0 of 30 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 30 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Let \(f\) be a real-valued invertible function such that \(f\left(\frac{2 x-3}{x-2}\right)=5 x-2, x \neq 2\). Then the value of \(f^{-1}(13)\) is ____.
(c) We have \(f\left(\frac{2 x-3}{x-2}\right)=5 x-2 \Rightarrow f^{-1}(5 x-2)=\frac{2 x-3}{x-2}\) Let \(5 x-2=13\), then \(x=3\)
Hence \(f^{-1}(13)=\frac{2(3)-3}{3-2}=3\)
Number of values of \(x\) for which \(\left|\left|\left|x^2-x+4\right|-2\right|-3\right| =x^2+x-12\) is ______.
(a)
\(
\left|\left|\left|x^2-x+4\right|-2\right|-3\right|=x^2+x-12
\)
\(
\begin{aligned}
& \Rightarrow\left|\left|x^2-x+2\right|-3\right|=x^2+x-12 \\
& \Rightarrow\left|x^2-x-1\right|=x^2+x-12 \\
& \Rightarrow 2 x=11 \\
& \Rightarrow x=11 / 2
\end{aligned}
\)
Let \(f(x)=3 x^2-7 x+c\), where ‘ \(c\) ‘ is a variable coefficient and \(x>\frac{7}{6}\). Then the value of \([c]\) such that \(f(x)\) touches \(f^{-1}(x)\) is (where [ \(\cdot\) ] represents greatest integer function)
(b) For \(f(x)\) to touch \(f^{-1}(x)\), there must be exactly one point of intersection, which means the quadratic equation \(3 x^2-8 x+c=0\) must have exactly one solution. This occurs when the discriminant of the quadratic equation is equal to zero.
The discriminant \(\Delta\) of a quadratic equation \(a x^2+b x+c=0\) is given by \(\Delta=b^2-4 a c\). In this case, \(a=3, b=-8\), and the constant term is \(c\).
Setting the discriminant to zero: \((-8)^2-4(3)(c)=0\).
Simplifying the equation: \(64-12 c=0\).
Solving for \(c: 12 c=64\), which gives \(c=\frac{64}{12}=\frac{16}{3}\).
The value of \(c\) is \(\frac{16}{3}\). The greatest integer function \([c]\) is required.
Calculating the value of \([c]:\left[\frac{16}{3}\right]=[5.333 \ldots]=5\).
Number of integral values of \(x\) for which
\(
\frac{\left(2^{\frac{\pi}{\tan ^{-1} x}}-4\right)(x-4)(x-10)}{x!-(x-1)!}<0 \text { is } _______.
\)
(d)
\(
\begin{aligned}
& x!-(x-1)!\neq 0 \Rightarrow x \in I^{+}-\{1\} \\
& 2^{\frac{\pi}{\tan ^{-1} x}}>4 \text { as } \tan ^{-1} x<\frac{\pi}{2} \\
& \frac{(x-4)(x-10)}{(x-1)!(x-1)}<0 \\
& x \in\{5,6, \ldots, 9\}
\end{aligned}
\)
Let \(f: R^{+} \rightarrow R\) be a function which satisfies \(f(x) \cdot f(y)=f(x y) ++2\left(\frac{1}{x}+\frac{1}{y}+1\right)\) for \(x, y>0\), then possible value of \(f(1 / 2)\) is _____.
(b)
\(
\begin{aligned}
& \text { Put } x=1 \text { and } y=1 \text {, } \\
& f^2(1)-f(1)-6=0 \\
& f(1)=3 \text { or } f(1)=-2 \\
& \text { Now put } y=1
\end{aligned}
\)
\(
f(x) \cdot f(1)=f(x)+2\left(\frac{1}{x}+2\right)=f(x)+2\left(\frac{2 x+1}{x}\right)
\)
\(
f(x)[f(1)-1]=\frac{2(2 x+1)}{2}
\)
\(
f(x)=\frac{2(2 x+1)}{x[f(1)-1]}
\)
\(
\begin{aligned}
& \text { For } f(1)=3, f(x)=\frac{2 x+1}{x} \\
& \text { and for } x=-2, f(x)=\frac{2(2 x+1)}{-3 x} \\
& f(1 / 2)=4
\end{aligned}
\)
A continuous function \(f(x)\) on \(R \rightarrow R\) satisfies the relation \(f(x)+f(2 x+y)+5 x y=f(3 x-y)+2 x^2+1\) for \(\forall x, y \in R\), then the value of \(|f(4)|\) is ____.
