Multiple choice questions with one correct answer
0 of 50 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 50 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If the system of linear equations,
\(
\begin{gathered}
x+y+z=6 \\
x+2 y+3 z=10 \\
3 x+2 y+\lambda z=\mu
\end{gathered}
\)
has more two solutions, then \(\mu-\lambda^2\) is equal to
System has intfinitely many solution
\(
\begin{aligned}
& \Rightarrow\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
3 & 2 & \lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda=1 \\
& D_1=\left|\begin{array}{ccc}
6 & 1 & 1 \\
10 & 2 & 3 \\
\mu & 2 & 1
\end{array}\right|=0 \\
& \mu=14 \\
& \mu-\lambda^2=13
\end{aligned}
\)
If the system of linear equations
\(
\begin{aligned}
& 2 x+2 a y+a z=0 \\
& 2 x+3 b y+b z=0 \\
& 2 x+4 c y+c z=0
\end{aligned}
\)
where \(\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}\) are non-zero and distinct; has a non-zero solution, then :
For non-zero solution
\(
\left|\begin{array}{ccc}
2 & 2 \mathrm{a} & \mathrm{a} \\
2 & 3 \mathrm{~b} & \mathrm{~b} \\
2 & 4 \mathrm{c} & \mathrm{c}
\end{array}\right|=0, \Rightarrow\left|\begin{array}{ccc}
1 & 2 \mathrm{a} & \mathrm{a} \\
0 & 3 \mathrm{~b}-2 \mathrm{a} & \mathrm{b}-\mathrm{a} \\
0 & 4 \mathrm{c}-2 \mathrm{a} & \mathrm{c}-\mathrm{a}
\end{array}\right|=0
\)
\(
\begin{aligned}
& \Rightarrow(3 \mathrm{~b}-2 \mathrm{a})(\mathrm{c}-\mathrm{a})-(\mathrm{b}-\mathrm{a})(4 \mathrm{c}-2 \mathrm{a})=0 \\
& \Rightarrow 2 \mathrm{ac}=\mathrm{bc}+\mathrm{ab} \\
& \Rightarrow \frac{2}{\mathrm{~b}}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{c}} \text { Hence } \frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}} \text { are in A.P. }
\end{aligned}
\)
The system of linear equations
\(
\begin{aligned}
& \lambda x+2 y+2 z=5 \\
& 2 \lambda x+3 y+5 z=8 \\
& 4 x+\lambda y+6 z=10 \text { has }
\end{aligned}
\)
\(
\begin{aligned}
& \mathrm{D}=\left|\begin{array}{ccc}
\lambda & 3 & 2 \\
2 \lambda & 3 & 5 \\
4 & \lambda & 6
\end{array}\right|=(\lambda+8)(2-\lambda) \\
& \text { for } \lambda=2 ; \mathrm{D}_1 \neq 0
\end{aligned}
\)
Hence, no solution for \(\lambda=2\)
For which of the following ordered pairs \((\mu, \delta)\), the system of linear equations
\(
\begin{aligned}
& x+2 y+3 z=1 \\
& 3 x+4 y+5 z=\mu \\
& 4 x+4 y+4 z=\delta
\end{aligned}
\)
is inconsistent?
\(
\begin{aligned}
& 2 \times(\mathrm{ii})-2 \times(\mathrm{i})-(\mathrm{iii}): \\
& 0=2 \mu-2-\delta \\
& \Rightarrow \delta=2(\mu-1)
\end{aligned}
\)
The following system of linear equations
\(
\begin{aligned}
& 7 x+6 y-2 z=0 \\
& 3 x+4 y+2 z=0 \\
& x-2 y-6 z=0, \text { has }
\end{aligned}
\)
\(
\begin{aligned}
& 7 x+6 y-2 z=0 \\
& 3 x+4 y+2 z=0 \\
& x-2 y-6 z=0
\end{aligned}
\)
\(
\Delta=\left|\begin{array}{ccc}
7 & 6 & -2 \\
3 & 4 & 2 \\
1 & -2 & -6
\end{array}\right|=0 \Rightarrow \text { infinite solutions }
\)
Now (1) \(+(2) \Rightarrow y=-x\) put in (1), (2) & (3) all will lead to \(x=2 z\)
Let \(S\) be the set of all \(\lambda \in R\) for which the system of linear equations
\(
\begin{aligned}
& 2 x-y+2 z=2 \\
& x-2 y+\lambda z=-4 \\
& x+\lambda y+z=4
\end{aligned}
\)
has no solution. Then the set \(\mathrm{S}\)
\(
\begin{aligned}
& 2 x-y+2 z=2 \\
& x-2 y+\lambda z=-4 \\
& x+\lambda y+z=4
\end{aligned}
\)
For no solution :
\(
\begin{aligned}
& \mathrm{D}=\left|\begin{array}{ccc}
2 & -1 & 2 \\
1 & -2 & \lambda \\
1 & \lambda & 1
\end{array}\right|=0 \\
& \Rightarrow 2\left(-2-\lambda^2\right)+1(1-\lambda)+2(\lambda+2)=0 \\
& \Rightarrow-2 \lambda^2+\lambda+1=0 \\
& \Rightarrow \lambda=1,-\frac{1}{2} \\
& \mathrm{D}_{\mathrm{x}}=\left|\begin{array}{ccc}
2 & -1 & 2 \\
-4 & 2 & \lambda \\
4 & \lambda & 1
\end{array}\right|=2\left|\begin{array}{ccc}
1 & -1 & 2 \\
-2 & -2 & \lambda \\
\lambda & \lambda & 1
\end{array}\right| \\
& =2(1+\lambda)
\end{aligned}
\)
whichis not equal to zero for
\(
\lambda=1,-\frac{1}{2}
\)
Let \(\mathrm{S}\) be the set of all integer solutions, \((x, y, z)\), of the system of equations
\(
\begin{aligned}
& x-2 y+5 z=0 \\
& -2 x+4 y+z=0 \\
& -7 x+14 y+9 z=0
\end{aligned}
\)
such that \(15 \leq x^2+y^2+z^2 \leq 150\). Then, the number of elements in the set \(\mathrm{S}\) is equal to
\(
\Delta=\left|\begin{array}{ccc}
1 & -2 & 5 \\
-2 & 4 & 1 \\
-7 & 14 & 9
\end{array}\right|=0
\)
Let \(\mathrm{x}=\mathrm{k}\)
\(
\begin{aligned}
& \Rightarrow \text { Put in (1) \& (2) } \\
& k-2 y+5 z=0 \\
& -2 k+4 y+z=0
\end{aligned}
\)
\(
\mathrm{z}=0, \mathrm{y}=\frac{\mathrm{k}}{2}
\)
\(\therefore \mathrm{x}, \mathrm{y}, \mathrm{z}\) are integer
\(\Rightarrow \mathrm{k}\) is even integer
Now \(x=k, y=\frac{k}{2}, z=0\) put in condition
\(
\begin{aligned}
& 15 \leq \mathrm{k}^2+\left(\frac{\mathrm{k}}{2}\right)^2+0 \leq 150 \\
& 12 \leq \mathrm{k}^2 \leq 120 \\
& \Rightarrow \mathrm{k}= \pm 4, \pm 6, \pm 8, \pm 10 \\
& \Rightarrow \text { Number of element in } \mathrm{S}=8 .
