0 of 85 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 85 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If \(\sin \theta=\frac{1}{2}\) and \(\cos \theta=-\frac{\sqrt{3}}{2}\), then the general value of \(\theta\) is \((n \in Z)\)
(a) \(\sin \theta=1 / 2\) and \(\cos \theta=-\sqrt{3} / 2\)
\(\Rightarrow \theta\) lies in the second quadrant.
\(\Rightarrow \sin \theta=\sin 5 \pi / 6 ; \cos \theta=\cos 5 \pi / 6\);
\(\therefore \theta=2 n \pi+(5 \pi / 6)\)
The most general value for which \(\tan \theta=-1, \cos \theta=\frac{1}{\sqrt{2}}\) is \((n \in Z)\)
(c) Since \(\tan \theta<0\) and \(\cos \theta>0, \theta\) lies in the fourth quadrant. Then \(\theta=7 \pi / 4\).
Hence, the general value of \(\theta\) is \(2 n \pi+7 \pi / 4, n \in Z\).
If \(\cos p \theta+\cos q \theta=0\), then the different values of \(\theta\) are in A.P. where the common difference is
(c)
\(
\begin{aligned}
&\begin{aligned}
& \cos p \theta=-\cos q \theta=\cos (\pi-q \theta) \\
& \Rightarrow p \theta=2 n \pi \pm(\pi-q \theta) \\
& \Rightarrow \quad(p \mp q) \theta=(2 n \pm 1) \pi \\
& \Rightarrow \quad \theta=\frac{(2 n \pm 1) \pi}{(p \mp q)}, n \in Z \\
& \Rightarrow \quad \theta=\frac{r \pi}{p \pm q}, \text { where } r=-3,-1,1,3, \ldots \\
& \Rightarrow \quad \theta=\cdots, \frac{-3 \pi}{p \pm q}, \frac{-\pi}{p \pm q}, \frac{\pi}{p \pm q}, \frac{3 \pi}{p \pm q}, \cdots
\end{aligned}\\
&\text { Shown above is an A.P. of common difference } \frac{2 \pi}{p \pm q} \text {. }
\end{aligned}
\)
If \(\cos \theta+\cos 7 \theta+\cos 3 \theta+\cos 5 \theta=0\), then \(\theta\) is equal to \((n \in Z)\)
(d)
\(
\begin{aligned}
&\text { A. }\\
&\begin{aligned}
& (\cos \theta+\cos 7 \theta)+(\cos 3 \theta+\cos 5 \theta)=0 \\
& \Rightarrow 2 \cos 4 \theta(\cos 3 \theta+\cos \theta)=0 \\
& \Rightarrow 4 \cos 4 \theta \cos 2 \theta \cos \theta=0 \\
& \Rightarrow 4 \times \frac{1}{2^3 \sin \theta}\left(\sin 2^3 \theta\right)=0 \\
& \Rightarrow \sin 8 \theta=0 \text { or } \theta=n \pi / 8, n \in Z
\end{aligned}
\end{aligned}
\)
If \(3 \tan ^2 \theta-2 \sin \theta=0\), then \(\theta\) is equal to \((n \in Z)\)
(b)
\(
\begin{aligned}
& 3 \frac{\sin ^2 \theta}{\cos ^2 \theta}-2 \sin \theta=0, \cos \theta \neq 0 \\
& \Rightarrow 3 \sin ^2 \theta-2 \sin \theta\left(1-\sin ^2 \theta\right)=0 \\
& \Rightarrow \sin \theta\left(2 \sin ^2 \theta+3 \sin \theta-2\right)=0 \\
& \Rightarrow \sin \theta(2 \sin \theta-1)(\sin \theta+2)=0 \\
& \Rightarrow \sin \theta=0,1 \\
& \Rightarrow \theta=n \pi, n \pi+(-1)^n(\pi / 6), n \in Z
\end{aligned}
\)
If \(\sin \theta, 1, \cos 2 \theta\) are in G.P., then \(\theta\) is equal to \((n \in Z)\)
(b)
\(
\begin{aligned}
&\text { We have } 1^2=\sin \theta \cos 2 \theta\\
&\begin{aligned}
& \Rightarrow \quad 1-\sin \theta\left(1-2 \sin ^2 \theta\right)=0 \\
& \Rightarrow \quad 2 \sin ^3 \theta-\sin \theta+1=0 \\
& \Rightarrow \quad(\sin \theta+1)\left(2 \sin ^2 \theta-2 \sin \theta+1\right)=0 \\
& \Rightarrow \quad \sin \theta=-1
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
&\text { The other factor gives imaginary roots. }\\
&\Rightarrow \quad \theta=n \pi+(-1)^n\left(-\frac{\pi}{2}\right)=n \pi-(-1)^n \frac{\pi}{2}=n \pi+(-1)^{n-1} \frac{\pi}{2}, n \in Z .
\end{aligned}
\)
The sum of all the solutions of the equation \(\cos \theta \cos \left(\frac{\pi}{3}+\theta\right) \cos \left(\frac{\pi}{3}-\theta\right)=\frac{1}{4}, \theta \in[0,6 \pi]\)
(b)
\(
\begin{aligned}
& 2 \cos \theta\left[\cos 120^{\circ}+\cos 2 \theta\right]=1 \\
& \Rightarrow 2 \cos \theta\left(-\frac{1}{2}+2 \cos ^2 \theta-1\right)=1 \\
& \Rightarrow 4 \cos ^3 \theta-3 \cos \theta-1=0 \\
& \Rightarrow \cos 3 \theta=1=\cos 0 \\
& \Rightarrow 3 \theta=2 n \pi \text { or } \theta=\frac{2 n \pi}{3}, n \in Z
\end{aligned}
\)
Given the values so that \(2 n\) does not exceed 18 .
\(
\therefore \quad n=0,1,2,3, \ldots, 9
\)
Hence, the sum \(=\frac{2 \pi}{3} \sum_1^9 n=\frac{2 \pi}{3} \times \frac{9(9+1)}{2}=30 \pi\).
If \(\sec \theta-1=(\sqrt{2}-1) \tan \theta\), then \(\theta\) is equal to \((n \in Z)\)
(b)
\(
\begin{aligned}
& \sec \theta-1=(\sqrt{2}-1) \tan \theta \Rightarrow \frac{1-\cos \theta}{\cos \theta}=\frac{(\sqrt{2}-1) \sin \theta}{\cos \theta} \\
& \Rightarrow 2 \sin ^2(\theta / 2)=(-\sqrt{2}-1) 2 \sin (\theta / 2) \cos (\theta / 2) \\
& \Rightarrow \sin (\theta / 2)=0 \text { or } \tan (\theta / 2)=(\sqrt{2}-1)=\tan (\pi / 8) \\
& \Rightarrow \theta / 2=n \pi \text { or } \theta / 2=n \pi+(\pi / 8), n \in Z \\
& \Rightarrow \theta=2 n \pi \text { or } \theta=2 n \pi+(\pi / 4), n \in Z
\end{aligned}
\)
The total number of solution of \(\sin ^4 x+\cos ^4 x=\sin x \cos x\) in \([0,2 \pi]\) is equal to
(a)
\(
\begin{aligned}
& \sin ^4 x+\cos ^4 x=\sin x \cos x \\
& \Rightarrow\left(\sin ^2 x+\cos ^2 x\right)^2-2 \sin ^2 x \cos ^2 x=\sin x \cos x \\
& \Rightarrow 1-\frac{\sin ^2 2 x}{2}=\frac{\sin 2 x}{2} \\
& \Rightarrow \sin ^2 2 x+\sin 2 x-2=0 \\
& \Rightarrow(\sin 2 x+2)(\sin 2 x-1)=0 \\
& \Rightarrow \sin 2 x=1
\end{aligned}
\)
\(
\begin{aligned}
&\begin{aligned}
\Rightarrow \quad 2 x & =(4 n+1) \frac{\pi}{2}, n \in Z \\
\Rightarrow \quad x & =(4 n+1) \frac{\pi}{4}, n \in Z \\
& =\frac{\pi}{4}, \frac{5 \pi}{4}(\because x \in[0,2 \pi])
\end{aligned}\\
&\text { Thus, there are two solutions. }
\end{aligned}
\)
Number of solutions of \(\sin 5 x+\sin 3 x+\sin x=0\) for \(0 \leq x \leq \pi\) is
(c)
\(
\begin{aligned}
&\begin{aligned}
& \sin 3 x+(\sin 5 x+\sin x)=0 \\
& \Rightarrow \sin 3 x+(2 \sin 3 x \cos 2 x)=0 \\
& \Rightarrow \sin 3 x=0 \text { or } \cos 2 x=-\frac{1}{2}=\cos \frac{2 \pi}{3} \\
& \Rightarrow x=n \pi / 3 \text { or } x=n \pi \pm \pi / 3, n \in Z
\end{aligned}\\
&\text { Then } x=0, \pi / 3 \text {, and } 2 \pi / 3 \text {, Hence, there are three solutions. }
\end{aligned}
\)
The sum of all the solution of \(\cot \theta=\sin 2 \theta,(\theta \neq n \pi, n\) integer \(), 0 \leq \theta \leq \pi\) is
(a) From the given relation
\(
\begin{aligned}
& \cos \theta=(2 \sin \theta \cos \theta) \sin \theta, \sin \theta \neq 0 \\
& \Rightarrow \sin \theta= \pm \frac{1}{\sqrt{2}} \text { or } \cos \theta=0 \\
& \Rightarrow \quad \theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{\pi}{2}(\because \theta \in[0, \pi])
\end{aligned}
\)
Then the sum of roots is \(\frac{3 \pi}{2}\).
The number of solutions of \(12 \cos ^3 x-7 \cos ^2 x+4 \cos x=9\) is
(c) The given equation is \((\cos x-1)\left(12 \cos ^2 x+5 \cos x+9\right)=0\) \(\Rightarrow \cos x=1\) only as the other factor gives imaginary roots
\(
=1 \Rightarrow x=2 n \pi, n \in Z
\)
Hence, it has infinite solutions as \(n \in Z\).
Which of the following is not the general solution of \(2^{\cos 2 x}+1=3.2^{-\sin ^2 x}\)?
