0 of 72 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 72 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
The number of moles of hydrogen molecule required to produce 20 moles of ammonia through Haber’s process is: [NEET 2019]
(c) \(\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}\)
\(1 \mathrm{~Mol}Â \mathrm{~NH}_{3}=\frac{3}{2} \mathrm{~mol}Â \mathrm{~H}_{2}\)
\(20 \mathrm{~mol}Â \mathrm{~NH}_{3}=\frac{3}{2} \times 20 \mathrm{~mol}Â \mathrm{~H}_{2}=30 \mathrm{~mol}Â Â \mathrm{~H}_{2}\)
\(\therefore 30\) moles of \(\mathrm{~H}_{2}\) are required.
Which one of the followings has maximum number of atoms? [NEET 2020]
(c) Number of atoms
\(=\frac{W}{\text { Molar mass }} \times N_{A} \times\) atomicity
(a) Number of \(\mathrm{Mg}\) atoms \(=\frac{1}{24} \times N_{A} \times 1\)
(b) Number of \(\mathrm{O}\) atoms \(=\frac{1}{32} \times N_{A} \times 2\)
(c) Number of Li atoms \(=\frac{1}{7} \times N_{A} \times 1\)
(d) Number of \(\mathrm{Ag}\) atoms \(=\frac{1}{108} \times N_{A} \times 1\)
In which case is number of molecules of water maximum? [NEET 2018]
(a)
(1) Mass of water \(=18 \times 1=18 \mathrm{~g}\)
Molecules of water \(=\operatorname{mole} \times N_{A}\) \(=\frac{18}{18} N_{A}=N_{A}\)
(2) Molecules of water \(=\operatorname{mole} \times N_{A}\) \(=\frac{0.18}{18} N_{A}=10^{-2} N_{A}\)
(3) Molecules of water \(=\) mole \(\times N_{A}=10^{-3} N_{A}\)
(4) Moles of water \(=\frac{0.00224}{22.4}=10^{-4}\)
Molecules of water \(=\) mole \(\times N_{A}=10^{-4} N_{A}\)
\(18 \mathrm{~mL}\) of water has maximum number of moles which corresponds to maximum number of molecules.
A mixture of gases contains \(\mathrm{H}_{2}\) and \(\mathrm{O}_{2}\) gases in the ratio of \(1: 4(\mathrm{w} / \mathrm{w})\). What is the molar ratio of the two gases in the mixture? [NEET2015]
(b) Ratio of weight of gases \(=\mathrm{W}_{\mathrm{H}_{2}}: \mathrm{W}_{\mathrm{O}_{2}}=1: 4\)
Ratio of moles of gases \(=n_{\mathrm{H}_{2}}: n_{\mathrm{O}_{2}}=\frac{1}{2}: \frac{4}{32}\)
\(\therefore \quad\) Molar Ratio \(=\frac{1}{2} \times \frac{32}{4}=4: 1\)
Suppose the elements \(X\) and \(Y\) combine to form two compounds \(X Y_{2}\) and \(X_{3} Y_{2}\). When \(0.1\) mole of \(XY_{2}\) weighs \(10 \mathrm{~g}\) and \(0.05\) mole of \(X_{3} Y_{2}\) weighs \(9 \mathrm{~g}\), the atomic weights of \(X\) and \(Y\) are [NEET 2016]Â
(a) Let atomic weight of element \(X\) is \(x\) and that of element \(Y\) is \(y\).
For \(X Y_{2}, \quad n=\frac{w}{\text { Mol. wt. }}\)
\(0.1=\frac{10}{x+2 y} \Rightarrow x+2 y=\frac{10}{0.1}=100 \dots(i)\)
For \(X_{3} Y_{2}, n=\frac{w}{\text { Mol. Wt. }}\)
\(0.05=\frac{9}{3 x+2 y} \Rightarrow 3 x+2 y=\frac{9}{0.05}=180 \dots(ii)\)
On solving equations (i) and (ii), we get \(y=30\) \(x+2(30)=100 \Rightarrow x=100-60=40\)
What is the mass of the precipitate formed when \(50 \mathrm{~mL}\) of \(16.9 \%\) solution of \(\mathrm{AgNO}_{3}\) is mixed with \(50 \mathrm{~mL}\) of \(5.8 \% \mathrm{~NaCl}\) solution? \((\mathrm{Ag}=107.8, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Na}=23\), \(\mathrm{Cl}=35.5)\) [AIPMT 2015]
(b) \(16.9 \%\) solution of \(\mathrm{AgNO}_3\) means \(16.9 \mathrm{~g}\) of \(\mathrm{AgNO}_3\) in \(100 \mathrm{~mL}\) of solution.
\(16.9 \mathrm{~g}\) of \(\mathrm{AgNO}_3\) in \(100 \mathrm{~mL}\) solution \(\equiv 8.45 \mathrm{~g}\) of \(\mathrm{AgNO}_3\) in \(50 \mathrm{~mL}\) solution.
Similarly, \(5.8 \%\) of \(\mathrm{NaCl}\) in \(100 \mathrm{~mL}\) solution \(\equiv 2.9 \mathrm{~g}\) of \(\mathrm{NaCl}\) in \(50 \mathrm{~mL}\) solution.
The reaction can be represented as :
\(
\mathrm{AgNO}_3+\mathrm{NaCl} \longrightarrow \mathrm{AgCl}+\mathrm{NaNO}_3
\)
\(
\begin{array}{lll}
\text { Initial } & 8.45 / 170 & 2.9 / 58.5 \\
\text { mole } & =0.049 & =0.049
\end{array}
\)
\(
\begin{array}{lllll}
\text { Final moles } & 0 & 0 & 0.049 & 0.049
\end{array}
\)
\(\therefore\) Mass of \(\mathrm{AgCl}\) precipitated \(=0.049 \times 143.3\) \(=7.02 \approx 7 \mathrm{~g}\)
The number of water molecules is maximum in [AIPMT 2015]
(c) \(1.8\) gram of water \(=\frac{6.023 \times 10^{23}}{18} \times 1.8\) \(=6.023 \times 10^{22}\) molecules
18 gram of water \(=6.023 \times 10^{23}\) molecules
18 moles of water \(=18 \times 6.023 \times 10^{23}\) molecules
Equal masses of \(\mathrm{H}_{2}, \mathrm{O}_{2}\) and methane have been taken in a container of volume \(V\) at temperature \(27^{\circ} \mathrm{C}\) in identical conditions. The ratio of the volumes of gases \(\mathrm{H}_{2}: \mathrm{O}_{2}\) : methane would be [NEET 2014]
(c) According to Avogadro’s hypothesis, the ratio of the volumes of gases will be equal to the ratio of their no. of moles.
No. of moles \(=\frac{\text { Mass }}{\text { Mol. mass }}\)
\(
n_{\mathrm{H}_{2}}=\frac{w}{2} ; n_{\mathrm{O}_{2}}=\frac{w}{32} ; n_{\mathrm{CH}_{4}}=\frac{w}{16}
\)
So, the ratio is \(\frac{w}{2}: \frac{w}{32}: \frac{w}{16}\) or \(16: 1: 2\).
When \(22.4\) litres of \(\mathrm{H}_{2(g)}\) is mixed with \(11.2\) litres of \(\mathrm{Cl}_{2(g)}\), each at S.T.P, the moles of \(\mathrm{HCl}_{(g)}\) formed is equal to [NEET 2014]
(a) 1 mole \(\equiv 22.4\) litres at S.T.P.
\(n_{\mathrm{H}_{2}}=\frac{22.4}{22.4}=1 \mathrm{~mol} ; n_{\mathrm{Cl}_{2}}=\frac{11.2}{22.4}=0.5 \mathrm{~mol}\)
Reaction is as,
\(\begin{array}{lcccc} & \mathrm{H}_{2(g)}+\mathrm{Cl}_{2(g)} & \longrightarrow & 2 \mathrm{HCl}_{(g)} \\ \text { Initial } & 1 \mathrm{~mol} & 0.5 \mathrm{~mol} & & 0 \\ \text { Final } & (1-0.5) & (0.5-0.5) & & 2 \times 0.5 \\ & =0.5 \mathrm{~mol} & =0 \mathrm{~mol} & & =1 \mathrm{~mol}\end{array}\)
Here, \(\mathrm{Cl}_{2}\) is limiting reagent. So, 1 mole of \(\mathrm{HCl}_{(g)}\) is formed.
