0 of 124 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 124 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
The equilibrium constants of the following are
\(\begin{array}{ll}\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} ; & K_{1} \\ \mathrm{~N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} ; & K_{2} \\ \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{O} ; & K_{3}\end{array}\)
The equilibrium constant \((K)\) of the reaction : \(2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{K}{\rightleftharpoons} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}\) will be (NEET 2017, 2007, 2003)
(a) From the given equations,
\(
\begin{aligned}
&2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{N}_{2}+3 \mathrm{H}_{2} ; \frac{1}{K_{1}} \dots(i) \\
&\mathrm{~N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} ; K_{2} \dots(ii) \\
&3 \mathrm{H}_{2}+\frac{3}{2} \mathrm{O}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{O} ; K_{3}^{3} \dots(iii)
\end{aligned}
\)
By adding equations (i), (ii) and (iii), we get
\(
2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{K}{\rightleftharpoons} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}, K=\frac{K_{2} K_{3}^{3}}{K_{1}}
\)
Concentration of the \(\mathrm{Ag}^{+}\)ions in a saturated solution of \(\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) is \(2.2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\). Solubility product of \(\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) is [NEET 2017]
(c) Let solubility of \(\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) be \(s \mathrm{~mol} \mathrm{~L^{-1}}\)
\(
\begin{aligned}
&\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4(s)} \rightleftharpoons 2 \mathrm{Ag}_{(a q)}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q) \\
&\quad s \quad \quad \quad \quad \quad \quad 2s \quad \quad \quad \quad s \\
&K_{s p}=(2 s)^{2}(s) \Rightarrow 4 s^{3} \\
&K_{s p}=4 \times\left(1.1 \times 10^{-4}\right)^{3}\left(\because\left[\mathrm{Ag}^{+}\right]=2 s=2.2 \times 10^{-4}\right) \\
&K_{s p} \approx 5.3 \times 10^{-12}
\end{aligned}
\)
A 20 litre container at \(400 \mathrm{~K}\) contains \(\mathrm{CO}_{2(\mathrm{~g})}\) at pressure \(0.4\) atm and an excess of \(\mathrm{SrO}\) (neglect the volume of solid \(\mathrm{SrO}\) ). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of \(\mathrm{CO}_{2}\) attains its maximum value, will be
(Given that: \(\mathrm{SrCO}_{3(s)} \rightleftharpoons \mathrm{SrO}_{(s)}+\mathrm{CO}_{2(g)}\), \(\left.K_{p}=1.6 \mathrm{~atm}\right)\) [NEET 2017]
(d) \(\mathrm{SrCO}_{3(s)} \rightleftharpoons \mathrm{SrO}_{(s)}+\mathrm{CO}_{2(g)} ; K_{p}=1.6 \mathrm{~atm}\)
\(
\begin{aligned}
K_{p} &=\frac{p_{\mathrm{CO}_{2}} \times p_{\mathrm{SrO}}}{p_{\mathrm{SrCO}_{3}}} \\
\Rightarrow \quad 1.6 &=p_{\mathrm{CO}_{2}} \quad\left(\because p_{\mathrm{SrO}}=p_{\mathrm{SrCO}_{3}}=1\right)
\end{aligned}
\)
\(\therefore\) Maximum pressure of \(\mathrm{CO}_{2}=1.6 \mathrm{~atm}\)
Let the maximum volume of the container when pressure of \(\mathrm{CO}_{2}\) is \(1.6\) atm be \(V \mathrm{~L}\)
During the process, \(P V=\) constant
\(
\begin{aligned}
&\therefore \quad 0.4 \times 20=1.6 \times V \\
&\Rightarrow \quad V=\frac{0.4 \times 20}{1.6}=5 \mathrm{~L}
\end{aligned}
\)
The percentage of pyridine \(\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\) that forms pyridinium ion \(\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{H}\right)\) in a \(0.10 \mathrm{~M}\) aqueous pyridine solution \(\left(K_{b}\right.\) for \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}=1.7 \times 10^{-9}\) ) is [NEET-II 2016]
(b) \(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \stackrel{+} {\mathrm{N}} \mathrm{H}+\mathrm{OH}^{-}\)
\(0.10 \mathrm{M}\)
\(
\alpha=\sqrt{\frac{K_{b}}{C}}=\sqrt{\frac{1.7 \times 10^{-9}}{0.10}}=1.30 \times 10^{-4}
\)
\(\therefore\) Percentage of pyridine that forms pyridinium ion \(=1.30 \times 10^{-4} \times 100=0.013 \%\)
The solubility of \(\mathrm{AgCl}_{(s)}\) with solubility product \(1.6 \times 10^{-10}\) in \(0.1 \mathrm{~M} \mathrm{~NaCl}\) solution would be [NEET-II 2016]
(b) Let \(s\) be the solubility of \(\mathrm{AgCl}\) in moles per litre.
\(
\mathrm{AgCl}_{(a q)} \rightleftharpoons \mathrm{Ag}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-}
\)
\(
\begin{array}{lll}
s & & s & & (s+0.1)
\end{array}
\)
\((\because 0.1 \mathrm{~M} \mathrm{~NaCl}\) solution also provides \(0.1 \mathrm{~M} \mathrm{~Cl}^{-}\)ion)
\(
K_{s p}=\left[\mathrm{Ag}^{+}\right][\mathrm{Cl^{-}}] ; 1.6 \times 10^{-10}=s(s+0.1)
\)
\(
1.6 \times 10^{-10}=s(0.1) \quad(\because s<<<<0.1)
\)
\(
s=\frac{1.6 \times 10^{-10}}{0.1}=1.6 \times 10^{-9} \mathrm{M}
\)
Which of the following fluoro-compounds is most likely to behave as a Lewis base? [NEET-II 2016]
(b) \(\mathrm{BF}_{3} \rightarrow\) Lewis acid (incomplete octet)
\(\mathrm{PF}_{3} \rightarrow\) Lewis base (presence of lone pair on \(\mathrm{P}\) atom)
\(\mathrm{CF}_{4} \rightarrow\) Complete octet
\(\mathrm{SiF}_{4} \rightarrow\) Lewis acid (empty \(d\)-orbital in Si-atom)
\(M Y\) and \(NY_{3}\), two nearly insoluble salts, have the same \(K_{s p}\) values of \(6.2 \times 10^{-13}\) at room temperature. Which statement would be true in regard to \(M Y\) and \(\mathrm{NY}_{3}\) ? [NEET-I 2016]
(d) For \(M Y: K_{s p}=s_{1}^{2}\)
\(\Rightarrow s_{1}=\sqrt{K_{s p}}=\sqrt{6.2 \times 10^{-13}}=7.87 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}\)
For \(N Y_{3}: K_{s p}=27 s_{2}^{4}\)
\(\Rightarrow \quad s_{2}=\sqrt[4]{\frac{6.2 \times 10^{-13}}{27}}=3.89 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}\)
Hence, molar solubility of \(M Y\) in water is less than that of \(\mathrm{NY}_{3}\)
If the equilibrium constant for
\(\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}\) is \(K\), the equilibrium constant for \(\frac{1}{2} \mathrm{~N}_{2(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightleftharpoons \mathrm{NO}_{(g)}\) will be [NEET 2015]
(d) If the reaction is multiplied by \(\frac{1}{2}\), then new equilibrium constant, \(K^{\prime}=K^{1 / 2}\)
What is the \(\mathrm{pH}\) of the resulting solution when equal volumes of \(0.1 \mathrm{~M} \mathrm{~NaOH}\) and \(0.01 \mathrm{~M} \mathrm{~HCl}\) are mixed? [NEET 2015]
(d) One mole of \(\mathrm{NaOH}\) is completely neutralised by one mole of \(\mathrm{HCl}\).
Hence, \(0.01\) mole of \(\mathrm{NaOH}\) will be completely neutralised by \(0.01\) mole of \(\mathrm{~HCl}\).
\(\Rightarrow \mathrm{NaOH}\) left unneutralised \(=0.1-0.01=0.09 \mathrm{~mol}\)
As equal volumes of two solutions are mixed,
\(
\begin{aligned}
& {[\mathrm{OH}]^{-}=\frac{0.09}{2}=0.045 \mathrm{~M} } \\
\Rightarrow & \mathrm{pOH}=-\log (0.045)=1.35 \\
\therefore & \mathrm{pH}=14-1.35=12.65
\end{aligned}
\)
Aqueous solution of which of the following compounds is the best conductor of electric current? [NEET 2015]
(a) \(\mathrm{HCl}\) is a strong acid and dissociates completely into ions in aqueous solution
Which one of the following pairs of solution is not an acidic buffer? [NEET 2015]
(d) Acidic buffer is a mixture of a weak acid and its salt with a strong base. \(\mathrm{HClO}_{4}\) is a strong acid.
The \(K_{s p}\) of \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}, \mathrm{AgCl}, \mathrm{AgBr}\) and \(\mathrm{AgI}\) are respectively, \(1.1 \times 10^{-12}, 1.8 \times 10^{-10}, 5.0 \times 10^{-13}\), \(8.3 \times 10^{-17}\). Which one of the following salts will precipitate last if \(\mathrm{AgNO}_{3}\) solution is added to the solution containing equal moles of \(\mathrm{NaCl}\), \(\mathrm{NaBr}, \mathrm{NaI}\) and \(\mathrm{Na}_{2} \mathrm{CrO}_{4}\) ? [NEET 2015,Cancelled]
(b)
Salt \(\quad \quad \quad \quad K_{s p} \quad \quad \quad \quad \quad \quad \quad \) Solubility
\(\mathrm{Ag}_{2} \mathrm{CrO}_{4} \quad 1.1 \times 10^{-12}=4 s^{3} \quad s=\sqrt[3]{\frac{K_{s p}}{4}}=0.65 \times 10^{-4}\)
\(\mathrm{AgCl} \quad 1.8 \times 10^{-10}=s^{2} \quad \quad \quad s=\sqrt{K_{s p}}=1.34 \times 10^{-5}\)
\(\mathrm{AgBr} \quad 5 \times 10^{-13}=s^{2} \quad \quad \quad \quad s=\sqrt{K_{s p}}=0.71 \times 10^{-6}\)
AgI \(\quad \quad 8.3 \times 10^{-17}=s^{2} \quad \quad \quad \quad s=\sqrt{K_{s p}}=0.9 \times 10^{-8}\)
Solubility of \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) is highest thus, it will be precipitated at last
Which of the following statements is correct for a reversible process in a state of equilibrium? [NEET 2015, Cancelled]
(a)
\(
\Delta G=\Delta G^{\circ}+2.303 R T \log K
\)
At equilibrium, \(\Delta \mathrm{G}=0\)
\(0=\Delta G^{\circ}+2.303 R T \log K\)
\(\Delta G^{\circ}=-2.303 R T \log K\)
If the value of equilibrium constant for a particular reaction is \(1.6 \times 10^{12}\), then at equilibrium the system will contain [2015, Cancelled]
(a) The value of \(K\) is high which means reaction proceeds almost to completion i.e., the system will contain mostly products.
Explanation:
The value of the equilibrium constant \(\mathrm{K}\) is \(1.6 \times 10^{12}\) which is very high.
\(
\mathrm{K}=\frac{[\text { Products }]}{[\text { Reactants }]}
\)
This indicates the ratio of product concentration to reactant concentration is very high.
Hence, the reaction mixture mostly contains products.
Which of the following salts will give highest \(\mathrm{pH}\) in water? [NEET 2014]
(c) \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) which is a salt of \(\mathrm{NaOH}\) (strong base) and \(\mathrm{H}_{2} \mathrm{CO}_{3}\) (weak acid) will produce a basic solution with \(\mathrm{pH}\) greater than 7.
Explanation:
The highest \(\mathrm{pH}\) refers to the basic solution containing \(\mathrm{OH}^{-}\)ions. Therefore, the basic salt releasing more \(\mathrm{OH}^{-}\) ions on hydrolysis will give highest \(p H\) in water.
Only the salt of strong base and weak acid would release more \(\mathrm{OH}^{-}\)ion on hydrolysis. Among the given salts, \(\mathrm{Na}_2 \mathrm{CO}_3\) corresponds to the basic salt as it is formed by the neutralisation of \(\mathrm{NaOH}\) [strong base] and \(\mathrm{H}_2 \mathrm{CO}_3\) [weak acid].
\(
\mathrm{CO}_3^{2-}+\mathrm{H}_2 \mathrm{O} \rightleftharpoons \mathrm{HCO}_3^{-}+\mathrm{OH}^{-}
\)
Using the Gibb’s energy change, \(\Delta G^{\circ}=+63.3 \mathrm{~kJ}\), for the following reaction,
\(\mathrm{Ag}_{2} \mathrm{CO}_{3(s)} \rightleftharpoons 2 \mathrm{Ag}^{+}(a q)+\mathrm{CO}_{3}^{2-}(a q)\) the \(K_{s p}\) of \(\mathrm{Ag}_{2} \mathrm{CO}_{3(s)}\) in water at \(25^{\circ} \mathrm{C}\) is \(\left(R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)\) [NEET 2014]
\(
\begin{aligned}
&\text { (b) }: \Delta G^{\circ}=-2.303 R T \log K_{s p} \\
&63.3 \times 10^{3} \mathrm{~J}=-2.303 \times 8.314 \times 298 \log K_{s p} \\
&63.3 \times 10^{3} \mathrm{~J}=-5705.84 \log K_{s p} \\
&\log K_{s p}=-\frac{63.3 \times 10^{3}}{5705.84}=-11.09 \\
&K_{s p}=\text { antilog }(-11.09)=8.128 \times 10^{-12}
\end{aligned}
\)
For the reversible reaction, \(\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(g)}+\) heat The equilibrium shifts in forward direction [NEET 2015]
 (d) As the forward reaction is exothermic and leads to lowering of pressure (produces lesser number of gaseous moles) hence, according to Le Chatelier’s principle, at high pressure and low temperature, the given reversible reaction will shift in forward direction to form more product.
