Definition of Limits
Let \(\lim _{x \rightarrow a} f(x)=L\). It would mean that when we approach the point \(x=a\) from the values which are just greater than or smaller than \(x=a, f(x)\) would have a tendency to move closer to the value ‘ \(L\) ‘.
Left Hand Limit and Right Hand Limit of a Function:
Note: We have used the concept of \(\infty\) (infinity) in the discussions above. Lets discuss this concept in some what more detail:
\(\Rightarrow\) Infinity does not stand for any particular real number. In fact, it cannot be defined precisely.This is a deep concept. For any number you can think of, no matter how large, infinity is still larger. When we say that \(x \rightarrow \infty\), we mean that \(x\) increase in an unbounded fashion, that is, becomes indefinitely large.
\(\Rightarrow\) We cannot apply the normal rules of arithmetic to infinity. For example, saying that
\(
\infty-\infty=0 \text { or } \frac{\infty}{\infty}=1
\)
is absurd because such quantities are not defined.
Let \(f(x)\) and \(g(x)\) be defined for all \(x \neq a\) over some open interval containing \(a\). Assume that \(L\) and \(M\) are real numbers such that \(\lim _{x \rightarrow a} f(x)=L\) and \(\lim _{x \rightarrow a} g(x)=M\). Let \(c\) be a constant. Then, each of the following statements holds:
Indeterminate Forms
If direct substitution of \(x=a\) while evaluating \(\lim _{x \rightarrow a}(x)\) leads to one of the following forms \(\frac{0}{0}, \infty, \infty-\infty, 1^{\infty}, 0^0, \infty{ }^0, \infty \times 0\) then it is called indeterminate form.
e.g. \(\lim _{x \rightarrow 1} \frac{x^2-1}{x-1}=\frac{0}{0}\) indeterminate form.
\(\lim _{x \rightarrow a} \frac{x^n-a^n}{x-a}=\frac{0}{0}\) indeterminate form.
\(\lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{0}{0}\) indeterminate form.
Infinity \((\infty)\) is a symbol and not a number. It is a symbol for the behaviour of a variable which continuously increases and passes through all limits. Thus, the statement \(x=\infty\) is meaningless, we should write \(x \rightarrow \infty\).
Similarly, \(-\infty\) is a symbol for the behaviour of a variable which continuously decreases and passes through all limits. Thus, the statement \(x=-\infty\) is meaningless, we should write \(x \rightarrow-\infty\).
Also, \(\frac{1}{x} \rightarrow 0\), if \(x \rightarrow+\infty\) and \(\frac{1}{x} \rightarrow 0\), if \(x \rightarrow-\infty\).
We cannot plot \(\infty\) on paper. Infinity does not obey laws of elementary algebra.
L’Hospital’s Rule
This rule states that, if \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}\), reduces to \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\).
Then, differentiate numerator and denominator till this form is removed.
i.e. \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}\), provided the later limit exists.
But, if it again take form \(\left(\frac{0}{0}\right.\) or \(\left.\frac{\infty}{\infty}\right)\),
then \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}\)
and this process is continued till \(\left(\frac{0}{0}\right.\) or \(\left.\frac{\infty}{\infty}\right)\) form is removed.
Note: L’Hospital’s rule is applicable to only two indeterminate forms \(\left(\frac{0}{0}\right.\) or \(\left.\frac{\infty}{\infty}\right)\).
General Methods used to Evaluate Limits
Case-I: Factorization :
Important factors :
Case-II: Rationalization or double rationalization :
In this method we rationalise the factor containing the square root and simplify. An Example is given below:
\(
\lim _{x \rightarrow-1} \frac{x+1}{\sqrt{x+5}-2}
\)
\(
\lim _{x \rightarrow-1} \frac{(x+1)(\sqrt{x+5}+2)}{(\sqrt{x+5}-2)(\sqrt{x+5}+2)}=\lim _{x \rightarrow-1} \frac{(x+1)(\sqrt{x+5}+2)}{x+1}
\)
\(
\lim _{x \rightarrow-1} \sqrt{x+5}+2=\sqrt{-1+5}+2=4
\)
Case-III: Limit when \(x \rightarrow \infty\) :
Case-IV: Sandwich Theorem
If \(g(x) \leq f(x) \leq h(x)\) and
\(
\begin{aligned}
& \lim _{x \rightarrow a} g(x)=L \text { and } \\
& \lim _{x \rightarrow a} h(x)=L
\end{aligned}
\)
Then \(\lim _{x \rightarrow a} f(x)=L\)

Example: Prove using sandwich theorem \(\operatorname{Lim}_{x \rightarrow 0}(\sin x / x)=1\)
Solution: In this case \(g(x)=\cos x\) and \(h(x)=1\)
Using the above inequality, \(\cos x<(\sin x) / x<1\). Also, it is very clear that \(\lim _{x \rightarrow 0} \cos x=\cos 0=1\) and \(\lim _{x \rightarrow 0} 1=1\). Hence, by squeeze theorem (sandwich theorem), \(\lim _{x \rightarrow 0}(\sin x) / x=1\).
Hence, we proved that \(\lim _{x \rightarrow 0}(\sin x) / x=1\).
Case-V: Using substitution
\(\operatorname{Lim}_{x \rightarrow a} f(x)=\underset{h \rightarrow 0}{\operatorname{Lim}} f(a-h)\) or \(\underset{h \rightarrow 0}{\operatorname{Lim}} f(a+h)\) i.e. by substituting \(x\) by \(a – h\) or \(a + h\)
Limit of Trigonometric Functions
Limit of Exponential Functions
There are two types of exponential limits discussed below
Case-I: Based on Series Expansion
\(e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots \infty\)To evaluate the exponential limit, we use the following results.
Case-II: Evaluation of Exponential Limits of the Form \(1^{\infty}\)
Limit Using Series Expansion
Binomial expansion, exponential & logarithmic expansion, expansion of \(\sin x, \cos x, \tan x\) should be remembered by heart which are given below :
0 of 199 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 199 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If \(\alpha\) is the positive root of the equation, \(p(x)=x^2-x-2=0\), then \(\lim _{x \rightarrow \alpha^{+}} \frac{\sqrt{1-\cos (\mathrm{p}(x))}}{x+\alpha-4}\) is equal to: [Main Sep. 05, 2020 I]
(b) \(x^2-x-2=0 \Rightarrow(x-2)(x+1)=0\)
\(
\Rightarrow x=2,-1 \Rightarrow \alpha=2
\)
\(\therefore \lim _{x \rightarrow 2^{+}} \frac{\sqrt{1-\cos \left(x^2-x-2\right)}}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{\sqrt{2}\left|\sin \left(\frac{\left.x^2-x-2\right)}{2}\right)\right|}{x-2}\)
\(=\lim _{x \rightarrow 2^{+}} \frac{\sqrt{2} \sin \frac{\left(x^2-x-2\right)}{2}}{\left(\frac{x^2-x-2}{2}\right)} \times \frac{\left(x^2-x-2\right)}{2(x-2)}\)
\(=\frac{1}{\sqrt{2}} \lim _{x \rightarrow 2^{-}}\left(\frac{\sin \left(\frac{x^2-x-2}{2}\right)}{\frac{x^2-x-2}{2}}\right) \times \lim _{x \rightarrow 2^{+}} \frac{(x-2)(x+1)}{(x-2)}\)
\(
=\frac{1}{\sqrt{2}} \times 1 \times 3=\frac{3}{\sqrt{2}}
\)
\(\lim _{x \rightarrow 0} \frac{x\left(e^{\left(\sqrt{\left.1+x^2+x^4-1\right) / x}-1\right)}\right.}{\sqrt{1+x^2+x^4}-1}\) [Main Sept. 05, 2020(II)]
(b) Let
\(L=\lim _{x \rightarrow 0} \frac{x\left(e^{\frac{\sqrt{1+x^2+x^4}-1}{x}-1}\right)}{\sqrt{1+x^2+x^4}-1}=\lim _{x \rightarrow 0} \frac{e^{\frac{\sqrt{1+x^2+x^4}-1}{x}}-1}{\frac{\sqrt{1+x^2+x^4}-1}{x}}\)
Put \(\frac{\sqrt{1+x^2+x^4}-1}{x}=t\) when \(x \rightarrow 0 \Rightarrow t \rightarrow 0\)
\(
\therefore L=\lim _{t \rightarrow 0} \frac{e^t-1}{t}=1
\)
Let \([t]\) denote the greatest integer \(\leq t\). If for some \(\lambda \in \mathbf{R}-\{0,1\}\), \(\lim _{x \rightarrow 0}\left|\frac{1-x+|x|}{\lambda-x+[x]}\right|=L\), then \(L\) is equal to: [Main Sept. 03, 2020(I)]
(b) Given \(\lim _{x \rightarrow 0}\left|\frac{1-x+|x|}{\lambda-x+[x]}\right|=L\)
Here, L.H.L. \(=\lim _{h \rightarrow 0^{-}}\left|\frac{1+h+h}{\lambda+h-1}\right|=\left|\frac{1}{\lambda-1}\right|\)
\(
\text { R.H.L. }=\lim _{h \rightarrow 0^{+}}\left|\frac{1-h+h}{\lambda+h+0}\right|=\left|\frac{1}{\lambda}\right|
\)
Given that limit exists. Hence L.H.L. = R.H.L.
\(
\begin{aligned}
&\Rightarrow|\lambda-1|=|\lambda| \\
&\Rightarrow \lambda=\frac{1}{2} \text { and } L=\left|\frac{1}{\lambda}\right|=2
\end{aligned}
\)
Let \(f(x)=5-|x-2|\) and \(g(x)=|x+1|, x \in \mathrm{R}\). If \(f(x)\) attains maximum value at \(\alpha\) and \(g(x)\) attains minimum value at \(\beta\), then \(\lim _{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^2-5 x+6\right)}{x^2-6 x+8}\) is equal to: [Main April 12, 2019 (II)]
(a)
Maxima of \(\mathrm{f}(\mathrm{x})\) occured at \(\mathrm{x}=2\) i.e. \(\alpha=2\)
Minima of \(\mathrm{g}(\mathrm{x})\) occured at \(\mathrm{x}=-1\) i.e. \(\beta=-1\)
\(
\therefore \lim _{x \rightarrow 2} \frac{(x-1)(x-2)(x-3)}{(x-2)(x-4)}=\frac{1}{2}
\)
If \(\lim _{x \rightarrow 1} \frac{x^2-a x+b}{x-1}=5\), then \(a+b\) is equal to: [Main April 10, 2019(II)]
(c)
Step 1: Find a condition between \(a\) and \(b\) using indeterminate form of limit.
Given, \(\lim _{x \rightarrow 1} \frac{x^2-a x+b}{x-1}=5\)
(Since denominators become zero on putting limit means numerators must be zero when \(x \rightarrow 1\) otherwise limit does not exist.
It can shown that if \(\lim _{x \rightarrow c} g(x)=0\) and \(\lim _{x \rightarrow c} f(x) \neq 0\), then \(\lim _{x \rightarrow c} \frac{f(x)}{g(x)}\) does not exist.
Hence, in order for the limit to exist, it must be the case that \(\lim _{x \rightarrow c} f(x)=0\).)
\(
(1)^2-a(1)+b=0 \quad \rightarrow \quad b-a+1=0 \quad \cdots(1)
\)
Step 2: Use L’hospital rule to find \(a\).
\(
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^2-a x+b}{x-1}=5 \\
\Rightarrow & \lim _{x \rightarrow 1} \frac{2 x-a}{1}=5 \quad\left[\because \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}\right] \\
\Rightarrow & 2-a =5 \\
\Rightarrow & a=-3
\end{aligned}
\)
Substitute a= -3 in equation (1), we get
\(
b=-4
\)
\(
\therefore a+b=-7
\)
\(\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}} \text { equals : }\) [Main April 8, 2019 (I)]
(a) \(\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}}=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{2 \cos ^2 \frac{x}{2}}}, \left[\frac{0}{0}\right]\)
\(
\begin{aligned}
&=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}\left[1-\cos \frac{x}{2}\right]}=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{2 \sqrt{2} \sin ^2 \frac{x}{4}} \\
&=\lim _{x \rightarrow 0} \frac{\left(\frac{\sin x}{x}\right)^2 \cdot 16}{2 \sqrt{2}\left(\frac{\sin \frac{x}{4}}{\frac{x}{4}}\right)^2}=\frac{16}{2 \sqrt{2}}=4 \sqrt{2}
\end{aligned}
\)
\(\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cot ^3 x-\tan x}{\cos \left(x+\frac{\pi}{4}\right)}\) [Main Jan. 12, 2019 (I)]
(d) \(\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cot ^3 x-\tan x}{\cos \left(x+\frac{\pi}{4}\right)}=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cot ^3 x\left(1-\frac{\tan x}{\cot ^3 x}\right)}{\cos (x+\pi / 4)}\) \(=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\left(1-\tan ^4 x\right)}{\tan ^3 x \cos (x+\pi / 4)}\)
\(
\begin{aligned}
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\left(1+\tan ^2 x\right)(1-\tan x)(1+\tan x)}{\tan ^3 x\left(\frac{\cos x-\sin x}{\sqrt{2}}\right)}\\
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\left(1+\tan ^2 x\right)(1+\tan x)(\cos x-\sin x)}{\frac{\sin ^3 x}{\cos ^2 x}\left(\frac{\cos x-\sin x}{\sqrt{2}}\right)}={(2)(2)}{(\sqrt{2})(\sqrt{2})}=8
\end{aligned}
\)
\(\lim _{x \rightarrow 0} \frac{x \cot (4 x)}{\sin ^2 x \cot ^2(2 x)}\) is equal to: [Main Jan. 11, 2019 (II)]
(d) \(\lim _{x \rightarrow 0} \frac{x \cot 4 x}{\sin ^2 x \cdot \cot ^2 2 x}=\lim _{x \rightarrow 0} \frac{x \cdot \tan ^2 2 x}{\sin ^2 x \cdot \tan 4 x}\)
\(
=\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}\right)^2 \cdot\left(\frac{\tan 2 x}{2 x}\right)^2 \cdot\left(\frac{4 x}{\tan 4 x}\right) \cdot \frac{4}{2^2}=1
\)
Explanation:
Rewrite in sine and cosine using the identity \(\tan x=\frac{\sin x}{\cos x}\).
\(
\begin{aligned}
&=\lim _{x \rightarrow 0} \frac{\tan (4 x)}{x} \\
&=\lim _{x \rightarrow 0} \frac{\frac{\sin (4 x)}{\cos (4 x)}}{x} \\
&=\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x \cos (4 x)}
\end{aligned}
\)
Rewrite so that that one expression is \(\frac{\sin (4 x)}{x}\).
\(
=\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x} \times \frac{1}{\cos (4 x)}
\)
Use the well know limit that \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\) to deduce the fact that \(\lim _{x \rightarrow 0} \frac{\sin (4 x)}{x}=4\)
\(
\begin{aligned}
&=4 \times \frac{1}{\cos (0)} \\
&=4 \times 1 \\
&=4
\end{aligned}
\)
\(\text { For each } t \in R \text {, let [t] be the greatest integer less than or equal to } t \text {. Then, }\) [Main Jan. 10, 2019 (I)]
\(
\lim _{x \rightarrow 1+} \frac{(1-|x|+\sin |1-x|) \sin \left(\frac{\pi}{2}[1-x]\right)}{|1-x|[1-x]}
\)
(b) \(\lim _{x \rightarrow 1^{+}} \frac{(1-|x|+\sin (|1-x|)) \sin \left(\frac{\pi}{2}[1-x]\right)}{|1-x|[1-x]}\)
\(
=\lim _{h \rightarrow 0} \frac{(1-|1+h|+\sin (|1-1-h|)) \sin \left(\frac{\pi}{2}[1-1-h]\right)}{|1-1-h|[1-1-h]}
\)
\(
\begin{aligned}
&=\lim _{h \rightarrow 0} \frac{(1-1-h+\sinh ) \sin \left(\frac{\pi}{2}(-1)\right)}{h([0-h])} \\
&=\lim _{h \rightarrow 0} \frac{(-h+\sin h) \sin \left(-\frac{\pi}{2}\right)}{h(-1)}=0
\end{aligned}
\)
\(\lim _{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}\) [Main Jan. 9, 2019(I)]
(a)
\(
L=\lim _{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}
\)
\(
\begin{aligned}
&=\lim _{y \rightarrow 0} \frac{\left(\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}\right)\left(\sqrt{1+\sqrt{1+y^4}}+\sqrt{2}\right)}{y^4\left(\sqrt{1+\sqrt{1+y^4}}+\sqrt{2}\right)} \\
&=\lim _{y \rightarrow 0} \frac{1+\sqrt{1+y^4}-2}{y^4\left(\sqrt{1+\sqrt{1+y^4}}+\sqrt{2}\right)} \\
&=\lim _{y \rightarrow 0} \frac{\left(\sqrt{1+y^4}-1\right)\left(\sqrt{1+y^4}+1\right)}{y^4\left(\sqrt{1+\sqrt{1+y^4}+\sqrt{2}}\right)\left(\sqrt{1+y^4}+1\right)} \\
&=\lim _{y \rightarrow 0} \frac{1+y^4-1}{y^4\left(\sqrt{1+\sqrt{1+y^4}+\sqrt{2}}\right)\left(\sqrt{1+y^4}+1\right)} \\
&=\frac{1}{2 \sqrt{2} \times 2}=\frac{1}{4 \sqrt{2}}
\end{aligned}
\)
For each \(x \in \mathbf{R}\), let \([x]\) be greatest integer less than or equal to \(x\). Then
\(\lim _{x \rightarrow 0} \frac{x([x]+|x|) \sin [x]}{|x|}\) is equal to: [Main Jan. 09, 2019 (II)]
(a) \(\lim _{x \rightarrow 0^{-}} \frac{x([x]+|x|) \cdot \sin [x]}{|x|}\)
\(
\begin{aligned}
&=\lim _{h \rightarrow 0} \frac{(0-h)([0-h]+|0-h|) \cdot \sin [0-h]}{|0-h|} \\
&=\lim _{h \rightarrow 0} \frac{(-h)(-1+h) \sin (-1)}{h} \\
&=\lim _{h \rightarrow 0}(1-h) \sin (-1)=-\sin 1
\end{aligned}
\)
\(\lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^2}\) equals. [Main Online April 15, 2018]
\(
\text { (d) Let, } L=\lim _{x \rightarrow 0} \frac{(x \tan 2 x-2 x \tan x)}{(1-\cos 2 x)^2}=\lim _{x \rightarrow 0} K \text { (say) }
\)
\(
\begin{aligned}
&\Rightarrow K=\frac{x\left[\frac{2 \tan x}{1-(\tan x)^2}\right]-2 x \tan x}{\left(1-\left(1-2 \sin ^2 x\right)\right)^2}\\
&=\frac{2 x \tan x-\left[2 x \tan x-2 x \tan ^3 x\right]}{4 \sin ^4 x \times\left(1-\tan ^2 x\right)}\\
&=\frac{2 x \tan ^3 x}{4 \sin ^4 x \times\left(1-\tan ^2 x\right)}=\frac{2 x \tan ^3 x}{4 \sin ^4 x \times\left(\frac{\cos ^2 x-\sin ^2 x}{\cos ^2 x}\right)}\\
&=\frac{2 x \frac{\sin ^3 x}{\cos ^3 x}}{4 \sin ^4 x \times\left(\frac{\cos ^2 x-\sin ^2 x}{\cos ^2 x}\right)}\\
&\Rightarrow K=\frac{x}{2 \sin x \times\left(\cos ^2 x-\sin ^2 x\right) \cos x}\\
&\therefore L=\lim _{x \rightarrow 0} \frac{x}{2 \sin x} \times \lim _{x \rightarrow 0} \frac{1}{\cos x\left(\cos ^2 x-\sin ^2 x\right)}\\
&=\lim _{x \rightarrow 0} \frac{x}{2 \sin x} \times \lim _{x \rightarrow 0} \frac{1}{\cos 0\left(\cos ^2 0-\sin ^2 0\right)}=\frac{1}{2}
\end{aligned}
\)
\(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot x-\cos x}{(\pi-2 x)^3} \text { equals : }\) [Main 2017]
(c) \(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot x(1-\sin x)}{-8\left(x-\frac{\pi}{2}\right)^3}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot x(1-\sin x)}{8\left(\frac{\pi}{2}-x\right)^3}\)
Put \(\frac{\pi}{2}-\mathrm{x}=\mathrm{t} \Rightarrow\) as \(\mathrm{x} \rightarrow \frac{\pi}{2} \Rightarrow \mathrm{t} \rightarrow 0\)
\(
\begin{aligned}
&=\lim _{t \rightarrow 0} \frac{\cot \left(\frac{\pi}{2}-t\right)\left(1-\sin \left(\frac{\pi}{2}-t\right)\right)}{8 t^3} \\
&=\lim _{t \rightarrow 0} \frac{\tan t(1-\cos t)}{8 t^3}=\lim _{t \rightarrow 0} \frac{\tan t}{8 t} \cdot \frac{1-\cos t}{t^2}=\frac{1}{8} \cdot 1 \cdot \frac{1}{2}=\frac{1}{16}
\end{aligned}
\)
\(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}\) is equal to: [Main 2015]
(a) Multiply and divide by \(x\) in the given expression, we get
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{(1-\cos 2 x)}{x^2} \frac{(3+\cos x)}{1} \cdot \frac{x}{\tan 4 x} \\
=& \lim _{x \rightarrow 0} \frac{2 \sin ^2 x}{x^2} \cdot \frac{3+\cos x}{1} \cdot \frac{x}{\tan 4 x} \\
=& 2 \lim _{x \rightarrow 0} \frac{\sin ^2 x}{x^2} \cdot \lim _{x \rightarrow 0} 3+\cos x \cdot \lim _{x \rightarrow 0} \frac{x}{\tan 4 x} \\
=& 2.4 \frac{1}{4} \lim _{x \rightarrow 0} \frac{4 x}{\tan 4 x}=2.4 . \frac{1}{4}=2
\end{aligned}
\)
\(\lim _{x \rightarrow 0} \frac{e^{x^2}-\cos x}{\sin ^2 x} \text { is equal to : }\) [Main Online April 10, 2015]
(c) \(\lim _{x \rightarrow 0} \frac{2 x e^{x^2}+\sin x}{2 \sin x \cos x}\)
\(
\lim _{x \rightarrow 0}\left(\frac{x}{\sin x} e^{x^2}+\frac{1}{2}\right) \frac{1}{\cos x}=1+\frac{1}{2}=\frac{3}{2}
\)
\(\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^2 x\right)}{x^2}\) is equal to: [Main 2014]
(b) \(\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^2 x\right)}{x^2}=\lim _{x \rightarrow 0} \frac{\sin \left[\pi\left(1-\sin ^2 x\right)\right]}{x^2}\) \(=\lim _{x \rightarrow 0} \sin \frac{\left(\pi-\pi \sin ^2 x\right)}{x^2} \quad[\because \sin (\pi-\theta)=\sin \theta]\) \(=\lim _{x \rightarrow 0} \sin \frac{\left(\pi \sin ^2 x\right)}{\pi \sin ^2 x} \times \frac{\pi \sin ^2 x}{x^2}\)
\(
=\lim _{x \rightarrow 0} 1 \times \pi\left(\frac{\sin x}{x}\right)^2=\pi
\)
\(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x} \text { is equal to }\) [JEE Main 2013]
(d) Multiply and divide by \(x\) in the given expression, we get
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{(1-\cos 2 x)}{x^2} \frac{(3+\cos x)}{1} \cdot \frac{x}{\tan 4 x} \\
=& \lim _{x \rightarrow 0} \frac{2 \sin ^2 x}{x^2} \cdot \frac{3+\cos x}{1} \cdot \frac{x}{\tan 4 x} \\
=& 2 \lim _{x \rightarrow 0} \frac{\sin ^2 x}{x^2} \cdot \lim _{x \rightarrow 0}(3+\cos x) \cdot \lim _{x \rightarrow 0} \frac{4 x}{\tan 4 x} \times \frac{1}{4}=2 \cdot 4 \cdot \frac{1}{4}=2
\end{aligned}
\)
Let \(\alpha(a)\) and \(\beta(a)\) be the roots of the equation \((\sqrt[3]{1+a}-1) x^2+(\sqrt{1+a}-1) x+(\sqrt[6]{1+a}-1)=0\) where \(a>-1\). Then \(\lim _{a \rightarrow 0^{+}} \alpha(a)\) and \(\lim _{a \rightarrow 0^{+}} \beta(a)\) are [JEE Main 2012]
(b) \((\sqrt[3]{1+a}-1) x^2+(\sqrt{1+a}-1) x+(\sqrt[6]{1+a}-1)=0\)
Let \(a+1=y\), then equation reduces to
\(
\left(y^{1 / 3}-1\right) x^2+\left(y^{1 / 2}-1\right) x+\left(y^{1 / 6}-1\right)=0
\)
On dividing both sides by \(y-1\), we get
\(
\left(\frac{y^{1 / 3}-1}{y-1}\right) x^2+\left(\frac{y^{1 / 2}-1}{y-1}\right) x+\left(\frac{y^{1 / 6}-1}{y-1}\right)=0
\)
On taking limit as \(y \rightarrow 1\) i.e. \(a \rightarrow 0\) on both sides, we get \(\frac{1}{3} x^2+\frac{1}{2} x+\frac{1}{6}=0 \Rightarrow 2 x^2+3 x+1=0\) \(\Rightarrow x=-1,-\frac{1}{2}\) (roots of the equation)
\(
\therefore \quad \lim _{a \rightarrow 0^{+}} \alpha(a)=-1, \lim _{a \rightarrow 0^{+}} \beta(a)=-\frac{1}{2}
\)
\(
\text { If } \lim _{x \rightarrow \infty}\left(\frac{x^2+x+1}{x+1}-a x-b\right)=4 \text {, then }
\) [JEE Main 2012]
\(
\text { (b) Given: } \lim _{x \rightarrow \infty}\left(\frac{x^2+x+1}{x+1}-a x-b\right)=4
\)
\(
\begin{aligned}
&\Rightarrow \lim _{x \rightarrow \infty} \frac{x^2+x+1-a x^2-a x-b x-b}{x+1}=4 \\
&\Rightarrow \lim _{x \rightarrow \infty} \frac{(1-a) x^2+(1-a-b) x+(1-b)}{x+1}=4
\end{aligned}
\)
For this limit to be finite \(1-a=0 \Rightarrow a=1\) then the given limit reduces to
\(
\begin{aligned}
&\lim _{x \rightarrow \infty} \frac{-b x+(1-b)}{x+1}=4 \Rightarrow \lim _{x \rightarrow \infty} \frac{-b+\frac{(1-b)}{x}}{1+\frac{1}{x}}=4 \\
&\Rightarrow-b=4 \text { or } b=-4, \quad \therefore a=1, b=-4
\end{aligned}
\)
If \(\lim _{x \rightarrow 0} \frac{((a-n) n x-\tan x) \sin n x}{x^2}=0\), where \(\mathrm{n}\) is nonzero real number, then \(a\) is equal to [JEE Main 2003]
(d) \(\lim _{x \rightarrow 0} \frac{[(a-n) n x-\tan x] \sin n x}{x^2}=0\)
\(
\Rightarrow \lim _{x \rightarrow 0} n . \frac{\sin n x}{n x}\left[\left\{(a-n) n-\frac{\tan x}{x}\right\}\right]=0
\)
\(
\Rightarrow n .1[(a-n) n-1]=0 \Rightarrow a=\frac{1}{n}+n
\)
[where \(n\) is non zero real number]
\(\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^2 x\right)}{x^2}\) equals [JEE Main 2001]
(b) \(\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^2 x\right)}{x^2}=\lim _{x \rightarrow 0} \frac{\sin \left(\pi-\pi \sin ^2 x\right)}{x^2}\) \(=\lim _{x \rightarrow 0} \frac{\sin \left(\pi \sin ^2 x\right)}{\pi \sin ^2 x} \times \frac{\left(\pi \sin ^2 x\right)}{x^2}=\pi\)
\(\lim _{n \rightarrow \infty}\left\{\frac{1}{1-n^2}+\frac{2}{1-n^2}+\ldots .+\frac{n}{1-n^2}\right\}\) is equal to [1984 – 2 Marks]
(b) \(\lim _{n \rightarrow \infty}\left(\frac{1}{1-n^2}+\frac{2}{1-n^2}+\ldots+\frac{n}{1-n^2}\right)\)
\(
=\lim _{n \rightarrow \infty} \frac{1+2+3+\ldots+n}{1-n^2}=\lim _{n \rightarrow \infty} \frac{\Sigma n}{1-n^2}=\lim _{n \rightarrow \infty} \frac{n(n+1)}{2\left(1-n^2\right)}
\)
\(
=\lim _{n \rightarrow \infty} \frac{1+1 / n}{2\left[\frac{1}{n^2}-1\right]}=-1 / 2
\)
If \(G(x)=-\sqrt{25-x^2}\) then \(\lim _{x \rightarrow 1} \frac{G(x)-G(1)}{x-1}\) has the value [1983 – 1 Mark]
(d)
\(\lim _{x \rightarrow 1} \frac{G(x)-G(1)}{x-1}, \frac{0}{0}\) form
\(=\mathrm{G}^{\prime}(1)\)
Now G \({ }^{\prime}(x)=-\frac{1}{2 \sqrt{25-x^2}}(-2 x)\), differentiate using chain rule \(\Rightarrow \mathrm{G}^{\prime}(\mathrm{x})=\frac{\mathrm{x}}{\sqrt{25-\mathrm{x}^2}}\)
\(\therefore G^{\prime}(1)=\frac{1}{\sqrt{24}}\), which is required limit
If \(f(x)=\sqrt{\frac{x-\sin x}{x+\cos ^2 x}}\), then \(\lim _{x \rightarrow \infty} f(x)\) is [1979]
(c) \(f(x)=\sqrt{\frac{x-\sin x}{x+\cos ^2 x}}\)
\(
\therefore \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \sqrt{\frac{1-\frac{\sin x}{x}}{1+\frac{\cos ^2 x}{x}}}=\sqrt{\frac{1-0}{1+0}}=1
\)
The value of the limit
\(\lim _{x \rightarrow \frac{\pi}{2}} \frac{4 \sqrt{2}(\sin 3 x+\sin x)}{\left(2 \sin 2 x \sin \frac{3 x}{2}+\cos \frac{5 x}{2}\right)-\left(\sqrt{2}+\sqrt{2} \cos 2 x+\cos \frac{3 x}{2}\right)}
\) is _____ [Adv. 2020]
\(
\begin{aligned}
&\lim _{x \rightarrow \frac{\pi}{2}} \frac{4 \sqrt{2} \cdot 2 \sin 2 x \cos x}{2 \sin 2 x \sin \frac{3 x}{2}+\left(\cos \frac{5 x}{2}-\cos \frac{3 x}{2}\right)-\sqrt{2}(1+\cos 2 x)} \\
&=\lim _{x \rightarrow \frac{\pi}{2}} \frac{8 \sqrt{2} \cdot 2 \sin x \cos x \cos x}{2 \sin 2 x \sin \frac{3 x}{2}-2 \sin 2 x \sin \frac{x}{2}-2 \sqrt{2} \cos ^2 x}
\end{aligned}
\)
\(
\begin{aligned}
&=\lim _{x \rightarrow \frac{\pi}{2}} \frac{16 \sqrt{2} \sin x \cos ^2 x}{2 \sin 2 x\left(\sin \frac{3 x}{2}-\sin \frac{x}{2}\right)-2 \sqrt{2} \cos ^2 x} \\
&=\lim _{x \rightarrow \frac{\pi}{2}} \frac{16 \sqrt{2} \sin x \cos ^2 x}{4 \sin x \cos x\left(2 \cos x \cdot \sin \frac{x}{2}\right)-2 \sqrt{2} \cos ^2 x} \\
&=\frac{16 \sqrt{2} \sin x \cos ^2 x}{2 \cos ^2 x\left(4 \sin x \sin \frac{x}{2}-\sqrt{2}\right)} \\
&=\lim _{x \rightarrow \frac{\pi}{2}} \frac{8 \sqrt{2} \sin x}{4 \sin x \cdot \sin \frac{x}{2}-\sqrt{2}}=8
\end{aligned}
\)
Let \(m\) and \(n\) be two positive integers greater than 1 . If \(\lim _{\alpha \rightarrow 0}\) \(\left(\frac{e^{\cos \left(\alpha^n\right)}-e}{\alpha^m}\right)=-\left(\frac{e}{2}\right)\) then the value of \(\frac{m}{n}\) is [Adv. 2015]
\(\lim _{\alpha \rightarrow 0} \frac{e^{\cos \alpha^n}-e}{\alpha^m}=\frac{-e}{2}\)
\(\Rightarrow \lim _{\alpha \rightarrow 0} \frac{e\left[e^{\cos \alpha^n-1}-1\right]}{\cos \alpha^n-1} \times \frac{\cos \alpha^n-1}{\alpha^m}=\frac{-e}{2}\)
\(
\begin{aligned}
&\Rightarrow e \lim _{\alpha \rightarrow 0} \frac{-2 \sin ^2 \frac{\alpha^n}{2}}{\left(\frac{\alpha^n}{2}\right)^2} \times \frac{\left(\frac{\alpha^n}{2}\right)^2}{\alpha^m}=\frac{-e}{2} \\
&\Rightarrow \frac{-e}{2} \alpha^{2 n-m}=\frac{-e}{2} \Rightarrow \frac{m}{n}=2
\end{aligned}
\)
The largest value of non-negative integer a for which
\(
\lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{x+\sin (x-1)-1}\right\}^{\frac{1-x}{1-\sqrt{x}}}=\frac{1}{4} \text { is }
\) [Adv. 2014]
\(
\begin{aligned}
&\lim _{x \rightarrow 1}\left\{\frac{-a x+\sin (x-1)+a}{x+\sin (x-1)-1}\right\}^{\frac{1-x}{1-\sqrt{x}}}=\frac{1}{4} \\
&\Rightarrow \lim _{x \rightarrow 1}\left\{\frac{a(1-x)+\sin (x-1)}{(x-1)+\sin (x-1)}\right\}^{1+\sqrt{x}} \\
&\Rightarrow \lim _{x \rightarrow 1}\left\{\frac{-a+\frac{\sin (x-1)}{x-1}}{1+\frac{\sin (x-1)}{x-1}}\right\}^{1+\sqrt{x}} \Rightarrow\left(\frac{-a+1}{2}\right)^2=\frac{1}{4} \\
&\Rightarrow a=0 \text { or } 2
\end{aligned}
\)
\(\therefore\) Largest value of a is 2.
If \(\lim _{x>0}\left\{\frac{1}{x^8}\left(1-\cos \frac{x^2}{2}-\cos \frac{x^2}{4}+\cos \frac{x^2}{2} \cos \frac{x^2}{4}\right)\right\}=2^{-k}\), then the value of \(k\) is ______ [Main Sep. 03, 2020 (I)]
\(
\begin{aligned}
&\lim _{x \rightarrow 0} \frac{1}{x^8}\left[\left(1-\cos \frac{x^2}{2}\right)-\cos \frac{x^2}{4}\left(1-\cos \frac{x^2}{2}\right)\right] \\
&=\lim _{x \rightarrow 0} \frac{1}{x^8}\left[\left(1-\cos \frac{x^2}{2}\right)\left(1-\cos \frac{x^2}{4}\right)\right] \\
&=\lim _{x \rightarrow 0} \frac{1}{x^8}\left[2 \sin ^2 \frac{x^2}{4} 2 \sin ^2 \frac{x^2}{8}\right] \\
&=\lim _{x \rightarrow 0} \frac{1}{256}\left(\frac{\sin \frac{x^2}{4}}{\left(\frac{x^2}{4}\right)}\right)^2\left(\frac{\sin \frac{x^2}{8}}{\left(\frac{x^2}{8}\right)}\right) \\
&=\frac{1}{256}=2^{-8} \\
&\therefore k=8
\end{aligned}
\)
\(\lim _{x \rightarrow 2} \frac{3^x+3^{3-x}-12}{3^{-x / 2}-3^{1-x}}\) is equal to ____ [Main Jan. 7, 2020 (I)]
\(
\text { Let } 3^x=t^2
\)
\(
\begin{aligned}
&\lim _{t \rightarrow 3} \frac{t^2+\frac{27}{t^2}-12}{\frac{1}{t}-\frac{3}{t^2}}=\lim _{t \rightarrow 3} \frac{t^4-12 t^2+27}{t-3} \\
&=\lim _{t \rightarrow 3} \frac{\left(t^2-3\right)(t+3)(t-3)}{t-3} \\
&=\left(3^2-3\right)(3+3)=36 .
\end{aligned}
\)
Let \(e\) denote the base of the natural logarithm. The value of the real number \(a\) for which the right-hand limit
\(
\lim _{x \rightarrow 0^{+}} \frac{(1-x)^{\frac{1}{x}}-e^{-1}}{x^a}
\) is equal to a nonzero real number, is ____ [Adv. 2020]
\(\begin{aligned}
&\lim _{x \rightarrow 0^{+}} \frac{(1-x)^{1 / x}-e^{-1}}{x^a}=\lim _{x \rightarrow 0^{+}} \frac{e^{\left(\frac{\ln (1-x)}{x}\right)}-\frac{1}{e}}{x^a}\\
&\left[\because(1-x)^{1 / x}=e^{1 / x(1-x)}\right]
\end{aligned}\)
\(
\lim _{x \rightarrow 0^{+}} \frac{1}{e} \frac{e^{\left(1+\frac{\ln (1-x)}{x}\right)}-1}{x^a}=\frac{1}{e} \lim _{x \rightarrow 0^{+}} \frac{\ln (1-x)+x}{x^{(a+1)}}
\)
\(
=\frac{1}{e} \lim _{x \rightarrow 0^{+}} \frac{\left(-x-\frac{x^2}{2}-\frac{x^3}{3}-\ldots\right)+x}{x^{a+1}} \quad \therefore a=1
\)
If \(f(9)=9, f^{\prime}(9)=4\), then \(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\) equals [1988 – 2 Marks]
Given : \(f(9)=9, f^{\prime}(9)=4\)
\(
\begin{aligned}
& \therefore \quad \lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}=\lim _{x \rightarrow 9} \frac{(\sqrt{f(x)}-3)(\sqrt{f(x)}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)} \\
=& \lim _{x \rightarrow 9} \frac{\sqrt{x}+3}{\sqrt{f(x)}+3} \times \lim _{x \rightarrow 9} \frac{f(x)-9}{x-9} \\
=& {\left[\frac{3+3}{3+3}\right] \cdot f^{\prime}(9)=1 \times 4=4 }
\end{aligned}
\)
\(
\lim _{x \rightarrow-\infty}\left[\frac{x^4 \sin \left(\frac{1}{x}\right)+x^2}{\left(1+|x|^3\right)}\right]= ?