\(
\begin{aligned}
& \text { (c) } \text { Let } 2 x+y=3 x-y \Rightarrow 2 y=x \Rightarrow y=\frac{x}{2} \\
& \therefore \text { Put } y=\frac{x}{2} \\
& \Rightarrow f(x)+f\left(\frac{5 x}{2}\right)+\frac{5 x^2}{2}=f\left(\frac{5 x}{2}\right)+2 x^2+1 \\
& \Rightarrow f(x)=1-\frac{x^2}{2} \\
& \Rightarrow f(4)=-7
\end{aligned}
\)
\(
|f(4)|=7
\)
Let \(a>2\) be a constant. If there are just 18 positive integers satisfying the inequality \((x-a)(x-2 a)\left(x-a^2\right)<0\), then the value of \(a\) is _____.
(a) As \(a>2\), hence
\(
\begin{aligned}
& a^2>2 a>a>2 \\
& \text { now }(x-a)(x-2 a)\left(x-a^2\right)<0
\end{aligned}
\)
the solution set is as shown

between \((0, a)\) there are \((a-1)\) positive integers and between ( \(2 a, a^2\) ) there are \(a^2-2 a-1\) integer
\(
\begin{aligned}
& \therefore a^2-2 a-1+a-1=18 \Rightarrow a^2-a-20=0 \\
& \quad(a-5)(a+4)=0 \\
& \therefore a=5
\end{aligned}
\)
Number of integers in the domain of function, satisfying \(f(x)+f\left(x^{-1}\right)=\frac{x^3+1}{x}\), is _____.
(b)
\(
\begin{aligned}
& f(x)+f\left(\frac{1}{x}\right)=x^2+\frac{1}{x} \\
& \text { replacing } x \rightarrow \frac{1}{x} ; f\left(\frac{1}{x}\right)+f(x)=\frac{1}{x^2}+x \\
\Rightarrow & \frac{1}{x^2}+x=x^2+\frac{1}{x} \\
\Rightarrow & x-\frac{1}{x}=x^2-\frac{1}{x^2} \\
\Rightarrow & \left(x-\frac{1}{x}\right)=\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right) \\
\Rightarrow & \left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}-1\right)=0
\end{aligned}
\)
\(
\begin{aligned}
&x=\frac{1}{x} ; x+\frac{1}{x}=1(\text { rejected })\\
&\text { Hence } x=1 \text { or }-1
\end{aligned}
\)
\(
\begin{aligned}
&f: R \rightarrow R f\left(x^2+x+3\right)+2 f\left(x^2-3 x+5\right)=6 x^2-10 x+17 \forall\\
&x \in R \text {, then the value of } f(5) \text { is }
\end{aligned}
\)
(c) Obviously \(f\) is a linear polynomial
\(
\begin{aligned}
& \text { Let } f(x)=a x+b \text { hence } f\left(x^2+x+3\right)+2 f\left(x^2-3 x+5\right) \equiv 6 x^2- \\
& 10 x+17 \\
& \Rightarrow\left[a\left(x^2+x+3\right)+b\right]+2\left[a\left(x^2-3 x+5\right)+b\right] \equiv 6 x^2-10 x+17 \\
& \Rightarrow a+2 a=6 \dots(1) \\
& \Rightarrow a-6 a=-10 \dots(2)
\end{aligned}
\)
(comparing coeff. of \(x^2\) and coeff. of \(x\) on both sides)
\(
\begin{aligned}
& a \Rightarrow 2 \\
& \text { Again, } 3 a+b+10 a+2 b=17 \text { (Comparing constant term) } \\
\Rightarrow & 6+b+20+2 b=17 \\
\therefore & f(x)=2 x-3 \\
\Rightarrow & f(5)=7
\end{aligned}
\)
If \(f(x)\) is an odd function and \(f(1)=3\), and \(f(x+2)=f(x) +f(2)\), then the value of \(f(3)\) is _____.