For a given exothermic reaction, \(K_{p}\) and \(K_{p}^{\prime}\) are the equilibrium constants at temperatures \(T_{1}\) and \(T_{2}\), respectively. Assuming that heat of reaction is constant in temperature range between \(T_{1}\) and \(T_{2}\), it is readily observed that [NEET 2014]
(a) \(\log \frac{K_{p}^{\prime}}{K_{p}}=-\frac{\Delta H}{2.303 R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]\)
For exothermic reaction, \(\Delta H=-\) ve i.e. heat is evolved. The temperature \(T_{2}\) is higher than \(T_{1}\).
Thus, \(\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)\) is negative.
so, \(\log K_{p}^{\prime}-\log K_{p}=-\) ve or \(\log K_{p}>\log K_{p}^{\prime}\) or \(K_{p}>K_{p}^{\prime}\)
\(\mathrm{KMnO}_{4}\) can be prepared from \(\mathrm{K}_{2} \mathrm{MnO}_{4}\) as per the reaction,
\(
\begin{array}{r}
3 \mathrm{MnO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{MnO}_{4}{ }^{-}+\mathrm{MnO}_{2} +4 \mathrm{OH}^{-} \\
\end{array}
\)
The reaction can go to completion by removing \(\mathrm{OH}^{-}\)ions by adding [NEET 2013]
(a) \(\mathrm{HCl}\) and \(\mathrm{SO}_{2}\) are reducing agents. So they can reduce \(\mathrm{MnO}_{4}^{-}\). \(\mathrm{CO}_{2}\) is neither oxidising nor reducing agent, it will provide only acidic medium. It can shift the reaction in forward direction and the reaction can go to completion
Which of these is least likely to act as a Lewis base? [NEET 2013]
\(
\text { (a) } \mathrm{BF}_{3} \text { is Lewis acid } \text { ( } e^{-} \text {pair acceptor). }
\)
Accumulation of lactic acid \(\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}\right)\), a monobasic acid in tissues leads to pain and a feeling of fatigue. In a \(0.10 \mathrm{~M}\) aqueous solution, lactic acid is \(3.7 \%\) dissociates. The value of dissociation constant, \(K_{a}\), for this acid will be [Karnataka NEET 2013]
(b) Degree of dissociation, \(\alpha=\frac{3.7}{100}=0.037\)
According to Ostwald’s formula,
\(
K_{a}=\alpha^{2} C=(0.037)^{2} \times 0.10=1.369 \times 10^{-4} \approx 1.4 \times 10^{-4}
\)
At \(100^{\circ} \mathrm{C}\) the \(K_{w}\) of water is 55 times its value at \(25^{\circ} \mathrm{C}\). What will be the \(\mathrm{pH}\) of neutral solution? \((\log 55=1.74)\) [Karnataka NEET 2013]
(d) We know that, at \(25^{\circ} \mathrm{C}, K_{w}=1 \times 10^{-14}\) At \(100^{\circ} \mathrm{C}, K_{w}=55 \times 10^{-14}\)
\(
\begin{aligned}
&\mathrm{H}^{+}=\sqrt{55 \times 10^{-14}} \\
&\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
&\mathrm{pH}=-\log \left[\sqrt{55 \times 10^{-14}}\right]
\end{aligned}
\)
\(
\begin{array}{l}
=\frac{1}{2}\left[-\log \left(55 \times 10^{-14}\right)\right]=\frac{1}{2}[-\log 55+14 \log 10] \\
=\frac{1}{2}[-1.74+14]=\frac{1}{2}[12.26]=6.13
\end{array}
\)
The values of \(K_{s p}\) of \(\mathrm{CaCO}_{3}\) and \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) are \(4.7 \times 10^{-9}\) and \(1.3 \times 10^{-9}\) respectively at \(25^{\circ} \mathrm{C}\). If the mixture of these two is washed with water, what is the concentration of \(\mathrm{Ca}^{2+}\) ions in water? [Karnataka NEET 2013]
(d) \(\mathrm{CaCO}_{3} \rightarrow \mathrm{Ca}^{2+}+\mathrm{CO}_{3}^{2-}\)
\(\quad \quad \quad \quad \quad \quad \quad x \quad x\)
\(\mathrm{CaC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\)
\(\quad \quad \quad \quad \quad \quad \quad y \quad y\)
Now, \(\left[\mathrm{Ca}^{2+}\right]=x+y\)
and \(x(x+y)=4.7 \times 10^{-9} \dots(i)\)
\(
y(x+y)=1.3 \times 10^{-9} \dots(ii)
\)
Dividing equation (i) and (ii) we get
\(
\begin{aligned}
&\quad \frac{x}{y}=3.6 \\
&\therefore \quad x=3.6 y \\
&\text { Putting this value in equation (ii), we get } \\
&\qquad y(3.6 y+y)=1.3 \times 10^{-9} \\
&\text { On solving, we get } y=1.68 \times 10^{-5} \\
&\text { and } x=3.6 \times 1.68 \times 10^{-5}=6.048 \times 10^{-5} \\
&\therefore \quad\left[\mathrm{Ca}^{2+}\right]=(x+y)=\left(1.68 \times 10^{-5}\right)+\left(6.048 \times 10^{-5}\right) \\
&\therefore \quad\left[\mathrm{Ca}^{2+}\right]=7.728 \times 10^{-5} \mathrm{M}
\end{aligned}
\)
The dissociation constant of a weak acid is \(1 \times 10^{-4}\). In order to prepare a buffer solution with a \(\mathrm{pH}=5\), the \(
\text { [Salt]/[Acid] }\) ratio should be [Karnataka NEET 2013]
\(
\begin{aligned}
&\text { (b) } \mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \\
&5=-\log K_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \quad\left[\because \mathrm{p} K_{a}=-\log K_{a}\right] \\
&5=-\log \left[1 \times 10^{-4}\right]+\log \frac{[\text { Salt }]}{[\text { Acid }]} \\
&5=4+\log \frac{[\text { Salt }]}{[\text { Acid }]} \\
&5-4=\log \frac{[\text { Salt }]}{[\text { Acid }]} \\
&1=\log \frac{[\text { Salt }]}{[\text { Acid }]} \\
&\frac{[\text { Salt }]}{[\text { Acid }]}=10=10: 1
\end{aligned}
\)
\(\mathrm{pH}\) of a saturated solution of \(\mathrm{Ba}(\mathrm{OH})_{2}\) is 12 . The value of solubility product \(\left(K_{s p}\right)\) of \(\mathrm{Ba}(\mathrm{OH})_{2}\) is [NEET 2012]
\(
\begin{aligned}
&\text { (b) } \mathrm{pH} \text { of solution }=12 \\
&{\left[\mathrm{H}^{+}\right]=10^{-12}} \\
&{\left[\mathrm{OH}^{-}\right]=\frac{10^{-14}}{10^{-12}}=10^{-2}} \\
&\mathrm{Ba}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-} \\
& \quad \quad \quad \quad \quad \quad s \quad \quad 2 s \\
&2 s=10^{-2} \Rightarrow s=\frac{10^{-2}}{2} \\
&K_{s p}=(s)(2 s)^{2}=4 s^{3}
\end{aligned}
\)
\(
=4 \times\left(\frac{10^{-2}}{2}\right)^3=\frac{4}{8} \times 10^{-6}=5 \times 10^{-7}
\)
Equimolar solutions of the following substances were prepared separately. Which one of these will record the highest \(\mathrm{pH}\) value? [NEET 2012]
(a) \(\mathrm{BaCl}_{2}\) is made up of \(\mathrm{Ba}(\mathrm{OH})_{2}\) and \(\mathrm{HCl}\). \(\mathrm{AlCl}_{3}\) is made up of \(\mathrm{Al}(\mathrm{OH})_{3}\) and \(\mathrm{HCl}\).
\(\mathrm{LiCl}\) is made up of \(\mathrm{LiOH}\) and \(\mathrm{HCl}\).
\(\mathrm{BeCl}_{2}\) is made up of \(\mathrm{Be}(\mathrm{OH})_{2}\) and \(\mathrm{HCl}\).
\(\mathrm{Ba}(\mathrm{OH})_{2}\) is strongest base among the given options thus have maximum \(\mathrm{pH}\)
Buffer solutions have constant acidity and alkalinity because [NEET 2012]
(a)
If small amount of an acid or alkali is added to a buffer solution, it converts them into unionised acid or base.
Thus, its \(p H\) remains unaffected or in other words its acidity/alkalinity remains constant, e.g.
\(
\begin{array}{l}
\mathrm{H}_3 \mathrm{O}^{+}+\mathrm{A}^{-} \rightleftharpoons \mathrm{H}_2 \mathrm{O}+\mathrm{HA} \\
\mathrm{OH^{-}}+\mathrm{HA} \rightarrow \mathrm{H}_2 \mathrm{O}+\mathrm{A}^{-}
\end{array}
\)
If acid is added, it reacts with \(A^{-}\)to form undissociated \(HA\). Similarly, if base/alkali is added, \(\mathrm{OH}^{-}\)combines with HA to give \(\mathrm{H}_2 \mathrm{O}\) and \(\mathrm{A}^{-}\)and thus, maintains the acidity/ alkalinity of buffer solution.
Given that the equilibrium constant for the reaction, \(2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{SO}_{3(g)}\)
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature?
\(\mathrm{SO}_{3(g)} \rightleftharpoons \mathrm{SO}_{2(g)}+\frac{1}{2} \mathrm{O}_{2(g)}\) [NEET 2012]
(c) \(2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{SO}_{3(g)} \dots(i)\)
\(K=278\)
By reversing the equation (i), we get
\(
2 \mathrm{SO}_{3(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \dots(ii)
\)
Equilibrium constant for this reaction is
\(
K^{\prime}=\frac{1}{K}=\frac{1}{278}
\)
By dividing the equation (ii) by 2 , we get desired equation,
\(
\mathrm{SO}_{3(g)} \rightleftharpoons \mathrm{SO}_{2(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \dots(iii)
\)
Equilibrium constant for this reaction
\(
K^{\prime \prime}=\sqrt{K^{\prime}}=\sqrt{\frac{1}{K}}=\sqrt{\frac{1}{278}}=0.0599 \approx 0.06 \text { or } 6 \times 10^{-2}
\)
Given the reaction between 2 gases represented by \(A_{2}\) and \(B_{2}\) to give the compound \(A B_{(g)}\)
\(A_{2(g)}+B_{2(g)} \rightleftharpoons 2 A B_{(g)}\)
At equilibrium, the concentration of \(A_{2}=3.0 \times 10^{-3} \mathrm{M}\), of \(B_{2}=4.2 \times 10^{-3} \mathrm{M}\), of \(A B=2.8 \times 10^{-3} \mathrm{M}\)
If the reaction takes place in a sealed vessel at \(527^{\circ} \mathrm{C}\), then the value of \(K_{c}\) will be [Mains 2012]
\(
\begin{aligned}
&\text { (c) } A_{2(g)}+B_{2(g)} \rightleftharpoons 2 A B_{(g)} \\
&K_{c}=\frac{[A B]^{2}}{\left[A_{2}\right]\left[B_{2}\right]} \\
&=\frac{\left(2.8 \times 10^{-3}\right)^{2}}{\left(3.0 \times 10^{-3}\right)\left(4.2 \times 10^{-3}\right)}=\frac{2.8 \times 2.8}{4.2 \times 3.0}=0.62
\end{aligned}
\)
The value of \(\Delta H\) for the reaction \(X_{2(g)}+4 Y_{2(g)} \rightleftharpoons 2 X Y_{4(g)}\) is less than zero. Formation of \(X Y_{4(g)}\) will be favoured at [NEET 2011]
(d) \(X_{2(g)}+4 Y_{2(g)} \rightleftharpoons 2 X Y_{4(g)}\)
\(
\Delta n_{g}=-\mathrm{ve} \text { and } \Delta H=-\mathrm{ve}
\)
The reaction is favoured in forward direction at low temperature and high pressure.
