Multiple choice questions with one correct answer
0 of 50 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 50 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If \((1+i)^{2 n}+(1-i)^{2 n}=-2^{n+1}\) (where, \(i=\sqrt{-1}\) ) for all those \(n\), which are
\(
\begin{aligned}
& \text { In }(1+i)^{2 n}+(1-i)^{2 n} \\
& =\left\{(1+i)^2\right\}^n+\left\{(1-i)^2\right\}^n \\
& =\left(1+i^2+2 i\right)^n+\left(1+i^2-2 i\right)^n \\
& =(1-1+2 i)^n+(1-1-2 i)^n
\end{aligned}
\)
\(
=2^n i^n+i^n(-2)^n=\mathrm{i}^n
\)
For all values of n the given equation does not satisfy.
If \(i=\sqrt{-1}\) and \(n \in N\), then \(i^n+i^{n+1}+i^{n+2}+i^{n+3}\) is equal to
We have,
\(
i^n+i^{n+1}+i^{n+2}+i^{n+3}=i^n\left(1+i+i^2+i^3\right)=i^n(1+i-1-i)=0
\)
If \(i=\sqrt{-1}\), then \(\left\{i^n+i^{-n}: n \in Z\right\}\) is equal to
We have the following cases:
CASEI
When \(n=4 m, m \in Z\)
In this case, we have
\(
\begin{aligned}
& i^n=i^{4 m}=\left(i^4\right)^m=1 \text { and } i^{-n}=\frac{1}{i^n}=\frac{1}{1}=1 \\
\therefore \quad & i^n+i^{-n}=2
\end{aligned}
\)
CASE II
When \(n=4 m+1, m \in Z\) In this case, we have
\(
\begin{aligned}
& i^n=i^{4 m+1}=\left(i^4\right)^m i^1=i \text { and, } i^{-n}=\frac{1}{i^n}=\frac{1}{i}=-i \\
\therefore \quad & i^n+i^{-n}=i-i=0
\end{aligned}
\)
CASE III
When \(n=4 m+2, m \in Z\)
In this case, we have
\(
\begin{aligned}
& i^n=i^{4 m+2}=\left(i^4\right)^m i^2=i^2=-1 \\
\therefore \quad & i^n+i^n=(-1)+(-1)=-2
\end{aligned}
\)
CASE IV
When \(n=4 m+3, m \in Z\)
In this case, we have
\(
\begin{aligned}
& \quad i^n=i^{4 m+3}=\left(i^4\right)^m i^3=i^3=-i \text { and, } i^{-n}=\frac{1}{i^n}=\frac{1}{i^3}=i \\
& \therefore \quad i^n+i^{-n}=(-i)+(i)=0 \\
& \text { Hence, } S=(-2,0,2)
\end{aligned}
\)
The value of \(\sum_{n=1}^{13}\left(i^n+i^{n+1}\right)\), where \(i=\sqrt{-1}\) equals
We have,
\(
\begin{aligned}
& \sum_{n=1}^{13}\left(i^n+i^{n+1}\right) \\
& =\sum_{n=1}^{13} i^n+\sum_{n=1}^{13} i^{n+1} \\
& =i\left(\frac{1-i^{13}}{1-i}\right)+i^2\left(\frac{1-i^{13}}{1-i}\right)=i \frac{(1-i)}{1-i}-\left(\frac{1-i}{1-i}\right)=i-1
\end{aligned}
\)
If \(n\) is an odd integer, then \((1+i)^{6 n}+(1-i)\) is equal to
We have,
\(
\begin{aligned}
& (1+i)^{6 n}+(1-i)^{6 n}=\left\{(1+i)^2\right\}^{3 n}+\left\{(1-i)^2\right\}^{3 n} \\
& =(2 i)^{3 n}+(-2 i)^{3 n}=2^{3 n}\left\{i^{3 n}+(-i)^{3 n}\right\} \\
& =2^{3 n}\left\{i^{3 n}-i^{3 n}\right\}=0
\end{aligned}
\)
Which of the following is correct?
The notion of linear ordering, greater than or less than, does not apply to complex numbers.
Thus the statement \(Z_1<Z_2\) and \(Z_1>Z_2\) have no meaning unless \(Z_1\) and \(Z_2\) are both real.
Let \(z_1, z_2\) be two complex numbers such that \(z_1+z_2\) and \(z_1 z_2\) both are real, then
Given, \(z_1+z_2\) and \(z_1 z_2\) are real.
Let, \(z_1=a+i b, z_2=c+i d\)
Since, \(z_1+z_2\) is real,
\(
\begin{array}{lll}
\Rightarrow & (a+c)+i(b+d) \text { is real } & \\
\Rightarrow b+d & =0 & \left[\mathrm{z}_1+\mathrm{z}_2 \text { is real }\right] \\
\Rightarrow \quad b & =-d & \ldots \ldots(1)
\end{array}
\)
Also, \(z_1 z_2\) is real,
\(
\begin{aligned}
& =(a+i b) \cdot(c+i d) \text { is real } \\
& =a c+i a d+i b c+i^2 b d \text { is real } \\
& =a c+i(a d+b c)-b d \text { is real } \\
& =(a c-b d)+i(a d+b c) \text { is real } \\
& \Rightarrow \quad a d+b c=0 \\
& \Rightarrow a(-b)+b c=0 \\
& \Rightarrow \quad a=c \dots(2)
\end{aligned}
\)
Therefore,
\(
\begin{aligned}
z_1 & =a+i b & & \\
& =c-i d & & {[\text { From }(1) \text { and }(2)] } \\
& =\overline{z_2} & & {\left[\because z_2=c+i d\right] }
\end{aligned}
\)
If the complex numbers \(z_1, z_2, z_3\) are in AP, then they lie on a
By definition of the arithmetic progression we know that if \(a, b, c\) are in A.P then, \(2 b=a+c\).