\end{aligned}
\)
If the system of equations
\(
\begin{aligned}
& x-2 y+3 z=9 \\
& 2 x+y+z=b \\
& x-7 y+a z=24
\end{aligned}
\)
has infinitely many solutions, then \(a-b\) is equal to
\(\mathrm{D}=\left|\begin{array}{ccc}1 & -2 & 3 \\ 2 & 1 & 1 \\ 1 & -7 & \mathrm{a}\end{array}\right|=0 \Rightarrow \mathrm{a}=8\)
also, \(D_1=\left|\begin{array}{ccc}9 & -2 & 3 \\ b & 1 & 1 \\ 24 & -7 & 8\end{array}\right|=0 \Rightarrow b=3\)
hence, \(a-b=8-3=5\)
If the system of equations
\(
\begin{aligned}
& x+y+z=2 \\
& 2 x+4 y-z=6 \\
& 3 x+2 y+\lambda z=\mu
\end{aligned}
\)
has infinitely many solutions, then :
For infinite solutions
\(
\Delta=\Delta_{\mathrm{x}}=\Delta_{\mathrm{y}}=\Delta_{\mathrm{z}} \quad=0
\)
Now \(\Delta=0 \Rightarrow\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 4 & -1 \\ 3 & 2 & \lambda\end{array}\right|=0\)
\(
\begin{aligned}
& \Rightarrow \lambda=\frac{9}{2} \\
& \Delta_{x=0} \Rightarrow\left|\begin{array}{rrr}
2 & 1 & 1 \\
6 & 4 & -1 \\
\mu & 2 & -\frac{9}{2}
\end{array}\right|=0 \\
& \Rightarrow \mu=5
\end{aligned}
\)
For \(\lambda=\frac{9}{2} \& \mu=5, \Delta_y=\Delta_z=0\)
Now check option \(2 \lambda+\mu=14\)
If the minimum and the maximum values of the function \(\mathrm{f}:\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \rightarrow \mathrm{R}\), defined by : \(f(\theta)=\left|\begin{array}{ccc}-\sin ^2 \theta & -1-\sin ^2 \theta & 1 \\ -\cos ^2 \theta & -1-\cos ^2 \theta & 1 \\ 12 & 10 & -2\end{array}\right|\) are \(m\) and \(M\) respectively, then the ordered pair \((\mathrm{m}, \mathrm{M})\) is equal to:
\(
\begin{aligned}
&\mathrm{C}_3 \rightarrow \mathrm{C}_3-\left(\mathrm{C}_1-\mathrm{C}_2\right)\\
&f(\theta)=\left|\begin{array}{ccc}
-\sin ^2 \theta & -1-\sin ^2 \theta & 0 \\
-\cos ^2 \theta & -1-\cos ^2 \theta & 0 \\
12 & 10 & -4
\end{array}\right|
\end{aligned}
\)
\(
\begin{aligned}
& =-4\left[\left(1+\cos ^2 \theta\right) \sin ^2 \theta-\cos ^2 \theta\left(1+\sin ^2 \theta\right)\right] \\
& =-4\left[\sin ^2 \theta+\sin ^2 \theta \cos ^2 \theta-\cos ^2 \theta-\cos ^2 \theta \sin ^2 \theta \right.
\end{aligned}
\)
\(
\begin{aligned}
& \mathrm{f}(\theta)=4 \cos 2 \theta \\
& \theta \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \\
& 2 \theta \in\left[\frac{\pi}{2}, \pi\right] \\
& f(\theta) \in[-4,0] \\
& (\mathrm{m}, \mathrm{M})=(-4,0)
\end{aligned}
\)
Let \(\lambda \in \mathrm{R}\). The system of linear equations
\(
\begin{aligned}
& 2 \mathrm{x}_1-4 \mathrm{x}_2+\lambda \mathrm{x}_3=1 \\
& \mathrm{x}_1-6 \mathrm{x}_2+\mathrm{x}_3=2 \\
& \lambda \mathrm{x}_1-10 \mathrm{x}_2+4 \mathrm{x}_3=3
\end{aligned}
\)
is inconsistent for :
\(
\mathrm{D}=\left|\begin{array}{ccc}
2 & -4 & \lambda \\
1 & -6 & 1 \\
\lambda & -10 & 4
\end{array}\right|
\)
\(
\begin{aligned}
& =2(3 \lambda+2)(\lambda-3) \\
& D_1=-2(\lambda-3) \\
& D_2=-2(\lambda+1)(\lambda-3) \\
& D_3=-2(\lambda-3)
\end{aligned}
\)
When \(\lambda=3\), then
\(
\mathrm{D}=\mathrm{D}_1=\mathrm{D}_2=\mathrm{D}_3=0
\)
\(\Rightarrow\) Infinite many solution
when \(\lambda=-\frac{2}{3}\) then \(D_1, D_2, D_3\) none of them is zero so equations are inconsistant
\(
\therefore \lambda=-\frac{2}{3}
\)
If the system of linear equations
\(
\begin{aligned}
& x+y+3 z=0 \\
& x+3 y+k^2 z=0 \\
& 3 x+y+3 z=0
\end{aligned}
\)
has a non-zero solution \((x, y, z)\) for some \(k \in R\), then \(x+\left(\frac{y}{z}\right)\) is equal to :
\(
\begin{aligned}
& x+y+3 z=0 \dots(i) \\
& x+3 y+k^2 z=0 \dots(ii) \\
& 3 x+y+3 z=0 \dots(iii)
\end{aligned}
\)
\(
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 1 & 3 \\
1 & 3 & \mathrm{k}^2 \\
3 & 1 & 3
\end{array}\right|=0 \\
& \Rightarrow 9+3+3 \mathrm{k}^2-27-\mathrm{k}^2-3=0 \\
& \Rightarrow \mathrm{k}^2=9
\end{aligned}
\)
(i) – (iii) \(\Rightarrow-2 \mathrm{x}=0 \Rightarrow \mathrm{x}=0\)
Now from (i) \(\Rightarrow y+3 z=0\)
\(
\begin{aligned}
& \Rightarrow \frac{y}{z}=-3 \\
& x+\frac{y}{z}=-3
\end{aligned}
\)
If \(\mathrm{a}+\mathrm{x}=\mathrm{b}+\mathrm{y}=\mathrm{c}+\mathrm{z}+1\), where \(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}\), \(y, z\) are non-zero distinct real numbers, then \(\left|\begin{array}{lll}x & a+y & x+a \\ y & b+y & y+b \\ z & c+y & z+c\end{array}\right|\) is equal to :
\(
a+x=b+y=c+z+1
\)
\(
\left|\begin{array}{lll}
x & a+y & x+a \\
y & b+y & y+b \\
z & c+y & z+c
\end{array}\right| \quad C_3 \rightarrow C_3-C_1
\)
\(
\left|\begin{array}{lll}
x & a+y & a \\
y & b+y & b \\
z & c+y & c
\end{array}\right| \quad \quad C_2 \rightarrow C_2-C_3
\)
\(
\left|\begin{array}{ccc}
x & y & a \\
y & y & b \\
z & y & c
\end{array}\right| \quad R_3 \rightarrow R_3-R_1, R_2 \rightarrow R_2-R_1
\)
\(
\left|\begin{array}{ccc}
x & y & a \\
y-x & 0 & b-a \\
z-x & 0 & c-a
\end{array}\right|
\)
\(
\begin{aligned}
& =(-y)[(y-x)(c-a)-(b-a)(z-x)] \\
& =(-y)[(a-b)(c-a)+(a-b)(a-c-1)] \\
& =(-y)[(a-b)(c-a)+(a-b)(a-c)+b-a) \\
& =-y(b-a)=y(a-b)
\end{aligned}
\)
The values of \(\lambda\) and \(\mu\) for which the system of linear equations
\(
\begin{aligned}
& x+y+z=2 \\
& x+2 y+3 z=5 \\
& x+3 y+\lambda z=\mu
\end{aligned}
\)
has infinitely many solutions are, respectively
For infinite many solutions
\(
\mathrm{D}=\mathrm{D}_1=\mathrm{D}_2=\mathrm{D}_3=0
\)
Now \(D=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & \lambda\end{array}\right|=0\)
\(
\begin{aligned}
& 1 .(2 \lambda-9)-1 .(\lambda-3)+1 .(3-2)=0 \\
& \therefore \lambda=5
\end{aligned}
\)
Now \(D_1=\left|\begin{array}{lll}2 & 1 & 1 \\ 5 & 2 & 3 \\ \mu & 3 & 5\end{array}\right|=0\)
\(
\begin{aligned}
& 2(10-9)-1(25-3 \mu)+1(15-2 \mu)=0 \\
& \mu=8
\end{aligned}
\)
Let \(\mathrm{m}\) and \(\mathrm{M}\) be respectively the minimum and maximum values of
\(
\left|\begin{array}{ccc}
\cos ^2 x & 1+\sin ^2 x & \sin 2 x \\
1+\cos ^2 x & \sin ^2 x & \sin 2 x \\
\cos ^2 x & \sin ^2 x & 1+\sin 2 x
\end{array}\right|
\)