A buffer solution is prepared in which the concentration of \(\mathrm{NH}_{3}\) is \(0.30 \mathrm{~M}\) and the concentration of \(\mathrm{NH}_{4}^{+}\)is \(0.20 \mathrm{~M}\). If the equilibrium constant, \(K_{b}\) for \(\mathrm{NH}_{3}\) equals \(1.8 \times 10^{-5}\), what is the \(\mathrm{pH}\) of this solution? \((\log 2.7=0.43)\) [NEET 2011]
(b) \(\left[\mathrm{NH}_{3}\right]=0.30 \mathrm{~M}, K_{b}=1.8 \times 10^{-5}\)
\(
\begin{aligned}
&{\left[\mathrm{NH}_{4}^{+}\right]=0.20 \mathrm{~M}} \\
&\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{[\text { salt }]}{[\text { base }]}=4.74+\log \frac{0.2}{0.3}=4.56 \\
&\mathrm{pH}=(14-4.56)=9.43
\end{aligned}
\)
Which of the following is least likely to behave as Lewis base? [NEET 2011]
(c) \(\mathrm{BF}_{3}\) is an electron deficient species and acts as Lewis base
For the reaction, \(\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{(g)}\), the equilibrium constant is \(K_{1}\). The equilibrium constant is \(K_{2}\) for the reaction, \(2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{2(g)}\)
What is \(K\) for the reaction, \(\mathrm{NO}_{2(g)} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2(g)}+\mathrm{O}_{2(g)}\) [NEET 2011]
\(
\begin{aligned}
&\text { (c) } \mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} ; K_{1} \\
&2 \mathrm{NO}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2} ; K_{2} \\
&\mathrm{NO}_{2} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2} ; K \\
&K_{1}=\frac{\left[\mathrm{NO}]^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]} ; K_{2}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]\right.}
\end{aligned}
\)
\(
\begin{array}{l}
K=\frac{\left[\mathrm{N}_2\right]^{1 / 2}\left[\mathrm{O}_2\right]}{\left[\mathrm{NO}_2\right]}=\sqrt{\frac{\left[\mathrm{N}_2\right]\left[\mathrm{O}_2\right] \times\left[\mathrm{NO}]^2\left[\mathrm{O}_2\right]\right.}{\left[\mathrm{NO}]^2 \times\left[\mathrm{NO}_2\right]^2\right.}} \\
K=\sqrt{\frac{1}{\mathrm{~K}_1 \mathrm{~K}_2}}
\end{array}
\)
In qualitative analysis, the metals of group I can be separated from other ions by precipitating them as chloride salts. A solution initially contains \(\mathrm{Ag}^{+}\)and \(\mathrm{Pb}^{2+}\) at a concentration of \(0.10 \mathrm{~M}\). Aqueous \(\mathrm{HCl}\) is added to this solution until the \(\mathrm{Cl}^{-}\)concentration is \(0.10 \mathrm{~M}\). What will the concentrations of \(\mathrm{Ag}^{+}\) and \(\mathrm{Pb}^{2+}\) be at equilibrium?
\(\left(K_{s p}\right.\) for \(\mathrm{AgCl}=1.8 \times 10^{-10}, K_{s p}\) for \(\mathrm{PbCl}_{2}\) \(\left.=1.7 \times 10^{-5}\right)\) [Mains 2011]
(c)
\(
K_{s p}[\mathrm{AgCl}]=\left[\mathrm{Ag}^{+}\right][\mathrm{Cl}^{-}]
\)
\(
\left[\mathrm{Ag}^{+}\right]=\frac{1.8 \times 10^{-10}}{10^{-1}}=1.8 \times 10^{-9} \mathrm{M}
\)
\(
K_{s p}\left[\mathrm{PbCl}_2\right]=\left[\mathrm{Pb}^{2+}\right][\mathrm{Cl}^{-}]^2
\)
\(
\left[\mathrm{Pb}^{2+}\right]=\frac{1.7 \times 10^{-5}}{10^{-1} \times 10^{-1}}=1.7 \times 10^{-3} \mathrm{M}
\)
If \(\mathrm{pH}\) of a saturated solution of \(\mathrm{Ba}(\mathrm{OH})_{2}\) is 12 , the value of its \(K_{s p}\) is [NEET 2010]
\(
\begin{aligned}
&\text { (d) We Know, } \mathrm{pH}+\mathrm{pOH}=14\\
&\text { Here, } \quad 12+\mathrm{pOH}=14\\
&\mathrm{pOH}=2\\
&\left[\mathrm{OH}^{-}\right]=10^{-2}\\
&\mathrm{Ba}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}\\
&2 S=[\mathrm{OH}^{-}]=10^{-2}\\
&s=\frac{10^{-2}}{2}=5 \times 10^{-3} \mathrm{M}\\
&K_{s p}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\left(5 \times 10^{-3}\right)\left(10^{-2}\right)^{2}\\
&K_{s p}=5 \times 10^{-7}
\end{aligned}
\)
What is \(\left[\mathrm{H}^{+}\right]\)in mol/ \(\mathrm{L}\) of a solution that is \(0.20 \mathrm{~M} \text { in } \mathrm{CH}_3 \mathrm{COONa} \text { and } 0.10 \mathrm{~M}\) in \({CH}_3 \mathrm{COOH} ?
\) \(K_{a}\) for \(\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}\) [NEET 2010]
(d) \(\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}\)
\(C-x \quad \quad \quad \quad \quad x \quad \quad \quad \quad x\)
\(\mathrm{CH}_{3} \mathrm{COONa} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}\)
\(0.2 \mathrm{~M} \quad \quad \quad \quad 0.2 \mathrm{~M} \quad \quad \quad 0.2 \mathrm{~M}\)
\({\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=C-x \approx 0.1 \mathrm{M} }\) \({\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=0.2+x \approx 0.2 \mathrm{M} }\)\(\left\{\begin{array}{l}\text { acetic acid is a } \\ \text { weak acid so, } \\ \text { dissociation is } \\ \text { minimum. }\end{array}\right.\)
\(\therefore \quad\left[\mathrm{H}^{+}\right]=\frac{K_{a}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}\)
\(=\frac{1.8 \times 10^{-5} \times 10^{-1}}{2 \times 10^{-1}}=9 \times 10^{-6} \mathrm{M}\)
In which of the following equilibrium \(K_{c}\) and \(K_{p}\) are not equal? [NEET 2010]
(d) \(K_{p}\) and \(K_{c}\) are related by the equation,
\(
K_{p}=K_{c}(R T)^{\Delta n_{g}}
\)
where \(\Delta n_{g}=\) difference in the no. of moles of products and reactants in the gaseous state. For
\(
\begin{gathered}
2 \mathrm{C}_{(s)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{CO}_{2(g)} \\
\Delta n_{g}=2-(1)=1 \neq 0
\end{gathered}
\)
In a buffer solution containing equal concentration of \(B^{-}\)and \(\mathrm{HB}\), the \(K_{b}\) for \(B^{-}\)is \(10^{-10}\). The \(\mathrm{pH}\) of buffer solution is [NEET 2010]
(d) We know, \(\mathrm{pOH}=\mathrm{p} K_{b}+\log \frac{\left[B^{-}\right]}{[\mathrm{H} B]}\)
Since, \(\left[B^{-}\right]=[H B]\) (given)
\(
\begin{aligned}
&\therefore \quad \mathrm{pOH}=\mathrm{p} K_{b} \Rightarrow \mathrm{pOH}=10 \\
&\therefore \quad \mathrm{pH}=14-10=4
\end{aligned}
\)
The reaction,
\(2 A_{(g)}+B_{(g)} \rightleftharpoons 3 C_{(g)}+D_{(g)}\)
is begun with the concentrations of \(A\) and \(B\) both at an initial value of \(1.00 \mathrm{~M}\). When equilibrium is reached, the concentration of \(D\) is measured and found to be \(0.25 \mathrm{~M}\). The value for the equilibrium constant for this reaction is given by the expression [Mains 2010]
\(\begin{array}{lcccc}\text { (b) } & 2 A_{(g)}+ & B_{(g)} \rightleftharpoons & 3 C_{(g)} & +D_{(g)} \\ \text { Initial moles : } & 1 & 1 & 0 & 0 \\ \text { Moles at eq. : } & 1-(2 \times 0.25) & 1-0.25 & 3 \times 0.25 & 0.25 \\ & =0.5 & =0.75 & =0.75 & =0.25\end{array}\) Equilibrium constant, \(K=\frac{[C]^{3}[D]}{[A]^{2}[B]}\)
\(
\therefore \quad K=\frac{(0.75)^{3}(0.25)}{(0.5)^{2}(0.75)}
\)
The dissociation constants for acetic acid and \(\mathrm{HCN}\) at \(25^{\circ} \mathrm{C}\) are \(1.5 \times 10^{-5}\) and \(4.5 \times 10^{-10}\) respectively. The equilibrium constant for the equilibrium
\(\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{HCN}+\mathrm{CH}_{3} \mathrm{COO}^{-}\) would be [NEET 2009]
(c) Given,
\(
\begin{aligned}
&\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \\
&K_{1}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.5 \times 10^{-5} \\
&\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CN}^{-} \\
&K_{2}=\frac{\left[\mathrm{CN}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{HCN}\right]}=4.5 \times 10^{-10} \\
&\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{HCN} + \mathrm{CH}_{3} \mathrm{COO}^{-} \\
&K=\frac{\left[\mathrm{HCN}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CN}^{-}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\
&K=\frac{K_{1}}{K_{2}}=\frac{1.5 \times 10^{-5}}{4.5 \times 10^{-10}} \approx 0.3 \times 10^{5}
\end{aligned}
\)
Which of the following molecules acts as a Lewis acid? [NEET 2009]
(d) Lewis acids are electron deficient compounds, since \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~B}\) is electron deficient (due to incomplete octect of B), it acts as a Lewis acid
The ionization constant of ammonium hydroxide is \(1.77 \times 10^{-5}\) at \(298 \mathrm{~K}\). Hydrolysis constant of ammonium chloride is [NEET 2009]
(d) \(\mathrm{NH}_{4} \mathrm{Cl}\) is a salt of strong acid and weak base, so hydrolysis constant is
\(
\begin{gathered}
K_{h}=\frac{K_{w}}{K_{b}} \\
\text { Given, } K_{b}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=1.77 \times 10^{-5} \\
K_{w}=10^{-14} \\
\therefore \quad K_{h}=\frac{10^{-14}}{1.77 \times 10^{-5}}=0.565 \times 10^{-9} \\
\text { or } \quad K_{h}=5.65 \times 10^{-10}
\end{gathered}
\)
What is the \(\left[\mathrm{OH}^{-}\right]\)in the final solution prepared by mixing \(20.0 \mathrm{~mL}\) of \(0.050 \mathrm{~M} \mathrm{~HCl}\) with \(30.0 \mathrm{~mL}\) of \(0.10 \mathrm{~M} \mathrm{~Ba}(\mathrm{OH})_{2}\) ? [NEET 2009]
(d) Millimoles of \(\mathrm{H}^{+}\)produced \(=20 \times 0.05=1\)
Millimoles of \(\mathrm{OH}^{-}\)produced \(=30 \times 0.1 \times 2=6\)
( \(\because\) Each \(\mathrm{Ba}(\mathrm{OH})_2\) gives \(2 \mathrm{OH}^{-}\).)