So, if \(z_1, z_2, z_3\) are in A.P then,
\(
\begin{gathered}
2 z_2=z_1+z_3 \\
z_2=\frac{z_1+z_3}{2}
\end{gathered}
\)
It means that \(z_2\) is the mid point of \(z_1, z_3\).
Therefore, \(z_1, z_2, z_3\) lie on a straight line.
The smallest positive integer \(n\) for which \(\left(\frac{1+i}{1-i}\right)^n=1\) is
Given,
\(
\left(\frac{1+i}{1-i}\right)^n=1
\)
Multiply and divide numerator by \((1+i)^n\) we get
\(
\begin{aligned}
& \left(\frac{(1+i)(1+i)}{(1+i)(1-i)}\right)^n=1 \\
& \Rightarrow\left(\frac{1+i^2+2 i}{1-i^2}\right)^n=1\left(\because i^2=-1\right) \\
& \Rightarrow\left(\frac{2 i}{2}\right)^n=1 \\
& \Rightarrow i^n=1
\end{aligned}
\)
Hence, the smallest value of \(n\) for this is 4 .
The locus of the point \(z\) satisfying arg \(\left(\frac{z-1}{z+1}\right)=k\), where \(k\) is non-zero real, is
We have, \(\arg \left(\frac{z-1}{z+1}\right)=k,(k \neq 0)\)
Put \(z=x+i y\), we get
\(
\begin{aligned}
& \arg \left(\frac{x-1+i y}{x+1+i y}\right)=k \\
& \Rightarrow \arg \left[\frac{(x-1+i y)(x+1-i y)}{(x+1+i y)(x+1-i y)}\right]=k \\
& \Rightarrow \arg \left[\frac{\left(x^2-1\right)+i y(2)+y^2}{(x+1)^2+y^2}\right]=k \\
& \Rightarrow \arg \left[\frac{x^2+y^2-1+2 i y}{(x+1)^2+y^2}\right]=k \\
& \Rightarrow \arg \left[\frac{x^2+y^2-1+2 i y}{(x+1)^2+y^2}\right]=k \\
& \Rightarrow \frac{2 y}{x^2+y^2-1}=k \\
& {\left[\because \arg (z)=\tan ^{-1} \frac{y}{x}\right]} \\
& \Rightarrow\left(x^2+y^2\right) k-k-2 y=0 \\
& \Rightarrow k x^2+k y^2-2 y-k=0 \\
& \Rightarrow x^2+y^2-\frac{2 y}{k}-1=0
\end{aligned}
\)
Which represent a circle of centre \(\left(0, \frac{1}{k}\right)\) i.e. on \(y\)-axis.
If \(\sqrt{x+i y}= \pm(a+i b)\), then \(\sqrt{-x-i y}\) is equal to
\(
\begin{aligned}
& \sqrt{x+i y}=a+i b \\
& \Rightarrow x=a^2-b^2 \\
& y=2 a b \\
& \sqrt{-x-i y} \\
& =\sqrt{b^2-a^2-2 a b i} \\
& =\sqrt{(b-i a)^2}= \pm(b-i a)
\end{aligned}
\)
The locus of the points \(z\) satisfying the condition \(\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{3}\) is a
Given, \(\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{3}\)
\(
\begin{aligned}
& \text { Let } z=x+i y \therefore \frac{z-1}{z+1}=\frac{x+i y-1}{x+i y+1} \\
& =\frac{x^2+y^2-1+2 i y}{(x+1)^2+y^2} \\
& \therefore \arg \left(\frac{z-1}{z+1}\right)=\tan ^{-1} \frac{2 y}{x^2+y^2-1}=\frac{\pi}{3} \\
& \Rightarrow \frac{2 y}{x^2+y^2-1}=\tan \frac{\pi}{3}=\sqrt{3} \\
& \Rightarrow x^2+y^2-1=\frac{2}{\sqrt{3}} y \\
& \Rightarrow x^2+y^2-\frac{2}{\sqrt{3}} y-1=0
\end{aligned}
\)
Which is the equation of circle.
