0 of 122 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 122 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
The function \(f: N \rightarrow N(N\) is the set of natural numbers) defined by \(f(n)=2 n+3\) is
(b) \(f: N \rightarrow N, f(n)=2 n+3\)
Here, the range of the function is \(\{5,6,7, \ldots\}\) or \(N-\{1,2\), \(3,4\}\)
which is a subset of \(N\) (co-domain).
Hence, function is into.
Also, it is clear that \(f(n)\) is one-one or injective.
Hence. \(f(n)\) is iniective only.
The function \(f(x)=\sin \left(\log \left(x+\sqrt{1+x^2}\right)\right)\) is
(b)
\(
\begin{aligned}
& f(x)=\sin \left(\log \left(x+\sqrt{1+x^2}\right)\right) \\
\Rightarrow & f(-x)=\sin \left[\log \left(-x+\sqrt{1+x^2}\right)\right] \\
\Rightarrow & f(-x)=\sin \log \left(\left(\sqrt{1+x^2}-x\right) \frac{\left(\sqrt{1+x^2}+x\right)}{\left(\sqrt{1+x^2}+x\right)}\right) \\
\Rightarrow & f(-x)=\sin \log \left[\frac{1}{\left(x+\sqrt{1+x^2}\right)}\right]
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow f(-x)=\sin \left[-\log \left(x+\sqrt{1+x^2}\right)\right] \\
& \Rightarrow f(-x)=-\sin \left[\log \left(x+\sqrt{1+x^2}\right)\right] \\
& \Rightarrow f(-x)=-f(x) \\
& \Rightarrow f(x) \text { is an odd function. }
\end{aligned}
\)
If \(x\) is real, then the value of the expression \(\frac{x^2+14 x+9}{x^2+2 x+3}\) lies between
(c)
\(
\begin{aligned}
&\begin{aligned}
& \frac{x^2+14 x+9}{x^2+2 x+3}=y \\
& \Rightarrow x^2+14 x+9=x^2 y+2 x y+3 y \\
& \Rightarrow x^2(y-1)+2 x(y-7)+(3 y-9)=0
\end{aligned}\\
&\text { Since } x \text { is real, }\\
&\begin{aligned}
& \therefore \quad 4(y-7)^2-4(3 y-9)(y-1)>0 \\
& \Rightarrow \quad 4\left(y^2+49-14 y\right)-4\left(3 y^2+9-12 y\right)>0 \\
& \Rightarrow \quad(y+5)(y-4)<0 ; \\
& \therefore \quad y \text { lies between }-5 \text { and } 4 .
\end{aligned}
\end{aligned}
\)
The function \(f: R \rightarrow R\) is defined by \(f(x)=\cos ^2 x+\sin ^4 x\) for \(x \in R\), then the range of \(f(x)\) is
(c)
\(
\begin{aligned}
& y=f(x)=\cos ^2 x+\sin ^4 x \\
\Rightarrow \quad & y=f(x)=\cos ^2 x+\sin ^2 x\left(1-\cos ^2 x\right) \\
\Rightarrow \quad & y=\cos ^2 x+\sin ^2 x-\sin ^2 x \cos ^2 x \\
\Rightarrow \quad & y=1-\sin ^2 x \cos ^2 x \\
\Rightarrow \quad & y=1-\frac{1}{4} \sin ^2 2 x
\end{aligned}
\)
\(
\therefore \frac{3}{4} \leq f(x) \leq 1 \quad\left(\because 0 \leq \sin ^2 2 x \leq 1\right)
\)
\(
\Rightarrow f(x) \in[3 / 4,1]
\)
The domain of the function \(f(x)=\log _{3+x}\left(x^2-1\right)\) is
(c)
\(
\begin{aligned}
&f(x) \text { is to be defined when } x^2-1>0 \text { and } 3+x>0 \text { and }\\
&\begin{aligned}
& 3+x \neq 1 \\
& \Rightarrow \quad x^2>1 \text { and } x>-3 \text { and } x \neq-2 \\
& \Rightarrow \quad x<-1 \text { or } x>1 \text { and } x>-3 \text { and } x \neq-2 \\
& \therefore \quad D_f=(-3,-2) \cup(-2,-1) \cup(1, \infty)
\end{aligned}
\end{aligned}
\)
The domain of the function \(f(x)=\left[\log _{10}\left(\frac{5 x-x^2}{4}\right)\right]^{1 / 2}\) is
(b) We have \(f(x)=\left[\log _{10}\left(\frac{5 x-x^2}{4}\right)\right]^{1 / 2} \dots(1)[latex]
From (1), clearly [latex]f(x)\) is defined for those values of \(x\) for
\(
\begin{aligned}
& \text { which } \log _{10}\left[\frac{5 x-x^2}{4}\right] \geq 0 \\
& \Rightarrow\left(\frac{5 x-x^2}{4}\right) \geq 10^0 \\
& \Rightarrow\left(\frac{5 x-x^2}{4}\right) \geq 1 \\
& \Rightarrow x^2-5 x+4 \leq 0 \\
& \Rightarrow(x-1)(x-4) \leq 0
\end{aligned}
\)
Hence, the domain of the function is \([1,4]\).
The domain of the function \(f(x)=\frac{\sin ^{-1}(3-x)}{\ln (|x|-2)}\) is
(b) \(f(x)=\frac{\sin ^{-1}(3-x)}{\log (|x|-2)}\)
Let \(g(x)=\sin ^{-1}(3-x)\)
\(
\Rightarrow-1 \leq 3-x \leq 1
\)
The domain of \(g(x)\) is \([2,4]\)
and let \(h(x)=\log (|x|-2)\)
\(
\begin{aligned}
& \Rightarrow \quad|x|-2>0 \text { or }|x|>2 \\
& \Rightarrow \quad x<-2 \text { or } x>2 \\
& \Rightarrow \quad(-\infty,-2) \cup(2, \infty)
\end{aligned}
\)
We know that
\(
(f / g)(x)=\frac{f(x)}{g(x)} \forall x \in D_1 \cap D_2-\{x \in R: g(x)=0\}
\)
\(\therefore\) the domain of \(f(x)=(2,4]-\{3\}=(2,3) \cup(3,4]\).
The domain of \(f(x)=\log |\log x|\) is
(c)
\(
\begin{aligned}
& f(x)=\log |\log x|, f(x) \text { is defined if }|\log x|>0 \text { and } x>0, \text { i.e., } \\
& \text { if } x>0 \text { and } x \neq 1 \\
& \Rightarrow x \in(0,1) \cup(1, \infty) .
\end{aligned}
\)
The domain of \(f(x)=\frac{\log _2(x+3)}{x^2+3 x+2}\) is
(d)
\(
\begin{aligned}
& \text { Here } x+3>0 \text { and } x^2+3 x+2 \neq 0 \\
& \therefore \quad x>-3 \text { and }(x+1)(x+2) \neq 0, \text { i.e., } x \neq-1,-2 \\
& \therefore \quad \text { The domain }=(-3, \infty)-\{-1,-2\} .
\end{aligned}
\)
Let \(f:\left[-\frac{\pi}{3}, \frac{2 \pi}{3}\right] \rightarrow[0,4]\) be a function defined as \(f(x) =\sqrt{3} \sin x-\cos x+2\). Then \(f^{-1}(x)\) is given by
(b) \(y=f(x)=\sqrt{3} \sin x-\cos x+2=2 \sin \left(x-\frac{\pi}{6}\right)+2 \dots(1)\)
Since \(f(x)\) is one-one and onto, \(f\) is invertible.
From (1) \(\sin \left(x-\frac{\pi}{6}\right)=\frac{y-2}{2}\)
\(
\Rightarrow \quad x=\sin ^{-1} \frac{y-2}{2}+\frac{\pi}{6}
\)
\(
\Rightarrow f^{-1}(x)=\sin ^{-1}\left(\frac{x-2}{2}\right)+\frac{\pi}{6}
\)
If \(F(n+1)=\frac{2 F(n)+1}{2} n=1,2, \ldots\) and \(F(1)=2\), then \(F(101)\) equals
(a)
\(
\begin{aligned}
&F(n+1)=\frac{2 F(n)+1}{2} \Rightarrow F(n+1)-F(n)=\frac{1}{2}\\
&\text { Put } n=1,2,3, \ldots, 100 \text { and add, we get }\\
&\begin{aligned}
& F(101)-F(1)=100 \times \frac{1}{2} \\
& \Rightarrow \quad F(101)=52
\end{aligned} \quad[\because F(1)=2]
\end{aligned}
\)
The domain of the function \(f(x)=\frac{1}{\sqrt{{ }^{10} C_{x-1}-3 \times{ }^{10} C_x}}\) contains the points
(d)
\(
\begin{aligned}
&\text { Given function is defined if }{ }^{10} C_{x-1}>3{ }^{10} C_x\\
&\begin{aligned}
& \Rightarrow \frac{1}{11-x}>\frac{3}{x} \Rightarrow 4 x>33 \\
& \Rightarrow x \geq 9 \text { but } x \leq 10 \Rightarrow x=9,10 .
\end{aligned}
\end{aligned}
\)
The domain of the function \(f(x)=\frac{x}{\sqrt{\sin (\ln x)-\cos (\ln x)}} (n \in Z)\) is
(b)
\(
\begin{aligned}
&\text { For the domain } \sin (\ln x)>\cos (\ln x) \text { and } x>0\\
&2 n \pi+\frac{\pi}{4}<\ln x<2 n \pi+\frac{5 \pi}{4}, n \in N \cup\{0\}
\end{aligned}
\)
If \(f\) is a function such that \(f(0)=2, f(1)=3\) and \(f(x+2) =2 f(x)-f(x+1)\) for every real \(x\), then \(f(5)\) is
(b)
\(
\begin{aligned}
& \text { Put } x=0 \Rightarrow f(2)=2 f(0)-f(1)=2 \times 2-3=1 \\
& \text { Put } x=1 \Rightarrow f(3)=6-1=5 \\
& \text { Put } x=2 \Rightarrow f(4)=2 f(2)-f(3)=2 \times 1-5=-3 \\
& \text { Put } x=3 \Rightarrow f(5)=2 f(3)-f(4)=2(5)-(-3)=13 \text {. }
\end{aligned}
\)
The range of \(f(x)=\sin ^{-1}\left(\frac{x^2+1}{x^2+2}\right)\) is
(c)
\(
\text { Here, } \frac{x^2+1}{x^2+2}=1-\frac{1}{x^2+2}
\)
\(
\begin{aligned}
&\text { Now, } 2 \leq x^2+2<\infty \text { for all } x \in R\\
&\begin{aligned}
& \Rightarrow \frac{1}{2} \geq \frac{1}{x^2+2}>0 \\
& \Rightarrow-\frac{1}{2} \leq \frac{-1}{x^2+2}<0 \\
& \Rightarrow \frac{1}{2} \leq 1-\frac{1}{x^2+2}<1 \\
& \Rightarrow \frac{\pi}{6} \leq \sin ^{-1}\left(1-\frac{1}{x^2+2}\right)<\frac{\pi}{2}
\end{aligned}
\end{aligned}
\)
The function \(f(x)=\frac{\sec ^{-1} x}{\sqrt{x-[x]}}\), where \([x]\) denotes the greatest integer less than or equal to \(x\), is defined for all \(x \in\)
(b) The function \(\sec ^{-1} x\) is defined for all \(x \in R-(-1,1)\) and the function \(\frac{1}{\sqrt{x-[x]}}\) is defined for all \(x \in R-Z\)
So the given function is defined for all \(x \in R-\{(-1,1) \cup\{n \mid n \in Z\}\}\).
The domain of \(f(x)=\cos ^{-1}\left(\frac{2-|x|}{4}\right)+[\log (3-x)]^{-1}\) is
(b)
\(
\begin{aligned}
& \cos ^{-1}\left(\frac{2-|x|}{4}\right) \text { exists if }-1 \leq \frac{2-|x|}{4} \leq 1 \\
& \Rightarrow-6 \leq-|x| \leq 2 \\
& \Rightarrow-2 \leq|x| \leq 6 \\
& \Rightarrow|x| \leq 6 \\
& \Rightarrow-6 \leq x \leq 6
\end{aligned}
\)
The function \([\log (3-x)]^{-1}=\frac{1}{\log (3-x)}\) is defined if \(3-x>0\) and \(x \neq 2\), i.e., if \(x \neq 2\) and \(x<3\).
Thus, the domain of the given function is
\(
\{x \mid-6 \leq x \leq 6\} \cap\{x \mid x \neq 2, x<3\}=[-6,2) \cup(2,3) .
\)
The domain of the function \(f(x)=\sqrt{\log \left(\frac{1}{|\sin x|}\right)}\) is
(b)
\(
\begin{aligned}
& f(x) \text { is defined for } \log \left(\frac{1}{|\sin x|}\right) \geq 0 \\
& \Rightarrow \frac{1}{|\sin x|} \geq 1 \text { and }|\sin x| \neq 0
\end{aligned}
\)
\(
\Rightarrow \quad|\sin x| \neq 0 \quad\left[\because \frac{1}{|\sin x|} \geq 1 \text { for all } x\right]
\)
\(
\begin{aligned}
&\Rightarrow \quad x \neq n \pi, n \in Z\\
&\text { Hence, the domain of } f(x)=R-\{n \pi: n \in Z\} \text {. }
\end{aligned}
\)
The domain of the function \(f(x)=\log _2\left(-\log _{1 / 2}\left(1+\frac{1}{x^{1 / 4}}\right)-1\right)\) is
(a)
\(
\begin{aligned}
& f(x) \text { is defined if }-\log _{1 / 2}\left(1+\frac{1}{x^{1 / 4}}\right)-1>0 \\
& \Rightarrow \quad \log _{1 / 2}\left(1+\frac{1}{x^{1 / 4}}\right)<-1 \\
& \Rightarrow \quad 1+\frac{1}{x^{1 / 4}}>\left(\frac{1}{2}\right)^{-1} \\
& \Rightarrow \quad \frac{1}{x^{1 / 4}}>1 \\
& \Rightarrow \quad 0<x<1
\end{aligned}
\)
The range of \(f(x)=\sin ^{-1}\left(\sqrt{x^2+x+1}\right)\) is
(c)
\(
\begin{aligned}
&\text { For the function to get defined } 0 \leq x^2+x+1 \leq 1 \text {, }\\
&\text { but } x^2+x+1 \geq \frac{3}{4} \Rightarrow \frac{\sqrt{3}}{2} \leq \sqrt{x^2+x+1} \leq 1
\end{aligned}
\)
\(
\Rightarrow \quad \frac{\pi}{3} \leq \sin ^{-1}\left(\sqrt{x^2+x+1}\right) \leq \frac{\pi}{2} .
\)
If \(f(x)=\) maximum \(\left\{x^3, x^2, \frac{1}{64}\right\} \forall x \in[0, \infty)\), then
(c)