\(\therefore\) Millimoles of \(\mathrm{OH}^{-}\) remaining in solution
\(
=6-1=5
\)
Total volume of solution \(=20+30=50 \mathrm{~mL}\)
\(
\therefore \quad\left[\mathrm{OH}^{-}\right]=\frac{5}{50}=0.1 \mathrm{M}
\)
The dissociation equilibrium of a gas \(A B_{2}\) can be represented as :
\(
2 A B_{2}(g) \rightleftharpoons 2 A B_{(g)}+B_{2(g)}
\)
The degree of dissociation is \(x\) and is small compared to 1. The expression relating the degree of dissociation \((x)\) with equilibrium constant \(K_{P}\) and total pressure \(P\) is [NEET 2008]
(d)
\(
\begin{array}{cccr}
& 2 A B_{2(g)} \rightleftharpoons 2 A B_{(g)}+B_{2(g)} & \\
& 2 \quad \quad \quad 0 \quad \quad \quad \quad 0 & \text { (initially) } \\
& 2(1-x) \quad \quad 2 x \quad \quad \quad \quad x & \text { (at equilibrium) }
\end{array}
\)\(
\begin{aligned}
&\text { Amount of moles at equilibrium }=2(1-x)+2 x+x = 2 + x \\
&\qquad \begin{aligned}
K_{p}=& \frac{\left[p_{A B}\right]^{2}\left[p_{B_{2}}\right]}{\left[p_{A B_{2}}\right]^{2}} \\
K_{p}=\frac{\left(\frac{2 x}{2+x} \times P\right)^{2} \times\left(\frac{x}{2+x} \times P\right)}{\left(\frac{2(1-x)}{2+x} \times P\right)^{2}}=\frac{\frac{4 x^{3}}{2+x} \times P}{4(1-x)^{2}} \\
K_{p}=\frac{4 x^{3} \times P}{2} \times \frac{1}{4} \quad(\because 1-x \approx 1 \& 2+x \approx 2) \\
x=\left(\frac{8 K_{p}}{4 P}\right)^{1 / 3} \quad \Rightarrow x=\left(\frac{2 K_{p}}{P}\right)^{1 / 3}
\end{aligned}
\end{aligned}
\)
If the concentration of \(\mathrm{OH}^{-}\)ions in the reaction \(\mathrm{Fe}(\mathrm{OH})_{3(s)} \rightleftharpoons \mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q)\) is decreased by \(1 / 4\) times, then equilibrium concentration of \(\mathrm{Fe}^{3+}\) will increase by [NEET 2008]
(a) \(\mathrm{Fe}(\mathrm{OH})_{3(s)} \rightleftharpoons \mathrm{Fe}_{(a q)}^{3+}+3 \mathrm{OH}_{(a q)}^{-}\)
\(
K=\frac{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}}{\left[\mathrm{Fe}(\mathrm{OH})_{3}\right]}
\)
\(K=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}\) (activity of solid is taken unity)
Concentration of \(\mathrm{OH}^{-}\)ion in the reaction is decreased by \(1 / 4\) times then equilibrium concentration of \(\mathrm{Fe}^{3+}\) will be increased by 64 times in order to keep the value of \(K\) constant
Equal volumes of three acid solutions of \(\mathrm{pH}\) 3, 4 and 5 are mixed in a vessel. What will be the \(\mathrm{H}^{+}\)ion concentration in the mixture? [NEET 2008]
(d) \(\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]\)
or \(\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}} ;\left[\mathrm{H}^{+}\right]\)of soln. \(1=10^{-3}\)
\(\left[\mathrm{H}^{+}\right]\)of \(\operatorname{soln} .2=10^{-4} ;\left[\mathrm{H}^{+}\right]\)of \(\operatorname{soln} .3=10^{-5}\)
Total concentration of \(\left[\mathrm{H}^{+}\right]\)
\(
\begin{gathered}
=10^{-3}\left(1+1 \times 10^{-1}+1 \times 10^{-2}\right) \\
\Rightarrow 10^{-3}\left(\frac{1}{1}+\frac{1}{10}+\frac{1}{100}\right) \Rightarrow 10^{-3}\left(\frac{100+10+1}{100}\right) \\
\Rightarrow 10^{-3}\left(\frac{111}{100}\right)=1.11 \times 10^{-3}
\end{gathered}
\)
So, \(\mathrm{H}^{+}\)ion concentration in mixture of equal volume of these acid solution \(=\frac{1.11 \times 10^{-3}}{3}=3.7 \times 10^{-4} \mathrm{M}\)
The value of equilibrium constant of the reaction
\(\mathrm{HI}_{(g)} \rightleftharpoons \frac{1}{2} \mathrm{H}_{2(g)}+\frac{1}{2} \mathrm{I}_{2(g)}\)
is 8.0. The equilibrium constant of the reaction \(\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftharpoons 2 \mathrm{HI}_{(g)}\) will be [NEET 2008]
(d) \(\mathrm{HI}_{(\mathrm{g})} \rightleftharpoons 1 / 2 \mathrm{H}_{2(g)}+1 / 2 \mathrm{I}_{2(g)}\)
i.e. \(K=\frac{\left[\mathrm{H}_{2}\right]^{1 / 2}\left[\mathrm{I}_{2}\right]^{1 / 2}}{[\mathrm{HI}]}=8\)
\(
\begin{gathered}
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})} \\
K^{\prime}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\left(\frac{1}{8}\right)^{2} \Rightarrow K^{\prime}=\frac{1}{64}
\end{gathered}
\)
The values of for the reactions,
\(
\begin{aligned}
&X \rightleftharpoons Y+ZÂ \dots(i) \\
&A \rightleftharpoons 2 B \dots(ii)
\end{aligned}
\)
are in the ratio \(9: 1\). If degree of dissociation of \(X\) and \(A\) be equal, then total pressure at equilibrium (i) and (ii) are in the ratio [NEET 2008]
\(
\begin{array}{l}
X \rightleftharpoons Y+Z \dots(i) \\
A \rightleftharpoons 2 B \dots(ii) \\
X \rightleftharpoons Y+Z \\
\begin{array}{llll}
1 \quad \quad \quad 0 \quad \quad 0 & \text { Initially }
\end{array} \\
1-\alpha \quad \quad \alpha \quad \quad \alpha \quad \text { At equilibrium } \\
\end{array}
\)
Total no. of moles at equilibrium \(=1-\alpha+2 \alpha=1+\alpha\) Similarly,
\(
A \rightleftharpoons 2 B
\)
\(
\begin{array}{lll}
1 & 0 & \text { Initially } \\
1-\alpha & 2 \alpha & \text { At equilibrium }
\end{array}
\)
Total no. of moles at equilibrium \(=1-\alpha+2 \alpha=1+\alpha\)
\(
\therefore \quad K_{p_1}=\frac{p_Y \times p_Z}{p_X}=\frac{\frac{\alpha}{1+\alpha} \times P_1 \times \frac{\alpha}{1+\alpha} \times P_1}{\frac{1-\alpha}{1+\alpha} \times P_1}
\)
\(
K_{p_2}=\frac{\left(p_B\right)^2}{p_A}=\frac{\left(\frac{2 \alpha}{1+\alpha} \times P_2\right)^2}{\frac{1-\alpha}{1+\alpha} \times P_2}
\)
\(
\text { Now } \frac{K_{p_1}}{K_{p_2}}=\frac{P_1}{4 P_2} \Rightarrow \frac{P_1}{P_2}=\frac{36}{1}=36: 1
\)
A weak acid, \(\mathrm{H} A\), has a \(K_{a}\) of \(1.00 \times 10^{-5}\). If \(0.100 \mathrm{~mol}\) of this acid is dissolved in one litre of water, the percentage of acid dissociated at equilibrium is closest to [NEET 2007]
(a) For a weak acid, degree of dissociation, \(\alpha=\sqrt{\frac{K_{a}}{C}}=\sqrt{\frac{1 \times 10^{-5}}{0.1}}=10^{-2}\) i.e. \(1.00 \%\)
Calculate the \(\mathrm{pOH}\) of a solution at \(25^{\circ} \mathrm{C}\) that contains \(1 \times 10^{-10} \mathrm{M}\) of hydronium ions, i.e. \(\mathrm{H}_{3} \mathrm{O}^{+}\) [NEET 2007]
(a) Given, \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-10}\) or, \(\mathrm{pH}=10\)
Now at \(25^{\circ} \mathrm{C}, \mathrm{pH}+\mathrm{pOH}=\mathrm{p} K_{w}=14\)
or, \(\mathrm{pOH}=14-\mathrm{pH}=14-10=4\)
For the reaction:
\(\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \rightleftharpoons \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}\),
\(\Delta H_{r}=-170.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\). Which of the following statements is not true? [NEET 2006]
(c) \(\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \rightleftharpoons \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}\)
Now, \(K_p=\frac{\left[\mathrm{CO}_2\right]\left[\mathrm{H}_2 \mathrm{O}\right]^2}{\left[\mathrm{CH}_4\right]\left[\mathrm{O}_2\right]^2}\)
Now, \(\mathrm{H}_2 \mathrm{O}\) is pure liquid, so, \(\left[\mathrm{H}_2 \mathrm{O}\right]=1\)
\(
\Rightarrow K_C=\frac{\left[\mathrm{CO}_2\right]}{\left[\mathrm{CH}_4\right]\left[\mathrm{O}_2\right]^2}
\)
\(\because \Delta H r=-170.8 \mathrm{KJ} / \mathrm{mol}\) is negative, so reaction is exothermic by adding \(\mathrm{O}_2(g)\)
or \(\mathrm{CH}_4(\mathrm{~g})\) at equilibrium, by Le Chatelier’s principle, the equilibrium shift towards right side.
Which of the following pairs constitutes a buffer? [NEET 2006]
(b) \(\mathrm{HNO}_{2}\) and \(\mathrm{NaNO}_{2}\) are examples of acidic buffer
The hydrogen ion concentration of a \(10^{-8} \mathrm{M}\) \(\mathrm{HCl}\) a queous solution at \(298 \mathrm{~K}\left(K_{w}=10^{-14}\right)\) is [NEET 2006]
(c) \(10^{-8} \mathrm{~M} \mathrm{~HCl}=10^{-8} \mathrm{~M} \mathrm{~H}^{+}\)
Also from water, \(\left[\mathrm{H}^{+}\right]=10^{-7}\)
Total \(\left[\mathrm{H}^{+}\right]=10^{-7}+0.10 \times 10^{-7}=1.1 \times 10^{-7}\)
At \(25^{\circ} \mathrm{C}\), the dissociation constant of a base, \(\mathrm{BOH}\), is \(1.0 \times 10^{-12}\). The concentration of hydroxyl ions in \(0.01 \mathrm{~M}\) aqueous solution of the base would be [NEET 2005]
(d) \(C=0.01 \mathrm{M}\)
\(
K_{b}=1 \times 10^{-12} \text { at } 25^{\circ} \mathrm{C}
\)
\(\mathrm{BOH} \rightleftharpoons \mathrm{B}^{+}+\mathrm{OH}^{-}\)
\(
\begin{array}{lll}
C & & & 0 & & & 0
\end{array}
\)
\(
\text { at eq. } C-C \alpha \quad C \alpha \quad C \alpha
\)
\(
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } &=C \alpha \\
{\left[\mathrm{OH}^{-}\right] } &=\sqrt{K_{b} C}=\sqrt{1 \times 10^{-12} \times 10^{-2}} \\
{\left[\mathrm{OH}^{-}\right] } &=10^{-7} \mathrm{~mol} \mathrm{~L}
\end{aligned}
\)
\(\mathrm{H}_{2} \mathrm{~S}\) gas when passed through a solution of cations containing \(\mathrm{HCl}\) precipitates the cations of second group of qualitative analysis but not those belonging to the fourth group. It is because [NEET 2005]
(a) The cation of group II are precipitated as their sulphides.
Solubility product of sulphide of group II radicals are very low. Therefore, even with low conc. of \(\mathrm{S}^{2-}\) ions, the ionic product exceeds the value of their solubility product and the radical of group II gets precipitated. The low conc. of \(\mathrm{S}^{2-}\) ions is obtained by passing \(\mathrm{H}_2 \mathrm{S}\) gas through the solution of the salt in the presence of dil. \(\mathrm{HCl}\) which suppresses degree of ionisation of \(\mathrm{H}_2 \mathrm{S}\) by common ion effect.
Note: Solubility product of group IV radicals are quite high.
It is necessary to suppress the conc. of \(\mathrm{S}^{2-}\) ions, otherwise radical of group IV will also get precipitated along with group II radicals.
Equilibrium constants \(K_{1}\) and \(K_{2}\) for the following equilibria:
\(\mathrm{NO}_{(g)}+\frac{1}{2} \mathrm{O}_{2} \stackrel{K_{1}}{\rightleftharpoons} \mathrm{NO}_{2(g)}\) and
\(2 \mathrm{NO}_{2(g)} \stackrel{K_{2}}{\rightleftharpoons} 2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)}\) are related as [NEET 2005]
(a) \( K_{1}=\frac{P_{\mathrm{NO}_{2}}}{P_{\mathrm{NO}} \cdot\left(P_{\mathrm{O}_{2}}\right)^{1 / 2}} \dots(1) \)
\(
K_{2}=\frac{\left(P_{\mathrm{NO}}\right)^{2} \cdot \mathrm{Po}_{2}}{\left(P_{\mathrm{NO}_{2}}\right)^{2}} \dots(2)
\)
taking square root on both sides in eq. 2
\(
\begin{aligned}
&\Rightarrow \sqrt{K_{2}}=\frac{P_{\mathrm{NO}} \cdot\left(\mathrm{Po}_{2}\right)^{1 / 2}}{P_{\mathrm{NO}_{2}}} \\
&\Rightarrow \sqrt{K_{2}}=\frac{1}{K_{1}} ; \Rightarrow K_{2}=\frac{1}{K_{1}^{2}}
\end{aligned}
\)
The solubility product of a sparingly soluble salt \(A X_{2}\) is \(3.2 \times 10^{-11}\). Its solubility (in moles/L) is [NEET 2004]
(c)
\(
K_{s p}=3.2 \times 10^{-11}
\)
\(
A X_2 \rightleftharpoons A^{2+}+2 X^{-}
\)
\(
\quad \quad \quad \quad \quad s \quad 2 s
\)
\(
K_{s p}=s \times(2 s)^2=4 s^3 ; \text { i.e., } 3.2 \times 10^{-11}=4 s^3
\)
\(
\begin{array}{ll}
\text { or, } & s^3=0.8 \times 10^{-11}=8 \times 10^{-12} \\
\therefore & s=2 \times 10^{-4}
\end{array}
\)
The rapid change of \(\mathrm{pH}\) near the stoichiometric point of an acid-base titration is the basis of indicator detection. \(\mathrm{pH}\) of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base ( \(\operatorname{In}^{-}\)) forms of the indicator by the expression [NEET 2004]
(d) Let us consider the formation of a salt of a weak acid and a strong base.