Then the ordered pair \((\mathrm{m}, \mathrm{M})\) is equal to
\(
\left|\begin{array}{ccc}
\cos ^2 x & 1+\sin ^2 x & \sin 2 x \\
1+\cos ^2 x & \sin ^2 x & \sin 2 x \\
\cos ^2 x & \sin ^2 x & 1+\sin 2 x
\end{array}\right|
\)
\(
\mathrm{R}_1 \rightarrow \mathrm{R}_1-\mathrm{R}_2, \mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_3
\)
\(
\left|\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 0 & -1 \\
\cos ^2 x & \sin ^2 x & 1+\sin 2 x
\end{array}\right|
\)
\(
\begin{aligned}
& =-1\left(\sin ^2 \mathrm{x}\right)-1\left(1+\sin 2 \mathrm{x}+\cos ^2 \mathrm{x}\right) \\
& =-\sin 2 \mathrm{x}-2 \\
& \mathrm{~m}=-3, \mathrm{M}=-1
\end{aligned}
\)
The sum of distinct values of \(\lambda\) for which the system of equations
\(
\begin{aligned}
& (\lambda-1) \mathrm{x}+(3 \lambda+1) \mathrm{y}+2 \lambda \mathrm{z}=0 \\
& (\lambda-1) \mathrm{x}+(4 \lambda-2) \mathrm{y}+(\lambda+3) \mathrm{z}=0 \\
& 2 \mathrm{x}+(3 \lambda+1) \mathrm{y}+3(\lambda-1) \mathrm{z}=0,
\end{aligned}
\)
has non-zero solutions, is
\(
\begin{aligned}
& (\lambda-1) \mathrm{x}+(3 \lambda+1) \mathrm{y}+2 \lambda \mathrm{z}=0 \\
& (\lambda-1) \mathrm{x}+(4 \lambda-2) \mathrm{y}+(\lambda+3) \mathrm{z}=0 \\
& 2 \mathrm{x}+(3 \lambda+1) \mathrm{y}+(3 \lambda-3) \mathrm{z}=0 \\
& \left|\begin{array}{ccc}
\lambda-1 & 3 \lambda+1 & 2 \lambda \\
\lambda-1 & 4 \lambda-2 & \lambda+3 \\
2 & 3 \lambda+1 & 3 \lambda-3
\end{array}\right|=0 \\
& \mathrm{R}_1 \rightarrow \mathrm{R}_1-\mathrm{R}_2 \& \mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_3 \\
& \left|\begin{array}{ccc}
0 & 3-\lambda & \lambda-3 \\
\lambda-3 & \lambda-3 & -2(\lambda-3) \\
2 & 3 \lambda+1 & 3 \lambda-3
\end{array}\right|=0 \\
& (\lambda-3)^2\left|\begin{array}{ccc}
0 & -1 & 1 \\
1 & 1 & -2 \\
2 & 3 \lambda+1 & 3 \lambda-3
\end{array}\right|=0 \\
& (\lambda-3)^2[(3 \lambda+1)+(3 \lambda-1)]=0 \\
& 6 \lambda(\lambda-3)^2=0 \Rightarrow \lambda=0,3 \\
& \text { Sum }=3 \\
&
\end{aligned}
\)
The least value of the product \(x y z\) for which the determinant \(\left|\begin{array}{ccc}\mathrm{x} & 1 & 1 \\ 1 & \mathrm{y} & 1 \\ 1 & 1 & \mathrm{z}\end{array}\right|\) is non-negative, is :
\(
\begin{aligned}
& \left|\begin{array}{ccc}
x & 1 & 1 \\
1 & y & 1 \\
1 & 1 & z
\end{array}\right| \geq 0 \\
& x y z-x-y-z+2 \geq 0
\end{aligned}
\)
\(
\begin{aligned}
& x y z+2 \geq x+y+z \geq 3(x y z)^{1 / 3} \\
& x y z+2-3(x y z)^{1 / 3} \geq 0 \\
& u t(x y z)=t^3 \\
& t^3-3 t+2 \geq 0 \\
& (t+2)(t-1)^2 \geq 0 \\
& {[t=-2] t^3=-8}
\end{aligned}
\)
\(
\text { If } f(\theta)=\left|\begin{array}{ccc}
1 & \cos \theta & 1 \\
-\sin \theta & 1 & -\cos \theta \\
-1 & \sin \theta & 1
\end{array}\right| \text { and }
\)
\(A\) and \(B\) are respectively the maximum and the minimum values of \(f(\theta)\), then (A, B) is equal to:
Let \(f(\theta)=\left|\begin{array}{ccc}1 & \cos \theta & 1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1\end{array}\right|\)
\(
\begin{aligned}
& =(1+\sin \theta \cos \theta)-\cos \theta(-\sin \theta-\cos \theta)+1\left(-\sin ^2 \theta+1\right) \\
& =1+\sin \theta \cos \theta+\sin \theta \cos \theta+\cos ^2 \theta-\sin ^2 \theta+1 \\
& =2+2 \sin \theta \cos \theta+\cos 2 \theta \\
& =2+\sin 2 \theta+\cos 2 \theta \dots(1)
\end{aligned}
\)
Now, the maximum value of (1) is \(2+\sqrt{1^2+1^2}=2+\sqrt{2}\) and the minimum value of (1) is
\(
2-\sqrt{1^2+1^2}=2-\sqrt{2} \text {. }
\)
If \(B\) is a \(3 \times 3\) matrix such that \(B^2=0\), then det. \(\left[(I+B)^{50}-50 B\right]\) is equal to:
\(
\begin{aligned}
& \operatorname{det}\left[(\mathrm{I}+\mathrm{B})^{50}-50 \mathrm{~B}\right] \\
& =\operatorname{det}\left[{ }^{50} \mathrm{C}_0 \mathrm{I}+{ }^{50} \mathrm{C}_1 \mathrm{~B}+{ }^{50} \mathrm{C}_2 \mathrm{~B}^2+{ }^{50} \mathrm{C}_3 \mathrm{~B}^3+\ldots\right. \\
& \left.\quad+{ }^{50} \mathrm{C}_{50} \mathrm{~B}^{50} \mathrm{~B}^{50}-50 \mathrm{~B}\right]
\end{aligned}
\)
{All terms having \(\mathrm{B}^{\mathrm{n}}, 2 \leq n \leq 50\)
will be zero because given that \(\mathrm{B}^2=0\) \}
\(
=\operatorname{det}[\mathrm{I}+50 \mathrm{~B}-50 \mathrm{~B}]=\operatorname{det}[\mathrm{I}]=1
\)
Let \(S=\left\{\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right): a_{i j} \in\{0,1,2\}, a_{11}=a_{22}\right\}\)
Then the number of non-singular matrices in the set \(\mathrm{S}\) is:
(d) The matrices in the form
\(
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], a_{i j} \in\{0,1,2\}, a_{11}=a_{12} \text { are }
\)
\(
\left[\begin{array}{cc}
0 & 0 / 1 / 2 \\
0 / 1 / 2 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 / 1 / 2 \\
0 / 1 / 2 & 1
\end{array}\right],\left[\begin{array}{cc}
2 & 0 / 1 / 2 \\
0 / 1 / 2 & 2
\end{array}\right]
\)
At any place, \(0 / 1 / 2\) means 0,1 or 2 will be the element at that place.
Hence there aretotal \(27=3 \times 3+3 \times 3+3 \times 3\) ) matrices of the above form. Out of which the matrices which are singular are
\(
\left[\begin{array}{cc}
0 & 0 / 1 / 2 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 / 2 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]
\)
Hence there are total \(7(=3+2+1+1)\) singular matrices. Therefore number of all non-singular matrices in the given form \(=27-7=20\)
Let \(A\), other than \(I\) or \(-I\), be a \(2 \times 2\) real matrix such that \(A^2=I\), \(I\) being the unit matrix. Let \(\operatorname{Tr}(A)\) be the sum of diagonal elements of \(A\).
Statement-1: \(\operatorname{Tr}(A)=0\)
Statement-2: \(\operatorname{det}(A)=-1\)
\(
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a^2+b c & a b+b d \\
a c+c d & b c+d^2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{aligned}
\)
\(
\begin{aligned}
& b(a+d)=0, b=0 \text { or } a=-d \dots(1)\\
& c(a+d)=0, c=0 \text { or } a=-d \dots(2) \\
& a^2+b c=1, b c+d^2=1 \dots(3)
\end{aligned}
\)
‘ \(a\) ‘ and ‘ \(d\) ‘ are diagonal elements \(a+d=0\) statement- 1 is correct.