\(1.0 \mathrm{~g}\) of magnesium is burnt with \(0.56 \mathrm{~g} \mathrm{O}_{2}\) in a closed vessel. Which reactant is left in excess and how much? (At. wt. \(\mathrm{Mg}=24, \mathrm{O}=16\) ) [NEET 2014]
\(
n_{\mathrm{Mg}}=\frac{1}{24}=0.0416 \text { moles }
\)
\(
n_{\mathrm{O}_2}=\frac{0.56}{32}=0.0175 \mathrm{moles}
\)
The balance equation is:
\(
\mathrm{Mg}+\frac{1}{2} \mathrm{O}_2 \longrightarrow \mathrm{MgO}
\)
\(
\text { Initial } \quad 0.0416 \text { moles } \quad 0.0175 \text { moles } \quad 0
\)
\(
\text { Final }(0.0416-2 \times 0.0175) \quad 0 \quad 2 \times 0.0175
\)
\(
=0.0066 \text { moles }\left(\mathrm{O}_2 \text { is limiting reagent. }\right)
\)
\(
\therefore \text { Mass of Mg left in excess }=0.0066 \times 24=0.16 \mathrm{~g}
\)
\(6.02 \times 10^{20}\) molecules of urea are present in \(100 \mathrm{~mL}\) of its solution. The concentration of solution is [NEET 2013]
(d) Moles of urea \(=\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}}=0.001\) Concentration of solution \(=\frac{0.001}{100} \times 1000=0.01 \mathrm{~M}\)
In an experiment it showed that \(10 \mathrm{~mL}\) of \(0.05 \mathrm{~M}\) solution of chloride required \(10 \mathrm{~mL}\) of \(0.1 \mathrm{~M}\) solution of \(\mathrm{AgNO}_{3}\), which of the following will be the formula of the chloride \((X\) stands for the symbol of the element other than chlorine) [NEET 2013]
(b) Millimoles of solution of chloride
\(
=0.05 \times 10=0.5
\)
Millimoles of \(\mathrm{AgNO}_{3}\) solution \(=10 \times 0.1=1\)
So, the millimoles of \(\mathrm{AgNO}_{3}\) are double than the chloride solution.
\(
\therefore \mathrm{XCl}_{2}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgCl}+X\left(\mathrm{NO}_{3}\right)_{2}
\)
Which has the maximum number of molecules among the following? [NEET 2011]
(c) \(8 \mathrm{~g} \mathrm{H}_{2}\) has 4 moles while the others has 1 mole each.
Moles of \(\mathrm{CO}_2=\frac{44}{44}=1 \quad \mathrm{~N}_{\mathrm{A}} \text {Number of molecules}\)
Moles of \(\mathrm{O}_3=\frac{48}{48}=1 \quad \mathrm{~N}_{\mathrm{A}} \text {Number of molecules}\)
Moles of \(\mathrm{H}_2=\frac{8}{2}=4 \quad 4 \mathrm{~N}_{\mathrm{A}} \text {Number of molecules}\)
Moles of \(\mathrm{SO}_2=\frac{64}{64}=1 \quad \mathrm{~N}_{\mathrm{A}} \text {Number of molecules}\)
The number of atoms in \(0.1 \mathrm{~mol}\) of a triatomic gas is \(\left(N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)\) [NEET 2010]
(b)
Given, mole of triatomic gas \(=0.1\)
The number of molecules of triatomic can be calculated using the given formula
Number of molecules \(=\) moles \(\times\) Avogadro number
Since one triatomic gas molecule contains three atoms. So, the total number of atoms can be calculated as
Number of atoms \(=3 \times\) Number of mole \(\times\) Avogadro number
\(
\begin{array}{l}
=3 \times 0.1 \mathrm{~mol} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
=1.806 \times 10^{23}
\end{array}
\)
Hence, the number of atoms is \(1.806 \times 10^{23}\).
\(25.3 \mathrm{~g}\) of sodium carbonate, \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) is dissolved in enough water to make \(250 \mathrm{~mL}\) of solution. If sodium carbonate dissociates completely, molar concentration of sodium ion, \(\mathrm{Na}^{+}\)and carbonate ions, \(\mathrm{CO}_{3}^{2-}\) are respectively (Molar mass of \(\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g} \mathrm{~mol}^{-1}\) [NEET 2010]
(b) Given that molar mass of \(\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g}\)
Molarity of solution \(=\frac{25.3 \times 1000}{106 \times 250}\) \(=0.9547 \mathrm{~M}=0.955 \mathrm{~M}\)
\( \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}^{2-} \)
\(
\begin{aligned}
&{\left[\mathrm{Na}^{+}\right]=2\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]=2 \times 0.955=1.910 \mathrm{~M}} \\
&{\left[\mathrm{CO}_{3}^{2-}\right]=\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]=0.955 \mathrm{~M}}
\end{aligned}
\)
\(10 \mathrm{~g}\) of hydrogen and \(64 \mathrm{~g}\) of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be [NEET 2009]
(b) \(\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}\)
\(\begin{array}{ccc}2 \mathrm{~g} & 16 \mathrm{~g} & 18 \mathrm{~g} \\ 1 \mathrm{~mol} & 0.5 & 1 \mathrm{~mol}\end{array}\)
\(10 \mathrm{~g}\) of \(\mathrm{H}_{2}=5 \mathrm{~mol}\) and \(64 \mathrm{~g}\) of \(\mathrm{O}_{2}=2 \mathrm{~mol}\)
\(\therefore\) In this reaction, oxygen is the limiting reagent so amount of \(\mathrm{H}_{2} \mathrm{O}\) produced depends on that of \(\mathrm{O}_{2}\).
Since \(0.5 \mathrm{~mol}Â \text{ of } \mathrm{~O}_{2}\) gives \(1 \mathrm{~mol}Â \mathrm{~H}_{2} \mathrm{O}\)
\(\therefore 2Â \mathrm{~mol}\) of \(\mathrm{O}_{2}\) will give \(4 \mathrm{~mol}Â \mathrm{~H}_{2} \mathrm{O}\)
What volume of oxygen gas \(\left(\mathrm{O}_2\right)\) measured at \(0^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\), is needed to burn completely \(1 \mathrm{~L}\) of propane gas \(\left(\mathrm{C}_3 \mathrm{H}_8\right)\) measured under the same conditions? [NEET 2008]
\(
\mathrm{C}_3 \mathrm{H}_8+5 \mathrm{O}_2 \longrightarrow 3 \mathrm{CO}_2+4 \mathrm{H}_2 \mathrm{O}
\)
\(
1 \text { vol. } \quad \quad 5 \text { vol. } \quad 3 \text { vol. } \quad 4 \text { vol. }
\)
According to the above equation \(1 \mathrm{~vol}\). or 1 litre of propane requires to \(5 \mathrm{~vol}\). or 5 litre of \(\mathrm{O}_2\) to burn completely.
How many moles of lead (II) chloride will be formed from a reaction between \(6.5 \mathrm{~g}\) of \(\mathrm{PbO}\) and \(3.2 \mathrm{~g}\) of \(\mathrm{HCl}\) ? [NEET 2008]
\(
\underset{n \text { mol }}{\mathrm{PbO}}+\underset{2 n \text { mol }}{2 \mathrm{HCl}} \rightarrow \underset{n \text { mol }}{\mathrm{PbCl}_2}+{\mathrm{H}_2 \mathrm{O}}
\)
\(
\begin{array}{cc}
\frac{6.5}{224} \mathrm{~mol} & \frac{3.2}{36.5} \mathrm{~mol} \\
=0.029 \mathrm{~mol} & =0.087 \mathrm{~mol}
\end{array}
\)
Formation of moles of lead (II) chloride depends upon the no. of moles of \(\mathrm{PbO}\) which acts as a limiting factor here. So, no. of moles of \(\mathrm{PbCl}_2\) formed will be equal to the no. of moles of \(\mathrm{PbO}\) i.e. 0.029 .