\(\mathrm{In}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HIn}+\mathrm{OH}^{-}\)
\(
K_{h}=\frac{[\mathrm{HIn}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{In}^{-}\right]} \dots(i)
\)
Other equations present in the solution are
\(\begin{aligned} \mathrm{HIn} & \rightleftharpoons \mathrm{H}^{+}+\mathrm{In}^{-} \\ \mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\ K_{\mathrm{In}} &=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]} \dots(ii) \\ K_{w}=& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] } \dots(iii) \\ \text {From (ii) and (iii) } \end{aligned}\)
\(
\begin{aligned}
&\frac{K_{w}}{K_{\mathrm{ln}}}=\frac{[\mathrm{HIn}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{In}^{-}\right]}=K_{h} \dots(iv) \\
&{\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{K_{\mathrm{In}}} \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}}
\end{aligned}
\)
\(
\begin{array}{l}
\log \left[\mathrm{OH}^{-}\right]=\log K_w-\log K_{\text {In }}+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]} \\
-\mathrm{pOH}=-\mathrm{p} K_w+\mathrm{p} K_{\text {In }}+\log \frac{\left[\operatorname{In}^{-}\right]}{[\mathrm{HIn}]} \\
\mathrm{p} K_w-\mathrm{pOH}=\mathrm{p} K_{\text {In }}+\log \frac{\left[\operatorname{In}^{-}\right]}{[\mathrm{HIn}]} \\
\text { or, } \mathrm{pH}=\mathrm{p} K_{\text {In }}+\log \frac{\left[\operatorname{In}^{-}\right]}{[\mathrm{HIn}]} \\
\text { i.e. } \log \frac{\left[\operatorname{In}^{-}\right]}{[\mathrm{HIn}]}=\mathrm{pH}-\mathrm{p} K_{\text {In }} \\
\end{array}
\)
In Haber process 30 litres of dihydrogen and 30 litres of dinitrogen were taken for reaction which yielded only \(50 \%\) of the expected product. What will be the composition of gaseous mixture under the aforesaid condition in the end? [NEET 2003]
(b) \(3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}\)
\(\begin{array}{ccc}3 & & 1 & & 2 \\ 3 / 2 & & 1 / 2 & & 1\end{array}\)
\(10 \times \frac{3}{2} \quad 10 \times \frac{1}{2} \quad 10 \times 1\)
\(15 \quad \quad \quad 5 \quad \quad \quad 10\)
Composition of gaseous mixture under the aforesaid condition in the end
\(
\begin{aligned}
&\mathrm{H}_{2}=30-15=15 \text { litres } \\
&\mathrm{N}_{2}=30-5=25 \text { litres } \\
&\mathrm{NH}_{3}=10 \text { litres }
\end{aligned}
\)
The reaction quotient \((Q)\) for the reaction \(\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(g)}\) is given by \(Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}\). The reaction will proceed from right to left if
(a) \(Q=K_{c}\)
(b) \(Q<K_{c}\)
(c) \(Q>K_{c}\)
(d) \(Q=0\)
where \(K_{c}\) is the equilibrium constant. [NEET 2003]
(c) \(\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(g)}\)
\(
K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} ; \quad \Delta n=2-4=-2
\)
Thus the reaction will shift in forward direction when \(Q>K_{c}\)
Which one of the following statements is not true? [NEET 2003]
(d) Due to strong hydrogen-fluorine bond, proton is not given off easily and hence, \(\mathrm{HF}\) is weakest acid
The solubility product of \(\mathrm{AgI}\) at \(25^{\circ} \mathrm{C}\) is \(1.0 \times 10^{-16} \mathrm{~mol}^{2} \mathrm{~L}^{-2}\). The solubility of \(\mathrm{AgI}\) in \(10^{-4} \mathrm{~N}\) solution of \(\mathrm{KI}\) at \(25^{\circ} \mathrm{C}\) is approximately (in \(\mathrm{mol} \mathrm{~L}^{-1}\) ) [NEET 2003]
(b) AgI \(\rightleftharpoons \mathrm{Ag}^{+}+\mathrm{I}^{-}\)
\(
1.0 \times 10^{-16}=s \times s
\)
Solubility of \(\mathrm{Ag}^{+}=1.0 \times 10^{-8} \mathrm{~mol} \mathrm{~L}^{-1}\)
Solubility of \(\mathrm{AgI}\) in \(\mathrm{KI}\) solution \(=1.0 \times 10^{-8} \times 10^{-4}\) \(=1.0 \times 10^{-12} \mathrm{~mol} \mathrm{~L}^{-1}\)
Reaction \(\mathrm{BaO}_{2(s)} \rightleftharpoons \mathrm{BaO}_{(s)}+\mathrm{O}_{2(g)} ; \Delta H=+\) ve. In equilibrium condition, pressure of \(\mathrm{O}_{2}\) depends on [NEET 2002]
(c) Pressure of \(\mathrm{O}_{2}\) does not depend on concentration terms of other reactants (because both are in solid state), since this is an endothermic reaction. If the temperature be raised dissociation of \(\mathrm{BaO}_{2}\) would occur, more \(\mathrm{O}_{2}\) is produced at equilibrium, pressure of \(\mathrm{O}_{2}\) increases
Solubility of \(M X_{2}\) type electrolytes is \(0.5 \times 10^{-4}\) mole/lit., then find out \(K_{s p}\) of electrolytes. [NEET 2002]
(d) If \(s\) is the solubility of the electrolyte \(M X_{2}\)
\(
C_{M_{2+}}=s, C_{X-}=2 s
\)
Solubility product, \(K_{s p}=s \times(2 s)^{2}=4 s^{3}\);
\(
\begin{aligned}
&s=0.5 \times 10^{-4} \mathrm{~mole} / \mathrm{litre} \\
&\therefore \quad K_{s p}=4 \times\left(0.5 \times 10^{-4}\right)^{3} ; K_{s p}=5 \times 10^{-13}
\end{aligned}
\)
Which has highest pH? [NEET 2002]
(b) \(\mathrm{NH}_{4} \mathrm{OH}\) is a weak base but \(\mathrm{HCl}\) is a strong acid in solution, so \(\mathrm{pH}\) of \(\mathrm{NH}_{4} \mathrm{Cl}\) solution is comparatively low.
\(\mathrm{NaNO}_3\) is a salt of strong base and strong acid, so \(\mathrm{pH}\) of the solution will be 7 .
Hydrolysis of potassium acetate (a salt of a weak acid and a strong alkali) gives a weakly alkaline solution, since the acetate ion acts as a weak base.
\(
\mathrm{CH}_3 \mathrm{COOK}+\mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{CH}_3 \mathrm{COOH}+\mathrm{K}^{+}+\mathrm{OH}^{-}
\)
The \(\mathrm{pH}\) of this solution \(\approx 8.8\).
Hydrolysis of sodium carbonate (a salt of strong alkali and a weak acid) gives an alkaline solution
\(
\mathrm{Na}_2 \mathrm{CO}_3+2 \mathrm{H}_2 \mathrm{O} \rightarrow 2\left(\mathrm{Na}^{+}+\mathrm{OH}^{-}\right)+\mathrm{H}_2 \mathrm{CO}_3
\)
The \(\mathrm{pH}\) of this solution is \(>10\).
Solution of 0.1 \(\mathrm{~N} \mathrm{~NH}_{4} \mathrm{OH}\) and \(0.1 \mathrm{~N} \mathrm{~NH}_{4} \mathrm{Cl}\) has \(\mathrm{pH}\) 9.25. Then find out \(\mathrm{p} K_{b}\) of \(\mathrm{NH}_{4} \mathrm{OH}\). [NEET 2002]
(b) Solution of \(0.1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}\) and \(0.1 \mathrm{NNH}_{4} \mathrm{Cl}\) is a buffer solution.
According to Henderson equation, the \(\mathrm{pH}\) of a basic buffer,
\(
\begin{aligned}
& \mathrm{pH}=14-\mathrm{p} K_{b}-\log \frac{C_{\text {salt }}}{C_{\text {base }}} \\
\Rightarrow & \mathrm{p} K_{b}=14-\mathrm{pH}-\log \frac{C_{\text {salt }}}{C_{\text {base }}} \\
\Rightarrow & \mathrm{p} K_{b}=14-9.25-\log \frac{0.1}{0.1} \\
\Rightarrow & \mathrm{p} K_{b}=14-9.25=4.75 \\
\therefore & \mathrm{p} K_{b} \text { of } \mathrm{NH}_{4} \mathrm{OH}=4.75
\end{aligned}
\)
In \(\mathrm{HS}^{-}, \mathrm{I}^{-}, R-\mathrm{NH}_{2}, \mathrm{NH}_{3}\) order of proton accepting tendency will be [NEET 2001]
(c) Proton accepting tendency is known as the strength of basicity.
In \(\mathrm{R}-\mathrm{NH}_{2}, \mathrm{~N}\) has lone pair of electron which intensify due to electron releasing \(R\)-group and increase the tendency to donate lone pair of electrons to \(\mathrm{H}^{+}\).
Secondly as the size of the ion increases there is less attraction for \(\mathrm{H}^{+}\)to form weaker bonds with \(\mathrm{H}\) – atom and are less basic. The order of the given series: \(\mathrm{R-NH}_{2}>\mathrm{NH}_{3}>\mathrm{HS}^{-}>\mathrm{I}^{-}\)
Ionisation constant of \(\mathrm{CH}_{3} \mathrm{COOH}\) is \(1.7 \times 10^{-5}\) and concentration of \(\mathrm{H}^{+}\)ions is \(3.4 \times 10^{-4}\). Then find out initial concentration of \(\mathrm{CH}_{3} \mathrm{COOH}\) molecules. [NEET 2001]
(d) \(\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}\)
\(
\begin{aligned}
&K_{\text {ion }}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}]\right.} \\
&{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{3.4 \times 10^{-4} \times 3.4 \times 10^{-4}}{17 \times 10^{-5}}=6.8 \times 10^{-3}}
\end{aligned}
\)
Solubility of \(M_{2} \mathrm{~S}\) salt is \(3.5 \times 10^{-6}\) then find out solubility product [NEET 2001]
(b) For reaction,
\(
M_{2} \mathrm{~S} \rightleftharpoons 2 M^{+}+\mathrm{S}^{2-}
\)
Solubility \(=3.5 \times 10^{-6}\)
Solubility product, \(K_{s p}=\left[M^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]\)
\(
=(2 s)^{2} s=4 s^{3}=4 \times\left(3.5 \times 10^{-6}\right)^{3}=1.7 \times 10^{-16}
\)
Correct relation between dissociation constants of a dibasic acid is [NEET 2000]
(b) (i) \(\mathrm{H}_2 A \stackrel{K_{a_1}}{\rightleftharpoons} \mathrm{H} A^{-}+\mathrm{H}^{+}\)
(ii) \(\mathrm{HA}^{-} \stackrel{K_{a_{2}}}{\rightleftharpoons} \mathrm{A}^{2-}+\mathrm{H}^{+}\)
In the \(1^{\text {st }}\) step \(\mathrm{H}^{+}\)ion comes from neutral molecule, while in the \(2^{\text {nd }}\) step the \(\mathrm{H}^{+}\)ion comes from negatively charged ions. The presence of -ve charge makes the removal \(\mathrm{H}^{+}\)ion difficult. Thus, \(K_{a_1}>K_{a_2}\).
For any reversible reaction, if we increase concentration of the reactants, then effect on equilibrium constant [NEET 2000]
(b) For a reaction, \(A+B \rightleftharpoons C+D\).
\(
K_{\mathrm{eq}}=\frac{[C][D]}{[A][B]}
\)
Increase in conc. of reactants will proceed the equilibrium in the forward direction giving more products. So that the equilibrium constant value remains constant and independent of concentration.
Conjugate acid of \(\mathrm{NH}_{2}^{-}\)is [NEET 2000]
(d) \(\mathrm{NH}_{2}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{3}\) (conjugate acid)
Substance \(+ \mathrm{H}^{+} \rightarrow\) conjugate acid
Substance \(-\mathrm{H}^{+} \rightarrow\) conjugate base
Which statement is wrong about \(\mathrm{pH}\) and \(\mathrm{H}^{+}\)? [NEET 2000]
(b) After mixing \(1 \mathrm{~N}\) solution of \(\mathrm{CH}_{3} \mathrm{COOH}\) (weak acid) and \(1 \mathrm{~N} \mathrm{~NaOH}\) (strong base), the resulting solution will have free \(\mathrm{OH}^{-}\)ions. Thus \(\mathrm{pH}\) will be higher than 7
Equilibrium constant \(K_{p}\) for following reaction \(\mathrm{MgCO}_{3(s)} \rightleftharpoons \mathrm{MgO}_{(s)}+\mathrm{CO}_{2(g)}\) [NEET 2000]
(a) \(K_{p}=P_{\mathrm{CO}_{2}}\)
Solids do not exert pressure, so their partial pressure is taken as unity
Explanation:
\(
\begin{array}{l}
\mathrm{MgCO}_3(\mathrm{~s}) \rightleftharpoons \mathrm{MgO}(\mathrm{s})+\mathrm{CO}_2(\mathrm{~g}) \\
\text { Now, } \mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{CO}_2} \cdot \mathrm{P}_{\mathrm{MgO}}}{\mathrm{P}_{\mathrm{MgCO}_3}}
\end{array}
\)
But, \(\mathrm{MgCO}_3\) and \(\mathrm{MgO}\) are pure solids.
So, \(\mathrm{K}_{\mathrm{P}}=\mathrm{P}_{\mathrm{CO}_2}\).
The strongest conjugate base is [AIPMT 1999]
(d) \(\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}\)
Weak acid                  Conjugate base
As \(\mathrm{CH}_{3} \mathrm{COOH}\) is the weakest acid, so its conjugate base \(\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)\) is the strongest base. \(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HCl}\), \(\mathrm{HNO}_{3}\) are strong acids, so their conjugate bases are weak
The concentration of \(\left[\mathrm{H}^{+}\right]\)and concentration of \(\left[\mathrm{OH}^{-}\right]\)of a \(0.1\) aqueous solution of \(2 \%\) ionised weak acid is [ionic product of water = \(\left.1 \times 10^{-14}\right]\) [AIPMT 1999]
(a) \(\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha=0.1 \times 0.02=2 \times 10^{-3} \mathrm{M}\) (As degree of dissociation \(=2 \%=0.02\) )
\(
\begin{array}{l}
\mathrm{K}_{\mathrm{W}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]\\
10^{-14}=2 \times 10^{-3} \times\left[\mathrm{OH}^{-}\right]
\end{array}
\)
Hence \(\left[\mathrm{OH}^{-}\right]=\frac{10^{-14}}{2 \times 10^{-3}}=5 \times 10^{-12} \mathrm{M}\)
The solubility of a saturated solution of calcium fluoride is \(2 \times 10^{-4}\) moles per litre. Its solubility product is [AIPMT 1999]
(d) For \(\mathrm{CaF}_{2}\), decomposition is as follows:
\(
\begin{aligned}
& \mathrm{CaF}_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-} \\
& s \quad \quad \quad \quad s \quad \quad \quad 2 s \\
\Rightarrow & K_{s p}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}=s \times(2 s)^{2} \\
\text { or, } & K_{s p}=4 s^{3} \Rightarrow K_{s p}=4 s^{3}=4 \times\left(2 \times 10^{-4}\right)^{3} \\
\Rightarrow & K_{s p}=32 \times 10^{-12}
\end{aligned}
\)
If \(K_{1}\) and \(K_{2}\) are the respective equilibrium constants for the two reactions,
\(\mathrm{XeF}_{6(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{XeOF}_{4(g)}+2 \mathrm{HF}_{(g)}\)
\(\mathrm{XeO}_{4(g)}+\mathrm{XeF}_{6(g)} \rightarrow \mathrm{XeOF}_{4(g)}+\mathrm{XeO}_{3} \mathrm{~F}_{2(g)}\),
the equilibrium constant of the reaction, \(\mathrm{XeO}_{4(g)}+2 \mathrm{HF}_{(g)} \rightarrow \mathrm{XeO}_{3} \mathrm{~F}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)}\), will be [AIPMT 1998]
(d) Given,
\(
\begin{aligned}
&\mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \Longrightarrow \mathrm{XeOF}_{4}+2 \mathrm{HF}, K_{\mathrm{eq}}=K_{1} \\
&\mathrm{XeOF}_{4}+2 \mathrm{HF} \rightleftharpoons \mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O}, K_{\text {eq }}=1 / K_{1} \dots(1)
\end{aligned}
\)
and \(\mathrm{XeO}_{4}+\mathrm{XeF}_{6} \rightleftharpoons \mathrm{XeOF}_{4}+\mathrm{XeO}_{3} \mathrm{~F}_{2}, K_{\text {eq }}=K_{2} \dots(2) \)
The reaction, \(\mathrm{XeO}_{4}+2 \mathrm{HF} \rightleftharpoons \mathrm{XeO}_{3} \mathrm{~F}_{2}+\mathrm{H}_{2} \mathrm{O}\), can be obtained by adding eq. (1) and eq.(2).
