0 of 35 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 35 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If \(f(\theta)=\frac{1-\sin 2 \theta+\cos 2 \theta}{2 \cos 2 \theta}\) then value of \(8 f\left(11^{\circ}\right) \cdot f\left(34^{\circ}\right)\) is _____.
(d)
\(
\begin{aligned}
f(\theta) & =\frac{1-\sin 2 \theta+\cos 2 \theta}{2 \cos 2 \theta} \\
& =\frac{(\cos \theta-\sin \theta)^2+\left(\cos ^2 \theta-\sin ^2 \theta\right)}{2(\cos \theta-\sin \theta)(\cos \theta+\sin \theta)} \\
& =\frac{\cos \theta}{\cos \theta+\sin \theta} \\
& =\frac{1}{1+\tan \theta} \\
f\left(11^{\circ}\right) \cdot f\left(34^{\circ}\right) & =\frac{1}{\left(1+\tan 11^{\circ}\right)} \times \frac{1}{\left(1+\tan 34^{\circ}\right)} \\
& =\frac{1}{\left(1+\tan 11^{\circ}\right)} \times \frac{1}{\left(1+\tan \left(45^{\circ}-11^{\circ}\right)\right)} \\
& =\frac{1}{\left(1+\tan 11^{\circ}\right)} \times \frac{1}{\left(1+\frac{1-\tan 11^{\circ}}{1+\tan 11^{\circ}}\right)} \\
& =\frac{1}{\left(1+\tan 11^{\circ}\right)} \times \frac{\left(1+\tan 11^{\circ}\right)}{2}=\frac{1}{2}
\end{aligned}
\)
\(
8 f\left(11^{\circ}\right) \cdot f\left(34^{\circ}\right)=4
\)
If \(f(x)=2(7 \cos x+24 \sin x)(7 \sin x-24 \cos x)\), for every \(x \in R\), then maximum value of \((f(x))^{1 / 4}\) is ______.
(c)
\(
\begin{aligned}
& f(x)=2(7 \cos x+24 \sin x)(7 \sin x-24 \cos x) \\
& r \cos \theta=7 ; r \sin \theta=24 \\
& r^2=625 ; \tan \theta=\frac{24}{7}
\end{aligned}
\)
\(
\begin{aligned}
f(x) & =2 r \cos (x-\theta) \times r \sin (x-\theta) \\
& =r^2(\sin 2(x-\theta)) \\
f(x)_{\max } & =25^2 \Rightarrow(f(x))^{1 / 4}=5
\end{aligned}
\)
In a triangle \(A B C, \angle C=\frac{\pi}{2}\). If \(\tan \left(\frac{A}{2}\right)\) and \(\tan \left(\frac{B}{2}\right)\) are the roots of the equation \(a x^2+b x+c=0(a \neq 0)\), then the value of \(\frac{a+b}{c}\) (where, \(a, b, c\) are sides of \(\Delta\) opposite to angles \(A, B, C\) resp.) is _____.
(a)Â
\(
\begin{aligned}
& \tan \left(\frac{A}{2}\right)+\tan \left(\frac{B}{2}\right)=-\frac{b}{a} ; \tan \left(\frac{A}{2}\right) \times \tan \left(\frac{B}{2}\right)=\frac{c}{a} \\
& A+B=90^{\circ} \Rightarrow \frac{A+B}{2}=45^{\circ} \\
& \Rightarrow \tan \left(\frac{A+B}{2}\right)=1=\frac{-\frac{b}{a}}{1-\frac{c}{a}} \\
& \Rightarrow 1-\frac{c}{a}=-\frac{b}{a} \\
& \Rightarrow a+b=c \\
& \Rightarrow \frac{a+b}{c}=1
\end{aligned}
\)
If \(\left(1+\tan 5^{\circ}\right)\left(1+\tan 10^{\circ}\right)\left(1+\tan 15^{\circ}\right) \ldots\left(1+\tan 45^{\circ}\right)=2^k\), then the value of ‘ \(k\) ‘ is _____.
(d)
\(
\begin{aligned}
(1+\tan \theta)\left[1+\tan \left(45^{\circ}-\theta\right)\right]= & (1+\tan \theta)\left(1+\frac{1-\tan \theta}{1+\tan \theta}\right) \\
& =(1+\tan \theta)\left(\frac{2}{1+\tan \theta}\right)=2
\end{aligned}
\)
\(
\begin{aligned}
&\text { Hence, L.H.S. is equal to }\\
&\begin{aligned}
& 2\left(1+\tan 5^{\circ}\right)\left(1+\tan 40^{\circ}\right)\left(1+\tan 10^{\circ}\right)\left(1+\tan 35^{\circ}\right)\left(1+\tan 15^{\circ}\right)\left(1+\tan 30^{\circ}\right)\left(1+\tan 20^{\circ}\right)\left(1+\tan 25^{\circ}\right) \\
& =2 \times 2^4=2^5
\end{aligned}
\end{aligned}
\)
\(
2^k=2^5; k =5
\)
The value of \(\sqrt{3}\left|\frac{\frac{2 \sin \left(140^{\circ}\right) \sec \left(280^{\circ}\right)}{\sec \left(220^{\circ}\right)}+\frac{\sec \left(340^{\circ}\right)}{\operatorname{cosec}\left(20^{\circ}\right)}}{\frac{\cot \left(200^{\circ}\right)-\tan \left(280^{\circ}\right)}{\cot \left(200^{\circ}\right)}}\right|\) is ____.
