Past JEE Main Entrance Paper

Overview

Relation between degree and radian

The circumference of a circle always bears a constant ratio to its diameter. This constant ratio is a number denoted by \(\pi\) which is taken approximately as \(\frac{22}{7}\) for all practical purpose. The relationship between degree and radian measurements is as follows:
\(
\begin{aligned}
& 2 \text { right angle }=180^{\circ}=\pi \text { radians } \\
& 1 \text { radian }=\frac{180^{\circ}}{\pi}=57^{\circ} 16^{\prime} \text { (approx) } \\
& 1^{\circ}=\frac{\pi}{180} \text { radian }=0.01746 \text { radians (approx) } \\
&
\end{aligned}
\)

Trigonometric functions

Trigonometric ratios are defined for acute angles as the ratio of the sides of a right angled triangle. The extension of trigonometric ratios to any angle in terms of radian measure (real numbers) are called trigonometric functions. The signs of trigonometric functions in different quadrants have been given in the following table:

Domain and range of trigonometric functions

\(
\begin{array}{|l|l|l|}
\hline \text { Functions } & \text { Domain } & \text { Range } \\
\hline \text { sine } & R & {[-1,1]} \\
\hline \text { cosine } & R & {[-1,1]} \\
\hline \text { tan } & R -\left\{(2 n+1) \frac{\pi}{2}: n \in Z \right\} & R \\
\hline \text { cot } & R -\{n \pi: n \in Z \} & R \\
\hline \text { sec } & R -\left\{(2 n+1) \frac{\pi}{2}: n \in Z \right\} & R -(-1,1) \\
\hline \text { cosec } & R -\{n \pi: n \in Z \} & R -(-1,1) \\
\hline
\end{array}
\)

Sine, cosine and tangent of some angles less than \(90^{\circ}\)

\(
\begin{array}{|l|c|c|c|c|c|c|c|c|}
\hline & 0^{\circ} & 15^{\circ} & 18^{\circ} & 30^{\circ} & 36^{\circ} & 45^{\circ} & 6 0 & 90^{\circ} \\
\hline \text { sine } & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{\sqrt{5}-1}{4} & \frac{1}{2} & \frac{\sqrt{10-2 \sqrt{5}}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 \\
\text { cosine } & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{10+2 \sqrt{5}}}{4} & \frac{\sqrt{3}}{2} & \frac{\sqrt{5}+1}{4} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
\hline \text { tan } & 0 & 2-\sqrt{3} & \frac{\sqrt{25-10 \sqrt{5}}}{5} & \frac{1}{\sqrt{3}} & \sqrt{5-2 \sqrt{5}} & 1 & \sqrt{3} & \text { defined } \\
\hline
\end{array}
\)

Allied or related angles

The angles \(\frac{n \pi}{2} \pm \theta\) are called allied or related angles and \(\theta \pm n \times 360^{\circ}\) are called coterminal angles. For general reduction, we have the following rules. The value of any trigonometric function for \(\left(\frac{n \pi}{2} \pm \theta\right)\) is numerically equal to

  • The value of the same function if \(n\) is an even integer with algebaric sign of the function as per the quadrant in which angles lie.
  • Corresponding cofunction of \(\theta\) if \(n\) is an odd integer with algebraic sign of the function for the quadrant in which it lies. Here sine and cosine; tan and cot; sec and cosec are cofunctions of each other.