(a) Given \(f(x+2)=f(x)+f(2)\)
Put \(x=-1\), we have \(f(1)=f(-1)+f(2)\)
\(f(1)=-f(1)+f(2)\) (as \(f(x)\) is an odd function)
\(f(2)=2 f(1)=6\)
Now put \(x=1\),
We have \(f(3)=f(1)+f(2)=3+6=9\)
Let \(f: R \rightarrow R\) be a continuous onto function satisfying \(f(x) +f(-x)=0, \forall x \in R\)
If \(f(-3)=2\) and \(f(5)=4\) in \([-5,5]\), then the minimum number of roots of the equation \(f(x)=0\) is
(a) \(f(x)+f(-x)=0\)
\(f(x)\) is an odd function.
Since points \((-3,2)\) and \((5,4)\) lie on the curve, therefore \((3,-2)\) and \((-5,-4)\) will also lie on the curve. For minimum number of roots, graph of continuous function \(f(x)\) is as follows:

From the above graph of \(f(x)\), it is clear that equation \(f(x) =0\) has at least three real roots.
Number of integral values of \(x\) for which the function
\(\sqrt{\sin x+\cos x}+\sqrt{7 x-x^2-6}\) is defined is
(d)
\(
\begin{aligned}
&\begin{aligned}
f(x) & =\sqrt{\sin x+\cos x}+\sqrt{7 x-x^2-6} \\
& =\sqrt{\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)}+\sqrt{(x-6)(1-x)}
\end{aligned}\\
&\text { Now } f(x) \text { is defined if } \sin \left(x+\frac{\pi}{4}\right) \geq 0 \text { and }(x-6)(1-x) \geq 0
\end{aligned}
\)
\(
\begin{aligned}
&\begin{aligned}
& \Rightarrow 0 \leq x+\frac{\pi}{4} \leq \pi \text { or } 2 \pi \leq x+\frac{\pi}{4} \leq 3 \pi \text { and } 1 \leq x \leq 6 \\
& \Rightarrow-\frac{\pi}{4} \leq x \leq \frac{3 \pi}{4} \text { or } \frac{7 \pi}{4} \leq x \leq \frac{11 \pi}{4} \text { and } 1 \leq x \leq 6 \\
& \Rightarrow x \in\left[1, \frac{3 \pi}{4}\right] \cup\left[\frac{7 \pi}{4}, 6\right]
\end{aligned}\\
&\text { Integral values of } x \text { are } x=1,2 \text { and } 6
\end{aligned}
\)
Suppose that \(f\) is an even, periodic function with period 2, and that \(f(x)=x\) for all \(x\) in the interval \([0,1]\). The value of [ \(10 f(3.14)\) ] is (where [ \(\cdot\) ] represents the greatest integer function)
(b) Since \(f\) is periodic with period 2 and \(f(x)=x \quad \forall x \in[0,1]\) also \(f(x)\) is even
symmetry about \(y\)-axis
graph of \(f(x)\) is as shown

\(
f(3.14)=4-3.14=0.86
\)
If \(f(x)=\sqrt{4-x^2}+\sqrt{x^2-1}\), then the maximum value of \((f(x))^2\) is ____.
(a) Let \(x^2=4 \cos ^2 \theta+\sin ^2 \theta\)
then \(\left(4-x^2\right)=3 \sin ^2 \theta\) and \(\left(x^2-1\right)=3 \cos ^2 \theta\)
\(
\begin{aligned}
& f(x)=\sqrt{3}|\sin \theta|+\sqrt{3}|\cos \theta| \\
& y_{\min }=\sqrt{3} \text { and } \\
& y_{\max }=\sqrt{3}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)=\sqrt{6}
\end{aligned}
\)
Hence range of \(f(x)\) is \([\sqrt{3}, \sqrt{6}]\)
Hence maximum value of \((f(x))^2\) is 6
The function \(f(x)=\frac{x+1}{x^3+1}\) can be written as the sum of an even function \(g(x)\) and an odd function \(h(x)\). Then the value of \(|g(0)|\) is
(a)
\(
\begin{aligned}
g(x) & =\frac{f(x)+f(-x)}{2} \\
& =\frac{1}{2}\left[\frac{x+1}{x^3+1}+\frac{1-x}{1-x^3}\right] \\
& =\frac{1}{2}\left[\frac{1}{x^2-x+1}+\frac{1}{1+x+x^2}\right] \\
& =\frac{1}{2}\left[\frac{2\left(x^2+1\right)}{\left(x^2+1\right)^2-x^2}\right] \\
& =\frac{x^2+1}{x^4+x^2+1} \\
& =\frac{x^4-1}{x^6+1} \Rightarrow |g(0)|=1
\end{aligned}
\)
If \(T\) is the period of the function \(f(x)=[8 x+7]+\mid \tan 2 \pi x+ \cot 2 \pi x \mid-8 x\) (where \([\cdot]\) denotes the greatest integer function), then the value of \(1 / T\) is ____.