(b)
\(
\begin{aligned}
\sqrt{3}\left|\frac{\frac{-2 \sin \left(40^{\circ}\right) \cos \left(40^{\circ}\right)}{\cos \left(80^{\circ}\right)}+\frac{\sin \left(20^{\circ}\right)}{\cos \left(20^{\circ}\right)}}{\frac{\cot \left(20^{\circ}\right)+\tan \left(80^{\circ}\right)}{\cot \left(20^{\circ}\right)}}\right| & =\sqrt{3}\left|\frac{\tan \left(20^{\circ}\right)-\tan \left(80^{\circ}\right)}{1+\tan 20^{\circ} \tan 80^{\circ}}\right| \\
& =\sqrt{3} \tan \left(60^{\circ}\right)=3
\end{aligned}
\)
If \(x, y \in R\) satisfy \((x+5)^2+(y-12)^2=(14)^2\), then the minimum value of is _____.
(a)
\(
\begin{aligned}
& \text { Let } x+5=14 \cos \theta \text { and } y-12=14 \sin \theta \\
& \begin{aligned}
\therefore x^2+y^2 & =(14 \cos \theta-5)^2+(14 \sin \theta+12)^2 \\
& =196+25+144+28(12 \sin \theta-5 \cos \theta) \\
& =365+28(12 \sin \theta-5 \cos \theta)
\end{aligned} \\
& \left.\therefore \sqrt{x^2+y^2}\right|_{\min }=\sqrt{365-28 \times 13}=\sqrt{365-364}=1
\end{aligned}
\)
Suppose \(x\) and \(y\) are real numbers such that \(\tan x+\tan y=42\) and \(\cot x+\cot y=49\). Then the prime number by which the value of \(\tan (x+y)\) is not divisible by 5 is ______.
(c)
\(
\begin{aligned}
& \cot x+\cot y=49 \\
& \Rightarrow \frac{1}{\tan x}+\frac{1}{\tan y}=49 \\
& \Rightarrow \frac{\tan y+\tan x}{\tan x \tan y}=49 \\
& \Rightarrow \tan x \tan y=\frac{\tan x+\tan y}{49}=\frac{42}{49}=\frac{6}{7} \\
& \Rightarrow \tan (x+y)=\frac{42}{1-(6 / 7)}=\frac{42}{1 / 7}=294 \text { which is divisible by } 2,3 \text { and } 7 \text { but not by } 5 .
\end{aligned}
\)
Let \(0 \leq a, b, c, d \leq \pi\) where \(b\) and \(c\) are not complementary, such that \(2 \cos a+6 \cos b+7 \cos c+9 \cos d=0\) and \(2 \sin a-6 \sin b+7 \sin c-9 \sin d=0\), then the value of \(3 \frac{\cos (a+d)}{\cos (b+c)}\) is _____.
(b)
From the given equations, we have
\(
(2 \cos a+9 \cos d)^2=(6 \cos b+7 \cos c)^2
\)
And \((2 \sin a-9 \sin d)^2=(6 \sin b-7 \sin c)^2\)
Adding; we have \(36 \cos (a+d)=84 \cos (b+c)\)
\(
\Rightarrow \frac{\cos (a+d)}{\cos (b+c)}=\frac{7}{3}
\)
\(
3 \frac{\cos (a+d)}{\cos (b+c)}=7
\)
Suppose \(A\) and \(B\) are two angles such that \(A, B \in(0, \pi)\), and satisfy \(\sin A+\sin B=1\) and \(\cos A\) \(+\cos B=0\). Then the value of \(12 \cos 2 A+4 \cos 2 B\) is ______.
(d)
\(
\begin{aligned}
&\text { Since } \cos A+\cos B=0\\
&\begin{aligned}
& \Rightarrow A+B=\pi \\
& \therefore B=\pi-A \\
& \Rightarrow \sin A+\sin (\pi-A)=1 \\
& \Rightarrow \sin A=\frac{1}{2} \\
& \Rightarrow A=30^{\circ} \text { and } B=150^{\circ} \text { or } A=150^{\circ} \text { and } B=30^{\circ} \\
& \Rightarrow 12 \cos 60^{\circ}+4 \cos 300^{\circ}=8
\end{aligned}
\end{aligned}
\)
\(\alpha\) and \(\beta\) are the positive acute angles and satisfying equations \(5 \sin 2 \beta=3 \sin 2 \alpha\) and \(\tan \beta=3 \tan \alpha\) simultaneously. Then the value of \(\tan \alpha+\tan \beta\) is _____.
(b)
\(
\begin{aligned}
&\begin{aligned}
& 5 \frac{2 \tan \beta}{1+\tan ^2 \beta}=3 \frac{2 \tan \alpha}{1+\tan ^2 \alpha} \\
& \Rightarrow \frac{5 \tan \beta}{1+\tan ^2 \beta}=\frac{3 \tan \alpha}{1+\tan ^2 \alpha} \dots(i)
\end{aligned}\\
&\text { Substituting } \tan \beta=3 \tan \alpha \text {, we have }\\
&\begin{aligned}
& \frac{5 \times 3 \tan \alpha}{1+9 \tan ^2 \alpha}=\frac{3 \tan \alpha}{1+\tan ^2 \alpha} \\
& \Rightarrow 5+5 \tan ^2 \alpha=1+9 \tan ^2 \alpha \\
& \Rightarrow 4 \tan ^2 \alpha=4 \\
& \Rightarrow \tan \alpha=1, \text { i.e., } \tan \beta=3 \\
& \therefore \tan \alpha+\tan \beta=4
\end{aligned}
\end{aligned}
\)
The absolute value of the expression \(\tan \frac{\pi}{16}+\tan \frac{5 \pi}{16}+\tan \frac{9 \pi}{16}+\tan \frac{13 \pi}{16}\) is _____.
