0 of 136 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 136 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If a vertex of a triangle is \((1,1)\) and the mid-points of two side through this vertex are \((-1,2)\) and \((3,2)\), then the centroid of the triangle is [AIEEE 2005, 3M]
Vertex of triangle is \((1,1)\) and mid-point of sides through this vertex are \((-1,2)\) and \((3,2)\)
\(\Rightarrow\) Vertex \(B\) and \(C[latex] come out to be [latex](-3,3)\) and \((5,3)\)
\(\therefore \quad\) Centroid is \(\frac{1-3+5}{3}, \frac{1+3+5}{3} \Rightarrow\left(1, \frac{7}{3}\right)\)
Let \(O(0,0), P(3,4), Q(6,0)\) be the vertices of the triangle \(O P Q\). The point \(R\) inside the triangle \(O P Q\) is such that the triangles \(O P R, P Q R, O Q R\) are of equal area. The coordinates of \(R\) are [IIT-JEE 2007, 3M]
\(\because\) Area of \((\triangle O P R)=\) Area of \((\triangle P Q R)=\) Area of \((\triangle O Q R)\)
\(\therefore\) By geometry \(R\) should be the centroid of \(\triangle O P Q\)
\(\therefore \quad R \equiv\left(\frac{0+3+6}{3}, \frac{0+4+0}{3}\right) \equiv\left(3, \frac{4}{3}\right)\)
Let \(A(h, k), B(1,1)\) and \(C(2,1)\) be the vertices of a right angled triangle with \(A C\) as its hypotenuse. If the area of the triangle is 1 , then the set of values which ‘ \(k\) ‘ can take is given by [AIEEE 2007, 3M]
Given, the vertices of a right angled triangle are \(A(1, k), B(1,1)\) and \(C(2,1)\) and area of \(\triangle A B C=1\) sq unit
We know that, area of right angled triangle
\(
\begin{aligned}
& =\frac{1}{2} \times B C \times A B=\frac{1}{2}(1)|(k-1)| \\
& =\frac{1}{2}|k-1| \Rightarrow \pm(k-1)=2 \\
\Rightarrow \quad k & =-1,3 \\
\therefore \quad K & =\{-1,3\}
\end{aligned}
\)
Three distinct points \(A, B\) and \(C\) are given in the 2-dimensional coordinates plane such that the ratio of the distance of any one of them from the point \((1,0)\) to the distance from the point \((-1,0)\) is equal to \(\frac{1}{3}\). Then, the circumcentre of the triangle \(A B C\) is at the point [AIEEE 2009, 4M]
Let \(P \equiv(1,0)\) and \(Q \equiv(-1,0)\)
Given that, \(\frac{A P}{A Q}=\frac{B P}{B Q}=\frac{C P}{C Q}=\frac{1}{3}\)
\(
\Rightarrow \quad 3 A P=A Q \text { or } 9(A P)^2=(A Q)^2
\)
Let \(\quad A \equiv(x, y)\), then
\(
\begin{aligned}
& a\left((x-1)^2+(y-0)^2\right)=(x+1)^2+(y-0)^2 \\
& \Rightarrow 8 x^2+8 y^2-20 x+8=0 \\
& \Rightarrow \quad x^2+y^2-\frac{5}{2} x+1=0 \dots(i)\\
&
\end{aligned}
\)
Circumcentre of \(\triangle A B C=\) Centre of circle Eq. (i)
\(
=\left(\frac{5}{4}, 0\right)
\)
The \(x\)-coordinate of the incentre of the triangle that has the coordinates of mid-points of its sides are \((0,1),(1,1)\) and \((1,0)\) is [JEE Main 2013, 4M]
From the figure, we have
\(
\begin{aligned}
a & =2, b=2 \sqrt{2}, c=2 \\
x_1 & =0, x_2=0, x_3=2 \quad(\because B C=a, C A=b, A B=c)
\end{aligned}
\)
Now, \(x\)-coordinate of incentre is given as
\(
\frac{a x_1+b x_2+c x_3}{a+b+c}
\)
\(\Rightarrow x\)-coordinate of incentre
\(
\begin{aligned}
& =\frac{2 \times 0+20 \sqrt{2} \times 0+2 \times 2}{2+2+2 \sqrt{2}} \\
& =\frac{2}{2+\sqrt{2}}=2-\sqrt{2}
\end{aligned}
\)
The number of points, having both coordinates are integers, that lie in the interior of the triangle with vertices \((0,0),(0,41)\) and \((41,0)\) is [JEE Main 2015, 4M]
Total number of integral points inside the square
\(
O A B C=40 \times 40=1600 .
\)
Number of integral points on \(A C=\) Number of integral points on \(O B=40\) (namely \((1,1),(2,2),(3,3), \ldots,(40,40)\)
Hence, number of integral points inside the
\(
\triangle O A C=\frac{1600-40}{2}=780
\)
Alternate : \(x>0, y>0 x+y<41\) or \(0<x+y<41\)
\(\therefore\) Number of integral points inside the \(\triangle O A C={ }^{40} C_2=780\).
Let \(k\) be an integer such that the triangle with vertices \((k,-3 k),(5, k)\) and \((-k, 2)\) has area 28 sq units. Then, the orthocentre of this triangle is at the point [JEE Main 2017, 4M]
\(
\begin{aligned}
& \frac{1}{2}|| \begin{array}{ccc}
k & -3 k & 1 \\
5 & k & 1 \\
-k & 2 & 1
\end{array}||=28 \\
& \Rightarrow \quad 5 k^2+13 k+10= \pm 56 \\
& \Rightarrow \quad 5 k^2+13 k-46=0 \\
& \text { or } \quad 5 k^2+13 k+66=0 \\
& \therefore \quad 5 k^2+13 k-46=0 \\
& \text { and } \quad 5 k^2+13 k+66 \neq 0 & (\because D<0) \\
& \Rightarrow \quad k=2,-\frac{23}{5} \\
& \therefore \quad k=2, k \neq-\frac{23}{5} & (\because k \in I) \\
&
\end{aligned}
\)
\(\therefore\) Vertices an \(A \equiv(2,-6), B \equiv(5,2), C \equiv(-2,2)\).
Denote the points are \(\left(x_1, y_1\right),\left(x_2, y_2\right)\) and \(\left(x_3, y_3\right)\) from the
matrix \(P=\left[\begin{array}{ll}x_1-x_3 & y_1-y_3 \\ x_2-x_3 & y_2-y_3\end{array}\right]=\left[\begin{array}{cc}4 & -8 \\ 7 & 0\end{array}\right]\)
\(\therefore \quad \lambda=\frac{\overrightarrow{ R }_1 \cdot \overrightarrow{ R }_2}{|P|}=\frac{28}{56}=\frac{1}{2}\)
\(\therefore\) Circumcentre of triangle is \(\left(\frac{7+\frac{1}{2} \times-8}{2}, \frac{-4-\frac{1}{2} \times-3}{2}\right)\)
or \(\left(\frac{3}{2},-\frac{5}{4}\right)\) and centroid is \(\left(\frac{5}{3},-\frac{2}{3}\right)\)
then, orthocentre
\(
=\left(\frac{5}{3} \times 3-2 \times \frac{3}{2},-\frac{2}{3} \times 3+2 \times \frac{5}{4}\right) \text { or }\left(2, \frac{1}{2}\right) \text {. }
\)
The line parallel to the \(X\)-axis and passing through the intersection of the lines \(a x+2 b y+3 b=0\) and \(b x-2 a y-3 a=0\), where \((a, b) \neq(0,0)\) is [AIEEE 2005, 3M]
The line passing through the intersection of lines \(a x+2 b y+3 b=0\) and \(b x-2 a y-3 a=0\) is
\(
\begin{aligned}
a x+2 b y+3 b+\lambda(b x-2 a y-3 a) & =0 \\
\Rightarrow(a+b \lambda) x+(2 b-2 a \lambda) y+3 b-3 \lambda a & =0
\end{aligned}
\)
As this line is parallel to \(X\)-axis.
\(
\begin{gathered}
\therefore \quad a+b \lambda=0 \Rightarrow \lambda=-\frac{a}{b} \\
\Rightarrow a x+2 b y+3 a-\frac{a}{b}(b x-2 a y-3 a)=0 \\
\Rightarrow a x+2 b y+3 b-a x+\frac{2 a^2}{b} y+\frac{3 a^2}{b}=0 \\
y\left(2 b+\frac{2 a^2}{b}\right)+3 b+\frac{3 a^2}{b}=0 \\
y\left(\frac{2 b^2+2 a^2}{b}\right)=-\left(\frac{3 b^2+3 a^2}{b}\right) \\
y=\frac{-3\left(a^2+b^2\right)}{2\left(b^2+a^2\right)}=\frac{-3}{2}
\end{gathered}
\)
So, it is \(\frac{3}{2}\) units below \(X\)-axis.
A straight line through the point \(A(3,4)\) is such that its intercept between the axes is bisected at \(A\). Its equation is [AIEEE 2006, 4.5M]
\(\because A\) is the mid-point of \(P Q\), therefore
\(
\begin{array}{ll}
& \frac{a+0}{2}=3, \frac{0+b}{2}=4 \\
\Rightarrow & a=6, b=8
\end{array}
\)
\(\therefore\) Equation of line is \(\frac{x}{6}+\frac{y}{8}=1\)
or \(4 x+3 y=24\)
If \(\left(a, a^2\right)\) falls inside the angle made by the lines \(y=\frac{x}{2}\), \(x>0[latex] and [latex]y=3 x, x>0\), then a belong to [AIEEE 2006, 6M]
Clearly for point \(P\),
\(
a^2-3 a<0 \text { and } a^2-\frac{a}{2}>0
\)
\(
\Rightarrow \quad \frac{1}{2}<a<3
\)
Lines \(L_1: y-x=0\) and \(L_2: 2 x+y=0\) intersect the line \(L_3: y+2=0\) at \(P\) and \(Q\) respectively. The bisector of the acute angle between \(L_1\) and \(L_2\) intersects \(L_3\) at \(R\). [IIT-JEE 2007, 3M]
Statement I: The ratio \(P R: R Q\) equals \(2 \sqrt{2}: \sqrt{5}\) because
Statement II: In any triangle, bisector of an angle divides the triangle into two similar triangles.
Point of intersection of \(L_1\) and \(L_2\) is \(A(0,0)\).
Also \(P(-2,-2), Q(1,-2)\)
\(\because A R\) is the bisector of \(\angle P A Q\), therefore \(R\) divides \(P Q\) in the same ratio as \(A P: A Q\).
Thus \(P R: R Q=A P: A Q=2 \sqrt{2}: \sqrt{5}\)
\(\therefore\) Statement I is true.
Statement II is clearly false.
Let \(P=(-1,0), Q=(0,0)\) and \(R=(3,3 \sqrt{3})\) be three point. The equation of the bisector of the angle \(P Q R\) is [AIEEE 2007, 3M]
Given : The coordinates of points \(P, Q, R\) are \((-1,0),(0,0)\), \((3,3 \sqrt{3})\) respectively.
Slope of equation \(Q R=\frac{y_2-y_1}{x_2-x_1}=\frac{3 \sqrt{3}}{3}\)
\(\Rightarrow \quad \tan \theta=\sqrt{3} \Rightarrow \theta=\frac{\pi}{3}\)
\(\Rightarrow \quad \angle R Q X=\frac{\pi}{3}\)
\(\therefore \quad \angle R Q P=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}\)
Let \(Q M\) bisects the \(\angle P Q R\),
\(\therefore \quad\) Slope of the line \(Q M=\tan \frac{2 \pi}{3}=-\sqrt{3}\)
\(\therefore\) Equation of line \(Q M\) is \((y-0)=-\sqrt{3}(x-0)\)
\(\Rightarrow \quad y=-\sqrt{3} x \Rightarrow \sqrt{3} x+y=0\)
Consider the lines given by [JEE 2008]
\(
\begin{aligned}
L_1: x+3 y-5 & =0 \\
L_2: 3 x-k y-1 & =0 \\
L_3: 5 x+2 y-12 & =0
\end{aligned}
\)
Match the statements/Expressions in Column I with the statements/Expressions in Column II
\(
\begin{array}{l|l|l|l}
\hline & \text { Column I } & & \text { Column II } \\
\hline \text { (A) } & L_1, L_2, L_3 \text { are concurrent, if } & \text { (p) } & k=-9 \\
\text { (B) } & \begin{array}{l}
\text { one of } L_1, L_2, L_3 \text { is parallel to at } \\
\text { least one of the other two, if }
\end{array} & \text { (q) } & k=-\frac{6}{5} \\
\text { (C) } & L_1, L_2, L_3 \text { form a triangle, if } & \text { (r) } & k=\frac{5}{6} \\
\text { (D) } & L_1, L_2, L_3 \text { do not form a triangle, if } & \text { (s) } & k=5 \\
\hline
\end{array}
\)
(A) \(\because L_1, L_2, L_3\) are concurrent, then
\(
\left|\begin{array}{ccc}
1 & 3 & -5 \\
3 & -k & -1 \\
5 & 2 & -12
\end{array}\right|=0 \Rightarrow k=5
\)
(B) slope of \(\left(L_1\right)=\) slope of \(\left(L_2\right)\)
\(\Rightarrow \quad-\frac{1}{3}=\frac{3}{k} \therefore k=-9\)
and slope of \(\left(L_3\right)=\) slope of \(\left(L_2\right)\)
\(\Rightarrow \quad-\frac{5}{2}=\frac{3}{k} \quad \therefore k=-\frac{6}{5}\)
(C) Lines are not concurrent or not parallel, then
\(
\begin{aligned}
& k \neq 5, k \neq-9, k \neq-\frac{6}{5} \\
& \therefore \quad k=\frac{5}{6} \\
&
\end{aligned}
\)
(D) The given lines do not form a triangle if they are concurrent or any two of them are parallel.
\(
\therefore \quad k=5, k=-9, k=-\frac{6}{5}
\)
The perpendicular bisector of the line segment joining \(P(1,4)\) and \(Q(k, 3)\) has \(y\)-intercept -4 . Then a possible value of \(k\) is [AIEEE 2008, 3M]
Slope of \(P Q=\frac{3-4}{k-1}=\frac{-1}{k-1}\)
Slope of perpendicular bisector of \(P Q=(k-1)\)
Also mid-point of \(P Q\left(\frac{k+1}{2}, \frac{7}{2}\right)\)
\(\therefore\) Equation of perpendicular bisector is
\(
\begin{array}{lc}
& y-\frac{7}{2}=(k-1)\left(x-\frac{k+1}{2}\right) \\
\Rightarrow & 2 y-7=2(k-1) x-\left(k^2-1\right) \\
\Rightarrow & 2(k-1) x-2 y+\left(8-k^2\right)=0 \\
\therefore & Y \text {-intercept }=-\frac{8-k^2}{-2}=-4 \\
\Rightarrow & 8-k^2=-8 \text { or } k^2=16 \Rightarrow k= \pm 4
\end{array}
\)
The lines \(p\left(p^2+1\right) x-y+q=0\) and \(\left(p^2+1\right)^2 x+\left(p^2+1\right) y+2 q=0\) are perpendicular to a common line for [AIEEE 2009, 4M]
If the line \(p\left(p^2+1\right) x-y+q=0\)
and \(\quad\left(p^2+1\right)^2 x+\left(p^2+1\right) y+2 q=0\)
are perpendicular to a common line, then these lines must be parallel to each other,
\(
\begin{aligned}
& \therefore \quad m_1=m_2 \Rightarrow-\frac{p\left(p^2+1\right)}{-1}=-\frac{\left(p^2+1\right)^2}{p^2+1} \\
& \Rightarrow \quad\left(p^2+1\right)(p+1)=0 \\
& \Rightarrow \quad p=-1 \\
&
\end{aligned}
\)
\(\therefore p\) can have exactly one value.
The line \(L[latex] given by [latex]\frac{x}{5}+\frac{y}{b}=1\) passes through the point \((13,32)\). The line \(K\) is parallel to \(L\) and has the equation \(\frac{x}{c}+\frac{y}{3}=1\). Then the distance between \(L\) and \(K\) is [AIEEE 2010, 4M]
Slope of line \(L=-\frac{b}{5}\)
Slope of line \(K=-\frac{3}{c}\)
Line \(L\) is parallel to line \(K\).
\(\Rightarrow \quad \frac{b}{5}=\frac{3}{c} \Rightarrow b c=15\)
\((13,32)\) is a point on \(L\).
\(
\begin{array}{ll}
\therefore & \frac{13}{5}+\frac{32}{b}=1 \Rightarrow \frac{32}{b}=-\frac{8}{5} \\
\Rightarrow & b=-20 \Rightarrow c=-\frac{3}{4}
\end{array}
\)
Equation of \(K: y-4 x=3\)
\(
\Rightarrow \quad 4 x-y+3=0
\)
Distance between \(L\) and \(K=\frac{|52-32+3|}{\sqrt{17}}\)
\(
=\frac{23}{\sqrt{17}}
\)
A straight line \(L\) through the point \((3,-2)\) is inclined at an angle \(60^{\circ}\) to the line \(\sqrt{3} x+y=1\). If \(L\) also intersects the \(X\)-axis, then the equation of \(L\) is [IIT-JEE 2011, 3M]
Let the slope of line \(L\) be \(m\). Then
\(
\left|\frac{m+\sqrt{3}}{1-\sqrt{3} m}\right|=\sqrt{3}
\)
\(
\begin{array}{ll}
\Rightarrow & m+\sqrt{3}= \pm(\sqrt{3}-3 m) \\
\Rightarrow & 4 m=0 \text { or } 2 m=2 \sqrt{3} \\
\Rightarrow & m=0 \text { or } m=\sqrt{3}
\end{array}
\)
\(\because L\) intersects \(X\)-axis,
\(\therefore \quad m=\sqrt{3}\)
\(\therefore\) Equation of \(L\) is \(y+2=\sqrt{3}(x-3)\)
or \(\sqrt{3} x-y-(2+3 \sqrt{3})=0\)
The lines \(L_1: y-x=0\) and \(L_2: 2 x+y=0\) intersect the line \(L_3: y+2=0\) at \(P\) and \(Q\) respectively. The bisector of the acute angle between \(L_1\) and \(L_2\) intersects \(L_3\) at \(R\). [AIEEE 2011, 4M]
Statement I : The ratio \(P R\) : \(R Q\) equals \(2 \sqrt{2}: \sqrt{5}\)
Statement II : In any triangle, bisector of an angle divides the triangle into two similar triangles.