\(
\text { Clearly, from the graph } f(x)=\left\{\begin{array}{cc}
\frac{1}{64}, & 0 \leq x \leq \frac{1}{8} \\
x^2, & \frac{1}{8}<x \leq 1 \\
x^3, & x>1
\end{array}\right.
\)
If the period of \(\frac{\cos (\sin (n x))}{\tan (x / n)}, n \in N\), is \(6 \pi\), then \(n\) is equal to
(c) The period of \(\cos (\sin n x)\) is \(\frac{\pi}{n}\) and the period of \(\tan \left(\frac{x}{n}\right)\) is \(\pi n\).
Thus, \(6 \pi=\operatorname{LCM}\left(\frac{\pi}{n}, \pi n\right)\).
By checking for the different values of \(n, n=6\).
The number of real solutions of the equation \(\log _{0.5}|x|=2|x|\) is
(b) \(\text { Draw the graph of } y=\log _{0.5}|x| \text { and } y=2|x|\)

Clearly, from the graph, there are two solutions.
The period of the function \(\left|\sin ^3 \frac{x}{2}\right|+\left|\cos ^5 \frac{x}{5}\right|\) is
(b) \(f(x)=\left|\sin ^3 \frac{x}{2}\right|+\left|\cos ^5 \frac{x}{5}\right|\)
The period of \(\sin ^3 x\) is \(2 \pi\)
\(\Rightarrow\) The period of \(\sin ^3 \frac{x}{2}\) is \(\frac{2 \pi}{1 / 2}=4 \pi\)
\(\Rightarrow\) The period of \(\left|\sin ^3 \frac{x}{2}\right|\) is \(2 \pi\)
The period of \(\cos ^5 x\) is \(2 \pi\)
\(\Rightarrow\) The period of \(\cos ^5 \frac{x}{5}\) is \(\frac{2 \pi}{\left(\frac{1}{5}\right)}=10 \pi\)
\(\Rightarrow\) The period of \(\left|\cos ^5 \frac{x}{2}\right|\) is \(5 \pi\)
\(
\text { Now the period of } f(x)=\operatorname{LCM} \text { of }\{2 \pi, 10 \pi\}=10 \pi \text {. }
\)
If \(f(x)=\sqrt[n]{x^m}, n \in N\), is an even function, then \(m\) is
(a)
\(
\begin{aligned}
&\text { Given } f(x)=\sqrt[n]{x^m}, n \in N \text { is an even function where } m \in I .\\
&\begin{aligned}
& \Rightarrow f(x)=f(-x) \\
& \Rightarrow \sqrt[n]{x^m}=\sqrt[n]{(-x)^m} \\
& \Rightarrow x^m=(-x)^m \\
& \Rightarrow m \text { is an even integer } \\
& \Rightarrow m=2 k, k \in I
\end{aligned}
\end{aligned}
\)
If \(f\) is periodic, \(g\) is polynomial function and \(f(g(x))\) is periodic and \(g(2)=3, g(4)=7\) then \(g(6)\) is
(c) From the given data \(g(x)\) must be linear function
Hence, \(g(x)=a x+b\)
Also \(g(2)=2 a+b=3\) and \(g(4)=4 a+b=7\)
Solving, we get \(a=2\) and \(b=-1\)
Hence, \(g(x)=2 x-1\)
Then, \(g(6)=11\).
The period of function \(2^{\{x\}}+\sin \pi x+3^{\{x / 2\}}+\cos 2 \pi x\) (where \(\{x\}\) denotes the fractional part of \(x\) ) is
(b) The period of \(\sin \pi x\) and \(\cos 2 \pi x\) is 2 and 1 , respectively
The period of \(2^{\{x\}}\) is 1
The period of \(3^{\{x / 2\}}\) is 2
Hence, the period of \(f(x)\) is LCM of 1 and \(2=2\).
The equation \(||x-2|+a|=4\) can have four distinct real solutions for \(x\) if \(a\) belongs to the interval
(a)
\(
\begin{aligned}
&\begin{aligned}
& |x-2|+a= \pm 4 \\
& \Rightarrow \quad|x-2|= \pm 4-a
\end{aligned}\\
&\text { for } 4 \text { real roots, } 4-a>0 \text { and }-4-a>0\\
&\Rightarrow \quad a \in(-\infty,-4)
\end{aligned}
\)
Given the function \(f(x)=\frac{a^x+a^{-x}}{2}\) (where \(\left.a>2\right)\). Then \(f(x+y)+f(x-y)=\)
(a)
\(
\begin{aligned}
&\text { We have } f(x+y)+f(x-y)\\
&\begin{aligned}
& =\frac{1}{2}\left[a^{x+y}+a^{-x-y}+a^{x-y}+a^{-x+y}\right] \\
& =\frac{1}{2}\left[a^x\left(a^y+a^{-y}\right)+a^{-x}\left(a^y+a^{-y}\right)\right] \\
& =\frac{1}{2}\left(a^x+a^{-x}\right)\left(a^y+a^{-y}\right)=2 f(x) f(y)
\end{aligned}
\end{aligned}
\)
If \(\log _3\left(x^2-6 x+11\right) \leq 1\), then exhaustive range of values of \(x\) is
(d)
\begin{aligned}
& \log _3\left(x^2-6 x+11\right) \leq 1 \\
& \Rightarrow \quad 0<x^2-6 x+11 \leq 3 \\
& \Rightarrow \quad x \in[2,4]
\end{aligned}
The domain of the function \(f(x)=\sqrt{x^2-[x]^2}\), where \([x]=\) the greatest integer less than or equal to \(x\), is
(d) \(x^2-[x]^2 \geq 0 \Rightarrow x^2 \geq[x]^2\)
This is true for all positive values of \(x\) and all negative integer \(x\).
The range of the function \(f(x)=|x-1|+|x-2|\), \(-1 \leq x \leq 3\), is
(b)

