NCERT Exemplar MCQs

Summary

  • If in a circle of radius \(r\), an arc of length \(l\) subtends an angle of \(\theta\) radians, then \(l=r \theta\)
  • \(
    \begin{aligned}
    & \text { Radian measure }=\frac{\pi}{180} \times \text { Degree measure } \\
    & \text { Degree measure }=\frac{180}{\pi} \times \text { Radian measure } \\
    & \cos ^2 x+\sin ^2 x=1 \\
    & 1+\tan ^2 x=\sec ^2 x \\
    & 1+\cot ^2 x=\operatorname{cosec}^2 x \\
    & \cos (2 n \pi+x)=\cos x \\
    & \sin (2 n \pi+x)=\sin x \\
    & \sin (-x)=-\sin x \\
    & \cos (-x)=\cos x \\
    & \cos (x+y)=\cos x \cos y-\sin x \sin y \\
    & \cos (x-y)=\cos x \cos y+\sin x \sin y \\
    & \cos \left(\frac{\pi}{2}-x\right)=\sin x
    \end{aligned}
    \)
  • \(
    \sin \left(\frac{\pi}{2}-x\right)=\cos x
    \)
  • \(\sin (x+y)=\sin x \cos y+\cos x \sin y\)
  • \(\sin (x-y)=\sin x \cos y-\cos x \sin y\)
  • \(\cos \left(\frac{\pi}{2}+x\right)=-\sin x \quad \sin \left(\frac{\pi}{2}+x\right)=\cos x\)
  • \(\cos (\pi-x)=-\cos x \quad \sin (\pi-x)=\sin x\)
  • \(\cos (\pi+x)=-\cos x \quad \sin (\pi+x)=-\sin x\)
  • \(\cos (2 \pi-x)=\cos x \quad \sin (2 \pi-x)=-\sin x\)
  • If none of the angles \(x, y\) and \((x \pm y)\) is an odd multiple of \(\frac{\pi}{2}\), then
    \(\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}\), \(\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}\)
  • If none of the angles \(x, y\) and \((x \pm y)\) is a multiple of \(\pi\), then
    \(\cot (x+y)=\frac{\cot x \cot y-1}{\cot y+\cot x}\), \(\cot (x-y)=\frac{\cot x \cot y+1}{\cot y-\cot x}\)
  • \(\cos 2 x=\cos ^2 x-\sin ^2 x=2 \cos ^2 x-1=1-2 \sin ^2 x=\frac{1-\tan ^2 x}{1+\tan ^2 x}\)
  • \(\sin 2 x=2 \sin x \cos x=\frac{2 \tan x}{1+\tan ^2 x}\)
  • \(\tan 2 x=\frac{2 \tan x}{1-\tan ^2 x}\)
  • \(\sin 3 x=3 \sin x-4 \sin ^3 x\)
  • \(\cos 3 x=4 \cos ^3 x-3 \cos x\)
  • \(\tan 3 x=\frac{3 \tan x-\tan ^3 x}{1-3 \tan ^2 x}\)
  • \(\cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}\)
  • \(\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}\)
  • \(\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}\)
  • \(\sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}\)
  • \(2 \cos x \cos y=\cos (x+y)+\cos (x-y)\)
  • \(-2 \sin x \sin y=\cos (x+y)-\cos (x-y)\)
  • \(2 \sin x \cos y=\sin (x+y)+\sin (x-y)\)
  • \(2 \cos x \sin y=\sin (x+y)-\sin (x-y)\).

You cannot copy content of this page