\(
L_1: y-x=0, L_2: 2 x+y=0, \quad L_3: y+2=0
\)
On solving the equation of lines \(L_1\) and \(L_2\), we get their point of intersection \((0,0)\) i.e. origin \(O\).
On solving the equation of lines \(L_1\) and \(L_3\),
we get
\(
P=(-2,-2)
\)
Similarly, we get
\(
Q=(-1,-2)
\)
We know that bisector of an angle of a triangle, divide the opposite side the triangle in the ratio of the sides including the angle [Angle Bisector Theorem of a Triangle]
\(
\therefore \quad \frac{P R}{R Q}=\frac{O P}{O Q}=\frac{\sqrt{(-2)^2+(-2)^2}}{\sqrt{(-1)^2+(-2)^2}}=\frac{2 \sqrt{2}}{\sqrt{5}}
\)
If the line \(2 x+y=k\) passes through the point which divides the line segment joining the points \((1,1)\) and \((2,4)\) in the ratio \(3: 2\), then \(k\) equals [AIEEE 2012, 4M]
Let the joining points be \(A(1,1)\) and \(B(2,4)\).
Let point \(C\) divides line \(A B\) in the ratio \(3: 2\). So, by section formula we have
\(
C=\left(\frac{3 \times 2+2 \times 1}{3+2}, \frac{3 \times 4+2 \times 1}{3+2}\right)=\left(\frac{8}{5}, \frac{14}{5}\right)
\)
Since Line \(2 x+y=k\) passes through \(C\left(\frac{8}{5}, \frac{14}{5}\right)\)
\(\therefore C\) satisfies the equation \(2 x+y=k\).
\(
\Rightarrow \quad \frac{2+8}{5}+\frac{14}{5}=k \Rightarrow k=6
\)
A ray of light along \(x+\sqrt{3} y=\sqrt{3}\) gets reflected upon reaching \(X\)-axis, the equation of the reflected ray is [JEE Main 2013, 4M]
Suppose \(B(0,1)\) be any point on given line and coordinate of \(A\) is \((\sqrt{3}, 0)\). So, equation of
Reflected ray is \(\frac{-1-0}{0-\sqrt{3}}=\frac{y-0}{x-\sqrt{3}}\)
\(
\Rightarrow \quad \sqrt{3} y=x-\sqrt{3}
\)
For \(a>b>c>0\), the distance between \((1,1)\) and the point of intersection of the lines \(a x+b y+c=0\) and \(b x+a y+c=0\) is less than \(2 \sqrt{2}\). Then [JEE 2013, 3M]
The intersection point of two lines is \(\left(\frac{-c}{a+b}, \frac{-c}{a+b}\right)\) Distance between \((1,1)\) and \(\left(\frac{-c}{a+b}, \frac{-c}{a+b}\right)<2 \sqrt{2}\)
\(
\begin{array}{lc}
\Rightarrow & 2\left(1+\frac{c}{a+b}\right)^2<8 \\
\Rightarrow & 1+\frac{c}{a+b}<2 \\
\Rightarrow & a+b-c>0
\end{array}
\)
Let \(P S\) be the median of the triangle with vertices \(P(2,2)\), \(Q(6,-1)\) and \(R(7,3)\). The equation of the line passing through \((1,-1)\) and parallel to \(P S\) is [JEE Main 2014, 4M]
Let \(P, Q, R\), be the vertices of \(\triangle P Q R\)
Since, \(P S\) is the median, \(S\) is mid-point of \(Q R\)
So,
\(
S=\left(\frac{7+6}{2}, \frac{3-1}{2}\right)=\left(\frac{13}{2}, 1\right)
\)
Now, slope of \(P S=\frac{2-1}{2-\frac{13}{2}}=-\frac{2}{9}\)
Since, required line is parallel to \(P S\) therefore slope of required line = slope of PS Now, eqn of line passing through \((1,-1)\) and having slope \(-\frac{2}{9}\) is
\(
\begin{aligned}
y-(-1) & =-\frac{2}{9}(x-1) \\
9 y+9 & =-2 x+2 \\
\Rightarrow \quad 2 x+9 y+7 & =0
\end{aligned}
\)
Let \(a, b, c[latex] and [latex]d\) be non-zero numbers. If the point of intersection of the lines \(4 a x+2 a y+c=0\) and \(5 b x+2 b y+d=0\) lies in the fourth quadrant and is equidistant from the two axes, then [JEE Main 2014, 4M]
Given lines are
\(
\begin{aligned}
& 4 a x+2 a y+c=0 \\
& 5 b x+2 b y+d=0
\end{aligned}
\)
The point of intersection will be
\(
\begin{aligned}
& \frac{x}{2 a d-2 b c}=\frac{-y}{4 a d-5 b c}=\frac{1}{8 a b-10 a b} \\
\Rightarrow \quad & x=\frac{2(a d-b c)}{-2 a b}=\frac{b c-a d}{a b} \\
\Rightarrow \quad & y=\frac{5 b c-4 a d}{-2 a b}=\frac{4 a d-5 b c}{2 a b}
\end{aligned}
\)
\(\because\) Point of intersection is in fourth quadrant so \(x\) is positive and \(y\) is negative.
Also distance from axes is same
So \(\quad x=-y \quad(\because\) distance from \(X\)-axis is \(-y\) as \(y\) is negative)
\(
\frac{b c-a d}{a b}=\frac{5 b c-4 a d}{2 a b} \Rightarrow 3 b c-2 a d=0
\)
For a point \(P\) in the plane, let \(d_1(P)\) and \(d_2(P)\) be the distance of the point \(P\) from the lines \(x-y=0\) and \(x+y=0\) respectively. The area of the region \(R\) consisting of all points \(P\) lying in the first quadrant of the plane and satisfying \(2 \leq d_1(P)+d_2(P) \leq 4\), is [JEE 2014]
Let the point \(P\) be \((x, y)\)
Then
\(
d_1(P)=\left|\frac{x-y}{\sqrt{2}}\right| \text { and } d_2(P)=\left|\frac{x+y}{\sqrt{2}}\right|
\)
For \(P\) lying in first quadrant \(x>0, y>0\).
Also
\(
\begin{array}{ll}
\text { Also } & 2 \leq d_1(P)+d_2(P) \leq 4 \\
\Rightarrow & 2 \leq\left|\frac{x-y}{\sqrt{2}}\right|+\left|\frac{x+y}{\sqrt{2}}\right| \leq 4
\end{array}
\)
If \(x>y\), then
\(
2 \leq \frac{x-y+x+y}{\sqrt{2}} \leq 4 \text { or } \sqrt{2} \leq x \leq 2 \sqrt{2}
\)
If \(x<y\), then
\(
2 \leq \frac{y-x+x+y}{2} \leq 4 \text { or } \sqrt{2} \leq y \leq 2 \sqrt{2}
\)
The required region is the shaded region in the figure given below.
\(
\therefore \text { Required area }=(2 \sqrt{2})^2-(\sqrt{2})^2=8-2=6 \text { sq units }
\)
The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices \((0,0),(0,41)\) and \((41,0)\) is [JEE 2015]
Total number of integral points inside the square \(O A B C\)
\(
=40 \times 40=1600
\)
Number of integral points on \(A C\)
\(
\begin{aligned}
& =\text { Number of integral points on } O B \\
& =40[\text { namely }(1,1),(2,2) \ldots(40,40)]
\end{aligned}
\)
\(\therefore\) Number of integral points inside the \(\triangle O A C\)
\(
=\frac{1600-40}{2}=780
\)
Two sides of a rhombus are along the lines, \(x-y+1=0\) and \(7 x-y-5=0\). If its diagonals intersect at \((-1,-2)\), then which one of the following is a vertex of this rhombus? [JEE Main 2016, 4M]
Let other two sides of rhombus are
\(
\begin{array}{r}
x-y+\lambda=0 \\
7 x-y+\mu=0
\end{array}
\)
then \(O\) is equidistant from \(A B\) and \(D C\) and from \(A D\) and \(B C\)
\(
\begin{array}{llrl}
\therefore & |-1+2+1| & =|-1+2+\lambda| \Rightarrow \lambda=-3 \\
\text { and } & |-7+2-5| & =|-7+2+\mu| \Rightarrow \mu=15
\end{array}
\)
\(\therefore\) Other two sides are
\(
\begin{array}{r}
x-y-3=0 \\
7 x-y+15=0
\end{array}
\)
On solving the equation of sides pairwise, we get the vertices as \(\left(\frac{1}{3}, \frac{-8}{3}\right),(1,2),\left(\frac{-7}{3}, \frac{-4}{3}\right),(-3,-6)\)
If the pair of lines \(a x^2+2(a+b) x y+b y^2=0\) lie long diameters of a circle and divide the circle into four sectors such that the area of one of the sector is thrice the area of the another sector, then [AIEEE 2005, 3M]
Let \(A\) be the area of small sector, then area of major sector is \(3 A\).
\(
\begin{aligned}
& \therefore \quad A+3 A+A+3 A=\pi r^2 \\
& \Rightarrow \quad A=\frac{\pi}{8} r^2 \\
& \Rightarrow \quad \frac{1}{2} r^2 \theta=\frac{\pi}{8} r^2 \quad\left[\because \text { area of sector }=\frac{1}{2} r^2 \theta\right] \\
& \therefore \quad \theta=\frac{\pi}{4} \\
&
\end{aligned}
\)
\(\therefore\) Angle between lines represented by
\(
\begin{aligned}
& a x^2+2(a+b) x y+b y^2=0 \text { is } \frac{\pi}{4} \text {. } \\
& \Rightarrow \quad \tan \frac{\pi}{4}=\frac{2 \sqrt{(a+b)^2-a b}}{|a+b|} \\
& \Rightarrow \quad 1=\frac{2 \sqrt{(a+b)^2-a b}}{|a+b|} \\
& \Rightarrow \quad(a+b)^2=4(a+b)^2-4 a b \\
& \therefore \quad 3 a^2+2 a b+3 b^2=0 \\
&
\end{aligned}
\)
If one of the lines of \(m y^2+\left(1-m^2\right) x y-m x^2=0\) is a bisector of the angle between the lines \(x y=0\), then \(m\) is [AIEEE 2007, 3M]
The equation of the bisectors of the lines \(x y=0\) are \(y= \pm x\).
Putting \(y= \pm x\) in
\(
\begin{aligned}
m y^2+\left(1-m^2\right) x y-m x^2 & =0 \text {, we get } \\
\pm\left(1-m^2\right) x^2 & =0 \\
\Rightarrow \quad m^2 & =1
\end{aligned}
\)
Locus of centroid of the triangle whose vertices are \((a \cos t, a \sin t),(b \sin t,-b \cos t)\) and \((1,0)\), where \(t\) is a parameter, is
(b) Let \(A \equiv(a \cos t, a \sin t), B \equiv(b \sin t,-b \cos t)\) and \(C \equiv(1,0)\)
\(\therefore\) Centroid \(\equiv\left(\frac{a \cos t+b \sin t+1}{3}, \frac{a \sin t-b \cos t}{3}\right)\)
Let \(\quad x=\frac{a \cos t+b \sin t+1}{3} \Rightarrow 3 x-1=a \cos t+b \sin t \dots(i)\)
and \(y=\frac{a \sin t-b \cos t}{3} \Rightarrow 3 y=a \sin t-b \cos t \dots(ii)\)
On squaring and adding Eqs. (i) and (ii), we get
\(
(3 x-1)^2+(3 y)^2=a^2+b^2
\)
which is locus of centroid.
The incentre of triangle with vertices \((1, \sqrt{3}),(0,0)\) and \((2,0)\) is
\(
\begin{aligned}
& \text { Let } \quad O \equiv(0,0), A \equiv(2,0) \\
& \text { and } B \equiv(1, \sqrt{3}) \\
& \because \quad O A=2=O B=A B \\
& \Rightarrow \triangle O A B \text { is an equilateral. } \\
& \therefore \text { Incentre }=\text { Centroid } \\
& \equiv\left(\frac{0+2+1}{3}, \frac{0+0+\sqrt{3}}{3}\right) \\
& \therefore \quad \text { Incentre } \equiv\left(1, \frac{1}{\sqrt{3}}\right) \\
&
\end{aligned}
\)
Orthocentre of triangle with vertices \((0,0),(3,4)\) and \((4,0)\) is
Let orthocentre
\(
H \equiv(\alpha, \beta)
\)
\(\therefore\) Slope of \(B H \times\) slope of \(O A=-1\)
\(
\Rightarrow \quad\left(\frac{\beta-4}{\alpha-3}\right) \times\left(\frac{0}{4}\right)=-1
\)
\(
\begin{aligned}
\therefore & \alpha-3 & =0 \\
\Rightarrow & \alpha & =3 \dots(i)
\end{aligned}
\)
and slope of \(A H \times\) slope of \(O B=-1\)
\(
\Rightarrow \quad\left(\frac{\beta-0}{\alpha-4}\right) \times\left(\frac{4}{3}\right)=-1
\)
From Eq. (i) ,
\(
\beta=\frac{3}{4}
\)
Hence, orthocentre is \(\left(3, \frac{3}{4}\right)\).
If \(x_1, x_2, x_3\) as well as \(y_1, y_2, y_3\) are in GP, with the same common ratio, then the points \(\left(x_1, y_1\right),\left(x_2, y_2\right)\) and \(\left(x_3, y_3\right)\)
(a) Let common ratio of GP is \(r\), then \(x_2=x_1 r, x_3=x_1 r^2, y_2=y_1 r\) and \(y_3=y_1 r^2\).
Let \(A \equiv\left(x_1, y_1\right), B \equiv\left(x_2, y_2\right)\) and \(C \equiv\left(x_3, y_3\right)\)
\(
\begin{aligned}
\therefore \text { Area of } \triangle A B C & =\frac{1}{2}\left|\begin{array}{lll}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{array}\right| \\
& =\frac{1}{2}\left|\begin{array}{ccc}
x_1 & y_1 & 1 \\
x_1 r & y_1 r & 1 \\
x_1 r^2 & y_1 r^2 & 1
\end{array}\right|
\end{aligned}
\)
\(
=\frac{1}{2}\left|x_1 y_1\right||| \begin{array}{ccc}
1 & 1 & 1 \\
r & r & 1 \\
r^2 & r^2 & 1
\end{array}||=0 \text { ( } \because C_1 \text { and } C_2 \text { are identical) }
\)
\(\Rightarrow\) Points \(A, B, C\) are collinear.
Let \(A\) be the image of \((2,-1)\) with respect to \(Y\)-axis. Without transforming the origin, coordinate axis are turned at an angle \(45^{\circ}\) in the clockwise direction. Then, the coordiates of \(A\) in the new system are
(a) Since, the image of \((h, k)\) w.r.t. \(Y\)-axis is \((-h, k)\).
\(\therefore\) Coordinate of \(A\) are \((-2,-1)\).
If \((X, Y)\) are the coordinates of \(A\) w.r.t. the new coordinate axes obtained by turning the axes through an angle \(45^{\circ}\) in the clockwise direction, then
\(
\begin{aligned}
X & =-2 \cos \left(-45^{\circ}\right)-\sin \left(-45^{\circ}\right) \\
& =-\frac{2}{\sqrt{2}}+\frac{1}{\sqrt{2}}=-\frac{1}{\sqrt{2}}
\end{aligned}
\)
and
\(
\begin{aligned}
Y & =2 \sin \left(-45^{\circ}\right)-\cos \left(-45^{\circ}\right) \\
& =-\frac{2}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\frac{3}{\sqrt{2}}
\end{aligned}
\)
\(\therefore\) Required coordinates are \(\left(-\frac{1}{\sqrt{2}},-\frac{3}{\sqrt{2}}\right)\).
Let \(S_1, S_2, \ldots\), be squares such that for each \(n \geq 1\), the length of a side of \(S_n\) equals the length of a diagonal of \(S_{n+1}\). If the length of a side \(S_1\) is \(10 cm\), then for which of the following value of \(n\) is the area of \(S_n\) less than \(1 sq cm\) ?
If \(a\) be the side of the square, then diagonal \(d=a \sqrt{2}\) by hypothesis
\(
a_n=\sqrt{2} a_{n+1}
\)
\(
\begin{aligned}
a_{n+1} & =\frac{a_n}{\sqrt{2}}=\frac{a_{n-1}}{(\sqrt{2})^2}=\frac{a_{n-2}}{(\sqrt{2})^3}=\ldots=\frac{a_1}{(\sqrt{2})^n} \\
a_n & =\frac{a_1}{(\sqrt{2})^{n-1}}=\frac{10}{(2)^{(n-1) / 2}}
\end{aligned}
\)
\(
\begin{aligned}
& \because \quad \text { Area of } S_n<1 \Rightarrow a_n^2<1 \\
& \Rightarrow \quad \frac{100}{2^{n-1}}<1 \\
& \Rightarrow \quad 2^{n-1}>100>2^6 \\
& \Rightarrow \quad n-1>6 \\
& \Rightarrow \quad n>7 \\
& \therefore \quad n=8,9,10, \ldots \\
&
\end{aligned}
\)
If each of the vertices of a triangle has integral coordinates, then the triangles may be
(a,c,d) Let \(A \equiv\left(x_1, y_1\right), B \equiv\left(x_2, y_2\right)\) and \(C \equiv\left(x_3, y_3\right)\) be the vertices of triangle \(A B C\). Given \(x_1, y_1, x_2, y_2, x_3, y_3\) be all integers.
Now, area of \(\triangle A B C=\frac{1}{2}\left|x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right|\) \(=\) Rational ….(i)
If \(\triangle A B C\) is equilateral then,
\(
\text { Area of } \begin{aligned}
\triangle A B C & =\frac{\sqrt{3}}{4}(\text { side })^2 \\
& =\frac{\sqrt{3}}{4}\left\{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\right\} \\
& =\text { Irrational } \dots(ii)
\end{aligned}
\)
It is clear from Eqs. (i) and (ii), \(\triangle A B C\) can not be equilateral.