Functions of negative angles

Let \(\theta\) be any angle. Then
\(
\begin{aligned}
\sin (-\theta) & =-\sin \theta, \cos (-\theta)=\cos \theta \\
\tan (-\theta) & =-\tan \theta, \cot (-\theta)=-\cot \theta \\
\sec (-\theta) & =\sec \theta, \operatorname{cosec}(-\theta)=-\operatorname{cosec} \theta
\end{aligned}
\)

Some formulae regarding compound angles

An angle made up of the sum or differences of two or more angles is called a compound angle. The basic results in this direction are called trigonometric identities as given below:

  • \(\sin ( A + B )=\sin A \cos B +\cos A \sin B\)
  • \(\sin (A-B)=\sin A \cos B-\cos A \sin B\)
  • \(\cos ( A + B )=\cos A \cos B -\sin A \sin B\)
  • \(\cos ( A – B )=\cos A \cos B +\sin A \sin B\)
  • \(\tan ( A + B )=\frac{\tan A +\tan B }{1-\tan A \tan B }\)
  • \(\tan ( A – B )=\frac{\tan A -\tan B }{1+\tan A \tan B }\)
  • \(\cot ( A + B )=\frac{\cot A \cot B -1}{\cot A +\cot B }\)
  • \(\cot ( A – B )=\frac{\cot A \cot B +1}{\cot B -\cot A }\)
  • \(\sin 2 A =2 \sin A \cos A =\frac{2 \tan A }{1+\tan ^2 A }\)
  • \(\cos 2 A =\cos ^2 A -\sin ^2 A =1-2 \sin ^2 A =2 \cos ^2 A -1=\frac{1-\tan ^2 A }{1+\tan ^2 A }\)
  • \(\tan 2 A =\frac{2 \tan A }{1-\tan ^2 A }\)
  • \(\sin 3 A =3 \sin A -4 \sin ^3 A\)
  • \(\cos 3 A =4 \cos ^3 A -3 \cos A\)
  • \(\tan 3 A =\frac{3 \tan A -\tan ^3 A }{1-3 \tan ^2 A }\)
  • \(\cos A +\cos B =2 \cos \frac{ A + B }{2} \cos \frac{ A – B }{2}\)
  • \(\cos A -\cos B =2 \sin \frac{ A + B }{2} \sin \frac{ B – A }{2}\)
  • \(\sin A +\sin B =2 \sin \frac{ A + B }{2} \cos \frac{ A – B }{2}\)
  • \(\sin A -\sin B =2 \cos \frac{ A + B }{2} \sin \frac{ A – B }{2}\)
  • \(2 \sin A \cos B =\sin ( A + B )+\sin ( A – B )\)
  • \(2 \cos A \sin B =\sin ( A + B )-\sin ( A – B )\)
  • \(2 \cos A \cos B =\cos ( A + B )+\cos ( A – B )\)
  • \(2 \sin A \sin B =\cos ( A – B )-\cos ( A + B )\)
  • \(
    \sin \frac{ A }{2}= \pm \sqrt{\frac{1-\cos A }{2}}\left[\begin{array}{l}
    + \text { if } \frac{ A }{2} \text { lies in quadrants I or II } \\
    – \text { if } \frac{ A }{2} \text { lies in III or IV quadrants }
    \end{array}\right.
    \)
  • \(
    \cos \frac{ A }{2}= \pm \sqrt{\frac{1+\cos A }{2}}\left[\begin{array}{l}
    + \text { if } \frac{ A }{2} \text { lies in } I \text { or IV quadrants } \\
    – \text { if } \frac{ A }{2} \text { lies in II or } I I \text { quadrants }
    \end{array}\right.
    \)
  • \(
    \tan \frac{ A }{2}= \pm \sqrt{\frac{1-\cos A }{1+\cos A }} \quad\left[\begin{array}{l}
    + \text { if } \frac{ A }{2} \text { lies in I or III quadrants } \\
    – \text { if } \frac{ A }{2} \text { lies in II or IV quadrants }
    \end{array}\right.
    \)

Trigonometric functions of an angle of \(18^{\circ}\)