Now, \(\operatorname{det}(A)=a d – b c\)
Now, from (3) \(a^2+b c=1\) and \(d^2+b c=1\)
So, \(a^2-d^2=0\)
Adding \(a^2+d^2+2 b c=2\)
\(\Rightarrow(a+d)^2-2 a d+2 b c=2\)
or \(0-2(a d-b c)=2\)
So, \(a d-b c=1 \Rightarrow \operatorname{det}(A)=-1\)
So, statement -2 is also true.
But statement -2 is not the correct explanation of statement-1.
Statement-1: Determinant of a skew-symmetric matrix of order 3 is zero.
Statement-2 : For any matrix \(A, \operatorname{det}(A)^T=\operatorname{det}(A)\) and \(\operatorname{det}(-A)=-\operatorname{det}(A)\).
Where det (B) denotes the determinant of matrix B. Then:
(d) Statement-1: Determinant of skew symmetric matrix of odd order is zero.
Statement-2 \(: \operatorname{det}\left(A^T\right)=\operatorname{det}(\mathrm{A})\).
\(\operatorname{det}(-\mathrm{A})=-(-1)^{\mathrm{n}} \operatorname{det}(\mathrm{A})\).
where \(\mathrm{A}\) is a \(n \times n\) order matrix.
Let \(A\) be a \(2 \times 2\) matrix with non-zero entries and let \(A^2=I\), where \(I\) is \(2 \times 2\) identity matrix. Define \(\operatorname{Tr}(A)=\) sum of diagonal elements of \(A\) and \(|A|=\) determinant of matrix \(A\).
Statement – 1: \(\operatorname{Tr}(A)=0\).
Statement -2: \(|A|=1\).
\(
\text { (b) Let } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { where a, b, c, d } \neq 0
\)
\(
A^2=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\)
\(
\Rightarrow A^2=\left(\begin{array}{ll}
a^2+b c & a b+b d \\
a c+c d & b c+d^2
\end{array}\right)
\)
\(
\begin{aligned}
& \Rightarrow a^2+b c=1, b c+d^2=1 \\
& a b+b d=a c+c d=0 \\
& c \neq 0 \text { and } b \neq 0 \Rightarrow a+d=0 \\
& |A|=a d-b c=-a^2-b c=-1
\end{aligned}
\)
Let \(A\) be \(a 2 \times 2\) matrix with real entries. Let \(I\) be the \(2 \times 2\) identity matrix. Denote by \(\operatorname{tr}(A)\), the sum of diagonal entries of \(a\). Assume that \(A^2=I\).
Statement-1: If \(A \neq I\) and \(A \neq-I\), then \(\operatorname{det}(A)=-1\)
Statement-2 : If \(A \neq I\) and \(A \neq-I\), then \(\operatorname{tr}(A) \neq 0\).
(d) Let \(A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\) then \(A^2=\mathrm{I}\)
\(
\Rightarrow a^2+b c=1 \text { and } a b+b d=0
\)
\(a c+c d=0\) and \(b c+d^2=1\)
From these four relations,
\(
a^2+b c=b c+d^2 \Rightarrow a^2=d^2
\)
and
\(
b(a+d)=0=c(a+d) \Rightarrow a=-d
\)
We can take \(a=1, b=0, c=0, d=-1\) as one possible set of values, then \(A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\)
Clearly \(A \neq I\) and \(A \neq-I\) and \(\operatorname{det} A=-1\)
\(\therefore\) Statement 1 is true.
Also if \(A \neq I\) then \(\operatorname{tr}(A)=0\)
\(\therefore\) Statement 2 is false.
Let \(A=\left|\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right|\). If \(\left|A^2\right|=25\), then \(|\alpha|\) equals
(a) Given \(A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]\) and \(\left|A^2\right|=25\)
\(
\begin{aligned}
& \therefore A^2=\left[\begin{array}{ccc}
5 & 5 \alpha & \alpha \\
0 & \alpha & 5 \alpha \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{ccc}
5 & 5 \alpha & \alpha \\
0 & \alpha & 5 \alpha \\
0 & 0 & 5
\end{array}\right] \\
& =\left[\begin{array}{ccc}
25 & 25 \alpha+5 \alpha^2 & 5 \alpha+25 \alpha^2+5 \alpha \\
0 & \alpha^2 & 5 \alpha^2+25 \alpha \\
0 & 0 & 25
\end{array}\right] \\
& \therefore\left|A^2\right|=25\left(25 \alpha^2\right) \\
& \therefore 25=25\left(25 \alpha^2\right) \Rightarrow|\alpha|=\frac{1}{5}
\end{aligned}
\)
If \(1, \omega, \omega^2\) are the cube roots of unity, then \(\Delta=\left|\begin{array}{ccc}1 & \omega^n & \omega^{2 n} \\ \omega^n & \omega^{2 n} & 1 \\ \omega^{2 n} & 1 & \omega^n\end{array}\right|\) is equal to
\(
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
1 & \omega^n & \omega^{2 n} \\
\omega^n & \omega^{2 n} & 1 \\
\omega^{2 n} & 1 & \omega^n
\end{array}\right| \\
& =1\left(\omega^{3 n}-1\right)-\omega^n\left(\omega^{2 n}-\omega^{2 n}\right)+\omega^{2 n}\left(\omega^n-\omega^{4 n}\right) \\
& =\omega^{3 n}-1-0+\omega^{3 n}-\omega^{6 n} \\
& =1-1+1-1=0\left[\because \omega^{3 n}=1\right]
\end{aligned}
\)
Let \(\mathrm{k}\) be an integer such that triangle with vertices \((\mathrm{k},-3 \mathrm{k}),(5, \mathrm{k})\) and \((-\mathrm{k}, 2)\) has area 28 sq. units. Then the orthocentre of this triangle is at the point :
(a) We have
\(
\begin{aligned}
& \quad \frac{1}{2}\left|\begin{array}{ccc}
\mathrm{k} & -3 \mathrm{k} & 1 \\
5 & \mathrm{k} & 1 \\
-\mathrm{k} & 2 & 1
\end{array}\right|=28 \\
& \Rightarrow 5 \mathrm{k}^2+13 \mathrm{k}-46=0 \\
& \text { or } 5 \mathrm{k}^2+13 \mathrm{k}+66=0 \\
& \text { Now, } 5 \mathrm{k}^2+13 \mathrm{k}-46=0 \\
& \Rightarrow \quad \mathrm{k}=\frac{-13 \pm \sqrt{1089}}{10} \\
& \therefore \quad \mathrm{k}=\frac{-23}{5} ; \mathrm{k}=2
\end{aligned}
\)
since \(\mathrm{k}\) is an integer, \(\therefore \mathrm{k}=2\)
Also \(5 k^2+13 k+66=0\)
\(
\Rightarrow \mathrm{k}=\frac{-13 \pm \sqrt{-1151}}{10}
\)
So no real solution exist
For orthocentre
\(
\begin{aligned}
& \mathrm{BH} \perp \mathrm{AC} \\
& \therefore \quad\left(\frac{\beta-2}{\alpha-5}\right)\left(\frac{8}{-4}\right)=-1 \\
& \Rightarrow \quad \alpha-2 \beta=1 \dots(a)
\end{aligned}
\)
Also \(\mathrm{CH} \perp \mathrm{AB}\)
\(
\begin{aligned}
& \therefore \quad\left(\frac{\beta-2}{\alpha+2}\right)\left(\frac{8}{3}\right)=-1 \\
& \Rightarrow \quad 3 \alpha+8 \beta=10 \dots(b)
\end{aligned}
\)
Solving (a) and (b), we get
\(
\alpha=2, \beta=\frac{1}{2}
\)
orthocentre is \(\left(2, \frac{1}{2}\right)\)
Let \(\omega\) be a complex number such that \(2 \omega+1=z\) where \(z=\) \(\sqrt{-3}\). If \(\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -\omega^2-1 & \omega^2 \\ 1 & \omega^2 & \omega^7\end{array}\right|=3 \mathrm{k}\), then \(\mathrm{k}\) is equal to :