So, the equilibrium constant for the above reaction can be obtained by multiplying the equilibrium constants of eq. (1) and eq. (2)
\(
\text { Hence, the value is }=\frac{K_2}{K_1}
\)
A physician wishes to prepare a buffer solution at \(\mathrm{pH}=3.85\) that efficiently resists changes in \(\mathrm{pH}\) yet contains only small concentration of the buffering agents. Which of the following weak acids together with its sodium salt would be best to use? [AIPMT 1997]
(b) \( \mathrm{pH}=\mathrm{p} K_{a}+\log \frac{[\text { Salt }]}{[\text { Acid }]}\)
For small concentration of buffering agent and for maximum buffer capacity [Salt] \(/[\) Acid \(] \approx 1\) i.e., \(\mathrm{pH}=\mathrm{p} K_{a}\)
The hydride ion \(\mathrm{H}^{-}\)is stronger base than its hydroxide ion \(\mathrm{OH}^{-}\). Which of the following reaction will occur if sodium hydride \((\mathrm{NaH})\) is dissolved in water? [AIPMT 1997]
(d) \(\mathrm{NaH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}\)
or, \(\mathrm{H}_{(a q)}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{OH}^{-}+\mathrm{H}_{2} \uparrow\)
Hydride ions will abstract proton from \(\mathrm{NaOH}\) and hydrogen gas will evolve as a result of it
The solubility product of \(\mathrm{CuS}, \mathrm{Ag}_{2} \mathrm{~S}\) and \(\mathrm{HgS}\) are \(10^{-31}, 10^{-44}\) and \(10^{-54}\) respectively. The solubilities of these sulphides are in the order [AIPMT 1997]
(b) The greater the solubility product, the greater is the solubility.
For CuS & HgS \(Ksp=S^2\) (where \(\mathrm{s}=\) solubility)
For \(\mathrm{Ag}_2 \mathrm{~S} ; \mathrm{Ksp}=4 \mathrm{S}^3\) ( \(\mathrm{S}=\) solubility)
Now put the values of Ksp and check in which case the value of \(S\) is highest & lowest.
Solubility of CuS: \(\left(10^{-31}\right)^{1 / 2}=\left(10^{-31 / 2}\right)\);
\(
\mathrm{Ag}_2 \mathrm{~S}:\left(10^{-44}\right)^{1 / 3}=\left(10^{-44 / 3}\right) ;
\)
\(\mathrm{HgS}\);
\(
\left(10^{-54}\right)^{1 / 2}=\left(10^{-54 / 2}\right)=\left(10^{-27}\right) ;
\)
The order of solubility will be as per above values:
Hence, the order of solubllity is: \(\mathrm{Ag}_2 \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}\)
The equilibrium constant for the reaction \(\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}\) is \(K\), then the equilibrium constant for the equilibrium \(2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{N}_{2}+\) \(3 \mathrm{H}_{2}\) is [AIPMT 1996]
(c) The equilibrium constant for the reverse reaction will be \(1 / K\)
The ionic product of water at \(25^{\circ} \mathrm{C}\) is \(10^{-14}\). Its ionic product at \(90^{\circ} \mathrm{C}\) will be, [AIPMT 1996]
 (d) At high temperature, the value of ionic product increases.
If \(\alpha\) is dissociation constant, then the total number of moles for the reaction, \(2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}\) will be [AIPMT 1996]
\(
\text { (c)Total number of moles }=2(1-\alpha)+2 \alpha=2
\)
\(
\text { The } \mathrm{pH} \text { value of } N / 10 \mathrm{~NaOH} \text { solution is }
\) [AIPMT 1996]
(b) Since \(\mathrm{NaOH}\) is a strong base, therefore it completely ionises. Thus, the hydroxyl ion concentration is equal to that of the base itself. We know that concentration of \(\mathrm{OH}^{-}\)in \(N / 10 \mathrm{~NaOH}=\) \(0.1=10^{-1}\). Therefore value of
\(
\begin{aligned}
&\mathrm{H}_{3} \mathrm{O}^{+}=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}=\frac{1 \times 10^{-14}}{10^{-1}}=1 \times 10^{-13} \\
&\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[1 \times 10^{-13}\right]=13
\end{aligned}
\)
Which of the following is not a Lewis acid? [AIPMT 1996]
(b) In \(\mathrm{BF}_{3}\) and \(\mathrm{FeCl}_{3}\) molecules, the central atoms have incomplete octet and in \(\mathrm{SiF}_{4}\), the central atom has empty \(d\)-orbitals. Hence, according to Lewis concept, these are Lewis acids.
The \(\mathrm{pH}\) value of blood does not appreciably change by a small addition of an acid or a base, because the blood [AIPMT 1995]
(d) The \(\mathrm{pH}\) value of the blood is maintained constant by buffer solution present in the blood itself. Buffer solutions resist the change in \(\mathrm{pH}\) values.
The \(p \mathrm{H}\) of the blood does not appreciably change by small addition of acid or a base because blood contains serum protein which acts as a buffer.
The pH value of a \(10 \mathrm{~M}\) solution of \(\mathrm{HCl}\) is [AIPMT 1995]
(c) Since \(\mathrm{HCl}\) is a strong acid and it completely ionises, therefore \(\mathrm{H}_{3} \mathrm{O}^{+}\)ions concentration is equal that of the acid itself i.e. \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HCl}]=10 \mathrm{~M}\)
\(
\text { Therefore } \mathrm{pH}=-\log \left[\mathrm{H}_3 \mathrm{O}^{+}\right]=-\log [10]=-1
\)
The solubility of \(\mathrm{AgCl}\) will be minimum in [AIPMT 1995]
(a) There are greater number of particles (i.e. ions) compared to others. Hence, solubility will be minimum.
In liquid-gas equilibrium, the pressure of vapours above the liquid is constant at [AIPMT 1995]
(a)Â Vapour pressure is directly related to temperature. Greater is the temperature, greater will be the vapour pressure. So to keep it constant, temperature should be constant.
Which one of the following is most soluble? [AIPMT 1994]
(d) higher the value of he solubility product, greater is the solubility
At \(80^{\circ} \mathrm{C}\), distilled water has \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\) concentration equal to \(1 \times 10^{-6}\) mole/litre. The value of \(K_{w}\) at this temperature will be [AIPMT 1994]
(a) \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{OH}^{-}]=1 \times 10^{-6}\) mole/litre
\(
K_{W}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[1 \times 10^{-6}\right] \times\left[1 \times 10^{-6}\right]=1 \times 10^{-12}
\)
According to Le Chatelier’s principle, adding heat to a solid and liquid in equilibrium will cause the [AIPMT 1993]
(d) When solid and liquid are in equilibrium, the increase in temperature results in increase in volume of liquid or decrease in the amount of solid.
Solid \(\rightleftharpoons\) Liquid
With increase in temperature equilibrium shifts in forward direction.
0.1 M solution of which one of these substances will act basic? [AIPMT 1992]
(a) Sodium borate is a salt formed from strong base \((\mathrm{NaOH})\) and weak acid \(\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)\). Hence, sodium borate will act basic.
Which one of the following information can be obtained on the basis of Le Chatelier principle? [AIPMT 1992]
(d) According to Le Chateliers principle, if an equilibrium is subjected to change in concentration, pressure or temperature, etc. equilibrium shift in such a way so as to undo the effect of a change imposed.
Aqueous solution of acetic acid contains [AIPMT 1991]
\(
\text { (b) } \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
\)
\(K_{1}\) and \(K_{2}\) are equilibrium constant for reactions (i) and (ii) [AIPMT 1989]
\(
\begin{aligned}
&\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{(g)} \dots(i) \\
&\mathrm{NO}_{(g)} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \dots(ii)
\end{aligned}
\)Â
(a)
\(
\begin{array}{ll}
\mathrm{N}_2+\mathrm{O}_2 \rightleftharpoons 2 \mathrm{NO}, & \mathrm{K}_1 \\
\mathrm{NO} \rightleftharpoons \frac{1}{2} \mathrm{~N}_2+\frac{1}{2} \mathrm{O}_2, & \mathrm{~K}_2
\end{array}
\)
The reaction is halved and reversed
\(
\mathrm{K}_2=\sqrt{\frac{1}{\mathrm{~K}_1}} \Rightarrow K_1=\left(\frac{1}{K_2}\right)^2
\)
The compound whose water solution has the highest \(\mathrm{pH}\) is [AIPMT 1988]
(c) \(\mathrm{NH}_{4} \mathrm{Cl}\) and \(\mathrm{NaHCO}_{3}\) are acidic in nature and \(\mathrm{NaCl}\) is neutral. Only \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) is basic and thus have highest \(\mathrm{pH}\).
Explanation:
\(\mathrm{NaCl}\) is a salt of strong acid and strong base hence its aqueous solution will be neutral ie \(\mathrm{pH}=7 . \mathrm{NaHCO}_3\) is an acidic salt hence \(\mathrm{pH}<7 . \mathrm{Na}_2 \mathrm{CO}_3\) is a salt of weak acid and strong base. Hence its aqueous solution will be strongly basic ie. \(\mathrm{pH}>7 . \mathrm{NH}_4 \mathrm{Cl}\) is salt of weak base and strong acid, hence its aqueous solution will be strongly acidic i.e. \(\mathrm{pH}<7\).
Which of the following cannot act both as Bronsted acid and as Bronsted base? [NEET (Odisha) 2019]
(d) \(\mathrm{HCl}\) cannot accept \(\mathrm{H}^{+}\)therefore cannot act as Bronsted base.
Conjugate base for Bronsted acids \(\mathrm{H}_{2} \mathrm{O}\) and \(\mathrm{HF}\) are [NEET (National) 2019]
(b) When a proton is removed from an acid, we obtain its conjugate base.
\(
\begin{array}{l}
\mathrm{H}_2 \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\
\mathrm{HF} \rightleftharpoons \mathrm{H}^{+}+\mathrm{F}^{-}
\end{array}
\)
The molar solubility of \(\mathrm{CaF}_{2}\) ( \(\left.K_{\mathrm{sp}}=5.3 \times 10^{-11}\right)\) in \(0.1 \mathrm{~M}\) solution of \(\mathrm{NaF}\) will be [NEET (Odisha) 2019]
(c)
\(
\begin{array}{lcc}
\mathrm{CaF}_2 & \rightleftharpoons \quad \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-} \\
t=0 & 0 \quad \quad \quad \quad 0 \\
\text { At eqm. } & s \quad \quad \quad \quad 2 s
\end{array}
\)
\(
\underset{0.1}{\mathrm{NaF}} \longrightarrow \underset{0.1} {\mathrm{Na}^{+}}+\underset{0.1} {\mathrm{F}^{-}}
\)
Due to common ion effect of \(\mathrm{NaF}\), solubility of \(\mathrm{CaF}_2\) is further supressed. Therefore, the concentration of \(\mathrm{F}^{-}\)will be mainly due to \(\mathrm{NaF}\).
\(
\begin{array}{l}
K_{s p}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]_2 \\
K_{s p}=(\mathrm{s})(0.1+2 \mathrm{~s})^2 \quad 0.1+2 \mathrm{~s} \approx 0.1 \\
s=\frac{K_{\mathrm{sp}}}{(0.1)^2}=\frac{5.3 \times 10^{-11}}{(0.1)^2}=5.3 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1}
\end{array}
\)
Find out the solubility of \(\mathrm{Ni}(\mathrm{OH})_{2}\) in \(0.1 \mathrm{~M} \mathrm{~NaOH}\). Given, that the ionic product of \(\mathrm{Ni}(\mathrm{OH})_{2}\) is \(2 \times 10^{-15}\). [NEET (Sep.) 2020]
(d)
\(
\underset{s} {\mathrm{Ni}(\mathrm{OH})^2} \rightleftharpoons \underset{s}{\mathrm{Ni}^{2+}}+\underset{2 s}{2 \mathrm{OH}^{-}}
\)
\(
\begin{array}{l}
\quad \mathrm{NaOH} \longrightarrow \mathrm{Na}+\mathrm{OH}^{-} \\
\text {Total }\left[\mathrm{OH}^{-}\right]=2 s+0.1 \approx 0.1 \\
\text { Ionic product }=[\mathrm{Ni}]^{2+}[\mathrm{OH}]^2 \\
2 \times 10^{-15}=s(0.1)^2 \\
s=2 \times 10^{-13} \\
\text { Solubility of } \mathrm{Ni}(\mathrm{OH})_2=2 \times 10^{-13} \mathrm{M}
\end{array}
\)
For a weak acid \(\mathrm{HA}\), the percentage of dissociation is nearly \(1 \%\) at equilibrium. If the concentration of acid is \(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\), then the correct option for its \(\mathrm{K}_a\) at the same temperature is : [NEET 2023 Manipur]
\(
\begin{array}{l}
\mathrm{K}_{\mathrm{a}}=\mathrm{C} \alpha^2 \\
\mathrm{~K}_{\mathrm{a}}=(0.1) \times(0.01)^2 \\
\mathrm{~K}_{\mathrm{a}}=1 \times 10^{-5}
\end{array}
\)
An acidic buffer is prepared by mixing : [NEET 2023 Manipur]
(a) Acidic buffer is prepared by mixing weak acid and its salt with strong base.