(c)
\(
\begin{aligned}
f(x) & =[8 x+7]+|\tan 2 \pi x+\cot 2 \pi x|-8 x \\
& =[8 x]-8 x-7+|\tan 2 \pi x+\cot 2 \pi x| \\
& =-\{8 x\}+|\tan 2 \pi x+\cot 2 \pi x|+7
\end{aligned}
\)
Period of \(\{8 x\}\) is \(1 / 8\)
Also, \(|\tan 2 \pi x+\cot 2 \pi x|\)
\(
=\left|\frac{\sin 2 \pi x}{\cos 2 \pi x}+\frac{\cos 2 \pi x}{\sin 2 \pi x}\right|=\left|\frac{1}{\sin 2 \pi x \cos 2 \pi x}\right|=|2 \operatorname{cosec} 4 \pi x|
\)
Now period of \(2 \operatorname{cosec} 4 \pi x\) is \(1 / 2\), then period of \(\mid 2 \operatorname{cosec} 4 \pi x\) | is \(1 / 4\)
Period is L.C.M. of \(\frac{1}{8}\) and \(\frac{1}{4}\) which is \(\frac{1}{4}\)
If \(a, b\) and \(c\) are non-zero rational numbers, then the sum of all the possible values of \(\frac{|a|}{a}+\frac{|b|}{b}+\frac{|c|}{c}\) is _____.
(a) Let \(x=\frac{|a|}{a}+\frac{|b|}{b}+\frac{|c|}{c}\)
If exactly one-ve, then \(x=1\)
Exactly two-ve, then \(x=-1\)
All three -ve , then \(x=-3\)
All three +ve , then \(x=3\)
Then the required sum is 0.
An even polynomial function \(f(x)\) satisfies a relation \(f(2 x)\left(1-f\left(\frac{1}{2 x}\right)\right)+f\left(16 x^2 y\right)=f(-2)-f(4 x y) \forall x, y \in R -\{0\}\) and \(f(4)=-255, f(0)=1\), then the value of \(|(f(2)+1) / 2|\) is ____.
(b) We have \(f(2 x)-f(2 x) f\left(\frac{1}{2 x}\right)+f\left(16 x^2 y\right)=f(-2)-f(4 x y)\)
Replacing \(y\) by \(\frac{1}{8 x^2}\), we get
\(
\begin{aligned}
& f(2 x)-f(2 x)\left(\frac{1}{2 x}\right)+f(2)=f(-2)-f\left(\frac{1}{2 x}\right) \\
& f(2 x)+f\left(\frac{1}{2 x}\right)=f(2 x) f\left(\frac{1}{2 x}\right) \quad[\text { As } f(x) \text { is even }] \\
& f(2 x)=1 \pm(2 x)^n \\
& f(x)=1 \pm x^n
\end{aligned}
\)
Now \(f(4)=1 \pm 4^n=-255 \quad\) (Given)
Taking negative sign, we get \(256=4^n \Rightarrow n=4\)
Hence \(f(x)=1-x^4\), which is an even function.
\(
f(2)=-15
\)
\(
|(f(2)+1) / 2|=7
\)
If \(f(x)=\sin ^2 x+\sin ^2\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right)\) and \(g\left(\frac{5}{4}\right)=1\) then \((g o f)(x)\) is _____.
(c)
\(
\begin{aligned}
& f(x)=\sin ^2 x+\sin ^2\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right) \\
& =\sin ^2 x+\frac{1}{4}(\sin x+\sqrt{3} \cos x)^2+\frac{1}{2} \cos x(\cos x-\sqrt{3} \sin x) \\
& =\frac{5}{4}\left(\sin ^2 x+\cos ^2 x\right)=\frac{5}{4} \\
& (g \circ f) x=g[f(x)]=g(5 / 4)=1
\end{aligned}
\)
Let \(E=\{1,2,3,4\}\) and \(F=\{1,2\}\). If \(N\) is number of onto functions from \(E\) to \(F\), then the value of \(N / 2\) is _____.
