0 of 136 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 136 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
The equation \(\sin ^2 \theta=\frac{x^2+y^2}{2 x y}\) is possible if
(a)
\(
\text { We have } \frac{x^2+y^2}{2 x y}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}\right)
\)
\(
\begin{aligned}
&\text { Now, } \sin ^2 \theta=\frac{x^2+y^2}{2 x y} \quad \Rightarrow \frac{x^2+y^2}{2 x y} \geq 0\\
&\left[\because \sin ^2 \theta \geq 0\right]
\end{aligned}
\)
Therefore, \(x\) and \(y\) have the same sign.
Now, \(\frac{x^2+y^2}{2 x y}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}\right) \quad \Rightarrow \frac{x^2+y^2}{2 x y} \geq 1(\because[latex] A.M. [latex]\geq[latex] GM. \))\(
But [latex]\sin ^2 \theta \leq 1\). Therefore, \(\frac{x^2+y^2}{2 x y}=1 \Rightarrow x=y\).
If \(1+\sin x+\sin ^2 x+\sin ^3 x+\cdots \infty\) is equal to \(4+2 \sqrt{3}, 0<x<\pi\), then \(x\) is equal to
(d) Since \(0<x<\pi\). Therefore, \(\sin x>0\)
We have \(1+\sin x+\sin ^2 x+\cdots \infty=4+2 \sqrt{3}\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{1}{1-\sin x}=4+2 \sqrt{3} \\
& \Rightarrow \quad \sin x=1-\frac{1}{4+2 \sqrt{3}} \\
& \quad=\frac{3+2 \sqrt{3}}{4+2 \sqrt{3}}=\frac{\sqrt{3}}{2} \\
& \Rightarrow \quad x=\frac{\pi}{3} \text { or } \frac{2 \pi}{3}
\end{aligned}
\)
If \(\frac{\sin x}{a}=\frac{\cos x}{b}=\frac{\tan x}{c}=k\), then \(b c+\frac{1}{c k}+\frac{a k}{1+b k}\) is equal to
(b)
\(
\begin{aligned}
& \frac{\cos x \tan x}{k^2}+\frac{1}{\tan x}+\frac{\sin x}{1+\cos x} \\
& =\frac{\sin x}{k^2}+\frac{\cos x(1+\cos x)+\sin ^2 x}{\sin x(1+\cos x)}=\frac{\cos x(1+\cos x)+\left(1-\cos ^2 x\right)}{\sin x(1+\cos x)}=\frac{a}{k}+\frac{1}{\sin x}=\frac{a}{k}+\frac{1}{a k}
\end{aligned}
\)
If \(A, B, C\) are angles of a triangle, then \(2 \sin \frac{A}{2} \operatorname{cosec} \frac{B}{2} \sin \frac{C}{2}-\sin A \cot \frac{B}{2}-\cos A\) is
(a)
\(
\begin{aligned}
& 2 \sin \frac{A}{2} \operatorname{cosec} \frac{B}{2}\left(\sin \frac{C}{2}-\cos \frac{A}{2} \cos \frac{B}{2}\right)-\cos A \\
& =2 \sin \frac{A}{2} \operatorname{cosec} \frac{B}{2}\left(\cos \frac{A+B}{2}-\cos \frac{A}{2} \cos \frac{B}{2}\right)-\cos A \\
& =2 \sin \frac{A}{2} \operatorname{cosec} \frac{B}{2}\left(-\sin \frac{A}{2} \sin \frac{B}{2}\right)-\cos A=-2 \sin ^2 \frac{A}{2}-\cos A=-1
\end{aligned}
\)
The least value of \(6 \tan ^2 \phi+54 \cot ^2 \phi+18\) is
I: 54 when A.M. \(\geq\) G.M. is applicable for \(6 \tan ^2 \phi, 54 \cot ^2 \phi, 18\).
II: 54 when A.M. \(\geq\) G.M is applicable for \(6 \tan ^2 \phi, 54 \cot ^2 \phi\) and 18 added further.
III: 78 when \(\tan ^2 \phi=\cot ^2 \phi\).
(b) Applying A.M. \(\geq\) G.M. in \(6 \tan ^2 \phi, 54 \cot ^2 \phi, 18\), we get
\(
\frac{6 \tan ^2 \phi+54 \cot ^2 \phi+18}{3} \geq(6 \times 54 \times 18)^{1 / 3} \geq 18
\)
This is true if \(6 \tan ^2 \phi=54 \cot ^2 \phi=18\)
\(
\Rightarrow \tan ^2 \phi=3 \text { and } \cot ^2 \phi=1 / 3
\)
Therefore, I and II are correct.
If \(5 \tan \theta=4\), then \(\frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+2 \cos \theta}\) is equal to
(c)
\(
\begin{aligned}
&5 \tan \theta=4 \Rightarrow \tan \theta=\frac{4}{5}\\
&\text { Now } \frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+2 \cos \theta}=\frac{5 \frac{\sin \theta}{\cos \theta}-3}{5 \frac{\sin \theta}{\cos \theta}+2}=\frac{5 \tan \theta-3}{5 \tan \theta+2}=\frac{5 \times \frac{4}{5}-3}{5 \times \frac{4}{5}+2}=\frac{1}{6}
\end{aligned}
\)
If \(2 \sec 2 \theta=\tan \phi+\cot \phi\), then one of the values of \(\theta+\phi\) is
(b) \(2 \sec 2 \theta=\tan \phi+\cot \phi\)
\(
\begin{aligned}
& \Rightarrow \frac{2}{\cos 2 \theta}=\frac{\sin ^2 \phi+\cos ^2 \phi}{\sin \phi \cos \phi} \\
& \Rightarrow \frac{2}{\cos 2 \theta}=\frac{1}{\sin \phi \cos \phi} \\
& \Rightarrow \cos 2 \theta=\sin 2 \phi \\
& \Rightarrow 2 \theta=90^{\circ}-2 \phi \\
& \Rightarrow \theta+\phi=\frac{\pi}{4}
\end{aligned}
\)
If \(\sin x+\operatorname{cosec} x=2\), then \(\sin ^n x+\operatorname{cosec}^n x\) is equal to
(a)
\(
\begin{aligned}
& \sin x+\operatorname{cosec} x=2 \\
& \Rightarrow(\sin x-1)^2=0 \\
& \Rightarrow \sin x=1 \\
& \Rightarrow \sin ^n x+\operatorname{cosec}^n x=1+1=2
\end{aligned}
\)
Explanation:
\(
\sin x+\frac{1}{\sin x}=2
\)
Multiply by \(\sin x: \sin ^2 x+1=2 \sin x\)
Rearrange: \(\sin ^2 x-2 \sin x+1=0\)
This is a perfect square: \((\sin x-1)^2=0\)
\(
\begin{aligned}
& \sin x-1=0 \\
& \sin x=1
\end{aligned}
\)
\(
\text { Since } \sin x=1, \operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{1}=1 \text {. }
\)
\(
\begin{aligned}
& \sin ^n x+\operatorname{cosec}^n x=(1)^n+(1)^n \\
& (1)^n+(1)^n=1+1=2
\end{aligned}
\)
A quadratic equation whose roots are \(\operatorname{cosec}^2 \theta\) and \(\sec ^2 \theta\) can be
(c) Sum and Prodeuct of roots are
\(
\begin{aligned}
& \sec ^2 \theta+\operatorname{cosec}^2 \theta=\frac{1}{\cos ^2 \theta}+\frac{1}{\sin ^2 \theta}=\frac{4}{\sin ^2 2 \theta} \geq 4 \\
& \text { Also, } \sec ^2 \theta \operatorname{cosec}^2 \theta=\frac{4}{\sin ^2 2 \theta} \geq 4
\end{aligned}
\)
Both sum of roots and prouct of roots are equal.let it t.
Hence, equation will be \(x^2-t x+t=0\) ( \(t[latex] always greater or equals to 4)
Hence, the only equation which can have roots [latex]\operatorname{cosec}^2 \theta\) and \(\sec ^2 \theta\) is \(x^2-5 x+5=0\).
If \(\pi<\alpha<\frac{3 \pi}{2}\), then \(\sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}+\sqrt{\frac{1+\cos \alpha}{1-\cos \alpha}}\) is equal to
(b)
\(
\begin{aligned}
\sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}+\sqrt{\frac{1+\cos \alpha}{1-\cos \alpha}} & =\frac{1-\cos \alpha+1+\cos \alpha}{\sqrt{1-\cos ^2 \alpha}} \\
& =\frac{2}{|\sin \alpha|}=\frac{2}{-\sin \alpha}(\text { since } \pi<\alpha<3 \pi / 2)
\end{aligned}
\)
The value of \(\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{5 \pi}{7}+\cos \frac{6 \pi}{7}+\cos \frac{7 \pi}{7}\) is
(b)
\(
\begin{aligned}
& \text { We have } \cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{5 \pi}{7}+\cos \frac{6 \pi}{7}+\cos \frac{7 \pi}{7} \\
& =\left(\cos \frac{\pi}{7}+\cos \frac{6 \pi}{7}\right)+\left(\cos \frac{2 \pi}{7}+\cos \frac{5 \pi}{7}\right)+\left(\cos \frac{3 \pi}{7}+\cos \frac{4 \pi}{7}\right)+\cos \pi \\
& =\left(\cos \frac{\pi}{7}-\cos \frac{\pi}{7}\right)+\left(\cos \frac{2 \pi}{7}-\cos \frac{2 \pi}{7}\right)+\left(\cos \frac{3 \pi}{7}-\cos \frac{3 \pi}{7}\right)+\cos \pi \\
& =\cos \pi=-1
\end{aligned}
\)
The least value of \(2 \sin ^2 \theta+3 \cos ^2 \theta\) is
(b)
\(
\begin{aligned}
& 2 \sin ^2 \theta+3 \cos ^2 \theta=2\left(\sin ^2 \theta+\cos ^2 \theta\right)+\cos ^2 \theta=2+\cos ^2 \theta \geq 2 \\
& {\left[\because \cos ^2 \theta>0\right]}
\end{aligned}
\)
The greatest value of \(\sin ^4 \theta+\cos ^4 \theta\) is
(b)
\(
\sin ^4 \theta+\cos ^4 \theta=\left(\sin ^2 \theta+\cos ^2 \theta\right)^2-2 \sin ^2 \theta \cos ^2 \theta=1-2 \sin ^2 \theta \cos ^2 \theta \leq 1
\)
If \(f(x)=\cos ^2 \theta+\sec ^2 \theta\), then
(d)
\(
\begin{aligned}
&\text { We have }\\
&f(x)=\cos ^2 \theta+\sec ^2 \theta=(\cos \theta-\sec \theta)^2+2 \cos \theta \sec \theta=2+(\cos \theta-\sec \theta)^2 \geq 2
\end{aligned}
\)
If \(f(x)=\sin ^6 x+\cos ^6 x\), then range of \(f(x)\) is
(a)
\(
\begin{aligned}
& f(x)=\cos ^6 x+\sin ^6 x \\
&=\left(\cos ^2 x+\sin ^2 x\right)\left(\sin ^4 x+\cos ^4 x-\cos ^2 x \sin ^2 x\right) \\
&=\left(\left(\sin ^2 x+\cos ^2 x\right)^2-3 \sin ^2 x \cos ^2 x\right) \\
&=1-\frac{3}{4} \sin ^2 2 x \\
& \Rightarrow f(x) \in\left[\frac{1}{4}, 1\right]
\end{aligned}
\)
If \(a \leq 3 \cos x+5 \sin (x-\pi / 6) \leq b\) for all \(x\), then \((a, b)\) is
(a)
\(
\begin{aligned}
f(x) & =3 \cos x+5 \sin (x-\pi / 6) \\
& =\frac{1}{2} \cos x+5 \times \frac{\sqrt{3}}{2} \sin x
\end{aligned}
\)
\(
\begin{aligned}
& \text { Then, }-\sqrt{\left(\frac{1}{2}\right)^2+\left(\frac{5 \sqrt{3}}{2}\right)^2} \leq f(x) \leq \sqrt{\left(\frac{1}{2}\right)^2+\left(\frac{5 \sqrt{3}}{2}\right)^2} \\
& \Rightarrow \quad-\sqrt{19} \leq f(x) \leq \sqrt{19}
\end{aligned}
\)
The equation \(\sin x(\sin x+\cos x)=k\) has real solutions if and only if \(k\) is a real number such that
(d)
\(
\begin{aligned}
& 1-\cos 2 x+\sin 2 x=2 k \\
& \Rightarrow \quad \sin 2 x-\cos 2 x=2 k-1 \\
& \Rightarrow \quad \sin (2 x-\alpha)=\frac{2 k-1}{\sqrt{2}} \\
& \Rightarrow \quad-1 \leq \frac{2 k-1}{\sqrt{2}} \leq 1 \\
& \Rightarrow \quad \frac{1-\sqrt{2}}{2} \leq k \leq \frac{1+\sqrt{2}}{2}
\end{aligned}
\)
If \(\cot (\alpha+\beta)=0\), then \(\sin (\alpha+2 \beta)\) can be
(d)
\(
\begin{aligned}
& \cot (\alpha+\beta)=0 \Rightarrow \alpha+\beta=\pi / 2+n \pi, n \in I \\
& \Rightarrow \sin (\alpha+2 \beta)=\sin \left(90^{\circ}+\beta\right)=\cos \beta(\text { for } n=0) .
\end{aligned}
\)
If \(\frac{x}{\cos \theta}=\frac{y}{\cos \left(\theta-\frac{2 \pi}{3}\right)}=\frac{z}{\cos \left(\theta+\frac{2 \pi}{3}\right)}\), then \(x+y+z\) is equal to
(b)
(b)
\(
\begin{aligned}
&\text { We have }\\
&\frac{x}{\cos \theta}=\frac{y}{\cos \left(\theta-\frac{2 \pi}{3}\right)}=\frac{z}{\cos \left(\theta+\frac{2 \pi}{3}\right)}
\end{aligned}
\)
\(
\begin{aligned}
&\text { Therefore, each ratio is equal to }\\
&\begin{aligned}
& \frac{x+y+z}{\cos \theta+\cos \left(\theta-\frac{2 \pi}{3}\right)+\cos \left(\theta+\frac{2 \pi}{3}\right)}=\frac{x+y+z}{0} \\
& \Rightarrow x+y+z=0
\end{aligned}
\end{aligned}
\)
\(\sin ^{2 n} x+\cos ^{2 n} x\) lies between
(b) \(\text { Since } 0 \leq \sin ^{2 n} x \leq \sin ^2 x\)
\(
0 \leq \cos ^{2 n} x \leq \cos ^2 x \text { [as } \sin ^4 x=\sin ^2 x \sin ^2 x \leq \sin ^2 x, \sin ^4 x \leq \sin ^2 x \text { and so on] }
\)
\(
\begin{aligned}
& \Rightarrow \quad 0 \leq \sin ^{2 n} x+\cos ^{2 n} x \leq \sin ^2 x+\cos ^2 x=1 \\
& \Rightarrow \quad 0 \leq \sin ^{2 n} x+\cos ^{2 n} x \leq 1
\end{aligned}
\)
The roots of the equation \(4 x^2-2 \sqrt{5} x+1=0\) are.
(b) \(4 x^2-2 \sqrt{5} x+1=0\)
Let \(\alpha\) and \(\beta\) be the roots, we have
\(
\alpha+\beta=\frac{2 \sqrt{5}}{4}=\frac{\sqrt{5}}{2}, \alpha \beta=\frac{1}{4}
\)
Since \(\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}, \cos 36^{\circ}=\frac{\sqrt{5}+1}{4}\)
\(
\therefore \quad \sin 18^{\circ}+\cos 36^{\circ}=\frac{2 \sqrt{5}}{4}=\frac{\sqrt{5}}{2} \sin 18^{\circ} \cos 36^{\circ}=\frac{5-1}{16}=\frac{4}{16}=\frac{1}{4}
\)
Here the required roots are \(\sin 18^{\circ}, \cos 36^{\circ}\).