Clearly, from the graph, the range is \([1, f(-1)] \equiv[1,5]\) If \(x<1, f(x)=-(x-1)-(x-2)=-2 x+3\).
In this interval, \(f(x)\) is decreasing.
If \(1 \leq x<2, f(x)=x-1-(x-2)=1\)
In this interval, \(f(x)\) is constant.
\(
\text { If } 2 \leq x \leq 3, f(x)=x-1+x-2=2 x-3
\)
In this interval, \(f(x)\) is increasing.
\(\therefore \max f(x)=\) the greatest among \(f(-1)\) and \(f(3)=5, \min f(x)\)
\(
=f(1)=1
\)
So, the range \(=[1,5]\).
Which of the following functions is inverse to itself?
(a) By checking for different function, we find that for \(f(x)=\frac{1-x}{1+x}, f^{-1}(x)=f(x)\).
A function \(F(x)\) satisfies the functional equation \(x^2 F(x) +F(1-x)=2 x-\mathrm{x}^4\) for all real \(x . F(x)\) must be
(b) \(x^2 F(x)+F(1-x)=2 x-x^4 \dots(1)\)
\(
\begin{aligned}
&\text { Replacing } x \text { by } 1-x \text {, we get }\\
&\Rightarrow \quad(1-x)^2 F(1-x)+F(x)=2(1-x)-(1-x)^4 \dots(2)
\end{aligned}
\)
\(
\text { Eliminating } F(1-x) \text { from (1) and (2), we get } F(x)=1-x^2 \text {. }
\)
If \(f(x)=\left\{\begin{array}{cc}x^2 \sin \frac{\pi x}{2}, & |x|<1 \\ x|x|, & |x| \geq 1\end{array}\right.\) then \(f(x)\) is
(b)
\(
f(-x)=\left\{\begin{array}{cc}
(-x)^2 \sin \frac{\pi(-x)}{2}, & |-x|<1 \\
(-x)|-x|, & |-x| \geq 1
\end{array}\right.
\)
\(
=\left\{\begin{array}{cc}
-x^2 \sin \frac{\pi x}{2}, & |x|<1 \\
-x|x|, & |x| \geq 1
\end{array}\right.
\)
\(
=-f(x)
\)
Function \(f:(-\infty,-1) \rightarrow\left(0, e^5\right]\) defined by \(f(x)=e^{x^3-3 x+2}\) is
(d)
\(
\begin{aligned}
& f(x)=e^{x^3-3 x+2} \\
& \text { Let } g(x)=x^3-3 x+2 ; g^{\prime}(x) \\
& \quad=3 x^2-3=3\left(x^2-1\right)
\end{aligned}
\)
\(g^{\prime}(x) \geq 0\) for \(x \in(-\infty,-1]\)
\(\therefore f(x)\) is increasing function
\(\therefore f(x)\) is one-one
Now, the range of \(f(x)=\left(0, e^4\right]\)
But co-domain is \(\left(0, e^5\right] . \quad \therefore f(x)\) is an into function.
If \(f(x)=\frac{1}{x}, g(x)=\frac{1}{x^2}\) and \(h(x)=x^2\)
(c)
\(
\begin{aligned}
f(x) & =\frac{1}{x}, g(x)=\frac{1}{x^2} \text { and } h(x)=x^2 \\
f(g(x)) & =x^2 ; x \neq 0 \\
h(g(x)) & =\frac{1}{x^4}=(g(x))^2, x \neq 0
\end{aligned}
\)
If \([x]\) and \(\{x\}\) represent the integral and fractional parts of \(x\), respectively, then the value of \(\sum_{r=1}^{2000} \frac{\{x+r\}}{2000}\) is
(c)
\(
\sum_{r=1}^{2000} \frac{\{x+r\}}{2000}=\sum_{r=1}^{2000} \frac{\{x\}}{2000}=2000 \frac{\{x\}}{2000}=\{x\}
\)
If \(f(x)\) is a polynomial satisfying \(f(x) f(1 / x)=f(x) +f(1 / x)\) and \(f(3)=28\), then \(f(4)\) is equal to
(b)
\(
\begin{aligned}
f(x) & =x^n+1 \\
f(3) & =3^n+1=28 \\
3^n & =27 \\
n & =3 \\
f(4) & =4^3+1=65 .
\end{aligned}
\)
The values of \(b\) and \(c\) for which the identity \(f(x+1) -f(x)=8 x+3\) is satisfied, where \(f(x)=b x^2+c x+d\), are
(b)
\(
\begin{aligned}
& \because f(x+1)-f(x)=8 x+3 \\
& \Rightarrow\left\{b(x+1)^2+c(x+1)+d\right\}-\left\{b x^2+c x+d\right\}=8 x+3 \\
& \Rightarrow b\left\{(x+1)^2-x^2\right\}+c=8 x+3 \\
& \Rightarrow b(2 x+1)+c=8 x+3
\end{aligned}
\)
On comparing co-efficient of \(x\) and constant term, we get \(2 b=8\) and \(b+c=3\) then \(b=4\) and \(c=-1\).
Let \(f: R \rightarrow R, g: R \rightarrow R\) be two given functions such that \(f\) is injective and \(g\) is surjective, then which of the following is injective?
(d) If \(f\) is injective and \(g\) is surjective
\(\Rightarrow f o g\) is injective
\(\Rightarrow f o f\) is injective.
\(f: N \rightarrow N\) where \(f(x)=x-(-1)^x\) then \(f\) is
(c) \(f(x)=\left\{\begin{array}{ll}x-1, & x \text { is even } \\ x+1, & x \text { is odd }\end{array}\right.\), which is clearly are one-one and onto.
If \(g(x)=x^2+x-2\) and \(\frac{1}{2} g \circ f(x)=2 x^2-5 x+2\), then which is not a possible \(f(x)\) ?
(c)
\(
\begin{aligned}
& \frac{1}{2}(g \circ f)(x)=2 x^2-5 x+2 \text { or } \frac{1}{2} g[f(x)]=2 x^2-5 x+2 \\
& \therefore\left[\{f(x)\}^2+\{f(x)\}-2\right]=2\left[2 x^2-5 x+2\right] \\
& \Rightarrow f(x)^2+f(x)-\left(4 x^2-10 x+6\right)=0 \\
& \therefore f(x)=\frac{-1 \pm \sqrt{1+4\left(4 x^2-10 x+6\right)}}{2} \\
& =\frac{-1 \pm \sqrt{\left(16 x^2-40 x+25\right.}}{2}=\frac{-1 \pm(4 x-5)}{2}=2 x-3 \text { or }-2 x+2
\end{aligned}
\)
If \(f: R \rightarrow R\) is an invertible function such that \(f(x)\) and \(f^{-1}(x)\) are symmetric about the line \(y=-x\), then
(a)
\(
\begin{aligned}
& \text { Since } f(x) \text { and } f^{-1}(x) \text { are symmetric about the line } y=-x \text {. } \\
& \text { If }(\alpha, \beta) \text { lies on } y=f(x) \text { then }(-\beta,-\alpha) \text { on } y=f^{-1}(x) \\
& \Rightarrow \quad(-\alpha,-\beta) \text { lies on } y=f(x) \\
& \Rightarrow \quad y=f(x) \text { is odd. }
\end{aligned}
\)
Let \(f: N \rightarrow N\) defined by \(f(x)=x^2+x+1, x \in N\), then \(f\) is
(c) Let \(x, y \in N\) such that \(f(x)=f(y)\)
\(
\begin{aligned}
& \text { Then } f(x)=f(y) \\
& \Rightarrow \quad x^2+x+1=y^2+y+1 \\
& \Rightarrow \quad(x-y)(x+y+1)=0 \\
& \Rightarrow \quad x=y \text { or } x=(-y-1) \notin N
\end{aligned}
\)
\(\therefore \quad f\) is one-one.
Also, \(f(x)\) does not take all positive integral values. Hence \(f\) is into.
Let \(f: X \rightarrow y f(x)=\sin x+\cos x+2 \sqrt{2}\) is invertible. Then which \(X \rightarrow Y\) is not possible?
(c)
\(
\begin{aligned}
f(x) & =\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)+2 \sqrt{2} \\
f(x) & =\sqrt{2} \cos \left(x-\frac{\pi}{4}\right)+2 \sqrt{2} \\
Y & =[\sqrt{2}, 3 \sqrt{2}] \text { and } X=\left[-\frac{3 \pi}{4}, \frac{\pi}{4}\right] \text { or }\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]
\end{aligned}
\)
If \(f(x)=a x^7+b x^3+c x-5, a, b, c\) are real constants and \(f(-7)=7\), then the range of \(f(7)+17 \cos x\) is
(a)
\(
\begin{aligned}
& f(7)+f(-7)=-10 \\
& \Rightarrow f(7)=-17 \\
& \Rightarrow f(7)+17 \cos x=-17+17 \cos x \text { which has the range } \\
& {[-34,0] .}
\end{aligned}
\)
If \(f(x)=\frac{\sin ([x] \pi)}{x^2+x+1}\), where [.] denotes the greatest integer function, then
(c) \(f(x)=\frac{\sin [x] \pi}{x^2+x+1}\)
Let \([x]=n \in\) integer
\(
\begin{aligned}
& \Rightarrow \quad \sin [x] \pi=0 \\
& \Rightarrow \quad f(x)=0
\end{aligned}
\)
\(\Rightarrow f(x)\) is constant function.
Let \(S\) be the set of all triangles and \(R^{+}\)be the set of positive real numbers. Then the function \(f: S \rightarrow R^{+}, f(\Delta)=\) area of \(\Delta\), where \(\Delta \in S\) is
(b) Two triangles may have equal areas
\(\therefore f\) is not one-one.
Since each positive real number can represent area of a triangle.
\(\therefore f\) is onto.
The graph of \((y-x)\) against \((y+x)\) is shown

Which one of the following shows the graph of \(y\) against \(x\) ?