Let \(\theta=18^{\circ}\). Then \(2 \theta=90^{\circ}-3 \theta\)
Therefore, \(\quad \sin 2 \theta=\sin \left(90^{\circ}-3 \theta\right)=\cos 3 \theta\)
or \(\sin 2 \theta=4 \cos ^3 \theta-3 \cos \theta\)
Since, \(\quad \cos \theta \neq 0\), we get
\(
2 \sin \theta=4 \cos ^2 \theta-3=1-4 \sin ^2 \theta \text { or } \quad 4 \sin ^2 \theta+2 \sin \theta-1=0 \text {. }
\)
Hence, \(\quad \sin \theta=\frac{-2 \pm \sqrt{4+16}}{8}=\frac{-1 \pm \sqrt{5}}{4}\)
Since, \(\quad \theta=18^{\circ}, \sin \theta>0\), therefore, \(\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}\)
Also, \(\cos 18^{\circ}=\sqrt{1-\sin ^2 18^{\circ}}=\sqrt{1-\frac{6-2 \sqrt{5}}{16}}=\sqrt{\frac{10+2 \sqrt{5}}{4}}\)
Now, we can easily find \(\cos 36^{\circ}\) and \(\sin 36^{\circ}\) as follows:
\(
\begin{aligned}
& \cos 36^{\circ}=1-2 \sin ^2 18^{\circ}=1-\frac{6-2 \sqrt{5}}{8}=\frac{2+2 \sqrt{5}}{8}=\frac{\sqrt{5}+1}{4} \\
& \cos 36^{\circ}=\frac{\sqrt{5}+1}{4}
\end{aligned}
\)
Also, \(\sin 36^{\circ}=\sqrt{1-\cos ^2 36^{\circ}}=\sqrt{1-\frac{6+2 \sqrt{5}}{16}}=\frac{\sqrt{10-2 \sqrt{5}}}{4}\)

Trigonometric equations

Equations involving trigonometric functions of a variables are called trigonometric equations. Equations are called identities, if they are satisfied by all values of the unknown angles for which the functions are defined. The solutions of a trigonometric equations for which \(0 \leq \theta<2 \pi\) are called principal solutions. The expression involving integer \(n\) which gives all solutions of a trigonometric equation is called the general solution.

General Solution of Trigonometric Equations

  • If \(\sin \theta=\sin \alpha\) for some angle \(\alpha\), then \(\theta=n \pi+(-1)^n \alpha\) for \(n \in Z\), gives general solution of the given equation
  • If \(\cos \theta=\cos \alpha\) for some angle \(\alpha\), then \(\theta=2 n \pi \pm \alpha, n \in Z\), gives general solution of the given equation
  • If \(\tan \theta=\tan \alpha\) or \(\cot \theta=\cot \alpha\), then \(\theta=n \pi+\alpha, n \in Z\), gives general solution for both equations
  • The general value of \(\theta\) satisfying any of the equations \(\sin ^2 \theta=\sin ^2 \alpha, \cos ^2 \theta=\) \(\cos ^2 \alpha\) and \(\tan ^2 \theta=\tan ^2 \alpha\) is given by \(\theta=n \pi \pm \alpha\)
  • The general value of \(\theta\) satisfying equations \(\sin \theta=\sin \alpha\) and \(\cos \theta=\cos \alpha\) simultaneously is given by \(\theta=2 n \pi+\alpha, n \in Z\).
  • To find the solution of an equation of the form \(a \cos \theta+b \sin \theta=c\), we put \(a=r \cos \alpha\) and \(b=r \sin \alpha\), so that \(r^2=a^2+b^2\) and \(\tan \alpha=\frac{b}{a}\).
    Thus we find \(a \cos \theta+b \sin \theta=c\) changed into the form \(r(\cos \theta \cos \alpha+\sin \theta \sin \alpha)=c\)
    or \(r \cos (\theta-\alpha)=c\) and hence \(\cos (\theta-\alpha)=\frac{c}{r}\). This gives the solution of the given equation.
    Maximum and Minimum values of the expression \(A \cos \theta+ B \sin \theta\) are \(\sqrt{ A ^2+ B ^2}\) and \(-\sqrt{ A ^2+ B ^2}\) respectively, where \(A\) and \(B\) are constants.

You cannot copy content of this page