If \((\sqrt{3}+i)^{10}=a+i b\), then \(a\) and \(b\) are respectively
We have,
\(
\begin{aligned}
& (\sqrt{3}+i)^{10}=a+i b \\
& \Rightarrow i^{10}(1-i \sqrt{3})^{10}=a+i b \\
& \Rightarrow-(-2 \omega)^{10}=a+i b \quad\left[\because \omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right] \\
& \Rightarrow-2^{10} \omega^{10}=a+i b \\
& \Rightarrow-2^{10} \omega=a+i b \\
& \Rightarrow-2^{10}\left(\frac{-1}{2}+i \frac{\sqrt{3}}{2}\right)=a+i b \\
& \Rightarrow 2^9-2^9 \sqrt{3} i=a+i b \Rightarrow a=2^9 \text { and } \\
& b=-2^9 \sqrt{3}
\end{aligned}
\)
If \(\operatorname{Re}\left(\frac{z-8 i}{z+6}\right)=0\), then \(z\) lies on the curve
If \(z\) is a complex number then
\(
2+\bar{z}=2 \operatorname{Re}(z)
\)
Eqn of a circle in complex form \(\quad|z|^2+\alpha \bar{z}+\bar{\alpha} z+k=0\)
center \(=-\alpha\), radius \(\sqrt{|\alpha|^2-k}\)
\(
2 \operatorname{Re}\left(\frac{z-8 i}{z+6}\right)=0
\)
\(
\frac{z-8 i}{z+6}+\overline {\left(\frac{z-8 i}{z+6}\right)}
\)
\(
\frac{z-8 i}{z+6}+\frac{\bar{z}+8 i}{\bar{z}+6}=0
\)
\(
\frac{2 z \bar{z}-8 i \bar{z}-48 i+8 i z+6 \bar{z}+48 i}{(z+6)(\bar{z}+6)}=0
\)
\(
\begin{aligned}
& z \bar{z}=|z|^2 \\
& 2|z|^2+z(6+8 i)+\bar{z}(6-8 i)=0 \\
& |z|^2+(3+4 i) z+(3-4 i) \bar{z}=0 \\
& 3-4 i=\alpha \\
& |z|^2+\bar{\alpha} z+\alpha \bar{z}=0
\end{aligned}
\)
\(
\begin{aligned}
\text { center }= & -\alpha, \quad-3+4 i \\
& \text { point form } (-3,4)
\end{aligned}
\)
\(
\gamma=\sqrt{|\alpha|^2}=\sqrt{3^2+4^2}=5
\)
\(
(x+3)^2+(y-4)^2=25 \Rightarrow x^2+y^2+6 x-8 y+25=25
\)
\(
x^2+y^2+6 x-8 y=0
\)
If \(z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\), then
\(
\begin{aligned}
& z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5 \\
& z=\left(e^{\frac{i \pi}{6}}\right)^5+\left(e^{\frac{-i \pi}{6}}\right)^5 \\
&=e^{i \frac{5 \pi}{6}}+e^{-\frac{5 \pi}{6}} \\
&=\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}+\cos \frac{5 \pi}{6}-i \sin \frac{5 \pi}{6} \\
& z=2 \cos \frac{5 \pi}{6} \\
& \operatorname{Im}(z)=0~ \& \operatorname{Re}(z)<0
\end{aligned}
\)
If \(z=x+i y\) and \(z=\frac{1-i z}{z-i}\), then \(|w|=1\) implies that in the complex plane
We have,
\(
|\mathrm{w}|=1 \Longrightarrow\left|\frac{1-\mathrm{iz}}{\mathrm{z}-\mathrm{i}}\right|=1
\)
\(
\begin{aligned}
& |1-i z|=|z-i|(1) \\
& |1-i(x+i y)|=|x+i y-i|, \text { where } z=x+i y
\end{aligned}
\)
\(
|1+y-i x|=|x+i(y-1)|
\)
\(
\begin{aligned}
& \sqrt{(1+y)^2+(-x)^2}=\sqrt{x^2+(y-1)^1} \\
& (1+y)^2+x^2=x^2+(y-1)^2 \\
& y=0
\end{aligned}
\)
\(
\Longrightarrow \mathrm{z}={x}+{i \times 0}={x} \text {, which is purely real. }
\)
Let \(3-i\) and \(2+i\) be affixes of two points \(A\) and \(B\) in the argand plane and \(P\) represents the complex number \(z=x+i y\). Then, the locus of \(P\) if \(|z-3+i|=|z-2-i|\) is
We have a complex number \(z=x+i y\)
\(
\begin{aligned}
& \text { and }|z-3+i|=|z-2-i| \\
& \Rightarrow|x+i y-3+i|=|x+i y-2-i| \\
& \Rightarrow(x-3)^2+(y+1)^2=(x-2)^2+(y-1)^2 \\
& \Rightarrow x^3-6 x+9+y^2+2 y+1 \\
& =x^2-4 x+4+y^2-2 y+1 \\
& \Rightarrow-2 x+4 y+5=0 \ldots(i)
\end{aligned}
\)
So, it represent a line
Point \(A(3,-1)\) and \(B(2,1)\)
So, mid-point of \(A B=\left(\frac{5}{2}, 0\right)\)
\(
m_1=\text { slope of } A B=\frac{1-(-1)}{2-3}=-2
\)
Point \(\left(\frac{5}{2}, 0\right)\) satisfies the equation \(-2 x+4 y+5=0\)
and slope of line \(=m_2=\frac{1}{2}\)
Now, \(m_1 m_2=-2 \times \frac{1}{2}=-1\)
So, line \(-2 x+4 y+5\) is perpendicular to \(A B\). Hence, locus of point \(p\) is the perpendicular bisector of \(A B\)
\(P O Q\) is a straight line through the origin \(O . P\) and \(Q\) represent the complex numbers \(a+i b\) and \(c+i d\) respectively and \(O P=O Q\). Then, which one of the following is true?