(c)
\(
\begin{aligned}
& \frac{y-x}{y+x}=k(k>1) ; \quad y-x=k(y+x) \\
& \Rightarrow \quad y(1+k)=x(1+k) \\
& \Rightarrow \quad y=\left(\frac{1+k}{1-k}\right) x, \text { where } \frac{1+k}{1-k}<-1
\end{aligned}
\)
If \(g:[-2,2] \rightarrow R\) where \(f(x)=x^3+\tan x+\left[\frac{x^2+1}{P}\right]\) is a odd function, then the value of parametric \(P\) where \([\).\(] denotes\) the greatest integer function is
(c)
\(
\begin{aligned}
& g(x)=x^3+\tan x+\left[\frac{x^2+1}{P}\right] \\
& \Rightarrow g(-x)=(-x)^3+\tan (-x)+\left[\frac{(-x)^2+1}{P}\right] \\
& \Rightarrow g(-x)=-x^3-\tan x+\left[\frac{x^2+1}{P}\right] \\
& \Rightarrow g(x)+g(-x)=0
\end{aligned}
\)
because \(g(x)\) is a odd function
\(
\begin{aligned}
& \therefore\left(-x^3-\tan x+\left[\frac{x^2+1}{P}\right]\right)+\left(-x^3-\tan x\right) \\
& \left.\Rightarrow 2\left[\frac{x^2+1}{P}\right]\right)=0 \\
& \Rightarrow\left[\frac{\left(x^2+1\right)}{P}\right]=0 \Rightarrow 0 \leq \frac{x^2+1}{P}<1
\end{aligned}
\)
Now \(x \in[-2,2]\)
\(
\Rightarrow 0 \leq \frac{5}{P}<1 \Rightarrow P>5
\)
If \(f\left(2 x+\frac{y}{8}, 2 x-\frac{y}{8}\right)=x y\), then \(f(m, n)+f(n, m)=0\)
(d) Let \(2 x+\frac{y}{8}=\alpha\) and \(2 x-\frac{y}{8}=\beta\), then \(x=\frac{\alpha+\beta}{4}\) and \(y=4(\alpha-\beta)\).
Given, \(f\left(2 x+\frac{y}{8}, 2 x-\frac{y}{8}\right)=x y\)
\(
\begin{aligned}
& \Rightarrow f(\alpha, \beta)=\alpha^2-\beta^2 \\
& \Rightarrow f(m, n)+f(n, m)=m^2-n^2+n^2-m^2=0 \text { for all } m, n
\end{aligned}
\)
If \(f(x+y)=f(x)+f(y)-x y-1 \forall x, y \in R\) and \(f(1)=1\), then the number of solutions of \(f(n)=n, n \in N\) is
(b)
\(
\begin{aligned}
& \text { Given } f(x+y)=f(x)+f(y)-x y-1 \forall x, y \in R \\
& f(1)=1 \\
& f(2)=f(1+1)=f(1)+f(1)-1-1=0 \\
& f(3)=f(2+1)=f(2)+f(1)-2 \cdot 1-1=-2 \\
& f(n+1)=f(n)+f(1)-n-1=f(n)-n<f(n)
\end{aligned}
\)
\(
\begin{aligned}
& \text { Thus, } f(1)>f(2)>f(3)>\ldots \text { and } f(1)=1 . \\
& \therefore \quad f(1)=1 \text { and } f(n)<1, \text { for } n>1 . \\
& \text { Hence, } f(n)=n, n \in N \text { has only one solution } n=1 .
\end{aligned}
\)
The range of the function \(f(x)=\frac{e^x-e^{|x|}}{e^x+e^{|x|}}\)
(c)
\(
f(x)=\frac{e^x-e^{|x|}}{e^x+e^{|x|}}=\left\{\begin{array}{cc}
0, & x \geq 0 \\
\frac{e^x-e^{-x}}{e^x+e^{-x}}, & x<0
\end{array}\right.
\)
Clearly, \(f(x)\) is identically zero if \(x \geq 0 \dots(1)\)
\(
\begin{aligned}
& \text { If } x<0, \text { let } y=f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} \Rightarrow e^{2 x}=\frac{1+y}{1-y} \\
& \because \quad x<0 \Rightarrow e^{2 x}<1 \Rightarrow 0<e^{2 x}<1 \\
& \therefore \quad 0<\frac{1+y}{1-y}<1
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \frac{1+y}{1-y}>0 \text { and } \frac{1+y}{1-y}<1 \\
& \Rightarrow(y+1)(y-1)<0 \text { and } \frac{2 y}{1-y}<0 \\
& \Rightarrow-1<y<1 \text { and } y<0 \text { or } y>1 \\
& \Rightarrow-1<y<0 \dots(2)
\end{aligned}
\)
Combining (1) and (2), we get \(-1<y \leq 0 \Rightarrow\) Range \(=(-1,0]\).
If \(f: R \rightarrow R\) is a function satisfying the property \(f(2 x+3)+ f(2 x+7)=2, \forall x \in R\), then the fundamental period of \(f(x)\) is
(c)
\(
\begin{aligned}
& f(2 x+3)+f(2 x+7)=2 \dots(1) \\
& \text { Replace } x \text { by } x+2, f(2 x+7)+f(2 x+11)=2 \dots(2) \\
& \text { from }(1)-(2) \text { we get } f(2 x+3)-f(2 x+11)=0 \\
& \Rightarrow f(2 x+3)=f(2 x+11) \\
& \Rightarrow f(2 x+3)=f(2(x+4)+3) \\
& \Rightarrow \text { Period of } f(x) \text { is } 8
\end{aligned}
\)
Let \(f: R \rightarrow\left[0, \frac{\pi}{2}\right)\) defined by \(f(x)=\tan ^{-1}\left(x^2+x+a\right)\), then the set of values of \(a\) for which \(f\) is onto is
(c) \(\text { Since co-domain }=\left[0, \frac{\pi}{2}\right)\)
\(\therefore\) for \(f\) to be onto, the range \(=\left[0, \frac{\pi}{2}\right)\)
This is possible only when \(x^2+x+a \geq 0 \quad \forall x \in R\)
\(
\therefore 1^2-4 a \leq 0 \Rightarrow a \geq \frac{1}{4}
\)
The domain of the function \(f(x)=\frac{1}{\sqrt{\{\sin x\}+\{\sin (\pi+x)\}}}\), where \(\{\cdot\}\) denotes the fractional part, is
(d)
\(
\begin{aligned}
& f(x)=\frac{1}{\sqrt{\{\sin x\}+\{\sin (\pi+x)\}}}=\frac{1}{\sqrt{\{\sin x\}+\{-\sin x\}}} \\
& \text { Now }\{\sin x\}+\{-\sin x\}=\left\{\begin{array}{lc}
0, & \sin x \text { is an integer } \\
1, & \sin x \text { is not an integer }
\end{array}\right.
\end{aligned}
\)
For \(f(x)\) to get defined \(\{\sin x\}+\{-\sin x\} \neq 0\)
\(
\begin{aligned}
& \Rightarrow \quad \sin x \neq \text { integer } \\
& \Rightarrow \quad \sin x \neq \pm 1,0 \\
& \Rightarrow \quad x \neq \frac{n \pi}{2}, n \in I
\end{aligned}
\)
Hence, the domain is \(R-\left\{\frac{n \pi}{2} / n \in I\right\}\).
\(f(x)=\frac{\cos x}{\left[\frac{2 x}{\pi}\right]+\frac{1}{2}}\), where \(x\) is not an integral multiple of \(\pi\) and [.] denotes the greatest integer function is
(a)
\(
\begin{aligned}
&f(-x)=\frac{\cos (-x)}{\left[-\frac{2 x}{\pi}\right]+\frac{1}{2}}=\frac{\cos x}{-1-\left[\frac{2 x}{\pi}\right]+\frac{1}{2}}\\
&\text { (as } x \text { is not an integral multiple of } \pi \text { ) }
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow f(-x)=-\frac{\cos x}{\left[\frac{2 x}{\pi}\right]+\frac{1}{2}}=-f(x)\\
&\Rightarrow f(x) \text { is an odd function. }
\end{aligned}
\)
Let \(f(x)=\left([a]^2-5[a]+4\right) x^3-\left(6\{a\}^2-5\{a\}+1\right) x-(\tan x) \times \operatorname{sgn} x\) be an even function for all \(x \in R\), then the sum of all possible values of ‘ \(a\) ‘ is (where \([\cdot]\) and \(\{\cdot\}\) denote greatest integer function and fractional part functions, respectively)
(d)
\(
\begin{aligned}
& f(x)=\alpha x^3-\beta x-(\tan x) \operatorname{sgn} x \\
& f(-x)=f(x) \\
& \Rightarrow-\alpha x^3+\beta x-\tan x \operatorname{sgn} x=\alpha x^3-\beta x-(\tan x)(\operatorname{sgn} x) \\
& \Rightarrow 2\left(-\alpha x^2-\beta\right) x=0 \forall x \in R \\
& \Rightarrow \alpha=0 \text { and } \beta=0 \\
& \therefore[a]^2-5[a]+4=0 \text { and } 6\{a\}^2-5\{a\}+1=0 \\
& \Rightarrow(3\{x\}-1)(2\{x\}-1)=0 \\
& \therefore a=1+\frac{1}{3}, 1+\frac{1}{2}, 4+\frac{1}{3}, 4+\frac{1}{2}
\end{aligned}
\)
\(
\text { Sum of values of } a=\frac{35}{3}
\)
Let \(f:[-10,10] \rightarrow R\), where \(f(x)=\sin x+\left[x^2 / a\right]\) be an odd function. Then the set of values of parameter \(a\) is/are
(d) Since \(f(x)\) is an odd function, \(\left[\frac{x^2}{a}\right]=0\) for all \(x \in [-10,10]\)
\(\Rightarrow 0 \leq \frac{x^2}{a}<1\) for all \(x \in[-10,10] \Rightarrow a>100\).
The function \(f\) satisfies the functional equation \(3 f(x) +2 f\left(\frac{x+59}{x-1}\right)=10 x+30\) for all real \(x \neq 1\). The value of \(f(7)\) is
(b)
\(
\begin{aligned}
& 3 f(x)+2 f\left(\frac{x+59}{x-1}\right)=10 x+30 \\
& \text { For } x=7,3 f(7)+2 f(11)=70+30=100 \text {. } \\
& \text { For } x=11,3 f(11)+2 f(7)=140 \text {. }
\end{aligned}
\)
\(
\frac{f(7)}{-20}=\frac{f(11)}{-220}=\frac{-1}{9-4} \Rightarrow f(7)=4
\)
The period of the function \(f(x)=[6 x+7]+\cos \pi x-6 x\), where [.] denotes the greatest integer function, is
(c)
\(
\begin{aligned}
f(x) & =[6 x+7]+\cos \pi x-6 x \\
& =[6 x]+7+\cos \pi x-6 x \\
& =7+\cos \pi x-\{6 x\}
\end{aligned}
\)
\(\{6 x\}\) has the period \(1 / 6\) and \(\cos \pi x\) has the period 2, then the period of \(f(x)=\mathrm{LCM}\) of 2 and \(1 / 6\) which is 2. Hence, the period is 2.
If the graph of the function \(f(x)=\frac{a^x-1}{x^n\left(a^x+1\right)}\) is symmetrical about \(y\)-axis, then \(n\) equals
(d) \(f(x)=\frac{a^x-1}{x^n\left(a^x+1\right)}\)
\(f(x)\) is symmetrical about \(y\)-axis
\(
\begin{aligned}
& \Rightarrow f(x)=f(-x) \\
& \Rightarrow \frac{a^x-1}{x^n\left(a^x+1\right)}=\frac{a^{-x}-1}{(-x)^n\left(a^{-x}+1\right)} \\
& \Rightarrow \frac{a^x-1}{x^n\left(a^x+1\right)}=\frac{1-a^x}{(-x)^n\left(1+a^x\right)} \Rightarrow x^n=-(-x)^n
\end{aligned}
\)
\(\Rightarrow\) the value of \(n\) which satisfy this relation is \(-\frac{1}{3}\).
If \(f(x)\) is an even function and satisfies the relation \(x^2 f(x) -2 f\left(\frac{1}{x}\right)=g(x)\) where \(g(x)\) is an odd function, then \(f(5)\) equals
(a)
\(
\begin{aligned}
& x^2 f(x)-2 f\left(\frac{1}{x}\right)=g(x) \text { and } 2 f\left(\frac{1}{x}\right)-4 x^2 f(x)=2 x^2 g\left(\frac{1}{x}\right) \\
& \text { (Replacing } x \text { by } \frac{1}{x} \text { ) } \\
& \Rightarrow-3 x^2 f(x)=g(x)+2 x^2 g\left(\frac{1}{x}\right) \\
& \text { (Eliminating } f\left(\frac{1}{x}\right) \text { ) } \\
& \Rightarrow f(x)=-\left(\frac{g(x)+2 x^2 g\left(\frac{1}{x}\right)}{3 x^2}\right)
\end{aligned}
\)
\(\because g(x)\) and \(x^2\) are odd and even functions, respectively.
So, \(f(x)\) is an odd function. But \(f(x)\) is given even
\(\Rightarrow f(x)=0 \forall x\). Hence, \(f(5)=0\).
If \(f(x+y)=f(x) \cdot f(y)\) for all real \(x, y\) and \(f(0) \neq 0\), then the function \(g(x)=\frac{f(x)}{1+\{f(x)\}^2}\) is
(a) Given \(f(x+y)=f(x) f(y)\). Put \(x=y=0\), then \(f(0)=1\).
Put \(y=-x\), then \(f(0)=f(x) f(-x) \Rightarrow f(-x)=\frac{1}{f(x)}\)
Now, \(g(x)=\frac{f(x)}{1+\{f(x)\}^2}\)
\(
\begin{aligned}
g(-x) & =\frac{f(-x)}{1+\{f(-x)\}^2}=\frac{\frac{1}{f(x)}}{1+\frac{1}{\{f(x)\}^2}} \\
& =\frac{f(x)}{1+\{f(x)\}^2}=g(x)
\end{aligned}
\)
Possible values of \(a\) such that the equation \(x^2+2 a x+a= \sqrt{a^2+x-\frac{1}{16}}-\frac{1}{16}, x \geq-a\), has two distinct real roots are given by
(d) The equation is \(x^2+2 a x+\frac{1}{16}=-a+\sqrt{a^2+x-\frac{1}{16}}\), \(\Rightarrow f(x)=f^{-1}(x)\) which has the solution if \(x^2+2 a x+\frac{1}{16}=x\)
\(
\Rightarrow \quad x^2+(2 a-1) x+\frac{1}{16}=0
\)
\(
\begin{aligned}
& \text { For real and distinct roots }(2 a-1)^2-4 \frac{1}{16} \geq 0 \\
& \Rightarrow 2 a-1 \leq \frac{-1}{2} \text { or } 2 a-1 \geq \frac{1}{2} \Rightarrow a \leq \frac{1}{4} \text { or } a \geq \frac{3}{4} .
\end{aligned}
\)
Let \(g(x)=f(x)-1\). If \(f(x)+f(1-x)=2 \forall x \in R\), then \(g(x)\) is symmetrical about
(d)
\(
\begin{aligned}
&\begin{aligned}
& f(x)-1+f(1-x)-1=0 ; \text { so } g(x)+g(1-x)=0 \\
& \text { Replacing } x \text { by } x+\frac{1}{2}, \text { we get } g\left(\frac{1}{2}+x\right)+g\left(\frac{1}{2}-x\right)=0 .
\end{aligned}\\
&\text { So, it is symmetrical about }\left(\frac{1}{2}, 0\right) \text {. }
\end{aligned}
\)
Domain \((D)\) and range \((R)\) of \(f(x)=\sin ^{-1}\left(\cos ^{-1}[x]\right)\) where [.] denotes the greatest integer function is
(a) When \([x]=0\) we have \(\sin ^{-1}\left(\cos ^{-1} 0\right)=\sin ^{-1}(\pi / 2)\), not defined.
When \([x]=-1\) we have \(\sin ^{-1}\left(\cos ^{-1}-1\right)=\sin ^{-1}(\pi)\), not defined.
When \([x]=1\) we have \(\sin ^{-1}\left(\cos ^{-1} 1\right)=\sin ^{-1}(0)=0\).
Hence, \(x \in[1,2)\) and the range of function is \(\{0\}\).
If \(f(x+1)+f(x-1)=2 f(x)\) and \(f(0)=0\), then \(f(n)\), \(n \in N\), is
(a)
\(
\begin{aligned}
& \text { Putting } x=1, f(2)+f(0)=2 f(1) \Rightarrow f(2)=2 f(1) \\
& \text { Putting } x=2, f(3)+f(1)=2 f(2) \\
& \Rightarrow \quad f(3)=2 \times 2 f(1)-f(1)=3 f(1), \text { and so on. } \\
& \therefore \quad f(n)=n f(1), \text { for } n=1,2, \ldots, n \\
& \quad f(n+1)+f(n-1)=2 f(n) \\
& \Rightarrow \quad f(n+1)+(n-1) f(1)=2 n f(1) \\
& \Rightarrow \quad f(n+1)=(n+1) f(1)
\end{aligned}
\)
The range of the function \(f\) defined by \(f(x)=\left[\frac{1}{\sin \{x\}}\right]\) (where [.] and \(\{\).\(\} \text { respectively denote the greatest integer }\text { and the fractional part functions) is }\)
(d) \(\because\{x\} \in[0,1)\)
\(\sin \{x\} \in(0, \sin 1)\) as \(f(x)\) is defined if \(\sin \{x\} \neq 0\)
\(
\Rightarrow \frac{1}{\sin \{x\}} \in\left(\frac{1}{\sin 1}, \infty\right) \Rightarrow\left[\frac{1}{\sin \{x\}}\right] \in\{1,2,3, \ldots\}
\)
Note that \(1<\frac{\pi}{3} \Rightarrow \sin 1<\sin \frac{\pi}{3}=0.866 \Rightarrow \frac{1}{\sin 1}>1.155\).
If \(\left[\cos ^{-1} x\right]+\left[\cot ^{-1} x\right]=0\), where \([\).\(] \text { denotes the greatest integer function, then the complete set of values of }\) \(x\) is
(c)
\(
\begin{aligned}
& \text { We have }\left[\cos ^{-1} x\right] \geq 0 \forall x \in[-1,1] \\
& \text { and }\left[\cot ^{-1} x\right] \geq 0 \forall x \in R \\
& \text { Hence, }\left[\cot ^{-1} x\right]+\left[\cot ^{-1} x\right]=0 \\
& \Rightarrow \quad\left[\cot ^{-1} x\right]=\left[\cot ^{-1} x\right]=0 \\
& \text { If }\left[\cos ^{-1} x\right]=0 \Rightarrow x \in(\cos 1,1]
\end{aligned}
\)
\(
\begin{aligned}
& \text { If }\left[\cot ^{-1} x\right]=0 \Rightarrow x \in(\cot 1, \infty) \\
& \Rightarrow x \in(\cot 1,1]
\end{aligned}
\)
If \(f(x)\) and \(g(x)\) are periodic functions with period 7 and 11, respectively. Then the period of \(F(x)=f(x) g\left(\frac{x}{5}\right)-g(x) f\left(\frac{x}{3}\right)\) is
(d) The period of \(f(x)\) is \(7 \Rightarrow\) The period of \(f\left(\frac{x}{3}\right)\) is \(\frac{7}{1 / 3}=21\)
The period of \(g(x)\) is \(11 \Rightarrow\) The period of \(g\left(\frac{x}{5}\right)\) is \(\frac{11}{1 / 5}=55\)
Hence, \(T_1=\) period of \(f(x) g\left(\frac{x}{5}\right)=7 \times 55=385\) and
\(
\begin{aligned}
& T_2=\text { period of } g(x) f\left(\frac{x}{3}\right)=11 \times 21=231 \\
& \begin{aligned}
\therefore \text { Period of } F(x) & =\operatorname{LCM}\left\{T_1, T_2\right\} \\
& =\operatorname{LCM}\{385,231\} \\
& =7 \times 11 \times 3 \times 5 \\
& =1155
\end{aligned}
\end{aligned}
\)
The period of the function
\(
f(x)=c^{\sin ^2 x+\sin ^2\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right)}
\)
is (where \(c\) is constant)
(d)
\(
\begin{aligned}
& \sin ^2 x+\sin ^2\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right) \\
& =\sin ^2 x+\left(\frac{\sin x}{2}+\frac{\sqrt{3} \cos x}{2}\right)^2+\cos x\left(\frac{\cos x}{2}-\frac{\sqrt{3} \sin x}{2}\right) \\
& =\sin ^2 x+\frac{\sin ^2 x}{4}+\frac{3 \cos ^2 x}{4}+\frac{\cos ^2 x}{2} \\
& =\frac{5 \sin ^2 x}{4}+\frac{5 \cos ^2 x}{4}=5 / 4
\end{aligned}
\)
Hence, \(f(x)=c^{5 / 4}=\) constant, which is periodic whose period cannot be determined.
If \(f(x+f(y))=f(x)+y \forall x, y \in R\) and \(f(0)=1\), then the value of \(f(7)\) is
(a)
\(
\begin{aligned}
&\begin{aligned}
& f(x+f(y))=f(x)+y, f(0)=1 \\
& \text { Putting } y=0 \text {, we get } f(x+f(0))=f(x)+0 \\
& \Rightarrow f(x+1)=f(x) \forall x \in R
\end{aligned}\\
&\text { Thus, } f(x) \text { is the period with } 1 \text { as one of its period. }\\
&\Rightarrow \quad f(7)=f(6)=f(5)=\cdots=f(1)=(0)=1
\end{aligned}
\)
Let \(f(x)=\sqrt{|x|-\{x\}}\) (where \(\{\).\(\} \text { denotes the fractional part of }\) \(x\) ) and \(X, Y\) are its domain and range, respectively, then
(c)
\(
\begin{aligned}
&f(x)=\sqrt{|x|-\{x\}} \text { is defined if }|x| \geq\{x\}\\
&\Rightarrow \quad x \in\left(-\infty-\frac{1}{2}\right] \cup[0, \infty) \Rightarrow Y \in[0, \infty)
\end{aligned}
\)