\(A B C\) is an isosceles triangle. If the coordinates of the base are \(B(1,3)\) and \(C(-2,7)\). The coordinates of vertex \(A\) can be
(b,c,d) Let vertex of the \(\triangle A B C\) be \(A(x, y)\)
\(
\begin{aligned}
& \therefore \quad A B=A C \\
& \Rightarrow \quad(A B)^2=(A C)^2 \\
& \Rightarrow \quad(x-1)^2+(y-3)^2=(x+2)^2+(y-7)^2 \\
& \Rightarrow \quad 6 x-8 y+43=0 \dots(i) \\
&
\end{aligned}
\)
Here, use observe that the coordinates \(\left(-\frac{1}{2}, 5\right),\left(\frac{5}{6}, 6\right)\) and \(\left(-7, \frac{1}{8}\right)\) satisfy the Eq. (i).
If \(A\left(\alpha, \frac{1}{\alpha}\right) B\left(\beta, \frac{1}{\beta}\right), C\left(\gamma, \frac{1}{\gamma}\right)\) be the vertices of a \(\triangle A B C\), where \(\alpha, \beta\) are the roots of \(x^2-6 a x+2=0 ; \beta\) are the roots of \(x^2-6 b x+3=0\) and \(\gamma, \alpha\) are the roots of \(x^2-6 c x+6=0\); \(a, b, c\) being positive. The value of \(a+b+c\) is
\(\alpha, \beta\) are the roots of \(x^2-6 a x+2=0\)
\(
\begin{aligned}
& \therefore \quad \alpha+\beta=6 a \dots(i) \\
& \text { and } \quad \alpha \beta=2 \dots(ii) \\
&
\end{aligned}
\)
Again, \(\beta, \gamma\) are the roots of \(x^2-6 b x+3=0\)
\(
\begin{aligned}
& \therefore & \beta+\gamma & =6 b \dots(iii) \\
& \text { and } & \beta \gamma & =3 \dots(iv)
\end{aligned}
\)
Again, \(\gamma, \alpha\) are the roots of \(x^2-6 c x+6=0\)
\(
\begin{array}{ll}
\therefore & \gamma+\alpha=6 c \dots(v) \\
\text { and } & \gamma \alpha=6 \dots(vi)
\end{array}
\)
from Eqs. (ii), (iv) and (vi), we get
\(
\begin{array}{lc}
& \alpha \beta \cdot \beta \gamma \cdot \gamma \alpha=2 \cdot 3 \cdot 6 \\
\Rightarrow & \alpha \beta \gamma=6 \\
\therefore & \alpha=2, \beta=1, \gamma=3
\end{array}
\)
Adding Eqs. (i), (iii) and (v), we get
\(
\begin{aligned}
& 2(\alpha+\beta+\gamma)=6(a+b+c) \\
& a+b+c=\frac{1}{3}(2+1+3)=2
\end{aligned}
\)
If the points \((-2,0),\left(-1, \frac{1}{\sqrt{3}}\right)\) and \((\cos \theta, \sin \theta)\) are collinear, then the number of values of \(\theta \in[0,2 \pi]\) is
Since, the given points are collinear, then
\(
\left|\begin{array}{ccc}
-2 & 0 & 1 \\
-1 & \frac{1}{\sqrt{3}} & 1 \\
\cos \theta & \sin \theta & 1
\end{array}\right|=0
\)
\(
\begin{aligned}
& \Rightarrow \quad-2\left(\frac{1}{\sqrt{3}}-\sin \theta\right)-0+1\left(-\sin \theta-\frac{\cos \theta}{\sqrt{3}}\right)=0 \\
& \Rightarrow \quad \sqrt{3} \sin \theta-\cos \theta=2 \\
& \Rightarrow \quad \frac{\sqrt{3}}{2} \sin \theta-\frac{1}{2} \cos \theta=1 \\
& \text { or } \\
& \sin \left(\theta-\frac{\pi}{6}\right)=1 \\
& \text { or } \\
& \theta-\frac{\pi}{6}=2 n \pi+\frac{\pi}{2} \\
& \text { for } n=0 \text {, } \\
& \theta=\frac{\pi}{6}+\frac{\pi}{2}=\frac{2 \pi}{3} \in[0,2 \pi] \\
&
\end{aligned}
\)
Number of values \(\theta\) is 1 .
In \(a \Delta A B C, A \equiv(\alpha, \beta), B \equiv(1,2), C \equiv(2,3)\) and point \(A\) lies on the line \(y=2 x+3\) where \(\alpha, \beta \in I\). If the area of \(\triangle A B C\) be such that \([\Delta]=2\), where [.] denotes the greatest integer function, find all possible coordinates of \(A\).
\(\because(\alpha, \beta)\) lies on \(y=2 x+3\)
then \(\quad \beta=2 \alpha+3\)
Thus, the coordinates of \(A\) are \((\alpha, 2 \alpha+3) \dots(i)\)
\(
\begin{aligned}
\Delta & =\frac{1}{2}\left|\left\{\left|\begin{array}{cc}
\alpha & 2 \alpha+3 \\
1 & 2
\end{array}\right|+\left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right|+\left|\begin{array}{cc}
2 & 3 \\
\alpha & 2 \alpha+3
\end{array}\right|\right\}\right| \\
& =\frac{1}{2}|2 \alpha-(2 \alpha+3)+3-4+4 \alpha+6-3 \alpha| \\
& =\frac{1}{2}|\alpha+2|
\end{aligned}
\)
\(
\begin{array}{ll}
\text { but } & {[\Delta]=2} \\
\Rightarrow & {\left[\frac{1}{2}|\alpha+2|\right]=2} \\
\Rightarrow & 2 \leq \frac{|\alpha+2|}{2}<3 \\
\Rightarrow & 4 \leq|\alpha+2|<6 \\
\Rightarrow & 4 \leq \alpha+2<6 \\
\text { and } & -6<\alpha+2 \leq-4 \\
\Rightarrow & 2 \leq \alpha<4 \text { and }-8<\alpha \leq-6 \\
\because & \alpha \in I \\
\therefore & \alpha=2,3,-7,-6
\end{array}
\)
Hence, possible coordinates of \(A\) are \((2,7),(3,9),(-7,-11)\) and \((-6,-9)\).
The slope of a straight line through \(A(3,2)\) is \(\frac{3}{4}\). Find the coordinates of the points on the line that are 5 units away from A.
Let straight line makes an angle \(\theta\) with positive direction of \(X\)-axis,
then
\(
\tan \theta=\frac{3}{4}
\)
\(
\therefore \quad \sin \theta=\frac{3}{5} \text { and } \cos \theta=\frac{4}{5}
\)
\(\therefore\) Equation of the straight line through \(A(3,2)\) in parametric form is
\(
\begin{gathered}
\frac{x-3}{\cos \theta}=\frac{y-2}{\sin \theta}= \pm 5 \\
\therefore \quad x=3 \pm 5 \cos \theta=3 \pm 5 \times \frac{4}{5}=3 \pm 4=7 \text { or }-1 \\
\text { and } \quad y=2 \pm 5 \sin \theta=2 \pm 5 \times \frac{3}{5}=2 \pm 3=5 \text { or }-1
\end{gathered}
\)
Hence, the coordinates of the points are \((7,5)\) and \((-1,-1)\).
A line through \((2,3)\) makes an angle \(\frac{3 \pi}{4}\) with the negative direction of \(X\)-axis. Find the length of the line segment cut off between \((2,3)\) and the line \(x+y-7=0\).
\(\because\) Line makes an angle \(\frac{3 \pi}{4}\) with the negative direction of \(X\)-axis.
\(\therefore\) Line makes an angle \(\frac{\pi}{4}\) with the positive direction of \(X\)-axis.
\(\therefore\) The equation of the line through \((1,2)\) in parametric form is
i.e.
\(
\frac{x-2}{\cos \left(\frac{\pi}{4}\right)}=\frac{y-3}{\sin \left(\frac{\pi}{4}\right)}=r
\)
i.e. \(\quad \frac{x-2}{\frac{1}{\sqrt{2}}}=\frac{y-3}{\frac{1}{\sqrt{2}}}=r \dots(i)\)
\(\therefore \quad x=2+\frac{r}{\sqrt{2}}[latex] and [latex]y=3+\frac{r}{\sqrt{2}}\)
Let the line (i) meet the line \(x+y-7=0\) in \(P\)
\(\therefore\) Coordinates of \(P\left(2+\frac{r}{\sqrt{2}}, 3+\frac{r}{\sqrt{2}}\right)\) lies on \(x+y-7=0\)
then \(\quad 2+\frac{r}{\sqrt{2}}+3+\frac{r}{\sqrt{2}}-7=0\)
or \(\quad \frac{2 r}{\sqrt{2}}=2\) or \(r=\sqrt{2}\)
\(\therefore \quad A P=\sqrt{2}\)
Find the distance of the point \((2,3)\) from the line \(2 x-3 y+9=0\) measured along the line \(2 x-2 y+5=0\).
Since, slope of the line \(2 x-2 y+5=0\) is 1 , its makes an angle \(\frac{\pi}{4}\) with positive direction of \(X\)-axis.
The equation of the line through \((2,3)\) and making an angle \(\frac{\pi}{4}\) in parametric form
\(
\frac{x-2}{\cos \left(\frac{\pi}{4}\right)}=\frac{y-3}{\sin \left(\frac{\pi}{4}\right)}=r \text { or } \frac{x-2}{\frac{1}{\sqrt{2}}}=\frac{y-3}{\frac{1}{\sqrt{2}}}=r
\)
This point lies on the line \(2 x-3 y+9=0\)
\(
\begin{aligned}
\Rightarrow & 2\left(2+\frac{r}{\sqrt{2}}\right)-3\left(3+\frac{r}{\sqrt{2}}\right)+9 & =0 \\
\Rightarrow & -\frac{r}{\sqrt{2}}+4 & =0
\end{aligned}
\)
\(
r=4 \sqrt{2}
\)
If the line \(y-\sqrt{3} x+3=0\) cuts the parabola \(y^2=x+2\) at \(A\) and \(B\), then find the value of PA. \(P B\{\) where \(P \equiv(\sqrt{3}, 0)\}\).
Slope of line \(y-\sqrt{3} x+3=0\) is \(\sqrt{3}\)
If line makes an angle \(\theta\) with \(X\)-axis, then \(\tan \theta=\sqrt{3}\)
\(
\begin{aligned}
\therefore & \theta=60^{\circ} \\
\frac{x-\sqrt{3}}{\cos 60^{\circ}} & =\frac{y-0}{\sin 60^{\circ}}=r
\end{aligned}
\)
\(\Rightarrow\left(\sqrt{3}+\frac{r}{2}, \frac{r \sqrt{3}}{2}\right)\) be a point on the parabola \(y^2=x+2\)
then, \(\frac{3}{4} r^2=\sqrt{3}+\frac{r}{2}+2 \Rightarrow 3 r^2-2 r-4(2+\sqrt{3})=0\)
\(\therefore \quad P A \cdot P B=r_1 r_2=\left|\frac{-4(2+\sqrt{3})}{3}\right|=\frac{4(2+\sqrt{3})}{3}\)
The extremities of the diagonal of a square are \((1,1),(-2,-1)\). Obtain the other two vertices and the equation of the other diagonal.
\(
\begin{aligned}
& \text { (By special corollary (Case-II)) } \\
& \because \quad A \equiv(1,1) \\
& \therefore \quad z_A=1+i \text {, where } i=\sqrt{-1} \\
& \text { and } \\
& C \equiv(-2,-1) \\
& \therefore \quad z_C=-2-i \\
&
\end{aligned}
\)
then centre of square \(E \equiv\left(-\frac{1}{2}, 0\right)\)
\(\therefore \quad z_E=-\frac{1}{2}\)
Now, in \(\triangle A E B,(E A=E B)\)
\(
\begin{aligned}
& \frac{z_B-z_E}{z_A-z_E}=e^{i \frac{\pi}{2}}=i \\
& \Rightarrow \quad z_B+\frac{1}{2}=i\left(1+i+\frac{1}{2}\right) \\
& \therefore \quad z_B=-\frac{3}{2}+\frac{3}{2} i \\
& B \equiv\left(-\frac{3}{2}, \frac{3}{2}\right) \\
& D \equiv\left(-1+\frac{3}{2},-\frac{3}{2}\right) \\
& D \equiv\left(\frac{1}{2},-\frac{3}{2}\right) \\
&
\end{aligned}
\)
Hence, equation of other diagonal \(B D\) is
\(
\begin{gathered}
y-0=\frac{\frac{3}{2}-0}{-\frac{3}{2}+\frac{1}{2}}\left(x+\frac{1}{2}\right) \\
\Rightarrow \quad 6 x+4 y+3=0
\end{gathered}
\)
A rectangle \(A B C D\) has its side \(A B\) parallel to \(y=x\) and vertices \(A, B\) and \(D\) lie on \(y=1, x=2\) and \(x=-2\) respectively, then locus of vertex \(C\) is
(c) Since \(A B\) is parallel to \(y=x\).
\(\therefore\) Equation of \(A B\) is \(y=x+a\)
\(\because \quad A\) lies on \(y=1\)
\(\therefore \quad A \equiv(1-a, 1)\)
Again, \(B\) lies on \(x=2\)
\(
\therefore \quad B=(2,2+a)
\)
\(\Rightarrow\) Equation of \(A D\) is
\(
y-1=-[x-(1-a)] \text { or } y=2-x-a
\)
\(\because D\) lies on \(x=-2\)
\(\therefore \quad D \equiv(-2,4-a)\)
Let \(C \equiv(h, k)\)
\(\because\) Diagonals of rectangle bisects to each other
\(
\begin{aligned}
& \therefore \quad h+1-a=2-2 \Rightarrow a=1+h \\
& \text { and } k+1=2+a+4-a \\
& \Rightarrow \quad k=5 \\
&
\end{aligned}
\)
\(\therefore\) Locus of \(C\) is \(y=5\)
The line \((\lambda+1)^2 x+\lambda y-2 \lambda^2-2=0\) passes through a point regardless of the value \(\lambda\). Which of the following is the line with slope 2 passing through the point?
(a)
\(
\because \quad(\lambda+1)^2 x+\lambda y-2 \lambda^2-2=0
\)
\(
\begin{array}{ll}
\text { or } & \left(\lambda^2+2 \lambda+1\right) x+\lambda y-2 \lambda^2-2=0 \\
\text { or } & \left(\lambda^2+1\right)(x-2)+\lambda(2 x+y)=0
\end{array}
\)
\(
\left(\lambda^2+1\right)(x-2)+\lambda(2 x+y)=0
\)
\(\therefore\) For fixed point
\(
x-2=0 \text { and } 2 x+y=0
\)
\(\therefore\) Fixed point is \((2,-4)\)
\(\therefore \quad\) Equation of required line is \(y+4=2(x-2)\)
or \(y=2 x-8\)
If the point \(P\left(a, a^2\right)\) lies inside the triangle formed by the lines \(x=0, y=0\) and \(x+y=2\), then exhaustive range of ‘ \(a\) ‘ is
(a) Since the point \(P\left(a, a^2\right)\) lies on \(y=x^2\)
\(
\begin{array}{ll}
\text { Solving, } & y=x^2 \\
\text { and } & x+y=2 \text {, we get } \\
& x^2+x-2=0 \\
\Rightarrow & (x+2)(x-1)=0 \\
\Rightarrow & x=-2,1
\end{array}
\)
It is clear from figure,
\(
A \equiv(1,1)
\)
also \(a>0\) for I quadrant.
\(
\therefore \quad a \in(0,1)
\)
If \(5 a+4 b+20 c=t\), then the value oft for which the line \(a x+b y+c-1=0\) always passes through a fixed point is
(b) Equation of line \(\frac{a x}{c-1}+\frac{b y}{c-1}+1=0\) has two independent parameters. It can pass through a fixed point if it contains only one independent parameter. Now there must be one relation between \(\frac{a}{c-1}\) and \(\frac{b}{c-1}\) independent of \(a, b\) and \(c\) so that \(\frac{a}{c-1}\) can be expressed in terms of \(\frac{b}{c-1}\) and straight line contains only one independent parameter. Now that given relation can be expressed as \(\frac{5 a}{c-1}+\frac{4 b}{c-1}=\frac{t-20 c}{c-1}\). RHS is independent of \(c\) if \(t=20\).
If the straight lines, \(a x+a m y+1=0\), \(b x+(m+1) b y+1=0\) and \(c x+(m+2) c y+1=0, m \neq 0\) are concurrent, then \(a, b, c\) are in
(d) The three lines are concurrent if
\(
\left|\begin{array}{ccc}
a & a m & 1 \\
b & m+1 & 1 \\
c & (m+2) c & 1
\end{array}\right|=0
\)
Applying \(C_2 \rightarrow C_2-m C_1\), then
\(
\left|\begin{array}{ccc}
a & 0 & 1 \\
b & b & 1 \\
c & 2 c & 1
\end{array}\right|=0
\)
or \(a(b-2 c)-0+1(2 b c-b c)=0\)
or \(b=\frac{2 a c}{a+c}\), which is independent of \(m\).
\(\therefore a, b, c\) are in HP for all \(m\).
If a ray travelling the line \(x=1\) gets reflected the line \(x+y=1\), then the equation of the line along which the reflected ray travels is
(a) Reflected ray is \(X\)-axis.
the angle between \(x=1\) and \(x+y=1\) is 45 degrees.
as angle \(i=\) angle \(r\)
so, angle \(r=45\) degrees
putting the value in the formula \(\tan \theta=\left(m_1-m_2 / 1+m_1 m_2\right)\)
we get \(m=0\)
\(
\therefore \text { Equation } y=0
\)
Through the point \(P(\alpha, \beta)\), when \(\alpha \beta>0\), the straight line \(\frac{x}{a}+\frac{y}{b}=1\) is drawn so as to form with coordinate axes a triangle of area \(\Delta\). If \(a b>0\), then the least value of \(\Delta\) is
(b) Given line is
\(
\begin{array}{ll}
& \frac{x}{a}+\frac{y}{b}=1 \dots(i)\\
\therefore & A \equiv(a, 0), B \equiv(0, b)
\end{array}
\)
\(
\begin{aligned}
& \because & \text { Area of }(\triangle A O B) & =\Delta \\
& \therefore & \frac{1}{2}|a b| =\Delta \Rightarrow a b=2 \Delta \quad(\because a b>0)
\end{aligned}
\)
Since, the line (i) passes through the point \(P(\alpha, \beta)\).