\(
a+i b=c+i d
\)
\(
\frac{a+c}{2}=0
\)
\(
\frac{b+d}{2}=0
\)
\(
a+c=b+d
\)
\(
\begin{aligned}
& \arg (c+i d)=0 \\
& \arg (a+i b)=\pi
\end{aligned}
\)
\(
\arg (a+i b)-\arg (c+i d)=\pi
\)
\(
|a+i b|=|c+i d|
\)
If \(z_1=a+i b\) and \(z_2=c+i d\) are complex numbers such that \(\left|z_1\right|=\left|z_2\right|=1\) and \(\operatorname{Re}\left(z_1 \bar{z}_2\right)=0\), then the pair of complex numbers \(w_1=a+i c\) and \(w_2=b+i d\) satisfy
Since, \(z_1=a+i b\) and \(z_2=c+i d\)
\(
\Rightarrow\left|z_1\right|^2=a^2+b^2=1 \text { and }\left|z_2\right|^2=c^2+d^2=1 \dots(i)
\)
Also, \(\operatorname{Re}\left(z_1 \overline{z_2}\right)=0 \Rightarrow a c+b d=0\)
\(
\Rightarrow \quad \frac{a}{b}=-\frac{d}{c}=\lambda \dots(ii)
\)
From Eqs. (i) and (ii), \(b^2 \lambda^2+b^2=c^2+\lambda^2 c^2\)
\(
\Rightarrow b^2=c^2 \text { and } a^2=d^2
\)
Also, given \(w_1=a+i c\) and \(w_2=b+i d\)
Now,
\(
\begin{aligned}
& \left|w_1\right|=\sqrt{a^2+c^2}=\sqrt{a^2+b^2}=1 \\
& \left|w_2\right|=\sqrt{b^2+d^2}=\sqrt{a^2+b^2}=1
\end{aligned}
\)
and
\(
\begin{aligned}
& \operatorname{Re}\left(w_1 \overline{w_2}\right)=a b+c d=(b \lambda) b+c(-\lambda c) \\
& =\lambda\left(b^2-c^2\right)=0 \quad \text { [from Eq. (i)] }
\end{aligned}
\)
Let \(z_1\) and \(z_2\) be two complex numbers such that \(z_1 \neq z_2\) and \(\left|z_1\right|=\left|z_2\right|\). If \(z_1\) has positive real part and \(z_2\) has negative imaginary part, then \(\frac{z_1+z_2}{z_1-z_2}\)
Given, \(\left|z_1\right|=\left|z_2\right|\),
Now, \(\quad \frac{z_1+z_2}{z_1-z_2} \times \frac{\overline{z_1}-\overline{z_2}}{\overline{z_1}-\overline{z_2}}\)
\(
=\frac{z_1 \overline{z_1}-z_1 \overline{z_2}+z_2 \overline{z_1}-z_2 \overline{z_2}}{\left|z_1-z_2\right|^2}
\)
\(
=\frac{\left|z_1\right|^2+\left(z_2 \overline{z_1}-z_1 \overline{z_2}\right)-\left|z_2\right|^2}{\left|z_1-z_2\right|^2}
\)
\(
=\frac{z_2 \overline{z_1}-z_1 \overline{z_2}}{\left|z_1-z_2\right|^2} \quad\left(\because\left|z_1\right|^2=\left|z_2\right|^2\right)
\)
As, we know \(z-\bar{z}=2 i \operatorname{Im}(z)\)
\(
\begin{aligned}
& \therefore \quad z_2 \overline{z_1}-z_1 \overline{z_2}=2 i \operatorname{Im}\left(z_2 \overline{z_1}\right) \\
& \therefore \quad \frac{z_1+z_2}{z_1-z_2}=\frac{2 i \operatorname{Im}\left(z_2 \overline{z_1}\right)}{\left|z_1-z_2\right|^2} \\
&
\end{aligned}
\)
Which is purely imaginary
The value of \(\sum_{k=1}^6\left(\sin \frac{2 \pi k}{7}-i \cos \frac{2 \pi k}{7}\right)\) is
\(
\sin \frac{2 \pi k}{7}-i \cos \frac{2 \pi k}{7}
\)
\(
=-\mathrm{i}\left(\cos \frac{2 \pi \mathrm{k}}{7}+\mathrm{i} \sin \frac{2 \pi \mathrm{k}}{7}\right)
\)
\(
=-\mathrm{ie}^{2 \pi \mathrm{k} / 7 \mathrm{i}}
\)
\(
\begin{aligned}
& \Rightarrow \mathrm{S}=\sum_{\mathrm{k}=1}^6-\mathrm{i}\left(\mathrm{e}^{2 \pi \mathrm{k} / \mathrm{i}}\right) \\
& =-\mathrm{i}\left(\sum_{\mathrm{k}=1}^6 \mathrm{e}^{\mathrm{i} 2 \pi \mathrm{k} / 7}\right)
\end{aligned}
\)
\(
=-\mathrm{i} \text { [sum of roots of the equation }\left.x^6+x^5+x^4+x^3+x^2+1=0\right]
\)
\(
\begin{aligned}
& =-\mathrm{i}(-1) \\
& =\mathrm{i}
\end{aligned}
\)
The equation \(\bar{b} z+b \bar{z}=c\), where \(b\) is a non-zero complex constant and \(c\) is a real number, represents
Key concept:- If \(z=a+i b\).
\(
\bar{z}=a-i b . \quad \text { \{conjugate }\}
\)
\(
\begin{aligned}
& \bar{b} z+b \bar{z}=c . \\
& b=u+i v, \bar{b}=u-i v . \\
& z=x+i y, \bar{z}=x-i y . \\
&(u-i v)(x+i y)+(u+i v)(x-i y)=0 .
\end{aligned}
\)
\(
\begin{aligned}
& 2 u x+2 v y=c \\
& u x+v y=\frac{c}{2} .
\end{aligned}
\)
This is in the form of
\(
a x+b y=c .