An organic compound contains carbon, hydrogen, and oxygen. Its elemental analysis gave \(\mathrm{C} , 38.71\%\) and \(\mathrm{H}, 9.67 \%\). The empirical formula of the compound would be [NEET 2008]
The percentage composition of Carbon : \(38.71 \%\)
Atomic mass of Carbon: 12
So, Mole ratio \(=\frac{\% \text { composition }}{\text { Atomic mass }}\)
Mole ratio \(=\frac{38.71}{12}=3.22\)
Element Hydrogen:
The percentage composition of Hydrogen : \(9.67 \%\)
Atomic mass of Hydrogen: 1
So, Mole ratio \(=\frac{\% \text { composition }}{\text { Atomic mass }}\)
Mole ratio \(=\frac{9.67}{1}=9.67\)
Element Oxygen
The percentage composition of Oxygen:
\(
100-(38.71+9.67)=51.62 \%
\)
Atomic mass of Oxygen:16
So, Mole ratio \(=\frac{\% \text { composition }}{\text { Atomic mass }}\)
Mole ratio \(=\frac{51.62}{16}=3.22\)
Step 2: Simple ration for \(\mathrm{C}, \mathrm{H}\) and \(\mathrm{O}\).
For carbon (C)
Simple ratio : \(\frac{\text { mole ratio }}{\text { smallest mole ratio }}=\frac{3.22}{3.22}=1\)
Hence, Carbon: 1
For Hydrogen \((\mathrm{H})\)
Simple ratio : \(\frac{\text { mole ratio }}{\text { smallest mole ratio }}=\frac{9.67}{3.22}=3\)
Hence, Hydrogen: 3
For Oxygen (O)
Simple ratio : \(\frac{\text { mole ratio }}{\text { smallest mole ratio }}=\frac{3.22}{3.22}=1\)
Hence, Oxygen: 1
Therefore, the empirical formula of the compound is Option (C): \(\mathrm{CH}_3 \mathrm{O}\)
An element, \(X\) has the following isotopic composition:
\({ }^{200} X: 90 \% \quad{ }^{199} X: 8.0 \% \quad{ }^{202} X: 2.0 \%\)
The weighted average atomic mass of the naturally occurring element \(X\) is closest to [NEET 2007]
(d) Average isotopic mass of \(X\)
\(
\begin{aligned}
&=\frac{200 \times 90+199 \times 8+202 \times 2}{90+8+2} \\
&=\frac{18000+1592+404}{100}=199.96 \text { a.m.u. } \approx 200 \text { a.m.u. }
\end{aligned}
\)
The maximum number of molecules is present in [NEET 2004]
(a) At STP, \(22.4 \mathrm{~L} \mathrm{H}_{2}=6.023 \times 10^{23}\) molecules
\(
15 \mathrm{~L} \mathrm{H}_{2}=\frac{6.023 \times 10^{23} \times 15}{22.4}=4.033 \times 10^{23}
\)
\(
5 \mathrm{~L} \mathrm{~N}_{2}=\frac{6.023 \times 10^{23} \times 5}{22.4}=1.344 \times 10^{23}
\)
\(
\begin{aligned}
&2 \mathrm{~g} \mathrm{~H}_{2}=6.023 \times 10^{23} \\
&0.5 \mathrm{~g} \mathrm{~H}_{2}=\frac{6.023 \times 10^{23} \times 0.5}{2}=1.505 \times 10^{23} \\
&32 \mathrm{~g} \mathrm{~O}_{2}=6.023 \times 10^{23} \\
&10 \mathrm{~g} \text { of } \mathrm{O}_{2}=\frac{6.023 \times 10^{23} \times 10}{32}=1.882 \times 10^{23}
\end{aligned}
\)
Which has maximum molecules? [NEET 2002]
(b) 1 mole of any element contain \(6.023 \times 10^{23}\) number of molecules.
\(
1 \mathrm{~g} \text { mole of } \mathrm{O}_2=32 \mathrm{~g} \mathrm{~O}_2
\)
\(
16 \mathrm{~g} \text { of } \mathrm{O}_2=0.5 \mathrm{~g} \mathrm{~mole} \mathrm{~O}_2
\)
\(1 \mathrm{~g}\) mole of \(\mathrm{N}_2=28 \mathrm{~g} \mathrm{~N}_2\)
\(7 \mathrm{~g} \mathrm{~N}_2=0.25 \mathrm{~g}\) mole \(\mathrm{N}_2\)
\(1 \mathrm{~g}\) mole of \(\mathrm{~H}_2=2 \mathrm{~g} \mathrm{~H}_2\)
\(2 \mathrm{~g} \mathrm{~H}_2=1.0 \mathrm{~g} \mathrm{~mole} \mathrm{~H}_2\)
\(
1 \mathrm{~g} \mathrm{~mole} \mathrm{~NO}_2=14+16 \times 2=46
\)
\(
16 \mathrm{~g} \text { of } \mathrm{NO}_2=0.35 \mathrm{~mole} \mathrm{~NO}_2
\)
\(
2 \mathrm{~g} \mathrm{~H}_2\left(1 \mathrm{~g} \text { mole } \mathrm{H}_2\right) \text { contain maximum molecules. }
\)
Percentage of \(\mathrm{Se}\) in peroxidase anhydrous enzyme is \(0.5 \%\) by weight (at. wt. \(=78.4\) ) then minimum molecular weight of peroxidase anhydrous enzyme is [NEET 2001]
(a)
Step 1: Given data: We are given a peroxide anhydrous enzyme in which \(\mathrm{Se}\) is present as = \(0.5 \%\) by weight
This means we can say that \(0.5 \mathrm{~g}\) of \(\mathrm{Se}\) is present in \(100 \mathrm{~g}\) of the enzyme.
The atmoic weight of \(\mathrm{Se}\) is given as \(=78.4 \mathrm{~gm}\)
Step 2: Calculation of molecular weight of peroxidase anhydrous enzyme:
\(78.4 \mathrm{~g}\) of \(\mathrm{~Se}\) will be present in,
\(
\begin{array}{l}
=\frac{100}{0.5} \times 78.4 \\
=1.568 \times 10^4 \mathrm{~gm} \text { of peroxidase anhydrous enzyme }
\end{array}
\)
Hence, the minimum molecular weight of peroxidase anhydrous enzyme is calculated as \(1.568 \times 10^4 \mathrm{~gm}\).
Molarity of liquid \(\mathrm{HCl}\), if density of solution is \(1.17 \mathrm{~g} / \mathrm{cc}\) is [NEET 2001]
Given:Density of \(\mathrm{HCl}=1.17 \mathrm{~g} / \mathrm{cc}\)
\(
\text { Molarity }=(\text { density/molar mass }) \times 1000 \text { moles per liter }
\)
Molar mass of \(\mathrm{HCl}=[1+35.5]=36.5 \mathrm{~g} / \mathrm{mol}\)
Molarity \(=(1.17 / 36.5) \times 1000=32.05 \mathrm{M}\)
\(\therefore\) Molarity of liquid \(\mathrm{HCl}\) with density equal to \(1.17 \mathrm{~g} / \mathrm{cc}\) is 32.05
Specific volume of cylindrical virus particle is \(6.02 \times 10^{-2} \mathrm{cc} / \mathrm{g}\) whose radius and length are 7 Ã… and 10 Ã… respectively. If \(N_{A}=6.02 \times 10^{23}\), find molecular weight of virus [NEET 2001]
(a) Specific volume (vol. of \(1 \mathrm{~g}\) ) cylindrical virus particle \(=6.02 \times 10^{-2} \mathrm{cc} / \mathrm{g}\)
Radius of virus, \(r=7 Ã…=7 \times 10^{-8} \mathrm{~cm}\)
Volume of virus \(=\pi r^{2} l\)
\(
=\frac{22}{7} \times\left(7 \times 10^{-8}\right)^{2} \times 10 \times 10^{-8}=154 \times 10^{-23} \mathrm{cc}
\)
wt. of one virus particle \(=\frac{\text { Volume }}{\text { Specific volume }}\)
\(
\Rightarrow \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \mathrm{~g}
\)
\(\therefore \quad\) Molecular wt. of virus \(=\mathrm{wt}\). of \(N_{A}\) particle
\(
\begin{aligned}
&=\frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{-23} \mathrm{~g} / \mathrm{mol} \\
&=15400 \mathrm{~g} / \mathrm{mol}=15.4 \mathrm{~kg} / \mathrm{mol}
\end{aligned}
\)
In quantitative analysis of second group in laboratory, \(\mathrm{H}_{2} \mathrm{S}\) gas is passed in acidic medium for precipitation. When \(\mathrm{Cu}^{2+}\) and \(\mathrm{Cd}^{2+}\) react with \(\mathrm{KCN}\), then for product, true statement is [NEET 2000]
(c) \(\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{2}\right]=3(+1)+x+2(-1)=0\) \(\Rightarrow x=-1\)
As the oxidation no. of ‘ \(\mathrm{Cu}\) ‘ is \(-1\) (-ve), so this complex is unstable and is not formed.