\) [1987 – 2 Marks]
\(
\begin{aligned}
&\lim _{x \rightarrow-\infty}\left[\frac{x^4 \sin \left(\frac{1}{x}\right)+x^2}{\left(1+|x|^3\right)}\right]\\
&=\lim _{x \rightarrow-\infty} \frac{x^3}{1+|x|^3}\left[x \sin \left(\frac{1}{x}\right)+\frac{1}{x}\right]\\
&=\lim _{x \rightarrow-\infty} \frac{x^3}{|x|^3}\left[\frac{1}{1+\frac{1}{|x| x^2}}\right]\left[x \sin \left(\frac{1}{x}\right)+\frac{1}{x}\right]\\
&=\lim _{x \rightarrow-\infty} \frac{x^3}{|x|^3} .1=\lim _{x \rightarrow-\infty} \frac{x^3}{-x^3}=-1
\end{aligned}
\)
\(
\text { If } f(x)\left\{\begin{array}{cc}
\sin x, & x \neq n \pi, n=0, \pm 1, \pm 2, \pm 3, \ldots \ldots \ldots \ldots \\
2, & \text { otherwise }
\end{array}\right.
\)
and \(g(x)\left\{\begin{array}{cc}x^2+1, & x \neq 0,2 \\ 4, & x=0 \\ 5, & x=2\end{array}\right.\) then \(\lim _{x \rightarrow 0} g[f(x)]\) is [1986 – 2 Marks]
Given :
\(
f(x)=\left\{\begin{array}{cc}
\sin x, x \neq \pi, n=0, \pm 1, \pm 2, \ldots \\
2, & \text { otherwise }
\end{array}\right.
\)
And \(g(x)= \begin{cases}x^2+1, & x \neq 0,2 \\ 4, & x=0 \\ 5, & x=2\end{cases}\)
\(
\therefore \quad \lim _{x \rightarrow 0} g[f(x)]=\lim _{x \rightarrow 0} g(\sin x) \Rightarrow \lim _{x \rightarrow 0}\left(\sin ^2 x+1\right)=1
\)
If \(\underset{x \rightarrow a}{L t}[f(x) g(x)]\) exists then both \(\underset{x \rightarrow a}{L t} f(x)\) and \(\underset{x \rightarrow a}{L t} g(x)\) exist. [1981 – 2 Marks]
The answer is False. \(f(x)=\frac{|x-a|}{x-a}\) and \(g(x)=\frac{x-a}{|x-a|}\) then \(\lim _{x \rightarrow a}(f(x) g(x))\) exists but neither \(\lim _{x \rightarrow a} f(x)\) nor \(\lim _{x \rightarrow a} g(x)\) exists.
Let \(\mathrm{f}(\mathrm{x})=\frac{1-\mathrm{x}(1+|1-\mathrm{x}|)}{|1-\mathrm{x}|} \cos \left(\frac{1}{1-\mathrm{x}}\right)\) for \(\mathrm{x} \neq 1\). Then [Adv. 2017]
Given:
\(f(x)=\frac{1-x(1+|1-x|)}{|1-x|} \cos \left(\frac{1}{1-x}\right)\) for \(x \neq 1\)
\(
\begin{aligned}
& \lim _{\mathrm{x} \rightarrow 1^{-}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \frac{1-(1-\mathrm{h})(1+\mathrm{h})}{\mathrm{h}} \cos \left(\frac{1}{\mathrm{~h}}\right) \\
=& \lim _{\mathrm{h} \rightarrow 0} \frac{1-1+\mathrm{h}^2}{\mathrm{~h}} \cos \left(\frac{1}{\mathrm{~h}}\right)=\lim _{\mathrm{h} \rightarrow 0} \mathrm{~h} \cos \left(\frac{1}{\mathrm{~h}}\right)=0 \\
& \lim _{\mathrm{x} \rightarrow 1^{+}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \frac{1-(1+\mathrm{h})(1+\mathrm{h})}{\mathrm{h}} \cos \left(\frac{1}{\mathrm{~h}}\right) \\
=& \lim _{\mathrm{h} \rightarrow 0} \frac{-2 \mathrm{~h}-\mathrm{h}^2}{\mathrm{~h}} \cos \left(\frac{1}{\mathrm{~h}}\right)=\lim _{\mathrm{h} \rightarrow 0}(-2-\mathrm{h}) \cos \left(\frac{1}{\mathrm{~h}}\right) \\
=&-2 \times(\text { Some value oscillating between }-1 \text { and } 1) \\
& \therefore \quad \lim _{x \rightarrow 1^{+}} f(x) \text { does not exist. }
\end{aligned}
\)
For \(a \in \mathbb{R}\) (the set of all real numbers), \(\mathrm{a} \neq-1\), [Adv. 2013]
\(\lim _{\mathrm{n} \rightarrow \infty} \frac{\left(1^{\mathrm{a}}+2^{\mathrm{a}}+\ldots+\mathrm{n}^{\mathrm{a}}\right)}{(\mathrm{n}+1)^{\mathrm{a}-1}[(\mathrm{na}+1)+(\mathrm{na}+2)+\ldots+(\mathrm{na}+\mathrm{n})]}=\frac{1}{60} .
\)
Then \(a=\)
\((\mathbf{b}, \mathbf{d})\) Given:
\(
\lim _{n \rightarrow \infty} \frac{1^a+2^a+—+n^a}{(n+1)^{a-1}[(n a+1)+(n a+2)+—+(n a+n)]}=\frac{1}{60}
\)
\(
\Rightarrow \lim _{n \rightarrow \infty} \frac{n^a}{(n+1)^{a-1}} \frac{\left(\frac{1}{n}\right)^a+\left(\frac{2}{n}\right)^a+—+\left(\frac{n}{n}\right)^a}{n^2 a+\frac{n(n+1)}{2}}=\frac{1}{60}
\)
\(
\Rightarrow \lim _{n \rightarrow \infty} \frac{n^{a-1}}{(n+1)^{a-1}} \frac{\frac{1}{n} \sum_{r=1}^n\left(\frac{r}{n}\right)^a}{a+\frac{1}{2}\left(1+\frac{1}{n}\right)}=\frac{1}{60}
\)
\(
\Rightarrow \lim _{\mathrm{n} \rightarrow \infty}\left(\frac{1}{1+\frac{1}{\mathrm{n}}}\right)^{\mathrm{a}-1} \frac{\frac{1}{\mathrm{n}} \sum_{\mathrm{r}=1}^{\mathrm{n}}\left(\frac{\mathrm{r}}{\mathrm{n}}\right)^{\mathrm{a}}}{\mathrm{a}+\frac{1}{2}\left(1+\frac{1}{\mathrm{n}}\right)}=\frac{1}{60}
\)
\(
\begin{aligned}
&\Rightarrow \frac{\int_0^1 x^a d x}{a+\frac{1}{2}}=\frac{1}{60} \Rightarrow \frac{\left[x^{a+1}\right]_0^1}{(a+1)\left(a+\frac{1}{2}\right)}=\frac{1}{60} \\
&\Rightarrow \frac{1}{(a+1)\left(a+\frac{1}{2}\right)}=\frac{1}{60} \\
&\therefore 2 a^2+3 a-119=0 \Rightarrow(a-7)(2 a+17)=0 \\
&\therefore a=7 \text { or }-\frac{17}{2}
\end{aligned}
\)
\(\lim _{x \rightarrow 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1}\) [1998 – 2 Marks]
\(
\begin{aligned}
&\frac{\sqrt{1-\cos [2(x-1)]}}{x-1}=\frac{\sqrt{2 \sin ^2(x-1)}}{x-1}\\
&=\sqrt{2} \cdot \frac{\sqrt{\sin ^2(x-1)}}{x-1}=\sqrt{2} \frac{|\sin (x-1)|}{x-1}\\
&\text { L.H.L. }=\sqrt{2} \cdot \lim _{x \rightarrow 1} \frac{|\sin (x-1)|}{x-1}=\sqrt{2} . \lim _{h \rightarrow 0} \frac{|\sin (-h)|}{-h}\\
&=\sqrt{2} \lim _{h \rightarrow 0} \frac{\sin \mathrm{h}}{-h}=-\sqrt{2}\\
&\text { R.H.L. }=\sqrt{2} \lim _{x \rightarrow 1^{+}} \frac{|\sin (x-1)|}{x-1}\\
&=\sqrt{2} \lim _{h \rightarrow 0} \frac{|\sin h|}{h}=\sqrt{2} \lim _{h \rightarrow 0} \frac{\sin h}{h}=\sqrt{2}\\
&\text { L.H.L. } \neq \text { R.H.L., } \quad \therefore \lim _{x \rightarrow 1} f(x) \text { does not exist. }
\end{aligned}
\)
The value of \(\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2 x)}}{x}\) [1991 – 2 Marks]
\(
\begin{aligned}
&\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2 x)}}{x} \\
&=\lim _{x \rightarrow 0} \frac{\sqrt{\left.\frac{1}{2} \cdot 2 \sin ^2 x\right)}}{x}=\lim _{x \rightarrow 0} \frac{|\sin x|}{x} \\
&\therefore \quad \text { L.H.L. }=\lim _{h \rightarrow 0} \frac{|\sin (0-h)|}{0-h}=\lim _{h \rightarrow 0} \frac{|-\sin h|}{-h} \\
&=\lim _{h \rightarrow 0} \frac{\sin h}{-h}=-1 \\
&\text { R.H.L. }=\lim _{h \rightarrow 0} \frac{|\sin (0+h)|}{0+h}=\lim _{h \rightarrow 0} \frac{\sin h}{h}=1
\end{aligned}
\)
Thus, L.H.L. \(\neq\) R.H.L.
Therefore, the given limit does not exist.
Let \(f: R \rightarrow R\) be a function. We say that \(f\) has
PROPERTY 1: If \(\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{\sqrt{|h|}}\) exists and is finite, and
PROPERTY 2: If \(\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h^2}\) exists and is finite
Then which of the following options is/are correct? [Adv. 2019]
(a) \(f(x)=x^{2 / 3}\) for Property 1
\(
\lim _{h \rightarrow 0} \frac{h^{2 / 3}-0}{\sqrt{|h|}}=\lim _{h \rightarrow 0} \frac{|h|^{2 / 3}}{|h|^{1 / 2}}=\lim _{h \rightarrow 0}|h|^{1 / 6}=0
\)
\(\therefore\) option (a) is correct.
(b) \(\mathrm{f}(\mathrm{x})=\sin \mathrm{x}\) for Property 2
\(
\lim _{h \rightarrow 0} \frac{\sin h-\sin 0}{h^2}=\lim _{h \rightarrow 0} \frac{\sin h}{h} \times \frac{1}{h}
\)
when does not exist.
\(\therefore\) (b) is incorrect option.
(c) \(\mathrm{f}(\mathrm{x})=|\mathrm{x}|\) for Property 1
\(
\lim _{h \rightarrow 0} \frac{|h|-0}{\sqrt{|h|}}=\lim _{h \rightarrow 0} \sqrt{|h|}=0
\)
\(\therefore\) option (c) is correct
(d) \(\mathrm{f}(\mathrm{x})=\mathrm{x}|\mathrm{x}|\) for Property 2
\(
\lim _{h \rightarrow 0} \frac{h|h|-0}{h^2}=\lim _{h \rightarrow 0} \frac{|h|}{h}
\)
\(\mathrm{LHL}=-1\) and \(\mathrm{RHL}=1\)
\(\therefore \lim _{h \rightarrow 0} \frac{|h|}{h}\) does not exist
\(\therefore\) option (d) is incorrect.
\(f^{\prime}(0)=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{n} f\left(\frac{1}{\mathrm{n}}\right)\) and \(f(0) \quad=0\) Using this find \(\lim _{n \rightarrow \infty}\left((n+1) \frac{2}{\pi} \cos ^{-1}\left(\frac{1}{n}\right)-n\right),\left|\cos ^{-1} \frac{1}{n}\right|<\frac{\pi}{2}\) [2004 – 2 Marks]
\(\lim _{n \rightarrow \infty}\left[(n+1) \frac{2}{\pi} \cos ^{-1}\left(\frac{1}{n}\right)-n\right]\)
\(
=\lim _{n \rightarrow \infty} n\left[\left(1+\frac{1}{n}\right) \frac{2}{\pi} \cos ^{-1}\left(\frac{1}{n}\right)-1\right]=\lim _{n \rightarrow \infty} n f\left(\frac{1}{n}\right)
\)
where \(f(x)=\left[(1+x) \frac{2}{\pi} \cos ^{-1} x-1\right]\) such that
\(
f(0)=\left[(1+0) \frac{2}{\pi} \cos ^{-1} 0-1\right]=\frac{2}{\pi} \cdot \frac{\pi}{2}-1=0
\)
\(\therefore\) Using given relation \(\lim _{n \rightarrow \infty} n f\left(\frac{1}{n}\right)=f^{\prime}(0)\)
given limit becomes
\(
=f^{\prime}(0)=\left.\frac{d}{d x}\left[(1+x) \frac{2}{\pi} \cos ^{-1} x-1\right]\right|_{x=0}
\)
\(
=\left.\frac{2}{\pi}\left[\cos ^{-1} x-\frac{1-x}{\sqrt{1-x^2}}\right]\right|_{x=0}
\)
\(
=\frac{2}{\pi}\left[\frac{\pi}{2}-1\right]=1-\frac{2}{\pi}=\frac{\pi-2}{\pi} .
\)
Use the formula \(\lim _{x \rightarrow 0} \frac{a^x-1}{x}=\ln a\) to find \(\lim _{x \rightarrow 0} \frac{2^x-1}{(1+x)^{1 / 2}-1}\) [1982 – 2 Marks]
\(
\begin{aligned}
&\lim _{x \rightarrow 0} \frac{2^x-1}{\sqrt{1+x}-1}=\lim _{x \rightarrow 0} \frac{2^x-1}{\sqrt{1+x}-1} \times \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1}\\
&=\lim _{x \rightarrow 0} \frac{\left(2^x-1\right)(\sqrt{1+x}+1)}{1+x-1}\\
&=\lim _{x \rightarrow 0} \frac{2^x-1}{x} \cdot \lim _{x \rightarrow 0}(\sqrt{1+x}+1)\\
&=\ln 2 \cdot(1+1)=2 \ln 2 .
\end{aligned}
\)
Evaluate: \(\lim _{h \rightarrow 0} \frac{(a+h)^2 \sin (a+h)-a^2 \sin a}{h}\) [1980]
\(\lim _{h \rightarrow 0} \frac{(a+h)^2 \sin (a+h)-a^2 \sin a}{h}\)
\(=\lim _{h \rightarrow 0} \frac{a^2[\sin (a+h)-\sin a]+2 a h \sin (a+h)+h^2 \sin (a+h)}{h}\)
\(
\begin{aligned}
&=\lim _{h \rightarrow 0} \frac{a^2\left[2 \cos \left(a+\frac{h}{2}\right) \sin \frac{h}{2}\right]}{2 \times \frac{h}{2}}+2 \mathrm{a} \sin (\mathrm{a}+\mathrm{h}) \quad+\mathrm{h} \sin (\mathrm{a}+\mathrm{h})\\
&=\mathrm{a}^2 \cos \mathrm{a}+2 \mathrm{a} \sin \mathrm{a}
\end{aligned}
\)
\(f(x)\) is the integral of \(\frac{2 \sin x-\sin 2 x}{x^3}, x \neq 0\), find \(\lim _{x \rightarrow 0} f^{\prime}(x)\) [1979]
Given : \(f(x)=\int \frac{2 \sin x-\sin 2 x}{x^3} d x, x \neq 0\)
\(
\begin{aligned}
\therefore f^{\prime}(x) &=\frac{2 \sin x-\sin 2 x}{x^3}, x \neq 0 \\
\therefore \quad \lim _{x \rightarrow 0} f^{\prime}(x) &=\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x^3} \\
&=\lim _{x \rightarrow 0} \frac{2 \sin x(1-\cos x)(1+\cos x)}{x^3(1+\cos x)}
\end{aligned}
\)
\(
=\lim _{x \rightarrow 0} 2 \cdot \frac{\sin ^3 x}{x^3} \cdot \frac{1}{1+\cos x}=2 \times(1)^3 \times \frac{1}{2}=1
\)
\(
\text { Evaluate } \lim _{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}},(a \neq 0)
\) [1978]
\(
\begin{aligned}
& \lim _{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}} \\
=& \lim _{x \rightarrow a} \frac{(\sqrt{a+2 x}-\sqrt{3 x})(\sqrt{a+2 x}+\sqrt{3 x})(\sqrt{3 a+x}+2 \sqrt{x})}{(\sqrt{3 a+x}-2 \sqrt{x})(\sqrt{3 a+x}+2 \sqrt{x})(\sqrt{a+2 x}+\sqrt{3 x})} \\
=& \lim _{x \rightarrow a} \frac{(a-x)(\sqrt{3 a+x}+2 \sqrt{x})}{3(a-x)(\sqrt{a+2 x}+\sqrt{3 x})} \\
=& \lim _{x \rightarrow a} \frac{(\sqrt{3 a+x}+2 \sqrt{x})}{3(\sqrt{a+2 x}+\sqrt{3 x})}=\frac{\sqrt{3 a+a}+2 \sqrt{a}}{3(\sqrt{a+2 a}+\sqrt{3 a})} \\
=& \frac{4 \sqrt{a}}{3 \times 2 \sqrt{3 a}}=\frac{2}{3 \sqrt{3}}
\end{aligned}
\)
\(\lim _{x \rightarrow a} \frac{(a+2 x)^{\frac{1}{3}}-(3 x)^{\frac{1}{3}}}{(3 a+x)^{\frac{1}{3}}-(4 x)^{\frac{1}{3}}}(a \neq 0)\) is equal to: [Main Sep. 03, 2020 (II)]
\(\lim _{x \rightarrow a} \frac{(a+2 x)^{\frac{1}{3}}-(3 x)^{\frac{1}{3}}}{(3 a+x)^{\frac{1}{3}}-(4 x)^{\frac{1}{3}}} \quad\left[\frac{0}{0}\right.\) case \(]\)
Apply L’Hospital rule
\(
\begin{aligned}
& \lim _{x \rightarrow a} \frac{\frac{1}{3}(a+2 x)^{-2 / 3} \cdot 2-\frac{1}{3} \cdot(3 x)^{-2 / 3} \cdot 3}{\frac{1}{3}(3 a+x)^{-2 / 3} \cdot-\frac{1}{3}(4 x)^{-2 / 3} \cdot 4} \\
=& \frac{\frac{1}{3}(3 a)^{-2 / 3} \cdot(2-3)}{\frac{1}{3}(4 a)^{-2 / 3} \cdot(1-4)}=\frac{3^{-2 / 3}}{4^{-2 / 3}} \cdot \frac{1}{3}=\frac{2^{4 / 3}}{9^{1 / 3}} \cdot \frac{1}{3}=\frac{2}{3} \cdot\left(\frac{2}{9}\right)^{1 / 3}
\end{aligned}
\)
\(\lim _{x \rightarrow 0}\left(\tan \left(\frac{\pi}{4}+x\right)\right)^{1 / x}\) is equal to: [Main Sep. 02, 2020 (II)]
\(\lim _{x \rightarrow 0}\left(\frac{1+\tan x}{1-\tan x}\right)^{1 / x}\)
\(
\Rightarrow e^{\lim _{x \rightarrow 0} \frac{1}{x}\left[\tan \left(\frac{\pi}{4}+x\right)-1\right]} \Rightarrow e^{\lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1+\tan x}{1-\tan x}-1\right)}
\)
\(
\Rightarrow e^{\lim _{x \rightarrow 0}\left(\frac{2 \tan x}{1-\tan x}\right) \frac{1}{x}}=e^{\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)\left(\frac{2}{1-\tan x}\right)}=e^2
\)
\(\lim _{x \rightarrow 0}\left(\frac{3 x^2+2}{7 x^2+2}\right)^{1 / x^2}\) is equal to: [Main Jan. 8, \(2020(\mathrm{I})]\)
Let \(\mathrm{R}=\lim _{x \rightarrow 0}\left(\frac{3 x^2+2}{7 x^2+2}\right)^{\frac{1}{x^2}}=e^{\lim _{x \rightarrow 0} \frac{1}{x^2}\left\{\frac{3 x^2+2}{7 x^2+2}-1\right\}}\)
\(
=e^{\lim _{x \rightarrow 0} \frac{1}{x^2}\left\{\frac{-4 x^2}{7 x^2+2}\right\}}=e^{\frac{-4}{2}}=e^{-2}=\frac{1}{e^2}
\)
\(
\lim _{x \rightarrow 0} \frac{\int_0^x t \sin (10 t) d t}{x} \text { is equal to }
\) [Main Jan. 8, 2020 (II)]
Using L’ Hospital rule, \(\lim _{x \rightarrow 0} \frac{x \sin (10 x)}{1}=0\)
If \(\mathrm{a}\) and \(\mathrm{b}\) are the roots of the equation \(375 x^2-25 x-2=0\), then \(\lim _{n \rightarrow \infty} \sum_{r=1}^n \alpha^r+\lim _{n \rightarrow \infty} \sum_{r=1}^n \beta^r\) is equal to: [Main April 12, \(2019(\mathrm{I})]\)
Given equation is, \(375 x^2-25 x-2=0\)
Sum and product of the roots are,
\(
\begin{gathered}
a+b=\frac{25}{375} \text { and } a b=\frac{-2}{375} \\
\lim _{n \rightarrow \infty} \sum_{r=1}^n\left(\alpha^r+\beta^r\right) \\
=\left(\alpha+\alpha^2+\alpha^3+\ldots \infty)+\left(\beta+\beta^2+\beta^3 \ldots+\infty\right)\right. \\
=\frac{\alpha}{1-\alpha}+\frac{\beta}{1-\beta}=\frac{\alpha+\beta-2 \alpha \beta}{1-(\alpha+\beta)+\alpha \beta}
\end{gathered}
\)
\(
=\frac{\frac{25}{375}+\frac{4}{375}}{1-\frac{25}{375}-\frac{2}{375}}=\frac{29}{375-25-2}=\frac{29}{348}=\frac{1}{12}
\)
For each \(t \in R\), let \([t]\) be the greatest integer less than or equal to \(t\). Then [Main 2018]
\(
\lim _{x \rightarrow 0^{+}} x\left(\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\ldots+\left[\frac{15}{x}\right]\right)
\)
Since, \(\lim _{x \rightarrow 0^{+}} x\left(\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\ldots+\left[\frac{15}{x}\right]\right)\) \(=\lim _{x \rightarrow 0^{+}} x\left(\frac{1+2+3+\ldots+15}{x}\right)-\left(\left\{\frac{1}{x}\right\}+\left\{\frac{2}{x}\right\}+\ldots+\left\{\frac{15}{x}\right\}\right)\)
\(
\because 0 \leq\left\{\frac{r}{x}\right\}<1 \Rightarrow 0 \leq x\left\{\frac{r}{x}\right\}<x
\)
\(
\therefore \lim _{x \rightarrow 0^{+}} x\left(\frac{1+2+3+\ldots+15}{x}\right)=\frac{15 \times 16}{2}=120
\)
\(\lim _{x \rightarrow 0} \frac{(27+x)^{\frac{1}{3}}-3}{9-(27+x)^{\frac{2}{3}}}\) equals. [Main Online April 16, 2018]
Let \(\mathrm{L}=\lim _{x \rightarrow 0} \frac{(27+x)^{\frac{1}{3}}-3}{9-(27+x)^{\frac{2}{3}}}\)
Here ‘ \(L\) ‘ is in the indeterminate form i.e., \(\frac{0}{0}\)
\(\therefore\) using the L’Hospital rule we get:
\(
\mathrm{L}=\lim _{x \rightarrow 0} \frac{\frac{1}{3}(27+x)^{\frac{-2}{3}}}{-\frac{2}{3}(27+x)^{\frac{-1}{3}}}=\frac{\frac{1}{3} \times(2)^{\frac{-2}{3}}}{\frac{-2}{3} \times 27^{\frac{-1}{3}}}=-\frac{1}{6}
\)
Let \(p=\lim _{x \rightarrow 0^{+}}\left(1+\tan ^2 \sqrt{x}\right)^{\frac{1}{2 x}}\) then \(\log p\) is equal to: [Main 2016]
\(p=\lim _{x \rightarrow 0^{+}}\left(1+\tan ^2 \sqrt{x}\right)^{\frac{1}{2 x}}, 1^{\infty}\) form
\(
=\lim _{x \rightarrow 0^{+}}\left(1+\tan ^2 \sqrt{x}\right)^{\frac{1}{\tan ^2 \sqrt{x}}} \cdot \frac{\tan ^2 \sqrt{x}}{2 x}
\)
\(
=\left(\lim _{x \rightarrow 0^{-}}\left(1+\tan ^2 \sqrt{x}\right)^{\frac{1}{\tan ^2 \sqrt{x}}}\right)^{\lim _{x \rightarrow 0^{+}} \frac{\tan ^2 \sqrt{x}}{2 x}}
\)
We know
\(
\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e
\)
\(
=e^{\lim _{x \rightarrow 0^{+}} \frac{1}{2}} \cdot\left(\frac{\tan \sqrt{x}}{\sqrt{x}}\right)^2
\)
\(
=\mathrm{e}^{\frac{1}{2} \cdot 1^2}=\mathrm{e}^{\frac{1}{2}}
\)
Therefore \(\ln p=\ln e^{1 / 2}=\frac{1}{2}\)
If \(\lim _{x \rightarrow 0}\left[1+x \ln \left(1+b^2\right)\right]^{1 / x}=2 b \sin ^2 \theta, b>0\) and \(\theta \in(-\pi, \pi]\), then the value of \(\theta\) is [2011]
\(\lim _{x \rightarrow 0}\left[1+x \ell n\left(1+b^2\right)\right]^{\frac{1}{x}}=2 b \sin ^2 \theta\)
\(
\begin{gathered}
\Rightarrow \lim _{e^{x \rightarrow 0}} \frac{\ln \left[1+x \ln \left(1+b^2\right)\right]}{x}=2 b \sin ^2 \theta \\
\Rightarrow \lim _{e^{x \rightarrow 0}} \frac{\ln \left[1+x \ell \mathrm{n}\left(1+b^2\right)\right]}{x \ell n\left(1+b^2\right)} \times \ell n\left(1+b^2\right)=2 b \sin ^2 \theta \\
\Rightarrow e^{\ln \left(1+b^2\right)}=2 \mathrm{~b} \sin ^2 \theta \\
\Rightarrow 1+b^2=2 b \sin ^2 \theta \Rightarrow 2 \sin ^2 \theta=b+\frac{1}{b}
\end{gathered}
\)
We know that \(2 \sin ^2 \theta \leq 2\) and \(b+\frac{1}{b} \geq 2\) for \(b>0\)
\(
\therefore 2 \sin ^2 \theta=b+\frac{1}{b}=2 \Rightarrow \sin ^2 \theta=1
\)
\(\theta \in(-\pi, \pi], \quad \therefore \theta=\pm \frac{\pi}{2}\)
\(
\lim _{x \rightarrow \frac{\pi}{4}} \frac{\int_2^{\sec ^2 x} f(t) d t}{x^2-\frac{\pi^2}{16}} \text { equal }
\) [2007 – 3 marks]
\(
\begin{aligned}
&\lim _{x \rightarrow \frac{\pi}{4}} \frac{\int_2^{\sec ^2 x} f(t) d t}{x^2-\frac{\pi^2}{16}}\left[\frac{0}{0}\right. \text { form] } \\
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\frac{d}{d x}\left[\int_2^{\sec ^2 x} f(t) d t\right]}{\frac{d}{d x}\left(x^2-\frac{\pi^2}{16}\right)} \text { (using L’ Hospital rule) }
\end{aligned}
\)
\(
\begin{aligned}
&=\lim _{x \rightarrow \frac{\pi}{4}} \frac{f\left(\sec ^2 x\right) \cdot 2 \sec ^2 x \tan x}{2 x} \\
&{\left[\because \frac{d}{d x}\left[\int_{g(x)}^{h(x)} f(t) d t\right]=f(h(x)) h^{\prime}(x)-f(g(x)) \cdot g^{\prime}(x)\right]} \\
&=\frac{f(2) \times 2 \times 2 \times 1}{2 \times \frac{\pi}{4}}=\frac{8}{\pi} f(2)
\end{aligned}
\)
The value of \(\lim _{x \rightarrow 0}\left((\sin x)^{1 / x}+(1+x)^{\sin x}\right)\), where \(x>0\) is [2006-3 M,-1]
\(
\begin{aligned}
&\text { Limit }=\lim _{x \rightarrow 0}\left((\sin x)^{\frac{1}{x}}+\left(\frac{1}{x}\right)^{\sin x}\right)\\
&=e^{\lim _{x \rightarrow 0}\left(\frac{\log \sin x}{x}\right)}+e^{\lim _{x \rightarrow 0}\left(\frac{-\log x}{\operatorname{cosec} x}\right)}\\
&=e^{-\infty}+e^{\lim _{x \rightarrow 0}\left(\frac{-\log x}{\operatorname{cosec} x}\right)}\\
&\left(\because x \rightarrow 0^{+}, \log (\sin x) \rightarrow-\infty\right)\\
&=e^{-\infty}+e^{\lim _{x \rightarrow 0}\left(-\frac{\frac{1}{x}}{-\operatorname{cosec} x \cot x}\right)} \text { (using L’ Hospital rule) }\\
&=e^{-\infty}+e^{\lim _{x \rightarrow 0}\left(\frac{\tan x}{x} \times \sin x\right)}\\
&=e^{-\infty}+e^0\\
&=0+1\\
&=1
\end{aligned}
\)
If \(f(x)\) is differentiable and strictly increasing function, then the value of \(\lim _{x \rightarrow 0} \frac{f\left(x^2\right)-f(x)}{f(x)-f(0)}\) is [2004S]
\(
\begin{aligned}
&\text { Let } L=\lim _{x \rightarrow 0} \frac{f\left(x^2\right)-f(x)}{f(x)-f(0)} \quad \text { [using L.H. Rule] }\\
&\left[\begin{array}{l}
\because f^{\prime}(a)>0 \text { as } f \text { being } \\
\text { strictly increasing }
\end{array}\right]\\
&L=\lim _{x \rightarrow 0} \frac{f^{\prime}\left(x^2\right) \cdot 2 x-f^{\prime}(x)}{f^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}\left(x^2\right) \cdot 2 x}{f^{\prime}(x)}-1=0-1\\
&=-1
\end{aligned}
\)
\(\lim _{h \rightarrow 0} \frac{f\left(2 h+2+h^2\right)-f(2)}{f\left(h-h^2+1\right)-f(1)}\), given that \(f^{\prime}(2)=6\) and \(f^{\prime}(1)=4\) [2003 S]
\(
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f\left(2 h+2+h^2\right)-f(2)}{f\left(h-h^2+1\right)-f(1)} \quad\left[\frac{0}{0} \text { form }\right]\\
&=\lim _{h \rightarrow 0} \frac{f^{\prime}\left(2 h+2+h^2\right) \cdot(2+2 h)}{f^{\prime}\left(h-h^2+1\right) \cdot(1-2 h)}\\
&=\frac{f^{\prime}(2) \cdot 2}{f^{\prime}(1) \cdot 1}=\frac{6 \times 2}{4 \times 1}=3
\end{aligned}
\)
Let \(f: R \rightarrow R\) be such that \(f(1)=3\) and \(f^{\prime}(1)=6\). Then \(\lim _{x \rightarrow 0}\left(\frac{f(1+x)}{f(1)}\right)^{1 / x}\) equals [2002 S]
Given \(f ; R \rightarrow R, f(1)=3\) and \(f^{\prime}(1)=6\) Then \(\lim _{x \rightarrow 0}\left[\frac{f(1+x)}{f(1)}\right]^{1 / x}\)
\(
\begin{aligned}
&=\lim _{e^{x \rightarrow 0}} \frac{1}{x}[\log f(1+x)-\log f(1)] \\
&=\lim _{e^{x \rightarrow 0}} \frac{\frac{1}{f(1+x)} f^{\prime}(1+x)}{1} \quad \text { [using L’Hospital rule] } \\
&=\frac{f^{\prime}(1)}{f(1)}=e^{6 / 3}=e^2
\end{aligned}
\)
The integer \(\mathrm{n}\) for which \(\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^x\right)}{x^n}\) is a finite non-zero number is [2002 S]
\(\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^x\right)}{x^n}\)
\(
=\lim _{x \rightarrow 0} \frac{(1-\cos x)(1+\cos x)\left(e^x-\cos x\right)}{x^n(1+\cos x)}
\)
\(
=\lim _{x \rightarrow 0}\left(\frac{\sin ^2 x}{x^2}\right) \cdot\left(\frac{e^x-\cos x}{x^{n-2}}\right) \cdot\left(\frac{1}{1+\cos x}\right)
\)
\(
=1^2 \cdot \frac{1}{2} \lim _{x \rightarrow 0} \frac{e^x-\cos x}{x^{n-2}}
\)
\(=\frac{1}{2} \lim _{x \rightarrow 0} \frac{e^x+\sin x}{(n-2) x^{n-3}} \quad\) [using LH rule] For this limit to be finite, \(n-3=0 \Rightarrow n=3\)
Let \(\alpha, \beta \in \mathbb{R}\) be such that \(\lim _{x \rightarrow 0} \frac{x^2 \sin (\beta x)}{\alpha x-\sin x}=1\). Then \(6(\alpha+\beta)\) equals. [Adv. 2016]
\(
\lim _{x \rightarrow 0} \frac{x^2 \sin \beta x}{\alpha x-\sin x}=1
\)
Therefore,
\(
\begin{aligned}
&\lim _{x \rightarrow 0} \frac{x^2 \sin \beta x}{\alpha x-\sin x}=1 \\
&\Rightarrow \lim _{x \rightarrow 0} \frac{x^2\left(\frac{\sin \beta x}{\beta x}\right) \beta x}{\alpha x-\sin x}=1 \\
&\Rightarrow \beta \lim _{x \rightarrow 0} \frac{x^3}{\alpha x-\left(x-\frac{x^3}{3 !}+\frac{x^5}{5 !}-\cdots\right)}=1 \\
&\Rightarrow \beta \lim _{x \rightarrow 0} \frac{x^3}{x(\alpha-1)+\frac{x^3}{3 !}-\frac{x^5}{5 !}+\cdots}=1
\end{aligned}
\)
For finite limit \(\alpha=1\),
\(
3 ! \times \beta=1 \Rightarrow \beta=\frac{1}{6}
\)
Then,
\(
6(\alpha+\beta)=6\left(1+\frac{1}{6}\right)=6+1=7
\)
If \(\lim _{x \rightarrow 1} \frac{x+x^2+x^3+\ldots+x^n-n}{x-1}=820,(n \in \mathbf{N})\) then the value of \(n\) is equal to ____[Main Sep. 02, 2020]
\(\lim _{x \rightarrow 1} \frac{x+x^2+x^3+\ldots .+x^n-n}{x-1}=820\left(\frac{0}{0}\right.\) case \()\) \(\lim _{x \rightarrow 1} \frac{1+2 x+3 x^2+\ldots .+n x^{n-1}}{1}=820\)
(Using L’ Hospital rule) \(\Rightarrow 1+2+3+\ldots+n=820\)
\(
\begin{aligned}
&\Rightarrow \frac{n(n+1)}{2}=820 \Rightarrow n^2+n-1640=0 \\
&\Rightarrow n=40, n \in \mathrm{N}
\end{aligned}
\)
\(\lim _{x \rightarrow 0}\left(\frac{1+5 x^2}{1+3 x^2}\right)^{1 / x^2}=\ldots\) [1996 – 1 Mark]
\(
\begin{aligned}
&f(x)^{g(x)}=e^{\log f(x)^{g(x)}}=e^{g(x) \log f(x)}\\
&\Rightarrow \quad \lim _{x \rightarrow 0}[f(x)]^{g(x)}=e^{\lim _{x \rightarrow 0} g(x) \log f(x)}\\
&\therefore \lim _{x \rightarrow 0}\left(\frac{1+5 x^2}{1+3 x^2}\right)^{1 / x^2}=e^{\lim _{x \rightarrow 0} \frac{1}{x^2} \log \left[\frac{1+5 x^2}{1+3 x^2}\right]}\\
&=e^{\lim _{x \rightarrow 0}\left[5 \cdot \frac{\log \left(1+5 x^2\right)}{5 x^2}-3 \cdot \frac{\log \left(1+3 x^2\right)}{3 x^2}\right]}=e^{5-3}=e^2
\end{aligned}
\)
\(\operatorname{Lt}_{x \rightarrow \infty}\left(\frac{x+6}{x+1}\right)^{x+4}= ?\) [1990 – 2 Marks]
\(
\begin{aligned}
&\lim _{x \rightarrow \infty}\left(\frac{x+6}{x+1}\right)^{x+4}=\lim _{x \rightarrow \infty}\left(1+\frac{5}{x+1}\right)^{x+4}\left[1^{\infty}\right. \text { form] } \\
&=e^{\lim _{x \rightarrow \infty} \frac{5(x+4)}{x+1}}=e^5
\end{aligned}
\)
Note: \(
\left[\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=e\right]
\)
Find \(\lim _{x \rightarrow 0}\{\tan (\pi / 4+x)\}^{1 / x}\) [1993 – 2 Marks]
\(\lim _{x \rightarrow 0}\left\{\tan \left(\frac{\pi}{4}+x\right)\right\}^{\frac{1}{x}}\)
\(
=e^{\lim _{x \rightarrow 0}} \frac{\ln \tan \left(\frac{\pi}{4}+x\right)}{x} \quad\left[\frac{0}{0} \text { form }\right]
\)
\(
\begin{gathered}
=e^{\lim _{x \rightarrow 0}\left[\frac{\sec ^2\left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}\right)+x}\right]} \\
=e^{\frac{2}{1}}=e^2
\end{gathered}
\)
Note: LH rule was used to solve this.
Let \(f(x)\) be a polynomial of degree 4 having extreme values at \(x=1\) and \(x=2\). If \(\lim _{x \rightarrow 0}\left(\frac{f(x)}{x^2}+1\right)=3\) then \(f(-1)\) is equal to [Main Online April 15, 2018]
\(f(x)\) has extremum values at \(x=1\) and \(x=2\)
\(f^{\prime}(1)=0\) and \(f^{\prime}(2)=0\)
As, \(f(x)\) is a polynomial of degree 4 .