\)
is a straight line
If \(\left|a_i\right|<1, \lambda_i \geq 0\) for \(i=1,2, \ldots. n\) and \(\lambda_1+\lambda_2+\ldots.\lambda_n=1\), then the value of \(\left|\lambda_1 a_1+\lambda_2 a_2+\ldots. +\lambda_n a_n\right|\) is
\(
\left|a_i\right|<1 \text { and } \lambda_i \geqslant 0 \text {, and } \lambda_1+\lambda_2+\cdots+\lambda_n=1
\)
\(
\left|\lambda_1 a_1+\lambda_2 a_2+\cdots+\lambda_n a_n\right| \leqslant\left|\lambda_1 a_1\right|+\left|\lambda_2 a_2\right|+\cdots+\left|\lambda_n a_n\right|
\)
\(
\begin{aligned}
& \leqslant\left|\lambda_1\right|\left|a_1\right|+\left|\lambda_2\right|\left|a_2\right|+\cdots+\left|\lambda_n\right|\left|a_n\right| \\
& \leqslant\left|\lambda_1\right|(1)+\left|\lambda_2\right|(1)+\cdots+\left|\lambda_n\right|(1) \\
& =\left|\lambda_1\right|+\left|\lambda_2\right|+\cdots+\left|\lambda_n\right| \\
& =\left|\lambda_1+\lambda_2+\cdots+\lambda_n\right|, \lambda_i ‘s \text { are +ve } \\
& =|1|=1
\end{aligned}
\)
\(
\text { so, }\left|\lambda a_1+\lambda_2 a_2+\cdots+\lambda_n a_n\right| \leqslant 1
\)
For any two complex numbers \(z_1, z_2\) and any two real numbers \(a\) and \(b, \quad\left|a z_1-b z_2\right|^2+\left|b z_1+a z_2\right|^2=\)
\(
\begin{aligned}
& \left|a z_1-b z_2\right|^2+\left|b z_1+a z_2\right|^2=\left(a z_1-b z_2\right)\left(a \overline{z_1}-b \overline{z_2}\right)+\left(a z_1+b z_2\right)\left(a \overline{z_1}+b \overline{z_2}\right) \\
& =a^2\left|z_1\right|^2-a b z_1 \overline{z_2}-a b z_2 \overline{z_1}+b^2\left|z_2\right|^2+a^2\left|z_1\right|^2+a b z_1 \overline{z_2}+a b z_2 \overline{z_2}+b^2\left|z_2\right|^2 \\
& \Rightarrow\left|a z_1-b z_2\right|^2+\left|b z_1+a z_2\right|^2=\left(a^2+b^2\right)\left(\left|z_1\right|^2+\left|z_2\right|^2\right)
\end{aligned}
\)
If \(i=\sqrt{-1}\), the number of values of \(i^n+i^{-n}\) for different \(n \in z\) is
If \(\mathrm{n}=0\) we get the answer as 2 .
If \(\mathrm{n}\) is even and \(\mathrm{n}\) is simply a multiple of 2 but not a multiple of 4 , we get the answer as -2 . if \(\mathrm{n}\) is odd,
Let \(\mathrm{n}=3\) we get
\(
\begin{aligned}
& -\mathrm{i}-\frac{1}{\mathrm{i}} \\
& =\frac{1-1}{\mathrm{i}} \\
& =0 \\
& \mathrm{n}=5 \text { we get } \\
& \mathrm{i}+\frac{1}{\mathrm{i}} \\
& =0
\end{aligned}
\)
Hence in total there are only 3 values,
\(
-2,0,2
\)
If \(a>0\) and \(b<0\), then \(\sqrt{a} \sqrt{b}\) is equal to (where, \(i=\sqrt{-1}\) )
In this question we have been given two conditions \(a>0\) and \(b<0\).
Hence we need to find \(\sqrt{a} \sqrt{b}\).
Now \(b<0\), which means that the values are negative, hence we can write \(\sqrt{b}\) as \(\sqrt{|b| \cdot i}\).
i.e. \(\sqrt{(-b)}=\sqrt{|b|(-1)}=i \sqrt{|b|}\), this is formed because \(\mathrm{b}\) is negative.
We know that \(\mathrm{a}>0\). Hence, \(\sqrt{a}\) can be written as such. Thus, we can write \(\sqrt{a} \sqrt{b}\) as,
\(
\sqrt{a} \sqrt{b}=\sqrt{a} \sqrt{|b|} \cdot i
\)
We got, \(\sqrt{b}=\sqrt{|b|} \cdot i\)
Thus simplifying the above expression we get,
\(
\sqrt{a} \sqrt{b}=\sqrt{a|b|} \cdot i
\)
Thus we got the value of \(\sqrt{a} \sqrt{b}\) as \(\sqrt{a|b|} \cdot i\).
Consider the following statements.
\(S_1:-6=2 i \times 3 i=\sqrt{(-4)} \times \sqrt{(-9)}\) (where, \(i=\sqrt{-1}\) )
\(
\begin{aligned}
& S_2: \sqrt{(-4)} \times \sqrt{(-9)}=\sqrt{(-4) \times(-9)} \\
& S_3: \sqrt{(-4) \times(-9)}=\sqrt{36} \\
& S_4: \sqrt{36}=6
\end{aligned}
\)
Of these statements, the incorrect one is
\(
\begin{aligned}
& \mathrm{S}_1=\sqrt{-4} \times \sqrt{-9} \\
& =\sqrt{-1} \times \sqrt{4} \times \sqrt{-1} \times \sqrt{9} \\
& =\sqrt{-1} \times 2 \times \mathrm{i} \times 3 \\
& =2 \mathrm{i} \times 3 \mathrm{i} \\
& =6 \mathrm{i}^2=-6 \text { is true } \\
& \mathrm{S}_2=\sqrt{(-4) \times(-9)} \\
& =\sqrt{36}=\sqrt{4 \times 9} \neq \sqrt{4} \times \sqrt{9} \neq \sqrt{-4} \times \sqrt{-9} \text { since } \\
& \sqrt{-4} \times \sqrt{-9}=2 \mathrm{i} \times 3 \mathrm{i}=6 \mathrm{i}^2=-6
\end{aligned}
\)
Hence \(\mathrm{S}_2\) is not true.
\(S_3=\sqrt{(-4) \times(-9)}=\sqrt{36}\) is true.
