Summary
Measures of dispersion Range, Quartile deviation, mean deviation, variance, standard deviation are measures of dispersion.
\(
\text { Range }=\text { Maximum Value }- \text { Minimum Value }
\)
Mean deviation for ungrouped data
M.D. \((\bar{x})=\frac{\sum\left|x_i-\bar{x}\right|}{n}\),
M.D. \(( M )=\frac{\sum\left|x_i- M \right|}{n}\)
Mean deviation for grouped data
M.D. \((\bar{x})=\frac{\sum f_i\left|x_i \quad \bar{x}\right|}{ N }, \quad\) M.D. \(( M )=\frac{\sum f_i\left|x_i \quad M \right|}{ N }\), where \(N =\sum f_i\)
Variance and standard deviation for ungrouped data
\(
\sigma^2=\frac{1}{n} \sum\left(x_i-\bar{x}\right)^2, \quad \sigma=\sqrt{\frac{1}{n} \sum\left(x_i-\bar{x}\right)^2}
\)
Variance and standard deviation of a discrete frequency distribution
\(
\sigma^2=\frac{1}{ N } \sum f_i\left(x_i-\bar{x}\right)^2, \quad \sigma=\sqrt{\frac{1}{ N } \sum f_i\left(x_i-\bar{x}\right)^2}
\)
Variance and standard deviation of a continuous frequency distribution
\(
\sigma^2=\frac{1}{ N } \sum f_i\left(x_i-\bar{x}\right)^2, \quad \sigma=\frac{1}{ N } \sqrt{ N \sum f_i x_i^2-\left(\sum f_i x_i\right)^2}
\)
Shortcut method to find variance and standard deviation.
\(
\sigma^2=\frac{h^2}{ N ^2}\left[ N \sum f_i y_i^2-\left(\sum f_i y_i\right)^2\right], \sigma=\frac{h}{ N } \sqrt{ N \sum f_i y_i^2-\left(\sum f_i y_i\right)^2} \text {, }
\)
where \(y_i=\frac{x_i- A }{h}\)
Coefficient of variation (C.V.) \(=\frac{\sigma}{\bar{x}} \times 100, \bar{x} \neq 0\).
0 of 55 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 55 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Find the mean deviation about the mean of the following data:
\(
\begin{array}{|l|c|c|c|c|c|c|c|c|}
\hline \text { Size }(x): & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\
\hline \text { Frequency }(f): & 3 & 3 & 4 & 14 & 7 & 4 & 3 & 4 \\
\hline
\end{array}
\)
\(
\text { Mean }=\bar{x}=\frac{f_i x_i}{f_i}=\frac{3+9+20+98+63+44+39+60}{42}=\frac{336}{42}=8
\)
\(
\text { M.D. }(\bar{x})=\frac{f_i\left|x_i-\bar{x}\right|}{f_i}=\frac{3(7)+3(5)+4(3)+14(1)+7(1)+4(3)+3(5)+4(7)}{42}
\)
\(
=\frac{21+15+12+14+7+12+15+28}{42}=\frac{62}{21}=2.95
\)
Find the variance and standard deviation for the following data:
\(
57,64,43,67,49,59,44,47,61,59
\)
\(
\text { Mean }(\bar{x})=\frac{57+64+43+67+49+59+61+59+44+47}{10}=\frac{550}{10}=55
\)
\(
\begin{aligned}
& \text { Variance }\left(\sigma^2\right)=\frac{\left(x_i-\bar{x}\right)^2}{n} \\
& =\frac{2^2+9^2+12^2+12^2+6^2+4^2+6^2+4^2+11^2+8^2}{10} \\
& = \\
& \text { Standard deviation }(\sigma)=\sqrt{\sigma^2}=\sqrt{66.2}=8.13
\end{aligned}
\)
Is the two formulae for the standard deviation of ungrouped data
\(
\sigma=\sqrt{\frac{\left(x_i-\bar{x}\right)^2}{n}}
\)
and \(\sigma^{\prime}=\sqrt{\frac{x_i^2}{n}-\bar{x}^2}\)
are equivalent?
\(
\text { We have } \quad\left(x_i-\bar{x}\right)^2=\left(x_i^2-2 \bar{x} x_i+\bar{x}^2\right)
\)
\(
\begin{aligned}
& =\quad x_i^2+-2 \bar{x} x_i+\bar{x}^2 \\
& =\quad x_i^2-2 \bar{x} \quad x_i+(\bar{x})^2 \quad 1
\end{aligned}
\)
\(
\begin{aligned}
& =\quad x_i^2-2 \bar{x}(n \bar{x})+n \bar{x}^2 \\
& =\quad x_i^2-n \bar{x}^2
\end{aligned}
\)
Dividing both sides by \(n\) and taking their square root, we get \(\sigma=\sigma^{\prime}\).
\(
\begin{aligned}
&\text { Calculate variance of the following data : }\\
&\begin{array}{|c|c|}
\hline \text { Class interval } & \text { Frequency } \\
\hline 4-8 & 3 \\
8-12 & 6 \\
12-16 & 4 \\
16-20 & 7 \\
\hline
\end{array}
\end{aligned}
\)
\(
\text { Mean }(\bar{x})=\frac{f_i x_i}{f_i}=\frac{3 \times 6+6 \times 10+4 \times 14+7 \times 18}{20}=13
\)
\(
\text { Variance } \begin{aligned}
\left(\sigma^2\right) & =\frac{f_i\left(x_i-\bar{x}\right)^2}{f_i}=\frac{3(-7)^2+6(-3)^2+4(1)^2+7(5)^2}{20} \\
& =\frac{147+54+4+175}{20}=19
\end{aligned}
\)
Calculate mean, variation and standard deviation of the following frequency distribution:
\(
\begin{array}{|c|c|}
\hline \text { Classes } & \text { Frequency } \\
\hline 1-10 & 11 \\
10-20 & 29 \\
20-30 & 18 \\
30-40 & 4 \\
40-50 & 5 \\
50-60 & 3 \\
\hline
\end{array}
\)
\(
x^{\prime}=\frac{f_i y_i}{f_i}=\frac{-28}{70}=-0.4
\)
\(
\text { Mean }=\bar{x}=25.5+(-10)(0.4)=21.5
\)
Variance
\(
\left(\sigma^2\right)=\frac{h}{ N } \sqrt{ N f_i y_i^2-\left(f_i y_i\right)^2}
\)
\(
\begin{aligned}
& =\frac{10 \times 10}{70 \times 70}\left[70(124)-(-28)^2\right] \\
& =\frac{70(124)}{7 \times 7}-\frac{28 \times 28}{7 \times 7}=\frac{1240}{7}-16=161
\end{aligned}
\)
S.D. \((\sigma)=\sqrt{161}=12.7\)
Life of bulbs produced by two factories $A$ and $B$ are given below:
The bulbs of which factory are more consistent from the point of view of length of life?
Here \(h=100\), let A (assumed mean \()=800\).
For Factory A:
Mean \((\bar{x})=800+\frac{10}{120} \times 100=816.67\) hours
\(
\text { S.D. }=\frac{100}{120} \sqrt{120(146)-100}=109.98
\)
Therefore, Coefficient of variation (C. V.) \(=\frac{\text { S.D. }}{\bar{x}} \times 100=\frac{109.98}{816.67} \times 100=13.47\)
For Factory A:
\(
\begin{aligned}
\text { Mean } & =800+\frac{-36}{120} \quad 100=770 \\
\text { S.D. } & =\frac{100}{120} \sqrt{120(156)-(-36)^2}=110
\end{aligned}
\)
Therefore, Coefficient of variation \(=\frac{\text { S.D. }}{\text { Mean }} \times 100=\frac{110}{770} \times 100=14.29\)
Since C.V. of factory B \(>\) C.V. of factory \(A \Rightarrow\) Factory \(B\) has more variability which means bulbs of factory \(A\) are more consistent.
The mean deviation of the data \(2,9,9,3,6,9,4\) from the mean is
(b) is the correct answer
M.D. \((\bar{x})=\frac{\left|x_i-\bar{x}\right|}{n}=\frac{4+3+3+3+0+3+2}{7}=2.57\)
Variance of the data \(2,4,5,6,8,17\) is 23.33 . Then variance of \(4,8,10,12\), 16,34 will be
(c) is the correct answer. When each observation is multiplied by 2 , then variance is also multiplied by 2 .