If \(\frac{3 \pi}{4}<\alpha<\pi\), then \(\sqrt{2 \cot \alpha+\frac{1}{\sin ^2 \alpha}}\) is equal to
(b)
\(
\begin{aligned}
\sqrt{2 \cot \alpha+\frac{1}{\sin ^2 \alpha}}= & \sqrt{2 \cot \alpha+\operatorname{cosec}^2 \alpha} \\
= & \sqrt{2 \cot \alpha+1+\cot ^2 \alpha}=|1+\cot \alpha|=-1-\cot \alpha \\
& \quad[\text { since } \cot \alpha<-1 \text { when } 3 \pi / 4<\alpha<\pi,|1+\cot \alpha|=-1-\cot \alpha]
\end{aligned}
\)
If \(f(\theta)=5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3\), then range of \(f(\theta)\) is
(d)
\(
\begin{aligned}
f(\theta) & =5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3=5 \cos \theta+\frac{3}{2} \cos \theta-\frac{3 \sqrt{3}}{2} \sin \theta+3=\frac{13}{2} \cos \theta-\frac{3 \sqrt{3}}{2} \sin \theta+3 \\
& =\sqrt{\left(\frac{169}{4}+\frac{27}{4}\right)} \sin (\theta-\alpha)+3 . \text { Thus, the range of } f(\theta) \text { is }[-4,10] .
\end{aligned}
\)
If \(\alpha, \beta, \gamma, \delta\) are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity \(k\), then the value of \(4 \sin \frac{\alpha}{2}+3 \sin \frac{\beta}{2}+2 \sin \frac{\gamma}{2}+\sin \frac{\delta}{2}\) is cqual to
(b)Â
\(
\begin{aligned}
&\text { Since } \alpha<\beta<\gamma<\delta \text { and } \sin \alpha=\sin \beta=\sin \gamma=\sin \delta=K \text {, therefore } \beta=\pi-\alpha, \gamma=2 \pi+\alpha, \delta=3 \pi-\alpha\\
&\begin{aligned}
\Rightarrow 4 \sin \frac{\alpha}{2}+3 \sin \frac{\beta}{2}+2 \sin \frac{\gamma}{2}+\sin \frac{\delta}{2} & =4 \sin \frac{\alpha}{2}+3 \cos \frac{\alpha}{2}-2 \sin \frac{\alpha}{2}-\cos \frac{\alpha}{2} \\
& =2 \sin \frac{\alpha}{2}+2 \cos \frac{\alpha}{2}=2 \sqrt{1+\sin \alpha}=2 \sqrt{1+K}
\end{aligned}
\end{aligned}
\)
Let \(A_0 A_1 A_2 A_3 A_4 A_5\) be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments \(A_0 A_1, A_0, A_2\) and \(A_0 A_4\) is
(c)Â Let \(O\) be the centre of the circle

Since \(\angle A_0 O A_1=\frac{360^{\circ}}{6}=60^{\circ}\)
\(A_0 O A_1\) is an equilateral triangle, we get \(A_0 A_1=1\) [radius of circle \(=1\) ]
Also \(A_0 A_2=A_0 A_4=2 O D=2\left[O A_0\right] \sin 60^{\circ}=2(1) \frac{\sqrt{3}}{2}=\sqrt{3}\)
If \(\sin \theta_1+\sin \theta_2+\sin \theta_3=3\), then \(\cos \theta_1+\cos \theta_2+\cos \theta_3\) is equal to
(d)
\(
\begin{aligned}
&\text { The given relation is satisfied only when } \sin \theta_1=\sin \theta_2=\sin \theta_3=1\\
&\begin{aligned}
& \Rightarrow \quad \cos \theta_1=\cos \theta_2=\cos \theta_3=0 \\
& \Rightarrow \quad \cos \theta_1+\cos \theta_2+\cos \theta_3=0
\end{aligned}
\end{aligned}
\)
If \(\sin ^2 \theta=\frac{x^2+y^2+1}{2 x}\), then \(x\) must be
(c)
\(
\begin{aligned}
&\begin{aligned}
& \sin ^2 \theta \leq 1 \\
& \Rightarrow \quad \frac{x^2+y^2+1}{2 x} \leq 1 \quad \Rightarrow x^2+y^2-2 x+1 \leq 0 [\operatorname{as} x>0]\\
& \Rightarrow \quad(x-1)^2+y^2 \leq 0
\end{aligned}\\
&\text { It is possible, iff } x-1 \text { and } y=0 \text {. }
\end{aligned}
\)
If \(\sin (\alpha+\beta)=1, \sin (\alpha-\beta)=\frac{1}{2}\), then \(\tan (\alpha+2 \beta) \tan (2 \alpha+\beta)\) is equal to, \(\alpha, \beta \in(0, \pi / 2)\)
(a)
\(
\begin{aligned}
&\sin (\alpha+\beta)=1 \Rightarrow \alpha+\beta=\frac{\pi}{2} \sin (\alpha-\beta)=\frac{1}{2} \Rightarrow \alpha-\beta=\frac{\pi}{6}\\
&\text { Solving, we get } \alpha=\pi / 3 \text { and } \beta=\pi / 6\\
&\text { Now } \begin{aligned}
\tan (\alpha+2 \beta) \tan (2 \alpha+\beta)=\tan \left(\frac{\pi}{3}+\frac{\pi}{3}\right) \tan \left(\frac{2 \pi}{3}+\frac{\pi}{6}\right)=\tan \frac{2 \pi}{3} \tan \frac{5 \pi}{6} & =\left(-\cot \frac{\pi}{3}\right)\left(-\cot \frac{\pi}{6}\right) \\
& =\left(-\frac{1}{\sqrt{3}}\right)(-\sqrt{3})=1
\end{aligned}
\end{aligned}
\)
Which of the following is not the value of \(\sin 27^{\circ}-\cos 27^{\circ}\)?
(a)
\(
\begin{aligned}
\sin 27^{\circ}-\sin 63^{\circ} & =-2 \cos 45^{\circ} \sin 18^{\circ} \\
& =-\sqrt{2}\left(\frac{\sqrt{5}-1}{4}\right)=-\frac{\sqrt{5}-1}{2 \sqrt{2}}=-\frac{\sqrt{3-\sqrt{5}}}{2}
\end{aligned}
\)
If \(\operatorname{cosec} \theta-\cot \theta=q\), then the value of \(\operatorname{cosec} \theta\) is
(c)
\(
\begin{aligned}
& \operatorname{cosec} \theta-\cot \theta=\dot{q} \\
& \therefore \operatorname{cosec} \theta+\cot \theta=\frac{1}{q} \\
& \therefore \operatorname{cosec} \theta=\frac{1}{2}[q+(1 / q)] \text { (on addition). }
\end{aligned}
\)
If \(\sin \theta+\cos \theta=\frac{1}{5}\) and \(0 \leq \theta<\pi\), then \(\tan \theta\) is
(a) Squaring both the sides, we get
\(
\begin{aligned}
& 1+\sin 2 \theta=\frac{1}{25} \\
& \Rightarrow \sin 2 \theta=-\frac{24}{25}
\end{aligned}
\)
Let \(t=\tan \theta\), we get \(\frac{2 t}{1+t^2}=-\frac{24}{25}\)
\(
\begin{aligned}
& \Rightarrow 50 t+24+24 t^2=0 \\
& \Rightarrow 12 t^2+25 t+12=0 \\
& \Rightarrow(4 t+3)(3 t+4)=0 \\
& \Rightarrow t=-4 / 3(\text { as for } t=-3 / 4(\text { rejected }) \text { as if } \tan \theta=-3 / 4, \text { then } \theta \in[\pi / 2, \pi) \text { and } \sin \theta+\cos \theta=-1 / 5)
\end{aligned}
\)
If \(x=\frac{2 \sin \theta}{1+\cos \theta+\sin \theta}\), then \(\frac{1-\cos \theta+\sin \theta}{1+\sin \theta}\) is equal to.
(c) Multiplying \(x\) above and below by \(1-\cos \theta+\sin \theta\), we get
\(
x=\frac{2 \sin \theta(1-\cos \theta+\sin \theta)}{(1+\sin \theta)^2-\cos ^2 \theta}=\frac{2 \sin \theta(1-\cos \theta+\sin \theta)}{(1+\sin \theta)^2-\left(1-\sin ^2 \theta\right)}
\)
Putting \(1-\sin ^2 \theta=(1+\sin \theta)(1-\sin \theta)\), we get \(\frac{2 \sin \theta}{2 \sin \theta} \frac{1-\cos \theta+\sin \theta}{1+\sin \theta}=x\).
If \(\theta=\pi / 4 n\), then the value of \(\tan \theta \tan 2 \theta \cdots \tan (2 n-2) \theta \tan (2 n-1) \theta\) is
(b)
\(
\begin{aligned}
&\begin{aligned}
& 2 n \theta=\pi / 2 \\
& \therefore \quad \theta,(2 n-1) \theta=(\pi / 2)-\theta ; 2 \theta,(2 n-2) \theta=(\pi / 2)-2 \theta, \ldots
\end{aligned}\\
&\text { They form complementary angles } A \text { and } B \text { so that } \tan A \tan B=\tan A \cot A=1 \text { for each pair. }
\end{aligned}
\)
The value of the expression \(\frac{2\left(\sin 1^{\circ}+\sin 2^{\circ}+\sin 3^{\circ}+\cdots+\sin 89^{\circ}\right)}{2\left(\cos 1^{\circ}+\cos 2^{\circ}+\cdots+\cos 44^{\circ}\right)+1}\) equals
(a)
\(
\begin{aligned}
& N^r=2\left[\left(\sin 1^{\circ}+\sin 89^{\circ}\right)+\left(\sin 2^{\circ}+\sin 88^{\circ}\right)+\cdots+\left(\sin 44^{\circ}+\sin 46^{\circ}\right)+\sin 45^{\circ}\right] \\
& \begin{aligned}
\Rightarrow \frac{\dot{N}^r}{D^r} & =2\left\{\sin 45^{\circ}\left[2\left(\cos 44^{\circ}+\cos 43^{\circ}+\cdots+\cos 1^{\circ}\right)\right]+1\right\} \\
& =2 \sin 45^{\circ} \\
& =\sqrt{2}
\end{aligned}
\end{aligned}
\)
If \(\sec \alpha\) and \(\operatorname{cosec} \alpha\) are the roots of \(x^2-p x+q+0\), then
(b)
\(
\begin{aligned}
& \sec \alpha+\operatorname{cosec} \alpha=p, \sec \alpha \operatorname{cosec} \alpha=q \\
& \Rightarrow \frac{\sin \alpha+\cos \alpha}{\sin \alpha \cos \alpha}=p \text { and } \frac{1}{\sin \alpha \cos \alpha}=q \\
& \Rightarrow \frac{1+2 \sin \alpha \cos \alpha}{\sin ^2 \alpha \cos ^2 \alpha}=p^2 \\
& \Rightarrow \frac{1+\frac{2}{q}}{\frac{1}{q^2}}=p^2 \\
& \Rightarrow q^2\left(1+\frac{2}{q}\right)=p^2 \Rightarrow q(q+2)=p^2
\end{aligned}
\)
If \(\sin x+\sin ^2 x=1\), then the value of \(\cos ^{12} x+3 \cos ^{10} x+3 \cos ^8 x+\cos ^6 x-2\) is equal to
(c)
\(
\begin{aligned}
&\text { We have } \sin x+\sin ^2 x=1\\
&\begin{aligned}
& \Rightarrow \sin x=1-\sin ^2 x \Rightarrow \sin x=\cos ^2 x \\
& \text { Now } \cos ^{12} x+3 \cos ^{10} x+3 \cos ^8 x+\cos ^6 x-.2=\sin ^6 x+3 \sin ^5 x+3 \sin ^4 x+\sin ^3 x-2 \\
& =\left(\sin ^2 x\right)^3+3\left(\sin ^2 x\right)^2 \sin x+3\left(\sin ^2 x\right)(\sin x)^2+(\sin x)^3-2 \\
& =\left(\sin ^2 x+\sin x\right)^3-2=(1)^3-2=-1
\end{aligned}
\end{aligned}
\)
If \(\cos (A-B)=3 / 5\) and \(\tan A \tan B=2\), then
(a)
\(
\begin{aligned}
& \cos (A-B)=\frac{3}{5} \\
& \Rightarrow 5 \cos A \cos B+5 \sin A \sin B=3
\end{aligned}
\)
From 2nd relation, we have
\(\sin A \sin B=2 \cos A \cos B\)
\(\Rightarrow \quad \cos A \cos B=\frac{1}{5}\) and \(\sin A \sin B=\frac{2}{5}\)
If \((1+\tan \alpha)(1+\tan 4 \alpha)=2, \alpha \in(0, \pi / 16)[latex] then [latex]\alpha\) is equal to
(a)
\(
\begin{aligned}
& (1+\tan A)(1+\tan B)=2 \\
& \Rightarrow \tan A+\tan B=1-\tan A \tan B \\
& \Rightarrow \tan (A+B)=1, \text { i.e., } A+B=\frac{\pi}{4} \\
& \text { or } \alpha+4 \alpha=\frac{\pi}{4}, \text { i.e., } \alpha=\frac{\pi}{20}
\end{aligned}
\)
If \(A=\sin 45^{\circ}+\cos 45^{\circ}\) and \(B=\sin 44^{\circ}+\cos 44^{\circ}\), then
(a)
\(
\begin{aligned}
A & =\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2} \sin 90^{\circ} \\
B & =\sqrt{2}\left[\frac{1}{\sqrt{2}} \sin 44^{\circ}+\frac{1}{\sqrt{2}} \cos 44^{\circ}\right]=\sqrt{2} \sin \left(45^{\circ}+44^{\circ}\right) \\
& =\sqrt{2} \sin 89^{\circ}<\sqrt{2} \sin 90^{\circ}=\sqrt{2} \quad \therefore \dot{A}>BÂ
\end{aligned}
\)
\(\frac{1}{4}\left[\sqrt{3} \cos 23^{\circ}-\sin 23^{\circ}\right]\) is equal to
(d)
\(
\frac{1}{4}\left(\sqrt{3} \cos 23^{\circ}-\sin 23^{\circ}\right)=\frac{1}{2}\left(\cos 30^{\circ} \cos 23^{\circ}-\sin 30^{\circ} \sin 23^{\circ}\right)=\frac{1}{2} \cos \left(30^{\circ}+23^{\circ}\right)=\frac{1}{2} \cos 53^{\circ}
\)
If \(\cos \theta_1=2 \cos \theta_2\), then \(\tan \frac{\theta_1-\theta_2}{2} \tan \frac{\theta_1+\theta_2}{2}\) is equal to.
