NCERT Exemplar MCQs

Summary

  • Measures of dispersion Range, Quartile deviation, mean deviation, variance, standard deviation are measures of dispersion.
    \(
    \text { Range }=\text { Maximum Value }- \text { Minimum Value }
    \)

  • Mean deviation for ungrouped data
    M.D. \((\bar{x})=\frac{\sum\left|x_i-\bar{x}\right|}{n}\),
    M.D. \(( M )=\frac{\sum\left|x_i- M \right|}{n}\)

  • Mean deviation for grouped data
    M.D. \((\bar{x})=\frac{\sum f_i\left|x_i \quad \bar{x}\right|}{ N }, \quad\) M.D. \(( M )=\frac{\sum f_i\left|x_i \quad M \right|}{ N }\), where \(N =\sum f_i\)

  • Variance and standard deviation for ungrouped data
    \(
    \sigma^2=\frac{1}{n} \sum\left(x_i-\bar{x}\right)^2, \quad \sigma=\sqrt{\frac{1}{n} \sum\left(x_i-\bar{x}\right)^2}
    \)

  • Variance and standard deviation of a discrete frequency distribution
    \(
    \sigma^2=\frac{1}{ N } \sum f_i\left(x_i-\bar{x}\right)^2, \quad \sigma=\sqrt{\frac{1}{ N } \sum f_i\left(x_i-\bar{x}\right)^2}
    \)

  • Variance and standard deviation of a continuous frequency distribution
    \(
    \sigma^2=\frac{1}{ N } \sum f_i\left(x_i-\bar{x}\right)^2, \quad \sigma=\frac{1}{ N } \sqrt{ N \sum f_i x_i^2-\left(\sum f_i x_i\right)^2}
    \)

  • Shortcut method to find variance and standard deviation.
    \(
    \sigma^2=\frac{h^2}{ N ^2}\left[ N \sum f_i y_i^2-\left(\sum f_i y_i\right)^2\right], \sigma=\frac{h}{ N } \sqrt{ N \sum f_i y_i^2-\left(\sum f_i y_i\right)^2} \text {, }
    \)
    where \(y_i=\frac{x_i- A }{h}\)

  • Coefficient of variation (C.V.) \(=\frac{\sigma}{\bar{x}} \times 100, \bar{x} \neq 0\).

You cannot copy content of this page