A set of \(n\) values \(x_1, x_2, \ldots, x_n\) has standard deviation 6. The standard deviation of \(n\) values \(x_1+k, x_2+k, \ldots, x_n+k\) will be
(a) is correct answer. If each observation is increased by a constant \(k\), then standard deviation is unchanged.
\(
\begin{aligned}
&\text { Find the mean deviation about the mean of the distribution: }\\
&\begin{array}{|l|r|r|r|r|r|}
\hline \text { Size } & 20 & 21 & 22 & 23 & 24 \\
\hline \text { Frequency } & 6 & 4 & 5 & 1 & 4 \\
\hline
\end{array}
\end{aligned}
\)
\(
\begin{array}{|c|c|c|c|c|}
\hline \text { Size }\left(x_i\right) & \text { Frequency }\left(f_i\right) & f_i x_i & d_i=\left|x_i-\bar{x}\right| & f_i d_i \\
\hline 20 & 6 & 120 & 1.65 & 9.90 \\
\hline 21 & 4 & 84 & 0.65 & 2.60 \\
\hline 22 & 5 & 110 & 0.35 & 1.75 \\
\hline 23 & 1 & 23 & 1.35 & 1.35 \\
\hline 24 & 4 & 96 & 2.35 & 9.40 \\
\hline \text { Total } & 20 & 433 & 6.35 & 25.00 \\
\hline
\end{array}
\)
Mean \(\bar{x}=\frac{\sum f_i x_i}{\sum f_i}=\frac{433}{20}=21.65\)
Mean deviation MD \(=\frac{\sum f_i d_i}{\sum f_i}=\frac{25}{20}=1.25\)
Here, the required \(MD =1.25\)
\(
\begin{aligned}
&\text { Find the mean deviation about the median of the following distribution: }\\
&\begin{array}{|l|r|r|r|r|r|}
\hline \text { Marks obtained } & 10 & 11 & 12 & 14 & 15 \\
\hline \text { No. of students } & 2 & 3 & 8 & 3 & 4 \\
\hline
\end{array}
\end{aligned}
\)
\(
\begin{array}{|c|c|c|c|c|}
\hline \begin{array}{c}
\text { Marks } \\
\text { obtained }
\end{array} & f_i & \text { c.f. } & d_i=\mid x_i-\text { Med } \mid & f_i d_i \\
\hline 10 & 2 & 2 & 2 & 4 \\
\hline 11 & 3 & 5 & 1 & 3 \\
\hline 12 & 8 & 13 & 0 & 0 \\
\hline 14 & 3 & 16 & 2 & 6 \\
\hline 15 & 4 & 20 & 3 & 12 \\
\hline \text { Total } & 20 & & & 25 \\
\hline
\end{array}
\)
\(
\text { Here } \sum f_i= N =20 \text { and } \sum f_i d_i=25
\)
\(
\text { Median }=\frac{1}{2}\left[\left(\frac{ N }{2}\right) \text { th observation }+\left(\frac{ N }{2}+1\right) \text { th observation }\right]
\)
\(
\begin{aligned}
& =\frac{1}{2}\left[\left(\frac{20}{2}\right) \text { th observation }+\left(\frac{20}{2}+1\right) \text { th observation }\right] \\
& =\frac{1}{2}[10 \text { th observation }+11 \text { th observation }]=\frac{1}{2}[12+12]
\end{aligned}
\)
\(
\begin{aligned}
\therefore & \text { Median } & =12 \\
\therefore & \text { M.D. } & =\frac{\sum f_i d_i}{\sum f_i}=\frac{25}{20}=1.25
\end{aligned}
\)
Hence, the required \(MD =1.25\)
Calculate the mean deviation about the mean of the set of first \(n\) natural numbers when \(n\) is an odd number.
First \(n\) natural numbers are \(1,2,3, \ldots, n\). Here, \(n\) is odd.
\(
\therefore \text { Mean } \bar{x}=\frac{1+2+3+\cdots+n}{n}=\frac{\frac{n(n+1)}{2}}{n}=\frac{n+1}{2}
\)
The deviations of numbers from mean \(\left(\frac{n+1}{2}\right)\) are
\(
\begin{aligned}
& 1-\frac{n+1}{2}, 2-\frac{n+1}{2}, 3-\frac{n+1}{2}, \ldots, n-\frac{n+1}{2} \\
& \text { i.e., }-\frac{n-1}{2},-\frac{n-3}{2}, \ldots,-2,-1,0,1,2, \ldots, \frac{n-1}{2} .
\end{aligned}
\)
The absolute values of deviation from the mean i.e. \(\left|x_i-\bar{x}\right|\) are
\(
\frac{n-1}{2}, \frac{n-3}{2}, \ldots, 2,1,0,1,2, \ldots, \frac{n-1}{2}
\)
The sum of absolute values of deviations from the mean i.e.
\(
\begin{aligned}
& \left|x_i-\bar{x}\right| \\
& =2\left(1+2+3+\ldots \text { to } \frac{n-1}{2} \text { terms }\right) \\
& =2 \cdot \frac{\frac{n-1}{2}\left(\frac{n-1}{2}+1\right)}{2}=\frac{n-1}{2} \cdot \frac{n+1}{2}=\frac{n^2-1}{4} .
\end{aligned}
\)
\(\therefore\) Mean deviation about the mean
\(
=\frac{\sum\left|x_i-\bar{x}\right|}{n}=\frac{\frac{n^2-1}{4}}{n}=\frac{n^2-1}{4 n} .
\)
Calculate the mean deviation about the mean of the set of first \(n\) natural numbers when \(n\) is an even number.
First \(n\) natural numbers are \(1,2,3,4,5,6, \ldots, n\) (even)
\(\therefore \quad\) Mean \(\bar{x}=\frac{1+2+3+4+\cdots+n}{n}=\frac{n(n+1)}{2 n}=\frac{n+1}{2}\)
\(
\begin{aligned}
\therefore MD = & \frac{1}{n}\left[\left|1-\frac{n+1}{2}\right|+\left|2-\frac{n+1}{2}\right|+\left|3-\frac{n+1}{2}\right|+\ldots+\left|\frac{n-2}{2}-\frac{n+1}{2}\right|\right. \\
& \left.+\left|\frac{n}{2}-\frac{n+1}{2}\right|+\left|\frac{n+2}{2}-\frac{n+1}{2}\right| \ldots+\left|n-\frac{n+1}{2}\right|\right] \\
= & \frac{1}{n}\left[\left|\frac{1-n}{2}\right|+\left|\frac{3-n}{2}\right|+\left|\frac{5-n}{2}\right|+\ldots+\left|\frac{-3}{2}\right|+\left|-\frac{1}{2}\right|\right. \\
& \left.+\left|\frac{1}{2}\right|+\ldots+\left|\frac{n-1}{2}\right|\right] \\
= & \frac{1}{n}\left[\frac{1}{2}+\frac{3}{2}+\cdots+\frac{n-1}{2}\right]\left(\frac{n}{2}\right) \text { terms } \\
= & \frac{1}{n}\left(\frac{n}{2}\right)^2=\frac{1}{n} \cdot \frac{n^2}{4}=\frac{n}{4}
\end{aligned}
\)
\(\left[\because\right.\) Sum of first odd \(n\) natural numbers \(\left.=n^2\right]\) Hence, the required \(MD =\frac{n}{4}\).
Find the standard deviation of the first \(n\) natural numbers.
\(
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline x_i & 1 & 2 & 3 & 4 & 5 & – & – & n \\
\hline x_i^2 & 1 & 4 & 9 & 16 & 25 & – & – & n^2 \\
\hline
\end{array}
\)
\(
\begin{aligned}
\sum x_i & =1+2+3+4+5+\cdots+n=\frac{n(n+1)}{2} \\
\sum x_i^2 & =1^2+2^2+3^2+\ldots+n^2=\frac{n(n+1)(2 n+1)}{6} \\
\therefore \text { S.D. }(\sigma) & =\sqrt{\frac{\sum x_i^2}{n}-\left(\frac{\sum x_i}{n}\right)^2}
\end{aligned}
\)
\(
\begin{aligned}
& =\sqrt{\frac{n(n+1)(2 n+1)}{6 n}-\frac{n^2(n+1)^2}{4 n^2}} \\
& =\sqrt{\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^2}{4}} \\
& =\sqrt{\frac{2 n^2+3 n+1}{6}-\frac{n^2+2 n+1}{4}} \\
& =\sqrt{\frac{4 n^2+6 n+2-3 n^2-6 n-3}{12}}=\sqrt{\frac{n^2-1}{12}}
\end{aligned}
\)
\(
\text { Hence, the required } SD =\sqrt{\frac{n^2-1}{12}}
\)
The mean and standard deviation of some data for the time taken to complete a test are calculated with the following result:
Number of observations \(=25\), mean \(=18.2\) seconds, standard deviation \(=3.25\). Further, another set of 15 observations \(x_1, x_2, x_3, \ldots, x_{15}\), also is seconds, is now available and we have \(\sum_{i=1}^{15} x_i=279\) and \(\sum_{i=1}^{15} x_i^2=5524\). Calculate the standard deviation based on all 40 observation.