(b)
\(
\begin{aligned}
\tan \left(\frac{\theta_1-\theta_2}{2}\right) \tan \left(\frac{\theta_1+\theta_2}{2}\right) & =\frac{\sin \left(\frac{\theta_1+\theta_2}{2}\right) \sin \left(\frac{\theta_1-\theta_2}{2}\right)}{\cos \left(\frac{\theta_1+\theta_2}{2}\right) \cos \left(\frac{\theta_1-\theta_2}{2}\right)} \\
& =\frac{\cos \theta_2-\cos \theta_1}{\cos \theta_1+\cos \theta_2}=\frac{-1}{3}
\end{aligned}
\)
Value of \(\frac{3+\cot 80^{\circ} \cot 20^{\circ}}{\cot 80^{\circ}+\cot 20^{\circ}}\) is equal to
(b)
\(
\begin{aligned}
\frac{3+\frac{\cos 80^{\circ} \cos 20^{\circ}}{\sin 80^{\circ} \sin 20^{\circ}}}{\frac{\cos 80^{\circ}}{\sin 80^{\circ}}+\frac{\cos 20^{\circ}}{\sin 20^{\circ}}} & =\frac{2 \sin 80^{\circ} \sin 20^{\circ}+\left(\cos 80^{\circ} \cos 20^{\circ}+\sin 80^{\circ} \sin 20^{\circ}\right)}{\sin 20^{\circ} \cos 80^{\circ}+\cos 20^{\circ} \sin 80^{\circ}} \\
& =\frac{-\cos 100^{\circ}+\cos 60^{\circ}+\cos 60^{\circ}}{\sin 100^{\circ}}=\frac{1-\cos 100^{\circ}}{\sin 100}=\tan 50^{\circ}
\end{aligned}
\)
If \(\tan \beta=2 \sin \alpha \sin \gamma \operatorname{cosec}(\alpha+\gamma)\), then \(\cot \alpha ; \cot \beta, \cot \gamma\) are in
(a)
\(
\begin{aligned}
& \tan \beta=2 \sin \alpha \sin \gamma \operatorname{cosec}(\alpha+\gamma)=\frac{2 \sin \alpha \sin \gamma}{\sin (\alpha+\gamma)} \\
& \Rightarrow \cot \beta=\frac{\sin (\alpha+\gamma)}{2 \sin \alpha \sin \gamma}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow 2 \cot \beta=\frac{\sin \alpha \cos \gamma+\cos \alpha \sin \gamma}{\sin \alpha \sin \gamma}=\cot \alpha+\cot \gamma \\
& \Rightarrow \cot \alpha, \cot \beta, \cot \gamma \text { are in A.P. }
\end{aligned}
\)
In triangle \(A B C\), if \(\sin A \cos B=\frac{1}{4}\) and \(3 \tan A=\tan B\), then \(\cot ^2 A\) is equal to
(b)
\(
\begin{aligned}
& 3 \sin A \cos B=\sin B \cos A \\
& \Rightarrow \quad \cos A \sin B=\frac{3}{4} \\
& \Rightarrow \quad \sin (A+B)=1 \\
& \Rightarrow \quad C=\frac{\pi}{2}, B=\frac{\pi}{2}-A \\
& \Rightarrow \quad 3 \tan A=\tan \left(\frac{\pi}{2}-A\right) \\
& \Rightarrow \quad 3=\cot ^2 A
\end{aligned}
\)
\(\tan 100^{\circ}+\tan 125^{\circ}+\tan 100^{\circ}\) tan \(125^{\circ}\) is equal to
(d)
\(
\begin{aligned}
&\begin{aligned}
& \tan \left(100^{\circ}+125^{\circ}\right)=\frac{\tan 100^{\circ}+\tan 125^{\circ}}{1-\tan 100^{\circ} \tan 125^{\circ}} \\
& \therefore \quad \tan 225^{\circ}=\frac{\tan 100^{\circ}+\tan 125^{\circ}}{1-\tan 100^{\circ} \tan 125^{\circ}}, \text { i.e., } 1=\frac{\tan 100^{\circ}+\tan 125^{\circ}}{1-\tan 100^{\circ} \tan 125^{\circ}}
\end{aligned}\\
&\text { i.e., } \tan 100^{\circ}+\tan 125^{\circ}+\tan 100^{\circ} \tan 125^{\circ}=1
\end{aligned}
\)
\(\tan 20^{\circ}+\tan 40^{\circ}+\sqrt{3} \tan 20^{\circ} \tan 40^{\circ}\) is equal to
\(
\begin{aligned}
& \text { We know that } \tan \left(20^{\circ}+40^{\circ}\right)=\frac{\tan 20^{\circ}+\tan 40^{\circ}}{1-\tan 20^{\circ} \tan 40^{\circ}} \\
& \Rightarrow \sqrt{3}=\frac{\tan 20^{\circ}+\tan 40^{\circ}}{1-\tan 20^{\circ} \tan 40^{\circ}} \\
& \Rightarrow \sqrt{3}-\sqrt{3} \tan 20^{\circ} \tan 40^{\circ}=\tan 20^{\circ}+\tan 40^{\circ} \\
& \Rightarrow \tan 20^{\circ}+\tan 40^{\circ}+\sqrt{3} \tan 20^{\circ} \tan 40^{\circ}=\sqrt{3}
\end{aligned}
\)
\(\frac{\sqrt{2}-\sin \alpha-\cos \alpha}{\sin \alpha-\cos \alpha}\) is equal to
(c)
\(
\begin{aligned}
& \frac{\sqrt{2}-\sin \alpha-\cos \alpha}{\sin \alpha-\cos \alpha} \\
& =\frac{\sqrt{2}-\sqrt{2}\left(\frac{1}{\sqrt{2}} \sin \alpha+\frac{1}{\sqrt{2}} \cos \alpha\right)}{\sqrt{2}\left(\frac{1}{\sqrt{2}} \sin \alpha-\frac{1}{\sqrt{2}} \cos \alpha\right)} \\
& =\frac{\sqrt{2}-\sqrt{2} \cos \left(\alpha-\frac{\pi}{4}\right)}{\sqrt{2} \sin \left(\alpha-\frac{\pi}{4}\right)} \\
& =\frac{\sqrt{2}(1-\cos \theta)}{\sqrt{2} \sin \theta}, \text { where } \theta=\alpha-\frac{\pi}{4}=\frac{2 \sin ^2(\theta / 2)}{2 \sin (\theta / 2) \cos (\theta / 2)}=\tan \frac{\theta}{2}=\tan \left(\frac{\alpha}{2}-\frac{\pi}{8}\right)
\end{aligned}
\)
If \(\sin \theta_1-\sin \theta_2=a\) and \(\cos \theta_1+\cos \theta_2=b\), then
(b)
\(
\begin{aligned}
& \sin \theta_1-\sin \theta_2=a, \cos \theta_1+\cos \theta_2=b \\
& \Rightarrow \quad a^2+b^2=2+2 \cos \left(\theta_1+\theta_2\right) \\
& \Rightarrow \quad 0 \leq a^2+b^2 \leq 4
\end{aligned}
\)
If \(\frac{1+\sin 2 x}{1-\sin 2 x}=\cot ^2(a+x) \forall x \in R \sim\left(n \pi+\frac{\pi}{4}\right), n \in N\), then \(a\) can be
(c)
\(
\begin{aligned}
\frac{1+\sin 2 x}{1-\sin 2 x} & =\frac{(\sin x+\cos x)^2}{(\sin x-\cos x)^2}=\left(\frac{1+\tan x}{1-\tan x}\right)^2=\left(\tan \left(\frac{\pi}{4}+x\right)\right)^2=\tan ^2\left(\frac{\pi}{4}+x\right) \\
& =\cot ^2\left(\frac{\pi}{2}+\frac{\pi}{4}+x\right)=\cot ^2\left(\frac{3 \pi}{4}+x\right) \\
\Rightarrow \quad a & =\frac{3 \pi}{4}
\end{aligned}
\)
If \(\tan \alpha\) is equal to the integral solution of the inequality \(4 x^2-16 x+15<0\) and \(\cos \beta\) is equal to the slope of the bisector of the first quadrant, then \(\sin (\alpha+\beta) \sin (\alpha-\beta)\) is equal to
(d)Â We have \(4 x^2-16 x+15<0 \Rightarrow \frac{3}{2}<x<\frac{5}{2}\)
Therefore, the integral solution of \(4 x^2-16 x+15<0[latex] is [latex]x=2\)
Thus, \(\tan \alpha=2\). It is given that \(\cos \beta=\tan 45^{\circ}=1\).
\(
\therefore \quad \sin (\alpha+\beta) \sin (\alpha-\beta)=\sin ^2 \alpha-\sin ^2 \beta=\frac{1}{1+\cot ^2 \alpha}-\left(1-\cos ^2 \beta\right)=\frac{1}{1+\frac{1}{4}}-0=\frac{4}{5}
\)
If \(\frac{\cos (x-y)}{\cos (x+y)}+\frac{\cos (z+t)}{\cos (z-t)}=0\), then the value of \(\tan x \tan y \tan z \tan t\) is equal to
(b)
\(
\begin{aligned}
& \frac{\cos (x-y)}{\cos (x+y)}+\frac{\cos (z+t)}{\cos (z-t)}=0 \\
& \Rightarrow \frac{1+\tan x \tan y}{1-\tan x \tan y}+\frac{1-\tan z \tan t}{1+\tan z \tan t}=0 \\
& \Rightarrow 1+\tan z \tan t+\tan x \tan y+\tan x \tan y \tan z \tan t+1-\tan z \tan t-\tan x \tan y \\
& \quad+\tan x \tan y \tan z \tan t=0 \\
& \Rightarrow \tan x \tan y \tan z \tan t=-1 .
\end{aligned}
\)
Let \(f(n)=2 \cos n x \forall n \in N\), then \(f(1) f(n+1)-f(n)\) is equal to
(b)
\(
\begin{aligned}
& f(n)=2 \cos n x \\
& \begin{aligned}
\Rightarrow \quad f(1) f(n+1)-f(n) & =4 \cos x \cos (n+1) x-2 \cos n x=2[2 \cos (n+1) x \cos x-\cos n x] \\
& =2[\cos (n+2) x+\cos n x-\cos n x]=2 \cos (n+2) x=f(n+2)
\end{aligned}
\end{aligned}
\)
If in triangle \(A B C, \sin A \cos B=1 / 4\) and \(3 \tan A=\tan B\), then the triangle is
(a)
\(
\begin{aligned}
& \frac{\tan A}{\tan B}=\frac{1}{3} \Rightarrow \frac{\sin A \cos B}{\cos A \sin B}=\frac{1}{3} \\
& \text { Put } \sin A \cos B=\frac{1}{4} \\
& \Rightarrow \cos A \sin B=\frac{3}{4} \\
& \Rightarrow \sin (A+B)=\frac{1}{4}+\frac{3}{4}=1 \\
& \Rightarrow \sin C=1=\sin \pi / 2 \\
& \Rightarrow C=\pi / 2 . \text { Hence, the triangle is right angled. }
\end{aligned}
\)
If \(A\) and \(B\) are acute positive angles satisfying the equations \(3 \sin ^2 A+2 \sin ^2 B=1\) and \(3 \sin 2 A-2 \sin 2 B=0\), then \(A+2 B\) is equal to
(b)
\(
\begin{aligned}
& 3 \sin ^2 A+2 \sin ^2 B=1 \\
& \Rightarrow \quad 3 \sin ^2 A=\cos 2 B \\
& \text { Also } 3 \sin 2 A-2 \sin 2 B=0 \\
& \Rightarrow \quad \sin 2 B=\frac{3}{2} \sin 2 A
\end{aligned}
\)
\(
\begin{aligned}
&\text { Now, } \cos (A+2 B)=\cos A \cos 2 B-\sin A \sin 2 B=\cos A 3 \sin ^2 A-\sin A \frac{3}{2} \sin 2 A\\
&=3 \sin ^2 A \cos A-3 \sin ^2 A \cos A=0\\
&\therefore A+2 B=\pi / 2
\end{aligned}
\)
Let \(f(\theta)=\frac{\cot \theta}{1+\cot \theta}\) and \(\alpha+\beta=\frac{5 \pi}{4}\), then the value \(f(\alpha) f(\beta)\) is
\(
\begin{aligned}
&\text { (a) }\\
&\begin{aligned}
f(\beta)=f\left(\frac{5 \pi}{4}-\alpha\right) & =\frac{\cot \left(\frac{5 \pi}{4}-\alpha\right)}{1+\cot \left(\frac{5 \pi}{4}-\alpha\right)} \\
& =\frac{1}{1+\tan \left(\frac{5 \pi}{4}-\alpha\right)} \\
& =\frac{1}{1+\frac{1-\tan \alpha}{1+\tan \alpha}}=\frac{1+\tan \alpha}{2} \\
\text { As } f(\alpha)=\frac{\cot \alpha}{1+\cot \alpha} & =\frac{1}{1+\tan \alpha}, \text { we have } f(\alpha) f(\beta)=\frac{1}{2}
\end{aligned}
\end{aligned}
\)
If \(y=(1+\tan A)(1-\tan B)\) where \(A-B=\frac{\pi}{4}\), then \((y+1)^{y+1}\) is equal to
(c)Â
\(
\begin{aligned}
& A-B=\frac{\pi}{4} \Rightarrow \tan (A-B)=\tan \frac{\pi}{4} \\
& \Rightarrow \quad \frac{\tan A-\tan B}{1+\tan A \tan B} \\
& \Rightarrow \quad \tan A-\tan B-\tan A \tan B=1 \\
& \Rightarrow \quad \tan A-\tan B-\tan A \tan B+1=2 \\
& \Rightarrow \quad(1+\tan A)(1-\tan B)=2 \Rightarrow y=2 \\
& \text { Hence, }(y+1)^{y+1}=(2+1)^{2+1}=(3)^3=27
\end{aligned}
\)
If \(\sin (y+z-x), \sin (z+x-y), \sin (x+y-z)\) are in A.P., then \(\tan x, \tan y, \tan z\) are in
(a) Applying \(b-a=c-b\) for A.P., we get \(2 \cos z \sin (x-y)=2 \cos x \sin (y-z)\)
Dividing by \(2 \cos x \cos y \cos z\), etc., we get \(\tan x-\tan y=\tan y-\tan z\).