(b)
\(
\begin{aligned}
&\text { Let } \theta=\frac{\pi}{16} \Rightarrow 8 \theta=\frac{\pi}{2}\\
&\begin{aligned}
y= & \tan \theta+\tan 5 \theta+\tan 9 \theta+\tan 13 \theta \\
\therefore y & =(\tan \theta-\cot \theta)+(\tan 5 \theta-\cot 5 \theta) \\
& \quad[\operatorname{astan} 13 \theta=\tan (8 \theta+5 \theta)=-\cot 5 \theta \text { and } \tan 9 \theta=\tan (8 \theta+\theta)=-\cot \theta] \\
& =(\tan \theta-\cot \theta)+(\cot 3 \theta-\tan 3 \theta) \\
& =\frac{\sin ^2 \theta-\cos ^2 \theta}{\sin \theta \cos \theta}+\frac{\cos ^2 3 \theta-\sin ^2 3 \theta}{\sin 3 \theta \cos 3 \theta}
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
\Rightarrow y & =2\left[\frac{\cos 6 \theta}{\sin 6 \theta}-\frac{\cos 2 \theta}{\sin 2 \theta}\right] \\
& =2\left[\frac{\sin 2 \theta \cos 6 \theta-\cos 2 \theta \sin 6 \theta}{\sin 6 \theta \sin 2 \theta}\right] \\
& =-2\left[\frac{\sin 4 \theta}{\cos 2 \theta \sin 2 \theta}\right]=-4 \quad\left(\because 6 \theta=\frac{\pi}{2}-2 \theta\right)
\end{aligned}
\)
\(
\text { Hence, absolute value }=4 \text {. }
\)
The greatest integer less than or equal to \(\frac{1}{\cos 290^{\circ}}+\frac{1}{\sqrt{3} \sin 250^{\circ}}\) is _________.
(a)
\(
\begin{aligned}
& \cos 290^{\circ}=\sin 20^{\circ} ; \sin 250^{\circ}=-\sin 70^{\circ}=-\cos 20^{\circ} \\
& \Rightarrow \frac{1}{\sin 20^{\circ}}-\frac{1}{\sqrt{3} \cos 20^{\circ}}
\end{aligned}
\)
\(
\begin{aligned}
&\begin{aligned}
& =\frac{\sqrt{3} \cos 20^{\circ}-\sin 20^{\circ}}{\sqrt{3} \sin 20^{\circ} \cos 20^{\circ}} \\
& =\frac{2\left[\sin 60^{\circ} \cos 20^{\circ}-\sin 20^{\circ} \cos 60^{\circ}\right]}{\sqrt{3} \sin 20^{\circ} \cos 20^{\circ}} \\
& =\frac{4 \sin 40^{\circ}}{\sqrt{3} \sin 40^{\circ}}=\frac{4 \sqrt{3}}{3}
\end{aligned}\\
&\text { Hence, the greatest integer less than or equal to is } 2
\end{aligned}
\)
The maximum value of \(y=\frac{1}{\sin ^6 x+\cos ^6 x}\) is ____.
(d)
\(
\begin{aligned}
& \sin ^6 x+\cos ^6 x=\left(\sin ^2 x+\cos ^2 x\right)\left(\sin ^4 x+\cos ^4 x-\sin ^2 x \cos ^2 x\right) \\
& =1-3 \sin ^2 x \cos ^2 x=1-\frac{3(\sin 2 x)^2}{4} \\
& \Rightarrow y=\frac{4}{4-3(\sin 2 x)^2} \\
& \Rightarrow y_{\max }=\frac{4}{4-3(1)}=4
\end{aligned}
\)
The maximum value of \(\cos ^2\left(45^{\circ}+x\right)+(\sin x-\cos x)^2\) is _____.
(b)
\(
\begin{aligned}
&\begin{aligned}
\cos ^2\left(45^{\circ}+x\right)+(\sin x-\cos x)^2 & =\left[\frac{\cos x}{\sqrt{2}}-\frac{\sin x}{\sqrt{2}}\right]^2+(\sin x-\cos x)^2 \\
& =\frac{3}{2}(1-\sin 2 x)=\frac{3}{2}(1-(-1))
\end{aligned}\\
&\text { Hence, the maximum value is }=\frac{3}{2}(1-(-1))=3
\end{aligned}
\)
The value of \(9 \frac{\sin ^4 t+\cos ^4 t-1}{\sin ^6 t+\cos ^6 t-1}\) is ______.
