_{r=0}^{20} r^2 \cdot{ }^{20} C_r is equal to : [JEE Main 2021 (Online) 26th August Morning Shift]
\begin{aligned} & \sum_{r=0}^{20} r^2 \cdot{ }^{20} C_r \\ & \sum(4(r-1)+r) \cdot{ }^{20} C_r \\ & \sum r(r-1) \cdot \frac{20 \times 19}{r(r-1)} \cdot{ }^{18} C_r+r \cdot \frac{20}{r} \cdot \sum{ }^{19} C_{r-1} \\ & \Rightarrow 20 \times 19.2^{18}+20.2^{19} \\ & \Rightarrow 420 \times 2^{18} \end{aligned}
A possible value of ‘ x ‘, for which the ninth term in the expansion of \left\{3^{\log _3 \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _3\left(5^{x-1}+1\right)}\right\}^{10} in the increasing powers of 3^{\left(-\frac{1}{8}\right) \log _3\left(5^{x-1}+1\right)} is equal to 180 , is : [JEE Main 2021 (Online) 27th July Evening Shift]
\begin{aligned} & { }^{10} C_8\left(25^{(x-1)}+7\right) \times\left(5^{(x-1)}+1\right)^{-1}=180 \\ & \Rightarrow \frac{25^{x-1}+7}{5^{(x-1)}+1}=4 \end{aligned}
\begin{aligned} & \Rightarrow \frac{t^2+7}{t+1}=4 ; \\ & \Rightarrow t =1,3=5^{x-1} \end{aligned}
\Rightarrow x-1=0 (one of the possible value).
\Rightarrow x =1
If the coefficients of x ^7 in \left(x^2+\frac{1}{b x}\right)^{11} and x ^{-7} in \left(x-\frac{1}{b x^2}\right)^{11}, b \neq 0, are equal, then the value of b is equal to : [JEE Main 2021 (Online) 27th July Morning Shift]
Coefficient of x ^7 in \left(x^2+\frac{1}{b x}\right)^{11} :
General Term ={ }^{11} C_r\left(x^2\right)^{11-r} \cdot\left(\frac{1}{b x}\right)^r
={ }^{11} C_r x^{22-3 r} \cdot \frac{1}{b^r}
22-3 r=7
r=5
\therefore Required Term ={ }^{11} C_5 \cdot \frac{1}{b^5} \cdot x^7
Coefficient of x ^{-7} in \left(x-\frac{1}{b x^2}\right)^{11} :
General Term ={ }^{11} C_r(x)^{11-r} \cdot\left(-\frac{1}{b x^2}\right)^r
={ }^{11} C_r x^{11-3 r} \cdot \frac{(-1)^r}{b^r}
11-3 r=-7 \therefore r=6
\therefore Required Term ={ }^{11} C_6 \cdot \frac{1}{b^6} x^{-7}
According to the question,
{ }^{11} C_5 \cdot \frac{1}{b^5}={ }^{11} C_6 \cdot \frac{1}{b^6}
Since, b \neq 0 \therefore b=1
The sum of all those terms which are rational numbers in the expansion of \left(2^{1 / 3}+3^{1 / 4}\right)^{12} is : [JEE Main 2021 (Online) 25th July Evening Shift]
T_{r+1}={ }^{12} C_r\left(2^{1 / 3}\right)^r \cdot\left(3^{1 / 4}\right)^{12-4}
T_{r+1} will be rational number when r=0,3,6,9,12 \text { and } r=0,4,8,12
\begin{aligned} & \Rightarrow r =0,12 \\ & T _1+ T _{13}=1 \times 3^3+1 \times 2^4 \times 1 \\ & =27+16=43 \end{aligned}
If the greatest value of the term independent of ‘ x ‘ in the expansion of \left(x \sin \alpha+a \frac{\cos \alpha}{x}\right)^{10} is \frac{10!}{(5!)^2}, then the value of ‘a’ is equal to : [JEE Main 2021 (Online) 25th July Evening Shift]