Let \(f\) be a function satisfying of \(x\) then \(f(x y)=\frac{f(x)}{y}\) for all positive real numbers \(x\) and \(y\) if \(f(30)=20\), then the value of \(f(40)\) is
(a)
\(
\begin{aligned}
f(x y) & =\frac{f(x)}{y} \\
f(y) & =\frac{f(1)}{y} \quad \text { (putting } x=1 \text { ) }
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow \quad f(30)=\frac{f(1)}{30} \text { or } f(1)=30 \times f(30)=30 \times 20=600 .\\
&\text { Now, } f(40)=\frac{f(1)}{40}=\frac{600}{40}=15 \text {. }
\end{aligned}
\)
The domain of the function \(f(x)=\sqrt{\ln _{(|x|-1)}\left(x^2+4 x+4\right)}\) is
(c) Case I:
\(
\begin{aligned}
& 0<|x|-1<1 \Rightarrow 1<|x|<2, \text { then } \\
& x^2+4 x+4 \leq 1 \\
& \Rightarrow x^2+4 x+3 \leq 0 \\
& \Rightarrow-3 \leq x \leq-1 \dots(1)
\end{aligned}
\)
So \(x \in(-2,-1)\)
Case II:
\(
\begin{aligned}
& |x|-1>1 \Rightarrow|x|>2, \text { then } x^2+4 x+4 \geq 1 \\
& \Rightarrow x^2+4 x+3 \geq 0 \\
& \Rightarrow x \geq-1 \text { or } x \leq-3
\end{aligned}
\)
So, \(x \in(-\infty,-3] \cup(2, \infty) \dots(2)\)
\(
\text { From (1) and (2), } x \in(-\infty,-3] \cup(-2,-1) \cup(2, \infty) \text {. }
\)
The range of \(f(x)=[1+\sin x]+\left[2+\sin \frac{x}{2}\right]+\left[3+\sin \frac{x}{3}\right]+ \cdots+\left[n+\sin \frac{x}{n}\right], \forall x \in[0, \pi]\), where [.] denotes the greatest integer function, is
(d) \(f(x)=\frac{n(n+1)}{2}+[\sin x]+\left[\sin \frac{x}{2}\right]+\cdots+\left[\sin \frac{x}{n}\right]\)
Thus, the range of \(f(x)=\left\{\frac{n(n+1)}{2}, \frac{n(n+1)}{2}+1\right\}\) as \(x \in[0, \pi]\).
The total number of solutions of \([x]^2=x + 2\{x\}\), where [.] and {.} denote the greatest integer function and fractional part, respectively, is equal to
(b)
\(
\begin{aligned}
& {[x]^2=x+2\{x\} } \\
\Rightarrow & {[x]^2=[x]+3\{x\} } \\
\Rightarrow & \{x\}=\frac{[x]^2-[x]}{3} \\
\Rightarrow & 0 \leq \frac{[x]^2-[x]}{3}<1 \\
\Rightarrow & 0 \leq[x]^2-[x]<3
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \quad[x] \in\left(\frac{1-\sqrt{3}}{2}, 0\right] \cup\left[1, \frac{1+\sqrt{3}}{2}\right) \\
& \Rightarrow \quad[x]=-1,0,1,2 \\
& \Rightarrow \quad\{x\}=\frac{2}{3}, 0,0, \frac{2}{3}, \text { (respectively) } \\
& \Rightarrow \quad x=-\frac{1}{3}, 0,1, \frac{8}{3}
\end{aligned}
\)
The domain of \(f(x)=\sqrt{2\{x\}^2-3\{x\}+1}\), where \(\{.\}\) denotes the fractional part in \([-1,1]\), is
(b) We must have
\(
2\{x\}^2-3\{x\}+1 \geq 0 \Rightarrow\{x\} \geq 1 \text { or }\{x\} \leq 1 / 2
\)
Thus, we have \(0 \leq\{x\} \leq 1 / 2 \Rightarrow x \in\left[n, n+\frac{1}{2}\right], n \in I\).
The range of \(\sin ^{-1}\left[x^2+\frac{1}{2}\right]+\cos ^{-1}\left[x^2-\frac{1}{2}\right]\), where [.] denotes the greatest integer function, is
(b)
\(
\begin{aligned}
&\left[x^2+\frac{1}{2}\right]=\left[x^2-\frac{1}{2}+1\right]=1+\left[x^2-\frac{1}{2}\right] .\\
&\text { Thus, from domain point of view, }
\end{aligned}
\)
\(
\begin{aligned}
& {\left[x^2-\frac{1}{2}\right]=0,-1 \Rightarrow\left[x^2+\frac{1}{2}\right]=1,0} \\
& \Rightarrow f(x)=\sin ^{-1}(1)+\cos ^{-1}(0) \text { or } \sin ^{-1}(0)+\cos ^{-1}(-1) \\
& \Rightarrow f(x)=\{\pi\}
\end{aligned}
\)
If the period of \(\frac{\cos (\sin (n x))}{\tan \left(\frac{x}{n}\right)}, n \in N\) is \(6 \pi\) then \(n=\)
(c) The period of \(\cos (\sin n x)\) is \(\frac{\pi}{n}\) and the period of \(\tan \left(\frac{x}{n}\right)\) is \(\pi n\).
Thus, \(6 \pi=\operatorname{LCM}\left(\frac{\pi}{n}, \pi n\right)\)
\(
\Rightarrow 6 \pi=\frac{\pi}{n} \lambda_1 \Rightarrow n=\frac{\lambda_1}{6}, \text { and } 6 \pi=\lambda_2 \pi n \Rightarrow n=\frac{6}{\lambda_2}, \lambda_1,
\)
\(\lambda_2 \in I^{+}\)
\(
\begin{aligned}
&\text { From } n=\frac{6}{\lambda_2} \Rightarrow n=6,3,2,1 .\\
&\text { Clearly, for } n=6 \text {, we get the period of } f(x) \text { to be } 6 \pi \text {. }
\end{aligned}
\)
The domain of \(f(x)=\ln \left(a x^3+(a+b) x^2+(b+c) x+c\right)\), where \(a>0, b^2-4 a c=0\), is (where [.] represents greatest integer function).
(a)
\(
\begin{aligned}
&\text { We must have } a x^3+(a+b) x^2+(b+c) x+c>0\\
&\begin{aligned}
& \Rightarrow a x^2(x+1)+b x(x+1)+c(x+1)>0 \\
& \Rightarrow(x+1)\left(a x^2+b x+c\right)>0 \\
& \Rightarrow a(x+1)\left(x+\frac{b}{2 a}\right)^2>0 \text { as } b^2=4 a c \\
& \Rightarrow x>-1 \text { and } \neq-\frac{b}{2 a}
\end{aligned}
\end{aligned}
\)
The period of \(f(x)=[x]+[2 x]+[3 x]+[4 x]+\cdots[n x]- \frac{n(n+1)}{2} x\), where \(n \in N\), is (where \([\cdot]\) represents greatest integer function)
(b)
\(
\begin{aligned}
&\begin{aligned}
f(x) & =[x]+[2 x]+[3 x]+\cdots+[n x]-(x+2 x+3 x+\cdots+n x) \\
& =-(\{x\}+\{2 x\}+\{3 x\}+\cdots+\{n x\})
\end{aligned}\\
&\text { The period of } f(x)=\operatorname{LCM}\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}\right)=1 \text {. }
\end{aligned}
\)
If \(f\left(x+\frac{1}{2}\right)+f\left(x-\frac{1}{2}\right)=f(x)\) for all \(x \in R\), then the period of \(f(x)\) is
(c)
\(
\begin{aligned}
&\begin{aligned}
& f\left(x+\frac{1}{2}\right)+f\left(x-\frac{1}{2}\right)=f(x) \\
& \Rightarrow f(x+1)+f(x)=f\left(x+\frac{1}{2}\right) \\
& \Rightarrow f(x+1)+f\left(x-\frac{1}{2}\right)=0 \\
& \Rightarrow f\left(x+\frac{3}{2}\right)=-f(x) \\
& \Rightarrow f(x+3)=-f\left(x+\frac{3}{2}\right)=f(x)
\end{aligned}\\
&\therefore f(x) \text { is periodic with period } 3 .
\end{aligned}
\)
If \(f: R^{+} \rightarrow R, f(x)+3 x f\left(\frac{1}{x}\right)=2(x+1)\), then \(f(99)\) is equal to
(c) \(f(x)+3 x f\left(\frac{1}{x}\right)=2(x+1) \dots(1)\)
Replacing \(x\) by \(\frac{1}{x}\), we get
\(
\begin{aligned}
& f\left(\frac{1}{x}\right)+3 \frac{1}{x} f(x)=2\left(\frac{1}{x}+1\right) \\
& \Rightarrow x f\left(\frac{1}{x}\right)+3 f(x)=2(x+1) \dots(2)
\end{aligned}
\)
From (1) and (2), we have \(f(x)=\frac{x+1}{2} \Rightarrow f(99)=50\)
If \(f: X \rightarrow Y\), where \(X\) and \(Y\) are sets containing natural numbers, \(f(x)=\frac{x+5}{x+2}\) then the number of elements in the domain and range of \(f(x)\) are respectively
(a) Let \(y=\frac{x+5}{x+2}=1+\frac{3}{x+2} \Rightarrow x=1\)
Also, \(y-1=\frac{3}{x+2} \Rightarrow x+2=\frac{3}{y-1}\)
\(
\Rightarrow \quad x=-2+\frac{3}{y-1}
\)
\(\Rightarrow y=2\) only as \(x\) and \(y\) are natural numbers.
If \(f(x)=\left\{\begin{array}{ll}x^2 & \text { for } x \geq 0 \\ x & \text { for } x<0\end{array}\right.\) then \(f \circ f(x)\) is given by
(d)
\(
f(f(x))= \begin{cases}(f(x))^2, & \text { for } f(x) \geq 0 \\ f(x), & \text { for } f(x)<0\end{cases}
\)
\(
=\left\{\begin{array}{l}
\left(x^2\right)^2, x^2 \geq 0, x \geq 0 \\
x^2, x \geq 0, x<0 \\
x^2, x^2<0, x \geq 0 \\
x, x<0, x<0
\end{array}\right.
\)
\(
=\left\{\begin{array}{l}
x^4, x \geq 0 \\
x, x<0
\end{array}\right.
\)
If the graph of \(y=f(x)\) is symmetrical about lines \(x=1\) and \(x=2\), then which of the following is true?
(c) From the given data
\(
\begin{aligned}
& f(1-x)=f(1+x) \dots(1) \\
& \text { and } f(2-x)=f(2+x) \dots(2)
\end{aligned}
\)
In (2) replacing \(x\) by \(1+x\), we have
\(
\begin{aligned}
& & f(1-x) & =f(3+x) \\
\Rightarrow & & f(1+x) & =f(3+x) [\text { from (1) }]\\
\Rightarrow & & f(x) & =f(2+x)
\end{aligned}
\)
Let \(f(x)=x+2|x+1|+2|x-1|\). If \(f(x)={k}\) has exactly one real solution, then the value of \(k\) is
(a)
\(
\begin{aligned}
& \text { Let } f(x)=x+2|x+1|+2|x-1| \\
& \Rightarrow f(x)= \begin{cases}x-2(x+1)-2(x-1), & x<-1 \\
x+2(x+1)-2(x-1), & -1 \leq x \leq 1 \\
x+2(x+1)+2(x-1), & x>1\end{cases} \\
& \text { or } f(x)= \begin{cases}-3 x, & x<-1 \\
x+4, & -1 \leq x \leq 1 \\
5 x, & x>1\end{cases}
\end{aligned}
\)