Volume of \(\mathrm{CO}_{2}\) obtained by the complete decomposition of \(9.85 \mathrm{~g}\) of \(\mathrm{~BaCO}_{3}\) is [NEET 2000]
(b) \(\mathrm{BaCO}_{3} \rightarrow \mathrm{BaO}+\mathrm{CO}_{2}\)
\(197 \cdot 34 \mathrm{~g} \rightarrow 22 \cdot 4 \mathrm{~L}\) at N.T.P.
\(
9 \cdot 85 \mathrm{~g} \rightarrow \frac{22 \cdot 4}{197 \cdot 34} \times 9 \cdot 85=1 \cdot 118 \mathrm{~L}
\)
\(\Rightarrow 9.85 \mathrm{~g}Â \mathrm{~BaCO}_{3}\) will produce \(1.118 \mathrm{~L}Â \mathrm{~CO}_{2}\) at N.T.P. on the complete decomposition.
Oxidation numbers of \(A, B, C\) are +2, +5 and -2 respectively. Possible formula of the compound is [AIPMT 2000]
(b)
\(
\mathrm{A}_3\left(\mathrm{BC}_4\right)_2
\)
overall compound should be neutral,Let’s check
Charge on \(\mathrm{A}=3 \times 2=+6\)
Charge on \(\left(\mathrm{BC}_4\right)_2=5+(-8) \times 2=-6\)
The number of atoms in \(4.25 \mathrm{~g}\) of \(\mathrm{NH}_{3}\) is approximately [AIPMT 1999]
(d) No. of molecules in \(4.25 \mathrm{~g}Â \mathrm{~NH}_{3}\) \(=\frac{4.25}{17} \times 6.023 \times 10^{23}=2.5 \times 6.023 \times 10^{22}\)
Number of atoms in \(4.25 \mathrm{~g}Â \mathrm{~NH}_{3}=4 \times 2.5 \times 6.023 \times 10^{22}=6.023 \times 10^{23}\)
Given the numbers: \(161 \mathrm{~cm}, 0.161 \mathrm{~cm}, 0.0161 \mathrm{~cm}\). The number of significant figures for the three numbers is [AIPMT 1998]
(d) Zeros placed left to the number are never significant, therefore the no. of significant figures for the numbers.
\(161 \mathrm{~cm}, 0.161 \mathrm{~cm}\) and \(0.0161 \mathrm{~cm}\) are same, i.e. 3
Note: 161 has three significant figures as all are non-zero digits.
0.161 has three significant figures as zero on the left of the first non-zero digit is not significant.
0.0161 also has three significant figures as zero on the left of the first non zero digit are not significant.
Haemoglobin contains \(0.334 \%\) of iron by weight. The molecular weight of haemoglobin is approximately 67200 . The number of iron atoms (Atomic weight of Fe is 56) present in one molecule of haemoglobin is [AIPMT 1998]
(a) Quantity of iron in one molecule
\(=\frac{67200}{100} \times 0.334=224.45 \mathrm{~amu}\)
No. of iron atoms in one molecule of haemoglobin \(=\frac{224.45}{56}=4\)
In the reaction,
\(4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(l)}\)
when 1 mole of ammonia and 1 mole of \(\mathrm{O}_{2}\) are made to react to completion: [AIPMT 1998]
(a)
\(
4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_2 \mathrm{O}_{(l)}
\)
\(
4 \text { mole }+5 \text { mole } \rightarrow 4 \text { mole }+6 \text { mole }
\)
\(
1 \text { mole of } \mathrm{NH}_3 \text { requires }=\frac{5}{4}=1.25 \text { mole of oxygen }
\)
while 1 mole of \(\mathrm{O}_2\) requires \(=\frac{4}{5}=0.8\) mole of \(\mathrm{NH}_3\).
As there is 1 mole of \(\mathrm{NH}_3\) and 1 mole of \(\mathrm{O}_2\), so all oxygen will be consumed.
Among the following which one is not paramagnetic? [Atomic numbers; \(\mathrm{Be}=4\), \(\mathrm{Ne}=10, \mathrm{As}=33, \mathrm{Cl}=17]\) [AIPMT 1998]
(c) \(\mathrm{Ne}^{2+}(8) \Rightarrow 1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{1} 2 p_{z}^{1}\)
\(\operatorname{Be}^{+}(3) \Rightarrow 1 s^{2} 2 s^{1}\)
\(\mathrm{Cl}^{-}(18) \Rightarrow 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\)
\(\operatorname{As}^{+}(32) \Rightarrow 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p_{x}^{1} 4 p_{y}^{1}\)
\(\mathrm{Cl}^{-}\)is not paramagnetic, as it has no unpaired electron.
\(0.24 \mathrm{~g}\) of a volatile gas, upon vaporisation, gives \(45 \mathrm{~mL}\) vapour at NTP. What will be the vapour density of the substance? (Density of \(\mathrm{H}_{2}=0.089\) ) [AIPMT 1998]
(b) Weight of gas \(=0.24 \mathrm{~g}\), Volume of \(\mathrm{gas}=\) \(45 \mathrm{~mL}=0.045\) litre and density of \(\mathrm{H}_{2}=0.089\).
We know that weight of \(45 \mathrm{~mL}\) of \(\mathrm{H}_{2}{=}\)
Density \(\times\) Volume \(=0.089 \times 0.045=4.005 \times 10^{-3} \mathrm{~g}\)
Therefore vapour density
\(
\begin{aligned}
&=\frac{\text { Weight of certain volume of substance }}{\text { Weight of same volume of hydrogen }} \\
&=\frac{0.24}{4.005 \times 10^{-3}}=59.93
\end{aligned}\)
The amount of zinc required to produce \(224 \mathrm{~mL}\) of \(\mathrm{H}_{2}\) at \(\mathrm{STP}\) on treatment with dilute \(\mathrm{H}_{2} \mathrm{SO}_{4}\) will be [AIPMT 1998]
(c) \(\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}\)
\((65 \mathrm{~g}) \quad(22400 \mathrm{~mL})\)
Since \(65 \mathrm{~g}\) of zinc reacts to liberate \(22400 \mathrm{~mL}\) of \(\mathrm{H}_{2}\) at STP, therefore amount of zinc needed to produce \(224 \mathrm{~mL}\) of \(\mathrm{H}_{2}\) at \(\mathrm{STP}\)
\(
=\frac{65}{22400} \times 224=0.65 \mathrm{~g}
\)
The dimensions of pressure are the same as that of [AIPMT 1995]
(b) Pressure \(=\frac{\text { Force }}{\text { Area }}\)
Therefore dimensions of pressure \(=\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}}\) \(=\mathrm{ML}^{-1} \mathrm{~T}^{-2}\) and dimensions of energy per unit volume
\(
=\frac{\text { Energy }}{\text { Volume }}=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{~L}^{3}}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}
\)
The number of moles of oxygen in one litre of air containing \(21 \%\) oxygen by volume, under standard conditions, is [AIPMT 1995]
(a) Volume of oxygen in 1 Litre of air
\(
\frac{21}{100} \times 1000=210 \mathrm{~mL}
\)
\(\therefore 22400 \mathrm{~mL}\) volume at STP is occupied by oxygen \(=1\) mole
Therefore, number of moles occupied by \(210 \mathrm{~mL}\)
\(
\begin{array}{l}
\frac{210}{22400} \\
=0.0093 \mathrm{~mol}
\end{array}
\)
The total number of valence electrons in \(4.2 \mathrm{~g}\) of \(\mathrm{N}_{3}^{-}\)ion is ( \(N_{A}\) is the Avogadro’s number) [AIPMT 1994]
(c) Each nitrogen atom has 5 valence electrons, therefore total number of electrons in \(\mathrm{N}_{3}^{-}\) ion is 16. Since the molecular mass of \(\mathrm{N}_{3}\) is 42 , therefore total number of electrons in \(4.2 \mathrm{~g}\) of \(\mathrm{N}_{3}^{-}\)ion
\(
=\frac{4.2}{42} \times 16 \times N_{A}=1.6 N_{A}
\)
A 5 molar solution of \(\mathrm{H}_{2} \mathrm{SO}_{4}\) is diluted from 1 litre to a volume of 10 litres, the normality of the solution will be [AIPMT 1991]
\(
\begin{aligned}
&\text { (a) } 5 \mathrm{~M} \mathrm{~H}_{2} \mathrm{SO}_{4}=10 \mathrm{~N} \mathrm{~H}_{2} \mathrm{SO}_{4} \\
&N_{1} V_{1}=N_{2} V_{2} \Rightarrow 10 \times 1=N_{2} \times 10 \Rightarrow N_{2}=1 \mathrm{~N}
\end{aligned}
\)
The number of gram molecules of oxygen in \(6.02 \times 10^{24} \mathrm{~CO}\) molecules is [AIPMT 1990]
(b) Avogadro’s No., \(N_{A}=6.02 \times 10^{23}\) molecules.