If \(\cos \alpha+\cos \beta=0=\sin \alpha+\sin \beta\), then \(\cos 2 \alpha+\cos 2 \beta\) is equal to
(b)
\(
\begin{aligned}
(\cos \alpha+\cos \beta)^2-(\sin \alpha+\sin \beta)^2=0 \\
\Rightarrow \quad\left(\cos ^2 \alpha+\cos ^2 \beta+2 \cos \alpha \cos \beta\right)-\left(\sin ^2 \alpha+\sin ^2 \beta+2 \sin \alpha \sin \beta\right)=0 \\
\Rightarrow \quad \cos 2 \alpha+\cos 2 \beta=-2(\cos \alpha \cos \beta-\sin \alpha \sin \beta) \\
=-2 \cos (\alpha+\beta)
\end{aligned}
\)
If \(x_1, x_2, x_3, \ldots, x_n\) are in A.P. whose common difference is \(\alpha\), then the value of \(\sin \alpha\left(\sec x_1 \sec x_2\right.\) \(\left.+\sec x_2 \sec x_3+\cdots+\sec x_{n-1} \sec x_n\right)\) is
(a)
\(
\begin{aligned}
&\text { We have }\\
&\begin{aligned}
& \sin \alpha \sec x_1 \sec x_2+\sin \alpha \sec x_2 \sec x_3+\cdots+\sin \alpha \sec x_{n-1} \sec x_n \\
& =\frac{\sin \left(x_2-x_1\right)}{\cos x_1 \cos x_2}+\frac{\sin \left(x_3-x_2\right)}{\cos x_2 \cos x_3}+\cdots+\frac{\sin \left(x_n-x_{n-1}\right)}{\cos x_{n-1} \cos x_n} \\
& =\left(\tan x_2-\tan x_1\right)+\left(\tan x_3-\tan x_2\right)+\cdots+\left(\tan x_n-\tan x_{n-1}\right) \\
& =\tan x_n-\tan x_1=\frac{\sin \left(x_n-x_1\right)}{\cos x_n \cos x_1}=\frac{\sin (n-1) \alpha}{\cos x_n \cos x_1} \left[\because x_n=x_1+(n-1) \alpha\right]
\end{aligned}
\end{aligned}
\)
If \(\tan \frac{\pi}{9}, x\) and \(\tan \frac{5 \pi}{18}\) are in A.P. and \(\tan \frac{\pi}{9}, y\) and \(\tan \frac{7 \pi}{18}\) are also in A.P., then
(a)
\(
\begin{aligned}
&\text { By the given conditions } \tan \frac{\pi}{9}+\tan \frac{5 \pi}{18}=2 x\\
&\begin{aligned}
\tan \frac{\pi}{9}+ & \tan \frac{7 \pi}{18}=2 y \\
\Rightarrow 2 x & =\tan 20^{\circ}+\tan 50^{\circ} \\
& =\frac{\sin 20^{\circ}}{\cos 20^{\circ}}+\frac{\sin 50^{\circ}}{\cos 50^{\circ}} \\
& =\frac{\sin 20^{\circ} \cos 50^{\circ}+\cos 20^{\circ} \sin 50^{\circ}}{\cos 20^{\circ} \cos 50^{\circ}} \\
& =\frac{\sin 70^{\circ}}{\cos 20^{\circ} \cos 50^{\circ}}
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
& =\frac{\cos 20^{\circ}}{\cos 20^{\circ} \cos 50^{\circ}}=\frac{1}{\cos 50^{\circ}}=\frac{1}{\sin 40^{\circ}}=\operatorname{cosec} 40^{\circ} \\
2 y & =\tan 20^{\circ}+\tan 70^{\circ} \\
& =\frac{\sin 20^{\circ}}{\cos 20^{\circ}}+\frac{\sin 70^{\circ}}{\cos 70^{\circ}} \\
& =\frac{\sin 90^{\circ}}{\cos 20^{\circ} \cos 70^{\circ}} \\
& =\frac{1}{\cos 20^{\circ} \cos 70^{\circ}}=\frac{1}{\cos 20^{\circ} \sin 20^{\circ}} \\
& =\frac{2}{2 \sin 20^{\circ} \cos 20^{\circ}}=\frac{2}{\sin 40^{\circ}}=2 \operatorname{cosec} 40^{\circ} \\
\therefore 2 y & =2(2 x) \Rightarrow y=2 x
\end{aligned}
\)
Let \(x=\sin 1^{\circ}\), then the value of the expression \(\frac{1}{\cos 0^{\circ} \cdot \cos 1^{\circ}}+\frac{1}{\cos 1^{\circ} \cdot \cos 2^{\circ}}+\frac{1}{\cos 2^{\circ} \cdot \cos 3^{\circ}}+\cdots+\frac{1}{\cos 44^{\circ} \cdot \cos 45^{\circ}}\) is equal to
(b)
\(
\begin{aligned}
& \frac{1}{\sin 1^{\circ}}\left[\frac{\sin \left(1^{\circ}-0^{\circ}\right)}{\cos 0^{\circ} \cos 1^{\circ}}+\frac{\sin \left(2^{\circ}-1^{\circ}\right)}{\cos 1^{\circ} \cos 2^{\circ}}+\frac{\sin \left(3^{\circ}-2^{\circ}\right)}{\cos 2^{\circ} \cos 3^{\circ}}+\cdots+\frac{\sin \left(45^{\circ}-44^{\circ}\right)}{\cos 44^{\circ} \cos 45^{\circ}}\right] \\
& =\frac{1}{\sin 1^{\circ}}\left[\tan 1^{\circ}+\left(\tan 2^{\circ}-\tan 1^{\circ}\right)+\left(\tan 3^{\circ}-\tan 2^{\circ}\right)+\left(\tan 4^{\circ}-\tan 3^{\circ}\right)+\cdots+\left(\tan 45^{\circ}-\tan 44^{\circ}\right)\right] \\
& =\frac{1}{\sin 1^{\circ}}=\frac{1}{x}
\end{aligned}
\)
Let \(\alpha\) and, \(\beta\) be such that \(\pi<\alpha-\dot{\beta}<3 \pi\). If \(\sin \alpha+\sin \beta=-\frac{21}{65}\) and \(\cos \alpha+\cos \beta=-\frac{17}{65}\), then the value of \(\cos \frac{\alpha-\beta}{2}\) is
(a)Â We have \(\sin \alpha+\sin \beta=-\frac{21}{65} \dots(i)\)
\(
\cos \alpha+\cos \beta=-\frac{17}{65} \dots(ii)
\)
Squaring Eq. (i), we get \(\sin ^2 \alpha+\sin ^2 \beta+2 \sin \alpha \sin \beta=\left(\frac{21}{65}\right)^2 \dots(iii)\)
Squaring Eq. (ii), we get \(\cos ^2 \alpha+\cos ^2 \beta+2 \cos \alpha \cos \beta=\left(\frac{27}{65}\right)^2 \dots(iv)\).
\(
\begin{aligned}
& \text { Adding Eqs. (iii) and (iv), we get } 2+2 \cos (\alpha-\beta)=\frac{1}{(65)^2}\left[(27)^2+(21)^2\right]=\frac{1}{(65)^2}(729+441) \\
& \Rightarrow 2+2 \cos (\alpha-\beta)=\frac{1}{(65)^2}(1170)=\frac{18}{65} \\
& \Rightarrow 1+\cos (\alpha-\beta)=\frac{9}{65} \\
& \Rightarrow 2 \cos ^2 \frac{\alpha-\beta}{2}=\frac{9}{65}
\end{aligned}
\)
\(
\Rightarrow \cos \frac{\alpha-\beta}{2}=-\frac{3}{\sqrt{130}} \left[\because \pi<\alpha-\beta<3 \pi \Rightarrow \frac{\pi}{2}<\frac{\alpha-\beta}{2}<\frac{3 \pi}{2} \Rightarrow \cos \left(\frac{\alpha-\beta}{2}\right)<0\right]
\)
If \(\frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b}\), then \(\frac{\tan x}{\tan y}\) is equal to
(b)
\(
\begin{aligned}
& \frac{\sin (x+y)}{\sin (x-y)}=\frac{a+b}{a-b} \\
& \Rightarrow \frac{\sin (x+y)+\sin (x-y)}{\sin (x+y)-\sin (x-y)}=\frac{(a+b)+(a-b)}{(a+b)-(a-b)} \\
& \Rightarrow \frac{2 \sin x \cos y}{2 \cos x \sin y}=\frac{2 a}{2 b} \\
& \Rightarrow \frac{\tan x}{\tan y}=\frac{a}{b}
\end{aligned}
\)
\(\frac{\sin 3 \theta+\sin 5 \theta+\sin 7 \theta+\sin 9 \theta}{\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta}\) is equal to
(c)
\(
\begin{aligned}
& \frac{\sin 3 \theta+\sin 5 \theta+\sin 7 \theta+\sin 9 \theta}{\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta}=\frac{(\sin 3 \theta+\sin 9 \theta)+(\sin 5 \theta+\sin 7 \theta)}{(\cos 3 \theta+\cos 9 \theta)+(\cos 5 \theta+\cos 7 \theta)} \\
& =\frac{2 \sin 6 \theta \cos 3 \theta+2 \sin 6 \theta \cos \theta}{2 \cos 6 \theta \cos 3 \theta+2 \cos 6 \theta \cos \theta}=\frac{2 \sin 6 \theta(\cos 3 \theta+\cos \theta)}{2 \cos 6 \theta(\cos 3 \theta+\cos \theta)}=\tan 6 \theta
\end{aligned}
\)
If \(x, y, z\) are in A.P, then \(\frac{\sin x-\sin z}{\cos z-\cos x}\) is equal to
(b)
\(
\frac{\sin x-\sin z}{\cos z-\cos x}=\frac{2 \cos \left(\frac{x+z}{2}\right) \sin \left(\frac{x-z}{z}\right)}{2 \sin \left(\frac{x+z}{z}\right) \sin \left(\frac{x-z}{z}\right)}=\cot \left(\frac{x+z}{2}\right)=\cot (y)
\)
If \(\cos 25^{\circ}+\sin 25^{\circ}=p\), then \(\cos 50^{\circ}\) is
(c)
\(
\begin{aligned}
&\begin{aligned}
& \cos 50^{\circ}=\cos ^2 25^{\circ}-\sin ^2 25^{\circ}=\left(\cos 25^{\circ}+\sin 25^{\circ}\right)\left(\cos 25^{\circ}-\sin 25^{\circ}\right)=p\left(\cos 25^{\circ}-\sin 25^{\circ}\right) \dots(i) \\
& \text { Now }\left(\cos 25^{\circ}-\sin 25^{\circ}\right)^2+\left(\cos 25^{\circ}+\sin 25^{\circ}\right)^2=1+1 \\
& \therefore \quad \cos 25^{\circ}-\sin 25^{\circ}=\sqrt{2-p^2} \dots(ii)
\end{aligned}\\
&\text { We have taken }+ \text { ve sign as } \cos 25^{\circ}>\sin 25^{\circ} \text {, therefore } \cos 50^{\circ}=p \sqrt{2-p^2} \text {, by Eqs. (i) and (ii). }
\end{aligned}
\)
\(\frac{\sin ^2 A-\sin ^2 B}{\sin A \cos A-\sin B \cos B}\) is equal to
(b)
\(
\begin{aligned}
\frac{\sin ^2 A-\sin ^2 B}{\sin A \cos A-\sin B \cos B}=\frac{2 \sin (A+B) \sin (A-B)}{\sin 2 A-\sin 2 B} & =\frac{2 \sin (A+B) \sin (A-B)}{2 \sin (A-B) \cos (A+B)} \\
& =\tan (A+B)
\end{aligned}
\)
If \(\tan A=\frac{1-\cos B}{\sin B}\), then \(\tan 2 A\) is
(a)
\(
\tan A=\frac{1-\cos B}{\sin B}=\frac{2 \sin ^2(B / 2)}{2 \sin (B / 2) \cos (B / 2)}=\tan \frac{B}{2} \quad \Rightarrow \tan 2 A=\tan B
\)
The value of \(\cos ^2 10^{\circ}-\cos 10^{\circ} \cos 50^{\circ}+\cos ^2 50^{\circ}\) is equal to
(c)
\(
\begin{aligned}
& \cos ^2 10^{\circ}-\cos 10^{\circ} \cos 50^{\circ}+\cos ^2 50^{\circ} \\
& =\frac{1}{2}\left[1+\cos 20^{\circ}-\left(\cos 60^{\circ}+\cos 40^{\circ}\right)+\left(1+\cos 100^{\circ}\right)\right] \\
& =\frac{1}{2}\left[1+\cos 20^{\circ}-\frac{1}{2}-\cos 40^{\circ}+1-\cos 80^{\circ}\right] \\
& =\frac{1}{2}\left[\frac{3}{2}+\cos 20^{\circ}-\left(2 \cos 60^{\circ} \cos 20^{\circ}\right)\right]=\frac{3}{4} .
\end{aligned}
\)
If \(a+b=3-\cos 4 \theta\) and \(a-b=4 \sin 2 \theta\), then \(a b\) is always less than or equal to
(b) On adding, we get \(a=\frac{3-\cos 4 \theta+4 \sin 2 \theta}{2}=(1+\sin 2 \theta)^2\)
On subtracting, we get \(b=(1-\sin 2 \theta)^2 \Rightarrow a b=\cos ^4 2 \theta \leq 1\)
The numerical value of \(\tan 20^{\circ} \tan 80^{\circ} \cot 50^{\circ}\) is equal to
(a)
\(
\begin{aligned}
\tan 20^{\circ} \tan 80^{\circ} \cot 50^{\circ} & =\tan 20^{\circ} \tan 80^{\circ} \tan 40^{\circ} \\
& =\tan 20^{\circ} \tan \left(60^{\circ}-20^{\circ}\right) \tan \left(60^{\circ}+20^{\circ}\right)=\tan 60^{\circ}=\sqrt{3}
\end{aligned}
\)
If \(\tan ^2 \theta=2 \tan ^2 \phi+1\), then \(\cos 2 \theta+\sin ^2 \phi\) equals
(b)
\(
\begin{gathered}
\tan ^2 \theta=2 \tan ^2 \phi+1 \\
\Rightarrow \quad 1+\tan ^2 \theta=2\left(1+\tan ^2 \phi\right) \\
\Rightarrow \quad \sec ^2 \theta=2 \sec ^2 \phi \\
\Rightarrow \quad \cos ^2 \phi=2 \cos ^2 \theta \\
\quad=1+\cos 2 \theta \\
\Rightarrow \quad \cos 2 \theta=\cos ^2 \phi-1 \\
\quad=-\sin ^2 \phi \\
\Rightarrow \quad \sin ^2 \phi+\cos 2 \theta=0
\end{gathered}
\)
The value of \(\cot 70^{\circ}+4 \cos 70^{\circ}\) is
(b)
\(
\begin{aligned}
\cot 70^{\circ}+4 \cos 70^{\circ} & =\frac{\cos 70^{\circ}+4 \sin 70^{\circ} \cos 70^{\circ}}{\sin 70^{\circ}} \\
& =\frac{\cos 70^{\circ}+2 \sin 140^{\circ}}{\sin 70^{\circ}} \\
& =\frac{\cos 70^{\circ}+2 \sin \left(180^{\circ}-40^{\circ}\right)}{\sin 70^{\circ}} \\
& =\frac{\sin 20^{\circ}+\sin 40^{\circ}+\sin 40^{\circ}}{\sin 70^{\circ}} \\
& =\frac{2 \sin 30^{\circ} \cos 10^{\circ}+\sin 40^{\circ}}{\sin 70^{\circ}} \\
& =\frac{\sin 80^{\circ}+\sin 40^{\circ}}{\sin 70^{\circ}} \\
& =\frac{2 \sin 60^{\circ} \cos 20^{\circ}}{\sin 70^{\circ}}=\sqrt{3}
\end{aligned}
\)
If \(x_1\) and \(x_2\) are two distinct roots of the equation \(a \cos x+b \sin x=c\), then \(\tan \frac{x_1+x_2}{2}\) is equal to
(b)
\(
\begin{aligned}
& a \cos x+b \sin x=c \\
& \Rightarrow \frac{a\left(1-\tan ^2 \frac{x}{2}\right)}{1+\tan ^2 \frac{x}{2}}+\frac{2 b \tan \frac{x}{2}}{1+\tan ^2 \frac{x}{2}}=c
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \quad(c+a) \tan ^2 \frac{x}{2}-2 b \tan \frac{x}{2}+c-a=0 \\
& \Rightarrow \quad \tan \frac{x_1}{2}+\tan \frac{x_2}{2}=\frac{2 b}{c+a} \text { and } \tan \frac{x_1}{2} \tan \frac{x_2}{2}=\frac{c-a}{c+a} \\
& \Rightarrow \quad \tan \left(\frac{x_1+x_2}{2}\right)=\frac{\frac{2 b}{c+a}}{1-\frac{c-a}{c+a}}=\frac{2 b}{2 a}=\frac{b}{a}
\end{aligned}
\)
Given that \((1+\sqrt{1+x}) \tan y=1+\sqrt{1-x}\). Then \(\sin 4 y\) is equal to
(c)
\(
\begin{aligned}
& \tan y=\frac{1+\sqrt{1-x}}{1+\sqrt{1+x}} \\
& \text { If } x=\cos \theta, \text { then } \sqrt{1-x}=\sqrt{2} \sin (\theta / 2), \sqrt{1+x}=\sqrt{2} \cos (\theta / 2) \\
& \Rightarrow \tan y=\frac{\sqrt{2}\left[\frac{1}{\sqrt{2}}+\sin \frac{\theta}{2}\right]}{\sqrt{2}\left[\frac{1}{\sqrt{2}}+\cos \frac{\theta}{2}\right]}=\frac{\sin \frac{\pi}{4}+\sin \frac{\theta}{2}}{\cos \frac{\pi}{4}+\cos \frac{\theta}{2}} \\
& \quad=\frac{2 \sin \left(\frac{\pi}{8}+\frac{\theta}{4}\right) \cos \left(\frac{\pi}{8}-\frac{\theta}{4}\right)}{2 \cos \left(\frac{\pi}{8}+\frac{\theta}{4}\right) \cos \left(\frac{\pi}{8}-\frac{\theta}{4}\right)} \\
& \quad=\tan \left(\frac{\pi}{8}+\frac{\theta}{4}\right) \\
& \Rightarrow 4 y=\frac{\pi}{2}+\theta \\
& \Rightarrow \sin 4 y=\cos \theta=x
\end{aligned}
\)
If \(\cos x=\tan y, \cos y=\tan z, \cos z=\tan x\), then the value of \(\sin x\) is
(d)
\(
\begin{aligned}
&\text { We have } \cos x=\tan y\\
&\begin{aligned}
\Rightarrow \quad \cos ^2 x & =\tan ^2 y \\
& =\sec ^2 y-1 \\
& =\cot ^2 z-1 [\because \cos y=\tan z, \sec y=\cot z]
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
\Rightarrow 1+\cos ^2 x & =\cot ^2 z \\
& =\frac{\tan ^2 x}{1-\tan ^2 x} [\because \cos z=\tan x]
\end{aligned}
\)
\(
\begin{aligned}
& =\frac{\sin ^2 x}{\cos ^2 x-\sin ^2 x} \\
\Rightarrow \quad & 2 \sin ^4 x-6 \sin ^2 x+2=0 \\
\Rightarrow \quad & \sin ^2 x=\frac{3-\sqrt{5}}{2} .