\(S_4=\sqrt{36}=\sqrt{6 \times 6}=6\) is true
The value of \(\sum_{n=0}^{50} i^{(2 n+1) !}(\) where, \(i=\sqrt{-1})\) is
\(
\begin{aligned}
& \sum_{n=0}^{50} i^{(2 n+1) !}=i^{1 !}+i^{3 !}+i^{5 !}+\ldots . i^{101 !} \\
& \quad=i+i^6+\left(i^{4 m}+i^{4 m}+\ldots .49 \text { times }\right) \\
& \quad=i-1+49 \\
& \quad=48+i
\end{aligned}
\)
The value of \(\sum_{r=-3}^{1003} i^r(\) where \(i=\sqrt{-1})\) is
\(
\begin{gathered}
\sum_{r=-3}^{1003} i^r=i^{-3}+i^{-2}+i^{-1}+i^0+i^{1}+i^2+i^3+i^4+\cdots +i^{1003} \\
\end{gathered}
\)
\(
=\frac{1}{i^3}+\frac{1}{i^2}+\frac{1}{i}+1+i-1-i+1+\ldots . .+i^{1003}
\)
\(
\begin{aligned}
& \Rightarrow-\frac{1}{i}+(-1)+\frac{1}{i}+1+i-1-i+1+\ldots i^{1001}+i^{1002}+i^{1003} \\
&
\end{aligned}
\)
\(
\Rightarrow \quad\left(i^4\right)^{250} \cdot i+\left(i^4\right)^{250} \cdot i^2+\left(i^4\right)^{250} \cdot i^3
\)
\(
\Rightarrow \quad i+i^2+i^3 \Rightarrow i-1-i=-1
\)
The digit in the unit’s place of \((153)^{98}\) is
153 has 3 in the unit’s place.
\(153^2\) has 9 in the unit’s place.
\(153^3\) has 7 in the unit’s place.
\(153^4\) has 1 in the unit’s place.
\(154^5\) has 3 in the unit’s place.
From next, the digit in the unit’s place gets repeated. So the unit’s place can be either 3 or 9 or 7 or 1 .
\(
(153)^{98}=(153)^{(4 \times 24)+2}=(153)^{(4 \times 24)} \times(153)^2 .
\)
The digit in the unit’s place of \((153)^{(4 \times 24)}\) is 1 and that in \(\left(153^2\right)\) is 9 .
Therefore the digit in the unit’s place of \((153)^{(4 \times 24)} \times(153)^2\) is 9 .
Therefore, the digit in the unit’s place of \((153)^{98}\) is 9 .
The digit in the unit’s place of \((141414)^{12121}\) is
We are required to find the digit in unit’s place of \((141414)^{12121}\)
Since the unit digit of 141414 is 4 , we will divide the index with 4 for the remainder.
Upon dividing 12121 with 4, we get quotient as 303 and the remainder is 1.
Now, we can write the index using the division algorithm as: dividend = quotient \(\times\) divisor + remainder (i.e., \(a=\) bq + r) as: \(12121=303(4)+1\)
Therefore, \((141414)^{12121}=(141414)^{303(4)+1}\)
It can also be written as: \((141414)^{303(4)+1}=\left(141414^4\right)^{303}(141414)^1\)
Now, we only need the unit place of 141414 , therefore, we can write the above equation as: \(\left(4^4\right)^{303}(4)^1\)
Now, the unit digits in various powers of 4 can be written as: \(4^1=4,4^2=6,4^3=4,4^4=6\) and so on. Hence, we can write the equation \(\left(4^4\right)^{303}(4)^1\) as \((6)^{303}(4)\).
Now, we know that for every power of 6 , the unit digit is always 6 . Hence, we can write \((6)^{303}(4)\) as \(6 \times 4=24\) and the digit at unit place is 4 .
Find the value of \(1+i^2+i^4+i^6+\ldots+i^{2 n}\), where \(i=\sqrt{-1}\) and \(n \in N\). Assume n is odd.
\(\because 1+i^2+i^4+i^6+\ldots+i^{2 n}=1-1+1-1+\ldots+(-1)^n\)
Case I: If \(n\) is odd, then
\(
1+i^2+i^4+i^6+\ldots+i^{2 n}=1-1+1-1+\ldots+1-1=0
\)
Case II: If \(n\) is even, then
\(
1+i^2+i^4+i^6+\ldots+i^{2 n}=1-1+1-1+\ldots+1=1
\)
If \(a=\frac{1+i}{\sqrt{2}}\), where \(i=\sqrt{-1}\), then find the value of \(a^{1929}\).
\(
\begin{aligned}
a^2=\left(\frac{1+i}{\sqrt{2}}\right)^2 & =\left(\frac{1+i^2+2 i}{2}\right) \\
& =\left(\frac{1-1+2 i}{2}\right)=i \\
a^{1929} & =a \cdot a^{1928}=a \cdot\left(a^2\right)^{964}=a(i)^{964} \\
& =a(i)^{4 \times 241}=a \cdot\left(i^4\right)^{241}=a
\end{aligned}
\)
Find the value of \(\sum_{n=1}^{13}\left(i^n+i^{n+1}\right)\) (where, \(i=\sqrt{-1}\) )
\(
\sum_{n=1}^{13}\left(i^n+i^{n+1}\right)=\sum_{n=1}^{13} i^n+\sum_{n=1}^{13} i^{n+1}=(i+0)+\left(i^2+0\right)
\)
\(=i-1 \left[\begin{array}{l}
\because \sum_{n=2}^{13} i^n=0 \text { and } \sum_{n=2}^{13} i^{n+1}=0 \\
\text { (three sets of four consecutive powers of } i \text { ) }
\end{array}\right]
\)
Find the value of \(\sum_{n=0}^{100} i^{n !}\) (where, \(i=\sqrt{-1}\) ).
\(n !\) is divisible by \(4, \forall n \geq 4\).