\(
\therefore \quad \frac{\alpha}{a}+\frac{\beta}{b}=1 \Rightarrow \frac{\alpha}{a}+\frac{a \beta}{2 \Delta}=1 \quad\left(\because b=\frac{2 \Delta}{a}\right)
\)
\(
\begin{aligned}
& \Rightarrow \quad \alpha^2 \beta-2 a \Delta+2 \Delta \alpha=0 \\
& \because a \text { is real } \\
& \therefore \quad D \geq 0 \\
& \Rightarrow \quad 4 \Delta^2-4 \beta(2 \Delta \alpha) \geq 0 \text { or } \Delta \geq 2 \alpha \beta \\
&
\end{aligned}
\)
\(\therefore\) Least value of \(\Delta\) is \(2 \alpha \beta\).
The coordinates of the point \(P\) on the line \(2 x+3 y+1=0\), such that \(|P A-P B|\) is maximum, where \(A\) is \((2,0)\) and \(B\) is \((0,2)\) is
(b) \(|P A-P B| \leq|A B|\)
Maximum value of \(|P A-P B|\) is \(|A B|\), which is possible only when \(P, A, B\) are collinear
if \(P(x, y)\), then equation \(A B\) is
\(
\frac{x}{2}+\frac{y}{2}=1
\)
\(
x+y=2 \dots(i)
\)
Now solving Eq. (i)
and \(2 x+3 y+1=0 \dots(ii)\)
Then, we get,
\(
\begin{array}{rlrl}
& x=7, y & =-5 \\
\therefore & P & \equiv(7,-5)
\end{array}
\)
Equation of the straight line which belongs to the system of straight lines \(a(2 x+y-3)+b(3 x+2 y-5)=0\) and is farthest from the point \((4,-3)\) is
(b) The system of straight lines \(a(2 x+y-3)+b(3 x+2 y-5)=0)\) passes through the point of intersection of the lines \(2 x+y-3=0\) and \(3 x+2 y-5=0\) i.e. \((1,1)\)
The line of this family which is farthest from \((4,-3)\) is the line through \((1,1)\) and perpendicular to the line joining \((1,1)\) and \((4,-3)\)
\(\therefore\) The required line is
\(
y-1=\frac{3}{4}(x-1)
\)
or \(3 x-4 y+1=0\)
The vertices of a square inscribed in the triangle with vertices \(A(0,0), B(2,1)\) and \(C(3,0)\), given that two of its vertices are on the side \(A C\), are
\(
( a , b , c , d )
\)
Let \(P Q R S\) be a square inscribed in \(\triangle A B C\) and
\(
P Q=Q R=R S=S P=\lambda \text { (say) }
\)
Now equation of \(A B\) is
\(
x-2 y=0 \dots(i)
\)
and equation of \(B C\) is
\(
x+y-3=0 \dots(ii)
\)
\(\because S\) lies on \(A B\), then
\(
a-2 \lambda=0 \dots(iii)
\)
and \(R\) lies on \(B C\), then
\(
a+\lambda+\lambda-3=0 \text { or } a+2 \lambda-3=0 \dots(iv)
\)
From Eqs. (iii) and (iv), we get \(a=\frac{3}{2}, \lambda=\frac{3}{4}\)
Hence,
\(
\begin{aligned}
& P \equiv\left(\frac{3}{2}, 0\right), \quad Q \equiv\left(\frac{9}{4}, 0\right), \\
& R \equiv\left(\frac{9}{4}, \frac{3}{2}\right), \quad S=\left(\frac{3}{2}, \frac{3}{4}\right)
\end{aligned}
\)
Line \(\frac{x}{a}+\frac{y}{b}=1\) cuts the coordinate axes at \(A(a, 0)\) and \(B(0, b)\) and the line \(\frac{x}{a^{\prime}}+\frac{y}{b^{\prime}}=-1\) at \(A^{\prime}\left(-a^{\prime}, 0\right)\) and \(B^{\prime}\left(0,-b^{\prime}\right)\). If the points \(A, B, A^{\prime}, B^{\prime}\) are concyclic, then the orthocentre of the triangle \(A B A^{\prime}\) is
\(
\because A, B, A^{\prime}, B^{\prime} \text { are concyclic then, }
\)
\(
\begin{aligned}
O A \cdot O A^{\prime} & =O B \cdot O B^{\prime} \\
(a) \cdot\left(-a^{\prime}\right) & =(b) \cdot\left(-b^{\prime}\right) \\
a a^{\prime} & =b b^{\prime} \dots(i)
\end{aligned}
\)
The equation of altitude through \(A^{\prime}\) is
\(
y-0=\frac{a}{b}\left(x+a^{\prime}\right)
\)
It intersects the altitude
\(
x=0 \text { at } y=\frac{a a^{\prime}}{b}
\)
\(
\therefore \text { Orthocentre is }\left(0, \frac{a a^{\prime}}{b}\right) \text { or }\left(0, b^{\prime}\right) \text { [from Eq. (i)] }
\)
Two straight lines \(u=0\) and \(v=0\) passes through the origin and angle between them is \(\tan ^{-1}\left(\frac{7}{9}\right)\). If the ratio of the slope of \(v=0\) and \(u=0\) is \(\frac{9}{2}\), then their equations are
Let the slope of \(u=0\) be \(m\), then the slope of \(v=0\) is \(\frac{9 m}{2}\).
Therefore,
\(
\left|\frac{m-\frac{9 m}{2}}{1+m \times \frac{9 m}{2}}\right|=\frac{7}{9}
\)
\(
\left|\frac{-7 m}{2+9 m^2}\right|=\frac{7}{9}
\)
\(
\begin{array}{ll}
\Rightarrow & 9 m^2+9 m+2=0 \text { or } 9 m^2-9 m+2=0 \\
\Rightarrow & m=-\frac{2}{3},-\frac{1}{3} \text { or } m=\frac{2}{3}, \frac{1}{3}
\end{array}
\)
Therefore, the equation of lines are
(i) \(2 x+3 y=0\) and \(3 x+y=0\)
(ii) \(x+3 y=0\) and \(3 x+2 y=0\)
(iii) \(2 x=3 y\) and \(3 x=y\)
(iv) \(x=3 y\) and \(3 x=2 y\)
Two sides of a rhombus OABC (lying entirely in the first or third quadrant) of are equal to 2 sq units are \(y=\frac{x}{\sqrt{3}}, y=\sqrt{3} x\). Then the possible coordinates of \(B\) is/are ( \(O\) being the origin)
\((a, b)\)
Here, \(\angle C O A=30^{\circ}\)
Let \(O A=A B=B C=C O=x\)
\(\because\) Area of rhombus \(O A B C\)
\(
\begin{aligned}
& =2 \times \frac{1}{2} \times x \times x \sin 30^{\circ} \\
& =\frac{x^2}{2}=2 \text { [given] }
\end{aligned}
[latex][latex]
\therefore \quad x=2
\)
Coordinates of \(A\) and \(C\) are \((\sqrt{3}, 1)\) and \((1, \sqrt{3})\) in I quadrant and in III quadrant are \((-\sqrt{3},-1)\) and \((-1,-\sqrt{3})\)
Hence, coordinates of \(B\) are \((\sqrt{3}+1, \sqrt{3}+1)\) and \((-\sqrt{3}-1,-\sqrt{3}-1)\)
\(15 A\) and \(B\) are two fixed points whose coordinates are \((3,2)\) and \((5,4)\) respectively. The coordinates of a point \(P\), if \(A B P\) is an equilateral triangle are
\(
\because \quad A B=A P=B P=2 \sqrt{2}
\)
\(\therefore\) Coordinates of \(P\) are \(\left(3+2 \sqrt{2} \cos 105^{\circ}, 2+2 \sqrt{2} \sin 105^{\circ}\right)\)
or \(\quad(3-(\sqrt{3}-1), 2+\sqrt{3}+1)\)
or \((4-\sqrt{3}, 3+\sqrt{3})\)
If \(P\) below \(A B\), then coordinates of \(P\) are
\(
\begin{array}{ll}
& \left(3+2 \sqrt{2} \cos 15^{\circ}, 2-2 \sqrt{2} \sin 15^{\circ}\right) \\
\text { or } & {[(3+\sqrt{3}+1,2-(\sqrt{3}-1)]} \\
\text { or } & (4+\sqrt{3}, 3-\sqrt{3})
\end{array}
\)
A variable straight line ‘ \(L\) ‘ is drawn through \(O(0,0)\) to meet this lines \(L_1: y-x-10=0\) and \(L_2: y-x-20=0\) at the points \(A\) and \(B\) respectively. A point \(P\) is taken on ‘ \(L\) ‘ such that \(\frac{1}{(O P)^2}=\frac{1}{(O A)^2}+\frac{1}{(O B)^2}\), then locus of \(P\) is
Let the equation of line ‘ \(L\) ‘ through origin is
\(
\begin{array}{rlrl}
& & \frac{x-0}{\cos \theta} & =\frac{y-0}{\sin \theta}=r \\
& \therefore & P & \equiv(r \cos \theta, r \sin \theta) \\
\text { Let } & O A & =r_1 \text { and } O B=r_2 \\
& \therefore & A & \equiv\left(r_1 \cos \theta, r_1 \sin \theta\right) \\
& \text { and } & B & \equiv\left(r_2 \cos \theta, r_2 \sin \theta\right)
\end{array}
\)
\(
\begin{aligned}
& \text { A lies on } \quad L_1: y-x-10=0 \\
& \therefore \quad r_1 \sin \theta-r_1 \cos \theta-10=0 \\
& \Rightarrow \quad r_1=\frac{10}{\sin \theta-\cos \theta} \dots(i)
\end{aligned}
\)
\(
B \text { lies on } L_1: y-x-20=0
\)
\(
\begin{array}{ll}
\therefore & r_2 \sin \theta-r_2 \cos \theta-20=0 \\
\Rightarrow & r_2=\frac{20}{\sin \theta-\cos \theta} \dots(ii)
\end{array}
\)
\(
\begin{aligned}
& \frac{1}{(O P)^2}=\frac{1}{(O A)^2}+\frac{1}{(O B)^2} \\
& \frac{1}{r^2}=\frac{1}{r_1^2}+\frac{1}{r_2^2} \\
& \frac{1}{r^2}=\frac{(\sin \theta-\cos \theta)^2}{100}+\frac{(\sin \theta-\cos \theta)^2}{400} \\
& 400=4(r \sin \theta-r \cos \theta)^2+(r \sin \theta-r \cos \theta)^2
\end{aligned}
\)
Locus of \(P\) is \((y-x)^2=80\)
\(P(x, y)\) is called a natural point if \(x, y \in N\). The total number of points lying inside the quadrilateral formed by the lines \(2 x+y=2, x=0, y=0\) and \(x+y=5\) is
First, we construct the graph of the given quadrilateral.
It is clear from the graph that there are six points lying inside the quadrilateral.
The distance of the point \((x, y)\) from the origin is defined as \(d=\max \cdot\{|x|,|y|\}\). Then the distance of the common point for the family of lines \(x(1+\lambda)+\lambda y+2+\lambda=0\) ( \(\lambda\) being parameter) from the origin is
(2) Given family of lines is
\(
\begin{aligned}
x(1+\lambda)+\lambda y+2+\lambda & =0 \\
\Rightarrow \quad(x+2)+\lambda(x+y+1) & =0
\end{aligned}
\)
for common point or fixed point
\(
\quad \begin{array}{r}
x+2=0 \\
\text { and } x+y+1=0
\end{array}
\)
\(
x=-2, y=1
\)
Common point is \((-2,1)\)
\(
\begin{aligned}
d & =\max \{|-2|,|1|\} \\
& =\max \{2,1\}=2
\end{aligned}
\)
Consider the lines, \(L_1: \frac{x}{3}+\frac{y}{4}=1 ; L_2: \frac{x}{4}+\frac{y}{3}=1\); \(L_3: \frac{x}{3}+\frac{y}{4}=2\) and \(L_4: \frac{x}{4}+\frac{y}{3}=2\)
Statement I : The quadrilateral formed by these four lines is a rhombus.
Statement II : If diagonals of a quadrilateral formed by any four lines are unequal and intersect at right angle, then it is a rhombus.
(c) \(\because L_1, L_3\) are parallel.
\(\therefore\) Distance between \(L_1\) and \(L_3=\frac{1}{\sqrt{\left(\frac{1}{9}+\frac{1}{16}\right)}}=\frac{12}{5}\) and \(L_2, L_4\) are parallel.
\(\therefore\) Distance between \(L_2\) and \(L_4=\frac{1}{\sqrt{\left(\frac{1}{16}+\frac{1}{9}\right)}}=\frac{12}{5}\)
\(\therefore\) Distance between \(L_1\) and \(L_3=\) Distance between \(L_2\) and \(L_4\).
\(\therefore\) Quadrilateral formed by \(L_1, L_2, L_3, L_4\) is a rhombus. Hence, statement I is true and statement II is false.
Statement I: Incentre of the triangle formed by the lines whose sides are \(3 x+4 y=0 ; 5 x-12 y=0\) and \(y-15=0\) is the point \(P\) whose coordinates are \((1,8)\).
Statement II : Point \(P\) equidistant from the three lines forming the triangle.
\(
\begin{aligned}
& L_1 \equiv 3 x+4 y=0 \\
& L_2 \equiv 5 x-12 y=0 \text { and } L_3 \equiv y-15=0
\end{aligned}
\)
Length of \(\perp\) from \(P\) to \(L_1=\frac{3+32}{5}=7\)
Length of \(\perp\) from \(P\) to \(L_2=\frac{|5-96|}{13}=7\)
and Length of \(\perp\) from \(P\) to \(L_3=\frac{|8-15|}{1}=7\)
\(\therefore \quad\) Statement II is true
Also,
\(
\text { Area of } \begin{aligned}
\triangle O P A & =\frac{1}{2} \times O A \times 7 \\
& =\frac{1}{2} \times 39 \times 7=\Delta_1
\end{aligned}
\)
Area of \(\triangle O P B=\frac{1}{2} \times O B \times 7\)
\(
=\frac{1}{2} \times 25 \times 7=\Delta_2
\)
and
\(
\text { Area of } \begin{aligned}
\triangle A P B & =\frac{1}{2} \times A B \times 7 \\
& =\frac{1}{2} \times 56 \times 7=\Delta_3
\end{aligned}
\)
\(
\begin{aligned}
\therefore \quad \Delta_1+\Delta_2+\Delta_3 & =\frac{7}{2}(39+25+56) \\
& =\frac{7 \times 120}{2}=\frac{1}{2} \times 56 \times 15=\text { Area of } \triangle A O B
\end{aligned}
\)
\(\Rightarrow P\) inside the triangle.
Hence, both statements are true and statement II is not correct explanation of statement I.
If the Cartesian co-ordinates of any point are \((\sqrt{3}, 1)\), find the polar co-ordinates.
Polar co-ordinates of any point are \((r, \theta)\), where \(r=\sqrt{x^2+y^2}\) and \(\theta=\tan ^{-1}\left(\frac{y}{x}\right)\). \(x=\sqrt{3} ; y=1\)
Let their polar co-ordinates be \((r, \theta) \Rightarrow x=r \cos \theta ; y=r \sin \theta\)
\(
\begin{array}{ll}
\text { So } r \Rightarrow \sqrt{x^2+y^2} & r=\sqrt{3+1} \\
\theta \Rightarrow \tan ^{-1}\left(\frac{y}{x}\right)=2 & \theta \Rightarrow \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6} \\
\therefore(r, \theta)=\left(2, \frac{\pi}{6}\right) . &
\end{array}
\)
Find the distance between \(P \left(2,-\frac{\pi}{6}\right)\) and \(Q \left(3, \frac{\pi}{6}\right)\).
The distance between two points \(=\sqrt{r_1^2+r_2^2-2 r_1 r_2 \cos \left(\theta_1-\theta_2\right)}\). Therefore,
\(
P Q=\sqrt{r_1^2+r_2^2-2 r_1 r_2 \cos \left(\theta_1-\theta_2\right)}=\sqrt{4+9-2.2 \cdot 3 \cos \left(-\frac{\pi}{6}-\frac{\pi}{6}\right)}==\sqrt{4+9-12 \cos \left(\frac{\pi}{3}\right)}=\sqrt{13-12 \cdot \frac{1}{2}}=\sqrt{7}
\)
The point whose abscissa is equal to its ordinate and which is equidistant from the points \(A(1,0)\), \(B (0,3)\) is
Given, abscissa = ordinate. Therefore distance can be found by considering the co-ordinates of required point be \(P ( k , k )\).
Now given \(PA = PB \Rightarrow \sqrt{(k-1)^2+k^2}=\sqrt{k^2+(k-3)^2}\)
\(
2 k^2-2 k+1=2 k^2-6 k+9 \Rightarrow 4 k=8 \Rightarrow k=2
\)
If \(G\) be the centroid of the triangle \(A B C\), then \(A B^2+B C^2+C A^2=?\).
Distance formula of two points can be used to prove \(A B^2+ BC ^2+ CA ^2=3\left(G A^2+G B^2+G C^2\right)\). In triangle \(A B C\), let \(B\) be the origin and \(B C\) the \(x\)-axis. Let \(A\) be \((h, k)\) and
\(
C \text { be }(a, 0) \text {. Then centroid } G \text { is }\left(\frac{a+h}{3}, \frac{k}{3}\right) \text {. }
\)
LHS
\(
\begin{aligned}
& =A B^2+B C^2+C A^2=(h-0)^2+(k-0)^2+a^2+(h-a)^2+(k-0)^2 \\
& =2 h^2+2 k^2+2 a^2-2 a h
\end{aligned}
\)
\(
\begin{aligned}
& \therefore \quad \text { RHS } \\
& =3\left[\left(\frac{a+h}{3}-h\right)^2+\left(\frac{k}{3}-k\right)^2+\left(\frac{a+h}{3}-0\right)^2+\left(\frac{k}{3}-0\right)^2+\left(\frac{a+h}{3}-a\right)^2+\left(\frac{k}{3}-0\right)\right] \\
& =1 / 3\left[(a-2 h)^2+4 k^2+(a+h)^2+k^2+(h-2 a)^2+k^2\right]=2 h^2+2 k^2+2 a^2-2 a h
\end{aligned}
\)
Hence, it is equal on both sides.