Suppose \(f(x)=A x^4+B x^3+C x^2+D x+E\)
\(
\begin{aligned}
&\lim _{x \rightarrow 0}\left(\frac{f(x)}{x^2}+1\right)=3 \\
&\Rightarrow \quad \lim _{x \rightarrow 0}\left(\frac{A x^4+B x^3+C x^2+D x+E}{x^2}+1\right)=3 \\
&\Rightarrow \quad \lim _{x \rightarrow 0}\left(A x^2+B x+C+\frac{D}{x}+\frac{E}{x^2}+1\right)=3
\end{aligned}
\)
As limit has finite value, so \(D=0\) and \(E=0\)
Now \(A(0)^2+B(0)+C+0+0+1=3\)
\(
\begin{aligned}
&\Rightarrow c+1=3 \Rightarrow c=2 \\
&f^{\prime}(x)=4 A x^3+3 B x^2+2 C x+D \\
&f^{\prime}(1)=0 \Rightarrow 4 A(1)+3 B(1)+2 C(1)+D=0 \\
&\Rightarrow 4 A+3 B=-4 \\
&f^{\prime}(2)=0 \Rightarrow 4 A(8)+3 B(4)+2 C(2)+D=0 \\
&\Rightarrow 8 A+3 B=-2
\end{aligned}
\)
From equations (i) and (ii), we get
\(
A=\frac{1}{2} \text { and } B=-2 ; \text { So, } f(x)=\frac{x^4}{2}-2 x^3+2 x^2
\)
Therefore, \(f(-1)=\frac{(-1)^4}{2}-2(-1)^3+2(-1)^2\) \(=\frac{1}{2}+2+2=\frac{9}{2}\). Hence \(f(-1)=\frac{9}{2}\)
Let \(\mathrm{f}(\mathrm{x})\) be a polynomial of degree four having extreme values at \(\mathrm{x}=\) 1 and \(x=2\). If \(\lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x^2}\right]=3\), then \(f(2)\) is equal to: [Main 2015]
\(\lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x^2}\right]=3 \Rightarrow \lim _{x \rightarrow 0} \frac{f(x)}{x^2}=2\)
So, \(f(x)\) contain terms in \(x^2, x^3\) and \(x^4\).
Let \(f(x)=a_1 x^2+a_2 x^3+a_3 x^4\)
Since \(\lim _{x \rightarrow 0} \frac{f(x)}{x^2}=2 \Rightarrow a_1=2\)
Hence, \(f(x)=2 x^2+a_2 x^3+a_3 x^4\)
\(
f^{\prime}(x)=4 x+3 a_2 x^2+4 a_3 x^3
\)
As given : \(\mathrm{f}^{\prime}(1)=0 \operatorname{and} \mathrm{f}^{\prime}(2)=0\)
Hence, \(4+3 \mathrm{a}_2+4 \mathrm{a}_3=0 \quad\)…(i)
and \(8+12 \mathrm{a}_2+32 \mathrm{a}_3=0\)…(ii)
By 4 x [Eq (i) – Eq (ii)], we get
\(
\begin{gathered}
16+12 \mathrm{a}_2+16 \mathrm{a}_3-\left(8+12 \mathrm{a}_2+32 \mathrm{a}_3\right)=0 \\
\Rightarrow 8-16 \mathrm{a}_3=0 \Rightarrow \mathrm{a}_3=1 / 2
\end{gathered}
\)
and by eqn. (i), \(4+3 \mathrm{a}_2+4 / 2=0 \Rightarrow \mathrm{a}_2=-2\)
\(
\Rightarrow \mathrm{f}(\mathrm{x})=2 \mathrm{x}^2-2 \mathrm{x}^3+\frac{1}{2} \mathrm{x}^4
\)
\(
f(2)=2 \times 4-2 \times 8+\frac{1}{2} \times 16=0
\)
Let \(f(1)=-2\) and \(f^{\prime}(x) \geq 4.2\) for \(1 \leq x \leq 6\). The possible value of \(f\) (6) lies in the interval: [Main April 25, 2013]
\(
\text { Given } f(1)=-2 \text { and } f^{\prime}(x) \geq 4.2 \text { for } 1 \leq x \leq 6
\)
Consider \(f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}\) \(\Rightarrow f(x+h)-f(x)=f^{\prime}(x) \cdot h \geq(4.2) h\)
So, \(f(x+h) \geq f(x)+(4.2) h\)
put \(x=1\) and \(h=5\), we get
\(
f(6) \geq f(1)+5(4.2) \Rightarrow f (6) \geq 19
\)
Hence \(f(6)\) lies in \([19, \infty)\)
Find the derivative of \(\sin \left(x^2+1\right)\) with respect to \(x\) from first principle. [1978]
Let \(F(x)=\sin \left(x^2+1\right)\), then, \(f(x+h)=\sin \left[(x+h)^2+1\right]\)
\(
\therefore \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\)
\(
=\lim _{h \rightarrow 0} \frac{\sin \left[(\mathrm{x}+\mathrm{h})^2+1\right]-\sin \left[\mathrm{x}^2+1\right]}{\mathrm{h}}
\)
\(
\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} 2 \cos \left(\frac{2 x^2+h^2+2 x h+2}{2}\right) \times \frac{\sin \left(\frac{h^2+2 \times h}{2}\right)}{h}
\)
\(
=2 \cos \left(x^2+1\right) \lim _{h \rightarrow 0} \frac{\sin \left[\frac{h^2+2 x h}{2}\right]}{h\left[\frac{h+2 x}{2}\right]}\left(\frac{h+2 x}{2}\right)
\)
\(
=2 x \cos \left(x^2+1\right)
\)
Let \(\{x\}\) denote the fractional part of \(x\) and \(f(x)=\frac{\cos ^{-1}\left(1-\{x\}^2\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^3}, x \neq 0\). If \(L\) and \(R\) respectively denotes the left hand limit and the right hand limit of \(f(x)\) at \(x=0\), then \(\frac{32}{\pi^2}\left(L^2+R^2\right)\) is equal to [2024 (01 Feb Shift 1)]
Finding right hand limit
\(
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h) \\
& =\lim _{h \rightarrow 0} f(h) \\
& =\lim _{h \rightarrow 0} \frac{\cos ^{-1}\left(1-h^2\right) \sin ^{-1}(1-h)}{h\left(1-h^2\right)} \\
& =\lim _{h \rightarrow 0} \frac{\cos ^{-1}\left(1-h^2\right)}{h}\left(\frac{\sin ^{-1} 1}{1}\right)
\end{aligned}
\)
Let \(\cos ^{-1}\left(1-h^2\right)=\theta \Rightarrow \cos \theta=1-h^2\)
\(
\begin{aligned}
& =\frac{\pi}{2} \lim _{\theta \rightarrow 0} \frac{\theta}{\sqrt{1-\cos \theta}} \\
& =\frac{\pi}{2} \lim _{\theta \rightarrow 0} \frac{1}{\sqrt{\frac{1-\cos \theta}{\theta^2}}} \\
& =\frac{\pi}{2} \frac{1}{\sqrt{1 / 2}} \\
& R=\frac{\pi}{\sqrt{2}}
\end{aligned}
\)
Now finding left hand limit
\(
\begin{aligned}
& L=\lim _{x \rightarrow 0^{-}} f(x) \\
& =\lim _{h \rightarrow 0} f(-h) \\
& =\lim _{h \rightarrow 0} \frac{\cos ^{-1}\left(1-\{-h\}^2\right) \sin ^{-1}(1-\{-h\})}{\{-h\}-\{-h\}^3} \\
& =\lim _{h \rightarrow 0} \frac{\cos ^{-1}\left(1-(-h+1)^2\right) \sin ^{-1}(1-(-h+1))}{(-h+1)-(-h+1)^3} \\
& =\lim _{h \rightarrow 0} \frac{\cos ^{-1}\left(-h^2+2 h\right) \sin ^{-1} h}{(1-h)\left(1-(1-h)^2\right)} \\
& =\lim _{h \rightarrow 0}\left(\frac{\pi}{2}\right) \frac{\sin ^{-1} h}{\left(1-(1-h)^2\right)} \\
& =\frac{\pi}{2} \lim _{ h \rightarrow 0}\left(\frac{\sin ^{-1} h }{- h ^2+2 h }\right) \\
& =\frac{\pi}{2} \lim _{ h \rightarrow 0}\left(\frac{\sin ^{-1} h }{ h }\right)\left(\frac{1}{- h +2}\right) \\
& L =\frac{\pi}{4} \\
& \frac{32}{\pi^2}\left( L ^2+ R ^2\right)=\frac{32}{\pi^2}\left(\frac{\pi^2}{2}+\frac{\pi^2}{16}\right) \\
& =16+2 \\
& =18
\end{aligned}
\)
Let \(f(x)=\left\{\begin{array}{c}x-1, x \text { is even, } \\ 2 x, x \text { is odd, }\end{array} \quad x \in\right.\). If for some \(a \in N, f(f(f(a)))=21\), then \(\lim _{x \rightarrow a^{-}}\left\{\frac{|x|^3}{a}-\left[\frac{x}{a}\right]\right\}\). where \([t]\) denotes the greatest integer less than or equal to \(t\), is equal to : [2024 (01 Feb Shift 2)]
\(
\begin{aligned}
& f( x )=\left\{\begin{array}{cc}
x -1 ; & x =\text { even } \\
2 x ; & x =\text { odd }
\end{array}\right. \\
& f(f(f( a )))=21
\end{aligned}
\)
C-1: If \(a=\) even
\(
\begin{aligned}
& f( a )= a -1=\text { odd } \\
& f ( f ( a ))=2( a -1)=\text { even } \\
& f(f(f( a )))=2 a -3=21 \Rightarrow a =12
\end{aligned}
\)
C-2: If \(a =\) odd
\(
\begin{aligned}
& f( a )=2 a =\text { even } \\
& f(f( a ))=2 a -1=\text { odd } \\
& f(f(f( a )))=4 a -2=21 \text { (Not possible) }
\end{aligned}
\)
\(
\text { Hence } a =12
\)
Now
\(
\begin{aligned}
& \lim _{x \rightarrow 12^{-}}\left(\frac{|x|^3}{2}-\left[\frac{x}{12}\right]\right) \\
& =\lim _{x \rightarrow 12^{-}} \frac{|x|^3}{12}-\lim _{x \rightarrow 12^{-}}\left[\frac{x}{12}\right] \\
& =144-0=144 .
\end{aligned}
\)
\(
\text { If } a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4} \text { and } b=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}} \text {, then the value of } a b^3 \text { is : }
\) [2024 (27 Jan Shift 1)]
\(
a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^4}}-\sqrt{2}}{x^4}
\)
\(
=\lim _{x \rightarrow 0} \frac{\sqrt{1+x^4}-1}{x^4\left(\sqrt{1+\sqrt{1+x^4}}+\sqrt{2}\right)}
\)
\(
=\lim _{x \rightarrow 0} \frac{x^4}{x^4\left(\sqrt{1+\sqrt{1+x^4}}+\sqrt{2}\right)\left(\sqrt{1+x^4}+1\right)}
\)
\(
\begin{aligned}
& \text { Applying limit } a=\frac{1}{4 \sqrt{2}} \\
& b=\lim _{x \rightarrow 0} \frac{\sin ^2 x}{\sqrt{2}-\sqrt{1+\cos x}} \\
& =\lim _{x \rightarrow 0} \frac{\left(1-\cos ^2 x\right)(\sqrt{2}+\sqrt{1+\cos x})}{2-(1+\cos x)} \\
& b=\lim _{x \rightarrow 0}(1+\cos x)(\sqrt{2}+\sqrt{1+\cos x})
\end{aligned}
\)
Applying limits \(b =2(\sqrt{2}+\sqrt{2})=4 \sqrt{2}\)
Now, \(ab ^3=\frac{1}{4 \sqrt{2}} \times(4 \sqrt{2})^3=32\)
\(
\text { If } \lim _{x \rightarrow 0} \frac{3+\alpha \sin x+\beta \cos x+\log _e(1-x)}{3 \tan ^2 x}=\frac{1}{3} \text {, then } 2 \alpha-\beta \text { is equal to : }
\) [2024 (27 Jan Shift 2)]
\(
\lim _{x \rightarrow 0} \frac{3+\alpha \sin x+\beta \cos x+\log _e(1-x)}{3 \tan ^2 x}=\frac{1}{3}
\)
\(
\Rightarrow \lim _{x \rightarrow 0} \frac{3+\alpha\left[x-\frac{x^3}{3!}+\ldots\right]+\beta\left[1-\frac{x^2}{2!}+\frac{x^4}{4!} \ldots\right]+\left(-x-\frac{x^2}{2}-\frac{x^3}{3} \ldots\right)}{3 \tan ^2 x}=\frac{1}{3}
\)
\(
\Rightarrow \lim _{x \rightarrow 0} \frac{(3+\beta)+(\alpha-1) x+\left(-\frac{1}{2}-\frac{\beta}{2}\right) x^2+\ldots}{3 x^2} \times \frac{x^2}{\tan ^2 x}=\frac{1}{3}
\)
\(
\begin{aligned}
& \Rightarrow \beta+3=0, \alpha-1=0 \text { and } \frac{-\frac{1}{2}-\frac{\beta}{2}}{3}=\frac{1}{3} \\
& \Rightarrow \beta=-3, \alpha=1 \\
& \Rightarrow 2 \alpha-\beta=2+3=5
\end{aligned}
\)
\(\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{1}{\left(x-\frac{\pi}{2}\right)^2} \int_{x^3}^{\left(\frac{\pi}{2}\right)^3} \cos \left(\frac{1}{t^3}\right) d t\right)\) is equal to [2024 (29 Jan Shift 1)]
Using L’hopital rule
\(
\begin{aligned}
& =\lim _{x \rightarrow \frac{\pi^{-}}{2}} \frac{0-\cos x \times 3 x^2}{2\left(x-\frac{\pi}{2}\right)} \\
& =\lim _{x \rightarrow \frac{\pi^{-}}{2}} \frac{\sin \left(x-\frac{\pi}{2}\right)}{2\left(x-\frac{\pi}{2}\right)} \times \frac{3 \pi^2}{4} \\
& =\frac{3 \pi^2}{8}
\end{aligned}
\)
Let the slope of the line \(45 x+5 y+3=0\) be \(27 r_1+\frac{9 r_2}{2}\) for some \(r_1, \quad r_2 \in R\). Then \(
\operatorname{Lim}_{x \rightarrow 3}\left(\int_3^x \frac{8 t^2}{\frac{3 r_2 x}{2}-r_2 x^2-r_1 x^3-3 x} d t\right) \text { is equal to }\) ____. [2024 (29 Jan Shift 2)]
According to the question,
\(
\begin{aligned}
& 27 r_1+\frac{9 r_2}{2}=-9 \\
& \lim _{x \rightarrow 3} \frac{\int_3^x 8 t^2 d t}{\frac{3 r_2 x}{2}-r_2 x^2-r_1 x^3-3 x} \\
& =\lim _{x \rightarrow 3} \frac{8 x^2}{\frac{3 r_2^2}{2}-2 r_2 x-3 r_1 x^2-3} \text { (using LH’ Rule) } \\
& =\frac{72}{\frac{3 r_2}{2}-6 r_2-27 r_1-3} \\
& =\frac{72}{-\frac{9 r_2}{2}-27 r_1-3} \\
& =\frac{72}{9-3}=12 \\
&
\end{aligned}
\)
Let \(f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow R\) be a differentiable function such that \(f(0)=\frac{1}{2}\), If the \(\lim _{x \rightarrow 0} \frac{x \int_0^x f(t) d t}{e^{x^2}-1}=\alpha\), then \(8 \alpha^2\) is equal to : [2024 (30 Jan Shift 1)]
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x \int_0^x f(t) d t}{\left(\frac{x^2-1}{x^2}\right) \times x^2} \\
& \lim _{x \rightarrow 0} \frac{\int_0^x f(t) d t}{x} \quad\left(\lim _{x \rightarrow 0} \frac{e^{x^2}-1}{x^2}=1\right) \\
& =\lim _{x \rightarrow 0} \frac{f(x)}{1} \quad \text { (using } L \text { Hospital) }
\end{aligned}
\)
\(
\begin{aligned}
& f (0)=\frac{1}{2} \\
& \alpha=\frac{1}{2} \\
& 8 \alpha^2=2
\end{aligned}
\)
Let \(a\) be the sum of all coefficients in the expansion of \(\left(1-2 x+2 x^2\right)^{2023}\left(3-4 x^2+2 x^3\right)^{2024}\) and \(b=\lim _{x \rightarrow 0}\left(\frac{\int_0^x \frac{\log (1+t)}{t^{2024}+1} d t}{x^2}\right)\). If the equations \(cx ^2+ dx + e =0\) and \(2 bx ^2+ ax +4=0\) have a common root, where \(c, d, e \in R\), then \(d: c: e\) equals [2024 (31 Jan Shift 1)]
\(
\begin{aligned}
& \text { Put } x=1 \\
& \therefore a=1
\end{aligned}
\)
\(
b=\lim _{x \rightarrow 0} \frac{\int_0^x \frac{\ln (1+t)}{1+t^{2024}} d t}{x^2}
\)
Using L’ HOPITAL Rule
\(
b=\lim _{x \rightarrow 0} \frac{\ln (1+x)}{\left(1+x^{2024}\right)} \times \frac{1}{2 x}=\frac{1}{2}
\)
\(
\text { Now, } cx ^2+ dx + e =0, x ^2+ x +4=0
\)
\(
\begin{aligned}
& ( D <0) \\
& \therefore \frac{c}{1}=\frac{d}{1}=\frac{e}{4}
\end{aligned}
\)
\(
\lim _{x \rightarrow 0} \frac{e^{2|\sin x|}-2|\sin x|-1}{x^2}
\) [2024 (31 Jan Shift 1)]
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{2|\sin x|}-2|\sin x|-1}{x^2} \\
& \lim _{x \rightarrow 0} \frac{e^{2|\sin x|}-2|\sin x|-1}{|\sin x|^2} \times \frac{\sin ^2 x}{x^2}
\end{aligned}
\)
Let \(|\sin x |= t\)
\(
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{e^{2 t}-2 t-1}{t^2} \times \lim _{x \rightarrow 0} \frac{\sin ^2 x}{x^2} \\
& =\lim _{t \rightarrow 0} \frac{2 e^{2 t}-2}{2 t} \times 1=2 \times 1=2
\end{aligned}
\)
Let \(\quad f : \rightarrow R \rightarrow(0, \infty)\) be strictly increasing function such that \(\lim _{x \rightarrow \infty} \frac{f(7 x)}{f(x)}=1\). Then, the value of \(\lim _{x \rightarrow \infty}\left[\frac{f(5 x)}{f(x)}-1\right]\) is equal to [2024 (31 Jan Shift 2)]
\(
\begin{aligned}
& f: R \rightarrow(0, \infty) \\
& \lim _{x \rightarrow \infty} \frac{f(7 x)}{f(x)}=1
\end{aligned}
\)
\(\because f\) is increasing
\(
\begin{aligned}
& \therefore f(x)<f(5 x)<f(7 x) \\
& \because \frac{f(x)}{f(x)}<\frac{f(5 x)}{f(x)}<\frac{f(7 x)}{f(x)} \\
& 1<\lim _{x \rightarrow \infty} \frac{f(5 x)}{f(x)}<1 \\
& \therefore\left[\frac{f(5 x)}{f(x)}-1\right] \\
& \Rightarrow 1-1=0
\end{aligned}
\)
\(
\lim _{x \rightarrow 0} \frac{a x^2 e^x-b \log _e(1+x)+c x e^{-x}}{x^2 \sin x}=1 \text { then } 16\left(a^2+b^2+c^2\right) \text { is equal to }
\) [2024 (31 Jan Shift 2)]
\(
\lim _{x \rightarrow 0} \frac{a x^2\left(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots .\right)-b\left(x-\frac{x^2}{2}+\frac{x^3}{3}-\ldots . .\right)+c x\left(1-x+\frac{x^2}{x!}-\frac{x^3}{3!}+\ldots . .\right)}{x^3 \cdot \frac{\sin x}{x}}
\)
\(
=\lim _{x \rightarrow \infty} \frac{(c-b) x+\left(\frac{b}{2}-c+a\right) x^2+\left(a-\frac{b}{3}+\frac{c}{2}\right) x^3+\ldots \ldots}{x^3}=1
\)
\(
\begin{aligned}
& c – b =0, \quad \frac{ b }{2}- c + a =0 \\
& a -\frac{ b }{3}+\frac{ c }{2}=1 \quad a =\frac{3}{4} \quad b = c =\frac{3}{2} \\
& a ^2+ b ^2+ c ^2=\frac{9}{16}+\frac{9}{4}+\frac{9}{4} \\
& 16\left( a ^2+ b ^2+ c ^2\right)=81
\end{aligned}
\)
\(\lim _{x \rightarrow 0} \frac{e-(1+2 x)^{\frac{1}{2 x}}}{x}\) is equal to [JEE Main 2024 (Online) 9th April Evening Shift]
\(
\lim _{x \rightarrow 0} \frac{e-(1+2 x)^{\frac{1}{2 x}}}{x}
\)
Using expansion
\(
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{e-e\left[1-\frac{2 x}{2}+\frac{11 \times 4 x^2}{24}+\ldots\right]}{x} \\
& =\lim _{x \rightarrow 0}\left(e-\frac{11 x}{6} e+\ldots\right)=e
\end{aligned}
\)
Alternate:
\(
\operatorname{Lim}_{x \rightarrow 0} \frac{e-e^{\frac{1}{2 z} \ln (1+2 x)}}{x}
\)
\(
\begin{aligned}
& =\operatorname{Lim}_{x \rightarrow 0}(-e) \frac{\left(e^{\frac{\ln (1+2 x)}{2 x}-1}-1\right)}{x} \\
& =\operatorname{Lim}_{x \rightarrow 0}(-e) \frac{\ln (1+2 x)-2 x}{2 x^2} \\
& =(-e) \times(-1) \frac{4}{2 \times 2}=e
\end{aligned}
\)
\(\lim _{n \rightarrow \infty} \frac{\left(1^2-1\right)(n-1)+\left(2^2-2\right)(n-2)+\cdots+\left((n-1)^2-(n-1)\right) \cdot 1}{\left(1^3+2^3+\cdots \cdot \cdot+n^3\right)-\left(1^2+2^2+\cdots \cdot \cdot+n^2\right)}\) is equal to : [JEE Main 2024 (Online) 6th April Evening Shift]
\(
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left(1^2-1\right)(n-1)+\left(2^2-2\right)(n-2)+\ldots+\left((n-1)^2-(n-1)\right) \times 1}{\left(1^3+2^3+\ldots+n^3\right)-\left(1^2+2^2+\ldots+n^2\right)} \\
& \text { Numerator }=\sum_{r=1}^{n-1}\left((r-1)^2-(r-1)\right)(n-r) \\
& =\sum_{r=1}^{n-1}(r-1)-(r-2)(n-r) \\
& =\sum_{r=1}^{n-1}-r^3+(n+3) r^2-(2+3 n) r+2 n
\end{aligned}
\)
We will take term with the greatest power of \(n\)
\(
\begin{aligned}
& =\frac{-1}{4} n^4+\frac{1}{3} n^4=\frac{1}{12} n^4 \\
& \text { Denominator }=\sum_{r=1}^n r^3-\sum_{r=1}^n r^2 \\
& =\left(\frac{n(n+1)}{2}\right)^2-\left(\frac{n(n+1)(2 n+1)}{6}\right)
\end{aligned}
\)
Greatest power of \(n\) is \(\frac{n^4}{4}\)
\(
\lim _{n \rightarrow \infty} \frac{\frac{1}{12} n^4}{\frac{n^4}{4}}=\frac{1}{3}
\)
Alternate:
\(
\lim _{n \rightarrow \infty} \frac{\sum_{r=1}^{n-1}\left(r^2-r\right)(n-r)}{\sum_{r=1}^n r^3-\sum_{r=1}^n r^2}
\)
\(
\lim _{n \rightarrow \infty} \frac{\sum_{r=1}^{n-1}\left(-r^3+r^2(n+1)-n r\right)}{\left(\frac{n(n+1)}{2}\right)^2-\frac{n(n+1)(2 n+1)}{6}}
\)
\(
\lim _{n \rightarrow \infty} \frac{\left(\frac{((n-1) n)}{2}\right)^2+\frac{(n+1)(n-1) n(2 n-1)}{6}-\frac{n^2(n-1)}{2}}{\frac{n(n+1)}{2}\left(\frac{n(n+1)}{2}-\frac{2 n+1}{3}\right)}
\)
\(
\lim _{n \rightarrow \infty} \frac{\frac{n(n-1)}{2}\left(\frac{-n(n-1)}{2}+\frac{(n+1)(2 n-1)}{3}-n\right)}{\frac{n(n+1)}{2} \frac{3 n^2+3 n-4 n-2}{6}}
\)
\(
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(n-1)\left(-3 n^2+3 n+2\left(2 n^2+n-1\right)-6\right)}{(n+1)\left(3 n^2-n-2\right)} \\
& \lim _{n \rightarrow \infty} \frac{(n-1)\left(n^2+5 n-8\right)}{(n+1)\left(3 n^2-n-2\right)}=\frac{1}{3}
\end{aligned}
\)
If \(\lim _{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{ m \sqrt{5}}{ n (2 n )^{2 / 3}}\), where \(\operatorname{gcd}( m , n )=1\), then \(8 m +12 n\) is equal to [2024 (04 Apr Shift 1)]
\(
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{\frac{1}{3}(5 x+1)^{-2 / 3} 5-\frac{1}{3}(x+5)^{-2 / 3}}{\frac{1}{2}(2 x+3)^{-1 / 2} \cdot 2-\frac{1}{2}(x+4)^{-1 / 2}} \\
& =\frac{8}{3} \frac{\sqrt{5}}{6^{2 / 3}} m=8 \\
& 8 m+12 n=100
\end{aligned}
\)
Alternate:
\(I=\lim _{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 /3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}\)
From: \(\frac{0}{0}\), using \(L – H\) rule
\(
\begin{aligned}
I & =\lim _{x \rightarrow 1} \frac{\frac{1}{3} \times 5(5 x+1)^{-2 / 3}–(+5)}{\frac{1}{2} \times 2(2 x+3)^{-1 / 2}-\frac{1}{2}(x+4)^{-1 / 2}} \\
& =\frac{\left(\left.\frac{5}{3}-\frac{1}{3} \right\rvert\, 6^{-2 / 3}\right.}{\frac{1}{2} 5^{-1 / 2}}=\frac{8}{3} \times \frac{5^{1 / 2}}{6^{2 / 3}}=\frac{m \sqrt{5}}{n(2 n)^{2 / 3}} \\
& \Rightarrow m=8, n=3 \\
& \Rightarrow 8 m+12 n=100
\end{aligned}
\)
Let \(f(x)=\int_0^x\left(t+\sin \left(1-e^{\prime}\right)\right) d t, x \in R\). Then, \(\lim _{x \rightarrow 0} \frac{f(x)}{x^3}\) is equal to [2024 (04 Apr Shift 2)]
\(
\lim _{x \rightarrow 0} \frac{f(x)}{x^3}
\)
Using L Hopital Rule.