(d)
\(
\begin{aligned}
& \cos 2 x=1-2 \sin ^2 x \text { and put } 2^{-\sin ^2 x}=t \\
& \Rightarrow 2^{\cos 2 x}=2^{1-2 \sin ^2 x}=2\left(2^{-\sin ^2 x}\right)^2=2 t^2 \\
& \Rightarrow 2 t^2-3 t+1=0 \\
& \Rightarrow t=1,1 / 2 \\
& \Rightarrow 2^{-\sin ^2 x}=1=2^0 \\
& \Rightarrow \sin ^2 x=0 \text { or } x=n \pi, n \in Z \\
& \text { From } 2^{-\sin ^2 x}=\frac{1}{2}=2^{-1}, \text { we get } \\
& \sin ^2 x=1 \text { or } x=n \pi \pm \frac{\pi}{2}, n \in Z
\end{aligned}
\)
The general solution of \(\cos x \cos 6 x=-1\) is
(a)
\(
\begin{aligned}
& \cos x \cos 6 x=-1 \\
& \Rightarrow 2 \cos x \cos 6 x=-2 \quad \Rightarrow \cos 7 x+\cos 5 x=-2 \quad \Rightarrow \cos 7 x=-1 \text { and } \cos 5 x=-1
\end{aligned}
\)
The value of \(x\) satisfying these two equations simultaneously and lying between 0 and \(2 \pi\) is \(\pi\). Therefore, the general solution is \(x=2 n \pi+\pi, n \in Z\).
\(
\Rightarrow \quad x=(2 n+1) \pi, n \in Z
\)
The equation \(\cos x+\sin x=2\) has
(c) This is possible only when \(\sin x=\cos x=1\), which does not hold simultaneously. Hence, there is no solution.
If \(0 \leq x \leq 2 \pi\), then the number of solutions of \(3(\sin x+\cos x)-2\left(\sin ^3 x+\cos ^3 x\right)=8\) is
(a) The given equation is \(3(\sin x+\cos x)-2(\sin x+\cos x)(1-\sin x \cos x)=8\)
\(
\begin{aligned}
& \Rightarrow \quad(\sin x+\cos x)[3-2+2 \sin x \cos x]=8 \\
& \Rightarrow \quad(\sin x+\cos x)\left[\sin ^2 x+\cos ^2 x+2 \sin x \cos x\right]=8 \\
& \Rightarrow \quad(\sin x+\cos x)^3=8 \\
& \Rightarrow \quad \sin x+\cos x=2
\end{aligned}
\)
Above solution is not possible. Hence, the given equation has no solution.
If \(\frac{1}{6} \sin \theta, \cos \theta, \tan \theta\) are in G.P., then \(\theta\) is equal to \((n \in Z)\)
(a)
\(
\begin{aligned}
& \cos ^2 \theta=\frac{1}{6} \sin \theta \tan \theta \\
& \Rightarrow 6 \cos ^3 \theta=1-\cos ^2 \theta \\
& \Rightarrow 6 \cos ^3 \theta+\cos ^2 \theta-1=0 \\
& \Rightarrow(2 \cos \theta-1)\left(3 \cos ^2 \theta+2 \cos \theta+1\right)=0
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=2 n \pi \pm \frac{\pi}{3}, n \in Z\\
&\text { The other factor gives imaginary roots. }
\end{aligned}
\)
The number of solutions of \(2 \sin ^2 x+\sin ^2 2 x=2, x \in[0,2 \pi]\) is
(c)
\(
\begin{aligned}
&\begin{aligned}
& (1-\cos 2 x)+\left(1-\cos ^2 2 x\right)=2 \\
& \Rightarrow \cos 2 x(\cos 2 x+1)=0 \\
& \Rightarrow \cos 2 x=0 \text { or } \cos 2 x=-1 \\
& \Rightarrow 2 x=(2 n+1) \pi / 2 \text { or } 2 x=(2 n \pm 1) \pi, n \in Z \\
& \Rightarrow x=(2 n+1) \pi / 4 \text { or } x=(2 n \pm 1) \pi / 2, n \in Z
\end{aligned}\\
&\text { Hence, the solutions are } \pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4, \pi / 2,3 \pi / 2 \text {. }
\end{aligned}
\)
General solution of \(\sin ^2 x-5 \sin x \cos x-6 \cos ^2 x=0\) is
(c) Dividing the given equation by \(\cos ^2 x\), as \(\cos x=0\) does not satisfy the equation, we have
\(
\begin{aligned}
& \tan ^2 x-5 \tan x-6=0 \\
& \Rightarrow(\tan x+1)(\tan x-6)=0 \\
& \Rightarrow \tan x=-1 \text { or } \tan x=6
\end{aligned}
\)
If \(\tan x=-1=\tan (-\pi / 4)\), then \(x=n \pi-\pi / 4, \forall n \in Z\)
and, if \(\tan x=6=\tan \alpha\) (say)
\(
\Rightarrow \quad \alpha=\tan ^{-1} 6, \text { then } x=n \pi+\alpha=n \pi+\tan ^{-1} 6, \forall n \in Z
\)
Hence, \(x=n \pi-(\pi / 4), n \pi+\tan ^{-1} 6, n \in Z\).
General solution of \(\tan \theta+\tan 4 \theta+\tan 7 \theta=\tan \theta \tan 4 \theta \tan 7 \theta\) is
(d)
\(
\begin{aligned}
&\text { From the given equation, we have } \frac{\tan \theta+\tan 4 \theta}{1-\tan \theta \tan 4 \theta}=-\tan 7 \theta\\
&\begin{aligned}
& \Rightarrow \tan (\theta+4 \theta)=-\tan 7 \theta \\
& \Rightarrow \tan 5 \theta=\tan (-7 \theta) \\
& \Rightarrow 5 \theta=n \pi-7 \theta \\
& \Rightarrow \theta=n \pi / 12, \text { where } n \in Z, \text { but } n \neq 6,18,30, \ldots
\end{aligned}
\end{aligned}
\)
The number of solutions of \(\sec ^2 \theta+\operatorname{cosec}^2 \theta+2 \operatorname{cosec}^2 \theta=8,0 \leq \theta \leq \pi / 2\) is
(d) We have \(\frac{1}{\sin ^2 \theta \cos ^2 \theta}+\frac{2}{\sin ^2 \theta}=8, \sin \theta \neq 0, \cos \theta \neq 0\)
\(
\begin{aligned}
& \Rightarrow 1+2 \cos ^2 \theta=8 \sin ^2 \theta \cos ^2 \theta=8 \cos ^2 \theta\left(1-\cos ^2 \theta\right) \\
& \Rightarrow 8 \cos ^4 \theta-6 \cos ^2 \theta+1=0 \\
& \Rightarrow\left(4 \cos ^2 \theta-1\right)\left(2 \cos ^2 \theta-1\right)=0 \\
& \Rightarrow \cos ^2 \theta=1 / 4=\cos ^2(\pi / 3) \text { or } \cos ^2 \theta=1 / 2=\cos ^2(\pi / 4) \\
& \Rightarrow \theta=n \pi \pm(\pi / 3) \text { or } \theta=n \pi \pm(\pi / 4), n \in Z
\end{aligned}
\)
Hence, for \(0 \leq \theta \leq \pi / 2, \theta=\pi / 3, \theta=\pi / 4\)
The total number of solutions of \(\tan x+\cot x=2 \operatorname{cosec} x\) in \([-2 \pi, 2 \pi]\) is
(b)
\(
\begin{aligned}
& \tan x+\cot x=2 \operatorname{cosec} x \\
& \Rightarrow \frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\frac{2}{\sin x} \\
& \Rightarrow \frac{1}{\sin x \cos x}=\frac{2}{\sin x} \\
& \Rightarrow \cos x=\frac{1}{2}
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow \quad x= \pm \frac{\pi}{3}, \pm \frac{5 \pi}{3}\\
&\text { Thus, there are four solutions. }
\end{aligned}
\)
Which of the following is true for \(z=(3+2 i \sin \theta) /(1-2\) i \(\sin \theta)\), where \(i=\sqrt{-1}\)
(c)
\(
\text { Let } Z=\frac{3+2 i \sin \theta}{1-2 i \sin \theta}=\frac{(3+2 i \sin \theta)(1+2 i \sin \theta)}{(1-2 i \sin \theta)(1+2 i \sin \theta)}=\frac{\left(3-4 \sin ^2 \theta\right)+8 i \sin \theta}{1+4 \sin ^2 \theta}
\)
Therefore, the real part of \(Z=\frac{3-4 \sin ^2 \theta}{1+4 \sin ^2 \theta}\) and the imaginary part of \(Z=\frac{8 \sin \theta}{1+4 \sin ^2 \theta}\).