\(6.02 \times 10^{24} \mathrm{~CO}\) molecules \(=10\) moles \(\mathrm{CO}\) \(=10 \mathrm{~g}\) atoms of \(\mathrm{O}=5 \mathrm{~g}\) molecules of \(\mathrm{O}_{2}\)
Boron has two stable isotopes, \({ }^{10} \mathrm{~B}(19 \%)\) and \({ }^{11} \mathrm{~B}(81 \%)\). Calculate average at. wt. of boron in the periodic table [AIPMT 1990]
(a) Average atomic mass \(=\frac{19 \times 10+81 \times 11}{100}=10.81\)
The molecular weight of \(\mathrm{O}_{2}\) and \(\mathrm{SO}_{2}\) are 32 and 64 respectively. At \(15^{\circ} \mathrm{C}\) and \(150 \mathrm{~mmHg}\) pressure, one litre of \(\mathrm{O}_{2}\) contains ‘ \(N\) ‘ molecules. The number of molecules in two litres of \(\mathrm{SO}_{2}\) under the same conditions of temperature and pressure will be [AIPMT 1990]
(c) If \(1 \mathrm{~L}\) of one gas contains \(N\) molecules, \(2 \mathrm{~L}\) of any gas under the same conditions will contain \(2 \mathrm{~N}\) molecules.
A metal oxide has the formula \(\mathrm{Z}_{2} \mathrm{O}_{3}\). It can be reduced by hydrogen to give free metal and water. \(0.1596 \mathrm{~g}\) of the metal oxide requires \(6 \mathrm{~mg}\) of hydrogen for complete reduction. The atomic weight of the metal is  [AIPMT 1990]
(d) \(\mathrm{Z}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{Z}+3 \mathrm{H}_{2} \mathrm{O}\)
Valency of metal in \(\mathrm{Z}_{2} \mathrm{O}_{3}=3\)
\(0.1596 \mathrm{~g}\) of \(\mathrm{Z}_{2} \mathrm{O}_{3}\) react with \(6 \mathrm{~mg}\) of \(\mathrm{H}_{2}\).
\(\left[1 \mathrm{mg}=0.001 \mathrm{~g}=10^{-3} \mathrm{~g}\right]\)
\(\therefore 1 \mathrm{~g}\) of \(\mathrm{H}_{2}\) react with \(=\frac{0.1596}{0.006}=26.6\) g of \(\mathrm{Z}_{2} \mathrm{O}_{3}\)
\(\therefore \quad\) Eq. wt. of \(\mathrm{Z}_{2} \mathrm{O}_{3}=26.6\)
Now, Eq. wt. of \(Z+\) Eq. wt. of \(\mathrm{O}=\) Eq. wt. of \(Z+8=26.6\)
\(\Rightarrow\) Eq. wt. of \(Z=26.6-8=18.6\)
\(\therefore \quad\) At. wt. of \(Z=18.6 \times 3=55.8\)
\(
\left[\mathrm{Eq} . \mathrm{wt}=\frac{\text { Atomic wt. }}{\text { Valency of metal }}\right]
\)
Ratio of \(C_{p}\) and \(C_{V}\) of a gas ‘ \(X\) ‘ is 1.4. The number of atoms of the gas ‘ \(X\) ‘ present in \(11.2\) litres of it at NTP will be [ AIPMT 1989]
(a) Here, \(C_{p} / C_{V}=1.4\), which shows that the gas is diatomic.
\(22.4 \mathrm{~L}\) at \(\mathrm{NTP}=6.02 \times 10^{23}\) molecules
\(\therefore \quad 11.2 \mathrm{~L}\) at \(\mathrm{NTP}=3.01 \times 10^{23}\) molecules Since gas is diatomic.
\(\therefore \quad 11.2 \mathrm{~L} \text { at } \mathrm{NTP}=6.02 \times 10^{23} \text { atom }\)
What is the weight of oxygen required for the complete combustion of \(2.8 \mathrm{~kg}\) of ethylene? [AIPMT 1998]
(c) \(\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\)
\( \quad 28 \mathrm{~g} \quad 96 \mathrm{~g}\)
\(2.8 \mathrm{~kg} \mathrm{~C}_{2} \mathrm{H}_{4}=\frac{96 \mathrm{~g}}{28 \mathrm{~g}} \times 2.8 \mathrm{~kg}\)
\(
=\frac{96}{28} \times 2.8 \times 10^{3} \mathrm{~g}=9.6 \times 10^{3} \mathrm{~g}=9.6 \mathrm{~kg}
\)
The number of oxygen atoms in \(4.4 \mathrm{~g}\) of \(\mathrm{CO}_{2}\) is [AIPMT 1989]
(a) \(1 \mathrm{~mol}\) of \(\mathrm{CO}_{2}=44 \mathrm{~g}\) of \(\mathrm{CO}_{2}\)
\(\therefore \quad 4.4 \mathrm{~g} \mathrm{~CO}_{2}=0.1 \mathrm{~mol} \mathrm{~CO}_{2}=6 \times 10^{22}\) molecules [Since, 1 mole \(\mathrm{~CO}_{2}=6 \times 10^{23}\) molecules]
\(=2 \times 6 \times 10^{22}\) atoms of \(\mathrm{~O}=1.2 \times 10^{23}\) atoms of \(\mathrm{~O}\)
At S.T.P. the density of \(\mathrm{CCl}_{4}\) vapour in \(\mathrm{g} / \mathrm{L}\) will be nearest to [AIPMT 1988]
(a) \(1 \mathrm{~mol}Â \mathrm{~CCl}_{4}\) vapour \(=12+4 \times 35.5\) \(=154 \mathrm{~g}=22.4 \mathrm{~L}\)
\(\therefore\) Density of \(\mathrm{CCl}_{4}\) vapour \(=\frac{154}{22.4} \mathrm{~g} \mathrm{~L}^{-1}\)
\(
=6.875 \mathrm{~g} \mathrm{~L}^{-1}
\)
1 cc \(\mathrm{N}_{2} \mathrm{O}\) at NTP contains [AIPMT 1997]
(d) As we know,
\(22400 \mathrm{~cc}\) of \(\mathrm{N}_{2} \mathrm{O}\) contain \(6.02 \times 10^{23}\) molecules
\(\therefore \quad 1 \mathrm{~cc}\) of \(\mathrm{N}_{2} \mathrm{O}\) contain \(\frac{6.02 \times 10^{23}}{22400}\) molecules
Since in \(\mathrm{N}_{2} \mathrm{O}\) molecule there are 3 atoms
\(\therefore \quad 1 \mathrm{~cc} \mathrm{~N}_{2} \mathrm{O}=\frac{3 \times 6.02 \times 10^{23}}{22400}\) atoms
\(
=\frac{1.8 \times 10^{22}}{224} \text { atoms }
\)
No. of electrons in a molecule of \(\mathrm{N}_{2} \mathrm{O}=7+7+8=22\)
Hence, no. of electrons \(=\frac{6.02 \times 10^{23}}{22400} \times 22\) electrons \(=\frac{1.32}{204} \times 10^{23}\) electrons
One litre hard water contains \(12.00 \mathrm{~mg} \mathrm{~Mg}^{2+}\). Milli-equivalents of washing soda required to remove its hardness is [AIPMT 1988]
(a) \( \mathrm{Mg}^{2+}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{MgCO}_{3}+2 \mathrm{Na}^{+}\)
\( \quad 1 \mathrm{~g}\) eq. \( \quad 1 \mathrm{~g}\) eq.