The domain of \(f(x)=\sin ^{-1}\left[2 x^2-3\right]\), where [.] denotes the greatest integer function, is
(d)
\(
\begin{aligned}
&\text { We must have }-1 \leq\left[2 x^2-3\right] \leq 1\\
&\begin{aligned}
& \Rightarrow \quad-1 \leq 2 x^2-3<2 \Rightarrow 1 \leq x^2<\frac{5}{2} \\
& \Rightarrow \quad x \in\left(-\sqrt{\frac{5}{2}},-1\right] \cup\left[1, \sqrt{\frac{5}{2}}\right)^2
\end{aligned}
\end{aligned}
\)
The range of \(f(x)=\cos ^{-1}\left(\frac{1+x^2}{2 x}\right)+\sqrt{2-x^2}\) is
(c)
\(
\cos ^{-1}\left(\frac{1+x^2}{2 x}\right) \text { is defined if }\left|\frac{1+x^2}{2 x}\right| \leq 1 \text { and } x \neq 0
\)
\(
\begin{aligned}
& \Rightarrow \quad 1+x^2-2|x| \leq 0 \\
& \Rightarrow \quad(|x|-1)^2 \leq 0 \\
& \Rightarrow \quad x=1,-1
\end{aligned}
\)
Thus, the domain of \(f(x)\) is \(\{1,-1\}\). Hence, the range is \(\{1,1+\pi\}\).
If \(f(x)=\left\{\begin{array}{l}x, x \text { is rational } \\ 1-x, x \text { is irrational }\end{array}\right.\) then \(f(f(x))\) is
(a)
\(
\begin{aligned}
& f(f(x))=\left\{\begin{array}{cc}
f(x), & f(x) \text { is rational } \\
1-f(x), & f(x) \text { is irrational }
\end{array}\right. \\
& f(f(x))=\left\{\begin{array}{cc}
x, & x \text { is rational } \\
1-(1-x)=x, & x \text { is irrational }
\end{array}\right.
\end{aligned}
\)
The range of \(f(x)=[|\sin x|+|\cos x|]\), where [.] denotes the greatest integer function, is
(c)
\(
\begin{aligned}
& y=|\sin x|+|\cos x| \\
& \Rightarrow y^2=1+|\sin 2 x| \\
& \Rightarrow 1 \leq y^2 \leq 2 \\
& \Rightarrow y \in[1, \sqrt{2}] \\
& \Rightarrow f(x)=1 \forall x \in R
\end{aligned}
\)
If \(f(x)=\log _e\left(\frac{x^2+e}{x^2+1}\right)\), then the range of \(f(x)\) is
(d) \(f(x)=\ln \left(\frac{x^2+e}{x^2+1}\right)=\ln \left(\frac{x^2+1+e-1}{x^2+1}\right)=\ln \left(1+\frac{e-1}{x^2+1}\right)\)
Now, \(1 \leq x^2+1<\infty\)
\(
\begin{aligned}
& \Rightarrow 0<\frac{1}{x^2+1} \leq 1 \Rightarrow 0<\frac{e-1}{x^2+1} \leq e-1 \\
& \Rightarrow 1<1+\frac{e-1}{x^2+1} \leq e \Rightarrow 0<\ln \left(1+\frac{e-1}{x^2+1}\right) \leq 1
\end{aligned}
\)
Hence, the range is \((0,1]\).
The domain of the function \(f(x)=\frac{1}{\sqrt{4 x-\left|x^2-10 x+9\right|}}\) is
(d)
\(
\begin{aligned}
&f(x)=\frac{1}{\sqrt{4 x-\left|x^2-10 x+9\right|}}\\
&\text { For } f(x) \text { to be defined }\left|x^2-10 x+9\right|<4 x\\
&\begin{aligned}
& \Rightarrow \quad x^2-10 x+9<4 x \text { and } x^2-10 x+9>-4 x \\
& \Rightarrow \quad x^2-14 x+9<0 \text { and } x^2-6 x+9>0 \\
& \Rightarrow \quad x \in(7-\sqrt{40}, 7+\sqrt{40}) \text { and } x \in R-\{-3\} \\
& \Rightarrow \quad x \in(7-\sqrt{40},-3) \cup(-3,7+\sqrt{40})
\end{aligned}
\end{aligned}
\)
If the function \(f:[1, \infty) \rightarrow[1, \infty)\) is defined by \(f(x)=2^{x(x-1)}\), then \(f^{-1}(x)\) is
(b)
\(
\begin{aligned}
&\text { Given } y=2^{x(x-1)}\\
&\begin{aligned}
& \Rightarrow x(x-1)=\log _2 y \\
& \Rightarrow x^2-x-\log _2 y=0 \\
& \Rightarrow x=\frac{1 \pm \sqrt{1+4 \log _2 y}}{2}
\end{aligned}\\
&\text { Only } x=\frac{1+\sqrt{1+4 \log _2 y}}{2} \text { lies in the domain. }\\
&\Rightarrow f^{-1}(x)=\frac{1}{2}\left[1+\sqrt{1+4 \log _2 x}\right]
\end{aligned}
\)
The number of roots of the equation \(x \sin x=1\), \(x \in[-2 \pi, 0) \cup(0,2 \pi]\), is
(c)
\(
\begin{aligned}
& x \sin x=1 \dots(1) \\
& \Rightarrow \quad y=\sin x=\frac{1}{x}
\end{aligned}
\)
Root of equation (1) will be given by the point(s) of intersection of the graphs \(y=\sin x\) and \(y=\frac{1}{x}\). Graphically, it is clear that we get four roots.