\(Z\) is real, if imaginary part \(=\frac{8 \sin \theta}{1+4 \sin ^2 \theta}=0\) or \(\sin \theta=0\) or \(\theta=n \pi, \forall n \in I\)
\(Z\) is purely imaginary, if real part \(\left(3-4 \sin ^2 \theta\right) /\left(1+4 \sin ^2 \theta\right)=0\)
or \(\sin ^2 \theta=3 / 4=\sin ^2(\pi / 3)\) or \(\theta=n \pi \pm \pi / 3, \forall n \in I\)
Number of roots of \(\cos ^2 x+\frac{\sqrt{3}+1}{2} \sin x-\frac{\sqrt{3}}{4}-1=0\) which liẹ in the interval \([-\pi, \pi]\) is
(b)
\(
\begin{aligned}
&\begin{aligned}
& 1-\sin ^2 x+\frac{\sqrt{3}+1}{2} \sin x-\frac{\sqrt{3}}{4}-1=0 \\
& \Rightarrow \sin ^2 x-\frac{\sqrt{3}+1}{2} \cdot \sin x+\frac{\sqrt{3}}{4}=0 \\
& \Rightarrow 4 \sin ^2 x-2 \sqrt{3} \sin x-2 \sin x+\sqrt{3}=0
\end{aligned}\\
&\text { On solving, we get } \sin x=1 / 2, \sqrt{3} / 2 \text {. }\\
&\Rightarrow x=\pi / 6,5 \pi / 6 ; \pi / 3,2 \pi / 3
\end{aligned}
\)
The complete solution of \(7 \cos ^2 x+\sin x \cos x-3=0\) is given by
(d) Since, \(7 \cos ^2 x+\sin x \cos x-3=0\), Dividing the equation by \(\cos ^2 x\), we get
\(
\begin{aligned}
& 7+\tan x-3 \sec ^2 x=0 \\
& \Rightarrow \quad 7+\tan x-3\left(1+\tan ^2 x\right)=0 \\
& \Rightarrow \quad 3 \tan ^2 x-\tan x-4=0 \\
& \Rightarrow \quad(\tan x+1)(3 \tan x-4)=0 \\
& \Rightarrow \quad \tan x=-1 \text { or } \tan x=\frac{4}{3} \\
& \Rightarrow \quad x=n \pi+\frac{3 \pi}{4} \text { or } x=k \pi+\tan ^{-1}\left(\frac{4}{3}\right), \text { where }(k, n \in Z)
\end{aligned}
\)
Let \(\theta \in[0,4 \pi]\) satisfy the equation \((\sin \theta+2)(\sin \theta+3)(\sin \theta+4)=6\). If the sum of all the values of \(\theta\) is of the form \(k \pi\), then the value of \(k\) is
(b)
\(
\begin{aligned}
& (\sin \theta+2)(\sin \theta+3)(\sin \theta+4)=6 \\
& \text { L.H.S. }>6 \text { and R.H.S. } 6
\end{aligned}
\)
Therefore, equality only holds if \(\sin \theta=-1 \Rightarrow \theta=3 \pi / 2,7 \pi / 2\)
Therefore, sum \(=5 \pi \Rightarrow k=5\)
If the inequality \(\sin ^2 x+a \cos x+a^2>1+\cos x\) holds for any \(x \in R\), then the largest negative integral value of \(a\) is
(b)
\(
\begin{aligned}
& \sin ^2 x+a \cos x+a^2>1+\cos x \\
& \text { Putting } x=0, \text { we get } \\
& \Rightarrow a+a^2>2 \\
& \Rightarrow a^2+a-2>0 \\
& \Rightarrow(a+2)(a-1)>0 \\
& \Rightarrow a<-2 \text { or } a>1
\end{aligned}
\)
Therefore, we have the largest negative integral value of \(a=-3\).
The number of solution of \(\sin ^4 x-\cos ^2 x \sin x+2 \sin ^2 x+\sin x=0\) in \(0 \leq x \leq 3 \pi\) is
(b)
\(
\begin{aligned}
&\begin{aligned}
& \sin ^4 x-\cos ^2 x \sin x+2 \sin ^2 x+\sin x=0 \\
& \Rightarrow \sin x\left[\sin ^3 x-\cos ^2 x+2 \sin x+1\right]=0 \\
& \Rightarrow \sin x\left[\sin ^3 x-1+\sin ^2 x+2 \sin x+1\right]=0 \\
& \Rightarrow \sin x\left[\sin ^3 x+\sin ^2 x+2 \sin x\right]=0 \\
& \Rightarrow \sin ^2 x=0 \text { or } \sin ^2 x+\sin x+2=0 \text { (not possible for real } x \text { ) } \\
& \Rightarrow \sin x=0
\end{aligned}\\
&\text { Hence, the solutions are } x=0, \pi, 2 \pi, 3 \pi \text {. }
\end{aligned}
\)
If \(x, y \in[0,2 \pi]\) and \(\sin x+\sin y=2\), then the value of \(x+y\) is
(a) Since, \(x \in[0,2 \pi]\) and \(y \in[0,2 \pi]\), and \(\sin x+\sin y=2\)
This is possible only, when \(\sin x=1\) and \(\sin y=1\) \(\Rightarrow x=\pi / 2\) and \(y=\pi / 2\)
Hence, \(x+y=\pi\).
For \(n \in Z\), the general solution of \((\sqrt{3}-1) \sin \theta+(\sqrt{3}+1) \cos \theta=2\) is \((n \in Z)\)
(a)
\(
\begin{aligned}
& (\sqrt{3}-1) \sin \theta+(\sqrt{3}+1) \cos \theta=2 \\
& \Rightarrow \frac{(\sqrt{3}-1)}{2 \sqrt{2}} \sin \theta+\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right) \cos \theta=\frac{1}{\sqrt{2}} \\
& \Rightarrow \sin \frac{\pi}{12} \sin \theta+\cos \frac{\pi}{12} \cos \theta=\cos \frac{\pi}{4} \\
& \Rightarrow \cos \left(\theta-\frac{\pi}{12}\right)=\cos \frac{\pi}{4} \\
& \Rightarrow \theta-\frac{\pi}{12}=2 n \pi \pm \frac{\pi}{4}, n \in Z \\
& =2 n \pi \pm \frac{\pi}{4}+\frac{\pi}{12}
\end{aligned}
\)
If \(\sin 6 \theta+\sin 4 \theta+\sin 2 \theta=0\), then \(\theta\) is equal to ( \(n \in Z\) )
(a)
\(
\begin{aligned}
& \sin 6 \theta+\sin 4 \theta+\sin 2 \theta=0 \\
& \Rightarrow(\sin 6 \theta+\sin 2 \theta)+\sin 4 \theta=0 \\
& \Rightarrow 2 \sin 4 \theta \cos 2 \theta+\sin 4 \theta=0 \\
& \Rightarrow \sin 4 \theta(2 \cos 2 \theta+1)=0 \\
& \Rightarrow \sin 4 \theta=0 \text { or } \cos 2 \theta=-\frac{1}{2}=\cos \frac{2 \pi}{3} \\
& \Rightarrow 4 \theta=n \pi \text { or } 2 \theta=2 n \pi \pm \frac{2 \pi}{3}, n \in Z \\
& \Rightarrow \theta=\frac{n \pi}{4} \text { or } \theta=n \pi \pm \frac{\pi}{3}
\end{aligned}
\)
The value of \(\cos y \cos \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-y\right) \cos x+\sin y \cos \left(\frac{\pi}{2}-x\right)+\cos x \sin \left(\frac{\pi}{2}-y\right)\) is zero if
(d)
\(
\begin{aligned}
&\text { The given expression } \cos y \sin x-\sin y \cos x+\sin y \sin x+\cos x \cos y \text { is }\\
&\begin{aligned}
& \sin (x-y)+\cos (x-y) \\
& \therefore \sin (x-y)+\cos (x-y)=0 \\
& \Rightarrow \sqrt{2}\left(\frac{1}{\sqrt{2}} \sin (x-y)+\frac{1}{\sqrt{2}} \cos (x-y)\right)=0 \\
& \Rightarrow \sin \left(x-y+\frac{\pi}{4}\right)=0
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{\pi}{4}+x-y=n \pi, n \in Z \\
& \Rightarrow \quad x-y=n \pi-\frac{\pi}{4}, n \in Z \\
& \Rightarrow \quad x=n \pi-\frac{\pi}{4}+y \text { where } n \in Z
\end{aligned}
\)
The number of solution of the equation \(\tan x \tan 4 x=1\) for \(0<x<\pi\) is.
(c)
\(
\begin{aligned}
&\begin{aligned}
& \tan x \tan 4 x=1 \\
& \Rightarrow \cos 4 x \cos x-\sin 4 x \sin x=0 \\
& \Rightarrow \cos 5 x=0 \\
& \Rightarrow 5 x=\left(n+\frac{1}{2}\right) \pi, n \in Z \\
& \Rightarrow x=\frac{(2 n+1)}{10} \pi ; 0<x<\pi \\
& \quad=\frac{\pi}{10}, \frac{3 \pi}{10}, \frac{5 \pi}{10}, \frac{7 \pi}{10}, \frac{9 \pi}{10}
\end{aligned}\\
&\text { Thus, there are only five solutions. }
\end{aligned}
\)
One root of the equation \(\cos x-x+\frac{1}{2}=0\) lies in the interval
(a)
\(
\begin{aligned}
&\begin{aligned}
& \text { Let } f(x)=\cos x-x+\frac{1}{2} \\
& \qquad f(0)=1+\frac{1}{2}>0 \\
& f\left(\frac{\pi}{2}\right)=0-\frac{\pi}{2}+\frac{1}{2}=\frac{1-\pi}{2}<0
\end{aligned}\\
&\text { Therefore, one root lies in the interval }\left(0, \frac{\pi}{2}\right) \text {. }
\end{aligned}
\)
\(\tan \left(\frac{p \pi}{4}\right)=\cot \left(\frac{q \pi}{4}\right) \text { if }(n \in Z)\)
(d)
\(
\begin{aligned}
& \tan \left(\frac{p \pi}{4}\right)=\cot \left(\frac{q \pi}{4}\right)=\tan \left(\frac{\pi}{2}-\frac{q \pi}{4}\right) \\
& \Rightarrow \frac{p \pi}{4}=n \pi+\frac{\pi}{2}-\frac{q \pi}{4} \\
& \Rightarrow \frac{p}{4}=n+\frac{1}{2}-\frac{q}{4} \\
& \Rightarrow \frac{p+q}{4}=\frac{2 n+1}{2} \\
& \Rightarrow p+q=2(2 n+1)
\end{aligned}
\)
The range of \(y\) such that the equation in \(x, y+\cos x=\sin x\) has a real solution is
(b)
\(
\begin{aligned}
y & =\sin x-\cos x=\sqrt{2}\left[\frac{1}{\sqrt{2}} \sin -\frac{1}{\sqrt{2}} \cos x\right] \\
& =\sqrt{2} \sin \left(x-\frac{\pi}{4}\right) \quad \Rightarrow-\sqrt{2} \leq y \leq \sqrt{2} \quad \Rightarrow \text { Range of } y \text { is }[-\sqrt{2}, \sqrt{2}] .