The vertices of a triangle \(A B C\) are \(A\left(p^2,-p\right), B\left(q^2, q\right)\) and \(C\left(r^2,-r\right)\). Find the area of the triangle.
Area of the triangle formed by the points \(\left(x_1, y_1\right),\left(x_2, y_2\right)\) and \(\left(x_3, y_3\right)\) is \(\frac{1}{2}\left|\begin{array}{lll}x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1\end{array}\right|\).
Substituting the given co-ordinates, we can obtain area of given triangle.
\(
D=\frac{1}{2}\left|\begin{array}{ccc}
p^2 & -p & 1 \\
q^2 & q & 1 \\
r^2 & -r & 1
\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}
p^2-q^2 & -(p+q) & 0 \\
q^2-r^2 & q+r & 0 \\
r^2 & -r & 1
\end{array}\right|=\frac{1}{2}(p+q)(q+r)\left|\begin{array}{ccc}
p-q & -1 & 0 \\
q-r & 1 & 0 \\
r^2 & -r & 1
\end{array}\right|
\)
\(
=\frac{1}{2}(p+q)(q+r)[(p-q)+(q-r)]=\frac{1}{2}(p+q)(q+r)(p-r)
\)
Find the equation of locus of a point which moves so that its distance from the point \((0,1)\) is twice the distance from \(x\)-axis.
Here we can obtain the equation of locus of given point by using given condition and distance formula of two points.
Let the co-ordinates of such a point be \(( x , y )\). Draw \(PM \perp\) to \(x\)-axis.
Hence, \(P M=y\)
\(PN =2 PM\) (given)
i.e. \((x-0)^2+(y-1)^2=4 y^2\)
i.e. \(x^2-3 y^2-2 y+1=0\).
Locus of the centroid of the triangle whose vertices are \((a \cos t, a \sin t),(b \sin t,-b \cos t)\) and \((1,0)\), where \(t\) is a parameter is
The centroid \((h, k)\) of a triangle formed by points \(\left(x_1, y_1\right),\left(x_2, y_2\right)\) and \(\left(x_3, y_3\right)\) will be \(h =\frac{ x _1+ x _2+ x _3}{3}\) and \(k =\frac{ y _1+ y _2+ y _3}{3}\)
(A) If \((h, k)\) is the centroid, then
\(
h=\frac{a \cos t+b \sin t+1}{3}, k=\frac{a \sin t-b \cos t+0}{3} \Rightarrow(3 h-1)^2+(3 k)^2=(a \cos t+b \sin t)^2+(a \sin t t-b \cos t)^2=a^2+b^2
\)
\(\therefore\) Locus of \((h, k)\) is \((3 x-1)^2+(3 y)^2=a^2+b^2\)
If the angle between two lines is \(\frac{\pi}{4}\) and slope of one of the lines is \(\frac{1}{2}\). Find the slope of the other.
We know that, \(\tan \theta=\left|\frac{m_2-m_1}{1+m_1 m_2}\right|\), where \(m_1\) and \(m_2\) are the slope of lines and \(\theta\) is the angle between them. Let \(m_1=\frac{1}{2}, m_2=m\) and \(\theta=\frac{\pi}{4}\) So, \(\tan \frac{\pi}{4}=\left|\frac{m-(1 / 2)}{1+(1 / 2) m}\right| \Rightarrow 1= \pm \frac{m-(1 / 2)}{1+(1 / 2) m} \Rightarrow m=3\) or \(-(1 / 3)\)
Line through the point \((-2,6)\) and \((4,8)\) is perpendicular to the line through the point \((8,12)\) and \((x, 24)\). Find the value of \(x\).
Given two lines are perpendicular to each other. Therefore, product of their slope will be -1 .
Slope of the line through the points \((-2,6)\) and \((4,8)\) is \(m_1=\frac{8-6}{4-(-2)}=\frac{2}{6}=\frac{1}{3}\)
Slope of the line through the points \((8,12)\) and \((x, 24)\) is \(m_2=\frac{24-12}{x-8}=\frac{12}{x-8}\)
Since two lines are perpendicular \(m_1 m_2=-1\)
\(
\Rightarrow \frac{1}{3} \times \frac{12}{x-8}=-1 \quad \Rightarrow x=4
\)
A straight line is drawn through the point \(P (2,3)\) and is inclined at an angle of \(30^{\circ}\) with positive \(x\)-axis. Find the co-ordinate of two points on it at a distance 4 from \(P\) on either side of \(P\).
By using formula \(\frac{x-x_1}{\cos \theta}=\frac{y-y_1}{\sin \theta}=r\), we can obtain co-ordinates of point. The equation of line
\(
\frac{x-x_1}{\cos \theta}=\frac{y-y_1}{\sin \theta}= \pm r \Rightarrow \frac{x-2}{\cos 30^{\circ}}=\frac{y-3}{\sin 30^{\circ}}= \pm 4 \Rightarrow x=2 \pm 2 \sqrt{3}, y=3 \pm 2
\)
So, co-ordinate of two points are \((2 \pm 2 \sqrt{3}, 3 \pm 2)\)
If two vertices of a triangle are \((-2,3)\) and \((5,-1)\). Orthocentre of the triangle lies at the origin and centroid on the line \(x+y=7\), then the third vertex lies at
(d) The line passing through the third vertex and orthocentre must be perpendicular to line through \((-2,3)\) and \((5,-1)\). Therefore, product of their slope will be -1 .
Given the two vertices \(B(-2,3)\) and \(C(5,-1)\); let \(H(0,0)\) be the orthocentre; \(A(h, k)\) the third vertex.
Then, the slope of the line through \(A\) and \(H\) is \(k / h\), while the line through \(B\) and \(C\) has the slope \((-1-3) /(5+2)=-4 / 7\). By the property of the orthocentre, these two lines must be perpendicular,
So we have \(\left(\frac{k}{h}\right)\left(-\frac{4}{7}\right)=-1 \Rightarrow \frac{k}{h}=\frac{7}{4}\)
Also \(\frac{5-2+ h }{3}+\frac{-1+3+ k }{3}=7 \Rightarrow h + k =16\)
Which is not satisfied by the points given in (a), (b) or (c).
Find the equation of the line which is at a distance 3 from the origin and the perpendicular from the line makes an angle of \(30^{\circ}\) with the positive direction of the \(x\)-axis.
By using \(x \cos \alpha+y \sin \alpha=P\), we can solve this problem. Here \(\alpha=30^{\circ}\) and \(P=3\). So equation is \(x \cos 30^{\circ}+y \sin 30^{\circ}=3 x \frac{\sqrt{3}}{2}+\frac{y}{2}=3 \quad \Rightarrow \sqrt{3} x+y=6\)
The equation of the two tangents to the circle are \(3 x-4 y+10=0\) and \(6 x-8 y+30=0\). Find diameter of the circle.
By using formula of distance between two parallel line, i.e. \(\left|\frac{c_1-c_2}{\sqrt{a^2+b^2}}\right|\), we can find the diameter of given circle.
These are two parallel lines
\(
\begin{aligned}
& 3 x-4 y+10=0 \dots(i)\\
& 6 x-8 y+30=0 \dots(ii)
\end{aligned}
\)
Dividing second equation by 2 gives \(\quad 3 x-4 y+15=0 ; \therefore \quad d=\left|\frac{15-10}{\sqrt{3^2+4^2}}\right|=1\)
If \(a, b, c\) are in A.P., then prove that the variable line \(a x+b y+c=0\) passes through a fixed point.
Given equation is \(a x+b y+c=0 \dots(i)\)
Since \(a, b\) and \(c\) are in A.P.
\(
\begin{aligned}
& \therefore b =\frac{a+c}{2} \\
& \Rightarrow a + c =2 b \\
& \Rightarrow a -2 b + c =0 \dots(ii)
\end{aligned}
\)
Comparing equation (i) with eq. (ii) we get,
\(
x=1, y=-2
\)
So, the line will pass through \((1,-2)\).
The orthocentre of the triangle formed by the lines \(x y=0\) and \(x+y=1\) is
(C) Here the three lines are \(x=0, y=0\) and \(x+y=1\).
Since the triangle formed by the line \(x=0, y=0\) and \(x+y=1\) is right angled, the orthocentre lies at the vertex \((0,0)\), the point of intersection of the perpendicular lines \(x=0\) and \(y=0\).
The line \(L\) has intercepts \(a\) and \(b\) on the co-ordinate axes. The co-ordinate axes are rotated through a fixed angle, keeping the origin fixed. If \(p\) and \(q\) are the intercepts of the line \(L\) on the new axes, then \(\frac{1}{a^2}-\frac{1}{p^2}+\frac{1}{b^2}-\frac{1}{q^2}\) is equal to
(b) By using intercept form of equation of line, we will get equation of line before and after rotation. As their perpendicular length from the origin does not change, by using distance formula the result can be obtained.
Equation of the line \(L\) in the two co-ordinate system is \(\frac{x}{a}+\frac{y}{b}=1, \frac{X}{p}+\frac{Y}{q}=1\) Where \((x, y)\) are the new co-ordinates of a point \((x, y)\) when the axes are rotated through a fixed angle, keeping the origin fixed. As the length of the perpendicular from the origin has not changed:
\(
\frac{1}{\sqrt{\left(1 / a^2\right)+\left(1 / b^2\right)}}=\frac{1}{\sqrt{\left(1 / p^2\right)+\left(1 / q^2\right)}} \Rightarrow \frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{p^2}+\frac{1}{q^2} \Rightarrow \frac{1}{a^2}-\frac{1}{p^2}+\frac{1}{b^2}-\frac{1}{q^2}=0
\)
Find the ratio in which \(y-x+2=0\) divides the line joining \(A(3,-1)\) and \(B(8,9)\).
By considering the required ratio be \(\lambda: 1\), and using section formula, we can solve above problem.
The point of division \(P\) is internal as \(A\) and \(B\) lie on opposite sides of given line.
Let required ratio be \(\lambda: 1\).
Since, \(P\left(\frac{8 \lambda+3}{\lambda+1}, \frac{9 \lambda-1}{\lambda+1}\right)\) lies on \(y-x+2=0\),
\(
\therefore \frac{9 \lambda-1}{\lambda+1}-\frac{8 \lambda+3}{\lambda+1}+2=0 \text { or } \lambda=\frac{2}{3}
\)
Find the incentre I of \(\triangle A B C\), if \(A\) is \((4,-2) B\) is \((-2,4)\) and \(C\) is \((5,5)\).
Using \(x=\frac{a x_1+b x_2+c x_3}{a+b+c}, \quad y=\frac{a y_1+b y_2+c y_3}{a+b+c}\) we can obtain the incentre.
\(
\begin{aligned}
& a=B C=\sqrt{(5+2)^2+(5-4)^2}=5 \sqrt{2} \\
& b=C A=\sqrt{(5-4)^2+(5+2)^2}=5 \sqrt{2} \\
& C=A B=\sqrt{(-2-4)^2+(4+2)^2}=6 \sqrt{2}
\end{aligned}
\)
If incentre I is \((\bar{x}, \bar{y})\), then,
\(
\bar{x}=\frac{a x_1+b x_2+c x_3}{a+b+c}
\)
\(
\begin{aligned}
& =\frac{20 \sqrt{2}-10 \sqrt{2}+30 \sqrt{2}}{5 \sqrt{2}+5 \sqrt{2}+6 \sqrt{2}}=\frac{5}{2} \\
& \bar{y}=\frac{a y_1+b y_2+c y_3}{a+b+c}
\end{aligned}
\)
\(
=\frac{-10 \sqrt{2}+20 \sqrt{2}+30 \sqrt{2}}{5 \sqrt{2}+5 \sqrt{2}+6 \sqrt{2}}=\frac{5}{2}
\)
A rectangle PQRS has its side \(P Q\) parallel to the line \(y=m x\) and vertices \(P, Q, S\) lie on lines \(y=a, x=b\) and \(x=-b\), respectively. Find the locus of the vertex \(R\).
Let coordinates of \(P\) be \(( t , a )\) and \(R\) be \(\left( x _1, y _1\right)\)
Slope of \(PQ = m \quad\) (given)
Slope of \(P S=-1 /(\) slope of \(P Q)=-1 / m\)
Equation of \(P_\theta=y-a=m(x-t) \dots(i)\)
As \(Q\) lies on \(x=b\) line, put \(x=b\) in (i) to get \(Q\).
\(
\Rightarrow \quad Q=[b, a+m(b-t)]
\)
Equation of \(P S \equiv y-a=-1 / m(x-t) \dots(ii)\)
As \(S\) lies on \(x =- b\) line, put \(x =- b\) in (ii) to get \(S\).
\(
\Rightarrow \quad S=[-b, a+1 / m(b+t)]
\)
Slope of \(R S=\frac{y_1-a \frac{-1}{m}(b+t)}{x_1+b}=m \dots(iii)\)
\(
\begin{aligned}
& \Rightarrow \quad b+t=m\left(y_1-a\right)-m^2(x+b) \\
& \text { Slope of } R Q=\frac{y_1-a-m(b-t)}{x_1-b}=-\frac{1}{m} \\
& \Rightarrow \quad \frac{m\left(y_1-a\right)+\left(x_1-b\right)}{m^2}=b-t
\end{aligned}
\)
Add (iii) and (iv) to eliminate t
\(
2 b=m\left(y_1-a\right)-m^2(x+b)+\frac{m\left(y_1-a\right)+\left(x_1-b\right)}{m^2}
\)
Locus is: \(m y+\left(1-m^2\right) x-a m-b\left(1+m^2\right)=0\)
Two equal sides \(A B\) and \(A C\) of an isosceles triangle \(A B C\) have equation \(7 x-y+3=0\) and \(x+y-3\) \(=0\), respectively. The third side \(BC\) of the triangle passes through point \(P(1,-10)\). Find the equation of \(B C\).
For isosceles triangle \(A B C, A D\) is perpendicular bisector of side \(B C\) and it also bisects angle BAC. Hence by using equation of bisector formula, i.e.
\(
\frac{a x+b y+c}{\sqrt{a^2+b^2}}= \pm \frac{a_1 x+b_1 y+c_1}{\sqrt{a_1^2+b_1^2}}
\)
we can obtain slope of AD.
Equations of \(A B\) and \(A C\) are \(7 x-y+3=0\) and \(-x-y+3=0\), respectively.
\(
a_1=7 ; b_1=-1, c_1=3 ;
\)
\(
a _2= b _2=-1, c _2=3
\)
As \(c _1>0, c _2>0\) and \(a _1 a _2+ b _1 b _2=-6<0\)
Equation of the bisector of the acute angle BAD is
\(
\frac{7 x-y+3}{\sqrt{49+1}}=\frac{-x-y+3}{\sqrt{2}}, \text { i.e. } 3 x+y=3
\)
As slope of AD is -3 , slope of \(B C\) is \(\frac{1}{3}\) Equation of \(BC\) through \(P (1,-10)\) is \(y+10=\frac{1}{3}(x-1)\) or \(x-3 y=31\)
Find the equation of the line passing through the intersection of lines \(x-3 y+1=0,2 x+\) \(5 y-9=0\) and whose distance from the origin is \(\sqrt{5}\).
Equation of any line passing through the intersection of two other lines will be \(L_1+\lambda L_2=0\). Therefore, by using perpendicular distance formula of point to line, i.e
\(
p =\frac{\left| ax _1+ by _1+ c \right|}{\sqrt{ a ^2+ b ^2}}
\)
we can obtain required equation of line.
Any line through the point of intersection of given lines is
\(
\begin{aligned}
& x-3 y+1+\lambda(2 x+5 y-9)=0 \\
& \operatorname{or}(1+2 \lambda) x+(-3+5 \lambda) y+1-9 \lambda=0 \\
& \sqrt{5}=\frac{|0+0+1-9 \lambda|}{\sqrt{(1+2 \lambda)^2+(-3+5 \lambda)^2}}
\end{aligned}
\)
Squaring and simplifying, we get \(\lambda=\frac{7}{8}\).
Hence, required line has the equation \(2 x+y-5=0\).
Find the angle \(\phi\) between the straight lines \(\left(x^2+y^2\right) \sin ^2 \alpha=(x \cos \theta-y \sin \theta)^2\), where \(0<2 \alpha<\frac{\pi}{2}\).
We know \(\tan \phi=\left|\frac{2 \sqrt{h^2-a b}}{(a+b)}\right|\). Solving it, angle \(\phi\) can be obtained.
\(
\begin{aligned}
& x^2\left(\cos ^2 \theta-\sin ^2 \alpha\right)-2 x y \cos \theta \sin \theta+y^2\left(\sin ^2 \theta-\sin ^2 \alpha\right)=0 \\
& a=\cos ^2 \theta-\sin ^2 \alpha, 2 h=-2 \cos \theta \sin \theta, \\
& b=\sin ^2 \theta-\sin ^2 \alpha
\end{aligned}
\)
\(
\begin{aligned}
& \tan \phi=\left|\frac{2 \sqrt{h^2-a b}}{(a+b)}\right| \\
& =\frac{2 \sqrt{\cos ^2 \theta \sin ^2 \theta-\left(\cos ^2 \theta-\sin ^2 \alpha\right)\left(\sin ^2 \theta-\sin ^2 \alpha\right)}}{\left|\left(\cos ^2 \theta-\sin ^2 \alpha\right)+\sin ^2 \theta-\sin ^2 \alpha\right|} \\
& =\left|\frac{2 \sin \alpha \cos \alpha}{\cos 2 \alpha}\right|=\left|\frac{\sin 2 \alpha}{\cos 2 \alpha}\right|=\tan 2 \alpha \therefore \phi=2 a
\end{aligned}
\)
A straight line through the origin \(O\) meets the parallel lines \(4 x+2 y=\) 9 and \(2 x+y+6=0\) at points \(P\) and \(Q\) respectively. Then the point \(O\) divides the segemnt \(P Q\) in the ratio
Step 1: Finding the point \(P\)
The straight line is passing through the origin \(O\), So the equation is \(y=m x \quad \ldots(1)\)
The equations are
\(
\begin{array}{ll}
4 x+2 y=9 & \ldots(2) \\
2 x+y=-6 & \ldots(3)
\end{array}
\)
Now substitute equation (1) in equation (2),
\(
\begin{aligned}
\Rightarrow \quad 2 x+y=\frac{9}{2}\Rightarrow \quad 2 x+m x=\frac{9}{2} \Rightarrow \quad x (2+ m )=\frac{9}{2} \\
x =\frac{9}{2(2+ m )}
\end{aligned}
\)
substitute the value of \(x\) in \(y\) of equation (1),
\(
\Rightarrow y=\frac{9 m}{2(2+m)}
\)
So the point of intersection of the line is \(P\left(\frac{9}{2(2+m)}, \frac{9 m}{2(2+m)}\right)\)
Step 2: Finding the point \(Q\)
Now substitute the equation (1) in equation (3),
\(
\begin{aligned}
\Rightarrow & 2 x+m x & =-6 \Rightarrow & x(2+m) & =-6 \Rightarrow & & x=\frac{-6}{2+m}
\end{aligned}
\)
substitute the value of \(x\) in \(y\) of equation (1),
\(
\Rightarrow y=\frac{-6 m}{2+m}
\)
So the point of intersection of the line is \(Q\left(\frac{-6}{2+m}, \frac{-6 m}{2+m}\right)\)
Step 3: Finding the ratio
The ratio can be determined by using the section formula, \(\left(\frac{m x_2+n x_1}{m+n}, \frac{m y_2+n y 1}{m+n}\right)\) where \(m\) and \(n\) be the ratios.