\begin{aligned} & T_{r+1}={ }^{10} C_r(x \sin \alpha)^{10-r}\left(\frac{a \cos \alpha}{x}\right)^r \\ & r =0,1,2, \ldots \ldots ., 10 \end{aligned}
T_{r+1} will be independent of x when 10-2 r=0 \Rightarrow r=5
\begin{aligned} & T_6={ }^{10} C_5(x \sin \alpha)^5 \times\left(\frac{a \cos \alpha}{x}\right)^5 \\ & ={ }^{10} C_5 \times a^5 \times \frac{1}{2^5}(\sin 2 \alpha)^5 \end{aligned}
will be greatest when \sin 2 \alpha=1
\Rightarrow{ }^{10} C_5 \frac{a^5}{2^5}={ }^{10} C_5 \Rightarrow a=2
The lowest integer which is greater than \left(1+\frac{1}{10^{100}}\right)^{10^{100}} is ____. [JEE Main 2021 (Online) 25th July Evening Shift]
Let 10^{100}=n
Then, \left(1+\frac{1}{n}\right)^n
\begin{aligned} & ={ }^n C_0+{ }^n C_1 \cdot \frac{1}{n}+{ }^n C_2 \cdot \frac{1}{n^2}+{ }^n C_3 \cdot \frac{1}{n^3}+\cdots \\ & =1+1+\frac{n(n-1)}{2 n^2}+\frac{n(n-1)(n-2)}{6 n^3}+\cdots \\ & \Rightarrow\left(1+\frac{1}{n}\right)^{n^n}>2 \end{aligned}
We know that
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^n=e \approx 2.72
Hence, lowest integer is 3 which is greater than \left(1+\frac{1}{10^{100}}\right)^{10^{100}}
If b is very small as compared to the value of a, so that the cube and other higher powers of \frac{b}{a} can be neglected in the identity \frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b}+\ldots \ldots+\frac{1}{a-n b}=\alpha n+\beta n^2+\gamma n^3, then the value of \gamma is : [JEE Main 2021 (Online) 25th July Morning Shift]
\begin{aligned} & (a-b)^{-1}+(a-2 b)^{-1}+\ldots+(a-n b)^{-1} \\ & =\frac{1}{a} \sum_{r=1}^n\left(1-\frac{r b}{a}\right)^{-1} \\ & =\frac{1}{a} \sum_{r=1}^n\left\{\left(1+\frac{r b}{a}+\frac{r^2 b^2}{a^2}\right)+(\text { terms to be neglected })\right\} \\ & =\frac{1}{a}\left[n+\frac{n(n+1)}{2} \cdot \frac{b}{a}+\frac{n(n+1)(2 n+1)}{6} \cdot \frac{b^2}{a^2}\right] \\ & =\frac{1}{a}\left[n^3\left(\frac{b^2}{3 a^2}\right)+\ldots .\right] \end{aligned}
So, \gamma=\frac{b^2}{3 a^3}
For the natural numbers m, n, if (1-y)^m(1+y)^n=1+a_1 y+a_2 y^2+\ldots+a_{m+n} y^{m+n} and a_1=a_2=10 \text {, then the value of }( m + n ) \text { is equal to : } [JEE Main 2021 (Online) 20th July Evening Shift]
(1-y)^m(1+y)^n=1+a_1 y+a_2 y^2+\ldots+a_{m+n} y^{m+n}
Given, \left(a_1=a_2=10\right)
\left(1-m y+{ }^m C_2 y^2+\ldots \ldots\right)\left(1+n y+{ }^n C_2 y^2+\ldots \ldots\right)=1+a_1 y+a_2 y^2+\ldots