\end{aligned}
\)
One of the general solutions of \(4 \sin ^4 x+\cos ^4 x=1\) is
(a)
\(
\begin{aligned}
& 4 \sin ^4 x+\cos ^4 x=1 \\
& \Rightarrow \quad\left(2 \sin ^2 x\right)^2+\frac{1}{4}\left(2 \cos ^2 x\right)^2=1
\end{aligned}
\)
\(
\begin{aligned}
& (1-\cos 2 x)^2+\frac{1}{4}(1+\cos 2 x)^2=i \\
& 5 \cos ^2 2 x-6 \cos 2 x+1=0 \\
& (\cos 2 x-1)(5 \cos 2 x-1)=0
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \quad \cos 2 x=1 \text { or } \cos 2 x=1 / 5 \\
& \Rightarrow \quad 2 x=2 n \pi \text { or } 2 x=2 n \pi \pm \alpha, \text { where } \alpha=\cos ^{-1}(1 / 5), \forall n \in Z
\end{aligned}
\)
Number of roots of \((1-\tan \theta)(1+\sin 2 \theta)=1+\tan \theta\) for \(\theta \in[0,2 \pi]\) is
(c)
\(
\begin{aligned}
& (1-\tan \theta)\left[1+2 \tan \theta /\left(1+\tan ^2 \theta\right)\right]=1+\tan \theta \\
& \Rightarrow(1-\tan \theta)(1+\tan \theta)^2=(1+\tan \theta)\left(1+\tan ^2 \theta\right) \\
& \Rightarrow(1+\tan \theta)\left[\left(1-\tan ^2 \theta\right)-\left(1+\tan ^2 \theta\right)\right]=0 \\
& \Rightarrow-2 \tan ^2 \theta=0,(1+\tan \theta)=0 \\
& \Rightarrow \tan \theta=0, \text { or } \tan \theta=-1 \\
& \Rightarrow \theta=n \pi \text { or } n \pi-\pi / 4, \forall n \in Z, \text { for } \theta \in[0,2 \pi] \theta=0, \pi, 2 \pi, 3 \pi / 4,7 \pi / 4
\end{aligned}
\)
The number of solutions of \(\sin x+\sin 2 x+\sin 3 x=\cos x+\cos 2 x+\cos 3 x, 0 \leq x \leq 2 \pi\), is
(d) We have \((\sin x+\sin 3 x)+\sin 2 x=(\cos x+\cos 3 x)+\cos 2 x\)
\(
\begin{aligned}
& \Rightarrow \quad 2 \sin 2 x \cos x+\sin 2 x=2 \cos 2 x \cos x+\cos 2 x \\
& \Rightarrow \quad \sin 2 x(2 \cos x+1)=\cos 2 x(2 \cos x+1) \\
& \Rightarrow \quad(2 \cos x+1)(\sin 2 x-\cos 2 x)=0 \\
& \Rightarrow \quad \cos x=-1 / 2 \text { or } \sin 2 x-\cos 2 x=0 \\
& \Rightarrow \quad x=2 n \pi \pm(2 \pi / 3) \text { or } \tan 2 x=1=\tan (\pi / 4) \\
& \quad=2 n \pi \pm(2 \pi / 3) \text { or } x=(4 n+1) \pi / 8, n \in Z
\end{aligned}
\)
But here \(0 \leq x \leq 2 \pi\)
Hence, \(x=\pi / 8,5 \pi / 8,2 \pi / 3,9 \pi / 8,4 \pi / 3,13 \pi / 8\).
The number of values of \(\theta\) which satisfy the equation \(\sin 3 \theta-\sin \theta=4 \cos ^2 \theta-2, \forall \theta \in[0,2 \pi]\), is
(b)
\(
\begin{aligned}
&\begin{aligned}
& 3 \sin \theta-4 \sin ^3 \theta-\sin \theta=2\left(2 \cos ^2 \theta-1\right) \\
& \Rightarrow 2 \sin \theta\left(1-2 \sin ^2 \theta\right)=2 \cos 2 \theta \\
& \Rightarrow 2 \cos 2 \theta(\sin \theta-1)=0 \\
& \Rightarrow \cos 2 \theta=0 \text { or } \sin \theta=1 \\
& \Rightarrow 2 \theta=(2 n+1) \pi / 2 \text { or } \theta=2 n \pi+\pi / 2, \forall n \in Z \\
& \Rightarrow \quad \theta=(2 n+1) \pi / 4, \text { or } \theta=(4 n+1) \pi / 2, \forall n \in Z
\end{aligned}\\
&\text { Hence, } \theta=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4, \pi / 2 \text {. } (\because \theta \in[0,2 \pi])
\end{aligned}
\)
One of the general solutions of \(4 \sin \theta \sin 2 \theta \sin 4 \theta=\sin 3 \theta\) is
(c)
\(
\begin{aligned}
&\text { We have } 4 \sin \theta \sin 2 \theta \sin 4 \theta=3 \sin \theta-4 \sin ^3 \theta\\
&\begin{aligned}
& \Rightarrow \sin \theta\left[4 \sin 2 \theta \sin 4 \theta-3+4 \sin ^2 \theta\right]=0 \\
& \Rightarrow \sin \theta[2(\cos 2 \theta-\cos 6 \theta)-3+2(1-\cos 2 \theta)]=0 \\
& \Rightarrow \sin \theta(-2 \cos 6 \theta-1)=0 \\
& \Rightarrow \sin \theta=0 \text { or } \cos 6 \theta=-1 / 2 \\
& \Rightarrow \quad \theta=n \pi \text { or } 6 \theta=2 n \pi \pm 2 \pi / 3, \forall n \in Z \\
& \quad=n \pi \text { or } \theta=(3 n \pm 1) \pi / 9, \forall n \in Z
\end{aligned}
\end{aligned}
\)
The general solution of \(\tan \theta+\tan 2 \theta+\tan 3 \theta=0\) is
(b)
\(
\begin{aligned}
&\text { From the given equation, we have } \tan \theta+\tan 2 \theta+\tan (\theta+2 \theta)=0\\
&\begin{aligned}
& \Rightarrow(\tan \theta+\tan 2 \theta)+\frac{\tan \theta+\tan 2 \theta}{1-\tan \theta \tan 2 \theta}=0 \\
& \Rightarrow(\tan \theta+\tan 2 \theta)\left[1+\frac{1}{1-\tan \theta \tan 2 \theta}\right]=0
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
&\begin{aligned}
& \Rightarrow \quad(\tan \theta+\tan 2 \theta)(2-\tan \theta \tan 2 \theta)=0 \\
& \Rightarrow \quad \tan \theta=\tan (-2 \theta) \text { or } 2-\tan \theta\left[(2 \tan \theta) /\left(1-\tan ^2 \theta\right)\right]=0 \\
& \Rightarrow \quad \theta=n \pi-2 \theta \text { or } 1-2 \tan ^2 \theta=0 \\
& \quad=n \pi / 3 \text { or } \tan ^2 \theta=1 / 2=\tan ^2 \alpha \text { (say) }
\end{aligned}\\
&\text { Therefore, } \theta=n \pi \pm \alpha \text {, where } \tan \alpha=1 / \sqrt{2} \text {; }
\end{aligned}
\)
The general solution of \(\sin 3 \alpha=4 \sin \alpha \sin (x+\alpha) \sin (x-\alpha)\) is
(b)
\(
\begin{aligned}
&\text { We have } \sin 3 \alpha=4 \sin \alpha\left(\sin ^2 x-\sin ^2 \alpha\right)\\
&\begin{aligned}
& \Rightarrow 3 \sin \alpha-4 \sin ^3 \alpha=4 \sin \alpha \sin ^2 x-4 \sin ^3 \alpha \\
& \Rightarrow 3 \sin \alpha=4 \sin \alpha \sin ^2 x \text { or } \sin \alpha=0
\end{aligned}
\end{aligned}
\)
If \(\sin \alpha \neq 0, \sin ^2 x=3 / 4=(\sqrt{3} / 2)^2=\sin ^2(\pi / 3)\), therefore \(x=n \pi \pm \pi / 3, \forall n \in Z\)
If \(\sin \alpha=0\), i.e., \(\alpha=n \pi\), equation becomes an identity.
One of the general solutions of \(\sqrt{3} \cos \theta-3 \sin \theta=4 \sin 2 \theta \cos 3 \theta\) is
(c)
\(
\begin{aligned}
&\text { We have } \sqrt{3} \cos \theta-3 \sin \theta=2(\sin 5 \theta-\sin \theta) \text {. }\\
&\begin{aligned}
& \Rightarrow(\sqrt{3} / 2) \cos \theta-(1 / 2) \sin \theta=\sin 5 \theta \\
& \Rightarrow \cos (\theta+\pi / 6)=\sin 5 \theta=\cos (\pi / 2-5 \theta) \\
& \Rightarrow \theta+\pi / 6=2 n \pi \pm(\pi / 2-5 \theta) \\
& \Rightarrow \theta=(n \pi / 3)+(\pi / 18) \text { or } \theta=(-n \pi / 2)+(\pi / 6), \forall n \in Z
\end{aligned}
\end{aligned}
\)
The equation \(\sin ^4 x+\cos ^4 x+\sin 2 x+\alpha=0\) is solvable for
(c)
\(
\begin{aligned}
& \sin ^4 x+\cos ^4 x+\sin 2 x+\alpha=0 \\
& \Rightarrow\left(\sin ^2 x+\cos ^2 x\right)^2-2 \sin ^2 x \cos ^2 x+\sin 2 x+\alpha=0 \\
& \Rightarrow \sin ^2 2 x-2 \sin 2 x-2-2 \alpha=0
\end{aligned}
\)
Let \(\sin 2 x=y\). Then the given equation becomes \(y^2-2 y-2(1+\alpha)=0\) where \(-1 \leq y \leq 1\),
\(
(\because-1 \leq \sin 2 x \leq 1)
\)
For real, discriminant \(\geq 0\)
\(
\begin{array}{ll}
\Rightarrow 3+2 \alpha \geq 0 & \Rightarrow \alpha \geq-\frac{3}{2} \\
\text { Also- } 1 \leq y \leq 1 & \Rightarrow-1 \leq 1-\sqrt{3+2 \alpha} \leq 1 . \\
\Rightarrow 3+2 \alpha \leq 4 & \Rightarrow \alpha \leq \frac{1}{2} . \text { Thus }-\frac{3}{2} \leq \alpha \leq \frac{1}{2}
\end{array}
\)
Consider the system of lincar equations in \(x, y\) and \(z\) :
\(
\begin{aligned}
& (\sin 3 \theta) x-y+z=0 \\
& (\cos 2 \theta) x+4 y+3 z=0 \\
& 2 x+7 y+7 z=0
\end{aligned}
\)
then which of the following can be the values of \(\theta\) for which the system has a non-trivial solution
(a)
\(
\begin{aligned}
&\text { Since the system has a non-trivial solution, the determinant of coefficients }=0\\
&\begin{aligned}
& \Rightarrow\left|\begin{array}{crr}
\sin 3 \theta & -1 & 1 \\
\cos 2 \theta & 4 & 3 \\
2 & 7 & 7
\end{array}\right|=0 \\
& \Rightarrow \sin 3 \theta(28-21)-\cos 2 \theta(-7-7)+2(-3-4)=0 \\
& \Rightarrow \sin 3 \theta+2 \cos 2 \theta-2=0 \\
& \Rightarrow\left(3 \sin \theta-4 \sin ^3 \theta\right)+2\left(1-2 \sin ^2 \theta\right)-2=0 \\
& \Rightarrow 4 \sin \theta^3 \theta+4 \sin ^2 \theta-3 \sin \theta=0 \\
& \Rightarrow \sin \theta(2 \sin \theta-1)(2 \sin \theta+3)=0 \\
& \Rightarrow \sin \theta=0 \text { or } \theta=n \pi+(-1)^n \pi / 6, \forall n \in Z
\end{aligned}
\end{aligned}
\)
The smallest \(+\mathrm{ve}\) \(x\) satisfying the equation \(\log _{\cos x} \sin x+\log _{\sin x} \cos x=2\) is
(c)
\(
\begin{aligned}
&\text { Let } \log _{\cos x} \sin x=t \text {, then the given equation is } t+\frac{1}{t}=2\\
&\begin{aligned}
& \Rightarrow(t-1)^2=0 \Rightarrow t=1 \Rightarrow \log _{\cos x} \sin x=1 \text { or } \sin x=\cos x \Rightarrow \tan x=1 \\
& \Rightarrow x=\pi / 4
\end{aligned}
\end{aligned}
\)
Number of ordered pairs which satisfy the equation \(x^2+2 x \sin (x y)+1=0\) are (where \(y \in[0,2 \pi]\) )
(b) Given \(x^2+2 x \sin (x y)+1=0\)
\(
\begin{aligned}
& \Rightarrow \quad[x+\sin (x y)]^2+\left[1-\sin ^2(x y)\right]=0 \\
& \Rightarrow \quad x+\sin (x y)=0 \text { and } \sin ^2(x y)=1 \\
& \sin ^2(x y)=1 \text { gives } \sin (x y)=1 \text { or }-1
\end{aligned}
\)
If \(\sin (x y)=1 \quad \Rightarrow \quad x=-1 \quad \Rightarrow \sin (-y)=1 \quad \Rightarrow \sin y=-1\), then the ordered pair is \((1,3 \pi / 2)\).