(a) From \(E\) to \(F\) we can define, in all, \(2 \times 2 \times 2 \times 2=16\) functions ( 2 options for each elements of \(E\) ) out of which 2 are into, when all the elements of \(E\) either map to 1 or to 2 \(\therefore\) Number of onto function \(=16-2=14\)
\(
N / 2=7
\)
The function \(f\) is continuous and has the property \(f(f(x)) =1-x\), then the value of \(f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)\) is _____.
(d)
\(
\begin{aligned}
& \text { Given } f(f(x))=-x+1 \\
& \text { replacing } x \rightarrow f(x) \\
& \qquad \begin{array}{r}
f(f(f(x)))=-f(x)+1 \\
f(1-x)=-f(x)+1 \\
f(x)+f(1-x)=1 \\
f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)=1
\end{array}
\end{aligned}
\)
Number of integral values of \(x\) satisfying the inequality
\(
\left(\frac{3}{4}\right)^{6 x+10-x^2}<\frac{27}{64}
\)
\(
\begin{aligned}
& \text { (c) }\left(\frac{3}{4}\right)^{6 x+10-x^2}<\frac{27}{64} \\
& \Rightarrow 6 x+10-x^2>3 \\
& \therefore x^2-6 x-7<0 \\
& \therefore(x+1)(x-7)<0 \\
& \Rightarrow 0,1,2,3,4,5,6
\end{aligned}
\)
A function \(f\) from integers to integers is defined as \(f(x)= \left\{\begin{array}{l}\dot{n}+3, n \in \text { odd } \\ n / 2, n \in \text { even }\end{array}\right.\). Suppose \(k \in\) odd and \(f(f(f(k)))=27\), then the sum of digits of \(k\) is ____.
(a)
\(
\begin{aligned}
\because \quad k & \in \text { odd } \\
f(k) & =k+3 \\
f(f(k)) & =\frac{k+3}{2}
\end{aligned}
\)
If \(\frac{k+3}{2}\) is odd \(\Rightarrow 27=\frac{k+3}{2}+3 \Rightarrow k=45\) not possible \(\frac{k+3}{2}\) is even
\(
\begin{aligned}
& 27=f(f(f(k)))=f\left(\frac{k+3}{2}\right)=\frac{k+3}{4} \\
& k=105
\end{aligned}
\)
\(
\begin{array}{ll}
& \text { verifying } f(f(f(105)))=f(f(108))=f(54)=27 \\
\therefore & k=105
\end{array}
\)
If \(\theta\) be the fundamental period of function \(f(x)=\sin ^{99} x+ \sin ^{99}\left(x+\frac{2 \pi}{3}\right)+\sin ^{99}\left(x+\frac{4 \pi}{3}\right)\), then complex number \(z =|z|(\cos \theta+i \sin \theta)\) lies in the quadrant number.
(c) Clearly fundamental period is \(\frac{4 \pi}{3}\), then \(z\) lies in the third quadrant.
If \(x=\frac{4}{9}\) satisfy the equation \(\log _a\left(x^2-x+2\right)>\log _a\left(-x^2+\right. 2 x+3\) ), then sum of all possible distinct values of \([x]\) is (where \([\cdot]\) represnts greatest integer function)
(d)
\(
\begin{aligned}
& \log _a\left(x^2-x+2\right)>\log _a\left(-x^2+2 x+3\right) \\
& \text { Put } x=\frac{4}{9}, \log _a\left(\frac{142}{81}\right)>\log _a\left(\frac{299}{81}\right) \\
& \frac{142}{81}<\frac{299}{81} \Rightarrow 0<a<1 \\
& \log _a\left(x^2-x+2\right)>\log _2\left(-x^2+2 x+3\right) \\
& \operatorname{gives}^2 0<x^2-x+2<-x^2+2 x+3 \\
& x^2-x+2>0 \text { and } 2 x^2-3 x-1<0 \\
& \frac{3-\sqrt{17}}{4}<x<\frac{3+\sqrt{17}}{4}
\end{aligned}
\)
If \(4^x-2^{x+2}+5+||b-1|-3|=|\sin y|, x, y, b \in R\), then the possible value of \(b\) is ____.