(a)
\(
\begin{aligned}
& \text { Nr. }=\left(\sin ^2 t+\cos ^2 t\right)^2-2 \sin ^2 t \cos ^2 t-1=-2 \sin ^2 t \cos ^2 t \\
& \text { Dr. }=\left(\sin ^2 t+\cos ^2 t\right)^3-3 \sin ^2 t \cos ^2 t-1=-3 \sin ^2 t \cos ^2 t
\end{aligned}
\)
\(
9 \frac{\sin ^4 t+\cos ^4 t-1}{\sin ^6 t+\cos ^6 t-1}=6
\)
The value of \(\operatorname{cosec} 10^{\circ}+\operatorname{cosec} 50^{\circ}-\operatorname{cosec} 70^{\circ}\) is _____.
(c)
\(
\begin{aligned}
\frac{1}{\sin 10^{\circ}}+\frac{1}{\sin 50^{\circ}}-\frac{1}{\sin 70^{\circ}} & =\frac{1}{\cos 80^{\circ}}+\frac{1}{\cos 40^{\circ}}-\frac{1}{\cos 20^{\circ}} \\
& =\frac{\cos 40^{\circ} \cos 20^{\circ}+\cos 80^{\circ} \cos 20^{\circ}-\cos 40^{\circ} \cos 80^{\circ}}{\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}} \\
& =8\left[\cos 20^{\circ}\left(\cos 40^{\circ}+\cos 80^{\circ}\right)-\cos 40^{\circ} \cos 80^{\circ}\right] \\
& =8\left[2 \cos 20^{\circ} \cos 60^{\circ} \cos 20^{\circ}-\cos 40^{\circ} \cos 80^{\circ}\right] \\
& =4\left[2 \cos ^2 20^{\circ}-2 \cos 40^{\circ} \cos 80^{\circ}\right] \\
& =4\left[1+\cos 40^{\circ}-\left(\cos 120^{\circ}+\cos 40^{\circ}\right)\right] \\
& =4 \times \frac{3}{2}=6
\end{aligned}
\)
The minimum value of \(\sqrt{(3 \sin x-4 \cos x-10)(3 \sin x+4 \cos x-10)}\) is _____.
(c)
\(
\begin{aligned}
f(x) & =9 \sin ^2 x-16 \cos ^2 x-10(3 \sin x-4 \cos x)-10(3 \sin x+4 \cos x)+100 \\
& =25 \sin ^2 x-60 \sin x+84 \\
& =(5 \sin x-6)^2+48
\end{aligned}
\)
The minimum value of \(f(x)\) occurs when \(\sin x=1\).
Therefore, the minimum value of \(\sqrt{f(x)}\) is 7.
Number of triangles \(A B C\) if \(\tan A=x, \tan B=x+1\) and \(\tan C=1-x\) is ____.
(d)
\(
\begin{aligned}
& \text { In } \triangle A B C, \tan A+\tan B+\tan C=\tan A \tan B \tan C \\
& \Rightarrow x+x+1+1-x=x(1+x)(1-x) \\
& \Rightarrow 2+x=x-x^3 \\
& \Rightarrow x^3=-2 \Rightarrow x=-2^{1 / 3} \\
& \Rightarrow \tan A=x<0 \Rightarrow A \text { is obtuse } \\
& \Rightarrow \tan B=x+1=1-2^{1 / 3}<0
\end{aligned}
\)
Hence, \(A\) and \(B\) are obtuse, which is not possible in a triangle.
Hence, no such triangle can exist.
If \(\log _{10} \sin x+\log _{10} \cos x=-1[latex] and [latex]\log _{10}(\sin x+\cos x)=\frac{\left(\log _{10} n\right)-1}{2}\), then the value of ‘ \(n / 3\) ‘ is _____.
(a)
\(
\begin{aligned}
& \text { Given } \log _{10}\left(\frac{\sin 2 x}{2}\right)=-1 \\
& \Rightarrow \frac{\sin 2 x}{2}=\frac{1}{10} \\
& \Rightarrow \sin 2 x=\frac{1}{5} \dots(i)
\end{aligned}
\)
\(
\begin{aligned}
& \text { Also } \log _{10}(\sin x+\cos x)=\frac{\log _{10}\left(\frac{n}{10}\right)}{2} \\
& \Rightarrow \log _{10}(\sin x+\cos x)^2=\log _{10}\left(\frac{n}{10}\right) \\
& \Rightarrow 1+\sin 2 x=\frac{n}{10} \\
& \Rightarrow 1+\frac{1}{5}=\frac{n}{10} \\
& \Rightarrow \frac{6}{5}=\frac{n}{10} \\
& \Rightarrow \frac{n}{3}=4
\end{aligned}
\)
The value of \(\frac{\sin 1^{\circ}+\sin 3^{\circ}+\sin 5^{\circ}+\sin 7^{\circ}}{\cos 1^{\circ} \cdot \cos 2^{\circ} \cdot \sin 4^{\circ}}\) is ____.
(d)
\(
\begin{aligned}
\frac{2 \sin 4^{\circ} \cos 3^{\circ}+2 \sin 4^{\circ} \cos 1^{\circ}}{\cos 1^{\circ} \cos 2^{\circ} \sin 4^{\circ}} & =\frac{2 \sin 4^{\circ}\left[\cos 3^{\circ}+\cos 1^{\circ}\right]}{\cos 1^{\circ} \cos 2^{\circ} \sin 4^{\circ}} \\
& =\frac{4 \cos 2^{\circ} \cos 1^{\circ}}{\cos 1^{\circ} \cos 2^{\circ}}=4
\end{aligned}
\)
In a triangle \(A B C\), if \(A-B=120^{\circ}\) and \(\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{1}{32}\) then, the value of \(8 \cos C\) is ____.