\(
\text { If } \sin (x y)=-1 \quad \Rightarrow \quad x=1 \quad \Rightarrow \quad \sin y=-1 \quad \Rightarrow \quad(-1,3 \pi / 2)
\)
Thus, there are two ordered pairs.
The general solution of the equation \(8 \cos x \cos 2 x \cos 4 x=\sin 6 x / \sin x\) is
(c) The given equation is \(8 \sin x \cos x \cos 2 x \cos 4 x=\sin 6 x(\sin x \neq 0)\)
\(
\Rightarrow \sin 8 x=\sin 6 x \quad \Rightarrow 2 \cos 7 x \sin x=0
\)
As \(\sin x \neq 0, \cos 7 x=0\) or \(7 x=n \pi+\pi / 2, n \in Z\)
i.e., \(x=n \pi / 7+\pi / 14 ; n \in Z\)
If \(\cos 3 x+\sin \left(2 x-\frac{7 \pi}{6}\right)=-2\), then \(x\) is equal to \((k \in Z)\)
(d) We have \(\cos 3 x+\sin \left(2 x-\frac{7 \pi}{6}\right)=-2\).
\(\Rightarrow 1+\cos 3 x+1+\sin \left(2 x-\frac{7 \pi}{6}\right)=0\)
\(\Rightarrow(1+\cos 3 x)+1-\cos \left(2 x-\frac{2 \pi}{3}\right)=0\)
\(\Rightarrow \quad 2 \cos ^2 \frac{3 x}{2}+2 \sin ^2\left(x-\frac{\pi}{3}\right)=0\)
\(\Rightarrow \quad \cos \frac{3 x}{2}=0\) and \(\sin \left(x-\frac{\pi}{3}\right)=0\)
\(\Rightarrow \quad \frac{3 x}{2}=\frac{\pi}{2}, \frac{3 \pi}{2}, \ldots\), and \(x-\frac{\pi}{3}=0, \pi, 2 \pi, \ldots \quad \Rightarrow \quad x=\frac{\pi}{3}\)
Therefore, the general solution of \(\cos \frac{3 x}{2}=0\) and \(\sin \left(x-\frac{\pi}{3}\right)=0\) is \(x=2 k \pi+\frac{\pi}{3}=\frac{\pi}{3}(6 k+1)\) where \(k \in Z\).
If \((1-\tan \theta)(1+\tan \theta) \sec ^2 \theta+2^{\tan ^2 \theta}=0\), then the number of values of \(\theta\) in the interval \((-\pi / 2, \pi / 2)\) are
(b) \((1-\tan \theta)(1+\tan \theta) \sec ^2 \theta+2^{\tan ^2 \theta}=0\)
\(
\begin{aligned}
&\sec ^2 \theta=1+\tan ^2 \theta\\
&(1-\tan \theta)(1+\tan \theta)\left(1+\tan ^2 \theta\right)+2^{\tan ^2 \theta}=0
\end{aligned}
\)
Using the identity \(1-\tan ^2 \theta=\sec ^2 \theta-2 \tan ^2 \theta\), we can rewrite the equation as:
\(
1-\tan ^4 \theta+2^{\tan ^2 \theta}=0
\)
\(
\begin{aligned}
&\text { Let } t=\tan ^2 \theta \text {. The equation now becomes: }\\
&1-t^2+2^t=0
\end{aligned}
\)
\(
2^t=t^2-1
\)
We can test values for \(t\) :
For \(t=1\) :
\(
2^1=1-1 \Rightarrow 2 \neq 0
\)
For \(t=2\) :
\(
2^2=4-1 \Rightarrow 4 \neq 3
\)
For \(t=3\) :
\(2^3=9-1 \Rightarrow 8=8 \quad\) (equal)
After testing several values, we find that \(t=3\) satisfies the equation:
\(
1-9+8=0
\)
Since \(t=\tan ^2 \theta=3\), we have:
\(
\tan \theta= \pm \sqrt{3}
\)
The values of \(\theta\) corresponding to \(\tan \theta=\sqrt{3}\) and \(\tan \theta=-\sqrt{3}\) are:
\(
\theta=\frac{\pi}{3}, \quad \theta=-\frac{\pi}{3}
\)
Thus, the values of \(\theta\) in the interval \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\) are:
\(
\theta=\frac{\pi}{3},-\frac{\pi}{3}
\)
Number of solutions of \(\tan \left(\frac{\pi}{2} \sin \theta\right)=\cot \left(\frac{\pi}{2} \cos \theta\right), \theta \in[0,6 \pi]\), is
(b)
\(
\begin{aligned}
& \tan \left(\frac{\pi}{2} \sin \theta\right)=\cot \left(\frac{\pi}{2} \cos \theta\right) \\
& \therefore \tan \left(\frac{\pi}{2} \sin \theta\right)=\tan \left(\frac{\pi}{2}-\frac{\pi}{2} \cos \theta\right) \\
& \therefore \frac{\pi}{2} \sin \theta=n \pi+\frac{\pi}{2}-\frac{\pi}{2} \cos \theta \\
& \sin \theta+\cos \theta=2 n+1 \\
& \Rightarrow \sin \theta+\cos \theta=1 \pm 1 \\
& \Rightarrow 1+\sin 2 \theta=1 \\
& \Rightarrow \sin 2 \theta=0 \\
& \Rightarrow \theta=n \pi
\end{aligned}
\)
\(
\theta \in[0,6 \pi] \text { (There are 7 different values possible) }
\)
The total number of solutions of \(\cos x=\sqrt{1-\sin 2 x}\) in \([0,2 \pi]\) is equal to
(a)
\(
\begin{aligned}
& \cos x=\sqrt{1-\sin 2 x}=|\sin x-\cos x| \\
& \text { (i) } \sin x<\cos x \quad \Rightarrow x \in\left[0, \frac{\pi}{4}\right) \cup\left(\frac{5 \pi}{4}, 2 \pi\right] \dots(i)
\end{aligned}
\)
Then the given equation is \(\cos x=\cos x-\sin x \quad \Rightarrow \sin x=0 \quad \Rightarrow \quad x=\pi, 2 \pi\) \(\Rightarrow \quad x=2 \pi \text { [from Eq.(i)] }\)
\(
\begin{aligned}
&\begin{aligned}
& \text { (ii) } \sin x \geq \cos x \quad \Rightarrow x \in\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right) \\
& \Rightarrow \cos x=\sin x-\cos x \\
& \Rightarrow \tan x=2 \\
& \Rightarrow x=\tan ^{-1} 2 \dots(ii)
\end{aligned}\\
&\text { Hence, there are two solutions. }
\end{aligned}
\)
The number of solutions of \(\sum_{r=1}^5 \cos r x=5\) in the interval \([0,2 \pi]\) is
(b)
\(
\begin{aligned}
& \sum_{r=1}^5 \cos r x=5 \\
& \Rightarrow \cos x+\cos 2 x+\cos 3 x+\cos 4 x+\cos 5 x=5
\end{aligned}
\)
which is possible only, when \(\cos x=\cos 2 x=\cos 3 x=\cos 4 x=\cos 5 x=1\) and is satisfied by \(x=0\) and \(x=2 \pi\).
The number of values of \(x\) for which \(\sin 2 x+\cos 4 x=2\) is
(a)
\(
\sin 2 x+\cos 4 x=2
\)
It is possible only, when \(\sin 2 x=1\) and \(\cos 4 x=1\)
\(
\begin{aligned}
& \Rightarrow \quad \sin 2 x=1 \text { and } 1-2 \sin ^2 2 x=1 \\
& \Rightarrow \quad \sin 2 x=1 \text { and } \sin 2 x=0
\end{aligned}
\)
Hence, there is no solution.