The equilibrium concentrations of the species in the reaction \(\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}\) are \(2,3,10\) and \(6 \mathrm{~mol} \mathrm{~L}^{-1}\), respectively at \(300 \mathrm{~K} . \Delta G^0\) for the reaction is ( \(\mathrm{R}=2 \mathrm{cal} / \mathrm{mol} \mathrm{K}\) ) [NEET 2023]
(b)
\(
\quad \quad \quad \quad \quad \quad \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}
\)
\(
\text { at equilibrium } \begin{array}{llll}
2 & 3 & 10 & 6
\end{array}
\)
\(
\begin{aligned}
K_{\text {eq }} & =[C][D]/[A][B] \\
K_{\text {eq }} & =\frac{10 \times 6}{2 \times 3}=10 \\
\Delta G^0 & =-R T \ln \mathrm{K} \\
& =-2.303 \mathrm{RT} \log \mathrm{K} \\
& =-2.303 \times 2 \times 300 \times \log 10 \\
& =-1381.8 \mathrm{~cal}
\end{aligned}
\)
\(0.01 \mathrm{~M}\) acetic acid solution is \(1 \%\) ionised, then \(\mathrm{pH}\) of this acetic acid solution is : [NEET 2022 Phase 2]
(d) For weak acid (i.e. \(\mathrm{CH}_3 \mathrm{COOH}\) )
\(
\begin{array}{l}
{\left[H^{+}\right]=C \alpha} \\
=0.01 \times \frac{1}{100}=10^{-4} \mathrm{M} \\
p H=-\log H^{+}=-\log 10^{-4}=4
\end{array}
\)
\(\mathrm{K}_{\mathrm{H}}\) value for some gases at the same temperature ‘ \(T\) ‘ are given : [NEET 2022 Phase 2]
\(
\begin{array}{|c|c|}
\hline \text { Gas } & \mathrm{K}_H / \mathrm{k} \text { bar } \\
\hline \mathrm{Ar} & 40.3 \\
\hline \mathrm{CO}_2 & 1.67 \\
\hline \mathrm{HCHO} & 1.83 \times 10^{-5} \\
\hline \mathrm{CH}_4 & 0.413 \\
\hline
\end{array}
\)
where \(K_H\) is Henry’s Law constant in water. The order of their solubility in water is :
(b) According to Henry’s Law,
\(
p=K_H X
\)
Where ‘ \(p\) ‘ is partial pressure of gas in vapour phase.
\(\mathrm{K}_{\mathrm{H}}\) is Henry’s Law constant.
‘ \(X\) ‘ is mole fraction of gas in liquid.
Higher the value of \(K_H\) at a given pressure, lower is the solubility of the gas in the liquid.
\(\therefore\) Solubility : \(\mathrm{Ar}<\mathrm{CO}_2<\mathrm{CH}_4<\mathrm{HCHO}\)
\(\mathrm{K}_{\mathrm{p}}\) for the following reaction is 3.0 at \(1000 \mathrm{~K}\).
\(
\mathrm{CO}_2(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})
\)
What will be the value of \(\mathrm{K}_{\mathrm{c}}\) for the reaction at the same temperature?
(Given : \(\mathrm{R}=0.083 \mathrm{~L} \mathrm{bar} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\) ) [NEET 2022 Phase 2]
(b)
\(
\begin{array}{l}
\mathrm{CO}_2(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g}) \\
\Delta \mathrm{n}_{\mathrm{g}}=2-1=1 \\
\mathrm{~K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}_{\mathrm{g}}} \\
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT}) \\
{\left[\because \mathrm{K}_{\mathrm{p}}=3\right]} \\
\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{K}_{\mathrm{p}}}{\mathrm{RT}}=\frac{3}{0.083 \times 1000} \\
=0.036 \\
=3.6 \times 10^{-2}
\end{array}
\)
The \(\mathrm{pH}\) of the solution containing \(50 \mathrm{~mL}\) each of \(0.10 \mathrm{~M}\) sodium acetate and \(0.01 \mathrm{~M}\) acetic acid is [Given \(\mathrm{pK}_{\mathrm{a}}\) of \(\mathrm{CH}_3 \mathrm{COOH}=4.57\) ] [NEET 2022 Phase 1]
(a) It is a mixture of weak acid and salt of its conjugate base. Hence it is acidic buffer. Weak acid \(\left(\mathrm{CH}_3 \mathrm{COOH}\right)\) and salt of weak acid-strong base \(\left(\mathrm{CH}_3 \mathrm{COONa}\right)\) form an acidic buffer. Sodium acetate \(\left(\mathrm{CH}_3 \mathrm{COONa}\right)=0.10 \mathrm{M}\); Acetic acid \(\left(\mathrm{CH}_3 \mathrm{COOH}\right)=0.01 \mathrm{M}\); \(\mathrm{pH}\) of acidic buffer solution is given by
\(
\begin{array}{l}
p H=p K_a+\log \frac{[\text { Salt }]}{[\text { Acid }]} \\
=4.57+\log \left(\frac{0.1}{0.01}\right) \\
=4.57+1 \\
=5.57
\end{array}
\)
\(
3 \mathrm{O}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_3(\mathrm{~g})
\)
for the above reaction at \(298 \mathrm{~K}, \mathrm{~K}_{\mathrm{C}}\) is found to be \(3.0 \times 10^{-59}\). If the concentration of \(\mathrm{O}_2\) at equilibrium is \(0.040 \mathrm{~M}\) then concentration of \(\mathrm{O}_3\) in \(\mathrm{M}\) is [NEET 2022 Phase 1]
(d) \(
\begin{array}{l}
3 \mathrm{O}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_3(\mathrm{~g}) \\
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{O}_3\right]^2}{\left[\mathrm{O}_2\right]^3} \\
3 \times 10^{-59}=\frac{\left[\mathrm{O}_3\right]^2}{\left(4 \times 10^{-2}\right)^3} \\
{\left[\mathrm{O}_3\right]^2=3 \times 10^{-59} \times 64 \times 10^{-6}} \\
=19.2 \times 10^{-64} \\
=4.38 \times 10^{-32} \mathrm{M}
\end{array}
\)
Hydrolysis of sucrose is given by the following reaction. [NEET 2020]
Sucrose \(+\mathrm{H}_2 \mathrm{O} \rightleftharpoons\) Glucose + Fructose
If the equilibrium constant \(\left(\mathrm{K}_{\mathrm{C}}\right)\) is \(2 \times 10^{13}\) at \(300 \mathrm{~K}\), the value of \(\Delta_{\mathrm{r}} \mathrm{G}^{\ominus}\) at the same temperature will be :
(d) \(\Delta G=\Delta G^{\circ}+R T \ln Q\)
At equilibrium \(\Delta G=0, Q=K_{\text {eq }}\)
So, \(\Delta_r G^{\circ}=-R T \ln K_{e q}\)
\(\Delta_r G^{\circ}=-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)\)
The pH of \(0.01 \mathrm{~M} \mathrm{~NaOH}\) (aq) solution will be [NEET Odisha 2019]
(d)
\(
\begin{array}{l}
{\left[\mathrm{OH}^{-}\right]=0.01 \mathrm{M}=10^{-2} \mathrm{M}} \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(10^{-2}\right)=2 \\
\mathrm{pH}=14-\mathrm{pOH}=12
\end{array}
\)
\(\mathrm{pH}\) of a saturated solution of \(\mathrm{Ca}(\mathrm{OH})_2\) is 9 . The solubility product \(\left(K_{s p}\right)\) of \(\mathrm{Ca}(\mathrm{OH})_2\) is: [NEET 2019]
(a)
\(
\mathrm{Ca}(\mathrm{OH})_2 \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}
\)
\(
\begin{array}{l}
\mathrm{pH}=9, \mathrm{pOH}=14-9=5 \\
{[\mathrm{OH}^{-}]=10^{-5}} \\
{\left[\mathrm{Ca}^{2+}\right]=\frac{10^{-5}}{2}} \\
K_{s p}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{OH}^{-}\right]_2=\left(\frac{10^{-5}}{2}\right) \times\left(10^{-5}\right)^2 \\
\quad=0.5 \times 10^{-15}
\end{array}
\)
Which one of the following conditions will favour maximum formation of the product in the reaction, [NEET 2018]
\(
\mathrm{A}_2(\mathrm{~g})+\mathrm{B}_2(\mathrm{~g}) \rightleftharpoons \mathrm{X}_2(\mathrm{~g}); \Delta_{\mathrm{r}} H=-X \mathrm{~kJ} \text { : }
\)
(a)Â
\(
\mathrm{A}_2(\mathrm{~g})+\mathrm{B}_2(\mathrm{~g}) \rightleftharpoons \mathrm{X}_2(\mathrm{~g}) \Delta_{\mathrm{r}} H=-X \mathrm{~kJ}
\)
On increasing pressure equilibrium shifts in a direction where number of moles decreases i.e. forward direction.
On decreasing temperature, equilibrium shifts in exothermic direction i.e., forward direction.
So, high pressure and low temperature favours maximum formation of product.
Following solutions were prepared by mixing different volumes of \(\mathrm{NaOH}\) and \(\mathrm{HCl}\) of different concentrations : [NEET 2018]
a. \(60 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+40 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}\)
b. \(55 \mathrm{mI} \cdot \frac{\mathrm{M}}{10} \mathrm{HCl}+45 \mathrm{mI} \cdot \frac{\mathrm{M}}{10} \mathrm{NaOH}\)
c. \(75 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{HCl}+25 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{NaOH}\)
d. \(100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}\)
\(\mathrm{pH}\) of which one of them will be equal to 1 ?
(c)Â
\(
\text { Meq. of } \mathrm{HCl}=75 \times \frac{1}{5} \times 1=15
\)
\(
\begin{array}{l}
\text { Meq. of } \mathrm{NaOH}=25 \times \frac{1}{5} \times 1=5 \\
\text { Meq. of } \mathrm{HCl} \text { in resulting solution }=10 \\
\text { Molarity of }\left[\mathrm{H}^{+}\right] \text {in resulting mixture }=\frac{10}{100}=\frac{1}{10}
\end{array}
\)
\(
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left[\frac{1}{10}\right]=1.0
\)
The solubility of \(\mathrm{BaSO}_4\) in water is \(2.42 \times 10^{-3} \mathrm{gL}^{-1}\) at \(298 \mathrm{~K}\). The value of its solubility product \(\left(K_{s p}\right)\) will be (Given molar mass of \(\mathrm{BaSO}_4=233 \mathrm{~g} \mathrm{~mol}^{-1}\) ) [NEET 2018]
\(
\begin{array}{l}
\text { (a) Solubility of } \mathrm{BaSO}_4=2.42 \times 10^{-3} \mathrm{~gL}^{-1} \\
\therefore \quad s=\frac{2.42 \times 10^{-3}}{233}=1.038 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1} \\
K_{s p}=s^2=\left(1.038 \times 10^{-5}\right)^2=1.08 \times 10^{-10} \mathrm{~mol}^2 \mathrm{~L}^{-2}
\end{array}
\)
The \(\mathrm{pK}_{\mathrm{b}}\) of dimethyl amine and \(\mathrm{pK}_{\mathrm{a}}\) of acetic acid are 3.27 and 4.77 respectively at \(\mathrm{T}(\mathrm{K})\). The correct option for the \(\mathrm{pH}\) of dimethyl ammonium acetate solution is : [NEET 2021]
(d)
Dimethylammonium acetate is a salt of weak acid and weak base whose \(\mathrm{pH}\) can be calculated as
\(
\mathrm{pH}=7+\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right)
\)
\(\mathrm{pK}_{\mathrm{a}}\) of acetic acid \(=4.77\)
\(\mathrm{pK}_{\mathrm{b}}\) of dimethyl amine \(=3.27\)
\(
\mathrm{pH}=7+\frac{1}{2}(4.77-3.27)
\)
\(
=7.75
\)
At a given temperature and pressure, the equilibrium constant values for the equilibria are given below:
\(
\begin{aligned}
& 3 A_2+ B _2 \rightleftharpoons 2 A_3 B, K _1 \\
& A_3 B \rightleftharpoons \frac{3}{2} A_2+\frac{1}{2} B_2, K_2
\end{aligned}
\)
The relation between \(K_1\) and \(K_2\) is : [NEET 2024 (Re-Examination)]
To find the relationship between \(K _1\) and \(K _2\), let’s carefully analyze the given equilibrium reactions and their constants.
First, let’s write down the equilibrium reactions clearly:
Reaction 1: \(3 A_2+ B _2 \rightleftharpoons 2 A_3 B\) with equilibrium constant \(K _1\).