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \sin ^2 x=\left(\frac{\sqrt{5}-1}{2}\right)^2 \\
& \Rightarrow \sin x=\frac{\sqrt{5}-1}{2}=2 \sin 18^{\circ}
\end{aligned}
\)
If \(\sin 2 \theta=\cos 3 \theta\) and \(\theta\) is an acute angle, then \(\sin \theta\) equals
(a)
\(
\begin{aligned}
& \sin 2 \theta=\cos 3 \theta \quad \Rightarrow 2 \sin \theta \cos \theta=4 \cos ^3 \theta-3 \cos \theta \\
& \Rightarrow \quad 2 \sin \theta=4\left(1-\sin ^2 \theta\right)-3 \Rightarrow 4 \sin ^2 \theta+2 \sin \theta-1=0 \\
& \Rightarrow \quad \sin \theta=\frac{\sqrt{5}-1}{4}
\end{aligned}
\)
If \(\theta_1\) and \(\theta_2\) are two values lying in \([0,2 \pi]\) for which \(\tan \theta=\lambda\), then \(\tan \frac{\theta_1}{2} \tan \frac{\theta_2}{2}\) is equal to
(b)
\(
\begin{aligned}
& \tan \theta=\lambda, \text { we get } \frac{2 \tan \theta / 2}{1-\tan ^2 \theta / 2}=\lambda \\
& \Rightarrow \lambda \tan ^2 \frac{\theta}{2}+2 \tan \frac{\theta}{2}-\lambda=0 \\
& \Rightarrow \tan \frac{\theta_1}{2} \tan \frac{\theta_2}{2}=-1
\end{aligned}
\)
If \(\tan \theta=\sqrt{n}\) where \(n \in \dot{N}, \geq 2\), then \(\sec 2 \theta\) is always
(a) \(\tan \theta=\sqrt{n} \quad \Rightarrow \cos 2 \theta=\frac{1-\tan ^2 \theta}{1+\tan ^2 \theta}=\frac{1-n}{1+n}=\text { rational. }\)
If \(\sin x+\cos x=\frac{\sqrt{7}}{2}\) where \(x \in A\), then \(\tan \frac{x}{2}\) is equal to
(b)
\(
\begin{aligned}
& \sin x+\cos x=\frac{\sqrt{7}}{2} \\
& \Rightarrow \quad \frac{2 \tan \frac{x}{2}}{\left(1+\tan ^2 \frac{x}{2}\right)}+\frac{1-\tan ^2 \frac{x}{2}}{1+\tan ^2 \frac{x}{2}}=\frac{\sqrt{7}}{2} \\
& \Rightarrow \quad(\sqrt{7}+2) \tan ^2 \frac{x}{2}-4 \tan \frac{x}{2}+(\sqrt{7}-2)=0 \\
& \Rightarrow \quad \tan \frac{x}{2}=\frac{4 \pm \sqrt{16-4(7-4)}}{2(\sqrt{7}+2)}=\frac{1}{(\sqrt{7}+2)} \text { as } \frac{x}{2}<\frac{\pi}{8} \\
& \quad=\frac{\sqrt{7}-2}{3}
\end{aligned}
\)
The value of \(\sin ^2 \frac{\pi}{8}+\sin ^2 \frac{3 \pi}{8}+\sin ^2 \frac{5 \pi}{8}+\sin ^2 \frac{7 \pi}{8}\) is
(b)
\(
\begin{aligned}
& \sin \frac{7 \pi}{8}=\sin \left(\pi-\frac{\pi}{8}\right)=\sin \frac{\pi}{8} ; \sin \frac{5 \pi}{8}=\sin \left(\pi-\frac{3 \pi}{8}\right)=\sin \frac{3 \pi}{8} \\
& \text { Therefore, the given value }=2\left[\sin ^2 \frac{\pi}{8}+\sin ^2 \frac{3 \pi}{8}\right]=2\left[\sin ^2 \frac{\pi}{8}+\cos ^2 \frac{\pi}{8}\right]
\end{aligned}
\)
\(
=2(1)=2\left[\because \sin \frac{3 \pi}{8}=\sin \left(\frac{\pi}{2}-\frac{\pi}{8}\right)=\cos \frac{\pi}{8}\right]
\)
If \(x \in\left(\pi, \frac{3 \pi}{2}\right)\), then \(4 \cos ^2\left(\frac{\pi}{4}-\frac{x}{2}\right)+\sqrt{4 \sin ^4 x+\sin ^2 2 x}\) is always equal to
(b)
\(
\begin{aligned}
& 4 \cos ^2\left(\frac{\pi}{4}-\frac{x}{2}\right)+\sqrt{4 \sin ^4 x+\sin ^2 2 x}=4 \cos ^2\left(\frac{\pi}{4}-\frac{x}{2}\right)+\sqrt{4 \sin ^2 x\left(\cos ^2 x+\sin ^2 x\right)} \\
& =2\left(1+\cos \left(\frac{\pi}{2}-x\right)\right)+2|\sin x|=2+2 \sin x-2 \sin x \text { as } x \in\left(\pi, \frac{3 \pi}{2}\right)=2 .
\end{aligned}
\)
\(\cos ^3 x \sin 2 x=\sum_{x=0}^n a_r \sin (r x) \forall x \in R\), then
(b)
\(
\begin{aligned}
\cos ^3 x \sin 2 x & =\cos ^2 x \cos x \sin 2 x \\
& =\left(\frac{1-\cos 2 x}{2}\right)\left(\frac{2 \sin 2 x \cos x}{2}\right) \\
& =\frac{1}{4}(1-\cos 2 x)(\sin 3 x+\sin x) \\
& =\frac{1}{4}\left[\sin 3 x+\sin x-\frac{1}{2}(2 \sin 3 x \cdot \cos 2 x)-\frac{1}{2}(2 \cos 2 x \sin x)\right] \\
& =\frac{1}{4}\left[\sin 3 x+\sin x-\frac{1}{2}(\sin 5 x+\sin x)-\frac{1}{2}(\sin 3 x-\sin x)\right] \\
& =\frac{1}{4}\left[\sin x+\frac{1}{2} \sin 3 x-\frac{1}{2} \sin 5 x\right]
\end{aligned}
\)
\(
\Rightarrow \quad \dot{a}_1=1 / 4, a_3=1 / 8, n=5
\)
The value of \(\cos 2(\theta+\phi)+4 \cos (\theta+\phi) \sin \theta \sin \phi+2 \sin ^2 \phi\) is
(b)
\(
\begin{aligned}
&\text { Given expression is } 2 \sin ^2 \phi+4 \cos (\theta+\phi) \sin \theta \sin \phi+\cos 2(\theta+\phi)\\
&\begin{aligned}
& =(1-\cos 2 \phi)+4 \cos (\theta+\phi) \sin \theta \sin \phi+2 \cos ^2(\theta+\phi)-1 \\
& =-\cos 2 \phi+4 \cos (\theta+\phi) \sin \theta \sin \phi+2 \cos ^2(\theta+\phi) \\
& =-\cos 2 \phi+2 \cos (\theta+\phi)[\cos (\theta+\phi)+2 \sin \theta \sin \phi] \\
& =-\cos 2 \phi+2 \cos (\theta+\phi)[\cos \theta \cos \phi+\sin \theta \sin \phi] \\
& =-\cos 2 \phi+2 \cos (\theta+\phi) \cos (\theta-\phi) \\
& =-\cos 2 \phi+\cos 2 \theta+\cos 2 \phi=\cos 2 \theta
\end{aligned}
\end{aligned}
\)
If \(\cos 2 B=\frac{\cos (A+C)}{\cos (A-C)}\), then \(\tan A, \tan B, \tan C\) are in
(b)
\(
\begin{aligned}
&\frac{\cos 2 B}{1}=\frac{\cos (A+C)}{\cos (A-C)}\\
&\text { Applying componendo and dividendo, we get }\\
&\begin{aligned}
& \Rightarrow \frac{1-\cos 2 B}{1+\cos 2 B}=\frac{\cos (A-C)-\cos (A+C)}{\cos (A-C)+\cos (A+C)} \\
& \Rightarrow \frac{2 \sin ^2 B}{2 \cos ^2 B}=\frac{2 \sin A \sin C}{2 \cos A \cos C} \\
& \Rightarrow \tan { }^2 B=\tan A \tan C \\
& \Rightarrow \tan A, \tan B, \tan C \text { are in G.P. }
\end{aligned}
\end{aligned}
\)
If \(\cos x=\frac{2 \cos y-1}{2-\cos y}\), where \(x, y \in(0, \pi)\), then \(\tan \frac{x}{2} \cot \frac{y}{2}\); is equal to
(b)
(b)
\(
\begin{aligned}
&\cos x=\frac{2 \cos y-1}{2-\cos y}\\
&\Rightarrow \frac{1-\tan ^2 \frac{x}{2}}{1+\tan ^2 \frac{x}{2}}=\frac{\frac{2\left(1-\tan ^2 y / 2\right)}{1+\tan ^2 y / 2}-1}{2-\frac{1-\tan ^2 y / 2}{1+\tan ^2 y / 2}}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow 6 \tan ^2 y / 2=2 \tan ^2 \frac{x}{2} \\
& \Rightarrow \tan \frac{x}{2} \cot \frac{y}{2}=\sqrt{3}
\end{aligned}
\)
If \(\tan x=b / a\), then \(\sqrt{(a+b) /(a-b)}+\sqrt{(a-b) /(a+b)}\) is equal to
(b)
\(
\begin{aligned}
&\text { We have }\\
&\begin{aligned}
\sqrt{\left(\frac{a+b}{a-b}\right)}+\sqrt{\left(\frac{a-b}{a+b}\right)} & =\frac{a+b+a-b}{\sqrt{\left(a^2-b^2\right)}} \\
& =\frac{2 a}{\sqrt{\left(a^2-b^2\right)}}=\frac{2}{\sqrt{\left[1-(b / a)^2\right]}} \\
& =\frac{2}{\sqrt{\left(1-\tan ^2 x\right)}}=\frac{2 \cos x}{\sqrt{\left(\cos ^2 x-\sin ^2 x\right)}} \\
& =\frac{2 \cos x}{\sqrt{(\cos 2 x)}}
\end{aligned}
\end{aligned}
\)
If \(\alpha\) is a root of \(25 \cos ^2 \theta+5 \cos \theta-12=0, \frac{\pi}{2}<\alpha<\pi\), then \(\sin 2 \alpha\) is equal to
(b)
\(
\begin{aligned}
&\text { Since } \alpha \text { is a root of } 25 \cos ^2 \theta+5 \cos \theta-12=0\\
&\begin{aligned}
& \therefore \quad 25 \cos ^2 \alpha+5 \cos \alpha-12=0 \quad \Rightarrow \cos \alpha=\frac{-5 \pm \sqrt{25+1200}}{50}=-\frac{4}{5}\left[\because \frac{\pi}{2}<\alpha<\pi\right] \\
& \text { and } \sin \alpha=\sqrt{1-\frac{16}{25}}=\frac{3}{5} \text {; therefore, } \sin 2 \alpha=2 \sin \alpha \cos \alpha=2\left(\frac{3}{5}\right)\left(\frac{-4}{5}\right)=\frac{-24}{25}
\end{aligned}
\end{aligned}
\)
The value of \(\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}\) is
(c)
\(
\begin{aligned}
&\text { We have } \tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}=\left(\tan 9^{\circ}+\tan 81^{\circ}\right)-\left(\tan \cdot 27^{\circ}+\tan 63^{\circ}\right)\\
&\begin{aligned}
& =\frac{1}{\sin 9^{\circ} \cos 9^{\circ}}-\frac{1}{\sin 27^{\circ} \cos 27^{\circ}} \\
& =\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}} \\
& =2\left[\frac{\sin 54^{\circ}-\sin 18^{\circ}}{\sin 54^{\circ} \sin 18^{\circ}}\right] \\
& =2\left[\frac{2 \cos 36^{\circ} \sin 18^{\circ}}{\sin 18^{\circ} \cos 36^{\circ}}\right]=4
\end{aligned}
\end{aligned}
\)
If \(\sin ^{-1} a+\sin ^{-1} b+\sin ^{-1} c=\pi\), then \(a \sqrt{1-a^2}+b \sqrt{1-b^2}+c \sqrt{1-c^2}\) is equal to
(c)
\(
\begin{aligned}
&\text { Let } A=\sin ^{-1} a, B=\sin ^{-1} b \text { and } C=\sin ^{-1} c \text {, we have } A+B+C=\pi \text {. }\\
&a \sqrt{1-a^2}+b \sqrt{1-b^2}+c \sqrt{1-c^2}=\frac{1}{2}(\sin 2 A+\sin 2 B+\sin 2 C)=\frac{1}{2}[4 \sin A \sin B \sin C]=2 a b c
\end{aligned}
\)
If \(A+B+C=3 \pi / 2\), then \(\cos 2 A+\cos 2 B+\cos 2 C\) is equal to
(d)
\(
\begin{aligned}
\cos 2 A+\cos 2 B+\cos 2 C & =2 \cos (A+B) \cos (A-B)+\cos 2 C \\
& =2 \cos \left(\frac{3 \pi}{2}-C\right) \cos (A-B)+\cos 2 C \\
& =-2 \sin C \cos (A-B)+1-2 \sin ^2 C \\
& =1-2 \sin C(\cos (A-B)+\sin C) \\
& =1-2 \sin C\{\cos (A-B)+\sin [3 \pi / 2-(A+B)]\} \\
& =1-2 \sin C[\cos (A-B)-\cos (A+B)]
\end{aligned}
\)
\(
=1-4 \sin A \sin B \sin C
\)
In triangle \(A B C, \tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2}\) are in H.P., then the value of \(\cot \frac{A}{2} \times \cot \frac{C}{2}\) is equal to
(c)
\(
\begin{aligned}
& \frac{2}{\tan \frac{B}{2}}=\frac{1}{\tan \frac{A}{2}}+\frac{1}{\tan \frac{C}{2}} \\
& \Rightarrow 2 \tan \frac{A}{2} \tan \frac{C}{2}=\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{B}{2} \tan \frac{A}{2}=1-\tan \frac{A}{2} \tan \frac{C}{2} \\
& \Rightarrow \tan \frac{A}{2} \tan \frac{C}{2}=\frac{1}{3} \\
& \Rightarrow \cot \frac{A}{2} \cot \frac{C}{2}=3
\end{aligned}
\)
In any triangle \(A B C, \sin ^2 A-\sin ^2 B+\sin ^2 C\) is always equal to
(b)
\(
\begin{aligned}
\sin ^2 A-\sin ^2 B+\sin ^2 C & =\sin (A+B) \sin (A-B)+\sin ^2 C=\sin C(\sin (A-B)+\sin C) \\
& =\sin C(\sin (A-B)+\sin (A+B))=2 \sin A \cos B \sin C
\end{aligned}
\)
If \(\tan ^2 \alpha \tan ^2 \beta+\tan ^2 \beta \tan ^2 \gamma+\tan ^2 \gamma \tan ^2 \alpha+2 \tan ^2 \alpha \tan ^2 \beta \tan ^2 \gamma=1\), then the value of \(\sin ^2 \alpha+\sin ^2 \beta+\sin ^2 \gamma\) is
(c)
\(
\sin ^2 \alpha+\sin ^2 \beta+\sin ^2 \gamma=\frac{\tan ^2 \alpha}{1+\tan ^2 \alpha}+\frac{\tan ^2 \beta}{1+\tan ^2 \beta}+\frac{\tan ^2 \gamma}{1+\tan ^2 \gamma}
\)
\(
=\frac{x}{1+x}+\frac{y}{1+y}+\frac{z}{1+z} \quad\left[\text { where } x=\tan ^2 \alpha, y=\tan ^2 \beta, z=\tan ^2 \gamma\right]
\)
\(
=\frac{(x+y+z)+(x y+y z+z x+2 x y z)+x y+y z+z x+x y z}{(1+x)(1+y)(1+z)}
\)
\(
=\frac{1+x+y+z+x y+y z+z x+x y z}{(1+x)(1+y)(1+z)}=1 \quad[\because x y+y z+z x+2 x y z=\gamma]
\)
In triangle \(A B C, \frac{\sin A+\sin B+\sin C}{\sin A+\sin B-\sin C}\) is equal to
(c)
\(
\begin{aligned}
&\begin{aligned}
D^{r} & =\sin A+\sin B-\sin C \\
& =2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}-2 \sin \frac{C}{2} \cos \frac{C}{2} \\
& =2 \cos \frac{C}{2}\left[\cos \left(\frac{A-B}{2}\right)-\sin \frac{C}{2}\right] \\
& =2 \cos \frac{C}{2}\left[\cos \frac{A-B}{2}-\cos \frac{A+B}{2}\right] \\
& =2 \cos \frac{C}{2}\left[2 \sin \frac{A}{2} \sin \frac{B}{2}\right] \\
& =4 \sin \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}
\end{aligned}\\
&\text { Also } \sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}\\
&\Rightarrow \frac{\sin A+\sin B+\sin C}{\sin A+\sin B-\sin C}=\cot \frac{A}{2} \cot \frac{B}{2}
\end{aligned}
\)
\(\frac{\sin 2 A+\sin 2 B+\sin 2 C}{\sin A+\sin B+\sin C}\) is equal to
(a)
\(
\frac{\sin 2 A+\sin 2 B+\sin 2 C}{\sin \widetilde{A}+\sin B+\sin C}=\frac{4 \sin A \sin B \sin C}{4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}}=8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \quad\left[\because \sin A=2 \sin \frac{A}{2} \cos \frac{A}{2}\right]
\)
If \(\cos ^2 A+\cos ^2 B+\cos ^2 C=1\), then \(\triangle A B C\) is
(c) We have \(\cos ^2 A+\cos ^2 B-\left(1-\cos ^2 C\right)=0\)
\(
\begin{aligned}
& \Rightarrow \quad \cos ^2 A+\cos ^2 B-\sin ^2 C=0 \\
& \Rightarrow \quad \cos ^2 A+\cos (B+C) \cos (B-C)=0 \\
& \Rightarrow \quad 2 \cos A \cos B \cos C=0
\end{aligned}
\)
Hence, either \(A\) or \(B\) or \(C\) is \(90^{\circ}\).