Let \(\alpha\) and \(\beta\) be any two positive values of \(x\) for which \(2 \cos x,|\cos x|\) and \(1-3 \cos ^2 x\) are in GP. The minimum value of \(|\alpha-\beta|\) is
(d)
\(
\begin{aligned}
&\text { For a GP, } b^2=a c \text {. }\\
&\begin{aligned}
& (|\cos x|)^2=(2 \cos x)\left(1-3 \cos ^2 x\right) \\
& \cos ^2 x=2 \cos x-6 \cos ^3 x
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
&\begin{aligned}
& 6 \cos ^3 x+\cos ^2 x-2 \cos x=0 \\
& \cos x\left(6 \cos ^2 x+\cos x-2\right)=0 \\
& \cos x(3 \cos x+2)(2 \cos x-1)=0
\end{aligned}\\
&\text { Possible values for } \cos x \text { are } \cos x=0, \cos x=-\frac{2}{3} \text {, or } \cos x=\frac{1}{2} \text {. }
\end{aligned}
\)
\(
\Rightarrow \quad x=\frac{\pi}{2}, \frac{\pi}{3}, \cos ^{-1}\left(-\frac{2}{3}\right) \quad(\because \alpha, \beta \text { are }+\mathrm{ve})
\)\(
\text { If } \alpha=\frac{\pi}{2} ; \beta=\frac{\pi}{3} \text {, then we have }|\alpha-\beta|=\frac{\pi}{6} \text {. }
\)
The general solution of the equation \(\sin ^{100} x-\cos ^{100} x=1\) is
(b) We have \(\sin ^{100} x-\cos ^{100} x=1\)
\(
\Rightarrow \sin ^{100} x=1+\cos ^{100} x
\)
Since the L.H.S. never exceeds 1, R.H.S. exceeds 1 unless \(\cos x=0\)
Then, \(x=n \pi+\frac{\pi}{2}, n \in I\)
The total number of solutions of \(|\cot x|=\cot x+\frac{1}{\sin x}, x \in[0,3 \pi]\) is equal to
(b) \(|\cot x|=\cot x+\frac{1}{\sin x}\)
If \(\cot x>0 \Rightarrow \cot x=\cot x+\frac{1}{\sin x}=0\).
\(\Rightarrow \frac{1}{\sin x}=0\), which is not possible.
If \(\cot x \leq 0 \Rightarrow-\cot x=\cot x+\frac{1}{\sin x}\)
\(\Rightarrow-2 \cot x=\frac{1}{\sin x}\)
\(\Rightarrow \cos x=-\frac{1}{2}\)
\(\Rightarrow \quad x=\frac{2 \pi}{3}, \frac{8 \pi}{3}\)
If \(\tan (A-B)=1\) and \(\sec (A+B)=2 / \sqrt{3}\), then the smallest positive values of \(A\) and \(B\), respectively, are
(a)
\(
\begin{aligned}
&\begin{aligned}
& \tan (A-B)=1 \\
& \Rightarrow A-B=n_1 \pi+\frac{\pi}{4}=\frac{\pi}{4}, \frac{3 \pi}{4},-\frac{3 \pi}{4}, \ldots \\
& \sec (A+B)=\frac{2}{\sqrt{3}} \Rightarrow A+B=2 n_2 \pi \pm \frac{\pi}{6}=\frac{\pi}{6}, \frac{11 \pi}{6}, \ldots
\end{aligned}\\
&\text { For the least positive values of } A \text { and } B \text {, }
\end{aligned}
\)
\(
A+B=\frac{11 \pi}{6}, A-B=\frac{\pi}{4} \quad \Rightarrow \quad B=\frac{19 \pi}{24}, A=\frac{25 \pi}{24}
\)
If \(3 \tan \left(\theta-15^{\circ}\right)=\tan \left(\theta+15^{\circ}\right)\), then \(\theta\) is equal to \((n \in Z)\)
(a)
\(
\begin{aligned}
& \text { Let } A=\theta+15^{\circ}, B=\theta-15^{\circ} \\
& \Rightarrow A+B=2 \theta \text { and } A-B=30^{\circ} \\
& \text { Now } \frac{\tan A}{\tan B}=\frac{3}{1}
\end{aligned}
\)
\(
\Rightarrow \frac{\tan A+\tan B}{\tan A-\tan B}=\frac{3+1}{3-1} \text { (applying componendo and dividendo rule) }
\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{\sin (A+B)}{\sin (A-B)}=2 \\
& \Rightarrow \quad \sin 2 \theta=2 \sin 30^{\circ}=1 \\
& \Rightarrow \quad 2 \theta=2 n \pi+\frac{\pi}{2} \text { or } \theta=n \pi+\frac{\pi}{4} n \in Z
\end{aligned}
\)
If \(\tan 3 \theta+\tan \theta=2 \tan 2 \theta\), then \(\theta\) is equal to \((n \in Z)\)
(a)
\(
\begin{aligned}
& \tan 3 \theta+\tan \theta=2 \tan 2 \theta \\
& \Rightarrow \tan 3 \theta-\tan 2 \theta=\tan 2 \theta-\tan \theta \\
& \Rightarrow \frac{\sin (3 \theta-2 \theta)}{\cos 3 \theta \cos 2 \theta}=\frac{\sin (2 \theta-\theta)}{\cos 2 \theta \cos \theta} \\
& \Rightarrow \sin \theta(2 \sin \theta \sin 2 \theta)=0 \\
& \Rightarrow \sin \theta=0 \text { or } \sin 2 \theta=0 \\
& \Rightarrow \theta=n \pi \text { or } 2 \theta=n \pi, n \in Z
\end{aligned}
\)
But \(\theta=n \pi / 2\) is rejected as when \(n\) is odd, \(\tan \theta\) is not defined and when \(n\) is even, i.e., \(2 r\), then \(\theta=r \pi\).
Then \(\theta=n \pi, n \in I\) is the only solution.
The set of all \(x\) in \(\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\) satisfying \(|4 \sin x-1|<\sqrt{5}\) is given by
(a)
\(
\begin{aligned}
& \text { We have }|4 \sin x-1|<\sqrt{5} \\
& \Rightarrow-\sqrt{5}<4 \sin x-1<\sqrt{5} \\
& \Rightarrow-\left(\frac{\sqrt{5}-1}{4}\right)<\sin x<\left(\frac{\sqrt{5}+1}{4}\right) \\
& \Rightarrow-\sin \frac{\pi}{10}<\sin x<\cos \frac{\pi}{5} \\
& \Rightarrow \sin \left(-\frac{\pi}{10}\right)<\sin x<\sin \left(\frac{\pi}{2}-\frac{\pi}{5}\right) \\
& \Rightarrow \sin \left(-\frac{\pi}{10}\right)<\sin x<\sin \frac{3 \pi}{10} \\
& \Rightarrow x \in\left(-\frac{\pi}{10}, \frac{3 \pi}{10}\right)
\end{aligned}
\)
\(\sin x+\cos x=y^2-y+a\) has no value of \(x\) for any value of \(y\) if \(a\) belongs to
(d)
\(
\begin{aligned}
&y^2-y+a=\left(y-\frac{1}{2}\right)^2+a-\frac{1}{4}\\
&\text { Since }-\sqrt{2} \leq \sin x+\cos x \leq \sqrt{2} \text {, the given equation will have no real value } x \text { for any } y \text { if } a-\frac{1}{4}>\sqrt{2}
\end{aligned}
\)
\(
\text { i.e., } a \in\left(\sqrt{2}+\frac{1}{4}, \infty\right) \quad \Rightarrow a \in(\sqrt{3}, \infty) \text { (as } \sqrt{2}+\frac{1}{4}<\sqrt{3} \text { ) }
\)
The solution of \(4 \sin ^2 x+\tan ^2 x+\operatorname{cosec}^2 x+\cot ^2 x-6=0\) is
(a)
\(
\begin{aligned}
& (2 \sin x-\operatorname{cosec} x)^2+(\tan x-\cot x)^2=0 \\
& \Rightarrow \sin ^2 x=\frac{1}{2} \text { and } \tan ^2 x=1 \\
& \Rightarrow x=n \pi \pm \frac{\pi}{4}, n \in Z
\end{aligned}
\)
The number of solutions of \([\sin x+\cos x]=3+[-\sin x]+[-\cos x]\) (where [.] denotes the greatest integer function), \(x \in[0,2 \pi]\), is
(a) \([\sin x+\cos x]=3+[-\sin x]+[-\cos x]\)
Maximum value of left-hand side is 1 and minimum of right hand side is also 1
\(
\begin{aligned}
& \Rightarrow \quad[\sin x+\cos x]=3+[-\sin x]+[-\cos x]=1 \Rightarrow x \in \pi \pm \frac{\pi}{4} \\
& \Rightarrow \quad[\sin x+\cos x]=1,[-\sin x]=-1,[-\cos x]=-1
\end{aligned}
\)
which is not possible.
The equation \(\cos ^8 x+b \cos ^4 x+1=0\) will have a solution if \(h\) belongs to
(c)
\(
\begin{aligned}
& \cos ^8 x+b \cos ^4 x+1=0 \\
& \Rightarrow b=-\left(\cos ^4 x+\frac{1}{\cos ^4 x}\right) \leq-2 \forall x \in R \\
& \Rightarrow b \in(-\infty,-2]
\end{aligned}
\)
The number of values of \(y\) in \([-2 \pi, 2 \pi]\) satisfying the equation \(|\sin 2 x|+|\cos 2 x|=|\sin y|\) is
(b) Here \(1 \leq|\sin 2 x|+|\cos 2 x| \leq \sqrt{2}\) and \(|\sin y| \leq 1\) so solution is possible only when \(|\sin y|=1\)
\(
\Rightarrow \quad \sin y= \pm 1 \quad \Rightarrow \quad y= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}
\)
Explanation: Let \(f(x)=|\sin 2 x|+|\cos 2 x|\).
Square both sides: \((|\sin 2 x|+|\cos 2 x|)^2=\sin ^2 2 x+\cos ^2 2 x+2|\sin 2 x \cos 2 x|\).
This simplifies to \(1+|\sin 4 x|\).
The minimum value of \(1+|\sin 4 x|\) is \(1+0=1\).