Given that \(n_1=25, \bar{x}_1=18.2\) and \(\sigma_1=3.25\)
and \(\quad n_2=15, \sum_{i=1}^{15} x_i=279\) and \(\sum_{i=1}^{15} x_i^2=5524\)
For the first set, we have
\(
\begin{aligned}
\sum x_1 & =25 \times 18.2=455 \\
\therefore \quad \sigma_1^2 & =\frac{\sum x_i^2}{25}-(18.2)^2 \\
\Rightarrow \quad(3.25)^2 & =\frac{\sum x_i^2}{25}-331.24 \\
\Rightarrow 10.5625+331.24 & =\frac{\sum x_i^2}{25} \Rightarrow \quad \sum x_i^2=25 \times(10.5625+331.24) \\
& =25 \times 341.8025=8545.06
\end{aligned}
\)
For the combined standard deviation of the 40 observation, \(n=40\)
and \(\quad \sum x_i^2=5524+8545.06=14069.06\)
\(
\begin{aligned}
\Rightarrow \quad \sum x_i & =455+279=734 \\
\therefore \quad S D & =\sqrt{\frac{14069.06}{40}-\left(\frac{734}{40}\right)^2}=\sqrt{351.7265-(18.35)^2} \\
& =\sqrt{351.7265-336.7225}=\sqrt{15.004}=3.87
\end{aligned}
\)
Hence, the required \(SD =3.87\)
The mean and standard deviation of a set of \(n_1\) observations are \(\bar{x}_1\) and \(s_1\), respectively while the mean and standard deviation of another set of \(n_2\) observations are \(\bar{x}_2\) and \(s_2\), respectively. Calculate the standard deviation of the combined set of \(\left(n_1+n_2\right)\).
\(
\begin{aligned}
& \text { Let } \quad x_i, i=1,2,3,4, \ldots, n_1 \\
& \text { and } y_j, j=1,2,3,4, \ldots, n_2 \\
& \therefore \quad \bar{x}_1=\frac{1}{n_1} \sum_{i=1}^n x_i \quad \text { and } \quad \bar{x}_2=\frac{1}{n_2} \sum_{j=1}^n y_j \\
& \Rightarrow \quad \sigma_1^2=\frac{1}{n_1} \sum_{i=1}^{n_1}\left(x_i-\bar{x}_1\right)^2 \quad \text { and } \quad \sigma_2^2=\frac{1}{n_2} \sum_{j=1}^{n_2}\left(y_i-\bar{x}_2\right)^2 \\
&
\end{aligned}
\)
Now mean of the combined series is given by
\(
\bar{x}=\frac{1}{n_1+n_2}\left[\sum_{i=1}^{n_1} x_i+\sum_{j=1}^{n_2} y_j\right]=\frac{n_1 \bar{x}_1+n_2 \bar{x}_2}{n_1+n_2}
\)
Therefore, \(\sigma^2\) of the combined series is
\(
\sigma^2=\frac{1}{n_1+n_2}\left[\sum_{i=1}^{n_1}\left(x_i-\bar{x}\right)^2+\sum_{j=1}^{n_2}\left(y_j-\bar{x}\right)^2\right]
\)
Now,
\(
\begin{aligned}
\sum_{i=1}^{n_1}\left(x_i-\bar{x}\right)^2= & \sum_{i=1}^{n_1}\left(x_i-\bar{x}_j+\bar{x}_j-\bar{x}\right)^2 \\
= & \sum_{i=1}^{n_1}\left(x_i-x_j\right)^2+n_1\left(\bar{x}_j-\bar{x}\right)^2 \\
& +2\left(\bar{x}_j-\bar{x}\right) \sum_{i=1}^{n_1}\left(x_i-\bar{x}_j\right)^2
\end{aligned}
\)
But \(\sum_{i=1}^n\left(x_i-\bar{x}_i\right)=0\)
\([\because\) The algebraic sum of the deviation of values of first series from their mean is zero]
Also \(\begin{aligned} \sum_{i=1}^{n_1}\left(x_i-\bar{x}\right)^2 & =n_1 s_1^2+n_1\left(\bar{x}_1-\bar{x}\right)^2 \\ & =n_1 s_1^2+n_1 d_1^2\end{aligned}\)
where \(d_1=\left(\bar{x}_1-\bar{x}\right)\)
Similarly, we have
\(
\sum_{j=1}^{n_2}\left(y_j-\bar{x}\right)^2=\sum_{j=1}^{n_2}\left(y_j-\bar{x}_i+\bar{x}_i-\bar{x}\right)^2=n_2 s_2^2+n_2 d_2^2
\)
where \(d_2=\left(\bar{x}_2-\bar{x}\right)\)
Now combined Standard Deviation (SD)
\(\begin{aligned} \sigma & =\sqrt{\frac{n_1\left(s_1^2+d_1^2\right)+n_2\left(s_2^2+d_2^2\right)}{n_1+n_2}} \\ \text { where } d_1 & =\bar{x}_1-\bar{x}=\bar{x}_1-\left(\frac{n_1 \bar{x}_1+n_2 \bar{x}_2}{n_1+n_2}\right)=\frac{n_2\left(\bar{x}_1-\bar{x}_2\right)}{n_1+n_2}\end{aligned}\)
and \(d_2=\bar{x}_2-\bar{x}=\bar{x}_2-\left(\frac{n_1 \bar{x}_1+n_2 \bar{x}_2}{n_1+n_2}\right)=\frac{n_1\left(\bar{x}_2-\bar{x}_1\right)}{n_1+n_2}\)
\(
\therefore \sigma^2=\frac{1}{n_1+n_2}\left[n_1 s_1^2+n_2 s_2^2+\frac{n_1 n_2^2\left(\bar{x}_1-\bar{x}_2\right)^2}{\left(n_1+n_2\right)^2}+\frac{n_2 n_1^2\left(\bar{x}_2-\bar{x}_1\right)^2}{\left(n_1+n_2\right)^2}\right]
\)
so, \(\sigma=\sqrt{\frac{n_1 s_1^2+n_2 s_2^2}{n_1+n_2}+\frac{n_1 n_2\left(\bar{x}_1-\bar{x}_2\right)^2}{\left(n_1+n_2\right)^2}}\).
Two sets each of 20 observations, have the same standard derivation 5 . The first set has a mean 17 and the second a mean 22 . Determine the standard deviation of the set obtained by combining the given two sets.
Given that
\(
\begin{array}{ll}
\text { Given that } & n_1=20, \sigma_1=5, \bar{x}_1=17 \\
\text { and } & n_2=20, \sigma_2=5, \bar{x}_2=22
\end{array}
\)
Now we know for combined two series that
\(
\begin{aligned}
\sigma & =\sqrt{\frac{n_1 s_1^2+n_2 s_2^2}{n_1+n_2}+\frac{n_1 n_2\left(\bar{x}_1-\bar{x}_2\right)^2}{\left(n_1+n_2\right)^2}} \\
& =\sqrt{\frac{20 \times(5)^2+20 \times(5)^2}{20+20}+\frac{20 \times 20(17-22)^2}{(20+20)^2}} \\
& =\sqrt{\frac{1000}{40}+\frac{400 \times 25}{1600}}=\sqrt{25+\frac{25}{4}}=\sqrt{\frac{125}{4}} \\
& =\sqrt{31.25}=5.59
\end{aligned}
\)
Hence, the required \(SD =5.59\)
\(
\begin{aligned}
&\text { The frequency distribution: }\\
&\begin{array}{|c|c|c|c|c|c|c|}
\hline x & A & 2 A & 3 A & 4 A & 5 A & 6 A \\
\hline f & 2 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
\end{aligned}
\)
where \(A\) is a positive integer, has a variance of 160 . Determine the value of \(A\).