1g eq. of \(\mathrm{Mg}^{2+}=12 \mathrm{~g}\) of \(\mathrm{Mg}^{2+}=12000 \mathrm{~mg}\)
Now, 1000 millieq. of \(\mathrm{Na}_{2} \mathrm{CO}_{3}=12000 \mathrm{~mg}\) of \(\mathrm{Mg}^{2+}\)
\(\therefore \quad 1\) millieq. of \(\mathrm{Na}_{2} \mathrm{CO}_{3}=12 \mathrm{~mg}\) of \(\mathrm{Mg}^{2+}\)
An organic compound contains \(78 \%\) (by wt.) carbon and remaining percentage of hydrogen. The right option for the empirical formula of this compound is [At. wt. of \(C\) is 12 , \(\mathrm{H}\) is 1 ]Â [NEET 2021]
\(
\begin{array}{|l|l|l|l|}
\hline \text { Element } & \text { Mass percentage } & \text { No. of mole } & \text { Mole ratio } \\
\hline \mathrm{C} & 78 \% & 78 / 12=6.5 & 6.5 / 6.5=1 \\
\hline \mathrm{H} & 22 \% & 22 / 1=22 & 22 / 6.5=3.38=3 \\
\hline
\end{array}
\)
From the calculation, the empirical formula is \(\mathrm{CH_3}\).
The number of protons, neutrons and electrons in \({ }_{71}^{175} \mathrm{Lu}\), respectively, are [NEET (Sep.) 2020]
(d) In \({ }_{71}^{175} \mathrm{Lu}\),
Mass number \((A)=175=n+p\)
Atomic number \((Z)=71=p=e^{-}\)
\(\therefore\) Number of protons \(=71\)
Number of neutrons
\(=A-Z=175-71=104\)
Number of electrons \(=71\)
The density of \(1 \mathrm{M}\) solution of a compound ‘ \(\mathrm{X}\) ‘ is \(1.25 \mathrm{~g} \mathrm{~mL}^{-1}\). The correct option for the molality of solution is (Molar mass of compound \(\mathrm{X}=85\) g): [NEET 2023 Manipur]
\(
\begin{aligned}
\mathrm{m} & =\frac{1000 \times \mathrm{M}}{1000 \times \mathrm{d}-\mathrm{MM}_{\mathrm{w}}} \\
\mathrm{m} & =\frac{1000 \times 1}{1000 \times 1.25-1 \times 85} \\
\mathrm{~m} & =\frac{1000}{1165}=0.858
\end{aligned}
\)
The right option for the mass of \(\mathrm{CO}_2\) produced by heating \(20 \mathrm{~g}\) of \(20 \%\) pure limestone is (Atomic mass of \(\mathrm{Ca}=40\) )
\(
\left[\mathrm{CaCO}_3 \stackrel{1200 \mathrm{~K}}{\longrightarrow} \mathrm{CaO}+\mathrm{CO}_2\right]
\) [NEET 2023]
Weight of impure limestone \(=20 \mathrm{~g}\)
Weight of pure limestone \(\left(\mathrm{CaCO}_3\right)=20 \%\) of \(20 \mathrm{~g}\)
\(
\begin{aligned}
& =\frac{20}{100} \times 20 \\
& =4 g \\
& n_{\mathrm{CaCO}_3}=\frac{4}{100}=0.04
\end{aligned}
\)
\(
\underset{n=0.04}{\mathrm{CaCO}_3} \rightarrow \mathrm{CaO}+\underset{n=0.04}{\mathrm{CO}_2}
\)
\(
\begin{aligned}
& n_{\mathrm{CO}_2}=0.04 \\
& W_{C O_2}=0.04 \times 44 \\
& =1.76 \mathrm{~g}
\end{aligned}
\)
The density of the solution is \(2.15 \mathrm{~g} \mathrm{~mL}^{-1}\), then mass of \(2.5 \mathrm{~mL}\) solution in correct significant figures is : [NEET 2022 Phase 2]
\(
\begin{aligned}
& \text { Mass }=\text { Volume } \times \text { Density } \\
& =2.5 \times 2.15 \\
& =5.375 \mathrm{~g}
\end{aligned}
\)
Since 2.5 has two significant figures, so the mass of solution in correct significant figures will be \(5.4 \mathrm{~g}\).
What fraction of \(\mathrm{Fe}\) exists as \(\mathrm{Fe}(\mathrm{III})\) in \(\mathrm{Fe}_{0.96} \mathrm{O}\) ?
(Consider \(\mathrm{Fe}_{0.96} \mathrm{O}\) to be made up of \(\mathrm{Fe}(\mathrm{II})\) and \(\mathrm{Fe}\) (III) only) [NEET 2022 Phase 2]
\(F e_{0.96} \mathrm{O}\)
Let, No. of ions of \(\mathrm{Fe}^{+2}=x\)
No. of ions of \(F e^{+3}=0.96-x\)
Total charge on \(O=-2\)
Now, \((x)(+2)+(0.96-x)(+3)+1(-2)=0\)
\(
\begin{aligned}
& 2 x+2.88-3 x-2=0 \\
& x=0.88
\end{aligned}
\)
\(
\mathrm{Fe}^{2+}=0.88, \mathrm{Fe}^{3+}=0.08
\)
\(\therefore\) Fraction of \(F e^{+3}\) ions \(=\frac{0.08}{0.96}=\frac{1}{12}\).
In one molal solution that contains 0.5 mole of a solute, there is [NEET 2022 Phase 1]
Molality is the moles of solute dissolved per \(\mathrm{kg}\) of solvent therefore \(500 \mathrm{~g}\), 1 molal solution contains 0.5 of solute, as
\(
\begin{aligned}
& m=\frac{\text { Moles of solute }}{\text { Mass of solvent }(\text { in } \mathrm{kg})} \\
& 1=\frac{0.5}{\text { Mass of solvent }(\text { in } \mathrm{kg})} \\
& \therefore \text { Mass of solvent (in } \mathrm{kg})=0.5 \\
& =500 \mathrm{~g}
\end{aligned}
\)
What mass of \(95 \%\) pure \(\mathrm{CaCO}_3\) will be required to neutralise \(50 \mathrm{~mL}\) of \(0.5 \mathrm{~M} \mathrm{~HCl}\) solution according to the following reaction?
\(
\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_2 \mathrm{O}_{(\mathrm{l})}
\)
[Calculate up to second place of decimal point] [NEET 2022 Phase 1]
\(
\mathrm{CaCO}_{3(s)}+2 \mathrm{HCl}_{\text {(aq.) }} \rightarrow \mathrm{CaCl}_{2 \text { (aq.) }}+\mathrm{CO}_{2(g)}+\mathrm{H}_2 \mathrm{O}_{(l)}
\)
no. of moles of \(\mathrm{CaCO}_3\) (pure) \(=\frac{1}{2} \times\) mole of \(\mathrm{HCl}\)
\(
\begin{aligned}
& {[\text { Mole }=\text { molarity } \times \text { volume }(\text { in ltr. })]} \\
& =\frac{1}{2} \times 0.5 \times \frac{50}{1000}=0.0125 \\
& \text { weight of } \mathrm{CaCO}_3 \text { (pure) }=\text { mole } \times \text { mol. wt } \\
& =0.0125 \times 100=1.25 \mathrm{~g} \\
& \% \text { purity }=\frac{\text { wt. of pure substance }}{\text { wt. of impure sample }} \times 100 \\
& 95=\frac{1.25}{\text { wt. of impure sample }} \times 100 \\
& \text { wt. of impure sample }=\frac{1.25 \times 100}{95}=1.32 \mathrm{~g}
\end{aligned}
\)
The amount of glucose required to prepare 250 mL of \(\frac{ M }{20}\) aqueous solution is :
(Molar mass of glucose : \(180 g mol ^{-1}\) ) [NEET 2024 (Re-Examination)]
(a) To find the amount of glucose required to prepare 250 mL of a \(\frac{M}{20}\) aqueous solution, we need to follow these steps:
1. Convert the volume from milliliters to liters, because molarity is expressed in moles per liter \((M)\)
2. Use the equation for molarity:
\(
M=\frac{n}{V}
\)
where:
\(M\) is the molarity (given as \(\frac{1}{20} M\) )
\(n\) is the number of moles of solute
\(V\) is the volume of the solution in liters
3. Rearrange the equation to solve for the number of moles of glucose \((n)\) :
\(n=M \times V\)