\begin{aligned} & \Rightarrow n-m=10 \ldots . . \text { (i) } \\ & \Rightarrow{ }^m C_2+{ }^n C_2-m n=10 \ldots \ldots \text { (ii) } \\ & \frac{m(m-1)}{2}+\frac{n(n-1)}{2}-m n=10 \\ & \Rightarrow \frac{m^2-m}{2}+\frac{(10+m)(9+m)}{2}-m(10+m)=10 \\ & \Rightarrow m^2-m+m^2+19 m+90-2\left(m^2+10 m\right)=20 \\ & \Rightarrow 18 m+90-20 m=20 \\ & \Rightarrow 2 m=70 \\ & \Rightarrow m=35 \& n=45 \\ & m+n=80 \end{aligned}
The coefficient of x^{256} in the expansion of (1-x)^{101}\left(x^2+x+1\right)^{100} is : [JEE Main 2021 (Online) 20th July Morning Shift]
(1-x)^{101}\left(x^2+x+1\right)^{100}
Coefficient of
\begin{aligned} & x^{256}=\left[(1-x)\left(1+x+x^2\right)\right]^{100}(1-x)=\left(1-x^3\right)^{100}(1-x) \\ & \Rightarrow\left({ }^{100} C_0-{ }^{100} C_1 x^3+{ }^{100} C_2 x^6-{ }^{100} C_3 x^9 \ldots\right)(1-x) \end{aligned}
\begin{aligned} & \sum(-1)^r 100 C_r x^{3 r}(1-x) \\ & \Rightarrow 3 r=256 \text { or } 255 \Rightarrow r=\frac{256}{3} \text { (Reject) } \\ & r =85 \\ & \text { Coefficient }={ }^{100} C_{85}={ }^{100} C_{15} \end{aligned}
Let \left(1+x+2 x^2\right)^{20}=a_0+a_1 x+a_2 x^2+\ldots .+a_{40} x^{40}. Then a_1+a_3+a_5+\ldots . .+a_{37} is equal to [JEE Main 2021 (Online) 18th March Morning Shift]
\left(1+x+2 x^2\right)^{20}=a_0+a_1 x+a_2 x^2+\ldots+a_{40} x^{40}
Put x=1
\Rightarrow 4^{20}=a_0+a_1+\ldots \ldots .+a_{40 \ldots} \text { (i) }
Put x=-1
\Rightarrow 2^{20}=a_0-a_1+\ldots \ldots+-a_{39}+a_{40} \ldots \ldots. (ii)
by (i) – (ii) we get,
\begin{aligned} & 4^{20}-2^{20}=2\left(a_1+a_3+\ldots \ldots+a_{37}+a_{39}\right) \\ & \Rightarrow a_1+a_3+\ldots \ldots+a_{37}=2^{39}-2^{19}-a_{39} \ldots .(iii) \end{aligned}
\begin{aligned} & a_{39}=\text { coeff. } x^{39} \text { in }\left(1+x+2 x^2\right)^{20} \\ & =\frac{20!}{0!1!!}(1)^0(1)^1(2)^{19} \\ & =20.2^{19} \\ & \therefore a_1+a_3+\ldots \ldots+a_{37}=2^{39}-2^{19} .21 \\ & \Rightarrow 2^{19}\left(2^{20}-21\right) \end{aligned}
The value of \sum_{r=0}^6 \left({ }^6 C_r \cdot{ }^6 C_{6-r}\right) \text { is equal to: } [JEE Main 2021 (Online) 17th March Evening Shift]
\begin{aligned} & \sum_{r=0}^6{ }^6 C_r{ }^6 C_{6-r} \\ & ={ }^6 C_0 \cdot{ }^6 C_6+{ }^6 C_1 \cdot{ }^6 C_5+\ldots+{ }^6 C_6 \cdot{ }^6 C_0 \end{aligned}
Now,
\begin{aligned} & =\left({ }^6 C_0+{ }^6 C_1 x+{ }^6 C_2 x^2+\ldots+{ }^6 C_6 x^6\right) \\ & \left({ }^6 C_0+{ }^6 C_1 x+{ }^6 C_2 x^2+\ldots+{ }^6 C_6 x^6\right) \end{aligned}
Comparing coefficient of x^6 both sides
\begin{aligned} & { }^6 C_0 \cdot{ }^6 C_6+{ }^6 C_1 \cdot{ }^6 C_5+\ldots+{ }^6 C_6 \cdot{ }^6 C_0 \\ & ={ }^{12} C_6=924 \end{aligned}
If the fourth term in the expansion of \left(x+x^{\log _2 x}\right)^7 is 4480 , then the value of x where x \in N is equal to : [JEE Main 2021 (Online) 17th March Morning Shift]