\(
\begin{array}{|c|c|c|c|}
\hline x & f_i & f_i x_i & f_i x_i^2 \\
\hline A & 2 & 2 A & 2 A ^2 \\
\hline 2 A & 1 & 2 A & 4 A ^2 \\
\hline 3 A & 1 & 3 A & 9 A ^2 \\
\hline 4 A & 1 & 4 A & 16 A ^2 \\
\hline 5 A & 1 & 5 A & 25 A ^2 \\
\hline 6 A & 1 & 6 A & 36 A ^2 \\
\hline & n=7 & \sum f_i x_i=22 A & \sum f_i x_i^2=92 A ^2 \\
\hline
\end{array}
\)
\(
\begin{array}{ll}
\therefore & \text { Variance } \sigma^2=\frac{\sum f_i x_i^2}{n}-\left(\frac{\sum f_i x_i}{n}\right)^2 \\
\Rightarrow & 160=\frac{92 A ^2}{7}-\left(\frac{22 A }{7}\right)^2 \Rightarrow 160=\frac{92 A ^2}{7}-\frac{484 A ^2}{49} \\
\Rightarrow & 160=\frac{644 A ^2-484 A ^2}{49} \Rightarrow 160=\frac{160 A ^2}{49} \\
\Rightarrow & A ^2=49 \Rightarrow A =7
\end{array}
\)
Hence, the value of \(A\) is 7.
\(
\begin{aligned}
&\text { For the frequency distribution: }\\
&\begin{array}{|r|r|r|r|r|r|r|}
\hline x & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline f & 4 & 9 & 16 & 14 & 11 & 6 \\
\hline
\end{array}
\end{aligned}
\)
Find the standard distribution.
\(
\begin{array}{|c|c|c|c|}
\hline x_i & f_i & f_i x_i & f_i x_i^2 \\
\hline 2 & 4 & 8 & 16 \\
\hline 3 & 9 & 27 & 81 \\
\hline 4 & 16 & 64 & 256 \\
\hline 5 & 14 & 70 & 350 \\
\hline 6 & 11 & 66 & 396 \\
\hline 7 & 6 & 42 & 294 \\
\hline & N =60 & \sum f_i x_i=277 & \sum f_i x_i^2=1393 \\
\hline
\end{array}
\)
\(
\begin{aligned}
\therefore \quad SD (\sigma) & =\sqrt{\frac{\sum f_i x_i^2}{ N }-\left(\frac{\sum f_i x_i}{ N }\right)^2}=\sqrt{\frac{1393}{60}-\left(\frac{277}{60}\right)^2} \\
& =\sqrt{23.23-(4.62)^2}=\sqrt{23.21-21.34} \\
& =\sqrt{1.87}=1.37
\end{aligned}
\)
Hence, the required \(S D=1.37\)
There are 60 students in a class. The following is the frequency distribution of the marks obtained by the students in a test:
\(
\begin{array}{|l|c|c|c|c|c|c|}
\hline \text { Marks } & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline \text { Frequency } & x-2 & x & x^2 & (x+1)^2 & 2 x & x+1 \\
\hline
\end{array}
\)
where \(x\) is a positive integer. Determine the mean and standard deviation of the marks.
Given that \(\sum f_i=60\)
\(
\therefore \quad x-2+x+x^2+(x+1)^2+2 x+(x+1)=60
\)
\(
\begin{aligned}
4 x-2+x^2+x^2+2 x+1+x+1 & =60 \\
2 x^2+7 x-60 & =0 \\
2 x^2+15 x-8 x-60 & =0 \\
x(2 x+15)-4(2 x+15) & =0 \\
(2 x+15)(x-4) & =0 \\
2 x+15 & =0
\end{aligned}
\)
\(
\begin{array}{ll}
\therefore & x=-\frac{15}{2} \text { Rejected } \\
\therefore & x=4 \quad\left[\because \quad x \in I ^{+}\right]
\end{array}
\)
Now put \(x=4\) in the frequency distribution table
\(
\begin{array}{|c|c|c|c|c|}
\hline x_i & f_i & d_i=x_i-3 & f_i d_i & f_i d_i^2 \\
\hline 0 & 2 & -3 & -6 & 18 \\
\hline 1 & 4 & -2 & -8 & 16 \\
\hline 2 & 16 & -1 & -16 & 16 \\
\hline 3 & 25 & 0 & 0 & 0 \\
\hline 4 & 8 & 1 & 8 & 8 \\
\hline 5 & 5 & 2 & 10 & 20 \\
\hline & N =60 & & \sum f_i x_i=-12 & \sum f_i x_i^2=78 \\
\hline
\end{array}
\)
Let assumed mean \(A =3\)
\(
\text { Mean }= A +\frac{\sum f_i d_i}{ N }=3+\left(\frac{-12}{60}\right)=3-\frac{1}{5}=\frac{14}{5}=2.8
\)
and
\(
\begin{aligned}
SD (\sigma) & =\sqrt{\frac{\sum f_i d_i^2}{ N }-\left(\frac{\sum f_i d_i}{ N }\right)^2}=\sqrt{\frac{78}{60}-\left(\frac{-12}{60}\right)^2} \\
& =\sqrt{1.3-0.04}=\sqrt{1.26}=1.12
\end{aligned}
\)
Hence, the required mean \(=2.8\) and \(SD =1.12\)
The mean life of a sample of 60 bulbs was 650 hours and the standard deviation was 8 hours. A second sample of 80 bulbs has a mean life of 660 hours and standard deviation 7 hours. Find the overall standard deviation.
Given that \(n_1=60, \bar{x}_1=650, s_1=8\)
and \(\quad n_2=80, \bar{x}_2=660, s_2=7\)
we know that for a combined series.
\(
\begin{aligned}
\sigma & =\sqrt{\frac{n_1 s_1^2+n_2 s_2^2}{n_1+n_2}+\frac{n_1 n_2\left(\bar{x}_1-\bar{x}_2\right)^2}{\left(n_1+n_2\right)^2}} \\
& =\sqrt{\frac{60 \times(8)^2+80 \times(7)^2}{60+80}+\frac{60 \times 80(650-660)^2}{(60+80)^2}} \\
& =\sqrt{\frac{6 \times 64+8 \times 49}{14}+\frac{60 \times 80 \times 100}{140 \times 140}} \\
& =\sqrt{\frac{192+196}{7}+\frac{1200}{49}}=\sqrt{\frac{388}{7}+\frac{1200}{49}} \\
& =\sqrt{\frac{3916}{49}}=\frac{62.58}{7}=8.9
\end{aligned}
\)
Hence, the required \(SD =8.9\)
Mean and standard deviation of 100 items are 50 and 4 , respectively. Find the sum of all the item and the sum of the squares of the items.
Given that
\(
\begin{aligned}
& \bar{x}=50, n=100 \text { and } \operatorname{SD}(\sigma)=4 \\
& \bar{x}=\frac{\sum x_i}{ N } \Rightarrow 50=\frac{\sum x_i}{100} \Rightarrow \sum x_i=5000
\end{aligned}
\)
and variance \(\sigma^2=\frac{\sum f_i x_i^2}{ N }-\left(\frac{\sum f_i x_i}{ N }\right)^2\) \((4)^2=\frac{\sum f_i x_i^2}{100}-(50)^2 \Rightarrow 16=\frac{\sum f_i x_i^2}{100}-2500\)
\(
\begin{array}{ll}
\therefore & \sum f_i x_i^2=(2500+16) \times 100 \\
\Rightarrow & \sum f_i x_i^2=2516 \times 100=251600
\end{array}
\)
Hence, the required sum are 5000 and 251600 .
If for a distribution \(\quad(x-5)=3, \quad(x-5)^2=43\) and the total number of item is 18 , find the mean and standard deviation.