4. Convert the moles of glucose to grams using the molar mass of glucose.
Let’s proceed with the calculations:
1. Convert the volume to liters:
\(
250 mL=\frac{250}{1000} L=0.25 L
\)
2. Calculate the moles of glucose:
\(
n=\left(\frac{1}{20}\right) \times 0.25 L=\frac{0.25}{20} mol=0.0125 mol
\)
3. Convert the moles of glucose to grams using the molar mass of glucose:
mass \(=n \times\) molar mass
\(
\text { mass }=0.0125 mol \times 180 g mol ^{-1}=2.25 g
\)
So, the amount of glucose required is: 2.25 g
1.0 g of \(H _2\) has same number of molecules as in: [NEET 2024 (Re-Examination)]
(a) To determine which of the given options contains the same number of molecules as 1.0 g of \(H _2\) we need to use the concept of moles and Avogadro’s number. First, let’s calculate the number of moles in 1.0 g of \(H _2\)
The molar mass of \(H _2\) is \(2 g / mol\). Therefore, the number of moles of \(H _2\) in 1.0 g can be calculated as:
Number of moles of \(H _2=\frac{\text { Mass }}{\text { Molar Mass }}=\frac{1.0 g}{2 g / mol }=0.5 mol\)
Next, we need to find out which of the given options corresponds to the same number of moles. Let’s calculate the number of moles for each option:
Option A: 14 g of \(N _2\).
The molar mass of \(N _2\) is \(28 g / mol\). The number of moles of \(N _2\) in 14 g is:
Number of moles of \(N _2=\frac{14 g}{28 g / mol }=0.5 mol\)
Option B: 18 g of \(H _2 O\).
The molar mass of \(H _2 O\) is \(18 g / mol\). The number of moles of \(H _2 O\) in 18 g is:
Number of moles of \(H _2 O =\frac{18 g}{18 g / mol }=1 mol\)
Option C: 16 g of CO.
The molar mass of CO is \(28 g / mol\). The number of moles of CO in 16 g is:
Number of moles of \(CO =\frac{16 g}{28 g / mol }=0.571 mol\)
Option D: 28 g of \(N _2\).
The molar mass of \(N _2\) is \(28 g / mol\). The number of moles of \(N _2\) in 28 g is:
Number of moles of \(N _2=\frac{28 g}{28 g / mol }=1 mol\)
Comparing these calculated values, we can see that 0.5 mol of \(N _2\) (Option A) is equal to 0.5 mol of \(H _2\). Therefore, the correct answer is:
Option A: 14 g of \(N _2\).
On complete combustion, 0.3 g of an organic compound gave 0.2 g of \(CO _2\) and 0.1 g of \(H _2 O\). The percentage composition of carbon and hydrogen in the compound, respectively is: [NEET 2024 (Re-Examination)]
(b) To determine the percentage composition of carbon and hydrogen in the organic compound, we need to calculate the amounts of carbon in \(CO _2\) and hydrogen in \(H _2 O\) produced from the complete combustion of the compound.
First, let’s calculate the amount of carbon in \(CO _2\) :
The molar mass of \(CO _2\) is \(44 g / mol\), and the molar mass of carbon (C) is 12 \(g / mol\). Given that 0.2 g of \(CO _2\) is produced, we can use the following proportion to find the mass of carbon:
\(
\frac{12 g( C )}{44 g\left( CO _2\right)}=\frac{x}{0.2 g\left( CO _2\right)}
\)
Solving for \(x\) (mass of carbon):
\(
x=\frac{12 \times 0.2}{44}=\frac{2.4}{44}=0.0545 g
\)
Next, let’s calculate the amount of hydrogen in \(H _2 O\) :
The molar mass of \(H _2 O\) is \(18 g / mol\), and the molar mass of hydrogen \(( H )\) in a single \(H _2 O\) molecule is \(2 g / mol\). Given that 0.1 g of \(H _2 O\) is produced, we can use the following proportion to find the mass of hydrogen:
\(
\frac{2 g( H )}{18 g\left( H _2 O \right)}=\frac{y}{0.1 g\left( H _2 O \right)}
\)
Solving for \(y\) (mass of hydrogen):
\(
y=\frac{2 \times 0.1}{18}=\frac{0.2}{18}=0.0111 g
\)
Now, we can calculate the percentage composition of carbon and hydrogen in the organic compound, which has a total mass of 0.3 g .
Percentage of carbon:
\(
\% C =\left(\frac{0.0545 g}{0.3 g}\right) \times 100=18.18 \%
\)
Percentage of hydrogen:
\(
\% H =\left(\frac{0.0111 g}{0.3 g}\right) \times 100=3.70 \%
\)
Therefore, the correct answer is:
Option B: \(18.18 \%\) and \(3.70 \%\)
1 gram of sodium hydroxide was treated with 25 mL of 0.75 M HCl solution, the mass of sodium hydroxide left unreacted is equal to [NEET 2024]
(b)
\(
\begin{aligned}
& M=\frac{W \times 1000}{M_2 \times V(\text { in } m L)} \\
& W=\frac{M \times M_2 \times V(\text { in } m L)}{1000}=\frac{0.75 \times 36.5 \times 25}{1000} \\
& =0.684 g \text { (Mass of } HCl )
\end{aligned}
\)
\(
\underset{36.5 g}{ HCl }+\underset{40 g}{ NaOH } \rightarrow HCl + NaOH
\)
36.5 g HCl reacts with \(NaOH =40 g\)
0.684 g HCl reacts with \(NaOH =\frac{40}{36.5} \times 0.684 \simeq 0.750 g\)
Amount of NaOH left \(=1 g-0.750 g=0.250 g=250 mg\)
The highest number of helium atoms is in [NEET 2024]
(a) To determine which option contains the highest number of helium atoms, we need to analyze each option based on the amount of helium it represents and apply Avogadro’s Law as required.
Option A: 4 mol of helium
Using Avogadro’s number, which is approximately \(6.022 \times 10^{23}\) atoms per mole, the number of helium atoms in 4 moles can be calculated as:
\(
4 mol \times 6.022 \times 10^{23} \text { atoms } / mol =24.088 \times 10^{23} \text { atoms }
\)
Option B: 4 u of helium
The atomic mass of helium is approximately 4 u (atomic mass units). Therefore, 4 u represents about 1 mole of helium atoms (since the molar mass of helium is approximately \(4 g / mol\), which equals 4 u ). Thus, this option represents:
\(
1 mol \times 6.022 \times 10^{23} \text { atoms } / mol =6.022 \times 10^{23} \text { atoms }
\)
Option C: 4 g of helium
Similarly, as we’ve established that the molar mass of helium is \(4 g / mol , 4 g\) of helium equates exactly to:
\(
1 mol \times 6.022 \times 10^{23} \text { atoms } / mol =6.022 \times 10^{23} \text { atoms }
\)
Option D: 2.271098 L of helium at STP (Standard Temperature and Pressure)
At STP, one mole of any ideal gas occupies 22.4 L . Therefore, the amount of helium in moles for 2.271098 L can be derived from:
\(
\frac{2.271098 L}{22.4 L / mol } \approx 0.101 mole
\)
Using this to find the number of atoms:
\(
0.101 mol \times 6.022 \times 10^{23} \text { atoms } / mol \approx 6.082 \times 10^{22} \text { atoms }
\)
Conclusion:
Comparing the numbers:
Option A: \(24.088 \times 10^{23}\) atoms
Option B: \(6.022 \times 10^{23}\) atoms
Option C: \(6.022 \times 10^{23}\) atoms
Option D: \(6.082 \times 10^{22}\) atoms
Option A clearly contains the highest number of helium atoms, which is \(24.088 \times 10^{23}\) atoms.