\begin{aligned} & T _4={ }^7 C_3 x^4\left(x^{\log _2 x}\right)^3=4480 \\ & \Rightarrow 35 x^4\left(x^{\log _2 x}\right)^3=4480 \\ & \Rightarrow x^4\left(x^{\log _2 x}\right)^3=128 \end{aligned}
take \log w.r.t. base 2 we get,
\begin{aligned} & 4 \log _2 x+3 \log _2\left(x^{\log _2 x}\right)=\log _2 128 \\ & \text { Let } \log _2 x=y \\ & 4 y+3 y^2=7 \\ & \Rightarrow y=1, \frac{-7}{3} \\ & \Rightarrow \log _2 x=1, \frac{-7}{3} \\ & \Rightarrow x=2, x=2^{-7 / 3} \end{aligned}
If n is the number of irrational terms in the expansion of \left(3^{1 / 4}+5^{1 / 8}\right)^{60}, then (n-1) is divisible by: [JEE Main 2021 (Online) 16th March Morning Shift]
T_{r+1}={ }^{60} C_r\left(3^{1 / 4}\right)^{60-r}\left(5^{1 / 8}\right)^r
rational if \frac{60-r}{4}, \frac{r}{8}, both are whole numbers, r \in\{0,1,2, \ldots \ldots 60\}
\frac{60-r}{4} \in W \Rightarrow r \in\{0,4,8, \ldots .60\}
and \frac{r}{8} \in W \Rightarrow r \in\{0,8,16, \ldots .56\}
\therefore Common terms r \in\{0,8,16, \ldots . .56\}
So, 8 terms are rational
Then Irrational terms =61-8=53=n
\therefore n-1=52=13 \times 2^2
Factors 1, 2, 4, 13, 26, 52
Let [x] denote greatest integer less than or equal to x. If for n \in N,
\left(1-x+x^3\right)^n=\sum_{j=0}^{3 n} a_j x^j
then \sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j}+1 is equal to : [JEE Main 2021 (Online) 16th March Morning Shift]
\begin{aligned} & \left(1-x+x^3\right)^n=\sum_{j=0}^{3 n} a_j x^j \\ & \left(1-x+x^3\right)=a_0+a_1 x+a_2 x^2+\ldots \ldots+a_{3 n} x^{3 n} \end{aligned}
Put x=1
1=a_0+a_1+a_2+a_3+a_4+\ldots \ldots \ldots+a_{3 n} \dots(1)
Put x=-1
1=a_0-a_1+a_2-a_3+a_4+\ldots \ldots \ldots(-1)^{3 n} a_{3 n} \ldots \ldots (2)
Add (1) + (2)
\Rightarrow a_0+a_2+a_4+a_6+\ldots \ldots=1
Sub (1) – (2)
\Rightarrow a_1+a_3+a_5+a_7+\ldots \ldots=0
Now, \sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j}+1
\begin{aligned} & =\left(a_0+a_2+a_4+\ldots \ldots\right)+4\left(a_1+a_3+\ldots \ldots\right) \\ & =1+4 \times 0+1 \\ & =1+1=2 \end{aligned}
The maximum value of the term independent of ‘ t ‘ in the expansion of \left(t x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{10} where x \in(0,1) is : [JEE Main 2021 (Online) 26th February Morning Shift]
\begin{aligned} & T_{r+1}={ }^{10} C_r\left(t x^{1 / 5}\right)^{10-r}\left[\frac{(1-x)^{1 / 10}}{t}\right]^r \\ & ={ }^{10} C_r t^{(10-2 r)} \times x^{\frac{10-r}{5}} \times(1-x)^{\frac{r}{10}} \\ & \Rightarrow 10-2 r=0 \Rightarrow r=5 \\ & \therefore T_6={ }^{10} C_5 \times x \sqrt{1-x} \end{aligned}
At maximum, \frac{d T_6}{d x}={ }^{10} C_5\left[\sqrt{1-x}-\frac{x}{2 \sqrt{1-x}}\right]=0