The number of solutions of \(2 \cos x=|\sin x|, 0 \leq x \leq 4 \pi\), is
(c) See the graph of \(y=2 \cos x\) and \(y=|\sin x|\). Their points of intersection represent the solution of the given equation.

If \(a f(x+1)+b f\left(\frac{1}{x+1}\right)=x, x \neq-1, a \neq b\), then \(f(2)\) is equal to
(a)
\(
\begin{aligned}
&a f(x+1)+b f\left(\frac{1}{x+1}\right)=(x+1)-1 \dots(1)\\
&\text { Replacing } x+1 \text { by } \frac{1}{x+1} \text {, we get }\\
&\therefore a f\left(\frac{1}{x+1}\right)+b f(x+1)=\frac{1}{x+1}-1 \dots(2)
\end{aligned}
\)
\(
\begin{aligned}
& \text { (1) } \times a-(2) \times b \Rightarrow\left(a^2-b^2\right) f(x+1)=a(x+1) \\
& -a-\frac{b}{x+1}+b \\
& \text { Putting } x=1,\left(a^2-b^2\right) f(2)=2 a-a-\frac{b}{2}+b=a+\frac{b}{2} \\
& \qquad=\frac{2 a+b}{2}
\end{aligned}
\)
The number of solutions of \(\tan x-m x=0, m>1\) in \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\) is
(c)

In \(\left(-\frac{\pi}{2}, 0\right)\), the graph of \(y=\tan x\) lies below the line \(y=x\) which is the tangent at \(x=0\) and in \(\left(0, \frac{\pi}{2}\right)\) it lies above the lies \(y=x\).
For \(m>1\), the line \(y=m x\) lies below \(y=x\) in \(\left(-\frac{\pi}{2}, 0\right)\) and above \(y=x\) in \(\left(0, \frac{\pi}{2}\right)\). Thus graphs of \(y=\tan x\) and \(y=m x, m>1\), meet at three points including \(x=0\) in \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\) independent of \(m\).
The range of \(f(x)=[\sin x+[\cos x+[\tan x+[\sec x]]]], x \in (0, \pi / 4)\), where [.] denotes the greatest integer function \(\leq x\), is
(c)
\(
\text { Given } \begin{aligned}
f(x) & =[\sin x+[\cos x+[\tan x+[\sec x]]]] \\
& =[\sin +p], \text { where } p=[\cos x+[\tan x+[\sec x]]] \\
& =[\sin x]+p,(\operatorname{as} p \text { is an integer }) \\
& =[\sin x]+[\cos x+[\tan x+[\sec x]]] \\
& =[\sin x]+[\cos x]+[\tan x]+[\sec x]
\end{aligned}
\)
\(
\begin{aligned}
&\text { Now, for } x \in(0, \pi / 4), \sin x \in\left(0, \frac{1}{\sqrt{2}}\right), \cos x \in\left(\frac{1}{\sqrt{2}}, 1\right) \text {, }\\
&\begin{aligned}
& \tan x \in(0,1), \sec x \in(1, \sqrt{2}) \\
& \Rightarrow \quad[\sin x]=0,[\cos x]=0,[\tan x]=0 \text { and }[\sec x]=1 \\
& \Rightarrow \quad \text { The range of } f(x) \text { is } 1 .
\end{aligned}
\end{aligned}
\)
If \(f(3 x+2)+f(3 x+29)=0~ \forall ~x \in R\), then the period of \(f(x)\) is
(d)
\(
f(3 x+2)+f(3 x+29)=0 \dots(1)
\)
Replacing \(x\) by \(x+9\), we get
\(
\begin{aligned}
& f(3(x+9)+2)+f(3(x+9)+29)=0 \\
& \Rightarrow f(3 x+29)+f(3 x+56)=0 \dots(2)
\end{aligned}
\)
From (1) and (2), we get
\(
\begin{aligned}
& f(3 x+2)=f(3 x+56) \\
& \Rightarrow \quad f(3 x+2)=f(3(x+18)+2)
\end{aligned}
\)
\(\Rightarrow f(x)\) is periodic with period 54.
If \(f\) and \(g\) are one-one function, then
(c)
(a) \(f(x)=\sin x[latex] and [latex]g(x)=\cos x, x \in[0, \pi / 2]\)
Here, both \(f(x)\) and \(g(x)\) are one-one functions, but \(h(x)=f(x)+g(x)=\sin x+\cos x\) is many-one as \(h(0)=h(\pi / 2)=1\).
(b) \(h(x)=f(x) g(x)=\sin x \cos x=\frac{\sin 2 x}{2}\) is many-one, as \(h(0)=h(\pi / 2)=0\).
(c) It is a fundamental property.
The domain of \(f(x)\) is \((0,1)\), then, domain of \(f\left(e^x\right)+f(\ln |x|)\) is
(c)
\(
\begin{aligned}
& f(x) \text { is definea for } x \in(0,1) \\
& \Rightarrow \quad f\left(e^x\right)+f(\ln |x|) \text { is defined for, } \\
& \quad 0<e^x<1 \text { and } 0<\ln |x|<1 \\
& \Rightarrow \quad-\infty<x<0 \text { and } 1<|x|<e \\
& \Rightarrow \quad x \in(-\infty, 0) \text { and } x \in(-e,-1) \cup(1, e) \\
& \Rightarrow \quad x \in(-e,-1)
\end{aligned}
\)
The domain of \(f(x)=\frac{1}{\sqrt{|\cos x|+\cos x}}\) is
(d)
\(
\begin{aligned}
&|\cos x|+\cos x= \begin{cases}0, & \cos x \leq 0 \\ 2 \cos x & , \cos x>0\end{cases}\\
&\text { For } f(x) \text { to defined } \cos x>0\\
&\Rightarrow x \in\left(\frac{(4 n-1) \pi}{2}, \frac{(4 n+1) \pi}{2}\right) n \in Z(1 \text { st and } 4 \text { th quadrant }) .
\end{aligned}
\)
If \(f(2 x+3 y, 2 x-7 y)=20 x\), then \(f(x, y)\) equals
(b)
\(
\begin{aligned}
&\text { Let } 2 x+3 y=m \text { and } 2 x-7 y=n\\
&\begin{aligned}
& \Rightarrow y=\frac{m-n}{10} \text { and } x=\frac{7 m+3 n}{20} \\
& \Rightarrow f(m, n)=7 m+3 n \\
& \Rightarrow f(x, y)=7 x+3 y
\end{aligned}
\end{aligned}
\)
Let \(X=\left\{a_1, a_2, \ldots, a_6\right\}\) and \(Y=\left\{b_1, b_2, b_3\right\}\). The number of functions \(f\) from \(x\) to \(y\) such that it is onto and there are exactly three elements \(x\) in \(X\) such that \(f(x)=b_1\) is
(d) Image \(b_1\) is assigned to any three of the six pre-images in \({ }^6 C_3\) ways.
Rest two images can be assigned to remaining three preimages in \(2^3-2\) ways (as function is onto).
Hence number of functions are \({ }^6 C_3 \times\left(2^3-2\right)=20 \times 6=120\)
Let \(f: R \rightarrow R\) and \(g: R \rightarrow R\) be two one-one and onto functions such that they are the mirror images of each other about the line \(y=a\). If \(h(x)=f(x)+g(x)\), then \(h(x)\) is
(d) \(y=f(x)\) and \(y=g(x)\) are mirror image of each other about line \(y=a\)