The maximum value of \(1+|\sin 4 x|\) is \(1+1=2\).
So, \(1 \leq(|\sin 2 x|+|\cos 2 x|)^2 \leq 2\).
Taking the square root, \(1 \leq|\sin 2 x|+|\cos 2 x| \leq \sqrt{2}\).
\(
\text { Since }|\sin y| \leq 1 \text {, the condition } 1 \leq|\sin y| \leq \sqrt{2} \text { simplifies to }|\sin y|=1 \text {. }
\)
This means \(\sin y=1[latex] or [latex]\sin y=-1\).
For \(\sin y=1, y=\frac{\pi}{2}, \frac{\pi}{2}-2 \pi=-\frac{3 \pi}{2}\).
For \(\sin y=-1, y=\frac{3 \pi}{2}, \frac{3 \pi}{2}-2 \pi=-\frac{\pi}{2}\).
The values of \(y\) in \([-2 \pi, 2 \pi]\) are \(-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}\).
If both the distinct roots of the equation \(|\sin x|^2+|\sin x|+b=0\) in \([0, \pi]\) are real, then the values of \(b\) are
(b)
\(
\begin{aligned}
& \text { Given that }|\sin x|^2+|\sin x|+b=0 \\
& \Rightarrow|\sin x|=\frac{-1 \pm \sqrt{1-4 b}}{2} \Rightarrow 0 \leq \frac{-1 \pm \sqrt{1-4 b}}{2}<1 \quad \Rightarrow-2<b<0
\end{aligned}
\)
If \(|2 \sin \theta-\operatorname{cosec} \theta| \geq 1\) and \(\theta \neq \frac{n \pi}{2}, n \in I\), then
(a)
\(
\begin{aligned}
& |2 \sin \theta-\operatorname{cosec} \theta| \geq 1 \\
& \Rightarrow \quad\left|2 \sin ^2 \theta-1\right| \geq \mid \sin \theta \\
& \Rightarrow \quad\left|\cos 2 \theta_1 \geq\right| \sin \theta \\
& \Rightarrow \quad 2 \cos ^2 2 \theta \geq 1-\cos 2 \theta \\
& \Rightarrow \quad 2 \cos ^2 2 \theta+\cos 2 \theta-1 \geq 0 \\
& \Rightarrow \quad(2 \cos 2 \theta-1)(\cos 2 \theta+1) \geq 0 \\
& \Rightarrow \quad \cos 2 \theta \geq \frac{1}{2} [\text { as } \cos \theta \neq 0 \text {, i.e., } \cos 2 \theta \neq-1]
\end{aligned}
\)
The number of solutions of the equation \(\sin ^3 x \cos x+\sin ^2 x \cos ^2 x+\sin x \cos ^3 x=1\), in the interval \([0,2 \pi]\), is
(d) The given equation can be written as
\(
\begin{aligned}
& \sin x \cos x\left[\sin ^2 x+\sin x \cos x+\cos ^2 x\right]=1 \\
& \Rightarrow \sin x \cos x[1+\sin x \cos x]=1 \\
& \Rightarrow \sin 2 x[2+\sin 2 x]=4 \\
& \Rightarrow \sin 2 x=\frac{-2 \pm \sqrt{4+16}}{2}=-1 \pm \sqrt{5}
\end{aligned}
\)
which is not possible.
\(e^{|\sin x|}+e^{-|\sin x|}+4 a=0\) will have exactly four different solutions in \([0,2 \pi]\) if
(d)
\(
\begin{aligned}
& e^{|\sin x|}+e^{-|\sin x|}+4 a=0, \text { let } t=e^{|\sin x|} \\
& \Rightarrow t \in[1, e] \\
& \Rightarrow t+\frac{1}{t}+4 a=0
\end{aligned}
\)
\(
\Rightarrow t^2+4 a t+1=0
\)
This quadratic expression should have two distinct roots in \([1, e]\)
\(
\begin{aligned}
& \Rightarrow \quad 16 a^2-4>0, f(1)=1+4 a+1 \geq 0, f(e)=e^2+4 a e+1 \geq 0,1<-2 a<e \\
& \Rightarrow \quad|a|>\frac{1}{2}, a \geq-\frac{1}{2}, a \geq \frac{-1-e^2}{4 e},-\frac{e}{2}<a<-\frac{1}{2}
\end{aligned}
\)
Clearly, there is no value of \(a\) satisfying the above inequalities simultaneously.
The total number of solutions of \(\ln |\sin x|=-x^2+2 x\) in \(\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]\) is equal to
(d) For \(\ln |\sin x|\) to be defined, \(|\sin x|>0\).
This means \(\sin x \neq 0\).
In the interval \(\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right], x \neq 0, \pi\).
The maximum value of \(|\sin x|\) is 1.
So, the maximum value of \(\ln |\sin x|\) is \(\ln (1)=0\).
Thus, \(\ln |\sin x| \leq 0\).
Let \(f(x)=-x^2+2 x\).
This is a downward-opening parabola with vertex at \(x=-\frac{2}{2(-1)}=1\).
The maximum value of \(f(x)\) is \(f(1)=-(1)^2+2(1)=1\).
For a solution to exist, \(\ln |\sin x|=-x^2+2 x\) must be true.
This implies that both sides must be less than or equal to 0.
Since the maximum of \(\ln |\sin x|\) is 0 and the maximum of \(-x^2+2 x\) is 1, the only possible value for both sides to be equal is 0.
If \(\ln |\sin x|=0\), then \(|\sin x|=e^0=1\).
This means \(\sin x=1\) or \(\sin x=-1\).
In the interval \(\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right], x=-\frac{\pi}{2}, \frac{\pi}{2}\).
If \(-x^2+2 x=0\), then \(-x(x-2)=0\).
This means \(x=0\) or \(x=2\).
The values of \(x\) that make \(\ln |\sin x|=0\) are \(x=-\frac{\pi}{2}\) and \(x=\frac{\pi}{2}\).
The values of \(x\) that make \(-x^2+2 x=0\) are \(x=0\) and \(x=2\).
There are no common values of \(x\) that satisfy both conditions simultaneously.
The total number of ordcred pairs \((x, y)\) satisfying \(|x|+|y|=4, \sin \left(\frac{\pi x^2}{3}\right)=1\) is equal to
(c)
\(
\begin{aligned}
& |x|+|y|=4, \sin \left(\frac{\pi x^2}{3}\right)=1 \\
& \Rightarrow \quad|x|,|y| \in[0,4], \frac{\pi x^2}{3}=(4 n+1) \frac{\pi}{2} \\
& \Rightarrow \quad x^2=\frac{(4 n+1) 3}{2}=\frac{3}{2}, \text { as }|x| \leq 4
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow|x|=\sqrt{\frac{3}{2}},|y|=4-\sqrt{\frac{3}{2}} .\\
&\text { Thus, there are four ordered pairs. }
\end{aligned}
\)
The total number of solutions of \(\sin \{x\}=\cos \{x\}\) \(\text { (where }\{.\} \text { denotes the fractional part) in }[0,2 \pi] \text { is }\)
(b)
\(
\begin{aligned}
& \sin \{x\}=\cos \{x\} \\
& \tan \{x\}=1 \\
& \tan (\pi / 4)=1<\tan 1
\end{aligned}
\)

\(
\text { Graphs of } y=\tan \{x\} \text { and } y=1 \text { meet exactly six times in }[0,2 \pi] \text {. }
\)
If \(a, b \in[0,2 \pi]\) and the equation \(x^2+4+3 \sin (a x+b)-2 x=0\) has at least one solution, then the value of \((a+b)\) can be
(a)
\(
\begin{aligned}
& x^2+4-2 x+3 \sin (a x+b)=0 \\
& (x-1)^2+3=-3 \sin (a x+b) \\
& \text { L.H.S. } \geq 3 \text { and R.H.S. } \leq 3 \\
& \Rightarrow \text { L.H.S }=\text { R.H.S }=3 \\
& (x-1)^2+3+3 \sin (a x+b)=0 \\
& \Rightarrow x=1, \sin (a x+b)=-1 \\
& \Rightarrow \sin (a+b)=-1 \\
& \Rightarrow a+b=(4 n-1) \frac{\pi}{2}, n \in I \Rightarrow a+b=\frac{7 \pi}{2}
\end{aligned}
\)
The equation \(\tan ^4 x-2 \sec ^2 x+a=0\) will have at least one solution if
(c)
\(
\begin{aligned}
& \tan ^4 x-2 \sec ^2 x+a=0 \\
& \Rightarrow \tan ^4 x-2\left(1+\tan ^2 x\right)+a=0 \\
& \Rightarrow \tan ^4 x-2 \tan ^2 x+1=3-a \\
& \Rightarrow\left(\tan ^2 x-1\right)^2=3-a \\
& \Rightarrow 3-a \geq 0 \Rightarrow a \leq 3
\end{aligned}
\)
Complete the set of values of \(x\) in \((0, \pi)\) satisfying the equation \(1+\log _2 \sin x+\log _2 \sin 3 x \geq 0\) is
(a) \(1+\log _2 \sin x+\log _2 \sin 3 x \geq 0\)
(where \(\sin x, \sin 3 x>0\) )
\(
\begin{aligned}
& \Rightarrow \quad \log _2(2 \sin x \sin 3 x) \geq 0 \\
& \Rightarrow \quad 2 \sin x \sin 3 x \geq 1
\end{aligned}
\)
For \(\sin x>0\)
\(
\begin{aligned}
& \Rightarrow \quad x \in(0, \pi) \dots(i) \\
& \Rightarrow \quad \sin 3 x>0 \\
& \Rightarrow \quad 3 x \in(0, \pi) \cup(2 \pi, 3 \pi) . \\
& \Rightarrow \quad x \in\left(0, \frac{\pi}{3}\right) \cup\left(\frac{2 \pi}{3}, \pi\right) \dots(ii)
\end{aligned}
\)
For \(2 \sin x \sin 3 x \geq 1\)
\(
\begin{aligned}
& \Rightarrow \quad 2 \sin ^2 x\left(3-4 \sin ^2 x\right) \geq 1 \\
& \Rightarrow \quad 8 \sin ^4 x-6 \sin ^2+1 \leq 0 \\
& \Rightarrow \quad\left(2 \sin ^2 x-1\right)\left(4 \sin ^2 x-1\right) \leq 0 \\
& \Rightarrow \quad \frac{1}{2} \leq \sin x \leq \frac{1}{\sqrt{2}} \\
& \Rightarrow \quad x \in\left[\frac{\pi}{3}, \frac{\pi}{4}\right] \cup\left[\frac{2 \pi}{3}, \frac{3 \pi}{4}\right] \dots(ii)
\end{aligned}
\)
Thus, \(x \in\left(\frac{2 \pi}{3}, \frac{3 \pi}{4}\right] \text { [From Eqs. (i), (ii), (iii) ] }\).