Given that \(n=18, \sum(x-5)=3, \sum(x-5)^2=43\)
\(
\therefore \quad \text { Mean }=A+\frac{\sum(x-5)}{n}=5+\frac{3}{18}=\frac{93}{18}=5.166=5.17
\)
\(
\begin{aligned}
\text { and } SD & =\sqrt{\frac{\sum(x-5)^2}{ N }-\left[\frac{\sum(x-5)}{ N }\right]^2}=\sqrt{\frac{43}{18}-\left(\frac{3}{18}\right)^2} \\
& =\sqrt{2.39-(0.166)^2}=\sqrt{2.39-0.027}=1.54
\end{aligned}
\)
\(
\begin{aligned}
&\text { Find the mean and variance of the frequency distribution given below: }\\
&\begin{array}{|c|c|c|r|c|}
\hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\
\hline f & 6 & 4 & 5 & 1 \\
\hline
\end{array}
\end{aligned}
\)
\(
\begin{array}{|c|c|c|c|c|}
\hline x & f_i & x_i & f_i x_i & f_i x_i^2 \\
\hline 1-3 & 6 & 2 & 12 & 24 \\
\hline 3-5 & 4 & 4 & 16 & 64 \\
\hline 5-7 & 5 & 6 & 30 & 180 \\
\hline 7-10 & 1 & 8.5 & 8.5 & 72.25 \\
\hline & N =16 & & \sum f_i x_i=66.5 & \sum f_i x_i^2=340.25 \\
\hline
\end{array}
\)
\(
\begin{aligned}
\text { Mean } & =\frac{\sum f_i x_i}{ N }=\frac{66.5}{16}=4.15 \\
\text { Variance }\left(\sigma^2\right) & =\frac{\sum f_i x_i^2}{ N }-\left(\frac{\sum f x}{ N }\right)^2 \\
& =\frac{340.25}{16}-(4.15)^2=21.26-17.22=4.04
\end{aligned}
\)
Hence, the required mean \(=4.15\) and variance \(=4.04\)
Calculate the mean deviation about the mean for the following frequency distribution:
\(
\begin{array}{|l|c|c|c|c|c|}
\hline \text { Class interval } & 0-4 & 4-8 & 8-12 & 12-16 & 16-20 \\
\hline \text { Frequency } & 4 & 6 & 8 & 5 & 2 \\
\hline
\end{array}
\)
\(
\begin{array}{|c|c|c|c|c|c|}
\hline \begin{array}{c}
\text { Class- } \\
\text { interval }
\end{array} & f_i & x_i & f_i x_i & d_i=\left|x_i-\bar{x}\right| & f_i d_i \\
\hline 0-4 & 4 & 2 & 8 & 7.2 & 28.8 \\
\hline 4-8 & 6 & 6 & 36 & 3.2 & 19.2 \\
\hline 8-12 & 8 & 10 & 80 & 0.8 & 6.4 \\
\hline 12-16 & 5 & 14 & 70 & 4.8 & 24.0 \\
\hline 16-20 & 2 & 18 & 36 & 8.8 & 17.6 \\
\hline & N =25 & & \sum f_i x_i=230 & & \sum f_i d_i=96.0 \\
\hline
\end{array}
\)
\(
\text { Mean }=\frac{\sum f_i x_i}{ N }=\frac{230}{25}=9.2
\)
and Mean deviation \(=\frac{\sum f_i d_i}{ N }=\frac{96}{25}=3.84\)
Hence, the required \(MD =3.84\)
\(
\begin{aligned}
&\text { Calculate the mean deviation from the median of the following data: }\\
&\begin{array}{|l|c|c|c|c|c|}
\hline \text { Class interval } & 0-6 & 6-12 & 12-18 & 18-24 & 24-30 \\
\hline \text { Frequency } & 4 & 5 & 3 & 6 & 2 \\
\hline
\end{array}
\end{aligned}
\)
\(
\begin{array}{|c|c|c|c|c|c|}
\hline \begin{array}{c}
\text { Class- } \\
\text { interval }
\end{array} & f_i & x_i & c . f . & d_i=\mid x_i-\text { Med } \mid & f_i d_i \\
\hline 0-6 & 4 & 3 & 4 & 11 & 44 \\
\hline 6-12 & 5 & 9 & 9 & 5 & 25 \\
\hline 12-18 & 3 & 15 & 12 & 1 & 3 \\
\hline 18-24 & 6 & 21 & 18 & 7 & 42 \\
\hline 24-30 & 2 & 27 & 20 & 13 & 26 \\
\hline & N =20 & & & & \sum f_i d_i=140 \\
\hline
\end{array}
\)
Median class \(=\left(\frac{ N }{2}\right)\) th term \(=\frac{20}{2}\) th term \(=10\) th term i.e. \(12-18\)
\(
\begin{aligned}
\therefore \quad \text { Median } & =l+\frac{N / 2-c f}{f} \times h \\
& =12+\frac{10-9}{3} \times 6=12+\frac{1}{3} \times 6=12+2=14 \\
\text { and } \quad \text { MD } & =\frac{\sum f_i d_i}{ N }=\frac{140}{20}=7
\end{aligned}
\)
Hence, the required \(MD =7\)
Determine the mean and standard deviation for the following distribution:
\(
\begin{array}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \text { Marks } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \text { Frequency } & 1 & 6 & 6 & 8 & 8 & 2 & 2 & 3 & 0 & 2 & 1 & 0 & 0 & 0 & 1 \\
\hline
\end{array}
\)
\(
\begin{array}{|r|c|c|c|c|c|}
\hline x & f_i & f_i x_i & d_i=x_i-\bar{x} & f_i d_i & f_i d_i^2 \\
\hline 2 & 1 & 2 & -4 & -4 & 16 \\
\hline 3 & 6 & 18 & -3 & -18 & 54 \\
\hline 4 & 6 & 24 & -2 & -12 & 24 \\
\hline 5 & 8 & 40 & -1 & -8 & 8 \\
\hline 6 & 8 & 48 & 0 & 0 & 0 \\
\hline 7 & 2 & 14 & 1 & 2 & 2 \\
\hline 8 & 2 & 16 & 2 & 4 & 8 \\
\hline 9 & 3 & 27 & 3 & 9 & 27 \\
\hline 10 & 0 & 0 & 4 & 0 & 0 \\
\hline 11 & 2 & 22 & 5 & 10 & 50 \\
\hline 12 & 1 & 12 & 6 & 6 & 36 \\
\hline 13 & 0 & 0 & 7 & 0 & 0 \\
\hline 14 & 0 & 0 & 8 & 0 & 0 \\
\hline 15 & 0 & 0 & 9 & 0 & 0 \\
\hline 16 & 1 & 16 & 10 & 10 & 100 \\
\hline & N =40 & \sum f_i x_i=239 & & \sum f_i d_i=-1 & \sum f_i d_i^2=325 \\
\hline
\end{array}
\)
\(
\begin{aligned}
\text { Mean } \bar{x} & =\frac{\sum f_i x_i}{ N }=\frac{239}{40}=5.9=6 \\
\therefore \quad SD =\sigma & =\sqrt{\frac{\sum f_i d_i^2}{ N }-\left(\frac{\sum f_i d_i}{ N }\right)^2}=\sqrt{\frac{325}{40}-\left(\frac{-1}{40}\right)^2} \\
& =\sqrt{8.125-0.000625} \\
& =\sqrt{8.124375}=2.85
\end{aligned}
\)
Here, the required mean \(=6\) and \(MD =2.85\)
The weights of coffee in 70 jars is shown in the following table:
\(
\begin{array}{|c|c|}
\hline \text { Weight (ing) } & \text { Frequency } \\
\hline 200-201 & 13 \\
\hline 201-202 & 27 \\
\hline 202-203 & 18 \\
\hline 203-204 & 10 \\
\hline 204-205 & 1 \\
\hline 205-206 & 1 \\
\hline
\end{array}
\)
Determine variance and standard deviation of the above distribution.
\(
\begin{array}{|c|c|c|c|c|c|}
\hline \begin{array}{c}
\text { Class- } \\
\text { interval }
\end{array} & f_i & x_i & d_i=x_i- A & f_i d_i & f_i d_i^2 \\
\hline 200-201 & 13 & 200.5 & -2 & -26 & 52 \\
\hline 201-202 & 27 & 201.5 & -1 & -27 & 27 \\
\hline 202-203 & 18 & 202.5(A) & 0 & 0 & 0 \\
\hline 203-204 & 10 & 203.5 & 1 & 10 & 10 \\
\hline 204-205 & 1 & 204.5 & 2 & 2 & 4 \\
\hline 205-206 & 1 & 205.5 & 3 & 3 & 9 \\
\hline & N =70 & & & \sum f_i d_i=-38 & \sum f_i d_i^2=102 \\
\hline
\end{array}
\)
\(
\therefore \quad \text { Variance }=\sigma^2=\frac{\sum f_i d_i^2}{N}-\left(\frac{\sum f_i d_i}{N}\right)^2
\)
\(
=\frac{102}{70}-\left(\frac{-38}{70}\right)^2=1.457-0.292=1.165
\)
\(
\therefore \quad S D=\sigma=\sqrt{1.165}=1.08 g .