(a)
\(
\begin{aligned}
& 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{1}{16} \\
& \Rightarrow\left(\cos \frac{A-B}{2}-\cos \frac{A+B}{2}\right) \sin \frac{C}{2}=\frac{1}{16} \\
& \Rightarrow \sin \frac{C}{2}\left(\frac{1}{2}-\sin \frac{C}{2}\right)=\frac{1}{16} \\
& \Rightarrow \sin ^2 \frac{C}{2}-\frac{1}{2} \sin \frac{C}{2}+\frac{1}{16}=0 \\
& \Rightarrow\left(\frac{1}{4}-\sin \frac{C}{2}\right)^2=0 \\
& \Rightarrow \sin \frac{C}{2}=\frac{1}{4} \\
& \Rightarrow \cos C=1-2 \sin ^2 \frac{C}{2}=1-\frac{1}{8}=\frac{7}{8}
\end{aligned}
\)
\(
8 \cos C=7
\)
In a triangle \(A B C\) if \(\tan A=\frac{1}{2}, \tan B=k+\frac{1}{2}\) and \(\tan C=2 k+\frac{1}{2}\), then the possible value of \([k]\), where \([\cdot]\) represents greatest integer function is _______.
(b)
\(
\begin{aligned}
& \text { In the triangle, } \\
& \tan A+\tan B+\tan C=\tan A \tan B \tan C \\
& \Rightarrow \frac{1}{2} \frac{(2 k+1)}{2} \frac{(4 k+1)}{2}=\frac{3}{2}+3 k \\
& \Rightarrow \frac{8 k^2+6 k+1}{8}=\frac{3+6 k}{2} \\
& \Rightarrow 8 k^2+6 k+1=12+24 k \\
& \Rightarrow 8 k^2-18 k-11=0 \\
& \Rightarrow 8 k^2-22 k+4 k-11=0 \\
& \Rightarrow(2 k+1)(4 k-11)=0 \\
& \Rightarrow k=-1 / 2 \text { or } 11 / 4 \\
& \text { For } k=-1 / 2, \tan B=0 \text { (not possible) } \\
& \therefore k=11 / 4
\end{aligned}
\)
If \(\sin ^3 x \cos 3 x+\cos ^3 x \sin 3 x=3 / 8\), then the value of \(8 \sin 4 x\) is _____.
(c)
\(
\begin{aligned}
& 4 \sin ^3 x \cos 3 x+4 \cos ^3 x \sin 3 x=\frac{3}{2} \\
& \Rightarrow(3 \sin x-\sin 3 x) \cos 3 x+(3 \cos x+\cos 3 x) \sin 3 x=\frac{3}{2} \\
& \Rightarrow 3[\sin x \cos 3 x+\cos x \sin 3 x]=\frac{3}{2} \\
& \Rightarrow \sin 4 x=\frac{1}{2}
\end{aligned}
\)
\(
8 \sin 4 x=4
\)
Number of values of \(p\) for which equation \(\sin ^3 x+1+p^3-3 p \sin x=0(p>0)\) has a root is _____.
(a)
\(
\begin{aligned}
& \sin ^3 x+p^3+1=3 p \sin x \\
& \Rightarrow(\sin x+p+1)\left(\sin ^2 x+1+p^2-\sin x-p-p \sin x\right)=0
\end{aligned}
\)
Therefore, either \(\sin x+p+1=0 \Rightarrow p=-(1+\sin x)\), or \(\sin x=1=p\)
Hence, only one value of \(p(p>0)\) is possible which is given by \(p=1\).
Number of roots of the equation \(|\sin x \cos x|+\sqrt{2+\tan ^2 x+\cot ^2 x}=\sqrt{3}, x \in[0,4 \pi]\), are _____.
(b)
\(
\begin{aligned}
&\begin{aligned}
& |\sin x \cos x|+|\tan x+\cot x|=\sqrt{3} \\
& \Rightarrow|\sin x \cos x|+\frac{1}{|\sin x \cos x|}=\sqrt{3} \\
& |\sin x \cos x|+\frac{1}{|\sin x \cos x|} \geq 2
\end{aligned}\\
&\text { Hence, there is no solution. }
\end{aligned}
\)
Number of roots of the equation \((3+\cos x)^2=4-2 \sin ^8 x, x \in[0,5 \pi]\) are _____.
(c) The range of \(\cos x\) is \([-1,1]\).
The range of \(\sin x\) is \([-1,1]\).
We know that \(-1 \leq \cos x \leq 1\).
So, \(2 \leq 3+\cos x \leq 4\).
Therefore, \(4 \leq(3+\cos x)^2 \leq 16\).
We know that \(0 \leq \sin ^2 x \leq 1\).
So, \(0 \leq \sin ^8 x \leq 1\).
This implies \(0 \leq 2 \sin ^8 x \leq 2\).
Therefore, \(-2 \leq-2 \sin ^8 x \leq 0\).
Adding 4 to all parts, \(2 \leq 4-2 \sin ^8 x \leq 4\).
For the equation to hold, both sides must be equal to the common value in their ranges.
The only common value is 4.
So, \((3+\cos x)^2=4\) and \(4-2 \sin ^8 x=4\).
From \((3+\cos x)^2=4\), we get \(3+\cos x= \pm 2\).
Since \(3+\cos x \geq 2\), we must have \(3+\cos x=2\).