\(
\begin{aligned}
& \Rightarrow \text { for some } x=b, g(b)-a=a-f(b) \\
& \Rightarrow f(b)+g(b)=2 a \\
& \Rightarrow h(b)=f(b)+g(b)=2 a \text { ( constant) }
\end{aligned}
\)
Hence \(h(x)\) is constant function. Thus it is neither oneone nor onto.
If \(f(x)=(-1)^{\left[\frac{2 x}{\pi}\right]}, g(x)=|\sin x|-|\cos x|\) and \(\phi(x)=f(x) g(x)\) (where [.] denotes the greatest integer function) then the respective fundamental periods of \(f(x), g(x)\) and \(\phi(x)\) are
(c) Clearly \(f(x+\pi)=f(x), g(x+\pi)=g(x)\) and \(\phi\left(x+\frac{\pi}{2}\right) =\{(-1) f(x)\}\{(-1) g(x)\}=\phi(x)\).
Let \(f(n)=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\), then \(f(1)+f(2)+f(3)+\cdots+f(n)\) is equal to.
(b) In the sum, \(f(1)+f(2)+f(3)+\cdots+f(n), 1\) occurs \(n\) times, \(\frac{1}{2}\) occurs \((n-1)\) times, \(\frac{1}{3}\) occurs \((n-2)\) times and so on
\(
\begin{aligned}
& \therefore f(1)+f(2)+f(3)+\cdots+f(n) \\
& =n \cdot 1+(n-1) \cdot \frac{1}{2}+(n-2) \cdot \frac{1}{3}+\cdots+1 \cdot \frac{1}{n} \\
& =n\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots+\frac{n-1}{n}\right) \\
& =n f(n)-\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+\cdots+\left(1-\frac{1}{n}\right)\right]
\end{aligned}
\)
\(
\begin{aligned}
& =n f(n)-[n-f(n)] \\
& =(n+1) f(n)-n
\end{aligned}
\)
Let \(f(x)=e^{\left\{e^{|x|} \operatorname{sgn} x\right\}}\) and \(g(x)=e^{\left[e^{|x|} \operatorname{sgn} x\right]}, x \in R\) where \(\}\) and [ ] denotes the fractional and integral part functions, respectively. Also \(h(x)=\log (f(x))+\log (g(x))\) then for real \(x, h(x)\) is
(a)
\(
\begin{aligned}
& h(x)=\log (f(x) \cdot g(x))=\log e^{\{y\}+[y]}=\{y\}+[y]=e^{|x|} \operatorname{sgn} x \\
& \therefore h(x)=e^{|x|} \operatorname{sgn} x= \begin{cases}e^x, & x>0 \\
0, & x=0 \\
-e^{-x}, & x<0\end{cases} \\
& \Rightarrow h(-x)=\left\{\begin{array}{ll}
e^{-x}, & x<0 \\
0, & x=0 \\
-e^x, & x>0
\end{array} \Rightarrow h(x)+\dot{h}(-x)=0 \text { for all } x .\right.
\end{aligned}
\)
Let \(f_1(x)=\left\{\begin{array}{cc}x, & 0 \leq x \leq 1 \\ 1, & x>1 \\ 0, & \text { otherwise }\end{array}\right.\) and \(f_2(x)=f_1(-x)\) for all \(x f_3(x)=-f_2(x)\) for all \(x f_4(x)=f_3(-x)\) for all \(x\) Which of the following is necessarily true?
(b)

The number of solutions of the equation \([y+[y]]=2 \cos x\), where \(y=\frac{1}{3}[\sin x+[\sin x+[\sin x]]]\) (where [.] denotes the greatest integer function) is
(d)
\(
\begin{aligned}
& \text { d. }[y+[y]]=2 \cos x \\
& \quad \Rightarrow \quad[y]+[y]=2 \cos x \quad(\because[x+n]=[x]+n \text { if } n \in I) \\
& \Rightarrow \quad 2[y]=2 \cos x \Rightarrow[y]=\cos x \dots(1)
\end{aligned}
\)
\(
\begin{aligned}
&\text { Also } \begin{aligned}
y & =\frac{1}{3}[\sin x+[\sin x+[\sin x]]] \\
& =\frac{1}{3}(3[\sin x]) \\
& =[\sin x] \dots(2)
\end{aligned}\\
&\text { From (1) and (2) }\\
&\begin{aligned}
& {[[\sin x]]=\cos x} \\
& \Rightarrow[\sin x]=\cos x
\end{aligned}
\end{aligned}
\)

The number of solutions is 0.
The sum of roots of the equation \(\cos ^{-1}(\cos x)=[x]\), [.] denotes the greatest integer function is
(a) \(\cos ^{-1}(\cos x)=[x]\)

The solutions are clearly \(0,1,2,3\) and \(3=2 \pi-x\) or \(x=2 \pi-3\).
The range of
\(
f(x)=\sqrt{(1-\cos x) \sqrt{(1-\cos x) \sqrt{(1-\cos x) \sqrt{\ldots \infty}}}}
\)
is
(c)
\(
\begin{aligned}
& \text { Given } f(x)=\sqrt{(1-\cos x) \sqrt{(1-\cos x) \sqrt{(1-\cos x) \sqrt{\ldots \infty}}}} \\
& \Rightarrow f(x)=(1-\cos x)^{\frac{1}{2}}(1-\cos x)^{\frac{1}{4}}(1-\cos x)^{\frac{1}{8}} \ldots \infty \\
& \Rightarrow f(x)=(1-\cos x)^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \infty} \\
& \Rightarrow f(x)=(1-\cos x)^{\frac{\frac{1}{2}}{1-\frac{1}{2}}} \\
& \Rightarrow f(x)=1-\cos x \\
& \Rightarrow \text { The range of } f(x) \text { is }[0,2)
\end{aligned}
\)
Let \(h(x)=|k x+5|\), the domain of \(f(x)\) is \([-5,7]\), the domain of \(f(h(x))\) is \([-6,1]\) and the range of \(h(x)\) is the same as the domain of \(f(x)\), then the value of \(k\) is
(b)
\(
\begin{aligned}
& -5 \leq|k x+5| \leq 7 \\
& \Rightarrow \quad-12 \leq k x \leq 2 \text { where }-6 \leq x \leq 1 \\
& \Rightarrow \quad-6 \leq \frac{k}{2} x \leq 1 \text { where }-6 \leq x \leq 1 \\
& \therefore k=2 . \quad[\because \text { the range of } h(x)=\text { the domain of } f(x)]
\end{aligned}
\)
The range of \(f(x)=(x+1)(x+2)(x+3)(x+4)+5\) for \(x \in[-6,6]\) is
(a) Let \(g(x)=(x+1)(x+2)(x+3)(x+4)\)
The rough graph of \(g(x)\) is given as

\(
\begin{aligned}
\therefore g(x) & =(x+1)(x+2)(x+3)(x+4) \\
& =(x+1)(x+4)(x+2)(x+3) \\
& =\left(x^2+5 x+4\right)\left(x^2+5 x+6\right) \\
& =t(t+2)=(t+1)^2-1,
\end{aligned}
\)
where \(t=x^2+5 x\)
Now \(g_{\min }=-1\), for which \(x^2+5 x=-1\) has real roots in [-6, 6]
Also \(g(6)=7 \times 8 \times 9 \times 10=5040\)
Hence, the range of \(g(x)\) is \([-1,5040]\) for \(x \in[-6,6]\).
Then, the range of \(f(x)\) is \([4,5045]\).
The exhaustive domain of
\(
f(x)=\sqrt{x^{12}-x^9+x^4-x+1}
\)
is
(d) \(f(x)=\sqrt{x^{12}-x^9+x^4-x+1}\)
We must have \(x^{12}-x^9+x^4-x+1 \geq 0 \dots(1)\)
Obviously (1) is satisfied by \(x \in(-\infty, 0]\)
Also, \(x^9\left(x^3-1\right)+x\left(x^3-1\right)+1 \geq 0 \forall x \in[1, \infty)\)
Further, \(x^{12}-x^9+x^4-x+1=(1-x)+x^4\left(1-x^5\right)+x^{12}\) is also satisfied by \(x \in(0,1)\).
Hence, the domain is \(R\).
The range of \(f(x)=\sec ^{-1}\left(\log _3 \tan x+\log _{\tan x} 3\right)\) is
(a)
\(
\begin{aligned}
& f(x)=\sec ^{-1}\left(\log _3 \tan x+\log _{\tan x} 3\right) . \\
& f(x)=\sec ^{-1}\left(\log _3 \tan x+\frac{1}{\log _3 \tan x}\right)
\end{aligned}
\)
Now for \(\log _3 \tan x\) to get defined, \(\tan x \in(0, \infty)\)
\(\Rightarrow \log _3 \tan x \in(-\infty, \infty)\) or \(\log _3 \tan x \in R\)
Also \(x+\frac{1}{x} \leq-2\) or \(x+\frac{1}{x} \geq 2\)
\(
\begin{aligned}
\Rightarrow & \log _3 \tan x+\frac{1}{\log _3 \tan x} \leq-2 \text { or } \\
& \log _3 \tan x+\frac{1}{\log _3 \tan x} \geq 2 \\
\Rightarrow & \sec ^{-1}\left(\log _3 \tan x+\frac{1}{\log _3 \tan x}\right) \leq \sec ^{-1}(-2) \text { or } \\
& \sec ^{-1}\left(\log _3 \tan x+\frac{1}{\log _3 \tan x}\right) \geq \sec ^{-1} 2 \\
\Rightarrow & f(x) \leq \frac{2 \pi}{3} \text { or } f(x) \geq \frac{\pi}{3} \\
\Rightarrow & f(x) \in\left[\frac{\pi}{3}, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right]
\end{aligned}
\)
The range of the function \(f(x)={ }^{7-x} P_{x-3}\) is
(a)
We have \(f(x)={ }^{7-x} P_{x-3}=\frac{(7-x)!}{(10-2 x)!}\)
We must have \(7-x>0, x \geq 3\) and \(7-x \geq x-3\)
\(
\begin{aligned}
& \Rightarrow \quad x<7, x \geq 3 \text { and } x \leq 5 \\
& \Rightarrow \quad 3 \leq x \leq 5 \\
& \Rightarrow \quad x=3,4,5 \\
& \text { Now, } f(3)=\frac{4!}{4!}=1, f(4)=\frac{3!}{2!}=3, f(5)=\frac{2!}{0!}=2 . \\
& \text { Hence, } R_f=\{1,2,3\} .
\end{aligned}
\)
A real-valued function \(f(x)\) satisfies the functional equation \(f(x-y)=f(x) f(y)-f(a-x) f(a+y)\), where \(a\) is a given constant and \(f(0)=1 . f(2 a-x)\) is equal to
(b) We have \(f(x-y)=f(x) f(y)-f(a-x) f(a+y)\)
Putting \(x=a\) and \(y=a-x\), we get
\(
\begin{aligned}
& \quad f(a-(x-a))=f(a) f(x-a)-f(0) f(x) \\
& \text { Putting } x=0, y=0, \text { we get } \\
& \quad f(0)=f(0)(f(0))-f(a) f(a) \\
& \Rightarrow \quad f(0)=(f(0))^2-(f(a))^2 \\
& \Rightarrow \quad 1=(1)^2-(f(a))^2 \\
& \Rightarrow \quad f(a)=0 \\
& \Rightarrow \quad f(2 a-x)=-f(x)
\end{aligned}
\)
You cannot copy content of this page