(b) Given \(2 \omega+1=\mathrm{z}\);
\(
\begin{aligned}
& z=\sqrt{3} i \\
& \Rightarrow \omega=\frac{\sqrt{3} i-1}{2}
\end{aligned}
\)
\(\Rightarrow \omega\) is complex cube root of unity Applying \(\mathrm{R}_1 \rightarrow \mathrm{R}_1+\mathrm{R}_2+\mathrm{R}_3\)
\(
\begin{aligned}
& =\left|\begin{array}{ccc}
3 & 0 & 0 \\
1 & -\omega^2-1 & \omega^2 \\
1 & \omega^2 & \omega
\end{array}\right| \\
& =3(-1-\omega-\omega)=-3(1+2 \omega)=-3 \mathrm{z} \\
& \Rightarrow \mathrm{k}=-\mathrm{z}
\end{aligned}
\)
The number of distinct real roots of the equation, \(\left|\begin{array}{ccc}\cos x & \sin x & \sin x \\ \sin x & \cos x & \sin x \\ \sin x & \sin x & \cos x\end{array}\right|=0\) in the interval \(\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]\) is :
(c)
\(
\begin{aligned}
& \left|\begin{array}{lll}
\cos x & \sin x & \sin x \\
\sin x & \cos x & \sin x \\
\sin x & \sin x & \cos x
\end{array}\right|=0 \\
& R_1 \rightarrow R_1-R_2 \\
& R_2 \rightarrow R_2-R_3
\end{aligned}
\)
\(
\begin{aligned}
& \left|\begin{array}{ccc}
\cos x-\sin x & \sin x-\cos x & 0 \\
0 & \cos x-\sin x & \sin x-\cos x \\
\sin x & \sin x & \cos x
\end{array}\right|=0 \\
& C_2 \rightarrow C_2+C_3 \\
& \left|\begin{array}{ccc}
\cos x-\sin x & \sin x-\cos x & 0 \\
0 & 0 & \sin x-\cos x \\
\sin x & \sin x & \cos x
\end{array}\right|=0 \\
& \text { Expanding using second row }
\end{aligned}
\)
\(
\begin{aligned}
& 2 \sin x(\sin x-\cos x)^2=0 \\
& \sin x=0 \text { or } \sin x=\cos x \\
& x=0 \text { or } x=\frac{\pi}{4}
\end{aligned}
\)
If \(\alpha, \beta \neq 0\), and \(f(n)=\alpha^n+\beta^n\) and
\(
\left|\begin{array}{ccc}
3 & 1+f(1) & 1+f(2) \\
1+f(1) & 1+f(2) & 1+f(3) \\
1+f(2) & 1+f(3) & 1+f(4)
\end{array}\right|=K(1-\alpha)^2(1-\beta)^2(\alpha-\beta)^2
\)
then \(K\) is equal to:
\(
\begin{aligned}
& \left|\begin{array}{ccc}
3 & 1+f(1) & 1+f(2) \\
1+f(1) & 1+f(2) & 1+f(3) \\
1+f(2) & 1+f(3) & 1+f(4)
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1+1+1 & 1+\alpha+\beta & 1+\alpha^2+\beta^2 \\
1+\alpha+\beta & 1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 \\
1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 & 1+\alpha^4+\beta^4
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \beta \\
1 & \alpha^2 & \beta^2
\end{array}\right| \times\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \beta \\
1 & \alpha^2 & \beta^2
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \beta \\
1 & \alpha^2 & \beta^2
\end{array}\right|=[(1-\alpha)(1-\beta)(\alpha-\beta)]^2
\end{aligned}
\)
\(
\text { So, } K=1
\)
If \(\Delta_{\mathrm{r}}=\left|\begin{array}{ccc}\mathrm{r} & 2 \mathrm{r}-1 & 3 \mathrm{r}-2 \\ \frac{\mathrm{n}}{2} & \mathrm{n}-1 & \mathrm{a} \\ \frac{1}{2} \mathrm{n}(\mathrm{n}-1) & (\mathrm{n}-1)^2 & \frac{1}{2}(\mathrm{n}-1)(3 \mathrm{n}-4)\end{array}\right|\) then the value of \(\sum_{\mathrm{r}=1}^{\mathrm{n}-1} \Delta_{\mathrm{r}}\)
\(
\sum_{r=1}^{n-1} r=1+2+3+\ldots+(n-1)=\frac{n(n-1)}{2}
\)
\(
\sum_{r=1}^{n-1}(2 r-1)=1+3+5+\ldots+[2(n-1)-2]=(n-1)^2
\)
\(
\sum_{r=1}^{n-1}(3 r-2)=1+4+7+\ldots+(3 n-3-2)=\frac{(n-1)(3 n-4)}{2}
\)
\(
\therefore \sum_{r=1}^{n-1} \Delta_r=\left|\begin{array}{ccc}
\Sigma r & \Sigma(2 r-1) & \Sigma(3 r-2) \\
\frac{n}{2} & n-1 & a \\
\frac{n(n-1)}{2} & (n-1)^2 & \frac{(n-1)(3 n-4)}{2}
\end{array}\right|
\)
\(\sum_{r=1}^{n-1} \Delta_r\) consists of \((n-1)\) determinants in L.H.S. and in R.H.S every constituent of first row consists of \((n-1)\) elements and hence it can be splitted into sum of \((n-1)\) determinants.
\(
\therefore \sum_{r=1}^{n-1} \Delta_r=\left|\begin{array}{ccc}
\frac{n(n-1)}{2} & (n-1)^2 & \frac{(n-1)(3 n-4)}{2} \\
\frac{n}{2} & n-1 & a \\
\frac{n(n-1)}{2} & (n-1)^2 & \frac{(n-1)(3 n-4)}{2}=0
\end{array}\right|
\)
\(\left(\because \mathrm{R}_1\right.\) and \(\mathrm{R}_3\) are identical)
Hence, value of \(\sum_{r=1}^{n-1} \Delta_{\mathrm{r}}\) is independent of both ‘ \(a\) ‘ and ‘ \(n\) ‘.
If
\(
\left|\begin{array}{ccc}
\mathrm{a}^2 & \mathrm{~b}^2 & \mathrm{c}^2 \\
(\mathrm{a}+\lambda)^2 & (\mathrm{~b}+\lambda)^2 & (\mathrm{c}+\lambda)^2 \\
(\mathrm{a}-\lambda)^2 & (\mathrm{~b}-\lambda)^2 & (\mathrm{c}-\lambda)^2
\end{array}\right|=\mathrm{k} \lambda\left|\begin{array}{ccc}
\mathrm{a}^2 & \mathrm{~b}^2 & \mathrm{c}^2 \\
\mathrm{a} & \mathrm{b} & \mathrm{c} \\
1 & 1 & 1
\end{array}\right|, \lambda \neq 0
\)
then \(\mathrm{k}\) is equal to:
\(
\text { Let } \Delta=\left|\begin{array}{ccc}
a^2 & b^2 & c^2 \\
(a+\lambda)^2 & (b+\lambda)^2 & (c+\lambda)^2 \\
(a-\lambda)^2 & (b-\lambda)^2 & (c-\lambda)^2
\end{array}\right|
\)
\(
\text { Apply } R_2 \rightarrow R_2-R_3
\)
\(
\Delta=\left|\begin{array}{ccc}
a^2 & b^2 & c^2 \\
(a+\lambda)^2-(a-\lambda)^2 & (b+\lambda)^2-(b-\lambda)^2 & (c+\lambda)^2-(c-\lambda)^2 \\
(a-\lambda)^2 & (b-\lambda)^2 & (c-\lambda)^2
\end{array}\right|
\)
\(
=\left|\begin{array}{ccc}
a^2 & b^2 & c^2 \\
4 a \lambda & 4 b \lambda & 4 c \lambda \\
(a-\lambda)^2 & (b-\lambda)^2 & (c-\lambda)^2
\end{array}\right|
\)
\(
\left(\because(x+y)^2-(x-y)^2=4 x y\right)
\)
Taking out 4 common from \(\mathrm{R}_2\)
\(
=4\left|\begin{array}{ccc}
a^2 & b^2 & c^2 \\
a \lambda & b \lambda & c \lambda \\
a^2+\lambda^2-2 a \lambda & b^2+\lambda^2-2 b \lambda & c^2+\lambda^2-2 c \lambda
\end{array}\right|
\)
Apply \(R_3 \rightarrow\left[R_3-\left(R_1-2 R_2\right)\right]\)
\(
=4\left|\begin{array}{lll}
a^2 & b^2 & c^2 \\
a \lambda & b \lambda & c \lambda \\
\lambda^2 & \lambda^2 & \lambda^2
\end{array}\right|
\)
Taking out \(\lambda\) common from \(\mathrm{R}_2\) and \(\lambda^2\) from \(\mathrm{R}_3\).