(c)
\(
\begin{aligned}
&\begin{aligned}
& \left(2^{2 x}-4 \cdot 2^x+4\right)+1+||b-1|-3|=|\sin y| \\
& \left(2^x-2\right)^2+1+||b-1|-3|=|\sin y| \\
& \left(2^x-2\right)^2+1+||b-1|-3|=|\sin y|
\end{aligned}\\
&\text { LHS } \geq 1 \text { and RHS } \leq 1\\
&\begin{aligned}
& 2^x=2,|b-1|-3=0 \\
& (b-1)= \pm 3 \\
& b=4,-2
\end{aligned}
\end{aligned}
\)
If \(f: N \rightarrow N\), and \(x_2>x_1 \Rightarrow f\left(x_2\right)>f\left(x_1\right), \forall x_1, x_2 \in N\) and \(f(f(n))=3 n, \forall n \in N\), then \(f(2)=\)
(d)
\(
\begin{aligned}
& f(3 n)=f(f(f(n)))=3 f(n), \forall n \in N \\
& \text { Put } n=1, f(3)=3 f(1) \\
& \text { If } f(1)=1, \text { then } f(f(1))=f(1)=1, \text { but } f(f(n))=3 n \\
& f(f(1))=3 \text { giving } 1=3 \text { which is absurd. } \\
& f(1) \neq 1 \\
& 3=f(f(1))>f(1)>1 \\
& \text { So } f(1)=2 \\
& f(2)=f(f(1))=3
\end{aligned}
\)
Number of integral values of \(a\) for which \(f(x)=\log \left(\log _{1 / 3}\right. \left.\left(\log _7(\sin x+a)\right)\right)\) be defined for every real value of \(x\)
(b)
\(
\begin{aligned}
& \log _{1 / 3} \log _7(\sin x+a)>0 \\
& 0<\log _7(\sin x+a)<1 \\
& 1<(\sin x+a)<7 \quad \forall x \in R[\text { ‘ } a \text { ‘ should be less than the } \\
& \text { minimum value of } 7-\sin x \text { and ‘ } a \text { ‘ must be greater than } \\
& \text { maximum value of } 1-\sin x] \\
& 1-\sin x<a<7-\sin x \forall x \in R \\
& 2<a<6
\end{aligned}
\)
Let \(f(x)=\sin ^{23} x-\cos ^{22} x\) and \(g(x)=1+\frac{1}{2} \tan ^{-1}|x|\), then the number of values of \(x\) in interval \([-10 \pi, 8 \pi]\) satisfying the equation \(f(x)=\operatorname{sgn}(g(x))\) is
(d)
\(
\begin{aligned}
& g(x)=\frac{1}{2} \tan ^{-1}|x|+1 \Rightarrow-\operatorname{sgn}(g(x))=1 \\
& \sin ^{23} x-\cos ^{22} x=1 \\
& \sin ^{23} x=1+\cos ^{22} x \text { which is possible if } \sin x=1 \text { and } \cos x=0 \\
& \sin x=1, x=2 n \pi+\frac{\pi}{2} \\
& \text { hence }-10 \pi \leq 2 n \pi+\frac{\pi}{2} \leq 8 \pi \Rightarrow-\frac{21}{4} \leq n \leq \frac{15}{4} \\
& -5 \leq n \leq 3 \\
& \text { Hence, number of values of } x=9
\end{aligned}
\)
Suppose that \(f(x)\) is a function of the form \(f(x) =\frac{a x^8+b x^6+c x^4+d x^2+15 x+1}{x}(x \neq 0)\). If \(f(5)=2\), then the value of \(|f(-5)| / 4\) is _____.
(a) \(f(x)=\frac{a x^8+b x^6+c x^4+d x^2+15 x+1}{x}\)
\(
=\underbrace{a x^7+b x^5+c x^3+d x+\frac{1}{x}}_{\text {odd function }}+15
\)
\(
\begin{aligned}
& \text { Now } f(x)+f(-x)=30 \\
\Rightarrow \quad & f(-5)=30-f(5)=28
\end{aligned}
\)
\(
|f(-5)| / 4=7
\)
You cannot copy content of this page