In triangle \(A B C, \tan A+\tan B+\tan C=6\) and \(\tan A \tan B=2\), then the values of \(\tan A, \tan B, \tan C\) are
(a) In a triangle, \(\tan A+\tan B+\tan C=\tan A \tan B \tan C \dots(i)\)
\(
\begin{aligned}
& \Rightarrow \quad 6=2 \tan C \\
& \Rightarrow \quad \tan C=3
\end{aligned}
\)
Also \(\tan A+\tan B=6-3=3 \dots(ii)\)
\(\Rightarrow \tan A\) and \(\tan B\) are roots \(x^2-3 x+2=0\) by Eqs. (i) and (ii).
\(\Rightarrow \tan A, \tan B=2,1\) or 1,2 and \(\tan C=3\).
The value of \(\tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ}\) is
(a)
\(
\begin{aligned}
&\text { We have } \tan 6^{\circ} \tan 42^{\circ} \tan 66^{\circ} \tan 78^{\circ}\\
&\begin{aligned}
& =\tan 6^{\circ} \tan \left(60^{\circ}-18^{\circ}\right) \tan \left(60^{\circ}+6^{\circ}\right) \tan \left(60^{\circ}+18^{\circ}\right) \\
& =\frac{\tan 6^{\circ} \tan \left(60^{\circ}+6^{\circ}\right) \tan 18^{\circ} \tan \left(60^{\circ}-18^{\circ}\right) \tan \left(60^{\circ}+18^{\circ}\right)}{\tan 18^{\circ}}=\frac{\tan 6^{\circ} \tan \left(60^{\circ}+6^{\circ}\right) \tan \left(3 \times 18^{\circ}\right)}{\tan 18^{\circ}} \\
& =\frac{\tan 6^{\circ} \tan \left(60^{\circ}-6\right) \tan \left(60^{\circ}+6\right)}{\tan 18^{\circ}}=\frac{\tan 18^{\circ}}{\tan 18^{\circ}}=1
\end{aligned}
\end{aligned}
\)
If \(0<\alpha<\frac{\pi}{6}\), then \(\alpha(\operatorname{cosec} \alpha)\) is
(c)
\(
\begin{aligned}
& \text { As } \alpha \rightarrow 0^{+}, \lim _{\alpha \rightarrow 0^{+}} \frac{\alpha}{\sin \alpha}=1 \\
& \text { At } \alpha=\frac{\pi}{6}, \frac{\frac{\pi}{6}}{\sin \left(\frac{\pi}{6}\right)}=\frac{\frac{\pi}{6}}{\frac{1}{2}}=\frac{2 \pi}{6}=\frac{\pi}{3}
\end{aligned}
\)
Since \(\frac{\alpha}{\sin \alpha}\) is increasing and its values are 1 at \(\alpha \rightarrow 0^{+}\)and \(\frac{\pi}{3}\)
at \(\alpha=\frac{\pi}{6}\), the range is \(1<\alpha(\operatorname{cosec} \alpha)<\frac{\pi}{3}\)
If \(\theta\) is eliminated from the equations \(x=a \cos (\theta-\alpha)\) and \(y=b \cos (\theta-\beta)\), then \(\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{2 x y}{a b} \cos (\alpha-\beta) \quad\) is equal to
(d)
\(
\begin{aligned}
& (\alpha-\beta)=(\theta-\beta)-(\theta-\alpha) \\
& \Rightarrow \cos (\alpha-\beta)=\cos (\theta-\beta) \cos (\theta-\alpha)+\sin (\theta-\beta) \sin (\theta-\alpha) \\
& \quad=\frac{y}{b} \times \frac{x}{a}+\sqrt{1-\frac{x^2}{a^2}} \sqrt{1-\frac{y^2}{b^2}} \\
& \Rightarrow\left[\frac{x y}{a b}-\cos (\alpha-\beta)\right]^2=\left(1-\frac{x^2}{a^2}\right)\left(1-\frac{y^2}{b^2}\right)
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \frac{x^2 y^2}{a^2 b^2}+\cos ^2(\alpha-\beta)-\frac{2 x y}{a b} \cos (\alpha-\beta)=1-\frac{y^2}{b^2}-\frac{x^2}{a^2}+\frac{x^2 y^2}{a^2 b^2} \\
& \Rightarrow \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{2 x y}{a b} \cos (\alpha-\beta)=\sin ^2(\alpha-\beta)
\end{aligned}
\)
If \(\left|\cos \theta\left\{\sin \theta+\sqrt{\sin ^2 \theta+\sin ^2 \alpha}\right\}\right| \leq k\), then the value of \(k\) is
(b)
\(
\begin{aligned}
&\begin{aligned}
& \text { Let } u=\cos \theta\left\{\sin \theta+\sqrt{\sin ^2 \theta+\sin ^2 \alpha}\right\} \\
& \Rightarrow \quad(u-\sin \theta \cos \theta)^2=\cos ^2 \theta\left(\sin ^2 \theta+\sin ^2 \alpha\right) \\
& \Rightarrow \quad u^2 \tan ^2 \theta-2 u \tan \theta+u^2-\sin ^2 \alpha=0
\end{aligned}\\
&\text { Since } \tan \theta \text { is real, } 4 u^2-4 u^2\left(u^2-\sin ^2 \alpha\right) \geq 0 \text {. }\\
&\begin{aligned}
& \Rightarrow \quad u^2 \leq 1+\sin ^2 \alpha \\
& \Rightarrow \quad|u| \leq \sqrt{1+\sin ^2 \alpha}
\end{aligned}
\end{aligned}
\)
If \(\sin \theta_1 \sin \theta_2-\cos \theta_1 \cos \theta_2+1=0\), then the value of \(\tan \left(\theta_1 / 2\right) \cot \left(\theta_2 / 2\right)\) is always equal to
(a)Â
\(
\begin{aligned}
&\begin{aligned}
& \sin \theta_1 \sin \theta_2-\cos \theta_1 \cos \theta_2=-1 \\
& \Rightarrow \cos \left(\theta_1+\theta_2\right)=1 \\
& \Rightarrow \theta_1+\theta_2=2 n \pi, n \in I \\
& \Rightarrow \frac{\theta_1}{2}+\frac{\theta_2}{2}=n \pi
\end{aligned}\\
&\text { Thus, } \tan \frac{\theta_1}{2} \cot \frac{\theta_2}{2}=\tan \frac{\theta_1}{2} \cot \left(n \pi-\frac{\theta_1}{2}\right)=-\tan \frac{\theta_1}{2} \cot \frac{\theta_1}{2}=-1
\end{aligned}
\)
The numerical value of \(\tan \frac{\pi}{3}+2 \tan \frac{2 \pi}{3}+4 \tan \frac{4 \pi}{3}+8 \tan \frac{8 \pi}{3}\) is equal to
(a)
\(
\begin{aligned}
& \tan \frac{\pi}{3}+2 \tan \frac{2 \pi}{3}+4 \tan \frac{4 \pi}{3}+8 \tan \frac{8 \pi}{3} \\
& =\tan \frac{\pi}{3}+2 \tan \left(\pi-\frac{\pi}{3}\right)+4 \tan \left(\pi+\frac{\pi}{3}\right)+8 \tan \left(3 \pi-\frac{\pi}{3}\right) \\
& =\tan \frac{\pi}{3}-2 \tan \frac{\pi}{3}+4 \tan \frac{\pi}{3}-8 \tan \frac{\pi}{3}=-5 \tan \frac{\pi}{3}=-5 \sqrt{3}
\end{aligned}
\)
\(\tan ^6 \frac{\pi}{9}-33 \tan ^4 \frac{\pi}{9}+27 \tan ^2 \frac{\pi}{9}\) is equal to
(c) Since \(\tan 3 \theta=\frac{3 \tan \theta-\tan ^3 \theta}{1-3 \tan ^2 \theta}\)
Putting \(\theta=\frac{\pi}{9}\), we get \(\tan \frac{\pi}{3}=\frac{3 \tan \frac{\pi}{9}-\tan ^3 \frac{\pi}{9}}{1-3 \tan ^2 \frac{\pi}{9}}\)
\(
\begin{aligned}
& \Rightarrow \quad 3\left(1-3 \tan ^2 \frac{\pi}{9}\right)^2=\left(3 \tan \frac{\pi}{9}-\tan ^3 \frac{\pi}{9}\right)^2 \\
& \Rightarrow \quad \tan ^6 \frac{\pi}{9}-33 \tan ^4 \frac{\pi}{9}+27 \tan ^2 \frac{\pi}{9}=3
\end{aligned}
\)
If \(\cos x+\cos y-\cos (x+y)=\frac{3}{2}\), then
(c)
\(
\begin{aligned}
& \cos x+\cos y-\cos (x+y)=\frac{3}{2} \\
& \Rightarrow 2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)-2 \cos ^2\left(\frac{x+y}{2}\right)+1=\frac{3}{2}
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow \quad 2 \cos ^2\left(\frac{x+y}{2}\right)-2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)+\frac{1}{2}=0\\
&\text { Now } \cos \left(\frac{x+y}{2}\right) \text { is always real, then discriminant } \geq 0 \text {. }\\
&\begin{aligned}
& \Rightarrow \quad 4 \cos ^2\left(\frac{x-y}{2}\right)-4 \geq 0 \\
& \Rightarrow \quad \cos ^2\left(\frac{x-y}{2}\right) \geq 1 \\
& \Rightarrow \quad \cos ^2\left(\frac{x-y}{2}\right)=1 \\
& \Rightarrow \quad \frac{x-y}{2}=0 \Rightarrow x=y
\end{aligned}
\end{aligned}
\)
If \(a \sin x+b \cos (x+\theta)+b \cos (x-\theta)=d\), then the minimum value of \(|\cos \theta|\) is equal to
(a)
\(
\begin{aligned}
& a \sin x+b \cos (x+\theta)+b \cos (x-\theta)=d \\
& \Rightarrow \quad a \sin x+2 b \cos x \cos \theta=d \\
& \Rightarrow \quad|d| \leq \sqrt{a^2+4 b^2 \cos ^2 \theta} \\
& \Rightarrow \quad \frac{d^2-a^2}{4 b^2} \leq \cos ^2 \theta \\
& \Rightarrow \quad|\cos \theta| \geq \frac{\sqrt{d^2-a^2}}{2|b|}
\end{aligned}
\)
If \(\frac{\sin x}{\sin y}=\frac{1}{2}, \frac{\cos x}{\cos y}=\frac{3}{2}\) where \(x, y \in\left(0, \frac{\pi}{2}\right)\), then the value of \(\tan (x+y)\) is equal to
(d)
\(
\begin{aligned}
& \frac{\sin x}{\sin y}=\frac{1}{2}, \frac{\cos x}{\cos y}=\frac{3}{2} \Rightarrow \frac{\tan x}{\tan y}=\frac{1}{3} \Rightarrow \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}=\frac{4 \tan x}{1-3 \tan ^2 x} \\
& \text { Also } \sin y=2 \sin x, \cos y=\frac{2}{3} \cos x \\
& \Rightarrow \sin ^2 y+\cos ^2 y=4 \sin ^2 x+\frac{4 \cos ^2 x}{9}=1 \\
& \Rightarrow 36 \tan ^2 x+4=9 \sec ^2 x=9\left(1+\tan ^2 x\right) \\
& \Rightarrow 27 \tan ^2 x=5 \\
& \Rightarrow \tan x=\frac{\sqrt{5}}{3 \sqrt{3}} \\
& \Rightarrow \tan (x+y)=\frac{\frac{4 \sqrt{5}}{3 \sqrt{3}}}{1-\frac{15}{27}}=\frac{4 \sqrt{5} \times 27}{12 \times 3 \sqrt{3}}=\sqrt{15}
\end{aligned}
\)
If \(x \in(\pi, 2 \pi)\) and \(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}=\cot \left(a+\frac{x}{2}\right)\), then \(a\) is equal to
(a)
\(
\begin{aligned}
& \sqrt{1+\cos x} \doteq \sqrt{2 \cos ^2 \frac{x}{2}}=\sqrt{2}\left|\cos \frac{x}{2}\right| \text { and } \sqrt{1-\cos x}=\sqrt{2 \sin ^2 \frac{x}{2}}=\sqrt{2}\left|\sin \frac{x}{2}\right| \\
& \Rightarrow \frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}=\frac{\left|\cos \frac{x}{2}\right|+\left|\sin \frac{x}{2}\right|}{\left|\cos \frac{x}{2}\right|-\left|\sin \frac{x}{2}\right|}
\end{aligned}
\)
\(
\begin{aligned}
& =\frac{-\cos \frac{x}{2}+\sin \frac{x}{2}}{-\cos \frac{x}{2}-\sin \frac{x}{2}} \quad\left(\because \frac{\pi}{2}<\frac{x}{2}<\pi\right) \\
& =\frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}} \\
& =\frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}} \\
& =\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)=\cot \left(\frac{\pi}{2}-\left(\frac{\pi}{4}-\frac{x}{2}\right)\right)=\cot \left(\frac{\pi}{4}+\frac{x}{2}\right)
\end{aligned}
\)
If \(\tan x=n \tan y, n \in R^{+}\), then the maximum value of \(\sec ^2(x-y)\) is equal to
(d)
\(
\begin{aligned}
& \tan x=n \tan y, \cos (x-y)=\cos x \cos y+\sin x \sin y \\
& \Rightarrow \quad \cos (x-y)=\cos x \cos y(1+\tan x \cdot \tan y)=\cos x \cos y\left(1+n \tan ^2 y\right)