\(
=4 \lambda\left(\lambda^2\right)\left|\begin{array}{ccc}
a^2 & b^2 & c^2 \\
a & b & c \\
1 & 1 & 1
\end{array}\right|
\)
\(
\begin{aligned}
& =k \lambda\left|\begin{array}{lll}
a^2 & b^2 & c^2 \\
a & b & c \\
1 & 1 & 1
\end{array}\right| \\
& \Rightarrow k=4 \lambda^2
\end{aligned}
\)
If \(a, b, c\) are sides of a scalene triangle, then the value of \(\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|\) is :
\(
\begin{aligned}
& \left|\begin{array}{ccc}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|=\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
b & c & a \\
c & a & b
\end{array}\right| \\
= & (a+b+c)\left|\begin{array}{ccc}
1 & 1 & 1 \\
b & c & a \\
c & a & b
\end{array}\right| \\
= & (a+b+c)\left|\begin{array}{ccc}
0 & 0 & 1 \\
b-c & c-a & a \\
c-a & a-b & b
\end{array}\right| \\
= & (a+b+c)\left[a b+b c+c a-a^2-b^2-c^2\right] \\
= & -(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]
\end{aligned}
\)
Since \(a, b, c\) are sides of \(a\) scalene triangle, therefore at least two of the \(a, b, c\) will be unequal.
\(
(a-b)^2+(b-c)^2+(c-a)^2>0
\)
Also \(a+b+c>0\)
\(
-(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]<0
\)
If \(a, b, c\), are non zero complex numbers satisfying \(a^2+b^2+c^2=0\) and
\(\left|\begin{array}{ccc}b^2+c^2 & a b & a c \\ a b & c^2+a^2 & b c \\ a c & b c & a^2+b^2\end{array}\right|=k a^2 b^2 c^2\), then \(k\) is equal to
Let \(\Delta=\left|\begin{array}{ccc}b^2+c^2 & a b & a c \\ a b & c^2+a^2 & b c \\ a c & b c & a^2+b^2\end{array}\right|\)
Multiply \(C_1\) by \(a, C_2\) by b and \(C_3\) by \(\mathrm{c}\) and hence divide by \(a b c\).
\(
=\frac{1}{a b c}\left|\begin{array}{ccc}
a\left(b^2+c^2\right) & a b^2 & a c^2 \\
a^2 b & b\left(c^2+a^2\right) & b c^2 \\
a^2 c & b^2 c & c\left(a^2+b^2\right)
\end{array}\right|
\)
Take out \(a, b, c\) common from \(R_1, R_2\) and \(R_3\) respectively.
\(
\Delta=\frac{a b c}{a b c}\left|\begin{array}{ccc}
b^2+c^2 & b^2 & c^2 \\
a^2 & c^2+a^2 & c^2 \\
a^2 & b^2 & a^2+b^2
\end{array}\right|
\)
Apply \(C_1 \rightarrow C_1-C_2-C_3\)
\(
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
0 & b^2 & c^2 \\
-2 c^2 & c^2+a^2 & c^2 \\
-2 b^2 & b^2 & a^2+b^2
\end{array}\right| \\
& =-2\left|\begin{array}{ccc}
0 & b^2 & c^2 \\
c^2 & c^2+a^2 & c^2 \\
b^2 & b^2 & a^2+b^2
\end{array}\right|
\end{aligned}
\)
Apply \(C_2-C_1\) and \(C_3-C_1\)
\(
\begin{aligned}
& =-2\left|\begin{array}{ccc}
0 & b^2 & c^2 \\
c^2 & a^2 & 0 \\
b^2 & 0 & a^2
\end{array}\right| \\
& =-2\left[-b^2\left(c^2 a^2\right)+c^2\left(-a^2 b^2\right)\right] \\
& =2 a^2 b^2 c^2+2 a^2 b^2 c^2=4 a^2 b^2 c^2 \\
& \text { But } \Delta=k a^2 b^2 c^2 \therefore k=4
\end{aligned}
\)
If \(\left|\begin{array}{ccc}-2 a & a+b & a+c \\ b+a & -2 b & b+c \\ c+a & b+c & -2 c\end{array}\right|=\alpha(a+b)(b+c)(c+a) \neq 0\) then \(\alpha\) is equal to
Let \(\Delta=\left|\begin{array}{ccc}-2 a & a+b & a+c \\ b+a & -2 b & b+c \\ c+a & b+c & -2 c\end{array}\right|\) Applying \(C_1+C_3\) and \(C_2+C_3\) \(\Delta=\left|\begin{array}{ccc}-a+c & 2 a+b+c & a+c \\ 2 b+a+c & -b+c & b+c \\ a-c & b-c & -2 c\end{array}\right|\) Now, applying \(R_1+R_3\) and \(R_2+R_3\)
\(
\Delta=\left|\begin{array}{ccc}
0 & 2(a+b) & a-c \\
2(a+b) & 0 & b-c \\
a-c & b-c & -2 c
\end{array}\right|
\)
On expanding, we get
\(
\begin{aligned}
\Delta= & -2(a+b)\{-2 c[2(a+b)] \\
& \quad-(a-c)(b-c)\} \\
& +(a-c)[2(a+b)(b-c)] \\
\Delta= & 8 \mathrm{c}(a+b)(a+b) \\
& \quad+4(a+b)(a-c)(b-c) \\
= & 4(a+b)\left[2 a c+2 b c+a b-b c-a c+c^2\right] \\
= & 4(a+b)\left[a c+b c+a b+c^2\right] \\
= & 4(a+b)[c(a+c)+b(a+c)] \\
= & 4(a+b)(b+c)(c+a) \\
= & \alpha(a+b)(b+c)(c+a)
\end{aligned}
\)
Hence, \(\alpha=4\)
The area of the triangle whose vertices are complex numbers \(z, i z, z+i z\) in the Argand diagram is
(b) Vertices of triangle in complex form is \(z, i z, z+i z\)
In cartesian form vertices are \((x, y),(-y, x)\) and \((x-y, x+y)\)
\(
\begin{aligned}
& \therefore \text { Area of triangle }=\frac{1}{2}\left|\begin{array}{ccc}
x & y & 1 \\
-y & x & 1 \\
x-y & x+y & 1
\end{array}\right| \\
& =\frac{1}{2}[x(x-x-y)-y(-y-x+y)+1 \\
& \left.\left(-y x-y^2-x^2+x y\right)\right]
\end{aligned}
\)
\(
=\frac{1}{2}\left[-x y+x y-y^2-x^2\right]=\frac{1}{2}\left(x^2+y^2\right)
\)
( \(\because\) Area can not be negative)
\(
=\frac{1}{2}|z|^2 \quad\left(\because z=x+i y,|z|^2=x^2+y^2\right)
\)
The area of the triangle formed by the lines joining the vertex of the parabola, \(x^2=8 y\), to the extremities of its latus rectum is
(b) Given parabola is \(x^2=8 y\)
\(
\Rightarrow 4 a=8 \Rightarrow a=2
\)
To find: Area of \(\triangle A B C\)
\(
\begin{aligned}
& A=(-2 a, a)=(-4,2) \\
& B=(2 a, a)=(4,2) \\
& \mathrm{C}=(0,0)
\end{aligned}
\)
\(
\therefore \text { Area }=\frac{1}{2}\left|\begin{array}{ccc}
-4 & 2 & 1 \\
4 & 2 & 1 \\
0 & 0 & 1
\end{array}\right|
\)
\(
\begin{aligned}
& =\frac{1}{2}[-4(2)-2(4)+1(0)] \\
& =\frac{-16}{2}=-8 \approx 8 \text { sq. unit } \\
& (\because \text { area cannot be negative) }
\end{aligned}
\)
Let \(a, b, c\) be such that \(b(a+c) \neq 0\) if
\(
\left|\begin{array}{ccc}
a & a+1 & a-1 \\
-b & b+1 & b-1 \\
c & c-1 & c+1
\end{array}\right|+\left|\begin{array}{ccc}
a+1 & b+1 & c-1 \\
a-1 & b-1 & c+1 \\
(-1)^{n+2} a & (-1)^{n+1} b & (-1)^n c
\end{array}\right|=0
\)
then the value of \(n\) is:
\(
\left|\begin{array}{ccc}
a & a+1 & a-1 \\
-b & b+1 & b-1 \\
c & c-1 & c+1
\end{array}\right|+
\)
\(
\left|\begin{array}{ccc}
a+1 & b+1 & c-1 \\
a-1 & b-1 & c+1 \\
(-1)^{n+2} a & (-1)^{n+1} b & (-1)^n c
\end{array}\right|=0
\)
\(
\Rightarrow\left|\begin{array}{ccc}
a & a+1 & a-1 \\