Reaction 2: \(A _3 B \rightleftharpoons \frac{3}{2} A_2+\frac{1}{2} B_2\) with equilibrium constant \(K _2\).
Now, understand that \(K_2\) represents the equilibrium constant of the reverse reaction of Reaction 1 but with both sides divided by 2 . We need to relate these constants. Here is the step-by-step process:
We know Reaction 1 is: \(3 A_2+ B _2 \rightleftharpoons 2 A_3 B\).
The equilibrium constant for Reaction 1 is: \(K _1=\frac{\left[ A _3 B\right]^2}{\left.\left.\left[A_2\right]^3\right]_2\right]}\).
For Reaction 2: \(A _3 B \rightleftharpoons \frac{3}{2} A_2+\frac{1}{2} B_2\), the equilibrium constant \(K _2\) can be expressed as the equilibrium constant of the reverse of Reaction 1 , with adjusted coefficients.
The equilibrium constant for the reverse reaction of Reaction 1 would be \(\frac{1}{K_1}\). Since Reaction 2 includes halving the coefficients, the equilibrium constant should be adjusted by taking the square root:
\(
K _2=\left(\frac{1}{K_1}\right)^{1 / 2}=\frac{1}{\sqrt{ K _1}}
\)
Therefore, the relationship between \(K _1\) and \(K _2\) is:
Option D: \(K _2=\frac{1}{\sqrt{ K _1}}\).
For the reaction in equilibrium
\(
N _2(g)+3 H _2(g) \rightleftharpoons 2 NH _3(g), \Delta H =- Q
\)
Reaction is favoured in forward direction by: [NEET 2024 (Re-Examination)]
(d) The given chemical reaction is an example of the synthesis of ammonia, commonly known as the Haber process:
\(
N _2(g)+3 H _2(g) \rightleftharpoons 2 NH _3(g), \Delta H =- Q
\)
This reaction is exothermic, as indicated by the negative enthalpy change \((\Delta H =- Q )\). In order to determine which conditions favor the forward reaction, we need to consider Le Chatelier’s principle, which states that the system will adjust to counteract any changes imposed upon it.
Let’s analyze each option:
Option A: Use of catalyst
A catalyst does not favor the forward or reverse direction of a reaction. It only speeds up the rate at which equilibrium is achieved.
Option B: Decreasing concentration of \(N _2\)
Decreasing the concentration of \(N _2\) would shift the equilibrium to the left, favoring the reverse reaction to produce more \(N _2\) and \(H _2\).
Option C: Low pressure, high temperature, and high concentration of ammonia
Low pressure and high temperature would favor the reverse reaction. Moreover, a high concentration of ammonia would also shift the equilibrium to the left. Thus, this set of conditions does not favor the forward reaction.
Option D: High pressure, low temperature and higher concentration of \(H _2\)
High pressure favors the formation of ammonia because there are fewer moles of gas on the product side ( 2 moles) as compared to the reactant side ( 4 moles, i.e., 1 mole of \(N _2\) and 3 moles of \(H _2\) ). Low temperature favors the exothermic forward reaction. Additionally, a higher concentration of \(H _2\) will shift the equilibrium to the right, forming more ammonia.
Therefore, the correct answer is:
Option D: High pressure, low temperature and higher concentration of \(H _2\)
In which of the following equilibria, \(K _p\) and \(K _{ c }\) are NOT equal? [NEET 2024]
(a) To determine in which of the given equilibria \(K _p\) and \(K _{ c }\) are not equal, it’s important to understand the relationship between these two equilibrium constants. This relationship is expressed by the equation:
\(
K _p= K _c(R T)^{\Delta n}
\)
where \(R\) is the gas constant, \(T\) is the temperature in Kelvin, and \(\Delta n\) is the change in the number of moles of gas (number of moles of gaseous products minus number of moles of gaseous reactants).
If \(\Delta n=0\), then \(K _p\) and \(K _{ c }\) are equal because \((R T)^0=1\). However, if \(\Delta n \neq 0\), the constants will not be the same, and the degree to which they differ will depend on the temperature and the value of \(\Delta n\).
Now, let’s analyze each option:
Option A: \(PCl _{5(g)} \rightleftharpoons PCl _{3(g)}+ Cl _{2(g)}\)
Reactant side moles \(=1\), Product side moles \(=2 ; \Delta n=2-1=1\).
Option B: \(H _{2(g)}+ I _{2(g)} \rightleftharpoons 2 HI _{( g )}\)
Reactant side moles \(=2\), Product side moles \(=2 ; \Delta n=2-2=0\).
Option C: \(CO _{( g )}+ H _2 O _{( g )} \rightleftharpoons CO _{2(g)}+ H _{2(g)}\)
Reactant side moles \(=2\), Product side moles \(=2 ; \Delta n=2-2=0\).
Option D: \(2 BrCl _{( g )} \rightleftharpoons Br _{2(g)}+ Cl _{2(g)}\)
Reactant side moles \(=2\), Product side moles \(=2 ; \Delta n=2-2=0\).
From this analysis, it is evident that \(K _p\) and \(K _{ c }\) are not equal in Option A where \(\Delta n=1\). In all other options, since \(\Delta n=0, K_p\) is equal to \(K _{ c }\). Thus, the correct answer is Option A.
For the reaction \(2 A \rightleftharpoons B + C , K _{ c }=4 \times 10^{-3}\). At a given time, the composition of reaction mixture is: \([A]=[B]=[C]=2 \times 10^{-3} M\). Then, which of the following is correct? [NEET 2024]
(c) To determine which option is correct regarding the reaction state and its direction, we need to calculate the reaction quotient \(Q_c\) and compare it to the equilibrium constant \(K_c\). The reaction given is:
\(
2 A \rightleftharpoons B + C
\)
The equilibrium constant expression \(K_c\) for this reaction is:
\(
K_c=\frac{[ B ][ C ]}{[ A ]^2}
\)
Given that \(K_c=4 \times 10^{-3}\) and the concentrations of \(A , B\), and C at this time are each \(2 \times 10^{-3} M\), we can substitute these values into the expression for \(K_c\) to calculate the reaction quotient \(Q_c\) :
\(
Q_c=\frac{\left(2 \times 10^{-3} M \right)\left(2 \times 10^{-3} M \right)}{\left(2 \times 10^{-3} M \right)^2}
\)
Simplifying, we find:
\(
Q_c=\frac{4 \times 10^{-6} M ^2}{4 \times 10^{-6} M ^2}=1
\)
Comparing \(Q_c\) with \(K_c\) :
\(
\begin{aligned}
Q_c & =1 \\
K_c & =4 \times 10^{-3}
\end{aligned}
\)
Since \(Q_c>K_c(1>0.004)\), the reaction quotient is greater than the equilibrium constant. This indicates that the concentration of products ( B and C ) is too high relative to the concentration of reactants (A) for the system to be at equilibrium under these conditions.
This means that the reaction has a tendency to move in the backward direction to reach equilibrium, reducing the concentration of the products ( B and C ) and increasing the concentration of the reactant (A). Therefore, the correct answer to the given question is:
Option C: Reaction has a tendency to go in backward direction.
Consider the following reaction in a sealed vessel at equilibrium with concentrations of
\(
\begin{aligned}
& N _2=3.0 \times 10^{-3} M , O _2=4.2 \times 10^{-3} M \text { and } NO =2.8 \times 10^{-3} M \\
& 2 NO _{( g )} \rightleftharpoons N _{2(g)}+ O _{2(g)}
\end{aligned}
\)
If \(0.1 mol L L ^{-1}\) of \(NO _{( g )}\) is taken in a closed vessel, what will be degree of dissociation ( \(\alpha\) ) of \(NO _{( g )}\) at equilibrium? [NEET 2024]
(d)
\(
\begin{aligned}
& 2 NO _{( g )} \rightleftharpoons N _{2(g)}+ O _{2(g)} \\
& K _c=\frac{\left[ N _2\right]\left[ O _2\right]}{[ NO ]^2} \\
& =\frac{3 \times 10^{-3} \times 4.2 \times 10^{-3}}{2.8 \times 10^{-3} \times 2.8 \times 10^{-3}} \\
& =1.607
\end{aligned}
\)
\(
\quad \quad \quad 2 NO _{( g )} \rightleftharpoons N _{2(g)}+ O _{2(g)}
\)
\(
\begin{array}{llll}
t=0 & & 0.1 & & & 0 & & & 0
\end{array}
\)
\(
\quad \quad 0.1-0.1 \alpha \quad 0.05 \alpha \quad 0.05 \alpha
\)
\(
\begin{aligned}
& K _c=\frac{0.05 \alpha \times 0.05 \alpha}{(0.1-0.1 \alpha)^2} \\
& K_c=\frac{0.05 \alpha \times 0.05 \alpha}{0.01(1-\alpha)^2} \\
& 1.607=\frac{(0.05)^2 \alpha^2}{0.01(1-\alpha)^2} \\
& \frac{\alpha^2}{(1-\alpha)^2}=\frac{1.607 \times(0.1)^2}{(0.05)^2} \\
& \frac{\alpha}{1-\alpha}=\frac{1.27 \times 0.1}{0.05} \\
& \frac{\alpha}{1-\alpha}=2.54 \\
& \alpha=2.54-2.54 \alpha \\
& 3.54 \alpha=2.54 \\
& \alpha=\frac{2.54}{3.54}=0.717
\end{aligned}
\)
Which indicator is used in the titration of sodium hydroxide against oxalic acid and what is the colour change at the end point? [NEET 2024 (Re-Examination)]
(c) Titration of Sodium Hydroxide \(( NaOH )\) against Oxalic Acid \(\left( H _2 C _2 O _4\right)\)
Sodium hydroxide is a strong base, and oxalic acid is a weak acid. The reaction between them is a neutralization reaction:
\(
2 NaOH + H _2 C _2 O _4 \longrightarrow Na _2 C _2 O _4+2 H _2 O
\)
Choosing the Right Indicator
An indicator is a substance that changes color at a specific pH range, signaling the endpoint of the titration. The ideal indicator for a titration should have a color change near the equivalence point of the reaction. The equivalence point is the point where the moles of acid and base are stoichiometrically equal.
In this case:
At the equivalence point, the solution will be slightly basic due to the formation of the sodium oxalate salt \(\left( Na _2 C _2 O _4\right)\), which is the conjugate base of a weak acid.
Phenolphthalein changes color in the slightly basic pH range (around 8.2 to 10.0), making it an appropriate indicator for this titration.
Color Change
Phenolphthalein is colorless in acidic solutions and turns pink in basic solutions. So, the color change at the endpoint of this titration will be:
Colorless (before equivalence point) \(\rightarrow\) Pink (at equivalence point)
Why Other Options Are Incorrect
Option A: Phenolphthalein does not change from pink to yellow, it changes from colorless to pink.
Option B: Alkaline \(KMnO _4\) is not a suitable indicator for this titration because it is not sensitive enough to detect the slight pH change at the equivalence point.
Option D: Methyl orange changes color in the acidic pH range (around 3.1 to 4.4 ) and is therefore not suitable for this titration.
The ratio of solubility of AgCl in 0.1 M KCl solution to the solubility of AgCl in water is: [NEET 2024 (Re-Examination)]
(Given: Solubility product of \(AgCl =10^{-10}\) )
(a) To find the ratio of solubility of AgCl in 0.1 M KCl solution to the solubility of AgCl in water, we first need to understand how common ion effect influences solubility.
Let’s denote the solubility product constant of AgCl as \(K_{\text {sp }}\).
Given \(K_{s p}\) of \(AgCl =10^{-10}\).
First, we calculate the solubility of AgCl in pure water:
In water, the dissociation of AgCl can be represented as:
\(
AgCl ( s ) \leftrightarrow Ag ^{+}( aq )+ Cl ^{-}( aq )
\)
If \(s\) is the solubility of AgCl in water, then
\(
\begin{aligned}
& {\left[ Ag ^{+}\right]=s} \\
& {\left[ Cl ^{-}\right]=s}
\end{aligned}
\)
Hence, the solubility product \(K_{s p}\) can be written as:
\(
\begin{aligned}
& K_{s p}=\left[A g^{+}\right]\left[ Cl ^{-}\right] \\
& K_{s p}=s \cdot s=s^2
\end{aligned}
\)
S0,
\(
\begin{aligned}
& s^2=10^{-10} \\
& s=10^{-5}
\end{aligned}
\)
Now, let’s consider the solubility of AgCl in 0.1 M KCl solution. Because of the common ion effect, the presence of \(Cl ^{-}\)ions from KCl will suppress the solubility of AgCl .
Here, \(\left[ Cl ^{-}\right]\)from KCl is 0.1 M . Let the new solubility of AgCl in this solution be \(s^{\prime}\).
Then,
\(
\begin{aligned}
& {\left[ Ag ^{+}\right]=s^{\prime}} \\
& {\left[ Cl ^{-}\right]=0.1+s^{\prime} \approx 0.1}
\end{aligned}
\)
Since \(s^{\prime}\) is much smaller than 0.1 M , we can approximate:
\(
\begin{aligned}
& K_{s p}=\left[ Ag ^{+}\right]\left[ Cl ^{-}\right] \\
& 10^{-10}=s^{\prime} \times 0.1 \\
& s^{\prime}=\frac{10^{-10}}{0.1} \\
& s^{\prime}=10^{-9}
\end{aligned}
\)
Finally, we find the ratio of solubility in 0.1 M KCl to that in pure water:
\(
\text { Ratio }=\frac{s^{\prime}}{s}=\frac{10^{-9}}{10^{-5}}=10^{-4}
\)
You cannot copy content of this page