Let us assume \(\lambda: 1\) be the ratio then, \(\left(\frac{m x_2+n x_1}{m+n}\right)=0\)
\(
\begin{array}{lr}
\Rightarrow & \frac{-6 \lambda}{2+m}+\frac{9(1)}{2 m+4}=0 \\
\Rightarrow+1 & \frac{-6 \lambda}{2+m}+\frac{9}{2(m+2)}=0 \\
\Rightarrow & -12 \lambda+9=0 \\
\Rightarrow & -12 \lambda=-9 \\
\Rightarrow & \lambda=\frac{3}{4}
\end{array}
\)
Area of the parallelogram formed by the lines \(y=m x, y=m x+1, y=\) \(n x\) and \(y=n x+1\) equals
The vertices, \(O(0,0), A\left(\frac{1}{m-n}, \frac{m}{m-n}\right), B(0,1)\)
Area (parallelogram \(O A B C)=2\) area \((\triangle O A B)\)
\(
=2 \times \frac{1}{2}\left|\left[0\left(\frac{m}{m-n}-1\right)+\frac{1}{m-n}(1-0)+0\left(0-\frac{m}{m-n}\right)\right]\right|
\)
\(
=\frac{1}{|m-n|}
\)
The number of integer values of \(m\), for which the \(x\)-coordinate of the point of intersection of the lines \(3 x+4 y=9\) and \(y=m x+1\) is also an integer, is
(a) \(3 x+4 y=9\) and \(y=m x+1\) are two lines.
On equating the value of \(y\) from both equations to get the \(x\) co-ordinate of the point of intersection,
\(
\begin{aligned}
& 3 x+4(m x+1)=9 \Rightarrow(3+4 m) x=5 \\
& \Rightarrow \quad x=\frac{5}{3+4 m}
\end{aligned}
\)
For \(x\) to be an integer \(3+4 m\) should be a divisor of 5 i.e., 1,-1,5 or -5.
\(
\begin{aligned}
& 3+4 m=1 \Rightarrow m=-1 / 2 \text { (not integer) } \\
& 3+4 m=-1 \quad \Rightarrow m=-1 \text { (integer) } \\
& 3+4 m=5 \Rightarrow m=1 / 2 \text { (not an integer) } \quad 3+4 m=-5\\
& \Rightarrow m=-2 \text { (integer) } \\
& \therefore \quad \text { There are } 2 \text { integral values of } m \text {. } \\
&
\end{aligned}
\)
The incentre of the triangle with vertices \((1, \sqrt{3}),(0,0)\) and \((2,0)\) is [JEE 2000]
Let \((1, \sqrt{3}),(0,0)\) and \((2,0)\) are the coordinates of vertices A, \(O , B\) of \(\triangle A B C \).
\(\therefore \quad AO = OB = AB\). So, it is an equilaterial triangle and the incentre coincides with centroid.
\(
\therefore \quad \text { Incentre }=\left(\frac{0+1+2}{3}, \frac{0+0+\sqrt{3}}{3}\right)=\left(1, \frac{1}{\sqrt{3}}\right)
\)
If \(x_1, x_2, x_3\) as well as \(y_1, y_2, y_3\), are in G.P. with the same common ratio, then the points \(\left(x_1, y_1\right),\left(x_2, y_2\right)\) and \(\left(x_3, y_3\right)\). [JEE 1999]
\(
\text { (a) Since } x_1, x_2, x_3 \text { are in G.P. and } y_1, y_2, y_3 \text { are also in G.P. }
\)
Common ratio of both G.P.’s are same.
Let it be \(r\). Then
\(x_2=x_1 r, x_3=x_1 r^2\) and so is \(y_2=y_1 r, y_3=y_1 r^2\)
\(
\Delta=\left|\begin{array}{lll}
x_1 & y_1 & 1 \\
x_2 & y_2 & 1 \\
x_3 & y_3 & 1
\end{array}\right|=r . r^2\left|\begin{array}{lll}
x_1 & y_1 & 1 \\
x_1 & y_1 & 1 \\
x_1 & y_1 & 1
\end{array}\right|=0
\)
\(\therefore\) The points lie on a line, i.e., they are collinear.
The orthocentre of the triangle formed by the lines \(x y=0\) and \(x+y=\) 1 is [JEE 1995]
Given lines are \(x+y=1\) and \(x y=0\)
when \(x =0\), then \(y =1\)
when \(x=1\), then \(y=0\)
\(\therefore(0,1)\) and \((1,0)\) are the vertices of triangle. Clearly, triangle is right – angled isosceles. Orthocentre of rightangled triangle is same as the vertex of right angle.
Therefore Orthocentre is \((0,0)\).
The locus of a variable point whose distance from \((-2,0)\) is \(2 / 3\) times its distance from the line \(x=-\frac{9}{2}\) is [JEE 1994]
(a) Let variable point is \(P\) and fixed point \(S(-2,0)\), then \(P S=\frac{2}{3} P M\) where \(P M\) is the perpendicular distance of point \(P\) from given line \(x=-9 / 2\)
\(\therefore\) By definition of ellipse, \(P\) describes an ellipse with eccentricity \(e=\frac{2}{3}<1\)
If the sum of the distances of a point from two perpendicular lines in a plane is 1 , then its locus is [JEE 1992]
(a) Let the two perpendicular lines be the co-ordinate axes. Let \((x, y)\) be the point sum of whose distances from two axes is 1 then we must have
\(
|x|+|y|=1 \quad \text { or } \quad \pm x \pm y=1
\)
These are the four lines
\(
x+y=1, x-y=1,-x+y=1,-x-y=1
\)
Any two adjacent sides are perpendicular to each other. Also each line is equidistant from origin. Therefore figure formed i.e., locus of the point is a square.
If \(P=(1,0), Q=(-1,0)\) and \(R=(2,0)\) are three given points, then locus of the point \(S\) satisfying the relation \(S Q^2+S R^2=2 S P^2\), is [JEE 1988]
(d) Given :
\(
\begin{aligned}
& \quad P=(1,0), Q=(-1,0), R=(2,0) \\
& \text { Let } \quad S=(x, y) \\
& \text { Now, } S Q^2+S R^2=2 S P^2 \\
& \Rightarrow \quad(x+1)^2+y^2+(x-2)^2+y^2=2\left[( x -1)^2+y^2\right]
\end{aligned}
\)
\(
\Rightarrow 2 x^2+2 y^2-2 x+5=2 x^2+2 y^2-4 x +2
\)
\(\Rightarrow 2 x+3=0 \Rightarrow x=-3 / 2\), which is the locus of point \(S\).
This locus is a straight line parallel to \(y\)-axis.
he straight lines \(x+y=0,3 x+y-4=0, x+3 y-4=0\) form a triangle which is [JEE 1983]
(a) Solving the given equations of lines pairwise, we get the vertices of the triangle as
\(
A(-2,2), B(2,-2) \text { and } C(1,1)
\)
Then
\(
\begin{aligned}
& A B=\sqrt{16+16}=4 \sqrt{2} \\
& B C=\sqrt{1+9}=\sqrt{10} \text { and } C A=\sqrt{9+1}=\sqrt{10}
\end{aligned}
\)
\(\therefore \quad\) The triangle is isosceles.
The point \((4,1)\) undergoes the following three transformations successively.
(i) Reflection about the line \(y=x\).
(ii) Translation through a distance 2 units along the positive direction of x-axis.
(iii) Rotation through an angle \(p / 4\) about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates. [JEE 1980]
(c) Reflection about the line \(y=x\), changes the point \((4,1)\) to \((1,4)\). On translation of \((1,4)\) through a distance of 2 units along positive direction of \(x\)-axis, the point becomes \((1+2,4)\), i.e., \((3,4)\).
On rotation about origin through an angle \(\pi / 4\) the point \(P\) takes the position \(P^{\prime}\) such that \(O P=O P^{\prime}\)
Also \(O P=5=O P^{\prime}\) and \(\cos \theta=\frac{3}{5} \cdot \sin \theta=\frac{4}{5}\)
Now, \(x=O P^{\prime} \cos \left(\frac{\pi}{4}+\theta\right)\)
\(
\begin{gathered}
=5\left(\cos \frac{\pi}{4} \cos \theta-\sin \frac{\pi}{4} \sin \theta\right)=5\left(\frac{3}{5 \sqrt{2}}-\frac{4}{5 \sqrt{2}}\right)=-\frac{1}{\sqrt{2}} \\
y=O P^{\prime} \sin \left(\frac{\pi}{4}+\theta\right)=5\left(\sin \frac{\pi}{4} \cos \theta+\cos \frac{\pi}{4} \sin \theta\right) \\
=5\left(\frac{3}{5 \sqrt{2}}+\frac{4}{5 \sqrt{2}}\right)=\frac{7}{\sqrt{2}}
\end{gathered}
\)
\(
\therefore \quad P^{\prime}=\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)
\)
The vertices of a triangle are \(A(-1,-7), B(5,1)\) and \(C(1,4)\). The equation of the bisector of the angle \(\)\angle A B C\(\) is
Let \(B D\) be the bisector of \(\angle A B C\).
Then \(A D: D C=A B: B C\)
And
\(
\begin{aligned}
& A B=\sqrt{(5+1)^2+(1+7)^2}=10 \\
& B C=\sqrt{(5-1)^2+(1-4)^2}=5 \\
\therefore \quad & A D: D C=2: 1
\end{aligned}
\)
\(\therefore \quad\) By section formula coordinate of \(D\) is \(\left(\frac{1}{3}, \frac{1}{3}\right)\) Therefore equation of \(B D\) is
\(
\begin{aligned}
& y-1=\frac{1 / 3-1}{1 / 3-5}(x-5) \Rightarrow y-1=\frac{-2 / 3}{-14 / 3}(x-5) \\
& \Rightarrow \quad x-7 y+2=0
\end{aligned}
\)
The orthocentre of the triangle formed by the lines \(x+y=1,2 x+3 y=6\) and \(4 x-y+4=0\) lies in quadrant number [JEE 1985]
The equations of sides of triangle \(A B C\) are
\(
\begin{aligned}
& A B: x+y=1 \\
& B C: 2 x+3 y=6 \\
& C A: 4 x-y=-4
\end{aligned}
\)
Solving these equations pairwise, we get the vertices of the triangle as \(A(-3 / 5,8 / 5), B(-3,4)\) and \(C(-3 / 7,16 / 7)\).
Let \(A D \perp B C\) as shown in the figure. Any line perpendicular to \(B C\) is \(3 x-2 y+\lambda=0\)
As it passes through the point \(A(-3 / 5,8 / 5)\)
\(
\therefore \quad \frac{-9}{5}-\frac{16}{5}+\lambda=0 \Rightarrow \lambda=5
\)
\(\therefore\) Equation of altitude \(A D\) is
\(
3 x-2 y+5=0 \dots(i)
\)
Any line perpendicular to side \(A C\) is \(x+4 y+\mu=0\)
As it passes through the point \(B(-3,4)\)
\(
\therefore \quad-3+16+\mu=0 \Rightarrow \mu=-13
\)
\(\therefore \quad\) Equation of altitude \(B E\) is \(x+4 y-13=0 \dots(ii)\)
Now orthocentre of a triangle is the point of intersection of the altitudes of the triangle.
On solving the equation (i) of \(AD\) and (ii) of \(BE\), we get \(x=3 / 7, y=22 / 7\)
\(\therefore \quad\) orthocentre \(=(3 / 7,22 / 7)\)
As both the co-ordinates are positive, orthocentre lies in the first quadrant.
Given the points \(A(0,4)\) and \(B(0,-4)\), the equation of the locus of the point \(P(x, y)\) such that
\(|A P-B P|=6 \text { is }\) [JEE 1983]
Given that,
\(
\begin{aligned}
& | AP – BP |=6 \\
& \Rightarrow AP – BP = \pm 6 \\
& \Rightarrow AP = BP \pm 6
\end{aligned}
\)
The point
\(
\begin{aligned}
& A \left( x _1, y _1\right)=( o , 4) \\
& B \left( x _2, y _2\right)=(4,0)
\end{aligned}
\)
Using distance formula,
\(
{\sqrt{x^2+(y-4)^2}}=\sqrt{x^2+(y+4)^2} \pm 6
\)
On squaring both side and we get,
\(
\begin{aligned}
& \Rightarrow 16 y^2+81+72 y=9\left(x^2+(y+4)^2\right) \\
& \Rightarrow 16 y^2+81+72 y=9\left(x^2+y^2+16+8 y\right) \\
& \Rightarrow 16 y^2+81+72 y=9 x^2+9 y^2+144+72 y \\
& \Rightarrow 16 y^2+81=9 x^2+9 y^2+144 \\
& \Rightarrow 16 y^2+81-9 y^2=9 x^2+144 \\
& \Rightarrow 7 y^2+81=9 x^2+144 \\
& \Rightarrow 7 y^2-9 x^2=144-81 \\
& \Rightarrow 7 y^2-9 x^2=63 \\
& \Rightarrow \frac{7 y^2}{63}-\frac{9 x^2}{63}=1 \\
& \Rightarrow \frac{y^2}{9}-\frac{x^2}{7}=1
\end{aligned}
\)
The area enclosed within the curve \(|x|+|y|=1\) is [JEE 1981]
Given curve : \(|x|+|y|=1\)
This curve represents four lines :
\(
\begin{aligned}
& \qquad x+y=1, x-y=1,-x+y=1 \\
& \text { and }-x-y=1 \\
& \text { These enclose a square of } \\
& \text { side = Distance between }
\end{aligned}
\)
opposite sides \(x+y=1\) and
\(
x+y=-1
\)
\(
\therefore \quad \text { Side }=\frac{1+1}{\sqrt{1+1}}=\sqrt{2}
\)
\(
\therefore \text { Required area }=(\text { side })^2=2 \text { sq. units }
\)
The straight line \(5 x+4 y=0\) passes through the point of intersection of the straight lines \(x+2 y-10=0\) and \(2 x+y+5=0\). [JEE 1983]
(True) Intersection point of \(x+2 y-10=0\) and \(2 x+y+5=0\) is \(\left(\frac{-20}{3}, \frac{25}{3}\right)\) which clearly satisfies the line \(5 x+4 y=0\). Hence the given statement is true.
The diagonals of a parallelogram \(P Q R S\) are along the lines \(x+3 y=4\) and \(6 x-2 y=7\). Then \(P Q R S\) must be a. [JEE 1998]
(d) Slope of \(x+3 y=4\) is \(-1 / 3\) and slope of \(6 x-2 y=7\) is 3 .
Since, product of the two slopes is -1 , which shows that both diagonals are perpendicular. Hence \(P Q R S\) must be a rhombus.
If \((P(1,2), Q(4,6), R (5,7)\) and \(S(a, b)\) are the vertices of a parallelogram \(P Q R S\), then [JEE 1998]
(c) \(P Q R S\) will represent a parallelogram if and only if the mid-point of \(P R\) is same as that of the mid-point of QS. i.e., if and only if \(\frac{1+5}{2}=\frac{4+a}{2}\) and \(\frac{2+7}{2}=\frac{6+b}{2} \Rightarrow a=2\) and \(b=3\).
All points lying inside the triangle formed by the points \((1,3),(5,0)\) and \((-1,2)\) satisfy [JEE 1986]
(a, c) Substituting the co-ordinates of the points \((1,3),(5,0)\) and \((-1\), 2) in \(3 x+2 y\), we obtain the value 8,15 and 1 which are all +ve. Therefore, all the points lying inside the triangle formed by given points satisfy \(3 x+2 y \geq 0\).
\(\therefore\) (a) is correct.
Substituting the co-ordinates of the given points in \(2 x+y-13\), we find the values \(-8,-3\) and -13 which are all \(-v e\).
\(\therefore\) (b) is not correct.
Again substituting the given points in \(2 x-3 y-12\) we get \(-19,-2\), 20 which are all -ve.
It follows that all points lying inside the triangle formed by given points satisfy \(2 x-3 y-12 \leq 0\).
\(\therefore\) (c) is correct.
Finally substituting the co-ordinates of the given points in \(-2 x+\) \(y\), we get \(1,-10\) and 4 which are not all +ve.
\(\therefore \quad\) (d) is not correct.
Therefore, (a) and (c) are the correct answers.
The points \(\left(0, \frac{8}{3}\right),(1,3)\) and \((82,30)\) are vertices of [JEE 1986]
(e) Let \(A(0,8 / 3), B(1,3)\) and \(C(82,30)\).
Now, slope of line \(A B=\frac{3-8 / 3}{1-0}=\frac{1}{3}\)
Slope of line \(B C=\frac{30-3}{82-1}=\frac{27}{81}=\frac{1}{3}\)
\(\Rightarrow A B \| B C\) and \(B\) is common point.
\(\therefore \quad A, B, C\) are collinear.
The area of the triangle formed by the intersection of a line parallel to \(x\)-axis and passing through \(P(h, k)\) with the lines \(y=x\) and \(x+y=2\) is \(4 h ^2\). Find the locus of the point \(P\). [JEE 2005]
Equation of the line passing through \(P(h, k)\) and parallel to \(x\)-axis is \(y=k \dots(i)\).