This gives \(\cos x=-1\).
From \(4-2 \sin ^8 x=4\), we get \(-2 \sin ^8 x=0\).
This implies \(\sin ^8 x=0[latex], so [latex]\sin x=0[latex].
We need [latex]\cos x=-1\) and \(\sin x=0\).
This occurs when \(x\) is an odd multiple of \(\pi\).
So, \(x=(2 n+1) \pi\) for integer \(n\).
The interval is \([0,5 \pi]\).
For \(n=0, x=\pi\).
For \(n=1, x=3 \pi\).
For \(n=2, x=5 \pi\).
The number of roots of the equation in the interval \([0,5 \pi]\) is 3.
Number of solution(s) of the equation \(\frac{\sin x}{\cos 3 x}+\frac{\sin 3 x}{\cos 9 x}+\frac{\sin 9 x}{\cos 27 x}=0\) in the interval \(\left(0, \frac{\pi}{4}\right)\) is _____.
(d)
\(
\begin{aligned}
&\begin{aligned}
& \frac{\sin x}{\cos 3 x}+\frac{\sin 3 x}{\cos 9 x}+\frac{\sin 9 x}{\cos 27 x}=0 \\
& \Rightarrow \frac{2 \sin x \cos x}{2 \cos 3 x \cos x}+\frac{2 \sin 3 x \cos 3 x}{2 \cos 9 x \cos 3 x}+\frac{2 \sin 9 x \cos 9 x}{2 \cos 27 x \cos 9 x}=0 \\
& \Rightarrow \frac{\sin (3 x-x)}{2 \cos 3 x \cos x}+\frac{\sin (9 x-3 x)}{2 \cos 9 x \cos 3 x}+\frac{\sin (27 x-9 x)}{2 \cos 27 x \cos 9 x}=0 \\
& \Rightarrow(\tan 3 x-\tan x)+(\tan 9 x-\tan 3 x)+(\tan 27 x-\tan 9 x)=0 \\
& \Rightarrow \tan 27 x-\tan x=0 \\
& \Rightarrow \tan x=\tan 27 x \\
& \Rightarrow 27 x=n \pi+x, n \in I \\
& \Rightarrow x=\frac{n \pi}{26}, n \in I \\
& \Rightarrow x=\frac{\pi}{26}, \frac{2 \pi}{26}, \frac{3 \pi}{26}, \frac{4 \pi}{26}, \frac{5 \pi}{26}, \frac{6 \pi}{26}
\end{aligned}\\
&\text { Hence, there are six solutions. }
\end{aligned}
\)
Number of solutions of the equation \((\sqrt{3}+1)^{2 x}+(\sqrt{3}-1)^{2 x}=2^{3 x}\) is _____.
(b)
\(
\begin{aligned}
& (\sqrt{3}+1)^{2 x}+(\sqrt{3}-1)^{2 x}=2^{3 x}=(2 \sqrt{2})^{2 x} \\
& \Rightarrow\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right)^{2 x}+\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)^{2 x}=1 \\
& \Rightarrow\left(\sin 75^{\circ}\right)^{2 x}+\left(\cos 75^{\circ}\right)^{2 x}=1 \\
& \Rightarrow x=1
\end{aligned}
\)
Number of integral value(s) of \(m\) for the equation \(\sin x-\sqrt{3} \cos x=\frac{4 m-6}{4-m}\) has solutions \(x \in[0,2 \pi]\) is _____.
(d)
The equation is \(\sin x-\sqrt{3} \cos x=\frac{4 m-6}{4-m}\).
The solutions \(x\) are in the interval \([0,2 \pi]\).
The range of \(a \sin x+b \cos x\) is \(\left[-\sqrt{a^2+b^2}, \sqrt{a^2+b^2}\right]\).
Step 1: Transform the left side of the equation.
Multiply and divide \(\sin x-\sqrt{3} \cos x\) by \(\sqrt{1^2+(-\sqrt{3})^2}=\sqrt{1+3}=\sqrt{4}=2\).
\(
2\left(\frac{1}{2} \sin x-\frac{\sqrt{3}}{2} \cos x\right)
\)
Use the identity \(\sin (A-B)=\sin A \cos B-\cos A \sin B\).
\(
2\left(\sin x \cos \left(\frac{\pi}{3}\right)-\cos x \sin \left(\frac{\pi}{3}\right)\right)=2 \sin \left(x-\frac{\pi}{3}\right)
\)
Step 2: Determine the range of the left side.
The range of \(\sin \left(x-\frac{\pi}{3}\right)\) is \([-1,1]\).
The range of \(2 \sin \left(x-\frac{\pi}{3}\right)\) is \([-2,2]\).
Step 3: Set up the inequality for the right side.
Since the equation has solutions, the right side must be within the range of the left side.
\(
-2 \leq \frac{4 m-6}{4-m} \leq 2
\)
Step 4: Solve the inequality for \(m\).
Consider two separate inequalities:
\(
-2 \leq \frac{4 m-6}{4-m} \Longrightarrow-2(4-m) \leq 4 m-6 \Longrightarrow-8+2 m \leq 4 m-6 \Longrightarrow-2 \leq 2 m \Longrightarrow-1 \leq m
\)
\(
\frac{4 m-6}{4-m} \leq 2 \Longrightarrow 4 m-6 \leq 2(4-m) \Longrightarrow 4 m-6 \leq 8-2 m \Longrightarrow 6 m \leq 14 \Longrightarrow m \leq \frac{14}{6} \Longrightarrow m \leq \frac{7}{3}
\)
Combine the inequalities: \(-1 \leq m \leq \frac{7}{3}\).