-b & b+1 & b-1 \\
c & c-1 & c+1
\end{array}\right|+\left|\begin{array}{ccc}
a+1 & a-1 & (-1)^{n+2} a \\
b+1 & b-1 & (-1)^{n+1} b \\
c-1 & c+1 & (-1)^n c
\end{array}\right|=0
\)
(Taking transpose of second determinant)
\(
C_1 \Leftrightarrow C_3
\)
\(
\Rightarrow\left|\begin{array}{ccc}
a & a+1 & a-1 \\
-b & b+1 & b-1 \\
c & c-1 & c+1
\end{array}\right|-\left|\begin{array}{ccc}
(-1)^{n+2} a & a-1 & a+1 \\
(-1)^{n+2}(-b) & b-1 & b+1 \\
(-1)^{n+2} c & c+1 & c-1
\end{array}\right|=0
\)
\(
C_2 \Leftrightarrow C_3
\)
\(
\Rightarrow\left|\begin{array}{ccc}
a & a+1 & a-1 \\
-b & b+1 & b-1 \\
c & c-1 & c+1
\end{array}\right|+(-1)^{n+2}\left|\begin{array}{ccc}
a & a+1 & a-1 \\
-b & b+1 & b-1 \\
c & c-1 & c+1
\end{array}\right|=0
\)
\(
\Rightarrow\left[1+(-1)^{n+2}\right]\left|\begin{array}{ccc}
a & a+1 & a-1 \\
-b & b+1 & b-1 \\
c & c-1 & c+1
\end{array}\right|=0
\)
\(
C_2-C_1, C_3-C_1
\)
\(
\Rightarrow\left[1+(-1)^{n+2}\right]\left|\begin{array}{ccc}
a & 1 & -1 \\
-b & 2 b+1 & 2 b-1 \\
c & -1 & 1
\end{array}\right|=0; R_1+R_3
\)
\(
\begin{aligned}
& \Rightarrow\left[1+(-1)^{n+2}\right]\left|\begin{array}{ccc}
a+c & 0 & 0 \\
-b & 2 b+1 & 2 b-1 \\
c & -1 & 1
\end{array}\right|=0 \\
& \Rightarrow\left[1+(-1)^{n+2}\right](a+c)(2 b+1+2 b-1)=0 \\
& \Rightarrow 4 b(a+c)\left[1+(-1)^{n+2}\right]=0 \\
& \Rightarrow 1+(-1)^{n+2}=0 \text { as } b(a+c) \neq 0
\end{aligned}
\)
\(\Rightarrow n\) should be an odd integer.
If \(D=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|\) for \(x \neq 0, y \neq 0\), then \(\mathrm{D}\) is
(d) Given, \(D=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|\)
Apply \(R_2 \rightarrow R_2-R_1\) and \(R \rightarrow R_3-R_1\)
\(
\therefore D=\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & x & 0 \\
0 & 0 & y
\end{array}\right|=x y
\)
Hence, \(D\) is divisible by both \(x\) and \(y\)
If \(a_1, a_2, a_3, \ldots \ldots \ldots, a_n, \ldots \ldots\) are in G. P., then the determinant
\(
\Delta=\left|\begin{array}{ccc}
\log a_n & \log a_{n+1} & \log a_{n+2} \\
\log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\
\log a_{n+6} & \log a_{n+7} & \log a_{n+8}
\end{array}\right|
\)
is equal to
\(\because a_1, a_2, a_3, \ldots \ldots\) are in G.P.
\(\therefore\) Using \(a_n=a r^{n-1}\), we get the given determinant, as
\(
\left|\begin{array}{ccc}
\log a r^{n-1} & \log a r^n & \log a r^{n+1} \\
\log a r^{n+2} & \log a r^{n+3} & \log a r^{n+4} \\
\log a r^{n+5} & \log a r^{n+6} & \log a r^{n+7}
\end{array}\right|
\)
Operating \(C_3-C_2\) and \(C_2-C_1\) and using
\(
\log m-\log n=\log \frac{m}{n} \text { we get }
\)
\(
=\left|\begin{array}{lll}
\log a r^{n-1} & \log r & \log r \\
\log a r^{n+2} & \log r & \log r \\
\log a r^{n+5} & \log r & \log r
\end{array}\right|
\)
\(=0\) (two columns being identical)
If \(a^2+b^2+c^2=-2\) and
\(
\mathbf{f}(\mathrm{x})=\left|\begin{array}{ccc}
1+a^2 x & \left(1+b^2\right) x & \left(1+c^2\right) x \\
\left(1+a^2\right) x & 1+b^2 x & \left(1+c^2\right) x \\
\left(1+a^2\right) x & \left(1+b^2\right) x & 1+c^2 x
\end{array}\right|
\)
then \(f(x)\) is a polynomial of degree
\(
\text { Applying, } C_1 \rightarrow C_1+C_2+C_3 \text { we get }
\)
\(
f(x)=\left|\begin{array}{ccc}
1+\left(a^2+b^2+c^2+2\right) x & \left(1+b^2\right) x & \left(1+c^2\right) x \\
1+\left(a^2+b^2+c^2+2\right) x & 1+b^2 x & \left(1+c^2 x\right) \\
1+\left(a^2+b^2+c^2+2\right) x & \left(1+b^2\right) x & 1+c^2 x
\end{array}\right|
\)
\(
=\left|\begin{array}{ccc}
1 & \left(1+b^2\right) x & \left(1+c^2\right) x \\
1 & 1+b^2 x & \left(1+c^2 x\right) \\
1 & \left(1+b^2\right) x & 1+c^2 x
\end{array}\right|
\)
[As given that \(a^2+b^2+c^2=-2\) ]
\(
\therefore a^2+b^2+c^2+2=0
\)
Applying \(R_1 \rightarrow R_1-R_2, R_2 \rightarrow R_2-R_3\)
\(
\therefore f(x)=\left|\begin{array}{ccc}
0 & x-1 & 0 \\
0 & 1-x & x-1 \\
1 & \left(1+b^2\right) x & 1+c^2 x
\end{array}\right|
\)
\(
f(x)=(x-1)^2
\)
Hence degree \(=2\).
If \(a_1, a_2, a_3, \ldots \ldots, a_n, \ldots\). are in G.P., then the value of the determinant
\(
\left|\begin{array}{ccc}
\log a_n & \log a_{n+1} & \log a_{n+2} \\
\log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\
\log a_{n+6} & \log a_{n+7} & \log a_{n+8}
\end{array}\right|
\)
is
(d) Let \(r\) be the common ratio, then
\(
\left|\begin{array}{ccc}
\log a_n & \log a_{n+1} & \log a_{n+2} \\
\log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\
\log a_{n+6} & \log a_{n+7} & \log a_{n+8}
\end{array}\right|
\)
\(
=\left|\begin{array}{ccc}
\log a_1 r^{n-1} & \log a_1 r^n & \log a_1 r^{n+1} \\
\log a_1 r^{n+2} & \log a_1 r^{n+3} & \log a_1 r^{n+4} \\
\log a_1 r^{n+5} & \log a_1 r^{n+6} & \log a_1 r^{n+7}
\end{array}\right|
\)
\(
=\left|\begin{array}{lll}
\log a_1+(n-1) \log r & \log a_1+n \log r & \log a_1+(n+1) \log r \\
\log a_1+(n+2) \log r & \log a_1+(n+3) \log r & \log a_1+(n+4) \log r \\
\log a_1+(n+5) \log r & \log a_1+(n+6) \log r & \log a_2+(n+7) \log r
\end{array}\right|
\)
\(
\left.=0 \quad \text { Apply } c_2 \rightarrow c_2-\frac{1}{2} c_1-\frac{1}{2} c_3\right]
\)
If \(a>0\) and discriminant of \(a x^2+2 b x+c\) is \(-\mathrm{ve}\), then
\(
\left|\begin{array}{ccc}
a & b & a x+b \\
b & c & b x+c \\
a x+b & b x+c & 0
\end{array}\right|
\)
is equal to
\(
\text { We have }\left|\begin{array}{ccc}
a & b & a x+b \\
b & c & b x+c \\
a x+b & b x+c & 0
\end{array}\right|
\)
\(
\begin{aligned}
& \text { By } R_3 \rightarrow R_3-\left(x R_1+R_2\right) \\
& =\left|\begin{array}{ccc}
a & b & a x+b \\
b & c & b x+c \\
0 & 0 & -\left(a x^2+2 b x+c\right)
\end{array}\right| \\
& =\left(a x^2+2 b x+c\right)\left(b^2-a c\right)=(+)(-)=-\mathrm{ve} .