\end{aligned}
\)
\(
\begin{aligned}
\Rightarrow \sec ^2(x-y) & =\frac{\sec ^2 x \sec ^2 y}{\left(1+n \tan ^2 y\right)^2} \\
& =\frac{\left(1+\tan ^2 x\right)\left(1+\tan ^2 y\right)}{\left(1+n \tan ^2 y\right)^2} \\
& =\frac{\left(1+n^2 \tan ^2 y\right)\left(1+\tan ^2 y\right)}{\left(1+n \tan ^2 y\right)^2} \\
& =1+\frac{(n-1)^2 \tan ^2 y}{\left(1+n \tan ^2 y\right)^2}
\end{aligned}
\)
\(
\text { Now, }\left(\frac{1+n \tan ^2 y}{2}\right)^2 \geq n \tan ^2 y \quad(\because \text { A.M. } \geq \text { G.M. })
\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{\tan ^2 y}{\left(1+n \tan ^2 y\right)^2} \leq \frac{1}{4 n} \\
& \Rightarrow \sec ^2(x-y) \leq 1+\frac{(n-1)^2}{4 n}=\frac{(n+1)^2}{4 n}
\end{aligned}
\)
If \(\cot ^2 x=\cot (x-y) \cot (x-z)\), then \(\cot 2 x\) is equal to (where \(\left.x \neq \pm \pi / 4\right)\)
(b)
\(
\begin{aligned}
& \cot ^2 x=\cot (x-y) \cot (x-z) \\
& \Rightarrow \cot ^2 x=\left(\frac{\cot x \cot y+1}{\cot y-\cot x}\right)\left(\frac{\cot x \cot z+1}{\cot z-\cot x}\right) \\
& \Rightarrow \cot ^2 x \cot y \cot z-\cot ^3 x \cot y-\cot ^3 x \cot z+\cot ^4 x
\end{aligned}
\)
\(
=\cot ^2 x \cot y \cot z+\cot x \cot y+\cot x \cot z+1
\)
\(
\begin{aligned}
& \Rightarrow \cot ^3 x(\cot y+\cot z)+\cot x(\cot y+\cot z)+1-\cot ^4 x=0 \\
& \Rightarrow \cot x(\cot y+\cot z)\left(1+\cot ^2 x\right)+\left(1-\cot ^2 x\right)\left(1+\cot ^2 x\right)=0 \\
& \Rightarrow\left[\cot x(\cot y+\cot z)+\left(1-\cot ^2 x\right)\right]=0 \\
& \Rightarrow \frac{\cot ^2 x-1}{2 \cot x}=\frac{1}{2}(\cot y+\cot z)=\cot 2 x
\end{aligned}
\)
If \(A, B, C\) are acute positive angles such that \(A+B+C=\pi\) and \(\cot A \cot B \cot C=k\), then
(a)
\(
\begin{aligned}
&A+B+C=\pi \quad \Rightarrow \tan A+\tan B+\tan C=\tan A \tan B \tan C\\
&\text { Now, A.M. } \geq \text { G.M. }\\
&\begin{aligned}
& \Rightarrow \quad \frac{\tan A+\tan B+\tan C}{3} \geq(\tan A \tan B \tan C)^{1 / 3} \\
& \Rightarrow \quad \frac{\tan A+\tan B+\tan C}{3} \geq(\tan A \tan B \tan C)^{1 / 3} \\
& \Rightarrow \quad(\tan A \tan B \tan C)^{2 / 3} \geq 3 \\
& \Rightarrow \quad\left(\frac{1}{K}\right)^{2 / 3} \geq 3 \\
& \Rightarrow \quad K \leq \frac{1}{3 \sqrt{3}}
\end{aligned}
\end{aligned}
\)
If \(u=\sqrt{a^2 \cos ^2 \theta+b^2 \sin ^2 \theta}+\sqrt{a^2 \sin ^2 \theta+b^2 \cos ^2 \theta}\), then the difference between the maximum and minimum values of \(u^2\) is given by
(d)
\(
\begin{aligned}
& u^2=\left(a^2 \cos ^2 \theta+b^2 \sin ^2 \theta\right)+\left(a^2 \sin ^2 \theta+b^2 \sin ^2 \theta\right) \\
&=a^2+b^2+2 \sqrt{a^2 \cos ^2 \theta+b^2 \sin ^2 \theta} \sqrt{a^2 \sin ^2 \theta+b^2 \cos ^2 \theta} \\
&=a^2+b^2+2 \sqrt{\sin ^2 \theta \cos ^2 \theta\left(a^4+b^4\right)+a^2 b^2\left(\sin ^4 \theta+\cos ^4 \theta\right)} \\
&=a^2+b^2+2 \sqrt{a^2 b^2\left(1-2 \sin ^2 \theta \cos ^2 \theta\right)+\left(a^4+b^4\right) \sin ^2 \theta \cos ^2 \theta} \\
&=\left(a^2+b^2\right)+2 \sqrt{a^2 b^2+\left(a^2-b^2\right)^2 \sin ^2 \theta \cos ^2 \theta} \\
&=\left(a^2+b^2\right)+2 \sqrt{a^2 b^2+\frac{\left(a^2-b^2\right)^2}{4} \sin ^2 2 \theta} \\
& \text { Max. } u^2=\left(a^2+b^2\right)=2 \sqrt{a^2 b^2+\frac{\left(a^2-b^2\right)^2}{4}} \\
& \text { Min. } u^2=\left(a^2+b^2\right)+2 a b
\end{aligned}
\)
\(
\begin{aligned}
\text { Therefore, the difference } & =2 \sqrt{a^2 b^2+\frac{\left(a^2-b^2\right)^2}{4}}-2 a b=\sqrt{4 a^2 b^2+a^4+b^4-2 a^2 b^2}-2 a b \\
& =\sqrt{\left(a^2+b^2\right)^2}-2 a b=a^2+b^2-2 a b=(a-b)^2
\end{aligned}
\)
If \((\sin x+\cos x)^2+k \sin x \cos x=1\) holds \(\forall x \in R\), then the value of \(k\) equals
(b)
\(
\begin{aligned}
&\begin{aligned}
& (\sin x+\cos x)^2+k \sin x \cos x=1 \\
& \Rightarrow 1+\sin 2 x+\frac{k}{2} \sin 2 x=1 \\
& \Rightarrow \sin 2 x\left[1+\frac{k}{2}\right]=0
\end{aligned}\\
&\text { For this to be an identity, } 1+\frac{k}{2}=0 \Rightarrow k=-2
\end{aligned}
\)
The range of \(k\) for which the inequality \(k \cos ^2 x-k \cos x+1 \geq 0 \forall x \in(-\infty, \infty)\), is
(b)
\(
\begin{aligned}
& k \cos ^2 x-k \cos x+1 \geq 0 \forall x \in(-\infty, \infty) \\
& \Rightarrow k\left(\cos ^2 x-\cos x\right)+1 \geq 0
\end{aligned}
\)
Now \(\cos ^2 x-\cos x=\left(\cos x-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(
\Rightarrow-\frac{1}{4} \leq \cos ^2 x-\cos x \leq 2
\)
We have \(2 k+1 \geq 0\) and \(-\frac{k}{4}+1 \geq 0\)
Hence, \(-\frac{1}{2} \leq k \leq 4\).
The minimum vertical distance between the graphs of \(y=2+\sin x\) and \(y=\cos x\) is
(d)
\(
\min (2+\sin x-\cos x)=\min \left[2+\sqrt{2} \sin \left(x-\frac{\pi}{4}\right)\right]=2-\sqrt{2}
\)
If \(\theta=3 \alpha\) and \(\sin \theta=\frac{a}{\sqrt{a^2+b^2}}\) The value of the expression \(a \operatorname{cosec} \alpha-b \sec \alpha\) is
(b)
\(
\begin{aligned}
& a \operatorname{cosec} \alpha-b \sec \alpha=\frac{a}{\sin \alpha}+\frac{b}{\cos \alpha} \\
& \qquad=\frac{\sqrt{a^2+b^2}}{\sin \alpha \cos \alpha}\left[\frac{a}{\sqrt{a^2+b^2}} \cos \alpha \frac{b}{\sqrt{a^2+b^2}} \sin \alpha\right] \\
& \text { Now } \sin 3 \alpha=\frac{a}{\sqrt{a^2+b^2}} \text { gives } \sqrt{a^2+b^2}\left[\frac{\sin 3 \alpha \cos \alpha-\cos 3 \alpha \sin \alpha}{\sin \alpha \cos \alpha}\right]=2 \sqrt{a^2+b^2}
\end{aligned}
\)
If the equation \(\cot ^4 x-2 \operatorname{cosec}^2 x+a^2=0\) has at least one solution, then the sum of all possible integral values of ‘ \(a\) ‘ is equal to
(d)
\(
\begin{aligned}
& \cot ^4 x-2\left(1+\cot ^2 x\right)+a^2=0 \\
& \Rightarrow \cot ^4 x-2 \cot ^2 x+a^2-2=0 \\
& \Rightarrow\left(\cot ^2 x-1\right)^2=3-a^2
\end{aligned}
\)
To have at least one solution, \(3-a^2 \geq 0\)
\(
\begin{aligned}
& \Rightarrow a^2-3 \leq 0 \\
& a \in[-\sqrt{3}, \sqrt{3}]
\end{aligned}
\)
Integral values are \(-1,0,1\); therefore, the sum is 0.
If the inequality \(\sin ^2 x+a \cos x+a^2>1+\cos x\) holds for any \(x \in R\) then the largest negative integral value of ‘ \(a\) ‘ is
(b)
\(
\sin ^2 x+a \cos x+a^2>1+\cos x
\)
Putting \(x=0\), we have
\(
\begin{aligned}
& a+a^2>2 \\
& \Rightarrow a^2+a-2>0 \\
& \Rightarrow(a+2)(a-1)>0 \\
& \Rightarrow a<-2 \text { or } a>1
\end{aligned}
\)
Therefore, the largest negative integral value of ‘ \(a\) ‘ \(=-3\).
In triangle \(A B C\) if angle \(C\) is \(90^{\circ}\) and area of triangle is 30 sq. units, then the minimum possible value of the hypotenuse \(c\) is equal to
(d)

\(
\begin{aligned}
& \Delta=\frac{1}{2} a b \Rightarrow a b=60 \\
& b=c \cos \theta ; a=c \sin \theta \\
& \Rightarrow \Delta=\frac{1}{2} c^2 \sin \theta \cos \theta=\frac{c^2 \sin 2 \theta}{4}=30 \\
& \Rightarrow c^2=120 \operatorname{cosec} 2 \theta \\
& \Rightarrow c_{\min }^2=120 \\
& \Rightarrow c_{\min }=2 \sqrt{30}
\end{aligned}
\)
The distance between the two parallel lines is 1 unit. A point ‘ \(A\) ‘ is chosen to lie between the lines at a distance ‘ \(d\) ‘ from one of them. Triangle \(A B C\) is equilateral with \(B\) on one line and \(C\) on the other parallel line. The length of the side of the equilateral triangle is
(b)Â From the figure,

\(
\begin{aligned}
& x \cos \left(\theta+30^{\circ}\right)=\theta \dots(i) \\
& \text { and } x \sin \theta=1-d \dots(ii)
\end{aligned}
\)
Dividing \(\sqrt{3} \cos \theta=\frac{1+d}{1-d}\), squaring Eq. (ii) and putting the value of \(\cot \theta\), we get \(x^2=\frac{1}{3}\left(4 d^2-4 d+4\right)\)
\(
\Rightarrow x=2 \frac{1}{2}
\)
Given that \(a, b, c\) are the sides of a triangle \(A B C\) which is right angled at \(C\), then the minimum value of \(\left(\frac{c}{a}+\frac{c}{b}\right)^2\) is
(d)

\(
\begin{aligned}
& a=c \sin \theta, b=c \cos \theta \\
& \Rightarrow\left(\frac{c}{a}+\frac{c}{b}\right)^2=\left(\frac{1}{\sin \theta}+\frac{1}{\cos \theta}\right)^2=\frac{4(1+\sin 2 \theta)}{\sin ^2 2 \theta} \\
& =4\left(\frac{1}{\sin ^2 2 \theta}+\frac{1}{\sin 2 \theta}\right) \text { where } 0<\theta<\frac{\pi}{2} \\
& \Rightarrow\left(\frac{c}{a}+\frac{c}{b}\right)^2 \text { min. }=8 \text { when } 2 \theta=90^{\circ} . \\
& \Rightarrow \theta=45^{\circ}
\end{aligned}
\)
Let \(y=(\sin x+\operatorname{cosec} x)^2+(\cos x+\sec x)^2+(\cos x+\sec x)^2\), then the minimum value of \(y, \forall x \in R\), is
(c)
\(
y=\left(\sin ^2 x+\cos ^2 x\right)+2(\sin x \operatorname{cosec} x+\cos x \sec x)+\sec ^2 x+\operatorname{cosec}^2 x
\)
\(
\begin{aligned}
& =5+2+\tan ^2 x+\cot ^2 x \\
& =7+(\tan x-\cot x)^2+2 \\
& \therefore y_{\min }=9
\end{aligned}
\)
The equation a \(\sin x+b \cos x=c\), where \(|c|>\sqrt{a^2+b^2}\) has
(c) We know that
\(
\begin{aligned}
& \quad|a \sin x+b \cos x| \leq \sqrt{a^2+b^2} \text { for all } x \in R \\
& \therefore \quad|c| \leq \sqrt{a^2+b^2} \\
& \text { But, }|c|>\sqrt{a^2+b^2} \text { [Given] }
\end{aligned}
\)
Hence, \(a \sin x+b \cos x=c\) does not hold for any \(x \in R\).