\(
\begin{aligned}
\therefore \sum_{n=4}^{100} i^{n !} & =\sum_{n=1}^{97} i^{(n+3) !} \\
& =i^0+i^0+i^0+\ldots 97 \text { times }=97 \dots(i)
\end{aligned}
\)
\(
\begin{aligned}
\therefore \sum_{n=0}^{100} i^{n !} & =\sum_{n=0}^3 i^{n !}+\sum_{n=4}^{100} i^{n !} \\
& =i^{0 !}+i^{1 !}+i^{2 !}+i^{3 !}+97
\end{aligned}
\)
[from Eq. (i)]
\(
\begin{aligned}
& =i^1+i^1+i^2+i^6+97=i+i-1-1+97 \\
& =95+2 i
\end{aligned}
\)
Common roots of the equations \(z^3+2 z^2+2 z+1=0\) and \(z^{1985}+z^{100}+1=0\) are
The first equation may be written as
\(
(z+1)(z+z+1)=0:
\)
its roots are \(-1, \omega\) and \(\omega^2\).
The root \(z=-1\) does not satisfy the second equation but \(z=\omega\) and \(z=\omega^2\) satisfy it as \(\omega^{3 n}=1\) Hence and \(\omega\) and \(\omega^2\) are the common roots.
Explanation;
\(
\begin{aligned}
& z^3+2 z^2+2 z+1=0 \\
& z^{1985}+z^{100}+1=0
\end{aligned}
\)
We know that \(1+\omega+\omega^2=0, \omega^3=1\) check to be root,
\(
\begin{aligned}
& \text { (1) } \omega^3+2 \omega^2+2 \omega+1 \\
& =1+\omega+\omega^2+1+\omega+\omega^2=0+0=0 \\
& \text { (2) } \omega^{1985}+\omega^{100}+1 \\
& \omega^2+\omega+1=0
\end{aligned}
\)
\(\omega\) is a common root check \(\omega^2\) to be a root
\(
\begin{aligned}
& \text { (1) } \omega^6+2 \omega^4+2 \omega^2+1 \\
& =\left(\omega^3\right)^2+2 \omega\left(\omega^3\right)+2 \omega^2+1 \\
& =1+\omega+\omega^2+1+\omega+\omega^2=0 \\
& \text { (2) }=\omega^{3970}+\omega^{200}+1 \\
& =\omega+\omega^2+1=0
\end{aligned}
\)
\(\omega^2\) is a common root
If \(z_1\) and \(z_2\) are two complex numbers such that \(\left|\frac{z_1-z_2}{1-\bar{z}_1 z_2}\right|=1\), then which one of the following is not true?
\(
\text { Given: }\left|\frac{z_1-z_2}{1-\bar{z}_1 z_2}\right|=1 \Rightarrow \frac{\left|z_1-z_2\right|}{1-\bar{z}_1 z_2 \mid}=1 \Rightarrow\left|z_1-z_2\right|=\left|1-\bar{z}_1 z_2\right|
\)
\(
\text { Squaring both sides }\left|z_1-z_2\right|^2=\left|1-\bar{z}_1 z_2\right|^2
\)
\(
\left(z_1-z_2\right)\left(\bar{z}_1-\bar{z}_2\right)=\left(1-\overline{z_1} z_2\right)\left(1-z_1 \bar{z}_2\right)\left[\because(z)^2=z \cdot \bar{z}\right]
\)
\(
\begin{aligned}
& \Rightarrow\left|z_1\right|^2+\left|z_2\right|^2=1+\left|z_1\right|^2\left|z_2\right|^2 \\
& \Rightarrow 1-\left|z_1\right|^2-\left|z_2\right|^2+\left|z_1\right|^2\left|z_2\right|^2=0 \\
& \Rightarrow\left(1-\left|z_1\right|^2\right)\left(1-\left|z_2\right|^2\right)=0 \Rightarrow\left|z_1\right|=1,\left|z_2\right|=1
\end{aligned}
\)
The points representing cube roots of unity
The cube roots of unity are given by \(A(1,0), B(-1 / 2,\sqrt{3} / 2, C(-1 / 2,-\sqrt{3} / 2)\)
The value for each of \(A B, B C\) and \(C A\) is \(\sqrt{3}\) Hence these points represent an equilateral triangle
If \(z_1\) and \(z_2\) are two complex numbers such that \(\left|\frac{z_1-z_2}{z_1+z_2}\right|=1\), then
\(
\left|\frac{z_1-z_2}{z_1+z_2}\right|
\)
Replace \(z_1=i k z_2\) in the above equation and solve it you will get 1.