\end{aligned}
\)
\(l, m, n\) are the \(p^{t h}, q^{\text {th }}\) and \(r^{\text {th }}\) term of a G. P. all positive,
\(
\text { then }\left|\begin{array}{lll}
\log l & p & 1 \\
\log m & q & 1 \\
\log n & r & 1
\end{array}\right| \text { equals }
\)
(d)
\(
\begin{aligned}
& l=\mathrm{AR}^{p-1} \Rightarrow \log 1=\log A+(p-1) \log R \\
& m=\mathrm{AR}^{q-1} \Rightarrow \log m=\log A+(q-1) \log \mathrm{R} \\
& n=\mathrm{AR}^{r-1} \Rightarrow \log n=\log A+(r-1) \log \mathrm{R}
\end{aligned}
\)
Now,
\(
\left|\begin{array}{lll}
\log l & p & 1 \\
\log m & q & 1 \\
\log n & r & 1
\end{array}\right|=\left|\begin{array}{lll}
\log A+(p-1) \log R & p & 1 \\
\log A+(q-1) \log R & q & 1 \\
\log A+(r-1) \log R & r & 1
\end{array}\right|
\)
Operating
\(
\begin{aligned}
& \mathrm{C}_1-(\log \mathrm{R}) \mathrm{C}_2+(\log \mathrm{R}-\log \mathrm{A}) \mathrm{C}_3 \\
& =\left|\begin{array}{lll}
0 & p & 1 \\
0 & q & 1 \\
0 & r & 1
\end{array}\right|=0
\end{aligned}
\)
If \(A=\left[\begin{array}{cc}2 & -3 \\ -4 & 1\end{array}\right]\), then \(\operatorname{adj}\left(3 A^2+12 A\right)\) is equal to :
(c)
\(
\begin{aligned}
& \text { We have } A=\left[\begin{array}{cc}
2 & -3 \\
-4 & 1
\end{array}\right] \\
& \Rightarrow A^2=\left[\begin{array}{cc}
16 & -9 \\
-12 & 13
\end{array}\right] \\
& \Rightarrow 3 A^2=\left[\begin{array}{cc}
48 & -27 \\
-36 & 39
\end{array}\right] \\
& \text { Also } 12 A=\left[\begin{array}{cc}
24 & -36 \\
-48 & 12
\end{array}\right] \\
& \therefore 3 A^2+12 A=\left[\begin{array}{cc}
48 & -27 \\
-36 & 39
\end{array}\right]+\left[\begin{array}{cc}
24 & -36 \\
-48 & 12
\end{array}\right]=\left[\begin{array}{cc}
72 & -63 \\
-84 & 51
\end{array}\right] \\
& \operatorname{adj}\left(3 A^2+12 A\right)=\left[\begin{array}{ll}
51 & 63 \\
84 & 72
\end{array}\right]
\end{aligned}
\)
Let \(A\) be any \(3 \times 3\) invertible matrix. Then which one of the following is not always true?
Consider the properties of matrices.
\(
\begin{aligned}
A^{-1} & =\frac{1}{|A|} \cdot \operatorname{adj}(A) \\
\operatorname{adj}(A) & =|A| A^{-1} \dots(1)
\end{aligned}
\)
Also,
\(
|\operatorname{adj}(A)|=|A|^{n-1}=|A|^2 \dots(2)
\)
From equations (1) and (2).
\(
\operatorname{adj}(\operatorname{adj}(A))=|A|^2(\operatorname{adj}(A))^{-1}
\)
So, 1,2 and 3 are correct option and option 4 occurs only when \(|A|=1\).
Hence, the question is asking for the relation which is not true, so option 4 is correct.
If \(\mathrm{A}=\left[\begin{array}{cc}5 \mathrm{a} & -\mathrm{b} \\ 3 & 2\end{array}\right]\) and \(\mathrm{A}\) adj \(\mathrm{A}=\mathrm{AA}^{\mathrm{T}}\), then \(5 \mathrm{a}+\mathrm{b}\) is equal to:
(d)
\(
\begin{aligned}
& \mathrm{A}(\operatorname{adj} \mathrm{A})=\mathrm{AA}^{\mathrm{T}} \\
& \Rightarrow \mathrm{A}^{-1} \mathrm{~A}(\operatorname{adj} \mathrm{A})=\mathrm{A}^{-1} \mathrm{AA}^{\mathrm{T}}
\end{aligned}
\)
\(
\operatorname{adj} A=A^T
\)
\(
\Rightarrow\left\lfloor\begin{array}{cc}
2 & b \\
-3 & 5 a
\end{array}\right\rfloor=\left\lfloor\begin{array}{cc}
5 a & 3 \\
-b & 2
\end{array}\right\rfloor
\)
\(
\begin{aligned}
& \Rightarrow \mathrm{a}=\frac{2}{5} \text { and } \mathrm{b}=3 \\
& \Rightarrow 5 \mathrm{a}+\mathrm{b}=5
\end{aligned}
\)
Let \(A\) be a \(3 \times 3\) matrix such that \(A^2-5 A+71=0\).
Statement-I: \(\mathrm{A}^{-1}=\frac{1}{7}(51-\mathrm{A})\).
Statement II : the polynomial \(\mathrm{A}^3-2 \mathrm{~A}^2-3 \mathrm{~A}+1\) can be reduced to \(5(\mathrm{~A}-4 \mathrm{I})\).
Then:
(a)
\(
\begin{aligned}
& A^2-5 A=-7 I \\
& A A A^{-1}-5 A A^{-1}=-7 I A^{-1} \\
& A I-5 I=-7 A^{-1} \\
& A-5 I=-7 A^{-1} \\
& A^{-1}=\frac{1}{7}(5 I-A) \\
& A^3-2 A^2-3 A+I \\
& =A(5 A-7 I)-2 A^2-3 A+I \\
& =5 A^2-7 A-2 A^2-3 A+I \\
& =3 A^2-10 A+I \\
& =3(5 A-7 I)-10 A+I \\
& =5 A-20 I \\
& =5(A-4 I)
\end{aligned}
\)
If \(A\) is a \(3 \times 3\) matrix such that \(|5 \cdot \operatorname{adj} A|=5\), then \(|A|\) is equal to:
\(
|5 \cdot \operatorname{adj} A|=5 \Rightarrow 5^3 \cdot|A|^{3-1}=5
\)
\(
\Rightarrow 125|\mathrm{~A}|^2=5 \Rightarrow|\mathrm{A}|= \pm \frac{1}{5}
\)
If \(A\) is an \(3 \times 3\) non-singular matrix such that \(A A^{\prime}=A^{\prime} A\) and \(B=A^{-1} A^{\prime}\), then BB’ equals:
(d)
\(
B B^{\prime}=B\left(A^{-1} A^{\prime}\right)^{\prime}=B\left(A^{\prime}\right)^{\prime}\left(A^{-1}\right)^{\prime}
\)
\(
\begin{aligned}
& =B A\left(A^{-1}\right)^{\prime} \\
& =\left(A^{-1} A^{\prime}\right)\left(A\left(A^{-1}\right)^{\prime}\right) \\
& =A^{-1} A \cdot A^{\prime} \cdot\left(A^{-1}\right)^{\prime} \quad\left\{\text { as } A A^{\prime}=A^{\prime} A\right\} \\
& =I\left(A^{-1} A\right)^{\prime}=I \cdot I=I^2=I
\end{aligned}
\)
You cannot copy content of this page