\(
\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{3 x^2}=\lim _{x \rightarrow 0} \frac{x+\sin \left(1-e^x\right)}{3 x^2} \text { (Again L Hopital) }
\)
Using L.H. Rule
\(
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{-\left[\sin \left(1-e^x\right)\left(-e^x\right) \cdot e^x+\cos \left(1-e^x\right) \cdot e^x\right]}{6} \\
& =-\frac{1}{6}
\end{aligned}
\)
Let \(a >0\) be a root of the equation \(2 x^2+x-2=0\). If \(\lim _{x \rightarrow \frac{1}{a}} \frac{16\left(1-\cos \left(2+x-2 x^2\right)\right)}{(1- a x)^2}=\alpha+\beta \sqrt{17}\), where \(\alpha, \beta \in Z\), then \(\alpha+\beta\) is equal to [2024 (05 Apr Shift 2)]
\(
\begin{aligned}
& \lim _{x \rightarrow \frac{1}{a}} 16 \cdot \frac{\left(1-\cos 2\left(x-\frac{1}{a}\right)\left(x-\frac{1}{b}\right)\right)}{4\left(x-\frac{1}{b}\right)^2} \times \frac{4\left(x-\frac{1}{b}\right)^2}{a^2\left(x-\frac{1}{a}\right)^2} \\
& =16 \times \frac{2}{a^2}\left(\frac{1}{a}-\frac{1}{b}\right)^2 \\
& =\frac{32}{a^2}\left(\frac{17}{4}\right)=\frac{17.8}{a^2}=\frac{17 \times 8 \times 16}{(-1+\sqrt{117})^2} \\
& =\frac{136.16}{18.2 \sqrt{7}} \times \frac{18+2 \sqrt{7}}{18+2 \sqrt{7}} \\
& =\frac{136}{256}(18+2 \sqrt{7}) \cdot 16 \\
& =153+17 \sqrt{17}=\alpha+\beta \sqrt{17} \\
& \alpha+\beta=153+17=170 \\
&
\end{aligned}
\)
The value of \(\lim _{x \rightarrow 0} 2\left(\frac{1-\cos x \sqrt{\cos 2 x} \sqrt[3]{\cos 3 x} \ldots \ldots \cdot \sqrt[10]{\cos 10 x}}{x^2}\right)\) is [2024 (08 Apr Shift 1)]
\(
\lim _{x \rightarrow 0} 2\left(\frac{1-\cos x(\cos 2 x)^{\frac{1}{2}}(\cos 3 x)^{\frac{1}{3}} \ldots(\cos 10 x)^{\frac{1}{10}}}{x^2}\right)\left(\frac{0}{0} \text { form }\right)
\)
Using L’ hospital
\(
\begin{aligned}
& 2 \lim _{x \rightarrow 0} \frac{\sin x(\cos 2 x)^{\frac{1}{2}} \ldots(\cos 10 x)^{\frac{1}{10}} \ldots(\sin 2 x)(\cos x)(\cos 3 x)^{\frac{1}{3}}+\ldots}{2 x} \\
& \Rightarrow \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}+\frac{\sin 2 x}{x}+\ldots+\frac{\sin 10 x}{x}\right) \\
& \quad=1+2+\ldots+10=55
\end{aligned}
\)
Alternate:
\(
\lim _{x \rightarrow 0} 2\left(\frac{1-\left(1-\frac{x^2}{2!}\right)\left(1-\frac{4 x^2}{2!}\right)\left(1-\frac{1 x^2}{2}\right) \ldots .\left(1-\frac{100 x^2}{2!}\right)}{x^2}\right)
\)
By expansion
\(
\begin{aligned}
& \left.\lim _{x \rightarrow 0} \frac{2\left(1-\left(1-\frac{x^2}{2}\right)\right)\left(1-\frac{1}{2} \cdot \frac{4 x^2}{2}\right)\left(1-\frac{1}{3} \cdot \frac{9 x^2}{2}\right) \ldots \ldots\left(1-\frac{1}{10} \cdot \frac{100 x^2}{2}\right)}{x^2}\right) \\
& \lim _{x \rightarrow 0} 2\left(\frac{\left.1-\left(1-\frac{x^2}{2}\right)\left(1-\frac{2 x^2}{2}\right)\left(1-\frac{3 x^2}{2}\right) \ldots \ldots\left(1-\frac{10 x^2}{2}\right)\right)}{x^2}\right) \\
& \lim _{x \rightarrow 0} \frac{2\left(1-1+x^2\left(\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+\ldots+\frac{10}{2}\right)\right)}{x^2} \\
& 2\left(\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+\ldots .+\frac{10}{2}\right) \\
& 1+2+\ldots \ldots+10=\frac{10 \times 11}{2}=55 \\
&
\end{aligned}
\)
If \(\alpha=\lim _{x \rightarrow 0^{+}}\left(\frac{ e ^{\sqrt{\tan x}}- e ^{\sqrt{x}}}{\sqrt{\tan x}-\sqrt{x}}\right)\) and \(\beta=\lim _{x \rightarrow 0}(1+\sin x)^{\frac{1}{2} \cot x}\) are the roots of the quadratic equation \(a x^2+b x-\sqrt{ e }=0\), then \(12 \log _{ e }( a + b )\) is equal to ____. [JEE Main 2024 (Online) 8th April Evening Shift]
\(
\begin{aligned}
& \alpha=\lim _{x \rightarrow 0^{+}} \frac{e^{\sqrt{\tan x}}-e^{\sqrt{x}}}{(\sqrt{\tan x}-\sqrt{x})} \\
& =\lim _{x \rightarrow 0} \frac{e^{\sqrt{x}}\left(e^{\sqrt{\tan x}-\sqrt{x}}-1\right)}{(\sqrt{\tan x}-\sqrt{x})}=1 \\
& \beta=\lim _{x \rightarrow 0}(1+\sin x)^{\frac{1}{2} \cot x}=\lim _{x \rightarrow 0} e^{(\sin x)\left(\frac{1}{2} \cot x\right)} \\
& =\lim _{x \rightarrow 0} e^{\frac{1}{2} \cos x}=e^{1 / 2} \\
& \text { Product of roots }=\sqrt{e}=\frac{-\sqrt{e}}{a} \Rightarrow a=-1 \\
& \text { Sum of roots }=\frac{-b}{a}=1+\sqrt{e} \\
& =b=\sqrt{e}+1 \\
& \Rightarrow 12 \ln (a+b)=12 \ln (\sqrt{e}+1-1)=12 \ln \left(e^{1 / 2}\right)=6 \\
&
\end{aligned}
\)
Let \(\lim _{n \rightarrow \infty}\left(\frac{n}{\sqrt{n^4+1}}-\frac{2 n}{\left(n^2+1\right) \sqrt{n^4+1}}+\frac{n}{\sqrt{n^4+16}}-\frac{8 n}{\left(n^2+4\right) \sqrt{n^4+16}}+\ldots+\frac{n}{\sqrt{n^4+n^4}}-\frac{2 n \cdot n^2}{\left(n^2+n^2\right) \sqrt{n^4+n^4}}\right)\) be \(\frac{\pi}{k}\), using only the principal values of the inverse trigonometric functions. Then \(k ^2\) is equal to _____ [2024 (09 Apr Shift 1)]
\(
\begin{aligned}
& \sum_{r=1}^{\infty} \frac{n}{\sqrt{n^4+r^4}}-\frac{2 r^2}{\left(n^2+r^2\right) \sqrt{n^4+r^4}} \\
& \sum_{r=1}^{\infty} \frac{\frac{1}{n}}{\sqrt{1+\left(\frac{r}{n}\right)^4}}-\frac{2\left(\frac{1}{n}\right)\left(\frac{r}{n}\right)^2}{\left(1+\left(\frac{r}{n}\right)^2\right) \sqrt{1+\left(\frac{r}{n}\right)^4}}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \int_0^1 \frac{ dx }{\sqrt{1+ x ^4}}-\frac{2 x ^2 dx }{\left(1+ x ^2\right) \sqrt{1+ x ^4}} \\
& \Rightarrow \int_0^1 \frac{1- x ^2}{\left(1+ x ^2\right) \sqrt{1+ x ^4}} d x \\
& \Rightarrow \int_0^1 \frac{\frac{1}{x^2}-1}{\left(x+\frac{1}{x}\right) \sqrt{x^2+\frac{1}{x^2}}} d x \\
& \Rightarrow-\int_0^1 \frac{1-\frac{1}{x^2}}{\left(x+\frac{1}{x}\right) \sqrt{\left(x+\frac{1}{x}\right)^2-2}} d x \\
&
\end{aligned}
\)
\(
\begin{aligned}
& x+\frac{1}{x}=t \Rightarrow 1-\frac{1}{x^2} d x=d t \\
& \Rightarrow-\int_{\infty}^2 \frac{ dt }{ t \sqrt{ t ^2-2}} \\
& \Rightarrow-\int_{\infty}^2 \frac{t d t}{t^2 \sqrt{t^2-2}} \\
& \text { take } t ^2-2=\alpha^2 \\
& tdt =\alpha d \alpha \\
& \Rightarrow-\int_{\infty}^{\sqrt{2}} \frac{\alpha d \alpha}{\left(\alpha^2+2\right) \alpha} \\
& \Rightarrow-\int_{\infty}^{\sqrt{2}} \frac{ d \alpha}{\alpha^2+2} \\
& \left.\Rightarrow \frac{-1}{\sqrt{2}} \tan ^{-1} \frac{\alpha}{\sqrt{2}}\right]_{\infty}^{\sqrt{2}} \\
& \Rightarrow \frac{-1}{\sqrt{2}}\left\{\tan ^{-1} 1\right\}+\frac{1}{\sqrt{2}} \tan ^{-1} \infty \\
& \Rightarrow \frac{1}{\sqrt{2}}\left\{\frac{\pi}{2}-\frac{\pi}{4}\right\} \\
& \Rightarrow \frac{\pi}{4 \sqrt{2}}=\frac{\pi}{K} \\
&
\end{aligned}
\)
So \(K=4 \sqrt{2}\)
\(
K ^2=32
\)
\(\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\int_{x^3}^{(x / 2)^3}\left(\sin \left(2 t^{1 / 3}\right)+\cos \left(t^{1 / 3}\right)\right) d t}{\left(x-\frac{\pi}{2}\right)^2}\right)\) is equal to [2024 (09 Apr Shift 2)]
\(
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}} \frac{0-\{\sin (2 x)+\cos (x)\} \cdot 3 x^2}{2\left(x-\frac{\pi}{2}\right)} \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \frac{-\{2 \sin x \cos x+\cos x\} 3 x^2}{2\left(x-\frac{\pi}{2}\right)} \\
& =\lim _{x \rightarrow \frac{\pi}{2}}\left\{\frac{2 \sin x \sin \left(\frac{\pi}{2}-x\right)}{2\left(x-\frac{\pi}{2}\right)}+\frac{\sin \left(\frac{\pi}{2}-x\right)}{2\left(\frac{\pi}{2}-x\right)}\right\} 3 x^2 \\
& =\left(1(1)+\frac{1}{2}\right) 3\left(\frac{\pi}{2}\right)^2 \\
& =\frac{9 \pi^2}{8}
\end{aligned}
\)
If \(y=\frac{(\sqrt{x}+1)\left(x^2-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^2 x-5\right) \cos ^3 x\), then \(96 y^{\prime}\left(\frac{\pi}{6}\right)\) is equal to : [2024 (01 Feb Shift 2)]
\(
\begin{aligned}
& y=\frac{(\sqrt{x}+1)\left(x^2-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^2 x-5\right) \cos ^3 x \\
& y=\frac{(\sqrt{x}+1)(\sqrt{x})\left((\sqrt{x})^3-1\right)}{(\sqrt{x})\left((\sqrt{x})^2+(\sqrt{x})+1\right)}+\frac{1}{5} \cos ^5 x-\frac{1}{3} \cos ^3 x \\
& y=(\sqrt{x}+1)(\sqrt{x}-1)+\frac{1}{5} \cos ^5 x-\frac{1}{3} \cos ^3 x \\
& y^{\prime}=1-\cos ^4 x \cdot(\sin x)+\cos ^2 x(\sin x) \\
& y^{\prime}\left(\frac{\pi}{6}\right)=1-\frac{9}{16} \times \frac{1}{2}+\frac{3}{4} \times \frac{1}{2} \\
& =\frac{32-9+12}{32}=\frac{35}{32} \\
& =96 y^{\prime}\left(\frac{\pi}{6}\right)=105
\end{aligned}
\)
Let \(f(x)=x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in R\). Then \(f^{\prime}(10)\) is equal to ____. [2024 (27 Jan Shift 1)]
\(
\begin{aligned}
& f(x)=x^3+x^2 \cdot f^{\prime}(1)+x \cdot f^{\prime \prime}(2)+f^{\prime \prime \prime}(3) \\
& f^{\prime}(x)=3 x^2+2 x f^{\prime}(1)+f^{\prime \prime}(2) \\
& f^{\prime \prime}(x)=6 x+2 f^{\prime}(1) \\
& f^{\prime \prime \prime}(x)=6 \\
& f^{\prime}(1)=-5, f^{\prime \prime}(2)=2, f^{\prime \prime \prime}(3)=6 \\
& f(x)=x^3+x^2 \cdot(-5)+x \cdot(2)+6 \\
& f^{\prime}(x)=3 x^2-10 x+2 \\
& f^{\prime}(10)=300-100+2=202
\end{aligned}
\)
Suppose
\(
f(x)=\frac{\left(2^x+2^{-x}\right) \tan x \sqrt{\tan ^{-1}\left(x^2-x+1\right)}}{\left(7 x^2+3 x+1\right)^3}
\)
Then the value of \(f^{\prime}(0)\) is equal to [2024 (29 Jan Shift 1)]
\(
\begin{aligned}
& f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(2^h+2^{-h}\right) \tan h \sqrt{\tan ^{-1}\left(h^2-h+1\right)}-0}{\left(7 h^2+3 h+1\right)^3 h} \\
& =\sqrt{\pi}
\end{aligned}
\)
Let \(y=\log _e\left(\frac{1-x^2}{1+x^2}\right),-1<x<1\). Then at \(x=\frac{1}{2}\), the value of \(225\left(y^{\prime}-y^{\prime \prime}\right)\) is equal to [2024 (29 Jan Shift 2)]
\(
\begin{aligned}
& y=\log _e\left(\frac{1-x^2}{1+x^2}\right) \\
& \frac{d y}{d x}=y^{\prime}=\frac{-4 x}{1-x^4}
\end{aligned}
\)
Again,
\(
\frac{d^2 y}{d x^2}=y^{\prime \prime}=\frac{-4\left(1+3 x^4\right)}{\left(1-x^4\right)^2}
\)
Again
\(
\begin{aligned}
& y^{\prime}-y^{\prime \prime}=\frac{-4 x}{1-x^4}+\frac{4\left(1+3 x^4\right)}{\left(1-x^4\right)^2} \\
& \text { at } x =\frac{1}{2} \text {, } \\
& y^{\prime}-y^{\prime \prime}=\frac{736}{225}
\end{aligned}
\)
Thus \(225\left(y^{\prime}-y^{\prime \prime}\right)=225 \times \frac{736}{225}=736\)
Let \(f(x)=x^5+2 e ^{x / 4}\) for all \(x \in R\). Consider a function \(g(x)\) such that \((g \circ f)(x)=x\) for all \(x \in R\). Then the value of \(8 g^{\prime}(2)\) is : [2024 (04 Apr Shift 1)]
\(
\begin{aligned}
& f(x)=2 \\
& \text { when } x=0 \\
& \because g^{\prime}(f(x)) f^{\prime}(x)=1 \\
& g^{\prime}(2)=\frac{1}{f^{\prime}(0)} \\
& \because f^{\prime}(x)=5 x^4+\frac{2}{4} e^{x / 4} \\
& g^{\prime}(2)=2 \\
& 8 g^{\prime}(2)=16
\end{aligned}
\)
If \(y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2}\), then at \(\theta=\frac{\pi}{2}, y^{\prime \prime}+y^{\prime}+y\) is equal to : [2024 (05 Apr Shift 2)]
\(
\begin{aligned}
& y=\frac{2 \cos \theta+2 \cos ^2 \theta-1}{4 \cos ^3 \theta-3 \cos \theta+8 \cos ^2 \theta-4+5 \cos \theta+2} \\
& y=\frac{\left(2 \cos ^2 \theta+2 \cos \theta-1\right)}{\left(2 \cos ^2 \theta+2 \cos \theta-1\right)(2 \cos \theta+2)} \\
& y=\frac{1}{2}\left(\frac{1}{1+\cos \theta}\right) \\
& \Rightarrow \theta=\frac{\pi}{2} \quad y=\frac{1}{2} \\
& y^{\prime}=\frac{1}{2}\left(\frac{-1}{(1+\cos \theta)^2} \times(-\sin \theta)\right) \\
& \Rightarrow \theta=\frac{\pi}{2} \quad y=\frac{1}{2} \\
& y^{\prime \prime}=\frac{1}{2}\left[\frac{\cos \theta(1+\cos \theta)^2-\sin \theta(2)(1+\cos \theta)(-\sin \theta)}{(1+\cos \theta)^4}\right] \\
& \Rightarrow \theta=\frac{\pi}{2} \quad y=1 \\
&
\end{aligned}
\)
\(
y^{\prime \prime}+y^{\prime}+y=2
\)
If \(f(x)=\left\{\begin{array}{l}x^3 \sin \left(\frac{1}{x}\right), x \neq 0 \\ 0, x=0\end{array}\right.\) then [2024 (06 Apr Shift 1)]
\(
\begin{aligned}
& f^{\prime}(x)=3 x^2 \sin \left(\frac{1}{x}\right)-x \cos \left(\frac{1}{x}\right) \\
& f^{\prime \prime}(x)=6 x \sin \left(\frac{1}{x}\right)-3 \cos \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)-\frac{\sin \left(\frac{1}{x}\right)}{x} \\
& f^{\prime \prime}\left(\frac{2}{\pi}\right)=\frac{12}{\pi}-\frac{\pi}{2}=\frac{24-\pi^2}{2 \pi}
\end{aligned}
\)
Let \(f(x)=a x^3+b x^2+c x+41\) be such that \(f(1)=40, f^{\prime}(1)=2\) and \(f^{{\prime}{\prime}}(1)=4\). Then \(a ^2+ b ^2+ c ^2\) is equal to: [2024 (09 Apr Shift 1)]
\(
\begin{aligned}
& f(x)=a x^3+b x^2+c x+41 \\
& f^{\prime}(x)=3 a x^2+2 b x+c x \\
& \Rightarrow f^{\prime}(1)=3 a+2 b+c=2 \ldots(1) \\
& f ^{\prime \prime}( x )=6 ax +2 b \\
& \Rightarrow f ^{\prime \prime}(1)=6 a +2 b =4 \\
& 3 a + b =2 \ldots \ldots \ldots .(2)
\end{aligned}
\)
\(
\begin{aligned}
& \text { Eq(1) }-Eq(2) \\
& b+c=0 \ldots(3) \\
& f (1)=40 \\
& a + b + c +41=40 \\
& \text { use (3) } \\
& a+41=40 \\
& \text { by (2) } \\
& -3+b=2 \Rightarrow b=5 \& c=-5 \\
& a^2+b^2+c^2=1+25+25=51 \\
&
\end{aligned}
\)
If \(\log _e y=3 \sin ^{-1} x\), then \(\left(1-x^2\right) y^{\prime \prime}-x y^{\prime}\) at \(x=\frac{1}{2}\) is equal to [2024 (09 Apr Shift 2)]
\(
\begin{aligned}
& \ln (y)=3 \sin ^{-1} x \\
& \frac{1}{y} \cdot y^{\prime}=3\left(\frac{1}{\sqrt{1-x^2}}\right) \\
& \Rightarrow y^{\prime}=\frac{3 y}{\sqrt{1-x^2}} \text { at } x=\frac{1}{2} \\
& \Rightarrow y^{\prime}=\frac{3 e^{3\left(\frac{\pi}{6}\right)}}{\frac{\sqrt{3}}{2}}=2 \sqrt{3} e^{\frac{\pi}{2}} \\
& \Rightarrow y^{\prime \prime}=3\left(\frac{\sqrt{1-x^2} y^{\prime}-y \frac{1}{2 \sqrt{1-x^2}}(-2 x)}{\left(1-x^2\right)}\right) \\
& \Rightarrow\left(1-x^2\right) y^{\prime \prime}=3\left(3 y+\frac{x y}{\sqrt{1-x^2}}\right) \\
& \downarrow \text { at } x=\frac{1}{2}, y=e^{3 \sin ^{-1}\left(\frac{1}{2}\right)}= e ^{3\left(\frac{\pi}{6}\right)}= e ^{\frac{\pi}{2}}
\end{aligned}
\)
\(
\begin{aligned}
& \left.\left(1-x^2\right) y^{\prime \prime}\right|_{\text {at } x=\frac{1}{2}}=3\left(3 e ^{\frac{\pi}{2}}+\frac{\frac{1}{2}\left(e^{\frac{\pi}{2}}\right)}{\frac{\sqrt{3}}{2}}\right) \\
& =3 e ^{\frac{\pi}{2}}\left(3+\frac{1}{\sqrt{3}}\right) \\
& \left(1-x^2\right) y^{\prime \prime}-\left.x y^{\prime}\right|_{\text {at} x=\frac{1}{2}} \\
& =3 e ^{\frac{\pi}{2}}\left(3+\frac{1}{\sqrt{3}}\right)-\frac{1}{2}\left(2 \sqrt{3} e ^{\frac{\pi}{2}}\right)=9 e ^{\frac{\pi}{2}}
\end{aligned}
\)
\(\lim _{t \rightarrow 0}\left(1^{\frac{1}{\sin ^2 t}}+2^{\frac{1}{\sin ^2 t}}+\ldots .+n^{\frac{1}{\sin ^2 t}}\right)^{\sin ^2 t} \text { is equal to }\) [24 January 2023- Shift 1]
\(
\lim _{t \rightarrow 0}\left(1^{\operatorname{cosec}^2 t}+2^{\operatorname{cosec}^2 t}+\ldots \ldots . .+n^{\operatorname{cosec}^2 t}\right)^{\sin ^2 t}
\)
\(
\begin{aligned}
& =\lim _{t \rightarrow 0} n\left(\left(\frac{1}{n}\right)^{\operatorname{cosec}^2 t}+\left(\frac{2}{n}\right)^{\operatorname{cosecs}^2 t}+\ldots \ldots \ldots+1\right)^{\sin ^2 t} \\
& =n
\end{aligned}
\)
Let \(x=2\) be a root of the equation \(x^2+p x+q=0\) and \(f(x)=\) \(\left\{\begin{array}{ll}\frac{1-\cos \left(x^2-4 p x+q^2+8 q+16\right)}{(x-2 p)^4}, & x \neq 2 p \\ 0, & , x=2 p\end{array}\right.\) Then \(\lim _{x \rightarrow 2 p^{+}}[f(x)]\), where [.] denotes greatest integer function, is [29 January 2023 – Shift 1]
(c)
\(
\begin{aligned}
&\begin{aligned}
& \lim _{x \rightarrow p^{+}}\left(\frac{1-\cos \left(x^2-4 p x+q^2+8 q+16\right)}{\left(x^2-4 p x+q^2+8 q+16\right)^2}\right)\left(\frac{\left(x^2-4 p x+q^2+8 q+16\right)^2}{(x-2 p)^2}\right) \\
& \lim _{h \rightarrow 0} \frac{1}{2}\left(\frac{(2 p+h)^2-4 p(2 p+h)+q^2+82+16}{h^2}\right)^2=\frac{1}{2}
\end{aligned}\\
&\text { Using L’Hospital’s }\\
&\lim _{x \rightarrow 2 p^{+}}[f(x)]=0
\end{aligned}
\)
The set of all values of \(a\) for which \(\operatorname{Lim}_{x \rightarrow a}([x-5]-[2 x+2])=0\), where \([\propto]\) denotes the greater integer less than or equal to \(\propto\) is equal to [24 January 2023- Shift 2]
\(
\begin{aligned}
& \lim _{x \rightarrow a}([x-5]-[2 x+2])=0 \\
& \lim _{x \rightarrow a}([x]-5-[2 x]-2)=0 \\
& \lim _{x \rightarrow a}([x]-[2 x])=7
\end{aligned}
\)
\(
\begin{aligned}
& {[a]-[2 a]=7} \\
& a \in I, \quad a=-7 \\
& a \notin I, \quad a=I+f \\
& \text { Now, }[a]-[2 a]=7 \\
& \quad-I-[2 f]=7
\end{aligned}
\)
\(
\begin{aligned}
& \text { Case-I: } f \in\left(0, \frac{1}{2}\right) \\
& \text { 2f } \in(0,1) \\
& – I =7 \\
& I =-7 \Rightarrow a \in(-7,-6.5)
\end{aligned}
\)
Case-II: \(f \in\left(\frac{1}{2}, 1\right)\)
\(
\begin{aligned}
& \text { 2f } \in(1,2) \\
& -I-I=7 \\
& I=-8 \Rightarrow a \in(-7.5,-7)
\end{aligned}
\)
Hence, \(a \in(-7.5,-6.5)\)
Let \(f , g\) and \(h\) be the real valued functions defined on \(R\) as \(f(x)=\left\{\begin{array}{cc}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}\right.\)
\(
g(x)=\left\{\begin{array}{cc}
\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\
1, & x=-1
\end{array} \text { and } h(x)=2[x]-f(x)\right.
\)
where \([x]\) is the greatest integer \(\leq x\). Then the value of \(\lim _{x \rightarrow 1} g(h(x-1))\) is [30 January 2023 – Shift 2]
\(
\begin{aligned}
& LHL =\lim _{ k \rightarrow 0} g ( h (- k )) \quad, k >0 \\
& =\lim _{ k \rightarrow 0} g (-2+1) \text { mathon } \because f ( x )=-1 \forall x <0 \\
& = g (-1)=1 \\
& RHL =\lim _{ k \rightarrow 0} g ( h ( k )) \quad, k >0 \\
& =\lim _{ k \rightarrow 0} g (-1) \quad, \because f ( x )=1, \forall x >0 \\
& =1
\end{aligned}
\)
Hence \(y \in\left(-\infty, \frac{-21}{4}\right] \cup[0, \infty)\)
\(
\lim _{x \rightarrow \infty} \frac{(\sqrt{3 x+1}+\sqrt{3 x-1})^6+(\sqrt{3 x+1}-\sqrt{3 x-1})^6}{\left(x+\sqrt{x^2-1}\right)^6+\left(x-\sqrt{x^2-1}\right)^6} x^3
\) [31 January 2023 – Shift 2]
\(
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{(\sqrt{3 x+1}+\sqrt{3 x-1})^6+(\sqrt{3 x+1}-\sqrt{3 x-1})^6}{\left(x+\sqrt{x^2-1}\right)^6+\left(x-\sqrt{x^2-1}\right)^6} x^3 \\
& \lim _{x \rightarrow \infty} x^3 \times\left\{\frac{x^3\left\{\left(\sqrt{3+\frac{1}{x}}+\sqrt{3-\frac{1}{x}}\right)^6+\left(\sqrt{3+\frac{1}{x}}-\sqrt{3-\frac{1}{x}}\right)^6\right\}}{x^6\left\{\left(1+\sqrt{1-\frac{1}{x^2}}\right)^6+\left(1-\sqrt{1-\frac{1}{x^2}}\right)^6\right\}}\right\} \\
& =\frac{(2 \sqrt{3})^6+0}{2^6+0}=3^3=(27)
\end{aligned}
\)
\(\lim _{n \rightarrow \infty}\left\{\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \ldots\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)\right\}\) is equal to [2023 (06 Apr Shift 2)]
Let,
\(
L=\lim _{n \rightarrow \infty}\left\{\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \ldots\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)\right\}
\)
Now,
\(
\begin{gathered}
2^{\frac{1}{2}}-2^{\frac{1}{3}}<1 \\
2^{\frac{1}{2}}-2^{\frac{1}{5}}<1
\end{gathered}
\)
\(
2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}<1 \quad \forall n \in N
\)
And \(\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)^n<\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \ldots\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)<\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)^n\)
\(
\begin{aligned}
& \Rightarrow \lim _{n \rightarrow \infty}\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)^n<\lim _{n \rightarrow \infty}\left\{\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \ldots\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)\right\}<\lim _{n \rightarrow \infty}\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)^n \\
& \Rightarrow \lim _{n \rightarrow \infty}\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)^n<L<\lim _{n \rightarrow \infty}\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)^n
\end{aligned}
\)
And \(\lim _{n \rightarrow \infty}\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)^n=0 \& \lim _{n \rightarrow \infty}\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)^n=0\)
\(
\left\{\text { as } 2^{\frac{1}{2}}-2^{\frac{1}{3}}<1 \& 2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}<1\right\}
\)
Hence, \(\lim _{n \rightarrow \infty}\left\{\left(2^{\frac{1}{2}}-2^{\frac{1}{3}}\right)\left(2^{\frac{1}{2}}-2^{\frac{1}{5}}\right) \ldots\left(2^{\frac{1}{2}}-2^{\frac{1}{2 n+1}}\right)\right\}=0\)
\(\lim _{x \rightarrow 0}\left(\left(\frac{1-\cos ^2(3 x)}{\cos ^3(4 x)}\right)\left(\frac{\sin ^3(4 x)}{\left(\log _e(2 x+1)\right)^5}\right)\right)\) is equal to [2023 (08 Apr Shift 1)]
Given,
\(
\lim _{x \rightarrow 0}\left(\left(\frac{1-\cos ^2(3 x)}{\cos ^3(4 x)}\right)\left(\frac{\sin ^3(4 x)}{\left(\log _e(2 x+1)\right)^5}\right)\right)
\)
Now we now that,
\(
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \lim _{x \rightarrow 0} \frac{1-\cos x}{x^2}=\frac{1}{2} \& \lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1
\)
Now using the above formula we get,
\(
\begin{aligned}
& \lim _{x \rightarrow 0}\left(\left(\frac{1-\cos ^2 3 x}{\cos ^3 4 x}\right)\left(\frac{\sin ^3 4 x}{\left(\log _e(2 x+1)\right)^5}\right)\right) \\
& =\lim _{x \rightarrow 0} \frac{(1-\cos 3 x)(1+\cos 3 x) 9 x^2}{\left(\cos ^3 4 x\right) 9 x^2} \frac{(\sin 4 x)^3(64 x)^3(2 x)^5}{\left(64 x^3\right)\left(\log _e(2 x+1)\right)^5(2 x)^5} \\
& =\lim _{x \rightarrow 0} \frac{\left(\frac{1-\cos 3 x}{9 x^2}\right)(1+\cos 3 x)}{\left(\cos ^3 4 x\right)} \frac{\left(\frac{\sin 4 x}{4 x}\right)^3}{\left(\frac{\log _e(2 x+1)}{2 x}\right)^5} \times \frac{9 \times 64}{32} \\
& =\frac{\left(\frac{1}{2}\right) \times(2)}{(1)} \frac{(1)^3}{(1)^5} \times \frac{9 \times 64}{32} \\
& =\frac{9 \times 2}{1}=18
\end{aligned}
\)
If \(\alpha>\beta>0\) are the roots of the equation \(a x^2+b x+1=0\), and \(\lim _{x \rightarrow \frac{1}{\alpha}}\left(\frac{1-\cos \left(x^2+b x+a\right)}{2(1-\alpha x)^2}\right)^{\frac{1}{2}}=\frac{1}{k}\left(\frac{1}{\beta}-\frac{1}{\alpha}\right)\), then \(k\) is equal to [2023 (08 Apr Shift 2)]
Since, \(\alpha\) and \(\beta\) are the roots of the equation \(a x^2+b x+1=0\), therefore \(\frac{1}{\alpha}\) and \(\frac{1}{\beta}\) would be the roots of \(x^2+b x+a=0\).
Let
\(
\begin{aligned}
& L=\lim _{x \rightarrow \frac{1}{\alpha}}\left[\frac{1-\cos \left(x^2+b x+a\right)}{2(1-\alpha x)^2}\right]^{\frac{1}{2}} \rightarrow \frac{0}{0} \\
& \Rightarrow L=\lim _{x \rightarrow \frac{1}{\alpha}}\left[\frac{2 \sin ^2\left(\frac{x^2+b x+\alpha}{2}\right)}{2(1-\alpha x)^2}\right]^{\frac{1}{2}} \\
& \Rightarrow L=\lim _{x \rightarrow \frac{1}{\alpha}}\left[\frac{\sin ^2\left(\frac{1}{2}\left(x-\frac{1}{\alpha}\right)\left(x-\frac{1}{\beta}\right)\right)}{\alpha^2\left(x-\frac{1}{\alpha}\right)^2}\right]^{\frac{1}{2}} \\
& \Rightarrow L=\lim _{x \rightarrow \frac{1}{\alpha}}\left[\frac{\left(x-\frac{1}{\beta}\right)^2}{4 \alpha^2} \times \frac{\left\{\sin \left(\frac{1}{2}\left(x-\frac{1}{\alpha}\right)\left(x-\frac{1}{\beta}\right)\right)\right\}^2}{\left(\frac{1}{2}\right)^2\left(x-\frac{1}{\alpha}\right)^2\left(x-\frac{1}{\beta}\right)^2}\right]^{\frac{1}{2}} \\
& \Rightarrow L=\frac{\left(\frac{1}{\alpha}-\frac{1}{\beta}\right)}{2 \alpha}
\end{aligned}
\)
On comparing this value with the value given in the question we get, \(k=2 \alpha\).
Among
\((S1): \lim _{n \rightarrow \infty} \frac{1}{n^2}(2+4+6+\ldots+2 n)=1\)
\((S 2): \lim _{n \rightarrow \infty} \frac{1}{n^{16}}\left(1^{15}+2^{15}+3^{15}+\ldots+n^{15}\right)=\frac{1}{16}\) [2023 (13 Apr Shift 1)]
\(
\begin{aligned}
& S_1: \lim _{n \rightarrow \infty} \frac{1}{n^2}[2+4+6+\ldots+2 n] \\
& \lim _{n \rightarrow \infty} 2 \frac{n(n+1)}{2 n^2}=1 \\
& S_2: \lim _{n \rightarrow \infty} \frac{1}{n^{16}}\left(1^{15}+2^{15}+3^{15}+\ldots+n^{15}\right)
\end{aligned}
\)
This is limit of sum.
We know that \(\lim _{n \rightarrow \infty} \sum_{r=1}^n f\left(\frac{r}{n}\right) \frac{1}{n}=\int_0^1 f(x) d x\)
\(
\begin{aligned}
& \because \lim _{n \rightarrow \infty} \frac{\sum_{r=1}^n r^k}{n^{k+1}}=\lim _{n \rightarrow \infty} \frac{\sum_{r=1}^n\left(\frac{r}{n}\right)^k}{n} \\
& =\int_0^1 x^k d x=\frac{1}{k+1}
\end{aligned}
\)
Here \(k=15\)
\(
\therefore \lim _{n \rightarrow \infty} \frac{\sum_{r=1}^n r^{15}}{n^{16}}=\frac{1}{16}
\)
\(\therefore\) Both \(S 1\) and \(S 2\) are correct
If \(\lim _{x \rightarrow 0} \frac{e^{a x}-\cos (b x)-\frac{c x e^{-c x}}{2}}{1-\cos (2 x)}=17\), then \(5 a^2+b^2\) is equal to [2023 (13 Apr Shift 2)]
Given that
\(
\Rightarrow \lim _{x \rightarrow 0} \frac{e^{a x}-\cos (b x)-\frac{c x}{2} e^{-c x}}{1-\cos 2 x}=17
\)
We know that \(e^{a x}=1+a x+\frac{(a x)^2}{2!}+\ldots\) and \(\cos (b x)=1-\frac{(b x)^2}{2!}+\ldots\)
\(
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0} \frac{\left(1+a x+\frac{(a x)^2}{2!}+\ldots\right)-\left(1-\frac{(b x)^2}{2!}+\ldots\right)-\frac{c x}{2}\left(1-(c x)+\frac{(c x)^2}{2!}-\ldots\right)}{\left(\frac{1-\cos 2 x}{(2 x)^2}\right) \times 4 x^2}=17 \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{\left(a-\frac{c}{2}\right) x+\left(\frac{a^2+b^2+c^2}{2}\right) x^2+\ldots}{\frac{1}{2} \times 4 x^2}=17
\end{aligned}
\)
Now for limit to exist, \(a-\frac{c}{2}=0 \Rightarrow c=2 a\)
\(
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0} \frac{\left(\frac{a^2+b^2+c^2}{2}\right) x^2+\ldots}{\frac{1}{2} \times 4 x^2}=17 \\
& \Rightarrow \frac{a^2+b^2+c^2}{4}=17 \\
& \Rightarrow a^2+b^2+4 a^2=68 \\
& \Rightarrow 5 a^2+b^2=68
\end{aligned}
\)
If \(f(x)=x^3-x^2 f^{\prime}(1)+x f^{\prime \prime}(2)-f^{\prime \prime \prime}(3), x \in R\), then [24 January 2023- Shift 2]
\(
\begin{aligned}
& f(x)=x^3-x^2 f^{\prime}(1)+x f^{\prime \prime}(2)-f^{\prime \prime \prime}(3), x \in R \\
& \text { Let } f^{\prime}(1)=a, f^{\prime \prime}(2)=b, f^{\prime \prime \prime}(3)=c \\
& f( x )=x^3- a x^2 + b x- c \\
& f^{\prime}(x)=3 x^2-2 a x+b
\end{aligned}
\)
\(
\begin{aligned}
& f ^{\prime \prime}( x )=6 x -2 a \\
& f ^{\prime \prime \prime}( x )=6 \\
& c =6, a =3, b =6 \\
& f ( x )= x ^3-3 x ^2+6 x -6 \\
& f (1)=-2, f (2)=2, f (3)=12, f (0)=-6 \\
& 2 f (0)- f (1)+ f (3)=2= f (2)
\end{aligned}
\)
Let
\(
y ( x )=(1+ x )\left(1+ x ^2\right)\left(1+ x ^4\right)\left(1+ x ^8\right)\left(1+ x ^{16}\right)
\)
Then \(y^{\prime}-y^{\prime \prime}\) at \(x=-1\) is equal to [25 January 2023- Shift 1]
\(
\begin{aligned}
& y=\frac{1-x^{32}}{1-x} \Rightarrow y-x y=1-x^{32} \\
& y^{\prime}-x y^{\prime}-y=-32 x^{31} \\
& y^{\prime \prime}-x y^{\prime \prime}-y^{\prime}-y^{\prime}=-(32)(31) x^{30} \\
& \text { at } x=-1 \Rightarrow y^{\prime}-y^{\prime \prime}=496
\end{aligned}
\)
Let
\(
y=f(x)=\sin ^3\left(\frac{\pi}{3}\left(\cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^3+5 x^2+1\right)^{\frac{3}{2}}\right)\right)\right)
\)
. Then, at \(x =1\), [31 January 2023 – Shift 1]
\(
\begin{aligned}
& y=\sin ^3(\pi / 3 \cos g(x)) \\
& g(x)=\frac{\pi}{3 \sqrt{2}}\left(-4 x^3+5 x^2+1\right)^{3 / 2} \\
& g(1)=2 \pi / 3
\end{aligned}
\)
\(
\begin{aligned}
& y^{\prime}=3 \sin ^2\left(\frac{\pi}{3} \cos g(x)\right) \times \cos \left(\frac{\pi}{3} \cos g(x)\right) \\
& \times \frac{\pi}{3}(-\sin g(x)) g^{\prime}(x)
\end{aligned}
\)
\(
\begin{aligned}
& y^{\prime}(1)=3 \sin ^2\left(-\frac{\pi}{6}\right) \cdot \cos \left(\frac{\pi}{6}\right) \cdot \frac{\pi}{3}\left(-\sin \frac{2 \pi}{3}\right) g^{\prime}(1) \\
& g^{\prime}(x)=\frac{\pi}{3 \sqrt{2}}\left(-4 x^3+5 x^2+1\right)^{1 / 2}\left(-12 x^2+10 x\right)
\end{aligned}
\)
\(
g^{\prime}(1)=\frac{\pi}{2 \sqrt{2}}(\sqrt{2})(-2)=-\pi
\)
\(
y^{\prime}(1)=\frac{3}{4} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\pi}{3}\left(\frac{-\sqrt{3}}{2}\right)(-\pi)=\frac{3 \pi^2}{16}
\)
\(
\begin{aligned}
& y(1)=\sin ^3(\pi / 3 \cos 2 \pi / 3)=-\frac{1}{8} \\
& 2 y^{\prime}(1)+3 \pi^2 y(1)=0
\end{aligned}
\)
If \(y(x)=x^x, x>0\), then \(y^{\prime \prime}(2)-2 y^{\prime}(2)\) is equal to [01 February 2023 – Shift 2]
\(
\begin{aligned}
& y ^{\prime}= x ^{ x } \\
& y ^{\prime}= x ^{ x }(1+\ell nx )
\end{aligned}
\)
\(
y ^{\prime \prime}= x ^{ x }(1+\ell n x )^2+ x ^{ x } \cdot \frac{1}{ x }
\)
\(
y^{\prime \prime}(2)=4(1+\ell n 2)^2+2
\)
\(
y^{\prime}(2)=4(1+\ell n 2)
\)
\(
y^{\prime \prime}(2)-2 y^{\prime}(2)=4(1+\ell n 2)^2+2-8(1+\ell n 2)
\)
\(
=4(1+\ell n 2)[1+\ell n 2-2]+2
\)
\(
\begin{aligned}
& \left.=4((\ell n 2)^2-1\right)+2 \\
& =4(\ell n 2)^2-2
\end{aligned}
\)
If \(2 x^y+3 y^x=20\), then \(\frac{d y}{d x}\) at \((2,2)\) is equal to: [2023 (06 Apr Shift 1)]
Given,
\(
2 x^y+3 y^x=20
\)
Now differentiating both sides w.r.t \(x\), we get
\(
2 x^y\left(y^{\prime} \ln x+\frac{y}{x}\right)+3 y^x\left(\ln y+\frac{x}{y} \cdot y^{\prime}\right)=0\left\{\text { here } \ln =\log _e\right\}
\)
Putting \(x=2 \& y=2\), we get
\(
\begin{aligned}
& \Rightarrow 8\left(\ln 2 \cdot y^{\prime}+1\right)+12\left(\ln y+y^{\prime}\right)=0 \\
& \Rightarrow 8\left(\ln 2 \cdot y^{\prime}+1\right)+12\left(\ln y+y^{\prime}\right)=0 \\
& \Rightarrow y^{\prime}=-\left(\frac{3 \ln 2+2}{2 \ln 2+3}\right) \\
& \Rightarrow y^{\prime}=-\left(\frac{2+\ln 8}{3+\ln 4}\right)
\end{aligned}
\)
Let \(f(x)=\frac{\sin x+\cos -\sqrt{2}}{\sin x-\cos x}, x \in[0, \pi]-\left\{\frac{\pi}{4}\right\}\), then \(f\left(\frac{7 \pi}{12}\right) f^{\prime \prime}\left(\frac{7 \pi}{12}\right)\) is equal to [2023 (08 Apr Shift 1)]
Give that:
\(
f(x)=\frac{\sin x+\cos x-\sqrt{2}}{\sin x-\cos x}
\)
Convert the numerator and denominator in the form of \(\sin (A \pm B)\).
\(
\begin{aligned}
& \Rightarrow f(x)=\frac{\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)-\sqrt{2}}{\sqrt{2}\left(\sin \left(x-\frac{\pi}{4}\right)\right)} \\
& \Rightarrow f(x)=\frac{\sin \left(x+\frac{\pi}{4}\right)-1}{\sin \left(x-\frac{\pi}{4}\right)} \\
& \Rightarrow f\left(x+\frac{\pi}{4}\right)=\frac{\cos x-1}{\sin x} \\
& \Rightarrow f\left(x+\frac{\pi}{4}\right)=-\tan \frac{x}{2} \\
& \Rightarrow f(x)=-\tan \left(\frac{x}{2}-\frac{\pi}{8}\right) \\
& \Rightarrow f^{\prime}(x)=\frac{-1}{2} \sec ^2\left(\frac{x}{2}-\frac{\pi}{8}\right) \\
& \Rightarrow f^{\prime \prime}(x)=-\frac{1}{2}\left(\sec ^2\left(\frac{x}{2}-\frac{x}{8}\right) \tan \left(\frac{x}{2}-\frac{\pi}{8}\right)\right) \\
& \Rightarrow f\left(\frac{7 \pi}{12}\right)=-\tan \left(\frac{7 \pi}{24}-\frac{\pi}{8}\right)=-\tan \left(\frac{4 \pi}{24}\right) \\
& \Rightarrow-\tan \left(\frac{\pi}{6}\right)=-\frac{1}{\sqrt{3}}
\end{aligned}
\)
Also,
\(
\begin{aligned}
& \Rightarrow f^{\prime \prime}\left(\frac{7 \pi}{12}\right)=-\frac{1}{2} \times\left(\frac{2}{\sqrt{3}}\right)^2 \times \frac{1}{\sqrt{3}}=-\frac{2}{3 \sqrt{3}} \\
& \Rightarrow f\left(\frac{7 \pi}{12}\right) f^{\prime \prime}\left(\frac{7 \pi}{12}\right)=\frac{2}{9}
\end{aligned}
\)
\(
\lim _{x \rightarrow \frac{\pi}{2}}\left(\tan ^2 x\left(\left(2 \sin ^2 x+3 \sin x+4\right)^{\frac{1}{2}}-\left(\sin ^2 x+6 \sin x+2\right)^{\frac{1}{2}}\right)\right)
\)
is equal to [25 June 2022- Shift 2]
\(
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}} \tan ^2 x\left[\sqrt{2 \sin ^2 x+3 \sin x+4}-\sqrt{\sin ^2 x+6 \sin x+2}\right] \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan ^2 x\left[\sin ^2 x-3 \sin x+2\right]}{\sqrt{9}+\sqrt{9}} \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan ^2 x(\sin x-1)(\sin x-2)}{6} \\
& =\frac{1}{6} \lim _{x \rightarrow \frac{\pi}{2}} \tan ^2 x(1-\sin x) \\
& =\frac{1}{6} \lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin ^2 x(1-\sin x)}{(1-\sin x)(1+\sin x)}=\frac{1}{12} \\
&
\end{aligned}
\)
\(\lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sin \left(\cos ^{-1} x\right)-x}{1-\tan \left(\cos ^{-1} x\right)}\) is equal to : [26 June 2022- Shift 1]
\(
\begin{aligned}
& \lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sin \left(\cos ^{-1} x\right)-x}{1-\tan \left(\cos ^{-1} x\right)} \\
& \lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sin \left(\sin ^{-1} \sqrt{1-x^2}\right)-x}{1-\tan \left(\tan ^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)\right)} \\
& \lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sqrt{1-x^2}-x}{1-\left(\frac{\sqrt{1-x^2}}{x}\right)} \\
& \lim _{x \rightarrow \frac{1}{\sqrt{2}}}(-x)=-\frac{1}{\sqrt{2}}
\end{aligned}
\)
\(\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^4}\) is equal to : [26 June 2022 – Shift 2]
\(
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^4} ;\left(\frac{0}{0}\right) \\
=\lim _{x \rightarrow 0}\left(\frac{2 \cdot \sin \left(\frac{x+\sin x}{2}\right) \cdot \sin \left(\frac{x-\sin x}{2}\right)}{x^4}\right) \\
=\lim _{x \rightarrow 0} 2\left(\frac{\sin \left(\frac{x+\sin x}{2}\right)}{\left(\frac{x+\sin x}{2}\right)}\right)\left(\frac{\sin \left(\frac{x-\sin x}{2}\right)}{\left(\frac{x-\sin x}{2}\right)}\right) \frac{\left(\frac{x+\sin x}{2}\right)}{x^4}\left(\frac{x-\sin x}{2}\right)
\end{gathered}
\)
\(
\lim _{x \rightarrow 0}\left(\frac{x^2-\sin ^2 x}{2 x^4}\right):\left(\frac{0}{0}\right)
\)
Apply L-Hopital Rule :
\(
\lim _{x \rightarrow 0} \frac{2 x-2 \sin x \cos x}{2.4 . x^3}
\)
\(\lim _{x \rightarrow 0} \frac{2 x-\sin 2 x}{8 x^3} ; \frac{0}{0}:\) Again apply L-Hopital rule
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{2-2 \cos (2 x)}{8(3) x^2} \\
& \lim _{x \rightarrow 0} \frac{2(1-\cos (2 x))}{24\left(4 x^2\right)} \times 4 = \frac{2}{24} \times \frac{1}{2} \times 4 = \frac{1}{6}
\end{aligned}
\)
Let a be an integer such that \(\lim _{x \rightarrow 7} \frac{18-[1-x]}{[x-3 a]}\) exists, where \([ t ]\) is greatest integer \(\leq t\). Then a is equal to : [27 June 2022- Shift 1]
\(
\lim _{x \rightarrow 7} \frac{18-[1-x]}{[x]-3 a}
\)
L.H.L. \(\lim _{x \rightarrow 7_{-}} \frac{18-[1-x]}{[x]-3 a}\)
\(
\begin{aligned}
& =\frac{18-(-6)}{6-3 a} \\
& =\frac{24}{6-3 a}
\end{aligned}
\)
R.H.L. \(\lim _{x \rightarrow 7+} \frac{18-[1-x]}{[x]-3 a}\)
\(
\begin{aligned}
& =\frac{18-(-7)}{7-3 a} \\
& =\frac{25}{7-3 a}
\end{aligned}
\)
Now L.H.L. = R.H.L.