Other two given lines are
\(y=x \dots(ii)\)
and \(x+y=2 \dots(iii)\)
Let \(A B C\) be the formed by the lines (i), (ii) and (iii), as shown in the figure.
On solving the three equations pairwise we get the co-ordinates of vertices \(A, B\) and \(C\) as \(A(k, k), B(1,1)\) and \(C(2-k, k)\)
\(\therefore \quad\) Area of \(\triangle B C=\frac{1}{2}\left|\begin{array}{ccc}k & k & 1 \\ 1 & 1 & 1 \\ 2-k & k & 1\end{array}\right|=4 h^2\) Applying \(C_1 \rightarrow C_1-C_2\)
\(
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{ccc}
0 & k & 1 \\
0 & 1 & 1 \\
2-2 k & k & 1
\end{array}\right|=4 h^2 \\
& \Rightarrow \frac{1}{2}|(2-2 k)(k-1)|=4 h^2 \Rightarrow(k-1)^2=4 h^2 \\
& \Rightarrow k-1=2 h \quad \text { or } \quad k-1=-2 h \\
& \Rightarrow k=2 h+1 \quad \text { or } k=-2 h+1 \\
& \therefore \quad \text { Locus of }(h, k) \text { is, } y=2 x+1 \text { or } y=-2 x+1 .
\end{aligned}
\)
A straight line \(L\) with negative slope passes through the point \((8,2)\) and cuts the positive coordinate axes at points \(P\) and \(Q\). Find the absolute minimum value of \(O P+O Q\), as \(L\) varies, where \(O\) is the origin. [JEE 2002]
Let slope of the given line be \(m\).
Then equation of the line is
\(y-2=m(x-8)\), where \(m<0\)
\(
\Rightarrow \quad P \equiv\left(8-\frac{2}{m}, 0\right) \text { and } Q \equiv(0,2-8 m)
\)
\(
\text { Now, } O P+O Q=\left|8-\frac{2}{m}\right|+|2-8 m|
\)
\(
=10+\frac{2}{-m}+8(-m) \geq 10+2 \sqrt{\frac{2}{-m} \times 8(-m)} \geq 18
\)
A line cuts the x-axis at \(A(7,0)\) and the \(y\)-axis at \(B(0,-5)\). A variable line \(P Q\) is drawn perpendicular to \(A B\) cutting the \(x\)-axis in \(P\) and the y-axis in \(Q\). If \(A Q\) and \(B P\) intersect at \(R\), find the locus of \(R\). [JEE 1990]
Equation of the line \(A B\) is
\(
\frac{x}{7}-\frac{y}{5}=1 \Rightarrow 5 x-7 y-35=0
\)
Equation of line \(P Q \perp A B\) is \(7 x+5 y+\lambda=0\) which meets \(x\) and \(y\) axis at points \(P(-\lambda / 7,0)\) and \(Q(0,-\lambda / 5)\) respectively.
Equation of \(A Q\) is
\(
\frac{x}{7}+\frac{y}{-\lambda / 5}=1 \Rightarrow \lambda x-35 y-7 \lambda=0 \dots(i)
\)
Equation of \(B P\) is
\(
\frac{-7 x}{\lambda}-\frac{y}{5}=1 \Rightarrow 35 x+\lambda y+5 \lambda=0 \dots(ii)
\)
Locus of \(R\) the point of intersection of (i) and (ii) can be obtained by eliminating \(\lambda\) from these equations as follows
\(
\begin{aligned}
& 35 x+(5+y)\left(\frac{35 y}{x-7}\right)=0 \\
\Rightarrow & 35 x(x-7)+35 y(5+y)=0 \Rightarrow x^2+y^2-7 x+5 y=0
\end{aligned}
\)
Two sides of a rhombus \(A B C D\) are parallel to the lines \(y=x+2\) and \(y=7 x+3\). If the diagonals of the rhombus intersect at the point ( 1 , 2) and the vertex \(A\) is on they-axis, find possible co-ordinates of \(A\). [JEE 1985]
A being on \(y\)-axis, consider its co-ordinates as \((0, a )\). The diagonals intersect at \(P(1,2)\).
Again we know that diagonals will be parallel to the angle bisectors of the two lines \(y=x+2\) and \(y=7 x+3\)
\(
\begin{aligned}
& \text { i.e., } \frac{x-y+2}{\sqrt{2}}= \pm \frac{7 x-y+3}{5 \sqrt{2}} \\
& \Rightarrow 5 x-5 y+10= \pm(7 x-y+3) \\
& \Rightarrow 2 x+4 y-7=0 \text { and } 12 x-6 y+13=0
\end{aligned}
\)
Slope of \(2 x+4 y-7=0\) is \(m_1=-1 / 2\)
and slope of \(12 x-6 y+13=0\) is \(m_2=2\)
Let diagonal \(d_1\) be parallel to \(2 x+4 y-7=0\) and diagonal \(d_2\) be parallel to \(12 x-6 y+13=0\). The vertex \(A\) could be on any of the two diagonals. Hence slope of \(A P\) is either \(-1 / 2\) or 2 .
\(
\begin{aligned}
& \Rightarrow \frac{2-a}{1-0}=2 \text { or } \frac{-1}{2} \\
& \therefore a=0 \quad \text { or } \frac{5}{2}
\end{aligned}
\)
\(\therefore \quad\) Possible co-ordinates of \(A\) is \((0,0)\) or \((0,5 / 2)\)
One of the diameters of the circle circumscribing the rectangle \(A B C D\) is \(4 y=x+7\). If \(A\) and \(B\) are the points \((-3,4)\) and \((5,4)\) respectively, then find the area of rectangle. [JEE 1985]
Let \(O\) be the centre of the circle. \(M\) is the mid point of \(A B\). Then
\(
O M \perp A B
\)
Let \(O M\) when produced meets the circle at \(P\) and \(Q\).
\(\therefore \quad P Q\) is a diameter perpendicular to \(A B\) and passing through \(M\).
\(
M=\left(\frac{-3+5}{2}, \frac{4+4}{2}\right)=(1,4)
\)
Slope of \(A B=\frac{4-4}{5+3}=0\)
\(\therefore \quad P Q\), being perpendicular to \(A B\), is a line parallel to \(y\)-axis passing through \((1,4)\).
\(\therefore \quad\) Its equation is
\(
x=1 \dots(i)
\)
Also eq. of one of the diameter given is
\(
4 y=x+7 \dots(ii)
\)
On solving (i) and (ii), we get co-ordinates of centre \(O\) as \((1,2)\)
Let co-ordinates of \(D\) be \((\alpha, \beta)\)
Since \(O\) is mid point of \(B D\),
\(
\therefore\left(\frac{\alpha+5}{2}, \frac{\beta+4}{2}\right)=(1,2) \Rightarrow \alpha=-3, \beta=0
\)
\(\therefore\) Co-ordinate of \(D=(-3,0)\)
Now \(A D=\sqrt{(-3+3)^2+(4-0)^2}=4\)
and \(A B=\sqrt{(5+3)^2+(4-4)^2}=8\)
\(\therefore\) Area of rectangle \(A B C D=A B \times A D=8 \times 4\)
\(=32\) square units.
The coordinates of \(A, B, C\) are \((6,3),(-3,5),(4,-2)\) respectively, and \(P\) is any point \((x, y)\). Find the ratio of the area of the triangles \(\triangle P B C\) and \(\triangle A B C\) is [JEE 1983]
Area of \(\triangle A B C=\frac{1}{2}\left|\begin{array}{ccc}6 & 3 & 1 \\ -3 & 5 & 1 \\ 4 & -2 & 1\end{array}\right|\)
\(
=\frac{1}{2}[6(7)+3(5)+4(-2)]=\frac{49}{2}
\)
\(
\text { Area of } \triangle A B C=\frac{1}{2}\left|\begin{array}{ccc}
x & y & 1 \\
-3 & 5 & 1 \\
4 & -2 & 1
\end{array}\right|
\)
\(
=\frac{1}{2}(7 x+7 y-14)-\frac{7}{2}|x+y-2|
\)
\(
\text { Now, } \frac{\operatorname{ar}(\triangle P B C)}{\operatorname{ar}(\triangle A B C)}=\frac{\frac{7}{2}|x+y-2|}{\frac{49}{2}}=\left|\frac{x+y-2}{7}\right|
\)
The vertices of a triangle are \(\left[a t_1 t_2, a\left(t_1+t_2\right)\right],\left[a t_2 t_3, a\left(t_2+t_3\right)\right],\left[a t_3 t_1\right.\) \(\left.a\left(t_3+t_1\right)\right]\). Find the orthocentre of the triangle. [JEE 1983]
Slope
\(
\text { of } \begin{aligned}
B C & =\frac{a\left(t_1+t_3\right)-a\left(t_2+t_3\right)}{a t_1 t_3-a t_2 t_3} \\
& =\frac{a\left(t_1+t_3-t_2-t_3\right)}{a t_3\left(t_1-t_2\right)}=\frac{1}{t_3}
\end{aligned}
\)
\(\therefore \quad\) Slope of \(A D=-t_3\)
\(\therefore\) Equation of \(A D\),
\(
\begin{aligned}
& y-a\left(t_1+t_2\right)=-t_3\left(x-a t_1 t_2\right) \\
\Rightarrow \quad & x t_3+y=a t_1 t_2 t_3+a\left(t_1+t_2\right) \dots(i)
\end{aligned}
\)
Similarly, by symm. equation of \(B E\) is
\(
\Rightarrow x t_1+y=a t_1 t_2 t_3+a\left(t_2+t_3\right) \dots(ii)
\)
On solving (i) and (ii), we get
\(
\left.x=-a \text { and } y=a\left(t_1+t_2+t_3\right)+a t_1 t_2 t_3\right)
\)
\(\therefore \quad\) Orthocentre is \(H\left(-a, a\left(t_1+t_2+t_3\right)+a t_1 t_2 t_3\right)\)
Two vertices of a triangle are \((5,-1)\) and \((-2,3)\). If the orthocentre of the triangle is the origin, find the coordinates of the third point. [JEE 1979]
(c) Let \(H\) be the orthocentre.
Since \(A H \perp B C \Rightarrow m_{A H} \times m_{B C}=-1\)
\(
\Rightarrow \frac{k}{h} \times \frac{3+1}{-2-5}=-1
\)
\(
\Rightarrow \quad 4 k-7 h=0 \dots(i)
\)
Also, \(B H \perp A C\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{-1}{5} \times \frac{3-k}{-2-h}=-1 \Rightarrow 3-k=-10-5 h \\
& \Rightarrow 5 h-k+13=0 \dots(ii)
\end{aligned}
\)
On solving (i) and (ii), we get \(h=-4, k=-7\)
\(\therefore \quad\) Third vertex is \((-4,-7)\).
Find the equation of the line which bisects the obtuse angle between the lines \(x-2 y+4=0\) and \(4 x-3 y+2=0\). [JEE 1979]
The given lines are \(x-2 y+4=0\) and \(4 x-3 y+2=0\)
Both the lines have constant terms of same sign.
\(\therefore\) The equation of bisectors of the angles between the given lines are
\(
\frac{x-2 y+4}{\sqrt{1+4}}= \pm \frac{4 x-3 y+2}{\sqrt{16+9}}
\)
Here \(a_1 a_2+b_1 b_2>0\), therefore taking + ve sign on RHS, we get obtuse angle bisector as
\(
(4-\sqrt{5}) x+(2 \sqrt{5}-3) y-(4 \sqrt{5}-2)=0
\)
The area of a triangle is 5 . Two of its vertices are \(A(2,1)\) and \(B(3,-\) 2). The third vertex \(C\) lies on \(y=x+3\). Find \(C\). [JEE 1978]
As \(C\) lies on the line \(y=x+3\), let the co-ordinates of \(C\) be \((\lambda, \lambda+3)\). Given two points are \(A(2,1)\) and \(B(3,-2)\).
Now, area of \(\triangle B C\)
\(
=\frac{1}{2}\left|\begin{array}{ccc}
2 & 1 & 1 \\
3 & -2 & 1 \\
\lambda & \lambda+3 & 1
\end{array}\right|= \pm 5
\)
\(
\begin{aligned}
& \Rightarrow|2(-2-\lambda-3)-1(3-\lambda)(3 \lambda+9+2 \lambda)|=10 \\
& \Rightarrow|-2 \lambda-10-3+\lambda+5 \lambda+9|=10 \Rightarrow|4 \lambda-4|=10
\end{aligned}
\)
\(
\begin{array}{ll}
\Rightarrow 4 \lambda-4=10 & \text { or } 4 \lambda-4=-10 \\
\Rightarrow \lambda=7 / 2 & \text { or } \lambda=-3 / 2
\end{array}
\)
\(
\therefore \quad \text { Coordinates of } C \text { are }\left(\frac{7}{2}, \frac{13}{2}\right) \text { or }\left(\frac{-3}{2}, \frac{3}{2}\right)
\)
A straight line segment of length \(\ell\) moves with its ends on two mutually perpendicular lines. Find the locus of the point which divides the line segment in the ratio \(1: 2\). [JEE 1978]
Let \(AB =\ell\) and \(P ( x , y )\) divides line segment \(AB\) in the ratio \(1: 2\).
\(
\therefore \quad AP =\ell / 3 \text { and } BP =2 \ell / 3
\)
Then \(PN = x\) and \(PM = y\)
Let \(\angle PAM =\theta=\angle BPN\)
In right \(\angle P M A, \sin \theta=\frac{y}{\ell / 3}=\frac{3 y}{\ell}\)
In right \(\angle P N B, \cos \theta=\frac{x}{2 \ell / 3}=\frac{3 x}{2 \ell}\)
Now, \(\sin ^2 \theta+\cos ^2 \theta=1\)
\(
\Rightarrow \frac{9 y^2}{\ell^2}+\frac{9 x^2}{4 \ell^2}=1 \Rightarrow 9 x ^2+36 y ^2=4 \ell^2
\)
Let \(P S\) be the median of the triangle with vertices \(P(2,2), Q(6,-1)\) and \(R(7,3)\). The equation of the line passing through \((1,-1)\) and parallel to \(P S\) is [JEE 2000S]
(d) \(S\) is the midpoint of \(Q\) and \(R\)
\(
\therefore S \equiv\left(\frac{7+6}{2}, \frac{3-1}{2}\right)=\left(\frac{13}{2}, 1\right)
\)
Now slope of \(P S=\frac{2-1}{2-13 / 2}=-\frac{2}{9}\)
Now equation of the line passing through \((1,-1)\) and parallel to \(P S\) is
\(
y+1=-\frac{2}{9}(x-1) \Rightarrow 2 x+9 y+7=0
\)
The equations to a pair of opposite sides of parallelogram are \(x^2-5 x\) \(+6=0\) and \(y^2-6 y+5=0\), the equations to its diagonals are [JEE 1994]
\(
\begin{aligned}
& \text { (c) } x^2-5 x+6=0 \\
& \Rightarrow \quad(x-2)(x-3)=0 \\
& \therefore \quad x=2 \text { and } x=3 \\
& \text { And } y^2-6 y+5=0
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \quad(y-1)(y-5)=0 \\
& \therefore \quad y=1 \text { and } y=5
\end{aligned}
\)
The sides of parallelogram are
\(
x=2, x=3, y=1, y=5 \text {. }
\)
\(\therefore \quad\) Diagonal \(A C\) is \(\frac{y-1}{5-1}=\frac{x-2}{3-2} \Rightarrow y=4 x-7\)
Equation of diagonal \(B D\) is \(\frac{x-2}{3-2}=\frac{y-5}{1-5} \Rightarrow 4 x+y=13\)
Let \(L_1\) be a straight line passing through the origin and \(L_2\) be the straight line \(x+y=1\). If the intercepts made by the circle \(x^2+y^2-x+3 y=0\) on \(L_1\) and \(L_2\) are equal, then which of the following equations can represent \(L _1\) ? [JEE 1999]
(b, c) We know that length of intercept made by a circle on a line is given by \(=2 \sqrt{r^2-p^2}\), where
\(p=\) perpendicular distance of the line from the centre of the circle.
Here, circle is \(x^2+y^2-x+3 y=0\) with centre \(\left(\frac{1}{2}, \frac{-3}{2}\right)\) and radius
\(
=\frac{\sqrt{10}}{2}
\)
Let \(L_1: y=m x\) (any line through origin)
Now, \(L_z: x+y-1=0\) (given line)
ATQ circle makes equal intercepts on \(L_1\) and \(L_2\)
\(
\begin{aligned}
& \Rightarrow 2 \sqrt{\frac{10}{4}-\frac{\left(\frac{m}{2}+\frac{3}{2}\right)^2}{m^2+1}}=2 \sqrt{\frac{10}{4}-\frac{\left(\frac{1}{2}-\frac{3}{2}-1\right)^2}{2}} \\
& \Rightarrow \frac{\left(\frac{m+3}{2}\right)^2}{m^2+1}=2 \\
& \Rightarrow m^2+6 m+9=8 m^2+8 \Rightarrow 7 m^2-6 m-1=0 \\
& \Rightarrow(7 m+1)(m-1)=0 \Rightarrow m=1,-1 / 7
\end{aligned}
\)
\(\therefore \quad\) The required line \(L_1\) is \(y=x\) or \(y=-\frac{x}{7}\), i.e., \(x-y=0 \quad\) or \(\quad x+7 y=0\).
Straight lines \(3 x+4 y=5\) and \(4 x-3 y=15\) intersect at the point \(A\). Points \(B\) and \(C\) are chosen on these two lines such that \(A B=A C\). Determine the possible equations of the line \(B C\) passing through the point \((1,2)\). [JEE 1990]
The given straight lines are \(3 x+4 y=5\) and \(4 x-3 y=15\). Clearly these straight lines are perpendicular to each other as \(m_1 m_2=-1\) i.e., product of their slopes is -1 . The given two lines intersect at \(A\).