Step 5: Find the integral values of \(m\).
The integral values of \(m\) satisfying \(-1 \leq m \leq \frac{7}{3}[latex] are [latex]-1,0,1,2\).
The number of integral values is 4.
The number of integral values of \(m\) is 4.
The value of \(a\) for which system of equations \(\sin ^2 x+\cos ^2 y=\frac{3 a}{2}\) and \(\cos ^2 x+\sin ^2 y=\frac{a^2}{2}\) has a solution is _______.
(a)
\(
\begin{aligned}
&\text { Adding given equations, we get }\\
&\begin{aligned}
& 2=\frac{3 a}{2}+\frac{a^2}{2} \\
& \Rightarrow a^2+3 a-4=0 \\
& \Rightarrow(a+4)(a-1)=0 \\
& \Rightarrow a=1(\text { as } a=-4 \text { is rejected })
\end{aligned}
\end{aligned}
\)
Explanation: The first equation is \(\sin ^2 x+\cos ^2 y=\frac{3 a}{2}\).
The second equation is \(\cos ^2 x+\sin ^2 y=\frac{a^2}{2}\).
The range of \(\sin ^2 \theta\) and \(\cos ^2 \theta\) is \([0,1]\).
The identity \(\sin ^2 \theta+\cos ^2 \theta=1\) is fundamental.
Step 1: Add the two equations.
Add the left-hand sides: \(\left(\sin ^2 x+\cos ^2 y\right)+\left(\cos ^2 x+\sin ^2 y\right)\).
Add the right-hand sides: \(\frac{3 a}{2}+\frac{a^2}{2}\).
The sum is \(\sin ^2 x+\cos ^2 y+\cos ^2 x+\sin ^2 y=\frac{3 a}{2}+\frac{a^2}{2}\).
Step 2: Simplify the sum using trigonometric identities.
Rearrange terms: \(\left(\sin ^2 x+\cos ^2 x\right)+\left(\sin ^2 y+\cos ^2 y\right)=\frac{a^2+3 a}{2}\).
Apply \(\sin ^2 \theta+\cos ^2 \theta=1: 1+1=\frac{a^2+3 a}{2}\).
This simplifies to \(2=\frac{a^2+3 a}{2}\).
Step 3: Solve the resulting quadratic equation for \(a\).
Multiply by 2: \(4=a^2+3 a\).
Rearrange into standard quadratic form: \(a^2+3 a-4=0\).
Factor the quadratic equation: \((a+4)(a-1)=0\).
The possible values for \(a\) are \(a=-4\) or \(a=1\).
Step 4: Check the validity of \(a\) values based on the range of \(\sin ^2 \theta\) and \(\cos ^2 \theta\).
For the first equation, \(\sin ^2 x+\cos ^2 y=\frac{3 a}{2}\).
Since \(0 \leq \sin ^2 x \leq 1\) and \(0 \leq \cos ^2 y \leq 1\), then \(0 \leq \sin ^2 x+\cos ^2 y \leq 2\).
So, \(0 \leq \frac{3 a}{2} \leq 2\), which implies \(0 \leq 3 a \leq 4\), or \(0 \leq a \leq \frac{4}{3}\).
For the second equation, \(\cos ^2 x+\sin ^2 y=\frac{a^2}{2}\).
Similarly, \(0 \leq \frac{a^2}{2} \leq 2\), which implies \(0 \leq a^2 \leq 4\), or \(-2 \leq a \leq 2\).
Combining all conditions, a must satisfy \(0 \leq a \leq \frac{4}{3}\) and \(-2 \leq a \leq 2\).
The intersection of these ranges is \(0 \leq a \leq \frac{4}{3}\).
From the possible values \(a=-4\) and \(a=1\), only \(a=1\) falls within this valid range.
The value of \(a\) for which the system of equations has a solution is 1.
If \(\cos 4 x=a_0+a_1 \cos ^2 x+a_2 \cos ^4 x\) is true for all values of \(x \in R\), then the value of \(5 a_0+a_1+a_2\) is _______.
(c)
\(
\begin{aligned}
\cos 4 x & =2 \cos ^2 2 x-1 \\
& =2\left(2 \cos ^2 x-1\right)^2-1 \\
& =2\left(4 \cos ^4 x+1-4 \cos ^2 x\right)-1 \\
& =8 \cos ^4 x-8 \cos ^2 x+1 \\
\therefore a_0 & =1 ; a_1=-8, a_2=8 \\
\therefore 5 a_0 & +a_1+a_2=5
\end{aligned}
\)
Number of integral values of \(a\) for which the equation \(\cos ^2 x-\sin x+a=0\) has roots when \(x \in(0, \pi / 2)\) is _____.
(b)
\(
\begin{aligned}
& 1-\sin ^2 x-\sin x+a=0 \\
& \Rightarrow \sin ^2 x+\sin x-(a+1)=0
\end{aligned}
\)
From Eq. (i), we get
\(
\sin ^2 x+\sin x=(a+1) \dots(i)
\)
For \(x \in(0, \pi / 2)\), the range of \(\sin ^2 x+\sin x\) is \((0,2)\).