\(
\begin{aligned}
& \frac{24}{6-3 a}=\frac{25}{7-3 a} \\
& \Rightarrow 168-72 a=150-75 a \\
& \Rightarrow 18=-3 a \\
& \Rightarrow a =-6
\end{aligned}
\)
Let \([ t ]\) denote the greatest integer \(\leq t\) and \(\{ t \}\) denote the fractional part of \(t\). Then integral value of \(\alpha\) for which the left hand limit of the function \(f ( x )=[1+ x ]+\frac{\alpha^{2[x]+(x)}+[ x ]-1}{2[ x ]+\{ x \}}\) at \(x =0\) is equal to \(\alpha-\frac{4}{3}\) is ____. [27 June 2022- Shift 2]
\(
\begin{aligned}
& f(x)=[1+x]+\frac{\alpha^{2[x]+\{x\}}+[x]-1}{2[x]+\{x\}} \\
& \lim _{x \rightarrow 0^{-}} f(x)=\alpha-\frac{4}{3} \Rightarrow 0+\frac{\alpha^{-1}-2}{-1}=\alpha-\frac{4}{3} \\
& \Rightarrow 2-\frac{1}{\alpha}=\alpha-\frac{4}{3} \\
& \Rightarrow \alpha+\frac{1}{\alpha}=\frac{10}{3} \\
& \Rightarrow \alpha=3 ; \alpha \in I
\end{aligned}
\)
The value of \(\lim _{n \rightarrow \infty} 6 \tan \left\{\sum_{r=1}^n \tan ^{-1}\left(\frac{1}{r^2+3 r+3}\right)\right\}\) is equal to [28 June 2022- Shift 2]
\(
\begin{aligned}
& T _{ r }=\tan ^{-1}\left[\frac{( r +2)-( r +1)}{1+( r +2)( r +1)}\right] \\
& =\tan ^{-1}( r +2)-\tan ^{-1}( r +1) \\
& T _1=\tan ^{-1} 3-\tan ^{-1} 2 \\
& T _2=\tan ^{-1} 4-\tan ^{-1} 3 \\
& T _{ n }=\tan ^{-1}( n +2)-\tan ^{-1}( n +1)
\end{aligned}
\)
\(S _{ n }=\tan ^{-1}( n +2)-\tan ^{-1} 2=\tan ^{-1}\left(\frac{n+2-2}{1+2(n+2)}\right)\)
\(=\tan ^{-1}\left(\frac{n}{2 n+5}\right)\)
\(
\begin{aligned}
& \lim _{n \rightarrow \infty} 6 \tan \left(\tan ^{-1}\left(\frac{n}{2 n+5}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{6 n}{2 n+5}=\frac{6}{2}=3
\end{aligned}
\)
If \(\lim _{x \rightarrow 1} \frac{\sin \left(3 x^2-4 x+1\right)-x^2+1}{2 x^3-7 x^2+a x+b}=-2\), then the value of \((a-b)\) is equal to [28 June 2022- Shift 2]
\(
\lim _{x \rightarrow 1} \frac{\sin \left(3 x^2-4 x+1\right)-x^2+1}{2 x^3-7 x^2+a x+b}=-2
\)
For finite limit
\(
a+b-5=0 \dots(1)
\)
Apply L’H rule
\(
\lim _{x \rightarrow 1} \frac{\cos \left(3 x^2-4 x+1\right)(6 x-4)-2 x}{\left(6 x^2-14 x+a\right)}=-2
\)
For finite limit
\(
\begin{aligned}
& 6-14+a=0 \\
& a=8
\end{aligned}
\)
From (1) \(b=-3\)
Now \((a-b)=11\)
The value of \(\lim _{x \rightarrow 1} \frac{\left(x^2-1\right) \sin ^2(\pi x)}{x^4-2 x^3+2 x-1}\) is equal to: [29 June 2022- Shift 2]
\(
\lim _{x \rightarrow 1} \frac{\left(x^2-1\right) \sin ^2 \pi x}{\left(x^2-1\right)(x-1)^2}=\lim _{x \rightarrow 1}\left(\frac{\sin ((1-x) \pi))}{\pi(1-x)}\right)^2 \pi^2=\pi^2
\)
If \(\lim _{ n \rightarrow \infty}\left(\sqrt{ n ^2- n -1}+ n \alpha+\beta\right)=0\) then \(8(\alpha+\beta)\) is equal to : [25 July 2022- Shift 1]
\(
\begin{aligned}
& \lim _{n \rightarrow \infty} n\left(1-\frac{n+1}{n^2}\right)^{\frac{1}{2}}+\alpha n+\beta=0 \\
& \lim _{n \rightarrow \infty}\left\{\left\{1-\frac{1}{2}\left(\frac{n+1}{n^2}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{n+1}{n^2}\right)^2+\ldots . .\right\}+\alpha n+\beta=0\right. \\
& \lim _{n \rightarrow \infty} n-\frac{1}{2}+\frac{1}{n}+\ldots+n \alpha+\beta=0 \\
& \alpha=-1, \beta=\frac{1}{2} \\
& 8(\alpha+\beta)=-4
\end{aligned}
\)
If \(\lim _{n \rightarrow \infty} \frac{(n+1)^{k-1}}{n^{k+1}}[(n k+1)+(n k+2)+\ldots+\)
\(
(n k+n)]=33 . \lim _{n \rightarrow \infty} \frac{1}{n^{k+1}} \cdot\left[1^k+2^k+3^k+\ldots+n^k\right] \text {, }
\)
then the integral value of \(k\) is equal to ____. [2022 25 July – Shift 1]
\(
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(n+1)^{k-1}}{n^{k+1}}[n k \cdot n+1+2+\ldots+n] \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{k-1}}{n^{k+1}} \cdot\left[n^2 k+\frac{n(n+1)}{2}\right] \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{k-1} \cdot n^2\left(k+\frac{\left(1+\frac{1}{n}\right)}{2}\right)}{n^{k+1}}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \lim _{ n \rightarrow \infty}\left(1+\frac{1}{ n }\right)\left(k+\frac{\left(1+\frac{1}{ n }\right)}{2}\right) \\
& \Rightarrow\left(k+\frac{1}{2}\right)
\end{aligned}
\)
RHS
\(
\begin{aligned}
& \Rightarrow \lim _{ n \rightarrow \infty} \frac{1}{ n ^{ k +1}}\left(1^{ k }+2^{ k }+\ldots+ n ^{ k }\right)=\frac{1}{ k +1} \\
& \text { LHS }=\text { RHS } \\
& \Rightarrow k +\frac{1}{2}=33 \cdot \frac{1}{ k +1} \\
& \Rightarrow(2 k +1)( k +1)=66
\end{aligned}
\)
\(
\Rightarrow( k -5)(2 k +13)=0
\)
\(
k = 5 \text { or } \frac{-13}{2}
\)
\(\lim _{x \rightarrow \frac{\pi}{4}} \frac{8 \sqrt{2}-(\cos x+\sin x)^7}{\sqrt{2}-\sqrt{2} \sin 2 x}\) is equal to [25 July 2022 – Shift 2]
\(
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{4}} \frac{8 \sqrt{2}-(\sqrt{2})^7\left(\cos \left(x-\frac{\pi}{4}\right)\right)^7}{\sqrt{2}(1-\sin 2 x)} \\
& x=\frac{\pi}{4}+h \\
& \lim _{h \rightarrow 0} \frac{8 \sqrt{2}\left(1-\cos ^7 h\right)}{\sqrt{2}(1-\cos 2 h)}
\end{aligned}
\)
L-Hospital
\(
\begin{aligned}
& \lim _{h \rightarrow 0} 8\left(\frac{-7 \cos ^6 h(-\sinh )}{\sin 2 h .2}\right) \\
& \lim _{h \rightarrow 0} \frac{8 \times 7 \sinh \cos ^6 h}{4 \sin \cosh } \\
& =\lim _{h \rightarrow 0} \frac{8 \times 7}{4} \cos ^5h=14
\end{aligned}
\)
Let \(\beta=\lim _{x \rightarrow 0} \frac{\alpha x-\left( e ^{3 x }-1\right)}{\alpha x \left( e ^{3 x }-1\right)}\) for some \(\alpha \in R\). Then the value of \(\alpha+\beta\) is : [26 July 2022- Shift 2]
\(
\beta=\lim _{x \rightarrow 0} \frac{\alpha x-\left(e^{3 x}-1\right)}{\alpha x\left(e^{3 x}-1\right)}
\)
\(
\beta=\lim _{x \rightarrow 0} \frac{1+\alpha x-\left[1+3 x+\frac{9 x^2}{2!}+\ldots . .\right]}{(\alpha x) \frac{\left(e^{3 x}-1\right)}{3 x} 3 x}
\)
\(
\beta=\lim _{x \rightarrow 0} \frac{(\alpha x-3 x)-\frac{9 x^2}{2!}-\ldots \ldots .}{3 \alpha x^2}
\)
For existence of limit \(\alpha-3=0\) \(\alpha=3\)
Limit \(\beta=\frac{-3}{2 \alpha}\)
\(
\beta=-\frac{1}{2}
\)
Now,
\(
\alpha+\beta=\frac{5}{2}
\)
\(
\lim _{x \rightarrow 0}\left(\frac{(x+2 \cos x)^3+2(x+2 \cos x)^2+3 \sin (x+2 \cos x)}{(x+2)^3+2(x+2)^2+3 \sin (x+2)}\right)^{\frac{100}{x}}
\)
is equal to _____. [28 July 2022- Shift 1]
Let,
\(
\begin{aligned}
& x+2 \cos x=a \\
& x+2=b \\
& \text { as } x \rightarrow 0, a \rightarrow 2 \text { and } b \rightarrow 2
\end{aligned}
\)
\(
\lim _{x \rightarrow 0}\left(\frac{a^3+2 a^2+3 \sin a}{b^3+2 b^2+3 \sin b}\right)^{\frac{100}{x}}
\)
\(
=e^{\lim _{x \rightarrow 0}} \frac{100}{x} \cdot \frac{\left(a^3-b^3\right)+2\left(a^2-b^2\right)+3(\sin a-\sin b)}{b^3+2 b^2+3 \sin b}
\)
\(
\begin{aligned}
& \because \lim _{x \rightarrow 0} \frac{a-b}{x}=\lim _{x \rightarrow 0} \frac{2(\cos x-1)}{x}=0 \\
&= e^0 \\
&=1
\end{aligned}
\)
If \(\lim _{x \rightarrow 0} \frac{\alpha e^x+\beta e^{-x}+\gamma \sin x}{x \sin ^2 x}=\frac{2}{3}\),
where \(\alpha, \beta, \gamma \in R\), then which of the following is NOT correct? [29 July 2022- Shift 1]
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\alpha e^x+\beta e^{-x}+\gamma \sin x}{x \sin ^2 x}=\frac{2}{3} \\
& \Rightarrow \alpha+\beta=0 \text { (to make indeterminant form) } \dots(i)
\end{aligned}
\)
Now,
\(
\lim _{x \rightarrow 0} \frac{\alpha e^x+\beta e^{-x}+\gamma \sin x}{x \sin ^2 x}=\frac{2}{3}
\)
(Using L-H Rule)
\(
\Rightarrow \alpha-\beta+\gamma=0 \text { (to make indeterminant form) } \dots(ii)
\)
Now,
\(
\lim _{x \rightarrow 0} \frac{\alpha e^x+\beta e^{-x}+\gamma \sin x}{6 x}=\frac{2}{3}
\)
(Using L-H Rule)
\(
\begin{aligned}
& \Rightarrow \frac{\alpha-\beta-\gamma}{6}=\frac{2}{3} \\
& \Rightarrow \alpha-\beta-\gamma=4 \ldots(iii)
\end{aligned}
\)
\(
\Rightarrow \gamma=-2
\)
and eq(i) + eq(ii)
\(
2 \alpha=-\gamma
\)
On solving,
\(
\begin{aligned}
& \Rightarrow \alpha=1 \text { and } \beta=-1 \\
& \text { and } \alpha \beta^2+\beta \gamma^2+\gamma \alpha^2+3 \\
& =1-4-2+3 \\
& =-2
\end{aligned}
\)
So, the correct option is (C): \(\alpha \beta^2+\beta \gamma^2+\gamma \alpha^2+3=0\)
\(
\text { If the value of } \lim _{x \rightarrow 0}(2-\cos x \sqrt{\cos 2 x})\left(\frac{x+2}{x^2}\right) \text { is equal to } e ^{ n } \text {, then a is equal to }
\) [20 July 2021 Shift 1]
\(
\lim _{x \rightarrow 0}(2-\cos x \sqrt{\cos x})^{\frac{x+2}{x^2}}
\)
form: \(1^{\infty}\)
\(
= e ^{\lim _{x \rightarrow 0}\left(\frac{1-\cos x \sqrt{\cos 2 x}}{x^2}\right) \times(x+2)}
\)
Now \(\operatorname{limt}_{x \rightarrow 0} \frac{1-\cos x \sqrt{\cos 2 x}}{x^2}\)
\(
\operatorname{limt}_{x \rightarrow 0} \frac{\sin x \sqrt{\cos 2 x}-\cos x \times \frac{1}{2 \sqrt{\cos 2 x}} \times(-2 \sin 2 x)}{2 x}
\)
(by L ‘ Hospital Rule)
\(
\begin{aligned}
& \operatorname{limt}_{x \rightarrow 0} \frac{\sin x \cos 2 x+\sin 2 x \cdot \cos x}{2 x} \\
& =\frac{1}{2}+1=\frac{3}{2}
\end{aligned}
\)
So, \(e ^{\lim _{x \rightarrow 0}\left(\frac{1-\cos x \sqrt{\cos 2 x}}{x^2}\right)(x+2)}\)
\(
\begin{aligned}
& = e ^{\frac{3}{2} \times 2}= e ^3 \\
& \Rightarrow a=3
\end{aligned}
\)
If \(f: R \rightarrow R\) is given by \(f( x )= x +1\), then the value of
\(
\lim _{n \rightarrow \infty} \frac{1}{n}\left[f(0)+f\left(\frac{5}{n}\right)+f\left(\frac{10}{n}\right)+\ldots .+f\left(\frac{5(n-1)}{n}\right)\right]
\)
is: [20 July 2021 Shift 2]
\(
\begin{aligned}
& I=\sum_{r=0}^{n-1} f\left(\frac{5 r}{n}\right) \frac{1}{n} \\
& I=\int_0^1 f(5 x) d x \\
& I=\int_0^1(5 x+1) d x \\
& I=\left[\frac{5 x^2}{2}+x\right]_0^1 \\
& I=\frac{5}{2}+1=\frac{7}{2}
\end{aligned}
\)
\(
\text { If } \lim _{x \rightarrow 0} \frac{\alpha x e^x-\beta \log _e(1+x)+\gamma x^2 e ^{-x}}{x \sin ^2 x}=10, \alpha, \beta, \gamma \in R \text {, then the value of } \alpha+\beta+\gamma \text { is }
\) [20 July 2021 Shift 2]
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\alpha x\left(1+x+\frac{x^2}{2}\right)-\beta\left(x-\frac{x^2}{2}+\frac{x^3}{3}\right)+\gamma x^2(1-x)}{x^3} \\
& \lim _{x \rightarrow 0} \frac{x(\alpha-\beta)+x^2\left(\alpha+\frac{\beta}{2}+\gamma\right)+x^3\left(\frac{\alpha}{2}-\frac{\beta}{3}-\gamma\right)}{x^3}=10
\end{aligned}
\)
For limit to exist
\(
\begin{aligned}
& \alpha-\beta=0, \alpha+\frac{\beta}{2}+\gamma=0 \\
& \frac{\alpha}{2}-\frac{\beta}{3}-\gamma=10 \dots(i)
\end{aligned}
\)
\(
\beta=\alpha, \gamma=-3 \frac{\alpha}{2}
\)
Put in (i)
\(
\begin{aligned}
& \frac{\alpha}{2}-\frac{\alpha}{3}+\frac{3 \alpha}{2}=10 \\
& \frac{\alpha}{6}+\frac{3 \alpha}{2}=10 \Rightarrow \frac{\alpha+9 \alpha}{6}=10 \\
& \Rightarrow \alpha=6 \\
& \alpha=6, \beta=6, \gamma=-9 \\
& \alpha+\beta+\gamma=3
\end{aligned}
\)
Let \(f: R \rightarrow R\) be a function such that \(f(2)=4\) and \(f^{\prime}(2)=1\). Then, the value of \(\lim _{x \rightarrow 2} \frac{x^2 f(2)-4 f(x)}{x-2}\) is equal to : [27 July 2021 Shift 1]
Apply L’Hopital Rule
\(
\begin{aligned}
& \lim _{x \rightarrow 2}\left(\frac{2 x f(2)-4 f^{\prime}(x)}{1}\right) \\
& =\frac{4(4)-4}{1}=12
\end{aligned}
\)
The value of \(\lim _{x \rightarrow 0}\left(\frac{x}{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}}\right)\) is equal to: [27 July 2021 Shift 2]
\(
L=\lim _{x \rightarrow 0} \frac{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}}{x}
\)
\(
=\lim _{x \rightarrow 0} \frac{\sqrt[\beta]{1-\sin x}-\sqrt[8]{1+\sin x}}{x} \times \frac{\sin x}{\sin x}
\)
\(
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}}{\sin x} \\
& =\lim _{x \rightarrow 0} \frac{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}-1+1}{\sin x}
\end{aligned}
\)
\(
=\lim _{x \rightarrow 0}\left(\frac{\sqrt[8]{1-\sin x}-1}{\sin x}-\frac{\sqrt[8]{1+\sin x}-1}{\sin x}\right)
\)
\(
=\lim _{x \rightarrow 0}\left((-1) \frac{(1-\sin x)^{1 / 8}-1^{1 / 8}}{(1-\sin x)-1}-\frac{(1+\sin x)^{1 / 8}-1^{1 / 8}}{(1+\sin x)-1}\right)
\)
\(
=(-1) \frac{1}{8} \cdot 1-\frac{1}{8}=-\frac{1}{4}
\)
Now,
\(
\begin{aligned}
& \frac{1}{L}=\lim _{x \rightarrow 0}\left(\frac{x}{\sqrt[8]{1-\sin x}-\sqrt[8]{+\sin x}}\right) \\
& =-4
\end{aligned}
\)
Let \(f(x)=x^6+2 x^4+x^3+2 x+3, x \in R\). Then the natural number \(n\) for which \(\lim _{ x \rightarrow 1} \frac{ x ^{ n } f (1)- f ( x )}{ x -1}=44\) is [2021 (01 Sep Shift 2)]
\(
\begin{aligned}
& f(n)=x^6+2 x^4+x^3+2 x+3 \\
& \lim _{x \rightarrow 1} \frac{x^n f(1)-f(x)}{x-1}=44 \\
& \lim _{x \rightarrow 1} \frac{9 x^n-\left(x^6+2 x^4+x^3+2 x+3\right)}{x-1}=44 \\
& \lim _{x \rightarrow 1} \frac{9 n x^{n-1}-\left(6 x^5+8 x^3+3 x^2+2\right)}{1}=44 \\
& \Rightarrow 9 n-(19)=44 \\
& \Rightarrow 9 n=63 \\
& \Rightarrow n=7
\end{aligned}
\)
If \(\alpha=\lim _{ x \rightarrow \pi / 4} \frac{\tan ^3 x -\tan x }{\cos \left( x +\frac{\pi}{4}\right)}\) and \(\beta=\lim _{ x \rightarrow 0}(\cos x )^{\cot x }\) are the roots of the equation, \(a x^2+b x-4=0\), then the ordered pair \((a, b)\) is : [2021 (31 Aug Shift 2)]
\(\alpha=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\tan ^3 x-\tan x}{\cos \left(x+\frac{\pi}{4}\right)} ; \frac{0}{0}\) form
Using L Hopital rule
\(
\begin{aligned}
& \alpha=\lim _{x \rightarrow \frac{\pi}{4}} \frac{3 \tan ^2 x \sec ^2 x-\sec ^2 x}{-\sin \left(x+\frac{\pi}{4}\right)} \\
& \Rightarrow \alpha=-4 \\
& \beta=\lim _{x \rightarrow 0}(\cos x)^{\cot x}=e^{\lim _{x \rightarrow 0} \frac{(\cos x-1)}{\tan x}} \\
& \beta= e \quad \lim _{x \rightarrow 0} \frac{-(1-\cos x)}{x^2}, \frac{x^2}{\left(\frac{\tan x}{x}\right)^x} \\
& \beta= e ^{\lim _{x \rightarrow 0}\left(\frac{-1}{2}\right) \cdot \frac{x}{1}}= e ^0 \Rightarrow \beta=1 \\
& \alpha=-4 ; \beta=1
\end{aligned}
\)
If \(a x^2+b x-4=0\) are the roots then
\(
\begin{aligned}
& 16 a-4 b-4=0 \& a+b-4=0 \\
& \Rightarrow a=1~ \& \quad b=3
\end{aligned}
\)
\(\lim _{x \rightarrow 0} \frac{\sin ^2\left(\pi \cos ^4 x\right)}{x^4}\) is equal to : [2021 (31 Aug Shift 1)]
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin ^2\left(\pi \cos ^4 x\right)}{x^4} \\
& \lim _{x \rightarrow 0} \frac{1-\cos \left(2 \pi \cos ^4 x\right)}{2 x^4} \\
& \lim _{x \rightarrow 0} \frac{1-\cos \left(2 \pi-2 \pi \cos ^4 x\right)}{\left[2 \pi\left(1-\cos ^4 x\right)\right]^2} 4 \pi^2 \cdot \frac{\sin ^4 x}{2 x^4}\left(1+\cos ^2 x\right)^2 \\
& =\frac{1}{2} \cdot 4 \pi^2 \cdot \frac{1}{2}(2)^2=4 \pi^2
\end{aligned}
\)
If \(\lim _{x \rightarrow \infty}\left(\sqrt{x^2-x+1}-a x\right)=b\), then the ordered pair \((a, b)\) is: [2021 (27 Aug Shift 2)]
\(
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\sqrt{x^2-x+1}\right)-a x=b \quad(\infty-\infty) \\
& \Rightarrow a>0
\end{aligned}
\)
Now, \(\lim _{x \rightarrow \infty} \frac{\left(x^2-x+1-a^2 x^2\right)}{\sqrt{x^2-x+1}+a x}=b\)
\(
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow \infty} \frac{\left(1-a^2\right) x^2-x+1}{\sqrt{x^2-x+1}+a x}=b \\
& \Rightarrow \lim _{x \rightarrow \infty} \frac{\left(1-a^2\right) x^2-x+1}{x\left(\sqrt{\left.1-\frac{1}{x}+\frac{1}{x^2}+a\right)}\right.}=b \\
& \Rightarrow 1-a^2=0 \Rightarrow a=1
\end{aligned}
\)
Now, \(\lim _{x \rightarrow \infty} \frac{-x+1}{x\left(\sqrt{1-\frac{1}{x}+\frac{1}{x^2}+a}\right)}=b\)
\(
\begin{aligned}
& \Rightarrow \frac{-1}{1+a}=b \Rightarrow b=-\frac{1}{2} \\
& (a, b)=\left(1,-\frac{1}{2}\right)
\end{aligned}
\)
If \(\alpha, \beta\) are the distinct roots of \(x^2+b x+c=0\), then \(\lim _{x \rightarrow \beta} \frac{e^{2\left(x^2+b x+c\right)}-1-2\left(x^2+b x+c\right)}{(x-\beta)^2}\) is equal to: [2021 (27 Aug Shift 1)]
\(
\lim _{x \rightarrow \beta} \frac{e^{2\left(x^2+b x+c\right)}-1-2\left(x^2+b x+c\right)}{(x-\beta)^2}
\)
\(
\Rightarrow \lim _{x \rightarrow \beta} \frac{1\left(1+\frac{2\left(x^2+b x+c\right)}{1!}+\frac{2^2\left(x^2+b x+c\right)^2}{2!}+\ldots\right)-1-2\left(x^2+b x+c\right)}{(x-\beta)^2}
\)
\(
\Rightarrow \lim _{x \rightarrow \beta} \frac{2\left(x^2+b x+1\right)^2}{(x-\beta)^2}
\)
\(
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow \beta} \frac{2(x-\alpha)^2(x-\beta)^2}{(x-\beta)^2} \\
& \Rightarrow 2(\beta-\alpha)^2=2\left(b^2-4 c\right)
\end{aligned}
\)
\(\lim _{x \rightarrow 2}\left(\sum_{n=1}^9 \frac{x}{n(n+1) x^2+2(2 n+1) x+4}\right)\) is equal to : [2021 (26 Aug Shift 2)]
\(
\begin{aligned}
& S =\lim _{x \rightarrow 2} \sum_{ n =1}^9 \frac{ x }{ n ( n +1) x ^2+2(2 n +1) x +4} \\
& S =\sum_{ n =1}^9 \frac{2}{4\left( n ^2+3 n +2\right)}=\frac{1}{2} \sum_{ n =1}^9\left(\frac{1}{ n +1}-\frac{1}{ n +2}\right) \\
& S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)=\frac{9}{44} \\
&
\end{aligned}
\)
If \(y=\tan ^{-1}\left(\sec x^3-\tan x^3\right) \cdot \frac{\pi}{2}<x^3<\frac{3 \pi}{2}\), then [24 June 2022- Shift 2]
\(
\begin{aligned}
& y=\tan ^{-1}\left(\sec x^3-\tan x^3\right) \\
& =\tan ^{-1}\left(\frac{1-\sin x^3}{\cos x^3}\right)
\end{aligned}
\)
\(
\begin{aligned}
& =\tan ^{-1}\left(\frac{1-\cos \left(\frac{\pi}{2}-x^3\right)}{\sin \left(\frac{\pi}{2}-x^3\right)}\right) \\
& =\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\frac{x^3}{2}\right)\right)
\end{aligned}
\)
Since \(\frac{\pi}{4}-\frac{x^3}{2} \in\left(-\frac{\pi}{2}, 0\right)\)
\(
\begin{aligned}
& y=\left(\frac{\pi}{4}-\frac{x^3}{2}\right) \\
& y^{\prime}=\frac{-3 x^2}{2}, y^{\prime \prime}=-3 x \\
& 4 y=\pi-2 x^3
\end{aligned}
\)
\(
\begin{aligned}
& 4 y=\pi-2 x^2 \left(\frac{-y^{\prime \prime}}{3}\right) \\
& 12 y=3 \pi+2 x^2 y^{\prime \prime} \\
& x^2 y^{\prime \prime}-6 y+\frac{3 \pi}{2}=0
\end{aligned}
\)
Let \(f: R \rightarrow R\) be defined as \(f(x)=x^3+x-5\). If \(g(x)\) is a function such that \(f ( g ( x ))= x\), \(\forall x \in R\), then \(g ^{\prime}\) (63) is equal to ____. [25 June 2022- Shift 1]
\(
\begin{aligned}
& f ( x )= x ^3+ x -5 \\
& \Rightarrow f ^{\prime}( x )=3 x ^2+1 \Rightarrow \text { increasing function } \\
& \Rightarrow \text { invertible } \\
& \Rightarrow g ( x ) \text { is inverse of } f ( x ) \\
& \Rightarrow g ( f ( x ))= x
\end{aligned}
\)
\(
\begin{array}{ll}
\Rightarrow & g^{\prime}( f ( x )) f ^{\prime}( x )=1 \\
& f ( x )=63 \\
\Rightarrow & x ^3+ x -5=63 \\
\Rightarrow & x =4 \\
\text { put } & x=4
\end{array}
\)
\(
\begin{aligned}
& g^{\prime}(f(4)) f^{\prime}(4)=1 \\
& g^{\prime}(63) \times 49=1 \quad\left\{f^{\prime}(4)=49\right\} \\
& g^{\prime}(63)=\frac{1}{49}
\end{aligned}
\)
Let \(f : R \rightarrow R\) satisfy \(f ( x + y )=2^{ x } f ( y )+4^{ y } f ( x ), \forall x\),
\(y \in R\). If \(f(2)=3\), then \(14 \cdot \frac{f^{\prime}(4)}{f^{\prime}(2)}\) is equal to ______. [26 June 2022- Shift 2]
Put \(y=2\)
\(
\begin{aligned}
& f(x+y)=2^x \cdot f(y)+4^y \cdot f(x) \\
& f(x+2)=2^x \cdot 3+16 f(x) \\
& f^{\prime}(x+2)=16 f^{\prime}(x)+3 \cdot 2^x \ln 2
\end{aligned}
\)
\(
f^{\prime}(4)=16 f^{\prime}(2)+12 \ln 2 \ldots \text { (i) }
\)
\(
\begin{aligned}
& f(y+2)=4 f(y)+3 \cdot 4^y \\
& f^{\prime}(4)=4 f^{\prime}(y)+3.4^y \ln 4 \\
& f^{\prime}(4)=4 f^{\prime}(2)+96 \ln 2 \ldots(ii)
\end{aligned}
\)
solving eq. (i) and (ii), we get
\(
f^{\prime}(2)=7 \ln 2
\)
from equation (i), we get
\(
\begin{aligned}
& f^{\prime}(4)=124 \ln 2 \\
& \text { Now, } \Rightarrow 14 . \frac{f^{\prime}(4)}{f^{\prime}(2)} \\
& 14 \times \frac{124 \ln 2}{7 \ln 2} \\
& =248
\end{aligned}
\)
If \(\cos ^{-1}\left(\frac{y}{2}\right)=\log _e\left(\frac{x}{5}\right)^5,|y|<2\), then: [27 June 2022- Shift 1]
\(
\begin{aligned}
& \cos ^{-1}\left(\frac{y}{2}\right)=\log _e\left(\frac{x}{5}\right)^5 \\
& \cos ^{-1}\left(\frac{y}{2}\right)=5 \log _e\left(\frac{x}{5}\right) \\
& \frac{-1}{\sqrt{1-\frac{y^2}{4}}} \cdot \frac{y^{\prime}}{2}=5 \cdot \frac{1}{x} \times \frac{1}{5} \\
& \Rightarrow \frac{-y^{\prime}}{\sqrt{4-y^2}}=\frac{5}{x} \\
& -x y^{\prime}=5 \sqrt{4-y^2} \\
& -x y^{\prime \prime}-y^{\prime}=5 \cdot \frac{1}{2 \sqrt{4-y^2}}\left(-2 y y^{\prime}\right) \\
& \Rightarrow x y^{\prime \prime}+y^{\prime}=\frac{5 y^{\prime} \cdot y}{\sqrt{4-y^2}} \\
& x y^{\prime \prime}+y^{\prime}=5 \cdot\left(\frac{-5}{x}\right) y \\
& x^2 y^{\prime \prime}+x y^{\prime}=-25 y
\end{aligned}
\)
\(
\text { Let } f(x)=\left|\begin{array}{ccc}
a & -1 & 0 \\
a x & a & -1 \\
ax ^2 & ax & a
\end{array}\right|, a \in R \text {. Then the sum of }
\)
which the squares of all the values of a for \(2 f^{\prime}(10)-f^{\prime}(5)+100=0\) is : [27 June 2022- Shift 2]
\(
f(x)=\left|\begin{array}{ccc}
a & -1 & 0 \\
a x & a & -1 \\
a x^2 & a x & a
\end{array}\right|
\)
\(
f(x)=a\left|\begin{array}{ccc}
1 & -1 & 0 \\
x & a & -1 \\
x^2 & a x & a
\end{array}\right|
\)
\(
\begin{aligned}
& =a\left[1\left(a^2+a x\right)+1\left(a x+x^2\right)\right] \\
& \Rightarrow f(x)=a(x+a)^2
\end{aligned}
\)
so, \(f ^{\prime}( x )=2 a ( x + a )\)
as, \(2 f ^{\prime}(10)- f ^{\prime}(5)+100=0\)
\(
\begin{aligned}
& \Rightarrow 2 \times 2 a (10+ a )-2 a (5+ a )+100=0 \\
& \Rightarrow 40 a +4 a ^2-10 a -2 a ^2+100=0
\end{aligned}
\)
\(
\begin{aligned}
&\begin{aligned}
& 2 a^2+30 a+100=0 \\
& \Rightarrow a^2+15 a+50=0 \\
& (a+10)(a+5)=0 \\
& a=-10 \text { or } a=-5
\end{aligned}\\
&\text { Required }=(-10)^2+(-5)^2=125
\end{aligned}
\)
If \(y(x)=\left(x^{x^x}\right), x>0\) then \(\frac{d^2 x}{d y^2}+20\) at \(x=1\) is equal to: [27 June 2022- Shift 2]
\(
\begin{aligned}
& y =( x )=\left( x ^{ x }\right)^{ x } \\
& \ln y ( x )= x ^2 \cdot \ln x \\
& \frac{1}{ y ( x )} \cdot y ^{\prime}( x )=\frac{ x ^2}{ x }+2 x \cdot \ln x \\
& y ^{\prime}( x )= y ( x )[ x +2 x \ln x ]
\end{aligned}
\)
\(
y(1)=1 ; y^{\prime}(1)=1
\)
\(
y ^{\prime \prime}( x )= y ^{\prime}( x )[ x +2 x \cdot \ln ( x )]+ y ( x )[1+2(1+\ln x )]
\)
\(
\begin{aligned}
& y^{\prime \prime}(1)=1[1+0]+1(1+2)=4 \\
& \frac{d^2 y}{d x^2}=-\left(\frac{d y}{d x}\right)^3 \cdot \frac{d^2 x}{d y^2}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow 4=-\frac{d^2 x}{d y^2} \\
& \frac{d^2 x}{dy^2}=-4
\end{aligned}
\)
\(
\text { Ans. }-4+20=16
\)
The value of \(\log _e 2 \frac{d}{d x}\left(\log _{\cos x} \operatorname{cosec} x\right)\) at \(x=\frac{\pi}{4}\) is [26 July 2022- Shift 2]
\(
\log _{ c } 2 \frac{ d }{ dx }\left(\log _{\cos x } \operatorname{cosec} x \right)
\)
Let,
\(
\begin{aligned}
& y=\log _{\cos x} \operatorname{cosec} x \\
& y=-\frac{\ln (\sin x)}{\ln (\cos x)} \\
& \frac{d y}{d x}=-\frac{[\cot x \cdot \ln (\cos x)+\tan x \cdot \ln (\sin x)]}{(\ln (\cos x))^2} \\
& \left.\frac{d y}{d x}\right)_{x=\frac{\pi}{4}}=\frac{4}{\ln 2}
\end{aligned}
\)
Now,
\(
\Rightarrow \log _c 2 \cdot \frac{4}{\ln 2}=4
\)
For the curve \(C:\left(x^2+y^2-3\right)+\left(x^2-y^2-1\right)^5=0\), the value of \(3 y^{\prime}-y^3 y^{\prime \prime}\), at the point \((\alpha, \alpha), \alpha>0\), on \(C\), is equal to ____. [27 July 2022 – Shift 2]
\((\alpha, \alpha)\) lies on
\(C: \left(x^2+y^2-3\right)+\left(x^2-y^2-1\right)^5=0\)
Put \((\alpha, \alpha), 2 \alpha^2-3+-1^5=0\)
\(
\Rightarrow \alpha=\sqrt{2}
\)
Now, differentiate C
\(
\begin{aligned}
& 2 x+2 y \cdot y^{\prime}+5\left(x^2-y^2-1\right)^4\left(2 x-2 y y^{\prime}\right)=0 \dots(1)\\
& \text { At }(\sqrt{2}, \sqrt{2}) \\
& \sqrt{2}+\sqrt{2} y^{\prime}+5(-1)^4\left(\sqrt{2}-\sqrt{2} y^{\prime}\right)=0 \\
& \Rightarrow y^{\prime}=\frac{3}{2} \dots(2)
\end{aligned}
\)
Diff. (1) w.r.t. x
Again, Diff. (1) w.r.t. x
\(
\begin{gathered}
1+\left(y^{\prime}\right)^2+y y^{\prime \prime}+20\left(x^2-y^2-1\right)^3\left(x-y y^{\prime}\right)^2 .2 \\
+5\left(x^2-y^2-1\right)^4\left(1-\left(y^{\prime}\right)^2-y y^{\prime \prime}\right)=0
\end{gathered}
\)
At \((\sqrt{2}, \sqrt{2})\) and \(y ^{\prime}=\frac{3}{2}\)
We have,
\(
\begin{aligned}
& \left(1+\frac{9}{4}\right)+\sqrt{2} y^{\prime \prime}-40\left(\sqrt{2}-\sqrt{2} \cdot \frac{3}{2}\right)^2 \\
& +5(1)\left(1-\frac{9}{4}-\sqrt{2} y^{\prime \prime}\right)=0 \\
& \Rightarrow 4 \sqrt{2} y^{\prime \prime}=-23 \\
& \therefore 3 y^{\prime}-y^3 y^{\prime \prime}=\frac{9}{2}+\frac{23}{2}=16 \\
&
\end{aligned}
\)
Let \(x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}\) and \(y ( t )=2 \sqrt{2} \sin t \sqrt{\sin 2 t }, t \in\left(0, \frac{\pi}{2}\right)\). Then \(\frac{1+\left(\frac{d y}{d x}\right)^2}{\frac{d^2 y}{d x^2}}\) at \(t=\frac{\pi}{4}\) is equal to [28 July 2022- Shift 2]
\(
\begin{aligned}
& x=2 \sqrt{2} \cos t \sqrt{\sin 2 t} \\
& \frac{ dx }{ dt }=\frac{2 \sqrt{2} \cos 3 t }{\sqrt{\sin 2 t }} \\
& y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t} \\
& \frac{ dy }{ dt }=\frac{2 \sqrt{2} \sin 3 t }{\sqrt{\sin 2 t }} \\
& \frac{d y}{d x}=\tan 3 t \\
& \frac{d y}{d x}=-1 \text { at } t=\frac{\pi}{4} \\
& \frac{d^2 y}{d x^2}=\frac{3}{2 \sqrt{2}} \sec ^3 3 t \cdot \sqrt{\sin 2 t}=-3 \text { at } t=\frac{\pi}{4} \\
& \therefore \frac{1+\left(\frac{ dy }{ dx }\right)^2}{\frac{ d ^2 y }{ dx ^2}}=\frac{1+1}{-3}=-\frac{2}{3} \\
&
\end{aligned}
\)
If \(y(x)=\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right), x \in\left(\frac{\pi}{2}, \pi\right)\), then \(\frac{d y}{d x}\) at \(x=\frac{5 \pi}{6}\) is: [2021 (27 Aug Shift 2)]
\(
\begin{aligned}
& y(x)=\cot ^{-1}\left[\frac{\cos \frac{x}{2}+\sin \frac{x}{2}+\sin \frac{x}{2}-\cos \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}-\sin \frac{x}{2}+\cos \frac{x}{2}}\right] \\
& y(x)=\cot ^{-1}\left(\tan \frac{x}{2}\right)=\frac{\pi}{2}-\frac{x}{2} \\
& y^{\prime}(x)=\frac{-1}{2}
\end{aligned}
\)
If \(y^{14}+y^{-14}=2 x\), and \(\left(x^2-1\right) \frac{d^2 y}{d x^2}+\alpha x \frac{d y}{d x}+\beta y=0\) then \(|\alpha-\beta|\) is equal to . [2021 (27 Aug Shift 1)]
\(
\begin{aligned}