\)
Hence, the required variance \(=1.165\) and \(S D=1.08 g\)
Determine mean and standard deviation of first \(n\) terms of an A.P. whose first term is \(a\) and common difference is \(d\).
\(
\begin{array}{|c|c|c|}
\hline x_i & x_i-a & \left(x_i-a\right)^2 \\
\hline a & 0 & 0 \\
\hline a+d & d & d^2 \\
\hline a+2 d & 2 d & 4 d^2 \\
\hline- & – & – \\
\hline- & – & – \\
\hline- & – & – \\
\hline a+(n-1) d & (n-1) d & (n-1)^2 d^2 \\
\hline
\end{array}
\)
We know that \(\sum x_i=\frac{n}{2}[2 a+(n-1) d]\)
\(
\begin{aligned}
& \therefore \quad \text { Mean }=\frac{\sum x_i}{n}=\frac{1}{n}\left[\frac{n}{2}\{2 a+(n-1) d\}\right]=\frac{1}{2}[2 a+(n-1) d] \\
& =a+\frac{n-1}{2} d \\
& \therefore \quad \sum\left(x_i-a\right)=d[1+2+3+\cdots+(n-1)]=\frac{d(n-1) n}{2} \\
& \text { and } \quad \sum\left(x_i-a\right)^2=d^2\left[1^2+2^2+3^2+\cdots+(n-1)^2\right] \\
&
\end{aligned}
\)
\(
\begin{aligned}
& =d^2 \cdot \frac{n(n-1)(2 n-1)}{6} \\
\sigma & =\sqrt{\frac{\sum\left(x_i-a\right)^2}{n}-\left(\frac{\sum\left(x_i-a\right)}{n}\right)^2}
\end{aligned}
\)
\(
\begin{aligned}
& =\sqrt{\frac{d^2 n(n-1)(2 n-1)}{6 n}-\left(\frac{d n(n-1)}{2 n}\right)^2} \\
& =\sqrt{\frac{d^2(n-1)(2 n-1)}{6}-\frac{d^2(n-1)^2}{4}} \\
& =d \sqrt{\frac{n-1}{2}\left(\frac{2 n-1}{3}-\frac{n-1}{2}\right)} \\
& =d \sqrt{\frac{n-1}{2}\left[\frac{4 n-2-3 n+3}{6}\right]} \\
& =d \sqrt{\left(\frac{n-1}{2}\right)\left(\frac{n+1}{6}\right)}=d \sqrt{\frac{n^2-1}{12}}
\end{aligned}
\)
\(
\text { Hence, the required } SD =d \sqrt{\frac{n^2-1}{12}}
\)
Following are the marks obtained, out of 100 , by two students Ravi and Hashina in 10 tests.
\(
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \text { Ravi } & 25 & 50 & 45 & 30 & 70 & 42 & 36 & 48 & 35 & 60 \\
\hline \text { Hashina } & 10 & 70 & 50 & 20 & 95 & 55 & 42 & 60 & 48 & 80 \\
\hline
\end{array}
\)
who is more intelligent and who is more consistent?
Case I: Ravi
\(
\begin{array}{|l|c|c|}
\hline x_i & d_i=x_i-45 & d_i^2 \\
\hline 25 & -20 & 400 \\
\hline 50 & 5 & 25 \\
\hline 45= A & 0 & 0 \\
\hline 30 & -15 & 225 \\
\hline 70 & 25 & 625 \\
\hline 42 & -3 & 9 \\
\hline 36 & -9 & 81 \\
\hline 48 & 3 & 9 \\
\hline 35 & -10 & 100 \\
\hline 60 & 15 & 225 \\
\hline \text { Total } & \sum d_i=-9 & \sum d_i^2=1699 \\
\hline
\end{array}
\)
\(
\begin{aligned}
& \therefore \quad \sigma=\sqrt{\frac{\sum d_i^2}{N}-\left(\frac{\sum d i}{N}\right)^2} \\
& =\sqrt{\frac{1699}{10}-\left(\frac{-9}{10}\right)^2}=\sqrt{169.09}=13.003 \\
& \bar{x}= A +\frac{\sum d i}{N}=45-\frac{9}{10}=44.1 \\
&
\end{aligned}
\)
Now for Hashina
\(
\begin{array}{|c|c|c|}
\hline x_i & d_i=x_i-55 & d_i^2 \\
\hline 10 & -45 & 2025 \\
\hline 70 & 15 & 625 \\
\hline 50 & -5 & 25 \\
\hline 20 & -35 & 1225 \\
\hline 95 & 40 & 1600 \\
\hline 55= A & 0 & 0 \\
\hline 42 & -13 & 169 \\
\hline 60 & 5 & 25 \\
\hline 48 & -7 & 49 \\
\hline 80 & 25 & 625 \\
\hline \text { Total } & \sum d_i=-20 & \sum d_i^2=6368 \\
\hline
\end{array}
\)
Assumed mean \(A =55\)
\(
\begin{aligned}
& \therefore \quad \sigma=\sqrt{\frac{\sum d_i^2}{N}}=\sqrt{\frac{6368}{10}}=25.2 \\
& \text { and } \bar{x}= A +\frac{\sum d_i}{N}=55-\frac{20}{10}=53
\end{aligned}
\)
and \(\bar{x}= A +\frac{\sum d_i}{N}=55-\frac{20}{10}=53\)
For Ravi CV \(=\frac{\sigma}{\bar{x}} \times 100=\frac{13.003}{44.1} \times 100=29.48\)
For Hashina CV \(=\frac{\sigma}{\bar{x}} \times 100=\frac{25.2}{53} \times 100=47.55\)
Hence, Hashina is more consistent and intelligent.
Mean and standard deviation of 100 observations were found to be 40 and 10 , respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
Given that \(n=100, \bar{x}=40, \sigma=10\)
\(\therefore \quad \bar{x}=\frac{\sum x_i}{N} \Rightarrow 40=\frac{\sum x_i}{100} \Rightarrow \sum x_i=4000\)
Corrected \(\sum x_i=4000-30-70+3+27=3930\)
and Corrected mean \(=\frac{3930}{100}=39.3\)
Now \(\quad \sigma^2=\frac{\sum x_i^2}{n}-(40)^2 \Rightarrow 100=\frac{\sum x_i^2}{100}-1600\)
\(
\begin{aligned}
& \Rightarrow \quad \sum x_i^2=1700 \times 100 \Rightarrow \quad \sum x_i^2=170000 \\
& \therefore \text { Corrected } \sum x_i^2=170000-(30)^2-(70)^2+(3)^2+(27)^2 \\
& =170000-900-4900+9+729=164938 \\
& \therefore \quad \text { Correct SD }=\sqrt{\frac{164938}{100}-(39.3)^2} \\
& =\sqrt{1649.38-1544.49} \\
& =\sqrt{104.89}=10.24 \\
&
\end{aligned}
\)
Hence, the required \(SD =10.24\).
While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25 . He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
Given that \(n=10, \bar{x}=45\) and \(\sigma^2=16\)
\(
\begin{aligned}
\therefore \quad \bar{x} & =\frac{\sum x_i}{n} \Rightarrow 45=\frac{\sum x_i}{10} \Rightarrow \sum x_i=450 \\
\text { Corrected } \sum x_i & =450-52+25 \\
& =423
\end{aligned}
\)
Corrected \(\sum x_i=450-52+25\)
\(\therefore\) Correct Mean \(\bar{x}=\frac{423}{10}=42.3\)
\(
\begin{aligned}
& \Rightarrow \quad 16=\frac{\sum x_i^2}{10}-2025 \Rightarrow \frac{\sum x_i^2}{10}=2041 \\
& \therefore \quad \sum x_i^2=20410 \\
& \therefore \text { Correct } \sum x_i^2=20410-(52)^2+(25)^2 \\
& =20410-2704+625 \\
& =18331 \\
&
\end{aligned}
\)
and corrected variance
\(
\begin{aligned}
\sigma^2 & =\frac{18331}{10}-(42.3)^2 \\
& =1833.1-1789.3=43.8
\end{aligned}
\)
Hence the required mean \(=42.3\) and variance \(=43.8\)
The mean deviation of the data \(3,10,10,4,7,10,5\) from the mean is
Observations are given by \(3,10,10,4,7,10\) and 5
\(
\therefore \quad \bar{x}=\frac{3+10+10+4+7+10+5}{7}=\frac{49}{7}=7
\)
\(
\begin{array}{|c|c|}
\hline x_i & d_i=\left|x_i-\bar{x}\right| \\
\hline 3 & 4 \\
\hline 10 & 3 \\
\hline 10 & 3 \\
\hline 4 & 3 \\
\hline 7 & 0 \\
\hline 10 & 3 \\
\hline 5 & 2 \\
\hline \text { Total } & \sum d_i=18 \\
\hline
\end{array}
\)
\(
MD =\frac{\sum d_i}{n}=\frac{18}{7}=2.57
\)
Mean deviation of \(x\) observations \(x_1, x_2, x_3, \ldots, x_n\) from their mean \(\bar{x}\) is given by
\(
MD =\frac{1}{n} \sum_{i=1}^n\left|x_i-\bar{x}\right|
\)
Hence, the correct option is \((b)\).