A compound \(X\) contains \(32 \%\) of \(A, 20 \%\) of \(B\) and remaining percentage of C. Then, the empirical formula of \(X\) is : [NEET 2024]
(Given atomic masses of \(A =64 ; B =40 ; C =32 u\) )
(b)
\(
\begin{array}{|c|c|c|c|c|}
\hline \text { Element } & \begin{array}{c}
\text { Mass } \\
\text { percentage } \%
\end{array} & \text { No. of moles } & \begin{array}{c}
\text { No. of } \\
\text { moles/Smallest } \\
\text { number }
\end{array} & \begin{array}{c}
\text { Simplest whole } \\
\text { number }
\end{array} \\
\hline \text { A } & 32 \% & \frac{32}{64}=\frac{1}{2} & \frac{1}{2} \times 2 & =1 \\
\hline \text { B } & 20 \% & \frac{20}{40}=\frac{1}{2} & \frac{1}{2} \times 2 & =1 \\
\hline \text { C } & 48 \% & \frac{48}{32}=\frac{3}{2} & \frac{3}{2} \times 2 & =3 \\
\hline
\end{array}
\)
So, empirical formula of
\(
X=\begin{aligned}
& A: B: C \\
& 1: 1: 3
\end{aligned}
\)
\(
\therefore \text { The correct empirical formula of compound X } ABC _3
\)
A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. \(H _2 SO _4\). The evolved gaseous mixture is passed through KOH pellets. Weight (in g ) of the remaining product at STP will be [NEET 2018]
(c)
\(
HCOOH \xrightarrow[\text { Dehydrating Agent }]{ H _3 SO _4} CO + H _2 O \binom{ H _2 O \text { abosrbed }}{\text { by } H _2 SO _4}
\)
\(
(\text { moles })_i=\frac{2.3}{46}=\frac{1}{20} \quad \quad \quad 0 \quad \quad \quad 0
\)
\(
\begin{array}{llll}
(\text { moles })_f & & & & 0 & & & \frac{1}{20} & & \frac{1}{20}
\end{array}
\)
\(
\begin{aligned}
& H _2 C _2 O _4 \xrightarrow{ H _2 SO _4} CO + CO _2+ H _2 O \quad {\left[ H _2 O \text { absorbed by } H _2 SO _4\right]} \\
\end{aligned}
\)
\(
(\text { moles })_i= \frac{4.5}{90}=\frac{1}{20} \quad 0 \quad 0 \quad 0
\)
\(
(\text { moles })_f \quad \quad \quad 0 \quad \quad \quad \frac{1}{20} \quad \frac{1}{20} \quad \frac{1}{20}
\)
\(CO _2\) is absorbed by KOH .
So the remaining product is only CO . moles of CO formed from both reactions
\(
=\frac{1}{20}+\frac{1}{20}=\frac{1}{10}
\)
Left mass of \(CO =\) moles \(\times\) molar mass
\(
=\frac{1}{10} \times 28 =2.8 ~g
\)
Which of the following is dependent on temperature? [NEET 2017]
(a)
\(
\begin{aligned}
& \text { Molarity }=\frac{\text { Number of moles of solute }}{\text { Volume of solution (in L) }} \\
& \text { Molality }=\frac{\text { Number of moles of solute }}{\text { Mass of solvent (in kg) }} \\
& \text { Mole fraction }=\frac{\text { Number of moles of component }}{\text { Total number of moles of all components }} \\
& \text { Weight percentage }=\frac{\text { Weight of a component }}{\text { Total weight of solution }} \times 100
\end{aligned}
\)
KEY Concept : Those units which are volume related will be affected by the change in temperature.
The definition of molarity is – Number of moles of solute present in one litre of solution. From definition you can see it is depends on volume which increases with increasing temperature and decreases with decreasing temperature.
All the other three options (Molality, Mole fraction, Weight fraction of solute) are mass related units and temperature has no effect on mass.
If Avogadro number \(N _{ A }\), is changed from \(6.022 \times 10^{23} mol^{-1}\) to \(6.022 \times 10^{20} mol^{-1}\), this would change [AIPMT 2015]
(a) We know mass of \(1 mol\left(6.022 \times 10^{23}\right)\) atoms of carbon \(=12 g\)
If Avogadro number is changed to \(6.022 \times 10^{20}\) then mass of 1 mol of cabon is
\(
=\frac{12 \times 6.022 \times 10^{20}}{6.022 \times 10^{23}}=12 \times 10^{-3} g
\)
\(\therefore\) It would change the mass of one mole of carbon.
What is the mole fraction of the solute in a 1.00 m aqueous solution? [AIPMT 2015]
(c) Number of moles of water in \(1000 g=\frac{1000}{18}=55.56 mol\)
Thus, mole fraction of solute \(=\frac{1}{1+55.56}=0.0177\)
How many grams of concentrated nitric acid solution should be used to prepare 250 mL of \(2.0 M HNO _3\) ? The concentrated acid is \(70 \% HNO _3\). [NEET 2013]
(c)
\(
\begin{aligned}
& 2=\frac{m}{63 \times 0.25} \\
& \Rightarrow m =2 \times 63 \times 0.25=31.5 g
\end{aligned}
\)
Now, if concentrated \(HNO _3\) is \(100 \%\) then it requires 31.5 g . But the original solution of \(HNO _3\) is \(70 \%\) concentrated.
Hence, the mass of \(HNO _3\) required to produce 2.0 M solution
\(
\begin{aligned}
& =\frac{100}{75} \times 31.5 \\
& =45 g \text { of } HNO _3
\end{aligned}
\)
Concentrated aqueous sulphuric acid is \(98 \% H _2 SO _4\) by mass and has a density of 1.80 g \(mL ^{-1}\). Volume of acid required to make one litre of \(0.1 M H _2 SO _4\) solution is [AIPMT 2007]
(c) Normality \(=\frac{98 \times 1.8 \times 10}{49}=36 N\)
\(N _2=0.1 \times 2=0.2 N\)
\(N _2 V_2= N _1 V_1\)
\(\Rightarrow 36 \times V=0.2 \times 1000\)
\(\Rightarrow V=\frac{0.2 \times 1000}{36}=5.55 mL\)
The mole fraction of the solute in one molal aqueous solution is [AIPMT 2005]
(b) One molal solution means one mole solute present in \(1 kg(1000 g)\) solvent.
\(\therefore\) mole of solute \(=1\)
Mole of solvent \(\left( H _2 O \right)=\frac{1000}{18}\)
\(
X_{\text {solute }}=\frac{1}{1+\frac{1000}{18}}=0.018
\)
The percentage of \(C , H\) and N in an organic compound are \(40 \%, 13.3 \%\) and \(46.7 \%\) respectively then empirical formula is [AIPMT 2002]
(c)
\(
\begin{aligned}
&\text { Element \% composition At.Wt Molar Ratio Simplest Ratio }\\
&\begin{array}{lllll}
\text { C } & 40.0 & 12 & 40 / 12=3.33 & 3.33 / 3.33=1 \\
\text { H } & 13.3 & 1 & 13.3 / 1=13.3 & 13.3 / 3 / 33=4 \\
\text { N } & 46.7 & 14 & 46.7 / 14=3.33 & 3.33 / 3.33=1
\end{array}
\end{aligned}
\)
\(
\text { Thus, empirical formula of compound is } CH _4 N \text {. }
\)
2.5 litre of 1 M NaOH solution is mixed with another 3 litre of 0.5 M NaOH solution. Then find out molarity of resultant solution. [AIPMT 2002]
(c)
\(
\begin{aligned}
&\text { From molarity equation }\\
&\begin{aligned}
& M_1 V_1+M_2 V_2=M V \\
& \Rightarrow 1 \times 2.5+0.5 \times 3=M \times 5.5 \\
& \Rightarrow M=\frac{4}{5.5}=0.73 M
\end{aligned}
\end{aligned}
\)
You cannot copy content of this page