& y^{\frac{1}{4}}+\frac{1}{y^{\frac{1}{4}}}=2 x \\
& \Rightarrow\left(y^{\frac{1}{4}}\right)^2-2 x y^{\left(\frac{1}{4}\right)}+1=0 \\
& \Rightarrow y^{\frac{1}{4}}=x+\sqrt{x^2-1} \text { or } x-\sqrt{x^2-1} \\
& \text { So, } \frac{1}{4} \frac{1}{y^{\frac{3}{4}}} \frac{ dy }{ dx }=1+\frac{ x }{\sqrt{ x ^2-1}} \\
& \Rightarrow \frac{1}{4} \frac{1}{ y ^{3 / 4}} \frac{ dy }{ dx }=\frac{ y ^{\frac{1}{4}}}{\sqrt{ x ^2-1}} \\
& \Rightarrow \frac{d y}{d x}=\frac{4 y}{\sqrt{x^2-1}} \ldots
\end{aligned}
\)
Hence, \(\frac{d^2 y}{d x^2}=4 \frac{\left(\sqrt{x^2-1}\right) y^{\prime}-\frac{y x}{\sqrt{x^2-1}}}{x^2-1}\)
\(
\begin{aligned}
& \Rightarrow\left(x^2-1\right) y^{\prime \prime}=4 \frac{\left(x^2-1\right) y^{\prime}-x y}{\sqrt{x^2-1}} \\
& \Rightarrow\left(x^2-1\right) y^{\prime \prime}=4\left(\sqrt{x^2-1} y^{\prime}-\frac{x y}{\sqrt{x^2-1}}\right) \\
& \Rightarrow\left( x ^2-1\right) y ^{\prime \prime}=4\left(4 y -\frac{x y^{\prime}}{4}\right)(\text { from } I ) \\
& \Rightarrow\left(x^2-1\right) y^{\prime \prime}+x y^{\prime}-16 y=0
\end{aligned}
\)
So, \(|\alpha-\beta|=17\)
If \(y=y(x)\) is an implicit function of \(x\) such that \(\log _e(x+y)=4 x y\), then \(\frac{d^2 y}{d x^2}\) at \(x=0\) is equal to [2021 (26 Aug Shift 1)]
\(
\begin{aligned}
& \ln (x+y)=4 x y \quad(\text { At } x=0, y=1) \\
& x+y=e^{4 x y} \\
& \Rightarrow 1+\frac{d y}{d x}=e^{4 x y}\left(4 x \frac{d y}{d x}+4 y\right) \\
& \text { At } x=0 \quad \frac{d y}{d x}=3 \\
& \frac{ d ^2 y }{ dx ^2}= e ^{4 xy }\left(4 x \frac{ dy }{ dx }+4 y \right)^2+ e ^{4 xy }\left(4 x \frac{ d ^2 y }{ dx ^2}+4 y \right)
\end{aligned}
\)
\(
\begin{aligned}
& \text { At } x=0, \frac{d^2 y}{d x^2}=e^0(4)^2+e^0(24) \\
& \Rightarrow \frac{ d ^2 y }{ dx ^2}=40
\end{aligned}
\)
Let \(x^k+y^k=a^k\) where \(a, k>0\) and \(\frac{d y}{d x}+\left(\frac{y}{x}\right)^{\frac{1}{3}}=0\) then find \(k\) [JEE Main 2020-7th Jan(morning)]
\(
\begin{aligned}
& k \cdot x^{k-1}+k \cdot y^{k-1} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=-\left(\frac{x}{y}\right)^{k-1} \\
& \frac{d y}{d x}+\left(\frac{x}{y}\right)^{k-1}=0 \\
& k-1=-\frac{1}{3} \\
& k=1-\frac{1}{3}=\frac{2}{3}
\end{aligned}
\)
If \(y(\alpha)=\sqrt{2\left(\frac{\tan \alpha+\cot \alpha}{1+\tan ^2 \alpha}\right)+\frac{1}{\sin ^2 \alpha}}, \alpha \in\left(\frac{3 \pi}{4}, \pi\right)\) then \(\frac{d y}{d \alpha}\) at \(\alpha=\frac{5 \pi}{6}\) is [JEE Main 2020- 7th Jan Morning]
\(
\begin{aligned}
& y=\sqrt{\frac{2 \cos ^2 \alpha}{\sin \alpha \cos \alpha}+\frac{1}{\sin ^2 \alpha}}=\sqrt{2 \cot \alpha+\operatorname{cosec}^2 \alpha} \\
& =|1+\cot \alpha|=-1-\cot \alpha \\
& \frac{d y}{d \alpha}=\operatorname{cosec}^2 \alpha \Rightarrow\left(\frac{d y}{d x}\right) \text { at } \alpha=\frac{5 \pi}{6} \text { will be }=4
\end{aligned}
\)
Let \(y=y(x)\) be a function of \(x\) satisfying \(y \sqrt{1-x^2}=k-x \sqrt{1-y^2}\) where \(k\) is a constant and \(y\left(\frac{1}{2}\right)=-\frac{1}{4}\). Then \(\frac{d y}{d x}\) at \(x=\frac{1}{2}\), is equal to : [JEE Main 2020- 7th Jan Evening]
\(
\begin{aligned}
& x=\frac{1}{2}, y=\frac{-1}{4} \Rightarrow x y=\frac{-1}{8} \\
& y \cdot \frac{1 \cdot(=2 x)}{2 \sqrt{-x^2}}+y^{\prime} \cdot \sqrt{1-x^2}=-\left\{1 \cdot \sqrt{1-y^2}+\frac{x \cdot(-2 y)}{2 \sqrt{1-y^2}} y^{\prime}\right\} \\
& -\frac{x y}{\sqrt{1-x^2}}+y^{\prime} \sqrt{1-x^2}=-\sqrt{1-y^2}+\frac{x y \cdot y^{\prime}}{\sqrt{1-y^2}} \\
& y^{\prime}\left(\sqrt{1-x^2}-\frac{x y}{\sqrt{1-y^2}}\right)=\frac{x y}{\sqrt{1-x^2}}-\sqrt{1-y^2} \\
& y^{\prime}\left(\frac{\sqrt{3}}{2}+\frac{1}{8 \cdot \frac{\sqrt{15}}{4}}\right)=\frac{-1}{8 \cdot \sqrt{\frac{3}{2}}}-\frac{\sqrt{15}}{4} \\
& y^{\prime}\left(\frac{\sqrt{45}+1}{2 \sqrt{15}}\right)=-\frac{(1+\sqrt{45})}{4 \sqrt{3}} \\
& y^{\prime}=-\frac{\sqrt{5}}{2}
\end{aligned}
\)
If \(x=2 \sin \theta-\sin 2 \theta\) and \(y=2 \cos \theta-\cos 2 \theta, \theta \in[0,2 \pi]\), then \(\frac{d^2 y}{d x^2}\) at \(\theta=\pi\) is: [JEE Main 2019- 9th Jan Evening]
\(
\begin{aligned}
& \frac{d x}{d \theta}=2 \cos \theta-2 \cos 2 \theta \\
& \frac{d y}{d \theta}=-2 \sin \theta+2 \sin 2 \theta \\
& \therefore \frac{d y}{d x}=\frac{\sin 2 \theta-\sin \theta}{\cos \theta-\operatorname{cos} 2 \theta} \\
& =\frac{2 \sin \frac{\theta}{2} \cdot \cos \frac{3 \theta}{2}}{2 \sin \frac{\theta}{2} \sin \frac{3 \theta}{2}}=\cot \frac{3 \theta}{2} \\
& \frac{d^2 y}{d x^2}=\frac{-3}{2} \operatorname{cosec}^2 \frac{3 \theta}{2} \cdot \frac{d \theta}{d x} \\
& \frac{d^2 y}{d x^2}=\frac{-\frac{3}{2} \operatorname{cosec}^2 \frac{3 \theta}{2}}{2(\cos \theta-\cos 2 \theta)} \\
& \left.\frac{d^2 y}{d x^2}\right|_{\theta=\pi}=-\frac{3}{4(-1-1)}=\frac{3}{8}
\end{aligned}
\)
If \(y^2+\log _e\left(\cos ^2 x\right)=y, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\), then: [JEE Main 2020 – 3rd Sept Morning]
\(
\begin{aligned}
& y^2+2 \ln (\cos x)=y \\
& \Rightarrow 2 y y^{\prime}-2 \tan x=y^{\prime}
\end{aligned}
\)
From (1) \(y(0)=0\) or 1
\(
\therefore y^{\prime}(0)=0
\)
Again differentiating
(2) we get
\(
2\left(y^{\prime}\right)^2+2 y y^{\prime \prime}-2 \sec ^2 x=y^{\prime \prime}
\)
gives \(\left|y^{\prime \prime}(0)\right|=2\)
If \((a+\sqrt{2 b} \cos x)(a-\sqrt{2} b \cos y)=a^2-b^2\), where \(a>b>0\), then \(\frac{d x}{d y}\) at \(\left(\frac{\pi}{4}, \frac{\pi}{4}\right)\) is : [JEE Main 2020 – 4 Sep (Morning)]
\(
(a+\sqrt{2} b \cos x)(a-\sqrt{2} b \cos y)=a^2-b^2
\)
Differentiating both sides
\(
\begin{aligned}
& (-\sqrt{2} b \sin x)(a-\sqrt{2} \cos y)+(a+\sqrt{2} b \cos x) \\
& (\sqrt{2} b \sin y) y^{\prime}=0 \text { at }\left(\frac{\pi}{4}, \frac{\pi}{4}\right) \\
& -b(a-b)+(a+b) b y^{\prime}=0 \\
& \frac{d y}{d x}=\frac{a-b}{a+b} \\
& \Rightarrow \frac{d x}{d y}=\frac{a+b}{a-b}
\end{aligned}
\)
The derivative of \(\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\) with respect to \(\tan ^{-1}\left(\frac{2 x \sqrt{1-x^2}}{1-2 x^2}\right)\) at \(x=\frac{1}{2}\) is : [JEE Main 2020- 5th Sept Evening]
\(
{d}/{d x}\left[\frac{\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)}{\tan ^{-1}\left(\frac{2 x \sqrt{1-x^2}}{1-2 x^2}\right)}\right]
\)
\(
\begin{aligned}
& \text { Simplifying }\left(\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\right) \text { Put } x=\tan \theta \\
& \Rightarrow \tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)=\tan ^{-1}\left(\frac{1-\left(1-2 \sin ^2 \theta / 2\right)}{2 \sin \theta / 2 \cos \theta / 2}\right)=\frac{\theta}{2} \\
& \tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)=\frac{\tan ^{-1} x}{2} \\
& \text { & similarly } \tan ^{-1}\left(\frac{2 x \sqrt{1-x^2}}{1-2 x^2}\right) \quad \text { Put } x=\sin \theta \\
& \Rightarrow \tan ^{-1}\left(\frac{\sin 2 \theta}{\cos 2 \theta}\right)=2 \theta=2 \sin ^{-1} x
\end{aligned}
\)
Hence required derivative
\(
\frac{\frac{1}{2\left(1+x^2\right)}}{\frac{2}{\sqrt{1-x^2}}}=\left.\frac{\sqrt{1-x^2}}{4\left(1+x^2\right)}\right|_{x=\frac{1}{2}}=\frac{\sqrt{3}}{10}
\)
Let \(f: R \rightarrow R\) be defined as \(f(x)=\left\{\begin{array}{r}x^5 \sin \left(\frac{1}{x}\right)+5 x^2, x<0 \\ 0, x=0 \\ x^5 \cos \left(\frac{1}{x}\right)+\lambda x^2, x>0\end{array}\right.\) The value of \(\lambda\) for which \(f ^{{\prime}{\prime}}(0)\) exists, is [JEE Main 2020 – 6 Sep (Morning)]
\(
\begin{aligned}
& \text { If } g(x)=x^5 \sin \left(\frac{1}{x}\right) \text { and } h(x)=x^5 \cos \left(\frac{1}{x}\right) \\
& \text { then } g^{\prime \prime}(0)=0 \text { and } h^{\prime \prime}(0)=0 \\
& \text { So, } f^{\prime \prime}\left(0^{+}\right)=g^{\prime \prime}\left(0^{+}\right)+10=10 \\
& \text { and } f^{\prime \prime}\left(0^{-}\right)=h^{\prime \prime}\left(0^{-}\right)+2 \lambda=f^{\prime \prime}\left(0^{+}\right) \\
& \Rightarrow 2 \lambda=10 \\
& \lambda=5
\end{aligned}
\)
Given below are two statements:
Statement I: \(\lim _{x \rightarrow 0}\left(\frac{\tan ^{-1} x+\log _e \sqrt{\frac{1+x}{1-x}}-2 x}{x^5}\right)=\frac{2}{5}\)
Statement II: \(\lim _{x \rightarrow 1}\left(x^{\frac{2}{1-x}}\right)=\frac{1}{e^2}\)
In the light of the above statements, choose the correct answer from the options given below: [JEE 2025]
(c)
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\tan ^{-1} x+\frac{1}{2}[\ln (1+x)-\ln (1-x)]-2 x}{x^5} \\
& =\lim _{x \rightarrow 0} \frac{\left(x-\frac{x^3}{3}+\frac{x^5}{5} \ldots\right)+\frac{1}{2}\left[x-\frac{x^2}{2}+\frac{x^3}{3} \ldots-\left(-x-\frac{x^2}{2}-\frac{x^3}{3} \ldots\right)\right]-2 x}{x^5} \\
& =\lim _{x \rightarrow 0} \frac{2 x+\frac{2 x^5}{5} \ldots-2 x}{x^5}=\frac{2}{5} \\
& \lim _{x \rightarrow 1} x^{\frac{2}{(1-x)}}=e^{\lim _{x \rightarrow 1}\left(\frac{2}{1-x}\right)(x-1)}=e^{-2} \\
& \Rightarrow \text { Both statements correct }
\end{aligned}
\)
\(\lim _{x \rightarrow 0^{+}} \frac{\tan \left(5(x)^{\frac{1}{3}}\right) \log _e\left(1+3 x^2\right)}{\left(\tan ^{-1} 3 \sqrt{x}\right)^2\left(e^{5(x)^{\frac{4}{3}}}-1\right)}\) is equal to [JEE 2025]
(c)
\(
\lim _{x \rightarrow 0^{+}} \frac{\tan \left(5(x)^{\frac{1}{3}}\right) \ln \left(1+3 x^3\right)}{\left(\tan ^{-1}(3 \sqrt{x})\right)^2\left(e^{5 x \frac{4}{3}}-1\right)}
\)
\(
=\lim _{x \rightarrow 0^{+}} \frac{\frac{\tan \left(5(x)^{\frac{1}{3}}\right)}{5(x)^{\frac{1}{3}}} \frac{\ln \left(1+3 x^2\right)}{3 x^2} \times 5(x)^{\frac{1}{3}}\left(3 x^2\right)}{\frac{\left(\tan ^2(3 \sqrt{x})\right)^2}{(3 \sqrt{x})^2} \frac{\left(e^{5 x \frac{4}{3}}-1\right)}{5 x^{\frac{1}{3}}} \times 9 x \times 5 x^{\frac{4}{3}}}
\)
\(
=\lim _{x \rightarrow 0^{+}} \frac{\frac{\tan \left(5(x)^{\frac{1}{3}}\right)}{5(x)^{\frac{1}{3}}} \frac{\ln \left(1+3 x^3\right)}{3 x^2} \times 15 x^{\frac{7}{3}}}{\frac{\left(\tan ^2(3 \sqrt{x})\right)^2}{(3 \sqrt{x})^2} \frac{\left(e^{5(x)^{\frac{4}{3}}}-1\right)}{5 x^{\frac{1}{3}}} \times 45 x^{\frac{7}{3}}}
\)
\(
=\frac{1}{3}
\)
If \(\lim _{x \rightarrow 1^{+}} \frac{(x-1)(6+\lambda \cos (x-1))+\mu \sin (1-x)}{(x-1)^3}=-1\), where \(\lambda, \mu \in \mathbb{R}\), then \(\lambda+\mu\) is equal to [JEE Main 2025]
(c)
\(
\begin{aligned}
&\begin{aligned}
& \lim _{x \rightarrow 1^{+}} \frac{(x-1)(6+\lambda \cos (x-1))+\mu \sin (1-x)}{(x-1)^3}=-1 \\
& \text { Let } x-1=t \\
& \lim _{t \rightarrow 0^{+}} \frac{6 t+\lambda t \cos t-\mu \sin t}{t^3}=-1 \\
& =\lim _{t \rightarrow 0^{+}} \frac{6 t+\lambda t\left(1-\frac{t^2}{2!}+\frac{t^4}{4!}+\cdots\right)-\mu\left(t-\frac{t^3}{3!}+\cdots\right)}{t^3}=-1 \\
& =\lim _{t \rightarrow 0^{+}} \frac{t(6+\lambda-\mu)+t^3\left(-\frac{\lambda}{2}+\frac{\mu}{6}\right)+\cdots}{t^3}=-1 \\
& \therefore \quad \lambda-\mu+6=0 \quad \ldots . . \text { (i) } \\
& \quad \frac{\mu}{6}-\frac{\lambda}{2}=-1 \quad \ldots . . \text { (ii) }
\end{aligned}\\
&\text { Solving (i) and (ii) }\\
&\begin{aligned}
& \lambda=6, \mu=12 \\
& \lambda+\mu=18
\end{aligned}
\end{aligned}
\)
If \(\lim _{x \rightarrow 0} \frac{\cos (2 x)+a \cos (4 x)-b}{x^4}\) is finite, then \((a+b)\) is equal to : [JEE Main 2025]
(d) To find the value of \(a+b\) for which the following limit is finite:
\(
\lim _{x \rightarrow 0} \frac{\cos (2 x)+a \cos (4 x)-b}{x^4}
\)
we start by expanding the cosine functions using their Taylor series:
\(
\begin{aligned}
& \cos (2 x)=1-\frac{(2 x)^2}{2!}+\frac{(2 x)^4}{4!}-\ldots \\
& \cos (4 x)=1-\frac{(4 x)^2}{2!}+\frac{(4 x)^4}{4!}-\ldots
\end{aligned}
\)
Substitute these expansions into the limit expression:
\(
\lim _{x \rightarrow 0} \frac{\left(1-\frac{4 x^2}{2!}+\frac{(2 x)^4}{4!}-\ldots\right)+a\left(1-\frac{(4 x)^2}{2!}+\frac{(4 x)^4}{4!}-\ldots\right)-b}{x^4}
\)
For this limit to be finite, the numerator must have no terms of degree less than \(x^4\). Therefore, the coefficient of \(x^2\) must be 0 . Thus, we have:
for the limit to be finite:
\(
1+a-b=0
\)
Equating the coefficients of \(x^2\) :
\(
-2-8 a=0
\)
Solving the second equation, we have:
\(
8 a=-2 a=\frac{-1}{4}
\)
Substitute \(a\) back into the first equation to find \(b\) :
\(
1+\frac{-1}{4}-b=0 b=1-\frac{1}{4} b=\frac{3}{4}
\)
Thus, the sum of \(a\) and \(b\) is:
\(
a+b=\frac{-1}{4}+\frac{3}{4}=\frac{1}{2}
\)
Therefore, the correct value of \(a+b\) is \(\frac{1}{2}\).
For \(\alpha, \beta, \gamma \in \mathbf{R}\), if \(\lim _{x \rightarrow 0} \frac{x^2 \sin \alpha x+(\gamma-1) \mathrm{e}^{x^2}}{\sin 2 x-\beta x}=3\), then \(\beta+\gamma-\alpha\) is equal to : [JEE Main 2025]
(d)
\(
\begin{aligned}
& \text { At } x \rightarrow 0 \\
& \sin 2 x-\beta x \rightarrow 0 \\
& \Rightarrow \quad \frac{0}{0} \text { form } \\
& \Rightarrow \quad(\gamma-1) e^0+0 \sin (\alpha x) \rightarrow 0 \\
& \Rightarrow \quad(\gamma-1)=0 \\
& \Rightarrow \quad \gamma=1 \\
& \Rightarrow \quad \lim _{x \rightarrow 0} \frac{x^2 \sin (\alpha x)}{(\sin 2 x-\beta x)}=3
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0} \frac{x^2\left[\alpha x-\frac{(\alpha x)^3}{3!}+\frac{(\alpha x)^5}{5!}-\cdots\right]}{\left[(2 x)-\frac{(2 x)^3}{3!}+\frac{(2 x)^5}{5!}\right]-\beta x} \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{\alpha x^3-\frac{\alpha^3 x^5}{3!}+\frac{\alpha^5 x^7}{5!}-\cdots}{x(2-\beta)-\frac{8 x^3}{6}+\frac{2^5 \cdot x^5}{5!}-\cdots}=3
\end{aligned}
\)
\(
\begin{aligned}
\Rightarrow & 2-\beta=0 \text { and } \frac{\alpha}{\frac{-8}{6}}=3 \\
\Rightarrow & \beta=2 \\
& \alpha=3\left(-\frac{8}{6}\right)=-4 \\
\Rightarrow & \gamma=1, \beta=2, \alpha=-4 \\
\Rightarrow & \beta+\gamma-\alpha=7
\end{aligned}
\)
Note: The lowest power of \(x\) in the numerator is \(x^3\). For the limit to be finite, the lowest power of \(x\) in the denominator must also be \(x^3\). This implies that the coefficient of \(x\) in the denominator must be zero: \(2-\beta=0 \Longrightarrow \beta=2\).
The value of \(\lim _{n \rightarrow \infty}\left(\sum_{k=1}^n \frac{k^3+6 k^2+11 k+5}{(k+3)!}\right)\) is : [JEE Main 2025]
(a)
\(
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{k^3+6 k^2+11 k+5}{(k+3)!} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{k^3+6 k^2+11 k+6-1}{(k+3)!} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{(k+1)(k+2)(k+3)-1}{(k+3)!} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{(k+1)(k+2)(k+3)}{(k+3)!}-\frac{1}{(k+3)!} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^n\left(\frac{1}{k!}-\frac{1}{(k+3)!}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!} \ldots+\frac{1}{n!}-\frac{1}{4!}-\frac{1}{5!}-\frac{1}{6!} \ldots-\frac{1}{(n+3)!}\right) \\
& =\frac{1}{1}+\frac{1}{2}+\frac{1}{6}=\frac{10}{6}=\frac{5}{3}
\end{aligned}
\)
\(\lim _{x \rightarrow 0} \operatorname{cosec} x\left(\sqrt{2 \cos ^2 x+3 \cos x}-\sqrt{\cos ^2 x+\sin x+4}\right)\) is: [JEE Main 2025]
(d)
\(
\begin{aligned}
&\lim _{x \rightarrow 0} \operatorname{cosec} x\left(\sqrt{2 \cos ^2 x+3 \cos x}-\sqrt{\cos ^2 x+\sin x+4}\right) \text {. This can be rewritten as }\\
&\lim _{x \rightarrow 0} \frac{\sqrt{2 \cos ^2 x+3 \cos x}-\sqrt{\cos ^2 x+\sin x+4}}{\sin x} .
\end{aligned}
\)
The expression is multiplied and divided by the conjugate of the numerator, which is \(\sqrt{2 \cos ^2 x+3 \cos x}+\sqrt{\cos ^2 x+\sin x+4}\). This results in:
\(
\lim _{x \rightarrow 0} \frac{\left(2 \cos ^2 x+3 \cos x\right)-\left(\cos ^2 x+\sin x+4\right)}{\sin x\left(\sqrt{2 \cos ^2 x+3 \cos x}+\sqrt{\cos ^2 x+\sin x+4}\right)} .
\)
The numerator is simplified:
\(
\lim _{x \rightarrow 0} \frac{\cos ^2 x+3 \cos x-\sin x-4}{\sin x\left(\sqrt{2 \cos ^2 x+3 \cos x}+\sqrt{\cos ^2 x+\sin x+4}\right)}
\)
The limit is evaluated by substituting \(x=0\) into the expression. It is noted that \(\cos 0=1\) and \(\sin 0=0\). The numerator becomes \(1^2+3(1)-0-4=1+3-4=0\). The denominator becomes \(0 \times\left(\sqrt{2(1)^2+3(1)}+\sqrt{1^2+0+4}\right)=0 \times(\sqrt{5}+\sqrt{5})=0\). Since the form is \(\frac{0}{0}\),
L’Hôpital’s Rule can be applied.
Alternatively, the numerator can be rewritten to facilitate the application of standard limits. The numerator is \(\cos ^2 x+3 \cos x-\sin x-4\). This can be written as \(\left(\cos ^2 x-1\right)+(3 \cos x-3)-\sin x\). This simplifies to \(-\sin ^2 x-3(1-\cos x)-\sin x\).
The expression is then:
\(
\lim _{x \rightarrow 0} \frac{-\sin ^2 x-3(1-\cos x)-\sin x}{\sin x\left(\sqrt{2 \cos ^2 x+3 \cos x}+\sqrt{\cos ^2 x+\sin x+4}\right)} .
\)
Each term in the numerator is divided by \(\sin x\) :
\(
\lim _{x \rightarrow 0} \frac{-\sin x-3 \frac{(1-\cos x)}{\sin x}-1}{\sqrt{2 \cos ^2 x+3 \cos x}+\sqrt{\cos ^2 x+\sin x+4}} .
\)
The limit of \(\frac{1-\cos x}{\sin x}\) as \(x \rightarrow 0\) is evaluated. This can be written as \(\frac{1-\cos x}{x} \times \frac{x}{\sin x}\). It is known that \(\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0\) and \(\lim _{x \rightarrow 0} \frac{x}{\sin x}=1\). Therefore, \(\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}=0 \times 1=0\).
Substituting the limits into the expression:
\(
\frac{-0-3(0)-1}{\sqrt{2(1)^2+3(1)}+\sqrt{1^2+0+4}}=\frac{-1}{\sqrt{5}+\sqrt{5}}=\frac{-1}{2 \sqrt{5}} .
\)
Let \(f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}\) be a function such that \(f(x)-6 f\left(\frac{1}{x}\right)=\frac{35}{3 x}-\frac{5}{2}\). If the \(\lim _{x \rightarrow 0}\left(\frac{1}{\alpha x}+f(x)\right)=\beta ; \alpha, \beta \in \mathbb{R}\), then \(\alpha+2 \beta\) is equal to [JEE Main 2025]
(d) Determining the Function \(f(x)\):
The given functional equation is \(f(x)-6 f\left(\frac{1}{x}\right)=\frac{35}{3 x}-\frac{5}{2}\).
The variable \(x\) is replaced with \(\frac{1}{x}\) in the given equation, resulting in \(f\left(\frac{1}{x}\right)-6 f(x)=\frac{35}{3\left(\frac{1}{x}\right)}-\frac{5}{2}\), which simplifies to \(f\left(\frac{1}{x}\right)-6 f(x)=\frac{35 x}{3}-\frac{5}{2}\).
The second equation is multiplied by 6 , yielding \(6 f\left(\frac{1}{x}\right)-36 f(x)=70 x-15\).
The original equation and the modified second equation are added:
\(
\left(f(x)-6 f\left(\frac{1}{x}\right)\right)+\left(6 f\left(\frac{1}{x}\right)-36 f(x)\right)=\left(\frac{35}{3 x}-\frac{5}{2}\right)+(70 x-15)
\)
This addition simplifies to \(-35 f(x)=\frac{35}{3 x}+70 x-\frac{35}{2}\).
Both sides of the equation are divided by -35 , resulting in \(f(x)=-\frac{1}{3 x}-2 x+\frac{1}{2}\).
Evaluating the Limit:
The limit to be evaluated is \(\lim _{x \rightarrow 0}\left(\frac{1}{\alpha x}+f(x)\right)=\beta\).
The expression for \(f(x)\) is substituted into the limit: \(\lim _{x \rightarrow 0}\left(\frac{1}{\alpha x}-\frac{1}{3 x}-2 x+\frac{1}{2}\right)=\beta\).
The terms with \(x\) in the denominator are combined: \(\lim _{x \rightarrow 0}\left(\left(\frac{1}{\alpha}-\frac{1}{3}\right) \frac{1}{x}-2 x+\frac{1}{2}\right)=\beta\).
For the limit to exist and be finite, the coefficient of \(\frac{1}{x}\) must be zero, so \(\frac{1}{\alpha}-\frac{1}{3}=0\).
Solving for \(\alpha\) gives \(\frac{1}{\alpha}=\frac{1}{3}\), which implies \(\alpha=3\).
With \(\frac{1}{\alpha}-\frac{1}{3}=0\), the limit becomes \(\lim _{x \rightarrow 0}\left(-2 x+\frac{1}{2}\right)=\beta\).
Evaluating the limit yields \(\beta=\frac{1}{2}\).
Calculating \(\alpha+2 \beta\):
The values of \(\alpha=3\) and \(\beta=\frac{1}{2}\) are substituted into the expression \(\alpha+2 \beta\).
The calculation is \(3+2\left(\frac{1}{2}\right)=3+1=4\).
\(
\lim _{x \rightarrow \infty} \frac{\left(2 x^2-3 x+5\right)(3 x-1)^{\frac{x}{2}}}{\left(3 x^2+5 x+4\right) \sqrt{(3 x+2)^x}} \text { is equal to : }
\) [JEE Main 2025]
(b)
\(
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\left(2-\frac{3}{x}+\frac{5}{x^2}\right)\left(1-\frac{1}{3 x}\right)^{x / 2}}{\left(3+\frac{5}{x}+\frac{4}{x^2}\right)\left(1+\frac{2}{3 x}\right)^{x / 2}} \\
& =\lim _{x \rightarrow \infty} \frac{2}{3} \cdot \frac{e^{\frac{x}{2}\left(1-\frac{1}{3 x}-1\right)}}{e^{\frac{x}{2}\left(1+\frac{2}{3 x}-1\right)}} \\
& =\frac{2}{3} \cdot \frac{e^{-\frac{1}{6}}}{e^{1 / 3}}=\frac{2}{3} e^{-\frac{1}{2}}
\end{aligned}
\)
If \(\lim _{x \rightarrow \infty}\left(\left(\frac{\mathrm{e}}{1-\mathrm{e}}\right)\left(\frac{1}{\mathrm{e}}-\frac{x}{1+x}\right)\right)^x=\alpha\), then the value of \(\frac{\log _{\mathrm{e}} \alpha}{1+\log _{\mathrm{e}} \alpha}\) equals : [JEE Main 2025]
(c) Calculation of \(\alpha\)
The expression inside the limit is first simplified:
\(
\left(\frac{\mathrm{e}}{1-\mathrm{e}}\right)\left(\frac{1}{\mathrm{e}}-\frac{x}{1+x}\right)=\left(\frac{\mathrm{e}}{1-\mathrm{e}}\right)\left(\frac{1+x-\mathrm{e} x}{\mathrm{e}(1+x)}\right)
\)
The e terms are cancelled, and the expression is further simplified:
\(
\frac{1+x-\mathrm{e} x}{(1-\mathrm{e})(1+x)}=\frac{1+x(1-\mathrm{e})}{(1-\mathrm{e})(1+x)}
\)
The expression is then split into two terms:
\(
\frac{1}{(1-e)(1+x)}+\frac{x(1-e)}{(1-e)(1+x)}=\frac{1}{(1-e)(1+x)}+\frac{x}{1+x}
\)
The second term is rewritten to facilitate the limit calculation:
\(
\frac{1}{(1-\mathrm{e})(1+x)}+\frac{1+x-1}{1+x}=\frac{1}{(1-\mathrm{e})(1+x)}+1-\frac{1}{1+x}
\)
The terms are combined over a common denominator:
\(
1+\frac{1-(1-e)}{(1-e)(1+x)}=1+\frac{e}{(1-e)(1+x)}
\)
The limit is then evaluated in the form of \(\mathrm{e}^L\) :
\(
\alpha=\lim _{x \rightarrow \infty}\left(1+\frac{\mathrm{e}}{(1-\mathrm{e})(1+x)}\right)^x
\)
The exponent is adjusted to match the form \(\left(1+\frac{1}{f(x)}\right)^{f(x)}\) :
\(
\alpha=\lim _{x \rightarrow \infty}\left(\left(1+\frac{\mathrm{e}}{(1-\mathrm{e})(1+x)}\right)^{\frac{(1-\mathrm{e})(1+x)}{\mathrm{e}}}\right)^{\frac{\mathrm{ex}}{(1-\mathrm{e})(1+x)}}
\)
The limit of the inner part is e , and the limit of the outer exponent is calculated:
\(
\lim _{x \rightarrow \infty} \frac{\mathrm{e} x}{(1-\mathrm{e})(1+x)}=\lim _{x \rightarrow \infty} \frac{\mathrm{e}}{(1-\mathrm{e})\left(1+\frac{1}{x}\right)}=\frac{\mathrm{e}}{1-\mathrm{e}}
\)
Therefore, the value of \(\alpha\) is:
\(
\alpha=\mathrm{e}^{\frac{\mathrm{e}}{1-\mathrm{e}}}
\)
Calculation of the Final Expression:
The natural logarithm of \(\alpha\) is taken:
\(
\log _{\mathrm{e}} \alpha=\log _{\mathrm{e}}\left(\mathrm{e}^{\frac{\mathrm{e}}{1-\mathrm{e}}}\right)=\frac{\mathrm{e}}{1-\mathrm{e}}
\)
The denominator of the final expression is calculated:
\(
1+\log _{\mathrm{e}} \alpha=1+\frac{\mathrm{e}}{1-\mathrm{e}}=\frac{1-\mathrm{e}+\mathrm{e}}{1-\mathrm{e}}=\frac{1}{1-\mathrm{e}}
\)
The final expression is then evaluated:
\(
\frac{\log _{\mathrm{e}} \alpha}{1+\log _{\mathrm{e}} \alpha}=\frac{\frac{\mathrm{e}}{1-\mathrm{e}}}{\frac{1}{1-\mathrm{e}}}=\mathrm{e}
\)
If \(\sum_{r=1}^n T_r=\frac{(2 n-1)(2 n+1)(2 n+3)(2 n+5)}{64}\), then \(\lim _{n \rightarrow \infty} \sum_{r=1}^n\left(\frac{1}{T_r}\right)\) is equal to: [JEE Main 2025]
(a) Finding the General Term \(R_n\)
The given sum is \(\sum_{r=1}^n R_r=S_n=\frac{(2 n-1)(2 n+1)(2 n+3)(2 n+5)}{64}\). The general term \(R_n\) can be found by subtracting the sum of the first \(n-1\) terms from the sum of the first \(n\) terms, i.e., \(R_n=S_n-S_{n-1}\).
Calculating \(S_{n-1}\)
\(S_{n-1}\) is obtained by replacing \(n\) with \(n-1\) in the expression for \(S_n\) :
\(
S_{n-1}=\frac{(2(n-1)-1)(2(n-1)+1)(2(n-1)+3)(2(n-1)+5)}{64}=\frac{(2 n-3)(2 n-1)(2 n+1)(2 n+3)}{64} .
\)
Determining \(R_n\)
\(
R_n=S_n-S_{n-1}=\frac{(2 n-1)(2 n+1)(2 n+3)(2 n+5)}{64}-\frac{(2 n-3)(2 n-1)(2 n+1)(2 n+3)}{64} .
\)
\(
\begin{aligned}
&\text { Factoring out the common terms: }\\
&\begin{aligned}
& \boldsymbol{R}_n=\frac{(2 n-1)(2 n+1)(2 n+3)}{64}[(2 n+5)-(2 n-3)] . \\
& \boldsymbol{R}_n=\frac{(2 n-1)(2 n+1)(2 n+3)}{64}[2 n+5-2 n+3] . \boldsymbol{R}_n=\frac{(2 n-1)(2 n+1)(2 n+3)}{64} . \\
& \boldsymbol{R}_n=\frac{(2 n-1)(2 n+1)(2 n+3)}{8} .
\end{aligned}
\end{aligned}
\)
Finding \(\frac{1}{R_n}\)
The reciprocal of \(R_n\) is: \(\frac{1}{R_n}=\frac{8}{(2 n-1)(2 n+1)(2 n+3)}\).
Expressing \(\frac{1}{R_n}\) using Partial Fractions
The expression \(\frac{1}{R_n}\) can be written using partial fractions. Consider the general form \(\frac{1}{(a x-b)(a x+c)(a x+d)}\). In this case, \(\frac{1}{R_n}=\frac{8}{(2 n-1)(2 n+1)(2 n+3)}\). This can be expressed as a difference of two terms:
\(\frac{1}{R_n}=2\left[\frac{1}{(2 n-1)(2 n+1)}-\frac{1}{(2 n+1)(2 n+3)}\right]\).
Evaluating the Sum \(\sum_{r=1}^n\left(\frac{1}{R_r}\right)\)
The sum is a telescoping series:
\(
\sum_{r=1}^n\left(\frac{1}{R_r}\right)=\sum_{r=1}^n 2\left[\frac{1}{(2 r-1)(2 r+1)}-\frac{1}{(2 r+1)(2 r+3)}\right]
\)
\(
2\left[\left(\frac{1}{1 \cdot 3}-\frac{1}{3 \cdot 5}\right)+\left(\frac{1}{3 \cdot 5}-\frac{1}{5 \cdot 7}\right)+\ldots+\left(\frac{1}{(2 n-1)(2 n+1)}-\frac{1}{(2 n+1)(2 n+3)}\right)\right]
\)
Most terms cancel out, leaving:
\(
\sum_{r=1}^n\left(\frac{1}{R_r}\right)=2\left[\frac{1}{1 \cdot 3}-\frac{1}{(2 n+1)(2 n+3)}\right]=2\left[\frac{1}{3}-\frac{1}{(2 n+1)(2 n+3)}\right]
\)
Calculating the Limit
The limit as \(n \rightarrow \infty\) is: \(\lim _{n \rightarrow \infty} \sum_{r=1}^n\left(\frac{1}{R_r}\right)=\lim _{n \rightarrow \infty} 2\left[\frac{1}{3}-\frac{1}{(2 n+1)(2 n+3)}\right]\). As \(n \rightarrow \infty\), the term \(\frac{1}{(2 n+1)(2 n+3)}\) approaches 0 . Therefore, the limit is \(2\left[\frac{1}{3}-0\right]=\frac{2}{3}\).