When tested, the lives (in hours) of 5 bulbs were noted as follows:
\(
1357,1090,1666,1494,1623
\)
The mean deviations (in hours) from their mean is
The lines of 5 bulbs are given by \(1357,1090,1666,1494,1623\)
\(
\begin{array}{rlrl}
\therefore & \text { Mean } & =\frac{1357+1090+1666+1494+1623}{23} \\
\Rightarrow & & \bar{x} & =\frac{7230}{5}=1446
\end{array}
\)
\(
\begin{array}{|c|c|}
\hline x_i & d_i=\left|x_i-\bar{x}\right| \\
\hline 1357 & 89 \\
\hline 1090 & 356 \\
\hline 1666 & 220 \\
\hline 1494 & 48 \\
\hline 1623 & 177 \\
\hline \text { Total } & \sum d_i=890 \\
\hline
\end{array}
\)
\(
\therefore \quad MD =\frac{\sum d_i}{n}=\frac{890}{5}=178
\)
Hence, the correct option is \((a)\).
Following are the marks obtained by 9 students in a mathematics test: \(50,69,20,33,53,39,40,65,59\)
The mean deviation from the median is:
Marks obtained are \(50,69,20,33,53,39,40,65\) and 59
Let us write in ascending order
\(
20,33,39,40,50,53,59,65,69 \text {. }
\)
Here \(n=9\)
\(
\therefore \quad \text { Median }=\frac{9+1}{2} \text { th term }=5 \text { th term i.e. } 50
\)
\(\therefore \quad\) Median \(=50\)
Now
\(
\begin{array}{|c|c|}
\hline x_i & d_i=\mid x_i-\text { Med } \\
\hline 20 & 30 \\
\hline 33 & 17 \\
\hline 39 & 11 \\
\hline 40 & 10 \\
\hline 50 & 0 \\
\hline 53 & 3 \\
\hline 59 & 9 \\
\hline 65 & 15 \\
\hline 69 & 19 \\
\hline \text { Total } & \sum d_i=114 \\
\hline
\end{array}
\)
\(
\begin{aligned}
& n=9 \text { and } \sum d_i=114 \\
& \therefore MD =\frac{\sum d_i}{n}=\frac{114}{9}=12.67
\end{aligned}
\)
Hence, the correct option is (c).
The standard deviation of the data \(6,5,9,13,12,8,10\) is
Given data are \(6,5,9,13,12,8\) and 10 \(\therefore \quad n=7\)
\(
\begin{array}{|c|c|}
\hline x_i & x_i^2 \\
\hline 6 & 36 \\
\hline 5 & 25 \\
\hline 9 & 81 \\
\hline 13 & 169 \\
\hline 12 & 144 \\
\hline 8 & 64 \\
\hline 10 & 100 \\
\hline \sum x_i=63 & \sum x_i^2=619 \\
\hline
\end{array}
\)
\(
\begin{aligned}
\therefore SD & =\sqrt{\frac{\sum x_i^2}{n}-\left(\frac{\sum x_i}{n}\right)^2} \\
& =\sqrt{\frac{619}{7}-\left(\frac{63}{7}\right)^2} \\
& =\sqrt{\frac{619}{7}-(9)^2} \\
& =\sqrt{\frac{619}{7}-81}
\end{aligned}
\)
\(
=\sqrt{\frac{619-567}{7}}=\sqrt{\frac{52}{7}}
\)
Hence, the correct option is \((a)\).
Let \(x_1, x_2, \ldots, x_n\) be \(n\) observations and \(\bar{x}\) be their arithmetic mean. The formula for the standard deviation is given by
The formula for S.D \(=\sigma=\sqrt{\frac{\sum\left(x_i-\bar{x}\right)^2}{n}}\) Hence, the correct option is \((c)\).
The mean of 100 observations is 50 and their standard deviation is 5 . The sum of all squares of all the observations is
\(
\begin{aligned}
& \text { Here } \quad \bar{x}=\frac{\sum x_i}{n} \\
& 50=\frac{\sum x_i}{100} \Rightarrow \sum x_i=5000 \\
& \therefore \quad SD =\sqrt{\frac{\sum x_i^2}{n}-\left(\frac{\sum x_i}{n}\right)^2} \\
& 5=\sqrt{\frac{\sum x_i^2}{100}-\left(\frac{5000}{100}\right)^2} \Rightarrow 25=\frac{\sum x_i^2}{100}-2500 \\
& \Rightarrow \quad \frac{\sum x_i^2}{100}=2500+25 \Rightarrow \frac{\sum x_i^2}{100}=2525 \\
&
\end{aligned}
\)
\(
\therefore \quad \sum x_i^2=2525 \times 100=252500
\)
Hence, the correct option is \((c)\)
Let \(a, b, c, d, e\) be the observations with mean \(m\) and standard deviation \(s\). The standard deviation of the observations \(a+k, b+k, c+k, d+k, e+k\) is
Given observation are \(a, b, c, d\) and \(e\)
\(
\begin{array}{rlrl}
\therefore & & \text { Mean } & =m=\frac{a+b+c+d+e}{5} \\
\therefore & & \sum x_i=5 m
\end{array}
\)
Now mean of \(a+ K , b+ K , c+ K , d+ K\) and \(e+ K\) is
\(
\begin{aligned}
& =\frac{a+ K +b+ K +c+ K +d+ K +e+ K }{5} \\
& =\frac{(a+b+c+d+e)+5 K}{5}=\frac{5 m+5 K}{5}=m+ K
\end{aligned}
\)
\(
\begin{aligned}
\therefore \quad SD & =\sqrt{\frac{\sum\left(x_i+ K \right)^2}{N}-\left[\frac{\sum x_i+ K }{ N }\right]^2} \\
& =\sqrt{\frac{\sum\left(x_i^2+ K ^2+2 x_i K\right)}{ N }-(m+ K )^2} \\
& =\sqrt{\frac{\sum x_i^2}{N}+\frac{\sum K ^2}{N}+\frac{2 K \sum x_i}{N}-m^2- K ^2-2 m K} \\
& =\sqrt{\frac{\sum x_i^2}{N}+ K ^2+2 K m-m^2- K ^2-2 m K} \\
& =\sqrt{\frac{\sum x_i^2}{N}-m^2} \quad\left[\because \frac{\sum x_i}{N}=m\right] \\
& = S
\end{aligned}
\)
Let \(x_1, x_2, x_3, x_4, x_5\) be the observations with mean \(m\) and standard deviation \(s\). The standard deviation of the observations \(k x_1, k x_2, k x_3, k x_4, k x_5\) is
Here
\(
m=\frac{\sum x_i}{N}, \quad S=\sqrt{\frac{\sum x_i^2}{5}-\left(\frac{\sum x_i}{5}\right)^2}
\)
\(
\begin{aligned}
\therefore \quad SD & =\sqrt{\frac{ K ^2 \sum x_i^2}{5}-\left(\frac{ K \sum x_i}{5}\right)^2} \\
& =\sqrt{\frac{ K ^2 \sum x_i^2}{5}- K ^2\left(\frac{\sum x_i}{5}\right)^2} \\
& = K \sqrt{\frac{\sum x_i^2}{5}-\left(\frac{\sum x_i}{5}\right)^2} \\
& = K \cdot S
\end{aligned}
\)
Let \(x_1, x_2, \ldots x_n\) be \(n\) observations. Let \(w_i=l x_i+k\) for \(i=1,2, \ldots n\), where \(l\) and \(k\) are constants. If the mean of \(x_i^{\prime} s\) is 48 and their standard deviation is 12 , the mean of \(w_i^{\prime} s\) is 55 and standard deviation of \(w_i^{\prime} s\) is 15 , the values of \(l\) and \(k\) should be
Given that
\(
\begin{aligned}
& w_i=x_i+k, \bar{x}_i=48, \operatorname{SD}\left(x_i\right)=12, \\
& w_i=55 \text { and } \operatorname{SD}\left(w_i\right)=15 \\
& \bar{w}_i=\bar{x}_i+k
\end{aligned}
\)
then
( \(\bar{w}_i=\) mean of \(w_i\) ‘s and \(\bar{x}_i\) is the mean of \(x_i^{\prime} s\) )
\(
\begin{aligned}
55 & =48+k \dots(i) \\
SD \text { of } w_i & = SD \text { of } x_i \\
15 & =l \times 12 \\
l & =\frac{15}{12}=1.25 \dots(ii)
\end{aligned}
\)
from eq. (i) and (ii) we have
\(
k=\bar{w}_i-\bar{x}_i=55-1.25 \times 48=55-60=-5
\)
Here, the correct option is (a).