\(
\begin{array}{r}
A B=A C \\
\angle B=\angle C=45^{\circ}
\end{array}
\)
\(
\text { Let slope of } B C \text { be } m \text {. Then }
\)
\(
\begin{aligned}
& \tan 45^{\circ}=\left|\frac{m+3 / 4}{1-\frac{3}{4} m}\right| \\
\Rightarrow & 4 m+3= \pm(4-3 m) \\
\Rightarrow & 4 m+3=4-3 m \text { or } \quad 4 m+3=-4+3 m \\
\Rightarrow & m=1 / 7 \text { or } m=-7 \\
\therefore & \text { Equation of } B C \text { is, } y-2=\frac{1}{7}(x-1) \\
& \quad \text { or } y-2=-7(x-1) \\
\Rightarrow & 7 y-14=x-1 \text { or } y-2=-7 x+7 \\
\Rightarrow & x-7 y+13=0 \text { or } 7 x+y-9=0
\end{aligned}
\)
Lines \(L_1 \equiv a x+b y+c=0\) and \(L_2 \equiv I x+m y+n=0\) intersect at the point \(P\) and make an angle \(\theta\) with each other. Find the equation of a line \(L\) different from \(L_2\) which passes through \(P\) and makes the same angle \(\theta\) with \(L_1\). [JEE 1988]
Let the equation of other line \(L\), which passes through the point of intersection \(P\) of lines
\(
\begin{aligned}
& \quad L_1 \equiv a x+b y+c=0 \dots(i)\\
& \text { and } L_2 \equiv \ell x+m y+n=0 \dots(ii)\\
& \text { be } L_1+\lambda L_2=0 \\
& \Rightarrow(a x+b y+c)+\lambda(\ell x+m y+n)=0 \dots(iii)
\end{aligned}
\)
From figure it is clear that \(L_1\) is the bisector of the angle between the lines given by (ii) and (iii) [i.e. \(L_2\) and \(L\) ]
Let \(M(\alpha, \beta)\) be any point on \(L_1\) then
\(
a \alpha+b \beta+c=0 \dots(iv)
\)
Also from \(M\), lengths of perpendiculars to lines \(L\) and \(L_2\) given by equations (iii) and (iv), are equal.
\(
\therefore \frac{\ell \alpha+m \beta+n}{\sqrt{\ell^2+m^2}}= \pm \frac{(a \alpha+b \beta+c)+\lambda(l \alpha+m \beta+n)}{\sqrt{(a+\lambda)^2+(b+\lambda m)^2}}
\)
\(
\begin{aligned}
& \Rightarrow \frac{1}{\sqrt{\ell^2+m^2}}= \pm \frac{\lambda}{\sqrt{\left(\ell^2+m^2\right) \lambda^2+2(a \ell+b m) \lambda+\left(a^2+b^2\right)}} \text { [using (iv)] }\\
& \Rightarrow\left(\ell^2+m^2\right) \lambda^2+2(a \ell+b m) \lambda+\left(a^2+b^2\right)=\lambda^2\left(\ell^2+m^2\right) \\
& \Rightarrow \lambda=-\frac{a^2+b^2}{2(a \ell+b m)}
\end{aligned}
\)
On substituting this value of \(\lambda\) in eq. (iii), we get the equation of \(L\) as
\(
\begin{gathered}
(a x+b y+c)-\frac{\left(a^2+b^2\right)}{2(a \ell+b m)}(\ell x+m y+n)=0 \\
\Rightarrow\left(a^2+b^2\right)(\ell x+m y+n)-2(a \ell+b m)(a x+b y+c)=0
\end{gathered}
\)
Two equal sides of an isosceles triangle are given by the equations \(7 x-y+3=0\) and \(x+y-3=0\) and its third side passes through the point \((1,-10)\). Determine the equation of the third side. [JEE 1984]
Let equations of equal sides \(A B\) and \(A C\) of isosceles \(\triangle A B C\) are
\(
7 x-y+3=0
\)
and \(x+y-3=0\)
Now slope of \(A B=7\) and slope of \(A C=-1\)
The third side \(B C\) of the triangle passes through the point \((1,-10)\). Let its slope be \(m\).
\(
\text { As } A B=A C
\)
\(
\begin{aligned}
& \therefore \quad \angle B=\angle C \\
& \Rightarrow \quad \tan B=\tan C
\end{aligned}
\)
\(
\begin{aligned}
& \therefore\left|\frac{7-m}{1+7 m}\right|=\left|\frac{-1-m}{1-m}\right| \\
& \Rightarrow \frac{7-m}{1+7 m}= \pm\left(\frac{-1-m}{1-m}\right)
\end{aligned}
\)
On taking ‘ + ‘ sign, we get
\(
\begin{aligned}
& (7-m)(1-m)=-(1+m)(1+7 m) \\
& \Rightarrow 7-8 m+m^2+7 m^2+8 m+1=0
\end{aligned}
\)
\(
\Rightarrow 8 m^2+8=0 \Rightarrow m^2+1=0
\)
It has no real solution.
On taking ‘-‘ sign, we get
\(
\begin{aligned}
& (7-m)(1-m)=(1+m)(1+7 m) \\
& \Rightarrow 7-8 m+m^2-7 m^2-8 m-1=0 \\
& \Rightarrow-6 m^2-16 m+6=0 \Rightarrow 3 m^2+8 m-3=0 \\
& \Rightarrow(3 m-1)(m+3)=0 \Rightarrow m=1 / 3,-3
\end{aligned}
\)
\(\therefore \quad\) The required line is
\(
y+10=\frac{1}{3}(x-1) \text { or } y+10=-3(x-1)
\)
i.e. \(x-3 y-31=0\) or \(3 x+y+7=0\).
A straight line \(L\) is perpendicular to the line \(5 x-y=1\). The area of the triangle formed by the line \(L\) and the coordinate axes is 5 . Find the equation of the line \(L\). [JEE 1980]
The given line is \(5 x-y=1\)
\(\therefore \quad\) The equation of line \(L\) which is perpendicular to the given line is \(x+5 y=\lambda\). This line meets co-ordinate axes at \(A(\lambda, 0)\) and \(B(0, \lambda / 5)\).
Now, area of \(\triangle O A B=\frac{1}{2} \times O A \times O B\)
\(
\Rightarrow 5=\frac{1}{2} \times \lambda \times \frac{\lambda}{5} \Rightarrow \lambda^2=5^2 \times 2 \Rightarrow \lambda= \pm 5 \sqrt{2}
\)
\(\therefore \quad\) The equation of line \(L\) is \(x+5 y-5 \sqrt{2}=0\) or \(x+5 y+5 \sqrt{2}=0\).
One side of a rectangle lies along the line \(4 x+7 y+5=0\). Two of its vertices are \((-3,1)\) and \((1,1)\). Find the equations of the other three sides. [JEE 1978]
Let side \(A B\) of rectangle \(A B C D\) lies along
\(
4 x+7 y+5=0 \dots(i)
\)
As \((-3,1)\) lies on the line, let it be vertex \(A\).
Since \((1,1)\) does not satisfy equation (i), therefore \((1,1)\) is either vertex \(C\) or \(D\).
If \((1,1)\) is vertex \(D\) then slope of \(A D=0\)
\(\therefore A D\) is not perpendicular to \(A B\), which contradict ‘ \(A B C D\) is a rectangle’.
\(\therefore(1,1)\) are the co-ordinates of vertex \(C\).
\(C D\) is a line parallel to \(A B\) and passing through \(C\), therefore equation of \(C D\) is
\(
y-1=-\frac{4}{7}(x-1) \Rightarrow 4 x+7 y-11=0
\)
Also \(B C\) is a line perpendicular to \(A B\) and passing through \(C\), therefore equation of \(B C\) is
\(
y-1=\frac{7}{4}(x-1) \Rightarrow 7 x-4 y-3=0
\)
Similarly, \(A D\) is a line perpendicular to \(A B\) and passing through \(A(-3,1)\), therefore equation of line \(A D\) is
\(
y-1=\frac{7}{4}(x+3) \Rightarrow 7 x-4 y+25=0
\)
Let \(P=(-1,0), Q=(0,0)\) and \(R =(3,3 \sqrt{3})\) be three points. Then the equation of the bisector of the angle \(P Q R\) is [JEE 2002]
\(
\text { (c) } \tan \theta=\sqrt{3} \Rightarrow \theta=60^{\circ} \Rightarrow \angle P Q R=120^{\circ}
\)
\(\therefore \quad\) Slope of bisector of \(\angle P Q R=\tan 120^{\circ}\) Hence, equation of bisector is \(\sqrt{3} x+y=0\)
Let \(0<\alpha<\frac{\pi}{2}\) be fixed angle. If
\(
P =(\cos \theta, \sin \theta) \text { and } Q =(\cos (\alpha-\theta), \sin (\alpha-\theta)),
\)
then \(Q\) is obtained from \(P\) by [JEE 2002]
\(
\text { (d) Clearly } O P=O Q=1 \text { and } \angle Q O P=\alpha-\theta-\theta=\alpha-2 \theta \text {. }
\)
The bisector of \(\angle Q O P\) will be a perpendicular bisector of \(P Q\) also. Hence \(Q\) is reflection of \(P\) in the line \(O M\) which makes an angle \(\angle M O P+\) \(\angle P O X\) with \(x\)-axis, i.e., \(\frac{1}{2}(\alpha-2 \theta)+\theta=\alpha / 2\).
So that slope of \(O M\) is \(\tan \alpha / 2\).
Line \(L\) has intercepts \(a\) and \(b\) on the coordinate axes. When the axes are rotated through a given angle, keeping the origin fixed, the same line \(L\) has intercepts \(p\) and \(q\), then [JEE 1990]
(b) As \(L\) has intercepts \(a\) and \(b\) on axes, equation of \(L\) is
\(
\frac{x}{a}+\frac{y}{b}=1 \dots(i)
\)
Let \(x\) and \(y\) axes be rotated through an angle \(\theta\) in anticlockwise direction.
In new system intercepts are \(p\) and \(q\), therefore equation of \(L\) becomes
\(
\frac{x}{p}+\frac{y}{q}=1 \dots(ii)
\)
As the origin is fixed in rotation, the distance of line from origin in both the cases should be same.
\(
\begin{aligned}
& d=\left|\frac{1}{\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}}\right|=\left|\frac{1}{\sqrt{\frac{1}{p^2}+\frac{1}{q^2}}}\right| \\
& \Rightarrow \frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{p^2}+\frac{1}{q^2}
\end{aligned}
\)
The points \((-a,-b),(0,0),(a, b)\) and \(\left(a^2, a b\right)\) are : [JEE 1979]
(a) Let \((-a,-b),(0,0),(a, b)\) and \(\left(a^2, a b\right)\) are the coordinates of \(A\), \(B, C\) and \(D\) respectively.
Now, slope of \(A B=\frac{b}{a}=\) Slope of \(B C=\) Slope of \(B D\)
\(\therefore \quad A, B, C, D\) are collinear.
Let the algebraic sum of the perpendicular distances from the points \((2,0),(0,2)\) and \((1,1)\) to a variable straight line be zero; then the line passes through a fixed point whose cordinates are [JEE 1991]
Let the variable line be \(a x+b y+c=0 \dots(i)\)
\(\therefore\) perpendicular distance of line from \((2,0)=\frac{2 a+c}{\sqrt{a^2+b^2}}\)
Perpendicular distance of line from \((0,2)=\frac{2 b+c}{\sqrt{a^2+b^2}}\)
Perpendicular distance of line from \((1,1)=\frac{a+b+c}{\sqrt{a^2+b^2}}\)
Now, \(\frac{2 a+c}{\sqrt{a^2+b^2}}+\frac{2 b+c}{\sqrt{a^2+b^2}}+\frac{a+b+c}{\sqrt{a^2+b^2}}=0\)
\(
\begin{aligned}
& \Rightarrow \frac{2 a+c+2 b+c+a+b+c}{\sqrt{a^2+b^2}}=0 \\
& \Rightarrow a+b+c=0 \dots(ii)
\end{aligned}
\)
From (i) and (ii), we can say variable line (i) passes through the fixed point \((1,1)\).
If \(a, b\) and \(c\) are in A.P., then the straight line \(a x+b y+c=0\) will always pass through a fixed point whose coordinates are [JEE 1984]
If \(a, b, c\) are in A.P. then
\(
\begin{aligned}
& a+c=2 b \Rightarrow a-2 b+c=0 \\
\Rightarrow & a x+b y+c=0 \text { passes through the point }(1,-2) .
\end{aligned}
\)
The set of lines \(a x+b y+c=0\), where \(3 a+2 b+4 c=0\) is concurrent at the point [JEE 1982]
Given that \(3 a+2 b+4 c=0 \Rightarrow \frac{3}{4} a+\frac{1}{2} b+c=0\)
\(\Rightarrow\) The set of lines \(a x+b y+c=0\) passes through the point (3/4,
\(1 / 2)\) and hence concurrent at \(\left(\frac{3}{4}, \frac{1}{2}\right)\).
The straight line \(5 x+4 y=0\) passes through the point of intersection of the straight lines \(x+2 y-10=0\) and \(2 x+y+5=0\). [JEE 1983]
(True) Intersection point of \(x+2 y-10=0\) and \(2 x+y+5=0\) is \(\left(\frac{-20}{3}, \frac{25}{3}\right)\) which clearly satisfies the line \(5 x+4 y=0\). Hence the given statement is true.
Three lines \(p x+q y+r=0, q x+r y+p=0\) and \(r x+p y+q=0\) are concurrent if [JEE 1985]
For concurrency of three given lines,
\(
\left|\begin{array}{lll}
p & q & r \\
q & r & p \\
r & p & q
\end{array}\right|=0
\)
On applying \(C_1=C_1+C_2+C_3\)
\(
\begin{aligned}
& \left|\begin{array}{lll}
p+q+r & q & r \\
p+q+r & r & p \\
p+q+r & p & q
\end{array}\right|=0 \\
\Rightarrow & (p+q+r)\left|\begin{array}{lll}
1 & q & r \\
1 & r & p \\
1 & p & q
\end{array}\right|=0
\end{aligned}
\)
On applying \(C_1-C_2, C_2-C_3\),
\(
\begin{aligned}
& (p+q+r)\left|\begin{array}{ccc}
0 & q-r & r-p \\
0 & r-p & p-q \\
1 & p & q
\end{array}\right|=0 \\
\Rightarrow & (p+q+r)\left(p q-q^2-r p+r q-r^2+p r+p r-p^2\right)=0 \\
\Rightarrow & (p+q+r)\left(p^2+q^2+r^2-p q-p r-r q\right)=0 \\
\Rightarrow & p^3+q^3+r^3-3 p q r=0
\end{aligned}
\)
\(
\text { If } p+q+r=0 \text {, then } p^3+q^3+r^3=3 p q r \text { ] }
\)
It is clear that \(a, b, c\) are correct options.
Lines \(L_1: y-x=0\) and \(L_2: 2 x +y=0\) intersect the line \(L_3: y+2=0\) at \(P\) and \(Q\), respectively. The bisector of the acute angle between \(L_1\) and \(L_2\) intersects \(L_3\) at \(R\).
STATEMENT-1 : The ratio \(P R: R Q\) equals \(2 \sqrt{2}: \sqrt{5}\).
STATEMENT-2 : In any triangle, bisector of an angle divides the triangle into two similar triangles. [JEE 2007]
(c) Point of intersection of \(L_1\) and \(L_2\) is \(A(0,0)\). Also \(P(-2,-2), Q(1,-2)\)
\(\because \quad A R\) is the bisector of \(\angle P A Q\), therefore \(R\) divides \(P Q\) in the ratio of \(A P: A Q\).
i.e., \(P R: R Q=A P: A Q=2 \sqrt{2}: \sqrt{5}\)
\(\therefore \quad\) Statement-1 is true.
Statement-2 is clearly false.
Let \(P Q R\) be a right angled isosceles triangle, right angled at \(P(2,1)\). If the equation of the line \(Q R\) is \(2 x+y=3\), then the equation representing the pair of lines \(P Q\) and \(P R\) is [JEE 1999]
(b) Let \(m\) be the slope of \(P Q\)
Slope of \(Q R=-2\)
As \(P Q\) makes an angle \(45^{\circ}\) with \(Q R\)
\(
\begin{aligned}
& \therefore \tan 45^{\circ}=\left|\frac{m-(-2)}{1+m(-2)}\right| \\
& \Rightarrow \quad 1=\left|\frac{m+2}{1-2 m}\right| \Rightarrow \pm 1=\frac{m+2}{1-2 m} \\
& \Rightarrow m+2=1-2 m \text { or }-1+2 m=m+2 \\
& \Rightarrow \quad m=-1 / 3 \quad \text { or } m=3 \\
&
\end{aligned}
\)
Since \(P Q \perp P R\)
\(\therefore\) If slope of \(P Q=-\frac{1}{3}\), then slope of \(P R=3\) and if slope of \(P Q=3\),
then slope of \(P R=-\frac{1}{3}\)
\(\therefore \quad\) Equation of \(P Q\) is \(y-1=-\frac{1}{3}(x-2)\)
\(
\Rightarrow 3 y-3=-x+2 \Rightarrow x+3 y-5=0
\)
and equation of \(P R\) is \(3 x-y-5=0\)
\(\therefore \quad\) Combined equation of \(P Q\) and \(P R\) is
\(
\begin{aligned}
& (x+3 y-5)(3 x-y-5)=0 \\
& \quad \Rightarrow 3 x^2-3 y^2+8 x y-20 x-10 y+25=0
\end{aligned}
\)
Show that all chords of the curve \(3 x^2-y^2-2 x+4 y=0\), which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point. [JEE 1991]
Given curve :
\(
3 x^2-y^2-2 x+4 y=0
\)
Let \(y=m x+c\) be the chord of curve (i) which subtends a right angle at origin.
Then the combined eq. of lines joining points of intersection of curve (i) and chord \(y=m x+c\) to the origin, can be obtained by making the equation of curve homogeneous with the help of equation of chord, as follows.
\(
\begin{aligned}
& 3 x^2-y^2-2 x\left(\frac{y-m x}{c}\right)+4 y\left(\frac{y-m x}{c}\right)=0 \\
& \Rightarrow(3 c+2 m) x^2-2(1+2 m) x y+(4-c) y^2=0 \dots(ii)
\end{aligned}
\)
As a pair of lines represented by (ii) are perpendicular to each other, therefore we must have
Coeff. of \(x^2+\) Coeff. of \(y^2=0\)
\(
\Rightarrow 3 c+2 m+4-c=0 \Rightarrow-2=m .1+c
\)
Which on comparing with equation \(y=m x+c\) of chord, implies that \(y=\) \(m x+c\) passes though \((1,-2)\).
\(\therefore \quad\) The family of chords must pass through \((1,-2)\).
You cannot copy content of this page