\(\lim _{x \rightarrow 0} \frac{x+2 \sin x}{\sqrt{x^2+2 \sin x+1}-\sqrt{\sin ^2 x-x+1}} \text { is : } \) [JEE Main 2019]
(d)
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{(x+2 \sin x)\left(\sqrt{x^2+2 \sin x+1}+\sqrt{\sin ^2 x-x+2}\right)}{x^2+2 \sin x+1-\sin ^2 x+x-1} \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{\left(1+\left(2 \frac{\sin x}{x}\right)\right)\left(\sqrt{x^2+2 \sin x+1}+\sqrt{\sin ^2 x-x+1}\right)}{x+\frac{2 \sin x}{x}-\frac{\sin ^2 x}{x}+1} \\
& \Rightarrow \frac{(1+2)(1+1)}{3}=2
\end{aligned}
\)
If \(\alpha\) and \(\beta\) are the roots of the equation \(375 {x}^2-25 {x}-2=0\), then \(\lim _{n \rightarrow \infty} \sum_{r=1}^n \alpha^r+\lim _{n \rightarrow \infty} \sum_{r=1}^n \beta^r\) is equal to : [JEE Main 2019]
(c) Given \(\alpha\) and \(\beta\) are roots of quadratic equation
\(
\begin{aligned}
& \quad 375 x^2-25 x-2=0 \\
& \therefore \quad \alpha+\beta=\frac{25}{375}=\frac{1}{15} \ldots \text { (i) } \\
& \text { and } \alpha \beta=-\frac{2}{375} \ldots \text { (ii) } \\
& \text { and now } \lim _{n \rightarrow \infty} \sum_{r=1}^n \alpha^r+\lim _{n \rightarrow \infty} \sum_{r=1}^n \beta^r
\end{aligned}
\)
\(
\begin{aligned}
& =\left(\alpha+\alpha^2+\alpha^3+\ldots+\text { upto infinite terms }\right)+\left(\beta+\beta^2+\beta^3+\ldots+\text { upto infinite terms }\right) \\
& =\frac{\alpha}{1-\alpha}+\frac{\beta}{1-\beta}\left[\because S_{\infty}=\frac{a}{1-r} \text { for GP }\right]
\end{aligned}
\)
\(
\begin{aligned}
&\begin{aligned}
& =\frac{\alpha(1-\beta)+\beta(1-\alpha)}{(1-\alpha)(1-\beta)}=\frac{\alpha-\alpha \beta+\beta-\alpha \beta}{1-\alpha-\beta+\alpha \beta} \\
& =\frac{(\alpha+\beta)-2 \alpha \beta}{1-(\alpha+\beta)+\alpha \beta}
\end{aligned}\\
&\text { On substituting the value } \alpha+\beta=\frac{1}{15} \text { and } \alpha \beta=\frac{-2}{375} \text { from Eqs. (i) and (ii) respectively, we get }\\
&\begin{aligned}
& =\frac{\frac{1}{15}+\frac{4}{375}}{1-\frac{1}{15}-\frac{2}{377}} \\
& =\frac{29}{375-25-2}=\frac{29}{348}=\frac{1}{12}
\end{aligned}
\end{aligned}
\)
If \(\lim _{x \rightarrow 1} \frac{x^4-1}{x-1}=\lim _{x \rightarrow k} \frac{x^3-k^3}{x^2-k^2}\), then k is : [JEE Main 2019]
(b) If \(\lim _{x \rightarrow 1} \frac{x^4-1}{x-1}=\lim _{x \rightarrow K}\left(\frac{x^3-k^3}{x^2-k^2}\right)\)
L.H.S.
\(
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow 1} \frac{x^4-1}{x-1}=\left(\frac{0}{0} \text { form }\right) \\
& \Rightarrow \operatorname{Lt}_{x \rightarrow 1} \frac{4 x^3}{1}=4
\end{aligned}
\)
R.H.S.
\(
\begin{aligned}
&\text { Now, } \lim _{x \rightarrow K}\left(\frac{x^3-k^3}{x^2-k^2}\right)=4\\
&\begin{aligned}
& \Rightarrow \lim _{x \rightarrow K} \frac{3 x^2}{2 x}=4 \\
& \Rightarrow \frac{3}{2} k=4 \Rightarrow k=\frac{8}{3}
\end{aligned}
\end{aligned}
\)
For \(\mathrm{t}>-1\), let \(\alpha_{\mathrm{t}}\) and \(\beta_{\mathrm{t}}\) be the roots of the equation
\(
\left((\mathrm{t}+2)^{1 / 7}-1\right) x^2+\left((\mathrm{t}+2)^{1 / 6}-1\right) x+\left((\mathrm{t}+2)^{1 / 21}-1\right)=0 . \text { If } \lim _{\mathrm{t} \rightarrow-1^{+}} \alpha_{\mathrm{t}}=\mathrm{a} \text { and } \lim _{\mathrm{t} \rightarrow-1^{+}} \beta_{\mathrm{t}}=\mathrm{b}
\)
then \(72(a+b)^2\) is equal to _____. [JEE Main 2025]
(d)
\(
\begin{aligned}
& a+b=\lim _{t \rightarrow-1^{+}}(\alpha+\beta)=\lim _{t \rightarrow-1^{+}}-\frac{(t+2)^{\frac{1}{6}}-1}{(t+2)^{\frac{1}{7}}-1} \\
& \text { let } t+2=y \\
& a+b=\lim _{y \rightarrow 1^{+}} \frac{y^{1 / 6}-1}{y^{1 / 7}-1}=\frac{7}{6} \\
& 72(a+b)^2=72 \frac{49}{36}=98
\end{aligned}
\)
Note: The sum of the roots of a standard quadratic equation, \(a x^2+b x+c=0\), is given by the formula \(-\mathrm{b} / \mathrm{a}\). The provided expression, which mentions ” \(\alpha+\beta=-b/a\) “.
If \(\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}=p\), then \(96 \log _{\mathrm{e}} p\) is equal to ______. {JEE Main 2025]
(a) Step 1: Evaluate the limit for \(p\)
The problem requires finding the value of \(96 \log _e p\), where \(p\) is defined by the limit:
\(
p=\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}
\)
This limit is of the indeterminate form \(1^{\infty}\). To evaluate it, we can use the property that if \(\lim _{x \rightarrow c} f(x)=1\) and \(\lim _{x \rightarrow c} g(x)=\infty\), then
\(
\lim _{x \rightarrow c} f(x)^{g(x)}=e^{\lim _{x \rightarrow c} x \rightarrow c} g(x)(f(x)-1)
\)
In this case, \(f(x)=\frac{\tan x}{x}\) and \(g(x)=\frac{1}{x^2}\).
First, we need to evaluate the limit of the exponent:
\(
\lim _{x \rightarrow 0} \frac{1}{x^2}\left(\frac{\tan x}{x}-1\right)=\lim _{x \rightarrow 0} \frac{\tan x-x}{x^3}
\)
This is of the indeterminate form \(\frac{0}{0}\). We can use L’Hopital’s Rule three times.
Applying L’Hopital’s Rule for the first time:
\(
\lim _{x \rightarrow 0} \frac{\sec ^2 x-1}{3 x^2}
\)
Since \(\sec ^2 x-1=\tan ^2 x\), this becomes:
\(
\lim _{x \rightarrow 0} \frac{\tan ^2 x}{3 x^2}=\lim _{x \rightarrow 0} \frac{1}{3}\left(\frac{\tan x}{x}\right)^2=\frac{1}{3}(1)^2=\frac{1}{3}
\)
Therefore, the limit of the exponent is \(\frac{1}{3}\).
So, \(p=e^{\frac{1}{3}}\).
Step 2: Calculate \(96 \log _e p\)
Now that we have the value of \(p\), we can find \(96 \log _e p\). Substitute \(p=e^{\frac{1}{3}}\) into the expression:
\(
96 \log _e p=96 \log _e\left(e^{\frac{1}{3}}\right)
\)
Using the property of logarithms \(\log _b\left(a^c\right)=c \log _b(a)\) :
\(
96 \log _e\left(e^{\frac{1}{3}}\right)=96 \times \frac{1}{3} \log _e(e)
\)
Since \(\log _e(e)=1\) :
\(
96 \times \frac{1}{3} \times 1=32
\)
Let \([t]\) be the greatest integer less than or equal to \(t\). Then the least value of \(p \in N\) for which \(\lim _{x \rightarrow 0^{+}}\left(x\left(\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\ldots+\left[\frac{p}{x}\right]\right)-x^2\left(\left[\frac{1}{x^2}\right]+\left[\frac{2^2}{x^2}\right]+\ldots+\left[\frac{9^2}{x^2}\right]\right) \geq 1\right.\) is equal to _____. [JEE Main 2025]
(b) To find the least natural number \(p\) for which the following inequality holds:
\(
\lim _{x \rightarrow 0^{+}}\left(x\left(\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\ldots+\left[\frac{p}{x}\right]\right)-x^2\left(\left[\frac{1}{x^2}\right]+\left[\frac{2^2}{x^2}\right]+\ldots+\left[\frac{9^2}{x^2}\right]\right)\right) \geq 1
\)
we simplify the expression inside the limit.
As \(x \rightarrow 0^{+},\left[\frac{n}{x}\right]\) approximates to \(\frac{n}{x}\), where \(n\) is an integer. Thus, the problem becomes finding:
\(
(1+2+\ldots+p)-\left(1^2+2^2+\ldots+9^2\right) \geq 1
\)
The sum of the first \(p\) natural numbers is given by:
\(
\frac{p(p+1)}{2}
\)
And the sum of the squares of the first 9 natural numbers is:
\(
1^2+2^2+\ldots+9^2=\frac{9 \cdot 10 \cdot 19}{6}
\)
Thus, the inequality becomes:
\(
\frac{p(p+1)}{2}-\frac{9 \cdot 10 \cdot 19}{6} \geq 1
\)
Solving this, we rewrite:
\(
p(p+1) \geq 572
\)
The least natural number \(p\) satisfying this condition is 24.
Let \(f(x)=\lim _{n \rightarrow \infty} \sum_{r=0}^n\left(\frac{\tan \left(x / 2^{r+1}\right)+\tan ^3\left(x / 2^{r+1}\right)}{1-\tan ^2\left(x / 2^{r+1}\right)}\right)\) Then \(\lim _{x \rightarrow 0} \frac{e^x-e^{f(x)}}{(x-f(x))}\) is equal to ____. [JEE Main 2025]
(c) Step 1: First, consider the function \(f(x)\). We need to evaluate the limit as \(n\) approaches infinity of the sum:
\(
f(x)=\lim _{n \rightarrow \infty} \sum_{r=0}^n\left(\frac{\tan \left(\frac{x}{2^{r+1}}\right)+\tan ^3\left(\frac{x}{2^{r+1}}\right)}{1-\tan ^2\left(\frac{x}{2^{r+1}}\right)}\right)
\)
Step 2: For small values of \(x, \tan (x) \approx x\). Therefore, we can approximate the terms inside the sum:
\(
\frac{\tan \left(\frac{x}{2^{r+1}}\right)+\tan ^3\left(\frac{x}{2^{r+1}}\right)}{1-\tan ^2\left(\frac{x}{2^{r+1}}\right)} \approx \frac{\frac{x}{2^{r+1}}+\left(\frac{x}{2^{r+1}}\right)^3}{1-\left(\frac{x}{2^{r+1}}\right)^2}
\)
Step 3: Simplify the expression:
\(
\frac{\frac{x}{2^{r+1}}+\left(\frac{x}{2^{r+1}}\right)^3}{1-\left(\frac{x}{2^{r+1}}\right)^2} \approx \frac{\frac{x}{2^{r+1}}}{1}=\frac{x}{2^{r+1}}
\)
Step 4: Sum the series:
\(
f(x) \approx \sum_{r=0}^{\infty} \frac{x}{2^{r+1}}=x \sum_{r=0}^{\infty} \frac{1}{2^{r+1}}
\)
The series \(\sum_{r=0}^{\infty} \frac{1}{2^{r+1}}\) is a geometric series with sum equal to 1. Therefore,
\(
f(x)=x
\)
Step 5: Now, evaluate the limit:
\(
\lim _{x \rightarrow 0} \frac{e^x-e^{f(x)}}{x-f(x)}
\)
Since \(f(x)=x\), the expression simplifies to:
\(
\lim _{x \rightarrow 0} \frac{e^x-e^x}{x-x}
\)
This is an indeterminate form of type \(\frac{0}{0}\). Using L’Hôpital’s rule, we differentiate the numerator and the denominator:
\(
\lim _{x \rightarrow 0} \frac{e^x-e^x}{x-x}=\lim _{x \rightarrow 0} \frac{e^x-e^x}{1-1}
\)
The limit is equal to 1.
If \(\alpha=\lim _{x \rightarrow 0^{+}}\left(\frac{\mathrm{e}^{\sqrt{\tan x}}-\mathrm{e}^{\sqrt{x}}}{\sqrt{\tan x}-\sqrt{x}}\right)\) and \(\beta=\lim _{x \rightarrow 0}(1+\sin x)^{\frac{1}{2} \cot x}\) are the roots of the quadratic equation \(\mathrm{a} x^2+\mathrm{b} x-\sqrt{\mathrm{e}}=0\), then \(12 \log _{\mathrm{e}}(\mathrm{a}+\mathrm{b})\) is equal to ____. [JEE Main 2024]
(b)
\(
\begin{aligned}
\alpha & =\lim _{x \rightarrow 0^{+}} \frac{e^{\sqrt{\tan x}}-e^{\sqrt{x}}}{(\sqrt{\tan x}-\sqrt{x})} \\
& =\lim _{x \rightarrow 0} \frac{e^{\sqrt{x}}\left(e^{\sqrt{\tan x}-\sqrt{x}}-1\right)}{(\sqrt{\tan x}-\sqrt{x})}=1
\end{aligned}
\)
The limit expression for \(\beta\) is given by \(\beta=\lim _{x \rightarrow 0}(1+\sin x)^{\frac{1}{2} \cot x}\).
This limit is of the indeterminate form \(1^{\infty}\).
The general formula for such limits is \(\lim _{x \rightarrow a}[f(x)]^{g(x)}=e^{\lim _{x \rightarrow a} g(x)[f(x)-1]}\).
In this case, \(f(x)=1+\sin x[latex] and [latex]g(x)=\frac{1}{2} \cot x\).
The exponent becomes \(\lim _{x \rightarrow 0}\left(\frac{1}{2} \cot x \cdot(1+\sin x-1)\right)\).
This simplifies to \(\lim _{x \rightarrow 0}\left(\frac{1}{2} \frac{\cos x}{\sin x} \cdot \sin x\right)\).
Further simplification yields \(\lim _{x \rightarrow 0}\left(\frac{1}{2} \cos x\right)\).
Substituting \(x=0\), the limit is \(\frac{1}{2} \cos 0=\frac{1}{2} \cdot 1=\frac{1}{2}\).
Therefore, \(\beta=\mathrm{e}^{\frac{1}{2}}=\sqrt{\mathrm{e}}\).
Determining the Quadratic Equation Coefficients:
The roots of the quadratic equation \(\mathrm{a} x^2+\mathrm{b} x-\sqrt{\mathrm{e}}=0\) are \(\alpha=1\) and \(\beta=\sqrt{\mathrm{e}}\).
The sum of the roots is \(\alpha+\beta=-\frac{\mathrm{b}}{\mathrm{a}}\).
Substituting the values of \(\alpha\) and \(\beta, 1+\sqrt{\mathrm{e}}=-\frac{\mathrm{b}}{\mathrm{a}}\).
The product of the roots is \(\alpha \beta=\frac{-\sqrt{\mathrm{e}}}{\mathrm{a}}\).
Substituting the values of \(\alpha\) and \(\beta, 1 \cdot \sqrt{\mathrm{e}}=\frac{-\sqrt{\mathrm{e}}}{\mathrm{a}}\).
From the product of roots, \(\sqrt{\mathrm{e}}=\frac{-\sqrt{\mathrm{e}}}{\mathrm{a}}\).
This implies \(\mathrm{a}=-1\).
Substitute \(\mathrm{a}=-1\) into the sum of roots equation: \(1+\sqrt{\mathrm{e}}=-\frac{\mathrm{b}}{-1}\).
This simplifies to \(1+\sqrt{\mathrm{e}}=\mathrm{b}\).
Therefore, \(\mathrm{a}=-1\) and \(\mathrm{b}=1+\sqrt{\mathrm{e}}\).
Calculation of \(12 \log _{\mathrm{e}}(\mathrm{a}+\mathrm{b})\):
The value of \(a+b\) is calculated as \(-1+(1+\sqrt{e})\).
This simplifies to \(\mathrm{a}+\mathrm{b}=\sqrt{\mathrm{e}}\).
The expression to be evaluated is \(12 \log _{\mathrm{c}}(\mathrm{a}+\mathrm{b})\).
Substitute the value of \(a+b: 12 \log _c(\sqrt{e})\).
Since \(\sqrt{\mathrm{e}}=\mathrm{e}^{\frac{1}{2}}\), the expression becomes \(12 \log _{\mathrm{e}}\left(\mathrm{e}^{\frac{1}{2}}\right)=6\).
The value of \(\lim _{x \rightarrow 0} 2\left(\frac{1-\cos x \sqrt{\cos 2 x} \sqrt[3]{\cos 3 x} \ldots \ldots \sqrt[10]{\cos 10 x}}{x^2}\right)\) is _______. {JEE Main 2024]
(d) Let \(L=\lim _{x \rightarrow 0} 2\left(\frac{1-\cos x \sqrt{\cos x} \sqrt[3]{\cos 3 x} \ldots \sqrt[10]{\cos 10 x}}{x^2}\right)\)
We can rewrite the product of cosine terms as:
\(
\cos x(\cos x)^{\frac{1}{2}}(\cos 3 x)^{\frac{1}{3}} \ldots(\cos 10 x)^{\frac{1}{10}}=\prod_{n-1}^{10}(\cos n x)^{\frac{1}{n}}
\)
Use the Taylor series expansion for \(\cos x\) near \(x=0\):
Recall that \(\cos x=1-\frac{x^2}{2}+O\left(x^4\right)\) as \(x \rightarrow 0\)
Then, \(\cos n x=1-\frac{n^2 x^2}{2}+O\left(x^4\right)\) as \(x \rightarrow 0\)
Use the approximation \((1+x)^a \approx 1+a x\) for small \(x\):
We have \((\cos n x)^{\frac{1}{n}}=\left(1-\frac{n^2 x^2}{2}+O\left(x^4\right)\right)^{\frac{1}{n}} \approx 1-\frac{1}{n} \cdot \frac{n^2 x^2}{2}=1-\frac{n x^2}{2}\) as \(x \rightarrow 0\)
Approximate the product using the Taylor series expansion:
\(
\prod_{n-1}^{10}(\cos n x)^{\frac{1}{n}} \approx \prod_{n-1}^{10}\left(1-\frac{n x^2}{2}\right) \approx 1-\sum_{n-1}^{10} \frac{n x^2}{2}+O\left(x^4\right) \text { as } x \rightarrow 0
\)
The sum \(\sum_{n-1}^{10} n=\frac{10(10+1)}{2}=\frac{10 \cdot 11}{2}=55\)
Therefore, \(\prod_{n-1}^{10}(\cos n x)^{\frac{1}{n}} \approx 1-\frac{55 x^2}{2}\) as \(x \rightarrow 0\)
Substitute the approximation back into the limit expression:
\(
L=\lim _{x \rightarrow 0} 2\left(\frac{1-\left(1-\frac{55 x^2}{2}\right)}{x^2}\right)=\lim _{x \rightarrow 0} 2\left(\frac{\frac{55 x^2}{2}}{x^2}\right)=2 \cdot \frac{55}{2}=55
\)
Let \(\mathrm{a}>0\) be a root of the equation \(2 x^2+x-2=0\). If \(\lim _{x \rightarrow \frac{1}{a}} \frac{16\left(1-\cos \left(2+x-2 x^2\right)\right)}{(1-a x)^2}=\alpha+\beta \sqrt{17}\), where \(\alpha, \beta \in Z\), then \(\alpha+\beta\) is equal to _____. [JEE Main 2024]
(a) Find the positive root \(a\) of the quadratic equation
The quadratic equation is \(2 x^2+x-2=0\). Using the quadratic formula, the roots are:
\(
x=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}=\frac{-1 \pm \sqrt{1^2-4(2)(-2)}}{2(2)}=\frac{-1 \pm \sqrt{1+16}}{4}=\frac{-1 \pm \sqrt{17}}{4}
\)
The positive root, \(a\), is given by:
\(
a=\frac{-1+\sqrt{17}}{4}
\)
Let’s use the known limit \(\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta^2}=\frac{1}{2}\).
\(
\lim _{x \rightarrow \frac{1}{a}} 16 \cdot \frac{1-\cos \left(2+x-2 x^2\right)}{\left(2+x-2 x^2\right)^2} \cdot \frac{\left(2+x-2 x^2\right)^2}{(1-a x)^2}
\)
The first part of the expression goes to \(16 \cdot \frac{1}{2}=8\).
Now, we need to evaluate the second part of the expression:
\(
\lim _{x \rightarrow \frac{1}{a}} \frac{\left(2+x-2 x^2\right)^2}{(1-a x)^2}=\left(\lim _{x \rightarrow \frac{1}{a}} \frac{2+x-2 x^2}{1-a x}\right)^2
\)
Let’s try the L’Hôpital approach again on the inner limit:
\(
\lim _{x \rightarrow \frac{1}{a}} \frac{2+x-2 x^2}{1-a x}
\)
Numerator derivative: \(1-4 x\). Denominator derivative: \(-a\).
The limit is \(\frac{1-4\left(\frac{1}{a}\right)}{-a}=\frac{1-\frac{4}{a}}{-a}=\frac{\frac{a-4}{a}}{-a}=\frac{4-a}{a^2}\).
\(
\begin{aligned}
& a=\frac{-1+\sqrt{17}^{-a}}{4} \cdot a^2=\frac{9-\sqrt{17}}{8} \\
& 4-a=4-\frac{-1+\sqrt{17}}{4}=\frac{16-(-1+\sqrt{17})}{4}=\frac{17-\sqrt{17}}{4} \\
& \frac{4-a}{a^2}=\frac{\frac{17-\sqrt{17}}{4}}{\frac{9-\sqrt{17}}{8}}=\frac{17-\sqrt{17}}{4} \cdot \frac{8}{9-\sqrt{17}}=\frac{2(17-\sqrt{17})}{9-\sqrt{17}}
\end{aligned}
\)
Let’s rationalize this:
\(
\frac{2(17-\sqrt{17})}{9-\sqrt{17}} \cdot \frac{9+\sqrt{17}}{9+\sqrt{17}}=\frac{2(153+17 \sqrt{17}-9 \sqrt{17}-17)}{81-17}=\frac{2(136+8 \sqrt{17})}{64}=\frac{136+8 \sqrt{17}}{32}=\frac{17+\sqrt{17}}{4}
\)
The square of this limit is
\(
\left(\frac{17+\sqrt{17}}{4}\right)^2=\frac{289+34 \sqrt{17}+17}{16}=\frac{306+34 \sqrt{17}}{16}=\frac{153+17 \sqrt{17}}{8}
\)
The full limit is \(8 \times \frac{153+17 \sqrt{17}}{8}=153+17 \sqrt{17}\).
We have \(\alpha+\beta \sqrt{17}=153+17 \sqrt{17}\), so \(\alpha=153\) and \(\beta=17\).
The values are \(\alpha=153\) and \(\beta=17\).
The sum \(\alpha+\beta\) is \(153+17=170\).
If \(\lim _{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{\mathrm{m} \sqrt{5}}{\mathrm{n}(2 \mathrm{n})^{2 / 3}}\), where \(\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1\), then \(8 \mathrm{~m}+12 \mathrm{n}\) is equal to ____. [JEE Main 2024]
(d) If \(\lim _{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}} \quad \text { From: } \frac{0}{0}\)
The given limit is evaluated using L’Hôpital’s Rule.
The numerator and denominator are differentiated with respect to \(x\).
The derivative of the numerator, \((5 x+1)^{1 / 3}-(x+5)^{1 / 3}\), is \(\frac{1}{3}(5 x+1)^{-2 / 3}(5)-\frac{1}{3}(x+5)^{-2 / 3}(1)\).
The derivative of the denominator, \((2 x+3)^{1 / 2}-(x+4)^{1 / 2}\), is \(\frac{1}{2}(2 x+3)^{-1 / 2}(2)-\frac{1}{2}(x+4)^{-1 / 2}(1)\).
The value \(x=1\) is substituted into the derivatives.
The numerator becomes \(\frac{1}{3}(6)^{-2 / 3}(5)-\frac{1}{3}(6)^{-2 / 3}(1)=\frac{4}{3}(6)^{-2 / 3}\).
The denominator becomes \((5)^{-1 / 2}-\frac{1}{2}(5)^{-1 / 2}=\frac{1}{2}(5)^{-1 / 2}\).
The limit is calculated by dividing the derivative of the numerator by the derivative of the denominator.
The limit is \(\frac{\frac{4}{3}(6)^{-2 / 3}}{\frac{1}{2}(5)^{-1 / 2}}=\frac{8}{3} \frac{5^{1 / 2}}{6^{2 / 3}}=\frac{8}{3} \frac{\sqrt{5}}{(2 \cdot 3)^{2 / 3}}=\frac{8}{3} \frac{\sqrt{5}}{2^{2 / 3} 3^{2 / 3}}=\frac{8 \sqrt{5}}{3^{5 / 3} 2^{2 / 3}}\).
Comparison and Determination of \(m\) and \(n\)
The calculated limit is compared with the given form \(\frac{m \sqrt{5}}{n(2 n)^{2 / 3}}\).
The expression \(\frac{8 \sqrt{5}}{3^{5 / 3} 2^{2 / 3}}\) is rewritten to match the given form.
\(
\frac{8 \sqrt{5}}{3^{5 / 3} 2^{2 / 3}}=\frac{8 \sqrt{5}}{3 \cdot 3^{2 / 3} 2^{2 / 3}}=\frac{8 \sqrt{5}}{3(2 \cdot 3)^{2 / 3}}=\frac{8 \sqrt{5}}{3(6)^{2 / 3}} .
\)
By comparing \(\frac{8 \sqrt{5}}{3(6)^{2 / 3}}[latex] with [latex]\frac{m \sqrt{5}}{n(2 n)^{2 / 3}}\), it is observed that \(m=8\) and \(n=3\).
The condition \(\operatorname{gcd}(m, n)=1\) is checked.
\(\operatorname{gcd}(8,3)=1\), which satisfies the condition.
Calculation of \(8 m+12 n\)
The value of \(8 m+12 n\) is calculated using the determined values of \(m\) and \(n\).
The values \(m=8[latex] and [latex]n=3\) are substituted into the expression \(8 m+12 n\).
\(
8(8)+12(3)=64+36
\)
The sum is calculated.
\(
64+36=100
\)
Let \(\{x\}\) denote the fractional part of \(x\) and \(f(x)=\frac{\cos ^{-1}\left(1-\{x\}^2\right) \sin ^{-1}(1-\{x\})}{\{x\}-\{x\}^3}, x \neq 0\). If \(L\) and \(R\) respectively denotes the left hand limit and the right hand limit of \(f(x)\) at \(x=0\), then \(\frac{32}{\pi^2}\left(\mathrm{~L}^2+\mathrm{R}^2\right)\) is equal to _____. {JEE Main 2024]
(b) Finding right hand limit
\(
\begin{aligned}
& \mathrm{R}=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(h) \\
&=\lim _{h \rightarrow 0} \frac{\cos ^{-1}\left(1-h^2\right) \sin ^{-1}(1-h)}{h\left(1-h^2\right)} \\
&=\lim _{\mathrm{h} \rightarrow 0} \frac{\cos ^{-1}\left(1-\mathrm{h}^2\right)}{\mathrm{h}}\left(\frac{\sin ^{-1} 1}{1}\right) \\
& \text { Let } \cos ^{-1}\left(1-h^2\right)=\theta \Rightarrow \cos \theta=1-h^2 \\
&=\frac{\pi}{2} \lim _{\theta \rightarrow 0} \frac{\theta}{\sqrt{1-\cos \theta}} \\
&=\frac{\pi}{2} \lim _{\theta \rightarrow 0} \frac{1}{\sqrt{\frac{1-\cos \theta}{\theta^2}}} \\
&=\frac{\pi}{2} \frac{1}{\sqrt{1 / 2}}
\end{aligned}
\)
\(
\begin{aligned}
&\therefore \mathrm{R}=\frac{\pi}{\sqrt{2}}\\
&\text { Now finding left hand limit }\\
&L=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow 0} f(-h)
\end{aligned}
\)
\(
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\cos ^{-1}\left(1-\{-h\}^2\right) \sin ^{-1}(1-\{-h\})}{\{-h\}-\{-h\}^3} \\
& =\lim _{h \rightarrow 0} \frac{\cos ^{-1}\left(1-(-h+1)^2\right) \sin ^{-1}(1-(-h+1))}{(-h+1)-(-h+1)^3} \\
& =\lim _{h \rightarrow 0} \frac{\cos ^{-1}\left(-h^2+2 h\right) \sin ^{-1} h}{(1-h)\left(1-(1-h)^2\right)} \\
& =\lim _{h \rightarrow 0}\left(\frac{\pi}{2}\right) \frac{\sin ^{-1} h}{\left(1-(1-h)^2\right)} \\
& =\frac{\pi}{2} \lim _{h \rightarrow 0}\left(\frac{\sin ^{-1} h}{-h^2+2 h}\right) \\
& =\frac{\pi}{2} \lim _{h \rightarrow 0}\left(\frac{\sin ^{-1} h}{h}\right)\left(\frac{1}{-h+2}\right) \\
& L=\frac{\pi}{4} \\
& \frac{32}{\pi^2}\left(\mathrm{~L}^2+\mathrm{R}^2\right)=\frac{32}{\pi^2}\left(\frac{\pi^2}{2}+\frac{\pi^2}{16}\right) \\
& =16+2 \\
& =18
\end{aligned}
\)
If \(\lim _{x \rightarrow 0} \frac{a x^2 e^x-b \log _e(1+x)+c x e^{-x}}{x^2 \sin x}=1\), then \(16\left(a^2+b^2+c^2\right)\) is equal to ____. [JEE Main 2024]
(a)
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{a x^2\left(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots . .\right)-b\left(x-\frac{x^2}{2}+\frac{x^3}{3}-\ldots . .\right)+c x\left(1-x+\frac{x^2}{x!}-\frac{x^3}{3!}+\ldots . .\right)}{x^3 \cdot \frac{\sin x}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{(c-b) x+\left(\frac{b}{2}-c+a\right) x^2+\left(a-\frac{b}{3}+\frac{c}{2}\right) x^3+\ldots \ldots}{x^3}=1
\end{aligned}
\)
Determine the values of \(a, b[latex], and [latex]c\):
For the limit to be finite and equal to 1, the coefficients of \(x\) and \(x^2\) in the numerator must be zero, and the coefficient of \(x^3\) in the numerator must be equal to the coefficient of \(x^3\) in the denominator.
Coefficient of \(x:-b+c=0 \Longrightarrow c=b\).
Coefficient of \(x^2: a+\frac{b}{2}-c=0\)
Substituting \(c=b: a+\frac{b}{2}-b=0 \Longrightarrow a-\frac{b}{2}=0 \Longrightarrow a=\frac{b}{2}\).
Coefficient of \(x^3: a-\frac{b}{3}+\frac{c}{2}=1\) Substituting \(c=b\) and \(a=\frac{b}{2}: \frac{b}{2}-\frac{b}{3}+\frac{b}{2}=1\).
This simplifies to: \(b\left(1-\frac{1}{3}\right)=1 \Longrightarrow b\left(\frac{2}{3}\right)=1 \Longrightarrow b=\frac{3}{2}\).
From these, the values are: \(b=\frac{3}{2} c=b=\frac{3}{2} a=\frac{b}{2}=\frac{1}{2} \times \frac{3}{2}=\frac{3}{4}\)
Calculate \(16\left(a^2+b^2+c^2\right)\):
The expression \(16\left(a^2+b^2+c^2\right)\) is calculated using the determined values of \(a\), \(b\), and c.
\(a^2=\left(\frac{3}{4}\right)^2=\frac{9}{16} b^2=\left(\frac{3}{2}\right)^2=\frac{9}{4} c^2=\left(\frac{3}{2}\right)^2=\frac{9}{4} a^2+b^2+c^2=\frac{9}{16}+\frac{9}{4}+\frac{9}{4}=\frac{9}{16}+\frac{36}{16}+\frac{36}{16}=\frac{81}{16}\).
Finally, \(16\left(a^2+b^2+c^2\right)=16 \times \frac{81}{16}=81\)
If the function
\(
f(x)= \begin{cases}\frac{1}{|x|}, & |x| \geqslant 2 \\ \mathrm{a} x^2+2 \mathrm{~b}, & |x|<2\end{cases}
\)
is differentiable on \(\mathbf{R}\), then \(48(a+b)\) is equal to ____. [JEE Main 2024]
(c) Continuity Conditions
The function must be continuous at the points where its definition changes, which are \(x=2\) and \(x=-2\).
At \(x=2\) :
The limit of \(f(x)\) as \(x \rightarrow 2^{-}\)must equal the limit of \(f(x)\) as \(x \rightarrow 2^{+}\)and also equal \(f(2)\).
The left-hand limit is given by \(a x^2+2 b\), so \(\lim _{x \rightarrow 2^{-}}\left(a x^2+2 b\right)=a(2)^2+2 b=4 a+2 b\).
The right-hand limit is given by \(\frac{1}{|x|}\), so \(\lim _{x \rightarrow 2^{+}} \frac{1}{|x|}=\frac{1}{2}\).
Equating these, \(4 a+2 b=\frac{1}{2}\). This can be rewritten as \(8 a+4 b=1\).
At \(x=-2\) :
The limit of \(f(x)\) as \(x \rightarrow-2^{-}\)must equal the limit of \(f(x)\) as \(x \rightarrow-2^{+}\)and also equal \(f(-2)\).
The left-hand limit is given by \(\frac{1}{|x|^{\prime}}\), so \(\lim _{x \rightarrow-2^{-}} \frac{1}{|x|}=\frac{1}{|-2|}=\frac{1}{2}\).
The right-hand limit is given by \(a x^2+2 b\), so \(\lim _{x \rightarrow-2^{+}}\left(a x^2+2 b\right)=a(-2)^2+2 b=4 a+2 b\).
Equating these, \(4 a+2 b=\frac{1}{2}\). This also leads to \(8 a+4 b=1\).
Differentiability Conditions
The function must be differentiable at \(x=2\) and \(x=-2\). This means the lefthand derivative must equal the right-hand derivative at these points.
At \(x=2\) :
The derivative of \(a x^2+2 b\) is \(2 a x\). The left-hand derivative at \(x=2\) is \(2 a(2)=4 a\).
The derivative of \(\frac{1}{|x|}\) for \(x>0\) is \(\frac{d}{d x}\left(x^{-1}\right)=-x^{-2}=-\frac{1}{x^2}\).
The right-hand derivative at \(x=2\) is \(-\frac{1}{2^2}=-\frac{1}{4}\).
Equating these, \(4 a=-\frac{1}{4}\), which gives \(a=-\frac{1}{16}\).
At \(x=-2\) :
The derivative of \(a x^2+2 b\) is \(2 a x\). The right-hand derivative at \(x=-2\) is \(2 a(-2)=-4 a\).
The derivative of \(\frac{1}{|x|}\) for \(x<0\) is \(\frac{d}{d x}\left(-x^{-1}\right)=-\left(-x^{-2}\right)=\frac{1}{x^2}\).
The left-hand derivative at \(x=-2\) is \(\frac{1}{(-2)^2}=\frac{1}{4}\).
Equating these, \(-4 a=\frac{1}{4}\), which also gives \(a=-\frac{1}{16}\).
Calculation of \(a+b\)
The value of \(a\) is found to be \(a=-\frac{1}{16}\).
This value can be substituted into the continuity equation \(8 a+4 b=1.8\left(-\frac{1}{16}\right)+4 b=1-\frac{8}{16}+4 b=1-\frac{1}{2}+4 b=1 4 b=1+\frac{1}{2} 4 b=\frac{3}{2} b=\frac{3}{8}\).
Now, \(a+b\) can be calculated: \(a+b=-\frac{1}{16}+\frac{3}{8}=-\frac{1}{16}+\frac{6}{16}=\frac{5}{16}\).
The value of \(48(a+b)\) is calculated as follows:
\(
48(a+b)=48\left(\frac{5}{16}\right)=3 \times 5=15 .
\)
Let \(a \in \mathbb{Z}\) and \([\mathrm{t}]\) be the greatest integer \(\leq \mathrm{t}\). Then the number of points, where the function \(f(x)=[a+13 \sin x], x \in(0, \pi)\) is not differentiable, is ____. [JEE Main 2023]
(b) Points of Non-Differentiability:
The function \(f(x)=[a+13 \sin x]\) is not differentiable at points where the argument of the greatest integer function, \(a+13 \sin x\), becomes an integer. Since \(a \in \mathbb{Z}\), the function \(f(x)\) is not differentiable when \(13 \sin x\) is an integer.
Analysis of \(13 \sin x\):
The range of \(\sin x\) for \(x \in(0, \pi)\) is \((0,1]\).
The range of \(13 \sin x\) for \(x \in(0, \pi)\) is \((0,13]\).
The integer values that \(13 \sin x\) can take in the interval \((0,13]\) are \(1,2,3, \ldots, 13\).
Finding the Points:
For each integer \(k \in\{1,2, \ldots, 12\}\), the equation \(13 \sin x=k\) implies \(\sin x=\frac{k}{13}\).
Since \(0<\frac{k}{13}<1\) for \(k \in\{1,2, \ldots, 12\}\), there are two distinct values of \(x\) in ( \(0, \pi\) ) for each such \(k\).
These values are \(x_1=\arcsin \left(\frac{k}{13}\right)\) and \(x_2=\pi-\arcsin \left(\frac{k}{13}\right)\).
Thus, for \(k \in\{1,2, \ldots, 12\}\), there are \(12 \times 2=24\) points where \(13 \sin x\) is an integer.
For \(k=13\), the equation \(13 \sin x=13\) implies \(\sin x=1\).
In the interval \((0, \pi), \sin x=1\) only at \(x=\frac{\pi}{2}\).
This is one distinct point.
Total Number of Points:
The total number of points where \(f(x)\) is not differentiable is the sum of the points found for \(k \in\{1, \ldots, 12\}\) and for \(k=13\). This sum is \(24+1=25\).
The number of points where the function \(f(x)=[a+13 \sin x], x \in(0, \pi)\) is not differentiable, is 25.