Standard deviations for first 10 natural numbers is
We know that SD of first \(n\) natural numbers \(\sqrt{\frac{n^2-1}{12}}\)
Here \(n=10\)
\(
\therefore \quad S D=\sqrt{\frac{(10)^2-1}{12}}=\sqrt{\frac{99}{12}}=\sqrt{8.25}=2.87
\)
Hence, the correct option is (d)
Consider the numbers \(1,2,3,4,5,6,7,8,9,10\). If 1 is added to each number, the variance of the numbers so obtained is
Given numbers are \(1,2,3,4,5,6,7,8,9,10\)
Numbers obtained when 1 is added to the above numbers is \(2,3,4,5,6,7,8,9,10\) and 11 .
\(
\begin{aligned}
\therefore \quad \sum x_i & =2+3+4+5+6+7+8+9+10+11 \\
& =\frac{10}{2}[2 \times 2+(10-1) \cdot 1] \\
& =5[4+9]=5 \times 13=65
\end{aligned}
\)
Now
\(
\begin{aligned}
\sum x_i^2 & =2^2+3^2+4^2+\ldots+11^2 \\
& =\left(1^2+2^2+3^2+4^2+\cdots+11^2\right)-(1)^2 \\
& =\frac{n(n+1)(2 n+1)}{6}-1=\frac{11 \times 12 \times 23}{6}-1 \\
& =22 \times 23-1=506-1=505
\end{aligned}
\)
\(
\begin{aligned}
& \therefore \quad \text { Variance }\left(\sigma^2\right)=\frac{\sum x_i^2}{N}-\left(\frac{\sum x_i}{N}\right)^2=\frac{505}{10}-\left(\frac{65}{10}\right)^2 \\
& =\frac{505}{10}-\left(\frac{65}{10}\right)^2=50.5-(6.5)^2 \\
& =50.5-42.25=8.25 \\
&
\end{aligned}
\)
Consider the first 10 positive integers. If we multiply each number by -1 and then add 1 to each number, the variance of the numbers so obtained is
First 10 positive integers are \(1,2,3,4,5,6,7,8,9,10\) on multiplying each number by -1 , we get
\(
-1,-2,-3,-4,-5,-6,-7,-8,-9,-10
\)
on adding 1 to each of the number, we get
\(
0,-1,-2,-3,-4,-5,-6,-7,-8,-9
\)
\(
\therefore \quad \sum x_i=0-1-2-3-4-5-6-7-8-9=-45
\)
\(
\text { and } \sum x_i^2=0^2+(-1)^2+(-2)^2+(-3)^2+(-4)^2+\cdots+(-9)^2
\)
\(
\begin{aligned}
& =\frac{9 \times 10 \times 19}{6}=285\left[\because \sum n^2=\frac{n(n+1)(2 n+1)}{6}\right] \\
\therefore \quad SD & =\sqrt{\frac{\sum x_i^2}{N}-\left(\frac{\sum x_i}{N}\right)^2}=\sqrt{\frac{285}{10}-\left(\frac{-45}{10}\right)^2}
\end{aligned}
\)
\(
\begin{aligned}
& =\sqrt{\frac{285}{10}-\frac{2025}{100}}-\sqrt{\frac{2850-2025}{100}}=\sqrt{8.25} \\
\therefore \text { Variance } & =( SD )^2=(\sqrt{8.25})^2=8.25
\end{aligned}
\)
The following information relates to a sample of size 60: \(\quad x^2=18000\),
\(
x=960
\)
The variance is
We know that variance \(\left(\sigma^2\right)=\frac{\sum x_i^2}{N}-\left(\frac{\sum x_i}{N}\right)^2\)
\(
=\frac{18000}{60}-\left(\frac{960}{60}\right)^2=300-256=44
\)
Coefficient of variation of two distributions are 50 and 60 , and their arithmetic means are 30 and 25 respectively. Difference of their standard deviation is
Here, we have
\(
\begin{aligned}
CV _1 & =50, CV _2=60 \\
\bar{x}_1 & =30 \text { and } \bar{x}_2=25
\end{aligned}
\)
\(
\begin{aligned}
& \therefore \quad CV _1=\frac{\sigma_1}{\bar{x}_1} \times 100 \Rightarrow 50=\frac{\sigma_1}{30} \times 100 \Rightarrow \sigma_1=\frac{50 \times 30}{100}=15 \\
& \text { and } C V_2=\frac{\sigma_2}{\bar{x}_2} \times 100 \Rightarrow 60=\frac{\sigma_2}{25} \times 100 \Rightarrow \sigma_2=\frac{60 \times 25}{100}=15
\end{aligned}
\)
\(
\therefore \text { Difference } \sigma_1-\sigma_2=15-15=0
\)
The standard deviation of some temperature data in \({ }^{\circ} C\) is 5 . If the data were converted into \({ }^{\circ} F\), the variance would be
Given that \(\sigma_{ C }=5\)
We know that \(C=\frac{5}{9}(F-32) \Rightarrow F=\frac{9 C}{5}+32\)
\(
\begin{array}{ll}
\therefore & \sigma_{ F }=\frac{9}{5} \sigma_{ C }=\frac{9}{5} \times 5=9 \\
\therefore & \sigma_{ F }^2=(9)^2=81
\end{array}
\)
Coefficient of variation \(=\frac{\ldots}{\text { Mean }} \times 100\)
\(
C V=\frac{S D}{\text { Mean }} \times 100
\)
Hence, the value of the filler is SD.
If \(\bar{x}\) is the mean of \(n\) values of \(x\), then \(\sum_{i=1}^n\left(x_i-\bar{x}\right)\) is always equal to _______. If \(a\) has any value other than \(\bar{x}\) then \(\sum_{i=1}^n\left(x_i-\bar{x}\right)^2\) is _______ than \(\sum\left(x_i-a\right)^2\)
If \(\bar{x}\) is the mean of \(n\) observations of \(x\), then \(\sum_{i=1}^n\left(x_i-\bar{x}\right)=0\) and if ‘ \(a\) ‘ has the value other than \(\bar{x}\), then \(\sum_{i=1}^n\left(x_i-\bar{x}\right)^2\) is less than \(\sum\left(x_i-a\right)^2\).
Hence, the value of the fillers are 0 and less.
If the variance of a data is 121 , then the standard deviation of the data is ____.
We know that \(S D=\sqrt{\text { variance }}=\sqrt{121}=11\) Hence, the value of the filler is 11 .
The standard deviation of a data is _____ of any change in origin, but is ______ on the change of scale.
Since the standard deviation of any data is independent of any change in origin but is dependent of any change of scale. Hence, the value of the fillers are independent and dependent.
The sum of the squares of the deviations of the values of the variable is _______ when taken about their arithmetic mean.
The sum of the squares of the deviations of the value of variable is minimum when taken about their arithmetic mean. Hence, the value of the filler is minimum.
The mean deviation of the data is ______ when measured from the median.
The mean deviation of the data is least when measured from the median.
Hence, the value of the filler is least.
The standard deviation is _______ to the mean deviation taken from the arithmetic mean.
The standard deviations is greater than or equal to the mean deviation taken from the arithmetic mean. Hence, the value of the filler is .
You cannot copy content of this page