\(
\Rightarrow 0<(a+1)<2 \Rightarrow a \in(-1,1)
\)
The maximum integral value of \(a\) for which the equation \(a \sin x+\cos 2 x=2 a-7\) has a solution is _____.
(c)
\(
\begin{aligned}
&\begin{aligned}
& a \sin x+1-2 \sin ^2 x=2 a-7 \\
& \Rightarrow 2 \sin ^2 x-a \sin x+(2 a-8)=0 \\
& \Rightarrow \sin x=\frac{a \pm \sqrt{a^2-8(2 a-8)}}{4}=\frac{a \pm(a-8)}{4}=2 \text { or } \frac{a-4}{2}
\end{aligned}\\
&\text { For a solution }-1 \leq \frac{a-4}{2} \leq 1 \text {, we have } 2 \leq a \leq 6 \text {. }
\end{aligned}
\)
Number of roots the equation \(2^{\tan \left(x-\frac{\pi}{4}\right)}-2(0.25)^{\frac{\sin ^2\left(x-\frac{\pi}{4}\right)}{\cos 2 x}}+1=0\) is _____.
(a)
\(
\frac{\sin ^2\left(x-\frac{\pi}{4}\right)}{\cos 2 x}=\frac{\frac{1}{2}(\sin x-\cos x)^2}{\cos ^2 x-\sin ^2 x}=\frac{-\frac{1}{2}(\sin x-\cos x)}{\cos x+\sin x}=-\frac{1}{2} \tan \left(x-\frac{\pi}{4}\right)
\)
\(
\text { Given equation reduces to } 2^{\tan \left(x-\frac{\pi}{4}\right)}-2(0.25)^{\frac{1}{2} \tan \left(x-\frac{\pi}{4}\right)}+1=0
\)
Let \(y=2^{\tan \left(x-\frac{\pi}{4}\right)}\).
The equation is \(y-2 y+1=0\).
This simplifies to \(-y+1=0\), so \(y=1\).
\(
\Rightarrow 2^{\tan \left(x-\frac{\pi}{4}\right)}=1
\)
\(\Rightarrow x=\pi / 4\) which is not possible as \(\cos 2 x=0\) for this value of \(x\), which is not defining the original equation.
Number of solution of the equation \(\sin ^4 x-\cos ^2 x \sin x+2 \sin ^2 x+\sin x=0\) in \(0 \leq x \leq 3 \pi\) is _______.
(d)
\(
\begin{aligned}
& \sin ^4 x-\cos ^2 x \sin x+2 \sin ^2 x+\sin x=0 \\
& \Rightarrow \sin x\left[\sin ^3 x-\cos ^2 x+2 \sin x+1\right]=0
\end{aligned}
\)
\(
\begin{aligned}
&\begin{aligned}
& \Rightarrow \sin x\left[\sin ^3 x+\sin ^2 x+2 \sin x\right]=0 \\
& \Rightarrow \sin ^2 x\left[\sin ^2 x+\sin x+2\right]=0 \\
& \Rightarrow \sin x=0, \text { where } x=0, \pi, 2 \pi, 3 \pi
\end{aligned}\\
&\text { Hence, there are four solutions. }
\end{aligned}
\)
Explanation: The number of solutions for the given trigonometric equation in the interval \(0 \leq x \leq 3 \pi\).
The equation is \(\sin ^4 x-\cos ^2 x \sin x+2 \sin ^2 x+\sin x=0\).
The interval for \(x\) is \(0 \leq x \leq 3 \pi\).
How to solve?
Factor out \(\sin x\) and use trigonometric identities to simplify the equation, then solve for \(x\) in the given interval.
Step 1: Factor out \(\sin x\) from the equation.
The equation becomes \(\sin x\left(\sin ^3 x-\cos ^2 x+2 \sin x+1\right)=0\).
Step 2: Use the identity \(\cos ^2 x=1-\sin ^2 x\).
Substitute \(\cos ^2 x\) in the factored equation: \(\sin x\left(\sin ^3 x-\left(1-\sin ^2 x\right)+2 \sin x+1\right)=0\).
Simplify the expression inside the parenthesis: \(\sin x\left(\sin ^3 x+\sin ^2 x+2 \sin x\right)=0\).
Step 3: Factor out \(\sin x\) again from the expression inside the parenthesis.
The equation becomes \(\sin x \cdot \sin x\left(\sin ^2 x+\sin x+2\right)=0\).
This simplifies to \(\sin ^2 x\left(\sin ^2 x+\sin x+2\right)=0\).
Step 4: Solve for \(\sin x\).
This implies either \(\sin ^2 x=0\) or \(\sin ^2 x+\sin x+2=0\).
For \(\sin ^2 x=0\), we have \(\sin x=0\).
For \(\sin ^2 x+\sin x+2=0\), let \(y=\sin x\). The quadratic equation is \(y^2+y+2=0\).
Calculate the discriminant \(\Delta=b^2-4 a c=1^2-4(1)(2)=1-8=-7\).
Since the discriminant is negative, there are no real solutions for \(y\) in \(y^2+y+2=0\).
Step 5: Find the values of \(x\) for \(\sin x=0\) in the interval \(0 \leq x \leq 3 \pi\).
The values are \(x=0, x=\pi, x=2 \pi\), and \(x=3 \pi\).
There are 4 solutions to the equation in the given interval.
You cannot copy content of this page