\(\lim _{x \rightarrow 0}\left(\frac{(x+2 \cos x)^3+2(x+2 \cos x)^2+3 \sin (x+2 \cos x)}{(x+2)^3+2(x+2)^2+3 \sin (x+2)}\right)^{\frac{100}{x}}\) is equal to ______. [JEE Main 2022]
(d) Step 1:
The given limit is of the form \(\lim _{x \rightarrow 0}(f(x))^{g(x)}\), where \(f(x)=\frac{(x+2 \cos x)^3+2(x+2 \cos x)^2+3 \sin (x+2 \cos x)}{(x+2)^3+2(x+2)^2+3 \sin (x+2)}\) and \(g(x)=\frac{100}{x}\).
As \(x \rightarrow 0\), the base \(f(x)\) approaches \(\frac{(0+2 \cos 0)^3+2(0+2 \cos 0)^2+3 \sin (0+2 \cos 0)}{(0+2)^3+2(0+2)^2+3 \sin (0+2)}=\frac{2^3+2\left(2^2\right)+3 \sin 2}{2^3+2\left(2^2\right)+3 \sin 2}=1\).
The exponent \(g(x)\) approaches \(\frac{100}{0}\), which tends to \(\pm \infty\). Thus, the limit is of the indeterminate form \(1^{\infty}\).
Step 2: Transform the limit using the exponential form
For limits of the form \(1^{\infty}\), the following property is used: \(\lim _{x \rightarrow a}(f(x))^{g(x)}=e^{\lim _{x \rightarrow a} g(x)(f(x)-1)}\). In this case, the limit becomes
\(
e^{\lim _{x \rightarrow 0} \frac{100}{x}\left(\frac{(x+2 \cos x)^3+2(x+2 \cos x)^2+3 \sin (x+2 \cos x)}{(x+2)^3+2(x+2)^2+3 \sin (x+2)}-1\right)} .
\)
Step 3: Simplify the expression inside the exponent
Let \(u=x+2 \cos x\) and \(v=x+2\). The expression inside the parenthesis can be written as \(\frac{u^3+2 u^2+3 \sin u}{v^3+2 v^2+3 \sin v}-1=\frac{\left(u^3+2 u^2+3 \sin u\right)-\left(v^3+2 v^2+3 \sin v\right)}{v^3+2 v^2+3 \sin v}\). As \(x \rightarrow 0, v \rightarrow 2\).
So, the denominator approaches \(2^3+2\left(2^2\right)+3 \sin 2=8+8+3 \sin 2=16+3 \sin 2\).
Step 4: Analyze the numerator of the fraction
The numerator is \(\left(u^3+2 u^2+3 \sin u\right)-\left(v^3+2 v^2+3 \sin v\right)\). Let \(h(t)=t^3+2 t^2+3 \sin t\).
Then the numerator is \(h(u)-h(v)\). By the Mean Value Theorem, \(h(u)-h(v)=h^{\prime}(c)(u-v)\) for some \(c\) between \(u\) and \(v[latex]. As [latex]x \rightarrow 0\), \(u=x+2 \cos x \rightarrow 2\) and \(v=x+2 \rightarrow 2\).
Thus, \(c \rightarrow 2\). The derivative \(h^{\prime}(t)=3 t^2+4 t+3 \cos t\). So, \(h^{\prime}(c) \rightarrow h^{\prime}(2)=3\left(2^2\right)+4(2)+3 \cos 2=12+8+3 \cos 2=20+3 \cos 2\). Also, \(u-v=(x+2 \cos x)-(x+2)=2 \cos x-2=2(\cos x-1)\).
Step 5: Substitute and evaluate the limit of the exponent
The exponent becomes \(\lim _{x \rightarrow 0} \frac{100}{x} \frac{h^{\prime}(c)(u-v)}{v^3+2 v^2+3 \sin v}\).
Substituting the values, this is \(\lim _{x \rightarrow 0} \frac{100}{x} \frac{(20+3 \cos 2) \cdot 2(\cos x-1)}{16+3 \sin 2}\).
This can be rewritten as \(\frac{100 \cdot 2 \cdot(20+3 \cos 2)}{16+3 \sin 2} \lim _{x \rightarrow 0} \frac{\cos x-1}{x}\).
It is known that \(\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0\).
Step 6: Calculate the final limit
Since \(\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0\), the entire exponent evaluates to 0. Therefore, the original limit is \(e^0=1\).
Suppose \(\lim _{x \rightarrow 0} \frac{F(x)}{x^3}\) exists and is equal to \(L\), where
\(
F(x)=\left|\begin{array}{ccc}
a+\sin \frac{x}{2} & -b \cos x & 0 \\
-b \cos x & 0 & a+\sin \frac{x}{2} \\
0 & a+\sin \frac{x}{2} & -b \cos x
\end{array}\right| .
\)
Then, \(-112 L\) is equal to _____. [JEE Main 2022]
(c) Given,
\(
\begin{aligned}
& F(x)=\left|\begin{array}{ccc}
a+\sin \frac{x}{2} & -b \cos x & 0 \\
-b \cos x & 0 & a+\sin \frac{x}{2} \\
0 & a+\sin \frac{x}{2} & -b \cos x
\end{array}\right| \\
& =\left(a+\sin \frac{x}{2}\right)\left(-\left(a+\sin \frac{x}{2}\right)^2\right)+b \cos x \times b^2 \cos ^2 x \\
& =-\left(a+\sin \frac{x}{2}\right)^3-b^3 \cos ^3 x
\end{aligned}
\)
Now,
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{F(x)}{x^3} \\
& =\lim _{x \rightarrow 0} \frac{-\left(a+\sin \frac{x}{2}\right)^3-b^3 \cos ^3 x}{x^3}
\end{aligned}
\)
\(
\left(a+\sin \frac{x}{2}\right)^3=a^3+\frac{3 a^2 x}{2}+\frac{3 a x^2}{4}+\left(\frac{6-3 a^2}{48}\right) x^3+O\left(x^4\right)
\)
\(
(b \cos x)^3=b^3\left(1-\frac{x^2}{2}\right)^3=b^3\left(1-3 \frac{x^2}{2}+O\left(x^4\right)\right)=b^3-\frac{3 b^3 x^2}{2}+O\left(x^4\right)
\)
Now, combining the terms for \(F(x)\) :
\(
\begin{aligned}
& F(x)=-\left(a^3+\frac{3 a^2 x}{2}+\frac{3 a x^2}{4}+\left(\frac{6-3 a^2}{48}\right) x^3+O\left(x^4\right)\right)+\left(b^3-\frac{3 b^3 x^2}{2}+O\left(x^4\right)\right) \\
& F(x)=\left(-a^3+b^3\right)-\frac{3 a^2 x}{2}+\left(-\frac{3 a}{4}-\frac{3 b^3}{2}\right) x^2-\left(\frac{6-3 a^2}{48}\right) x^3+O\left(x^4\right)
\end{aligned}
\)
Since the limit \(L=\lim _{x \rightarrow 0} \frac{F(x)}{x^3}\) exists and is a finite number, the coefficients of \(x^0\), \(x^1\), and \(x^2\) must be zero.
Coefficient of \(x^0:-a^3+b^3=0 \Longrightarrow a^3=b^3 \Longrightarrow a=b\).
Coefficient of \(x^1:-\frac{3 a^2}{2}=0 \Longrightarrow a=0\).
Since \(a=b\), it follows that \(b=0\).
Step 4: Calculate the limit \(L\)
With \(a=0\) and \(b=0\), the coefficient of \(x^3\) is:
\(
L=-\left(\frac{6-3 a^2}{48}\right)=-\left(\frac{6-3(0)^2}{48}\right)=-\frac{6}{48}=-\frac{1}{8}
\)
Step 5: Compute \(-112 L\)
The question asks for the value of \(-112 L\).
\(
-112 L=-112 \times\left(-\frac{1}{8}\right)=\frac{112}{8}=14
\)
If \(\lim _{x \rightarrow 1} \frac{\sin \left(3 x^2-4 x+1\right)-x^2+1}{2 x^3-7 x^2+a x+b}=-2\), then the value of \((a-b)\) is equal to ____. [JEE Main 2022]
(a) Analysis of the Limit
The given limit is \(\lim _{x \rightarrow 1} \frac{\sin \left(3 x^2-4 x+1\right)-x^2+1}{2 x^3-7 x^2+a x+b}=-2\). For the limit to be a finite non-zero value, the numerator and the denominator must both approach zero as \(x \rightarrow 1\). This is a condition for L’Hôpital’s Rule to be applicable.
Determining \(a\) and \(b\)
Numerator Analysis
The numerator is \(N(x)=\sin \left(3 x^2-4 x+1\right)-x^2+1\). As \(x \rightarrow 1\), the argument of the sine function becomes \(3(1)^2-4(1)+1=3-4+1=0\). Thus, \(\sin (0)=0\). The term \(-x^2+1\) becomes \(-(1)^2+1=-1+1=0\). Therefore, \(N(1)=0-0=0\), which is consistent with the requirement for the limit to exist.
Denominator Analysis
The denominator is \(D(x)=2 x^3-7 x^2+a x+b\). Since the limit exists and is finite, \(D(1)\) must also be 0.
Substituting \(x=1\) into \(D(x): 2(1)^3-7(1)^2+a(1)+b=0, 2-7+a+b=0, -5+a+b=0, a+b=5 \dots(1)\)
Applying L’Hôpital’s Rule
Since both the numerator and the denominator approach zero as \(x \rightarrow 1\), L’Hôpital’s Rule can be applied. The derivative of the numerator is \(N^{\prime}(x)=\cos \left(3 x^2-4 x+1\right)(6 x-4)-2 x\). The derivative of the denominator is \(D^{\prime}(x)=6 x^2-14 x+a\).
Now, the limit becomes \(\lim _{x \rightarrow 1} \frac{\cos \left(3 x^2-4 x+1\right)(6 x-4)-2 x}{6 x^2-14 x+a}=-2\). Substitute \(x=1\) into the expression: \(\frac{\cos \left(3(1)^2-4(1)+1\right)(6(1)-4)-2(1)}{6(1)^2-14(1)+a}=-2\)
\(
\frac{\cos (0)(2)-2}{6-14+a}=-2 \frac{1(2)-2}{-8+a}=-2 \frac{0}{-8+a}=-2
\)
This implies that the numerator of the L’Hôpital’s Rule application is 0 , which is consistent. However, for the limit to be -2 , the denominator must not be zero. This suggests that another application of L’Hôpital’s Rule might be needed if the denominator also becomes zero.
Let’s re-evaluate the numerator’s derivative at \(x=1\) :
\(N^{\prime}(1)=\cos (0)(6(1)-4)-2(1)=1(2)-2=0\). Since \(N^{\prime}(1)=0\), for the limit to be a finite non-zero value, \(D^{\prime}(1)\) must also be 0. So, \(6(1)^2-14(1)+a=0\).
\(6-14+a=0, -8+a=0, a=8 \dots(2)\)
Finding \(b\)
Substitute the value of \(a\) from eq(2) into eq(1): \(8+b=5 b=5-8 b=-3\)
The value of \(a\) is 8 and the value of \(b\) is -3 . \(a-b=8-(-3)=8+3=11\).
Let \([t]\) denote the greatest integer \(\leq t\) and \(\{t\}\) denote the fractional part of \(t\). The integral value of \(\alpha\) for which the left hand limit of the function \(f(x)=[1+x]+\frac{\alpha^{2[x]+\{x\}}+[x]-1}{2[x]+\{x\}}\) at \(\mathrm{x}=0\) is equal to \(\alpha-\frac{4}{3}\), is ____. [JEE Main 2022]
(b) Step 1: Understand the behavior of floor and fractional part as \(x \rightarrow 0^{-}\)
For \(x \in(-1,0)\), we have:
\([x]=-1\) (floor of a negative number less than 0 )
\(\{x\}=x-[x]=x-(-1)=x+1\)
Also, \([1+x]=\lfloor 1+x\rfloor\). Since \(x<0,1+x<1\), so:
\([1+x]=0\)
So, near \(x=0^{-}\), we have:
\([x]=-1\)
\(\{x\}=x+1\)
\([1+x]=0\)
Let’s substitute into the function:
\(
f(x)=0+\frac{\alpha^{2(-1)+(x+1)}+(-1)-1}{2(-1)+(x+1)}=\frac{\alpha^{-2+x+1}-2}{-2+x+1}=\frac{\alpha^{-1+x}-2}{-1+x}
\)
Step 2: Take the Left-Hand Limit as \(x \rightarrow 0^{-}\)
We want:
\(
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{\alpha^{-1+x}-2}{-1+x}=\alpha-\frac{4}{3}
\)
Let’s define:
\(
L=\lim _{x \rightarrow 0^{-}} \frac{\alpha^{-1+x}-2}{-1+x}
\)
Now, let \(y=x-1 \Rightarrow x=y+1\), then as \(x \rightarrow 0^{-}, y \rightarrow-1^{-}\)
But maybe simpler: define \(t=x \rightarrow 0^{-}\)
Then:
\(
L=\lim _{t \rightarrow 0^{-}} \frac{\alpha^{-1+t}-2}{-1+t}
\)
Use the approximation for \(\alpha^t \approx 1+t \ln \alpha\) as \(t \rightarrow 0\) :
Let’s expand numerator and denominator around \(t=0\).
Numerator:
\(
\alpha^{-1+t}=\alpha^{-1} \cdot \alpha^t \approx \alpha^{-1}(1+t \ln \alpha)
\)
So:
\(
\alpha^{-1+t}-2 \approx \alpha^{-1}(1+t \ln \alpha)-2=\alpha^{-1}+t \alpha^{-1} \ln \alpha-2
\)
Denominator: \(-1+t\)
So:
\(
L=\frac{\alpha^{-1}-2+t \alpha^{-1} \ln \alpha}{-1+t}
\)
Now take the limit \(t \rightarrow 0^{-}\):
\(
L=\frac{\alpha^{-1}-2}{-1}=2-\alpha^{-1}
\)
Step 3: Set equal to the given expression
We are told:
\(
\lim _{x \rightarrow 0^{-}} f(x)=\alpha-\frac{4}{3}
\)
So:
\(
2-\alpha^{-1}=\alpha-\frac{4}{3}
\)
Multiply both sides by 3 to eliminate fraction:
\(
3\left(2-\alpha^{-1}\right)=3 \alpha-4 \Rightarrow 6-3 \alpha^{-1}=3 \alpha-4
\)
Bring all terms to one side:
\(
6+4=3 \alpha+3 \alpha^{-1} \Rightarrow 10=3 \alpha+3 \alpha^{-1} \Rightarrow \alpha+\alpha^{-1}=\frac{10}{3}
\)
Multiply both sides by \(\alpha\) :
\(
\alpha^2+1=\frac{10}{3} \alpha \Rightarrow 3 \alpha^2-10 \alpha+3=0
\)
Step 4: Solve the quadratic
\(
3 \alpha^2-10 \alpha+3=0
\)
Use quadratic formula:
\(
\alpha=\frac{10 \pm \sqrt{(-10)^2-4 \cdot 3 \cdot 3}}{2 \cdot 3}=\frac{10 \pm \sqrt{100-36}}{6}=\frac{10 \pm \sqrt{64}}{6}=\frac{10 \pm 8}{6}
\)
So:
\(\alpha=\frac{18}{6}=3\)
\(\alpha=\frac{2}{6}=\frac{1}{3}\)
But we are told to find the integral value of \(\alpha\), so:
But we are told to find the integral value of \(\alpha\), so:
\(
\alpha=3
\)
Let \(f(x)=x^6+2 x^4+x^3+2 x+3, \mathrm{x} \in \mathrm{R}\). Then the natural number n for which \(\lim _{x \rightarrow 1} \frac{x^n f(1)-f(x)}{x-1}=44\) is ____. [JEE Main 2021]
(b) Step-by-step Solution
The value of \(f(1)\) is calculated by substituting \(x=1\) into the function \(f(x)=x^6+2 x^4+x^3+2 x+3\).
\(
f(1)=(1)^6+2(1)^4+(1)^3+2(1)+3=1+2+1+2+3=9
\)
The given limit is \(\lim _{x \rightarrow 1} \frac{x^n f(1)-f(x)}{x-1}=44\).
This limit can be rewritten by substituting \(f(1)=9: \lim _{x \rightarrow 1} \frac{9 x^n-f(x)}{x-1}=44\).
The expression \(\frac{9 x^n-f(x)}{x-1}\) is in the indeterminate form \(\frac{0}{0}\), when \(x=1\), as \(9(1)^n-f(1)=9-9=0\).
L’Hôpital’s Rule is applied to evaluate the limit. The derivative of the numerator and the denominator with respect to \(x\) are taken. The derivative of the numerator is \(\frac{d}{d x}\left(9 x^n-f(x)\right)=9 n x^{n-1}-f^{\prime}(x)\). The derivative of the denominator is \(\frac{d}{d x}(x-1)=1\).
The derivative of \(f(x)\) is calculated:
\(
f^{\prime}(x)=\frac{d}{d x}\left(x^6+2 x^4+x^3+2 x+3\right)=6 x^5+8 x^3+3 x^2+2
\)
The value of \(f^{\prime}(1)\) is calculated by substituting \(x=1\) into \(f^{\prime}(x)\) :
\(
f^{\prime}(1)=6(1)^5+8(1)^3+3(1)^2+2=6+8+3+2=19 .
\)
Applying L’Hôpital’s Rule, the limit becomes
\(
\lim _{x \rightarrow 1} \frac{9 n x^{n-1}-f^{\prime}(x)}{1}=9 n(1)^{n-1}-f^{\prime}(1)=9 n-19
\)
The calculated limit is equated to the given value of \(44: 9 n-19=44\).
The equation is solved for \(n\) :
\(
9 n=44+199 n=63 n=\frac{63}{9} n=7 .
\)
If \(\lim _{x \rightarrow 0} \frac{\alpha x e^x-\beta \log _e(1+x)+\gamma x^2 e^{-x}}{x \sin ^2 x}=10, \alpha, \beta, \gamma \in R\), then the value of \(\alpha+\beta+\gamma\) is ____. [JEE main 2021]
(c)
\(
\begin{aligned}
&\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\alpha x\left(1+x+\frac{x^2}{x}\right)-\beta\left(x-\frac{x^2}{2}+\frac{x^3}{3}\right)+\gamma x^2(1-x)}{x^3} \\
& \lim _{x \rightarrow 0} \frac{x(\alpha-\beta)+x^2\left(\alpha+\frac{\beta}{2}+\gamma\right)+x^3\left(\frac{\alpha}{2}-\frac{\beta}{3}-\gamma\right)}{x^3}=10
\end{aligned}\\
&\text { For limit to exist the coefficients of }
\end{aligned}
\)
\(x\) and \(x^2\) in the numerator must be zero. Therefore, the following conditions must be satisfied:
\(
\begin{aligned}
&\begin{aligned}
& \alpha-\beta=0, \alpha+\frac{\beta}{2}+\gamma=0 \frac{\alpha}{2}-\frac{\beta}{3}-\gamma=10 \ldots \ldots(i) \\
& \beta=\alpha, \gamma=-3 \frac{\alpha}{2}
\end{aligned}\\
&\text { Put in (i) }\\
&\begin{aligned}
& \frac{\alpha}{2}-\frac{\alpha}{3}+\frac{3 \alpha}{2}=10 \\
& \frac{\alpha}{6}+\frac{3 \alpha}{2}=10 \Rightarrow \frac{\alpha+9 \alpha}{6}=10 \\
& \Rightarrow \alpha=6 \\
& \alpha=6, \beta=6, \gamma=-9 \\
& \alpha+\beta+\gamma=3
\end{aligned}
\end{aligned}
\)
If the value of \(\lim _{x \rightarrow 0}(2-\cos x \sqrt{\cos 2 x})^{\left(\frac{x+2}{x^2}\right)}\) is equal to \(e^{\mathrm{a}}\), then a is equal to ____. [JEE Main 2021]
(a) Evaluation of the Limit
The given limit is of the form \(1^{\infty}\), which can be evaluated by using the property \(\lim _{x \rightarrow c} f(x)^{g(x)}=e^{\lim _{x \rightarrow c} g(x)(f(x)-1)}\).
Step 1: Identify the components of the limit
The base of the exponent is \(f(x)=2-\cos x \sqrt{\cos 2 x}\), and the exponent is \(g(x)=\frac{x+2}{x^2}\).
Step 2: Evaluate the limit of \(g(x)(f(x)-1)\)
The expression to be evaluated is \(\lim _{x \rightarrow 0} \frac{x+2}{x^2}(2-\cos x \sqrt{\cos 2 x}-1)\).
This simplifies to \(\lim _{x \rightarrow 0} \frac{x+2}{x^2}(1-\cos x \sqrt{\cos 2 x})\).
Step 3: Simplify the term \((1-\cos x \sqrt{\cos 2 x})\)
Multiply the numerator and denominator by the conjugate \((1+\cos x \sqrt{\cos 2 x})\) :
\(1-\cos x \sqrt{\cos 2 x}=\frac{1-\cos ^2 x \cos 2 x}{1+\cos x \sqrt{\cos 2 x}}\). Using the identity \(\cos 2 x=1-2 \sin ^2 x\) :
\(
1-\cos ^2 x\left(1-2 \sin ^2 x\right)=1-\cos ^2 x+2 \sin ^2 x \cos ^2 x=\sin ^2 x+2 \sin ^2 x \cos ^2 x==\sin ^2 x\left(1+2 \cos ^2 x\right)
\)
Step 4: Substitute the simplified term back into the limit expression
The limit becomes \(\lim _{x \rightarrow 0} \frac{x+2}{x^2} \frac{\sin ^2 x\left(1+2 \cos ^2 x\right)}{1+\cos x \sqrt{\cos 2 x}}\).
Rearrange the terms: \(\lim _{x \rightarrow 0}(x+2)\left(\frac{\sin x}{x}\right)^2 \frac{1+2 \cos ^2 x}{1+\cos x \sqrt{\cos 2 x}}\).
Step 5: Evaluate the limit using standard limits
As \(x \rightarrow 0, \lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \lim _{x \rightarrow 0} \cos x=1\), and \(\lim _{x \rightarrow 0} \sqrt{\cos 2 x}=1\). Substitute these values into the expression: \((0+2)(1)^2 \frac{1+2(1)^2}{1+(1)(1)}=2 \cdot 1 \cdot \frac{1+2}{1+1}=2 \cdot \frac{3}{2}=3\).
The value of \(a\) is 3.
If the function \(f(x)=\frac{\cos (\sin x)-\cos x}{x^4}\) is continuous at each point in its domain and \(f(0)=\frac{1}{k}\) , then \(k\) is ____. [JEE Main 2021]
(d)
\(
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^4} \\
& \Rightarrow \frac{1}{k}=\lim _{x \rightarrow 0} \frac{2 \sin \left(\frac{\sin x+x}{2}\right) \sin \left(\frac{x-\sin x}{2}\right)}{x^4} \\
& =\lim _{x \rightarrow 0} \frac{2 \sin \left(\frac{x+\sin x}{2}\right)}{\left(\frac{x+\sin x}{2}\right)} \times \frac{\sin \left(\frac{x-\sin x}{2}\right)}{\left(\frac{x-\sin x}{2}\right)} \times \frac{x^2-\sin ^2 x}{4 x^4} \\
& =\lim _{x \rightarrow 0} 2 \times 1 \times\left(\frac{x+\sin x}{x}\right)\left(\frac{x-\sin x}{x^3}\right) \times \frac{1}{4} \\
& =\lim _{x \rightarrow 0} 2 \times 1 \times\left(\frac{1+\cos x}{1}\right)\left(\frac{1-\cos x}{3 x^2}\right) \times \frac{1}{4} \\
& =\lim _{x \rightarrow 0} 2 \times 1 \times\left(\frac{1+1}{1}\right)\left(\frac{1-\cos x}{3 x^2}\right) \times \frac{1}{4} \\
& =\lim _{x \rightarrow 0} 2 \times 1 \times\left(\frac{1+1}{1}\right)\left(\frac{1+\sin x}{6 x}\right) \times \frac{1}{4} \\
& =2 \times 2 \times \frac{1}{6} \times \frac{1}{4}=\frac{1}{6}
\end{aligned}
\)
If \(\lim _{x \rightarrow 0} \frac{a e^x-b \cos x+c e^{-x}}{x \sin x}=2\), then \(\mathrm{a}+\mathrm{b}+\mathrm{c}\) is equal to ____. [JEE Main 2021]
(b)
\(
\lim _{x \rightarrow 0} \frac{\left\{a\left(1+x+\frac{x^2}{2!}+\ldots \ldots\right)-b\left(1-\frac{x^2}{2!}+\frac{x^4}{4!} \ldots \ldots\right)+c\left(1-x+\frac{x^2}{2!} \ldots \ldots\right)\right\}}{x\left(x-\frac{x^3}{3!}+\ldots \ldots\right)}=2
\)
\(
\therefore \lim _{x \rightarrow 0} \frac{(a-b+c)+x(a-c)+x^2\left(\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)+\ldots .}{x^2\left(1-\frac{x^2}{6} \ldots .\right)}=2
\)
For this limit to exist
\(
\begin{aligned}
& a-b+c=0 \& a-c=0 \\
& \& \frac{a}{2}+\frac{b}{2}+\frac{c}{2}=2 \\
& \Rightarrow a+b+c=4
\end{aligned}
\)
If \(\lim _{x \rightarrow 0} \frac{a x-\left(e^{4 x}-1\right)}{a x\left(e^{4 x}-1\right)}\) exists and is equal to \(b\), then the value of \(a-2 b\) is ____. [JEE Main 2021]
(c)
\(
\lim _{x \rightarrow 0} \frac{a x-\left(e^{4 x}-1\right)}{a x\left(e^{4 x}-1\right)}
\)
Applying L’ Hopital Rule
\(
\lim _{x \rightarrow 0} \frac{a-4 e^{4 x}}{a\left(e^{4 x}-1\right)+a x\left(4 e^{4 x}\right)}
\)
This is \(\frac{a-4}{0}\).
limit exist only when \(a-4=0 \Rightarrow a=4\)
Applying L’ Hospital Rule
\(
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{-16 e^{4 x}}{a\left(4 e^{4 x}\right)+a\left(4 e^{4 x}\right)+a x\left(16 e^{4 x}\right)} \\
& =\frac{-16}{4 a+4 a}=\frac{-16}{32}=-\frac{1}{2}=b \\
& a-2 b=4-2\left(\frac{-1}{2}\right)=4+1=5
\end{aligned}
\)
\(\lim _{n \rightarrow \infty} \tan \left\{\sum_{r=1}^n \tan ^{-1}\left(\frac{1}{1+r+r^2}\right)\right\}\) is equal to ____. [JEE Main 2021]
(a) Series Simplification
The general term of the series, \(\tan ^{-1}\left(\frac{1}{1+r+r^2}\right)\), can be simplified. It is observed that \(1+r+r^2\) can be rewritten as \(1+r(r+1)\).
The expression \(\frac{1}{1+r(r+1)}\) can be expressed as \(\frac{(r+1)-r}{1+r(r+1)}\).
Using the identity \(\tan ^{-1}(x)-\tan ^{-1}(y)=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\), the term is transformed into \(\tan ^{-1}(r+1)-\tan ^{-1}(r)\).
Summation Evaluation
The sum \(\sum_{r=1}^n \tan ^{-1}\left(\frac{1}{1+r+r^2}\right)\) is a telescoping series.
The sum is written as \(\sum_{r=1}^n\left[\tan ^{-1}(r+1)-\tan ^{-1}(r)\right]\).
When expanded, the terms cancel out: \(\left[\tan ^{-1}(2)-\tan ^{-1}(1)\right]+\left[\tan ^{-1}(3)-\tan ^{-1}(2)\right]+\ldots+\left[\tan ^{-1}(n+1)-\tan ^{-1}(n)\right]\). The sum simplifies to \(\tan ^{-1}(n+1)-\tan ^{-1}(1)\).
Limit Calculation
The limit of the argument of the tangent function is evaluated as \(n \rightarrow \infty\). The expression is \(\lim _{n \rightarrow \infty}\left[\tan ^{-1}(n+1)-\tan ^{-1}(1)\right]\).
As \(n \rightarrow \infty, \tan ^{-1}(n+1)\) approaches \(\frac{\pi}{2}\). The value of \(\tan ^{-1}(1)\) is \(\frac{\pi}{4}\). Therefore, the limit of the sum is \(\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}\).
The final step involves calculating the tangent of the obtained limit. The expression is \(\tan \left(\frac{\pi}{4}\right)\). The value of \(\tan \left(\frac{\pi}{4}\right)\) is 1.
Let \(f: R \rightarrow R\) be defined as
\(
f(x)=\left\{\begin{array}{cc}
x^5 \sin \left(\frac{1}{x}\right)+5 x^2, & x<0 \\
0, & x=0 \\
x^5 \cos \left(\frac{1}{x}\right)+\lambda x^2, & x>0
\end{array}\right.
\)
The value of \(\lambda\) for which \(f^{\prime \prime}(0)\) exists, is _____. [JEE Main 2020]
(d) To determine the value of \(\lambda\) for which \(f^{\prime \prime}(0)\) exists, the left-hand and righthand second derivatives at \(x=0\) must be equal.
Calculation of the First Derivative
The first derivative for \(x<0\) is calculated as
\(
f^{\prime}(x)=\frac{d}{d x}\left(x^5 \sin \left(\frac{1}{x}\right)+5 x^2\right)=5 x^4 \sin \left(\frac{1}{x}\right)-x^3 \cos \left(\frac{1}{x}\right)+10 x
\)
The first derivative for \(x>0\) is calculated as
\(
f^{\prime}(x)=\frac{d}{d x}\left(x^5 \cos \left(\frac{1}{x}\right)+\lambda x^2\right)=5 x^4 \cos \left(\frac{1}{x}\right)+x^3 \sin \left(\frac{1}{x}\right)+2 \lambda x
\)
The first derivative at \(x=0\) is found using the limit definition: \(f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}\).
The left-hand first derivative at \(x=0\) is
\(
\lim _{h \rightarrow 0^{-}} \frac{h^5 \sin \left(\frac{1}{h}\right)+5 h^2-0}{h}=\lim _{h \rightarrow 0^{-}}\left(h^4 \sin \left(\frac{1}{h}\right)+5 h\right)=0
\)
The right-hand first derivative at \(x=0\) is
\(
\lim _{h \rightarrow 0^{+}} \frac{h^5 \cos \left(\frac{1}{h}\right)+\lambda h^2-0}{h}=\lim _{h \rightarrow 0^{+}}\left(h^4 \cos \left(\frac{1}{h}\right)+\lambda h\right)=0
\)
Since both limits are \(0, f^{\prime}(0)=0\).
Calculation of the Second Derivative
The second derivative for \(x<0\) is calculated as
\(
f^{\prime \prime}(x)=\frac{d}{d x}\left(5 x^4 \sin \left(\frac{1}{x}\right)-x^3 \cos \left(\frac{1}{x}\right)+10 x\right)=20 x^3 \sin \left(\frac{1}{x}\right)-5 x^2 \cos \left(\frac{1}{x}\right)-3 x^2 \cos \left(\frac{1}{x}\right)-x \sin \left(\frac{1}{x}\right)+10=20 x^3 \sin \left(\frac{1}{x}\right)-8 x^2 \cos \left(\frac{1}{x}\right)-x \sin \left(\frac{1}{x}\right)+10
\)
The second derivative for \(x>0\) is calculated as
\(
f^{\prime \prime}(x)=\frac{d}{d x}\left(5 x^4 \cos \left(\frac{1}{x}\right)+x^3 \sin \left(\frac{1}{x}\right)+2 \lambda x\right)=20 x^3 \cos \left(\frac{1}{x}\right)+5 x^2 \sin \left(\frac{1}{x}\right)+3 x^2 \sin \left(\frac{1}{x}\right)-x \cos \left(\frac{1}{x}\right)+2 \lambda=20 x^3 \cos \left(\frac{1}{x}\right)+8 x^2 \sin \left(\frac{1}{x}\right)-x \cos \left(\frac{1}{x}\right)+2 \lambda
\)
The second derivative at \(x=0\) is found using the limit definition:
\(
f^{\prime \prime}(0)=\lim _{h \rightarrow 0} \frac{f^{\prime}(h)-f^{\prime}(0)}{h} .
\)
The left-hand second derivative at \(x=0\) is
\(
\lim _{h \rightarrow 0^{-}} \frac{5 h^4 \sin \left(\frac{1}{h}\right)-h^3 \cos \left(\frac{1}{h}\right)+10 h-0}{h}=\lim _{h \rightarrow 0^{-}}\left(5 h^3 \sin \left(\frac{1}{h}\right)-h^2 \cos \left(\frac{1}{h}\right)+10\right)=10 .
\)
The right-hand second derivative at \(x=0\) is
\(
\lim _{h \rightarrow 0^{+}} \frac{5 h^4 \cos \left(\frac{1}{h}\right)+h^3 \sin \left(\frac{1}{h}\right)+2 \lambda h-0}{h}=\lim _{h \rightarrow 0^{+}}\left(5 h^3 \cos \left(\frac{1}{h}\right)+h^2 \sin \left(\frac{1}{h}\right)+2 \lambda\right)=2 \lambda .
\)
For \(f^{\prime \prime}(0)\) to exist, the left-hand and right-hand second derivatives must be equal, so \(10=2 \lambda\).
The value of \(\lambda\) for which \(f^{\prime \prime}(0)\) exists is \(\lambda=5\).
If \(\lim _{x \rightarrow 0}\left\{\frac{1}{x^8}\left(1-\cos \frac{x^2}{2}-\cos \frac{x^2}{4}+\cos \frac{x^2}{2} \cos \frac{x^2}{4}\right)\right\}=2^{-k}\) then the value of \(k\) is ____.[JEE Main 2020]
(c)
\(
\begin{aligned}
& \lim _{x \rightarrow 0}\left\{\frac{1}{x^8}\left(1-\cos \frac{x^2}{2}-\cos \frac{x^2}{4}+\cos \frac{x^2}{2} \cos \frac{x^2}{4}\right)\right\}=2^{-k} \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{\left(1-\cos \frac{x^2}{2}\right)}{4\left(\frac{x^2}{2}\right)^2} \frac{\left(1-\cos \frac{x^2}{4}\right)}{16\left(\frac{x^2}{4}\right)^2}=2^{-k} \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{2 \sin ^2 \frac{x^2}{4}}{16\left(\frac{x^2}{4}\right)^2} \times \frac{2 \sin ^2 \frac{x^2}{8}}{64\left(\frac{x^2}{8}\right)^2}=2^{-k} \\
& \Rightarrow \frac{1}{8} \times \frac{1}{32}=2^{-k} \\
& \Rightarrow 2^{-8}=2^{-k} \\
& \Rightarrow {k}=8
\end{aligned}
\)
If \(\lim _{x \rightarrow 1} \frac{x+x^2+x^3+\ldots+x^n-n}{x-1}=820\), ( \(n \in N\) ) then the value of \(n\) is equal to _____. [JEE Main 2020]
(b)
\(
\lim _{x \rightarrow 1} \frac{x+x^2+x^3+\ldots+x^n-n}{x-1}=820
\)
As it is \(\left(\frac{0}{0}\right)\) form, Apply L’Hospital’s Rule.
\(
\begin{aligned}
& \lim _{x \rightarrow 1}\left(\frac{1+2 x+3 x^2+\ldots+n x^{n-1}}{1}\right)=820 \\
& \Rightarrow 1+2+3+\ldots . .+n=820 \\
& \Rightarrow \frac{n(n+1)}{2}=820 \\
& \Rightarrow n^2+n-1640=0 \\
& \Rightarrow(n-40)(n+41)=0
\end{aligned}
\)
Since \({n} \in {N}\), so \({n}=40\).
\(\lim _{x \rightarrow 2} \frac{3^x+3^{3-x}-12}{3^{-x / 2}-3^{1-x}}\) is equal to _____. [JEE Main 2020]
(a)
\(
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{3^x+3^{3-x}-12}{3^{-x / 2}-3^{1-x}} \\
& \text { let } 3^{x / 2}=t \\
& =\lim _{t \rightarrow 3} \frac{t^2+\frac{27}{t^2}-12}{\frac{1}{t}-\frac{3}{t^2}} \\
& =\lim _{t \rightarrow 3} \frac{\left(t^2-9\right)\left(t^2-3\right)}{t-3} \\
& =\lim _{t \rightarrow 3}(t+3)\left(t^2-3\right) \\
& =6 \times 6 \\
& =36
\end{aligned}
\)
Alternate:
Step 1: Evaluate the limit directly
The limit expression is given by \(\lim _{x \rightarrow 2} \frac{3^x+3^{3-x}-12}{3^{-x / 2}-3^{1-x}}\). When \(x=2\) is substituted into the numerator, it becomes \(3^2+3^{3-2}-12=3^2+3^1-12=9+3-12=0\). When \(x=2\) is substituted into the denominator, it becomes \(3^{-2 / 2}-3^{1-2}=3^{-1}-3^{-1}=\frac{1}{3}-\frac{1}{3}=0\). Since the form is \(\frac{0}{0}\), L’Hôpital’s Rule can be applied.
Step 2: Apply L’Hôpital’s Rule
The derivative of the numerator with respect to \(x\) is \(\frac{d}{d x}\left(3^x+3^{3-x}-12\right)=3^x \ln 3+3^{3-x} \ln 3 \cdot(-1)=\ln 3\left(3^x-3^{3-x}\right)\).
The derivative of the denominator with respect to \(x\) is \(\frac{d}{d x}\left(3^{-x / 2}-3^{1-x}\right)=3^{-x / 2} \ln 3 \cdot\left(-\frac{1}{2}\right)-3^{1-x} \ln 3 \cdot(-1)=\ln 3\left(-\frac{1}{2} 3^{-x / 2}+3^{1-x}\right)\).
The limit becomes \(\lim _{x \rightarrow 2} \frac{\ln 3\left(3^x-3^{3-x}\right)}{\ln 3\left(-\frac{1}{2} 3^{-x / 2}+3^{1-x}\right)}=\lim _{x \rightarrow 2} \frac{3^x-3^{3-x}}{-\frac{1}{2} 3^{-x / 2}+3^{1-x}}\).
Step 3: Evaluate the new limit
Substitute \(x=2\) into the simplified expression: Numerator: \(3^2-3^{3-2}=3^2-3^1=9-3=6\).
Denominator: \(-\frac{1}{2} 3^{-2 / 2}+3^{1-2}=-\frac{1}{2} 3^{-1}+3^{-1}=-\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{3}=-\frac{1}{6}+\frac{1}{3}=-\frac{1}{6}+\frac{2}{6}=\frac{1}{6}\).
The value of the limit is \(\frac{6}{\frac{1}{6}}=6 \cdot 6=36\).
You cannot copy content of this page