The equation \(\sin ^2 \theta-\frac{4}{\sin ^3 \theta-1}=1-\frac{4}{\sin ^3 \theta-1}\) has
(d)
\(
\sin ^2 \theta-\frac{4}{\sin ^3 \theta-1}=1-\frac{4}{\sin ^3 \theta-1}
\)
\(
\text { This yields } \sin ^2 \theta=1 \text {. }
\)
Take the square root of both sides: \(\sin \theta= \pm \sqrt{1}\). This gives \(\sin \theta=1\) or \(\sin \theta=-1\).
The original equation has a denominator \(\sin ^3 \theta-1\).
This denominator cannot be zero, so \(\sin ^3 \theta-1 \neq 0\).
Therefore, \(\sin ^3 \theta \neq 1\), which implies \(\sin \theta \neq 1\).
We found \(\sin \theta=1\) or \(\sin \theta=-1\).
The restriction states \(\sin \theta \neq 1\).
Thus, the only valid solution is \(\sin \theta=-1\).
The general solution for \(\sin \theta=-1\) is \(\theta=\frac{3 \pi}{2}+2 n \pi\), where \(n\) is an integer.
Since there are infinitely many integer values for \(n\), there are infinitely many roots.
The sum of all roots of \(\sin \left(\pi \log _3\left(\frac{1}{x}\right)\right)=0\) in \((0,2 \pi)\) is
(c)
\(
\begin{aligned}
&\begin{aligned}
& \pi \log _3\left(\frac{1}{x}\right)=k \pi, k \in I \\
& \log _3\left(\frac{1}{x}\right)=k \Rightarrow x=3^{-k}
\end{aligned}\\
&\text { The possible values of } k \text { are }-1,0,1,2,3, \ldots\\
&S=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\cdots \infty=\frac{3}{1-\frac{1}{3}}=\frac{9}{2}
\end{aligned}
\)
The number of pairs of integer \((x, y)\) that satisfy the following two equations
\(
\left\{\begin{array}{l}
\cos (x y)=x \\
\tan (x y)=y \text { is }
\end{array}\right.
\)
(a)
\(
\begin{aligned}
&\begin{aligned}
& \frac{\sin (x y)}{\cos (x y)}=y \\
& \Rightarrow \sin (x y)=x y \\
& \Rightarrow x y=0 \\
& \Rightarrow x=0 \text { or } y=0
\end{aligned}\\
&\text { But } x=0 \text { is not possible }\\
&\therefore y=0 \text { and } x=1 \text {, i.e., }(1,0)
\end{aligned}
\)
Sum of all the solutions in \([0,4 \pi]\) of the equation \(\tan x+\cot x+1=\cos \left(x+\frac{\pi}{4}\right)\) is
(c)
\(
\begin{aligned}
& \tan x+\cot x+1=\cos \left(x+\frac{\pi}{4}\right) \\
& \Rightarrow \tan x+\cot x=\cos \left(x+\frac{\pi}{4}\right)-1
\end{aligned}
\)
Now \(\tan x+\cot x \leq-2\) and \(\cos \left(x+\frac{\pi}{4}\right)-1 \geq-2\).
It implies that equality holds when both are -2.
\(
\begin{aligned}
& \Rightarrow \cos \left(x+\frac{\pi}{4}\right)=-1 \\
& \Rightarrow x+\frac{\pi}{4}=(2 m+1) \pi, m \in Z \\
& \Rightarrow x=\frac{3 \pi}{4} \text { or } \frac{11 \pi}{4}
\end{aligned}
\)
Therefore, the sum of the solutions is \(\frac{3 \pi}{4}+\frac{11 \pi}{4}=\frac{7 \pi}{2}\).
Number of solutions the equation \(\cos (\theta) \cdot \cos (\pi \theta)=1\) has
(c) \(\cos (\theta) \cos (\pi \theta)=1\)
\(\Rightarrow \cos (\theta)=1\) and \(\cos (\pi \theta)=1 \dots(i)\)
or \(\cos (\theta)=-1\) and \(\cos (\pi \theta)=-1 \dots(ii)\)
If \(\cos (\theta)=1 \Rightarrow \theta=2 m \pi\) and \(\cos (\pi \theta)=1 \Rightarrow \theta=2 \pi\) which is possible only when \(\theta=0\).
Equation (ii) is not possible for any \(\theta\) as for \(\cos (\theta)=-1, \theta\) should be odd multiple of \(\pi \Rightarrow\) irrational and for \(\cos (\pi \theta)=-1 \Rightarrow \theta\) should be odd integer \(\Rightarrow\) rational
Both the conditions cannot be satisfied.
Therefore, \(\theta=0\) is the only solution.
The general value of \(x\) satisfying the equation \(2 \cot ^2 x+2 \sqrt{3} \cot x+4 \operatorname{cosec} x+8=0\) is
(c)
\(
\begin{aligned}
& (\cot x+\sqrt{3})^2+\cot ^2 x+4 \operatorname{cosec} x+5=0 \\
& \Rightarrow(\cot x+\sqrt{3})^2+\operatorname{cosec}^2 x+4 \operatorname{cosec} x+4=0 \\
& \Rightarrow(\cot x+\sqrt{3})^2+(\operatorname{cosec} x+2)^2=0 \\
& \Rightarrow \cot x=-\sqrt{3} \text { or } \operatorname{cosec} x=-2 \\
& \Rightarrow x=2 n \pi-\frac{\pi}{6}, n \in Z (\because x \in 4 \text { th quadrant })
\end{aligned}
\)
Assume that \(\theta\) is a rational multiple of \(\pi\) such that \(\cos \theta\) is a distinct rational. Number of values of \(\cos \theta\) is
(c) \(\theta=k \pi, k=\frac{p}{q}, p, q \in I, q \neq 0\)
\(\cos k \pi\) is a rational
Hence, \(k=0,1,1 / 2,1 / 3,2 / 3\)
There are five values of \(\cos \theta\) for which \(\cos \theta\) is rational.
Explanation:
\(
\text { Let } \theta=\frac{p}{q} \pi \text {, where } p, q \text { are integers and } q \neq 0 \text {. }
\)
For \(\cos \theta\) to be rational, \(\theta\) must be a specific rational multiple of \(\pi\).
The only rational values of \(\cos \theta\) are \(\pm 1, \pm \frac{1}{2}\), and 0.
\(
\begin{aligned}
&\begin{aligned}
& \cos \theta=1 \Longrightarrow \theta=2 n \pi \\
& \cos \theta=-1 \Longrightarrow \theta=(2 n+1) \pi \\
& \cos \theta=0 \Longrightarrow \theta=\left(n+\frac{1}{2}\right) \pi \\
& \cos \theta=\frac{1}{2} \Longrightarrow \theta=\left(2 n \pm \frac{1}{3}\right) \pi \\
& \cos \theta=-\frac{1}{2} \Longrightarrow \theta=\left(2 n \pm \frac{2}{3}\right) \pi
\end{aligned}\\
&\text { All these } \theta \text { values are rational multiples of } \pi \text {. }
\end{aligned}
\)
The distinct rational values are \(\left\{1,-1,0, \frac{1}{2},-\frac{1}{2}\right\}\).
There are 5 distinct values.
Number of ordered pair(s) \((a, b)\) for each of which the equality \(a(\cos x-1)+b^2=\cos \left(a x+b^2\right)-1\) holds true for all \(x \in R\) are
(b)
\(
\text { The equation } a(\cos x-1)+b^2=\cos \left(a x+b^2\right)-1 \text { holds for all } x \in \mathbb{R} \text {. }
\)
Substitute \(x=0\) into the equation \(a(\cos x-1)+b^2=\cos \left(a x+b^2\right)-1\) :
\(a(\cos 0-1)+b^2=\cos \left(a \cdot 0+b^2\right)-1\)
\(a(1-1)+b^2=\cos \left(b^2\right)-1\)
\(b^2=\cos \left(b^2\right)-1\)
Rearrange the equation:
\(\cos \left(b^2\right)=1+b^2\)
Since \(\cos \left(b^2\right) \leq 1\) and \(1+b^2 \geq 1\), the only solution is when both sides are equal to 1.
\(\cos \left(b^2\right)=1\) and \(1+b^2=1\)
Therefore, \(b^2=0\), which implies \(b=0\).
Substitute \(b=0\) into the equation \(a(\cos x-1)+b^2=\cos \left(a x+b^2\right)-1\) :
\(a(\cos x-1)+0^2=\cos \left(a x+0^2\right)-1\)
\(a(\cos x-1)=\cos (a x)-1\)
Rewrite the equation using the double angle formula \(\cos (2 \theta)=1-2 \sin ^2(\theta)\) :
\(a(\cos x-1)=\cos (a x)-1\)
\(a\left(-2 \sin ^2\left(\frac{x}{2}\right)\right)=1-2 \sin ^2\left(\frac{a x}{2}\right)-1\)
\(-2 a \sin ^2\left(\frac{x}{2}\right)=-2 \sin ^2\left(\frac{a x}{2}\right)\)
\(a \sin ^2\left(\frac{x}{2}\right)=\sin ^2\left(\frac{a x}{2}\right)\)
For this equation to hold for all \(x\), we must have \(a=0\) or \(a=1\).
If \(a=0\), then \(0=0\), which is true.
If \(a=1\), then \(\sin ^2\left(\frac{x}{2}\right)=\sin ^2\left(\frac{x}{2}\right)\), which is also true.
Therefore, \(a\) can be 0 or 1.
The solutions for \((a, b)\) are \((0,0)\) and \((1,0)\). There are two ordered pairs.
You cannot copy content of this page