If \(\sin \theta+\operatorname{cosec} \theta=2\), then the value of \(\sin ^{10} \theta+\operatorname{cosec}^{10} \theta, i s\)
(a)
\(
\begin{aligned}
&\text { We have, }\\
&\begin{aligned}
& \sin \theta+\operatorname{cosec} \theta=2 \\
\Rightarrow \quad & \sin ^2 \theta-2 \sin \theta+1=0 \\
\Rightarrow \quad & \sin \theta=1 \\
\therefore \quad & \sin ^{10} \theta+\operatorname{cosec}^{10} \theta=1+1=2
\end{aligned}
\end{aligned}
\)
The value of \(\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+\ldots\) \(+2^{n-1} \tan \left(2^{n-1} \alpha\right)+2^n \cot \left(2^n \alpha\right)\) is
(d) We have,
\(
\begin{aligned}
& \cot \theta-\tan \theta=2 \cot 2 \theta \\
\therefore & \tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+\ldots+2^{n-1} \tan \left(2^{n-1} \alpha\right) \\
& +2^n \cot \left(2^n \alpha\right)
\end{aligned}
\)
\(
\begin{array}{r}
=-\left\{(\cot \alpha-\tan \alpha)-2 \tan 2 \alpha-4 \tan 4 \alpha \ldots-2^{n-1} \tan \left(2^{n-1} \alpha\right)\right. \\
\left.-2^n \cot \left(2^n \alpha\right)\right\}+\cot \alpha
\end{array}
\)
\(
\begin{aligned}
=\{-(2 \cot 2 \alpha-2 \tan 2 \alpha)-4 \tan 4 \alpha \ldots- & 2^{n-1} \tan \left(2^{n-1} \alpha\right) \\
& \left.-2^n \cot \left(2^n \alpha\right)\right\}+\cot \alpha
\end{aligned}
\)
\(
\begin{aligned}
=-\left\{\left(2^2 \cot 2^2 \alpha-2^2 \tan 2^2 \alpha\right)-2^3 \tan 2^3 \alpha\right. & \ldots-2^{n-1} \tan \left(2^{n-1} \alpha\right) \\
& \left.-2^n \cot \left(2^n \alpha\right)\right\}+\cot \alpha
\end{aligned}
\)
\(
\begin{array}{r}
=-\left\{\left(2^3 \cot 2^3 \alpha-2^3 \tan 2^3 \alpha\right)-2^4 \tan 2^4 \alpha \ldots-2^{n-1} \tan \left(2^{n-1} \alpha\right)\right. \\
\left.-2^n \cot \left(2^n \alpha\right)\right\}+\cot \alpha
\end{array}
\)
\(
\begin{aligned}
& =-\left\{2^{n-1} \cot \left(2^{n-1} \alpha\right)-2^{n-1} \tan \left(2^{n-1} \alpha\right)-2^n \cot \left(2^n \alpha\right)\right\}+\cot \alpha \\
& =-\left\{2^n{ }^1 \times 2 \cot \left(2^n \alpha\right)-2^n \cot \left(2^n \alpha\right)\right\}+\cot \alpha=\cot \alpha
\end{aligned}
\)
Two parallel chords are drawn on the same side of the centre of a circle of radius 12 units. It is found that they subtend \(72^{\circ}\) and \(144^{\circ}\) angles at the centre of the circle. The perpendicular distance in units between the chords is
(a)

\(
\begin{aligned}
& \text { We have, } \\
& \quad \text { Required distance }=L M \\
& \quad=O L-O M \\
& \quad=12 \cos 36^{\circ}-12 \cos 72^{\circ} \\
& \quad=12\left(\cos 36^{\circ}-\sin 18^{\circ}\right)=12\left(\frac{\sqrt{5}+1}{4}-\frac{\sqrt{5}-1}{4}\right)=6 \text { units. }
\end{aligned}
\)
For \(A=133^{\circ}, 2 \cos \frac{A}{2}\) is equal to
(c) We have,
\(
\begin{aligned}
& \sqrt{1+\sin A}=\sqrt{\left(\cos \frac{A}{2}+\sin \frac{A}{2}\right)^2} \\
\Rightarrow & \sqrt{1+\sin A}=\left|\cos \frac{A}{2}+\sin \frac{A}{2}\right| \\
\Rightarrow & \sqrt{1+\sin A}=\cos \frac{A}{2}+\sin \frac{A}{2} \quad\left[\because \frac{A}{2} \text { is an acute angle }\right]
\end{aligned}
\)
and
\(
\begin{aligned}
& \sqrt{1-\sin A}=\sqrt{\left(\cos \frac{A}{2}-\sin \frac{A}{2}\right)^2} \\
\Rightarrow & \sqrt{1-\sin A}=\left|\cos \frac{A}{2}-\sin \frac{A}{2}\right| \\
\Rightarrow & \sqrt{1-\sin A}=-\left(\cos \frac{A}{2}-\sin \frac{A}{2}\right) \quad\left[\begin{array}{c}
\because \frac{A}{2}=66 \frac{1^{\circ}}{2} \\
\therefore \cos \frac{A}{2}<\sin \frac{A}{2}
\end{array}\right] \\
\Rightarrow & \sqrt{1-\sin A}=\sin \frac{A}{2}-\cos \frac{A}{2} \\
\therefore & 2 \cos \frac{A}{2}=\sqrt{1+\sin A}-\sqrt{1-\sin A}
\end{aligned}
\)
\(A\) and \(B\) are positive acute angles satisfying the equations \(3 \cos ^2 A+2 \cos ^2 B=4\) and \(\frac{3 \sin A}{\sin B}=\frac{2 \cos B}{\cos A}\), then \(A+2 B\) is equal to
(b) We have,
\(
\frac{3 \sin A}{\sin B}=\frac{2 \cos B}{\cos A}
\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{3 \sin A}{\cos A}=\frac{2 \cos B \sin B}{\cos ^2 A} \\
& \Rightarrow \quad \tan A=\frac{1}{3} \frac{\sin 2 B}{\cos ^2 A} \\
& \Rightarrow \quad \tan A=\frac{1}{3} \tan 2 B \cdot \frac{\cos 2 B}{\cos ^2 A} \\
& \Rightarrow \quad \tan A=\frac{1}{3} \frac{\tan 2 B}{\cos ^2 A}\left(2 \cos ^2 B-1\right)
\end{aligned}
\)
\(
\Rightarrow \quad \tan A=\frac{1}{3} \frac{\tan 2 B}{\cos ^2 A}\left(4-3 \cos ^2 A-1\right) \quad\left[\begin{array}{r}
\because 2 \cos ^2 B \\
=4-3 \cos ^2 A
\end{array}\right]
\)
\(
\begin{aligned}
& \Rightarrow \quad \tan A=\tan 2 B \tan ^2 A \\
& \Rightarrow \quad \tan A \tan 2 B=1 \\
& \Rightarrow \quad \tan A=\cot 2 B \\
& \Rightarrow \quad \tan A=\tan \left(\frac{\pi}{2}-2 B\right) \\
& \Rightarrow \quad A=\frac{\pi}{2}-2 B \Rightarrow A+2 B=\frac{\pi}{2}
\end{aligned}
\)
The expression
\(
\frac{\cos 6 x+6 \cos 4 x+15 \cos 2 x+10}{\cos 5 x+5 \cos 3 x+10 \cos x}
\)
is equal to
(d)
\(
\begin{aligned}
& \frac{\cos 6 x+6 \cos 4 x+15 \cos 2 x+10}{\cos 5 x+5 \cos 3 x+10 \cos x} \\
& =\frac{(\cos 6 x+\cos 4 x)+5(\cos 4 x+\cos 2 x)+10(\cos 2 x+1)}{\cos 5 x+5 \cos 3 x+10 \cos x} \\
& =\frac{2 \cos 5 x \cos x+10 \cos 3 x \cos x+20 \cos ^2 x}{\cos 5 x+5 \cos 3 x+10 \cos x} \\
& =2 \cos x .
\end{aligned}
\)
If \(8 \sin ^3 x \sin 3 x=\sum_{r=0}^n a_r \cos r x\) is an identity in \(x\), then \(n=\)
(c)
\(
8 \sin ^3 x \sin 3 x=2 \sin 3 x(3 \sin x-\sin 3 x)
\)
\(
\begin{aligned}
& \Rightarrow \quad 8 \sin ^3 x \sin 3 x=6 \sin 3 x \sin x-2 \sin ^2 3 x \\
& \Rightarrow \quad 8 \sin ^3 x \sin 3 x=3(\cos 2 x-\cos 4 x)-(1-\cos 6 x) \\
& \Rightarrow \quad 8 \sin ^3 x \sin 3 x=-1+3 \cos 2 x-3 \cos 4 x+\cos 6 x
\end{aligned}
\)
\(
\therefore \quad 8 \sin ^3 x \sin 3 x=\sum_{r=0}^n a_r \cos r x
\)
\(
\begin{aligned}
\Rightarrow \quad-1+3 \cos 2 x-3 \cos 4 x+\cos 6 x & \\
& =a_0+a_1 \cos x+\ldots+a_n \cos n x
\end{aligned}
\)
\(
\Rightarrow \quad n=6 .
\)
If \(A+B+C=270^{\circ}\), then
\(
\cos 2 A+\cos 2 B+\cos 2 C+4 \sin A \sin B \sin C=
\)
(b)
\(
\begin{aligned}
& \cos 2 A+\cos 2 B+\cos 2 C+4 \sin A \sin B \sin C \\
& =2 \cos (A+B) \cos (A-B)+\cos 2 C+4 \sin A \sin B \sin C \\
& =2 \cos \left(\frac{3 \pi}{2}-C\right) \cos (A-B)+\cos 2 C+4 \sin A \sin B \sin C \\
& =-2 \sin C \cos (A-B)+1-2 \sin ^2 C+4 \sin A \sin B \sin C \\
& =-2 \sin C|\cos (A-B)+\sin C|+4 \sin A \sin B \sin C+1
\end{aligned}
\)
\(
\begin{aligned}
= & -2 \sin C|\cos (A-B)-\cos (A+B)| \\
& +4 \sin A \sin B \sin C+1 \\
= & -4 \sin A \sin B \sin C+4 \sin A \sin B \sin C+1=1
\end{aligned}
\)
The value of \(16 \sin 144^{\circ} \sin 108^{\circ} \sin 72^{\circ} \sin 36^{\circ}\) is equal to
(a)
\(
\begin{aligned}
& \text { Use } \sin \left(180^{\circ}-\theta\right)=\sin \theta \\
& \sin 144^{\circ}=\sin \left(180^{\circ}-36^{\circ}\right)=\sin 36^{\circ} \\
& \sin 108^{\circ}=\sin \left(180^{\circ}-72^{\circ}\right)=\sin 72^{\circ}
\end{aligned}
\)
The expression becomes \(16 \sin 36^{\circ} \sin 72^{\circ} \sin 72^{\circ} \sin 36^{\circ}\). This simplifies to \(16 \sin ^2 36^{\circ} \sin ^2 72^{\circ}\).
\(
\begin{aligned}
& \sin 36^{\circ}=\frac{\sqrt{10-2 \sqrt{5}}}{4} . \\
& \sin 72^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4} .
\end{aligned}
\)
\(
\begin{aligned}
& \sin ^2 36^{\circ}=\left(\frac{\sqrt{10-2 \sqrt{5}}}{4}\right)^2=\frac{10-2 \sqrt{5}}{16} . \\
& \sin ^2 72^{\circ}=\left(\frac{\sqrt{10+2 \sqrt{5}}}{4}\right)^2=\frac{10+2 \sqrt{5}}{16} .
\end{aligned}
\)
The expression is \(16 \times \frac{10-2 \sqrt{5}}{16} \times \frac{10+2 \sqrt{5}}{16}\).
This simplifies to \(\frac{(10-2 \sqrt{5})(10+2 \sqrt{5})}{16}\).
Use the identity \((a-b)(a+b)=a^2-b^2\).
\(
(10-2 \sqrt{5})(10+2 \sqrt{5})=10^2-(2 \sqrt{5})^2=100-(4 \times 5)=100-20=80
\)
The final value is \(\frac{80}{16}=5\).
The value of \(\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}\) is equal to
(c)
\(
\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}=\frac{\sqrt{3}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}}
\)
\(
\frac{\sqrt{3}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}}=\frac{\sqrt{3} \cos 20^{\circ}-\sin 20^{\circ}}{\sin 20^{\circ} \cos 20^{\circ}}
\)
\(
\begin{aligned}
& \frac{2\left(\frac{\sqrt{3}}{2} \cos 20^{\circ}-\frac{1}{2} \sin 20^{\circ}\right)}{\sin 20^{\circ} \cos 20^{\circ}} \\
& \text { Recognize } \frac{\sqrt{3}}{2}=\sin 60^{\circ} \text { and } \frac{1}{2}=\cos 60^{\circ} \\
& \frac{2\left(\sin 60^{\circ} \cos 20^{\circ}-\cos 60^{\circ} \sin 20^{\circ}\right)}{\sin 20^{\circ} \cos 20^{\circ}}
\end{aligned}
\)
\(
\begin{aligned}
&\sin 60^{\circ} \cos 20^{\circ}-\cos 60^{\circ} \sin 20^{\circ}=\sin \left(60^{\circ}-20^{\circ}\right)=\sin 40^{\circ}\\
&\text { The expression becomes } \frac{2 \sin 40^{\circ}}{\sin 20^{\circ} \cos 20^{\circ}} \text {. }
\end{aligned}
\)
\(
\begin{aligned}
&\sin 40^{\circ}=\sin \left(2 \times 20^{\circ}\right)=2 \sin 20^{\circ} \cos 20^{\circ}\\
&\text { Substitute this into the expression: } \frac{2\left(2 \sin 20^{\circ} \cos 20^{\circ}\right)}{\sin 20^{\circ} \cos 20^{\circ}} \text {. }
\end{aligned}
\)
Cancel out \(\sin 20^{\circ} \cos 20^{\circ}\) from the numerator and denominator.
The result is \(2 \times 2=4\).
If \(y=\sec ^2 \theta+\cos ^2 \theta, \theta \neq 0\), then
(d)
\(
y=\frac{1}{\cos ^2 \theta}+\cos ^2 \theta
\)
The Arithmetic Mean-Geometric Mean (AM-GM) inequality states that for non-negative numbers, the arithmetic mean is always greater than or equal to the geometric mean. In this case: \(\frac{a+b}{2} \geq \sqrt{a b}\), where \(a=\frac{1}{\cos ^2 \theta}\) and \(b=\cos ^2 \theta\).
\(
\begin{aligned}
&\text { Substituting the values, we get: }\\
&\begin{aligned}
& \frac{\frac{1}{\cos ^2 \theta}+\cos ^2 \theta}{2} \geq \sqrt{\frac{1}{\cos ^2 \theta} \cdot \cos ^2 \theta} \\
& \frac{y}{2} \geq \sqrt{1} \\
& \frac{y}{2} \geq 1 \\
& y \geq 2
\end{aligned}
\end{aligned}
\)
The inequality \(y \geq 2\) means that \(y\) can be any value greater than or equal to 2 , but it cannot be equal to 2 . For example, if \(\cos ^2 \theta=1\) (which occurs when \(\theta=0\), but we know \(\theta \neq 0\) ), then \(y=1+1=2\). However, if \(\cos ^2 \theta\) is any value other than \(1, y\) will be greater than 2.
If \(\cos (\theta-\alpha)=a, \quad \cos (\theta-\beta)=b\), then \(\sin ^2(\alpha-\beta)+2 a b \cos (\alpha-\beta)=\)
(a)
\(
\begin{aligned}
& \cos (\theta-\alpha)=\cos \theta \cos \alpha+\sin \theta \sin \alpha=a \\
& \cos (\theta-\beta)=\cos \theta \cos \beta+\sin \theta \sin \beta=b
\end{aligned}
\)
\(
\begin{aligned}
& \cos (\alpha-\beta)=\cos ((\theta-\beta)-(\theta-\alpha)) \\
& \cos (\alpha-\beta)=\cos (\theta-\beta) \cos (\theta-\alpha)+\sin (\theta-\beta) \sin (\theta-\alpha) \\
& \cos (\alpha-\beta)=a b+\sin (\theta-\beta) \sin (\theta-\alpha)
\end{aligned}
\)
\(
\begin{aligned}
& \sin ^2(\theta-\alpha)=1-\cos ^2(\theta-\alpha)=1-a^2 \\
& \sin (\theta-\alpha)= \pm \sqrt{1-a^2} \\
& \sin ^2(\theta-\beta)=1-\cos ^2(\theta-\beta)=1-b^2 \\
& \sin (\theta-\beta)= \pm \sqrt{1-b^2}
\end{aligned}
\)
\(
\cos (\alpha-\beta)=a b \pm \sqrt{1-a^2} \sqrt{1-b^2}
\)
\(
\sin ^2(\alpha-\beta)+2 a b \cos (\alpha-\beta)=\left(1-\cos ^2(\alpha-\beta)\right)+2 a b \cos (\alpha-\beta)
\)
Let \(X=\cos (\alpha-\beta)\). The expression becomes \(1-X^2+2 a b X\).
Substitute \(X=a b \pm \sqrt{1-a^2} \sqrt{1-b^2}\).
This leads to \(a^2+b^2\).
You cannot copy content of this page