\begin{aligned} & \Rightarrow 1-x=x / 2 \Rightarrow 3 x=2 \Rightarrow x=2 / 3 \\ & \left.T_6\right|_{\max }=\frac{10!}{5!5!} \times \frac{2}{3 \sqrt{3}}=\frac{2.10!}{3 \sqrt{3}(5!)^2} \end{aligned}
If n \geq 2 is a positive integer, then the sum of the series { }^{n+1} C_2+2\left({ }^2 C_2+{ }^3 C_2+{ }^4 C_2+\ldots+{ }^n C_2\right) is: [JEE Main 2021 (Online) 24th February Evening Shift]
Given that n \geq 2 is a positive integer
\begin{array}{ll} \therefore{ }^{n+1} C_2+2\left({ }^2 C_2+{ }^3 C_2+{ }^4 C_2+. .+{ }^n C_2\right) & \\ ={ }^{n+1} C_2+2\left({ }^3 C_3+{ }^3 C_2+{ }^4 C_2+. .+{ }^n C_2\right) & {\left[\because{ }^n C_n={ }^m C_m\right]} \\ ={ }^{n+1} C_2+2\left({ }^4 C_3+{ }^4 C_2+. .+{ }^n C_2\right) & {\left[\because{ }^n C_m+{ }^n C_{m-1}={ }^{n+1} C_m\right]} \\ ={ }^{n+1} C_2+2\left({ }^5 C_3+. .+{ }^n C_2\right) & {\left[\because{ }^n C_m+{ }^n C_{m-1}={ }^{n+1} C_m\right]} \end{array}
Proceeding in this way we get
\begin{gathered} ={ }^{n+1} C_2+2\left({ }^n C_3+{ }^n C_2\right) \\ ={ }^{n+1} C_2+2 .{ }^{n+1} C_3 \end{gathered}
=\frac{(n+1)!}{2!(n+1-2)!}+\frac{2 \cdot(n+1)!}{3!(n+1-3)!} \quad\left[\because{ }^n C_m=\frac{n!}{m!(n-m)!}\right]
\begin{aligned} & =\frac{(n+1)!}{2!(n-1)!}+\frac{2 \cdot(n+1)!}{3!(n-2)!} \\ & =\frac{n(n+1)}{2}+\frac{(n-1)(n)(n+1)}{3} \\ & =n(n+1)\left[\frac{1}{2}+\frac{n-1}{3}\right] \\ & =n(n+1)\left[\frac{3+2 n-2}{6}\right] \\ & =n(n+1)\left[\frac{2 n+1}{6}\right] \\ & =\frac{n(n+1)(2 n+1)}{6} \end{aligned}
The value of -{ }^{15} C_1+2 \cdot{ }^{15} C_2-3 \cdot{ }^{15} C_3+\ldots-15 \cdot{ }^{15} C_{15}+{ }^{14} C_1+{ }^{14} C_3+{ }^{14} C_5+ \ldots+{ }^{14} C_{11} is [JEE Main 2021 (Online) 24th February Morning Shift]
\begin{aligned} & -{ }^{15} C_1+2 \cdot{ }^{15} C_2-3 \cdot{ }^{15} C_3+\ldots .-15 \cdot{ }^{15} C_{15} \\ & =\sum_{r=1}^{15}(-1)^r \cdot r \cdot{ }^{15} C_r \\ & =\sum_{r=1}^{15}(-1)^2 \cdot r \cdot \frac{15}{r} \cdot{ }^{14} C_{r-1} \\ & =15 \sum_{r=1}^{15}(-1)^2 \cdot{ }^{14} C_{r-1} \\ & =15\left(-{ }^{14} C_0+{ }^{14} C_1-{ }^{14} C_2+\ldots .-{ }^{14} C_{14}\right) \\ & =15(0)=0 \end{aligned}
We know
\begin{aligned} & \Rightarrow 2^{14-1}={ }^{14} C_1+{ }^{14} C_3+{ }^{14} C_5 \ldots+{ }^{14} C_{13} \\ & \Rightarrow 2^{13}={ }^{14} C_1+{ }^{14} C_3+{ }^{14} C_5 \ldots+{ }^{14} C_{13} \\ & \text { Also let, } S={ }^{14} C_1+{ }^{14} C_3+{ }^{14} C_5+\ldots+{ }^{14} C_{11} \\ & \Rightarrow S+{ }^{14} C_{13}={ }^{14} C_1+{ }^{14} C_3+{ }^{14} C_5+\ldots+{ }^{14} C_{11}+{ }^{14} C_{13} \\ & \Rightarrow S+{ }^{14} C_{13}=2^{13} \\ & \Rightarrow S+14=2^{13} \\ & \Rightarrow S=2^{13}-14 \end{aligned}