If \(z_1, z_2\) are two complex numbers such that \(\left|\frac{z_1-z_2}{z_1+z_2}\right|=1\) and \(i z_1=k z_2\) where \(k \in R\), then the angle between \(z_1-z_2\) and \(z_1+z_2\) is
\(
\text { Given: }\left|\frac{z_1-z_2}{z_1+z_2}\right|=1
\)
\(
\Rightarrow \frac{\left|z_1-z_2\right|}{\left|z_1+z_2\right|}=1 \Rightarrow\left|z_1-z_2\right|=\left|z_1+z_2\right|
\)
\(
\Rightarrow\left|\frac{z_1}{z_2}-1\right|=\left|\frac{z_1}{z_2}+1\right|
\)
\(
\text { squaring: }\left|\frac{z_1}{z_2}-1\right|^2=\left|\frac{z_1}{z_2}+1\right|^2
\)
\(
\Rightarrow\left|\frac{z_1}{z_2}\right|^2+1-2 \operatorname{Re}\left(\frac{z_1}{z_2}\right)=\left|\frac{z_1}{z_2}\right|^2+1+2 \operatorname{Re}\left(\frac{z_1}{z_2}\right)
\)
\(
\Rightarrow 4 \operatorname{Re}\left(\frac{z_1}{z_2}\right)=0 \Rightarrow \frac{z_1}{z_2} \text { is purely imagnary } \Rightarrow \frac{i z_1}{z_2}=k, k \in \mathbb{R}
\)
\(
\text { let } \theta \text { be the angle between } z_1-z_2 \text { and } z_1+z_2
\)
\(
\theta=\operatorname{Arg}\left(\frac{z_1-z_2}{z_1+z_2}\right)=\operatorname{Arg}\left(\frac{\frac{z_1}{z_2}-1}{\frac{z_1}{z_2}+1}\right)
\)
\(
=\operatorname{Arg}\left(\frac{-i k-1}{-i k+1}\right)=\operatorname{Arg}\left(\frac{1+i k}{-1+i k}\right)
\)
\(
=\operatorname{Arg}\left(\frac{(1+i k)(1+i k)}{(-1+i k)(1+i k)}\right)=\operatorname{Arg}\left(\frac{1-k^2+2 i k}{-k^2-1}\right)=\operatorname{Arg}\left(\frac{k^2-1-2 i k}{k^2+1}\right)
\)
\(
\text { so, } \theta=\tan ^{-1}\left(\frac{-2 k}{k^2-1}\right)=\tan ^{-1}\left(\frac{2 k}{1-k^2}\right)
\)
If \(n\) is a positive integer greater than unity and \(z\) is a complex number satisfying the equation \(z^n=(z+1)^n\), then
\(
\begin{aligned}
& z^n=(z+1)^n \\
& \frac{z^n}{(z+1)^n}=1 \\
& \left(\frac{z}{z+1}\right)^n=1 \\
& \left(\frac{z}{z+1}\right)=(1)^{1 / n}{\text {th }} \text { root of unity }
\end{aligned}
\)
\(
\begin{gathered}
\frac{|z|}{|z+1|}=1 \Rightarrow \quad|z|^2=|z+1|^2 \\
(z \bar{z}=(z+1)(\overline{z+1}) \\
(x+i y)(x-i y)=((x+1)+i y) \cdot((x+1)-i y)
\end{gathered}
\)
\(
x=-\frac{1}{2}
\)
Let
\(
\begin{aligned}
z & =x+i y \\
\bar{z} & =x-i y
\end{aligned}
\)
\(
\operatorname{Re}(z)<0
\)
as \(x=-\frac{1}{2}\)
If \(n\) is a positive integer greater than unity and \(z\) is a complex number satisfying the equation \(z^n=(z+1)^n\), then
\(
\begin{aligned}
\frac{z}{1+z}=1^{1 / n} \Rightarrow\left|\frac{z}{1+z}\right|=1 & \Rightarrow|z|^2=|1+z|^2 \\
& \Rightarrow|z|^2=1+|z|^2+2 \operatorname{Re}(z)
\end{aligned}
\)
let \(z=x+i y \Rightarrow 2 x+1=0 \Rightarrow x=-\frac{1}{2}\) \(y\) can take any real value. So, none of the options is correct.
If at least one value of the complex number \(z=x+i y\) satisfy the condition \(|z+\sqrt{2}|=\sqrt{a^2-3 a+2}\) and the inequality \(|z+i \sqrt{2}|<a\), then
Let \(\mathrm{z}=\mathrm{x}+\) iy be a complex number satisfying the given condition. then \(\mathrm{a}^2-3 \mathrm{a}+2=|\mathrm{z}+\sqrt{2}|=|\mathrm{z}+\mathrm{i} \sqrt{2}-\mathrm{i} \sqrt{2}+\sqrt{2}|\) \(\Rightarrow \mathrm{a}^2-3 \mathrm{a}+2 \leq|\mathrm{z}+\mathrm{i} \sqrt{2}|+\sqrt{2}|1-\mathrm{i}|<\mathrm{a}^2+2 \Rightarrow \mathrm{a}>0\)
Since \(\mathrm{a}^2-3 \mathrm{a}+2=|\mathrm{z}+\sqrt{2}|\) represents a circle with center at \(\mathrm{A}(-\sqrt{2}, 0)\) and radius \(\sqrt{a^2-3 a+2}\)
and \(|z+i \sqrt{2}|<a^2\) represents the interior of the circle with center at \(B(0, \sqrt{2})\) and radius \(a\).
Thus there will be a complex number satisfying the given condition and the given inequality if the distance \(A B\) is less than the sum or difference of the two radii of 2 circles. i.e.
\(
\Rightarrow \sqrt{(-\sqrt{2}-0)^2+(0+\sqrt{2})^2}<\sqrt{a^2-3 a+2} \pm a \Rightarrow 2 \pm a<\sqrt{a^2-3 a+2}
\)
Square both sides to get, \(-\mathrm{a}<-2\) or \(7 \mathrm{a}<-2 \Rightarrow \mathrm{a}>2, \quad \mathrm{a}<\frac{-2}{7}\)
But \(\mathrm{a}>0\) thus \(\mathrm{a}>2\)
Given \(z\) is a complex number with modulus 1 . Then, the equation \(\left(\frac{1+i a}{1-i a}\right)^4=z\) has
\(
\begin{aligned}
& \left(\frac{1+i a}{1-i a}\right)^4=z \\
& \left(\frac{-i(i-a)}{-i(i+a)}\right)^4=z \\
& \left(\frac{a-i}{a+i}\right)^4=z \\
& \left|\frac{a-i}{a+i}\right|^4=|z|=1 \\
& |a-i|^4=|a+i|^4 \\
& |a-i|=|a+i|
\end{aligned}
\)
\(\therefore\) a lies on the perpendicular bisector of \(\mathrm{i}\) and \(-\mathrm{i}\). a lies on real axis. Hence the roots all are real and distinct.
The centre of a regular polygon of \(n\) sides is located at the point \(z=0\), and one of its vertex \(z_1\) is known. If \(z_2\) be the vertex adjacent to \(z_1\), then \(z_2\) is equal to
Concept:
If the centre of a regular polygon of \(n\) sides is located at the point \(z=0\) and one of its vertex \(z_1\) is known, then the adjecent vertex \(z_2\) can be obtained by rotating \(z 1\) by an angle \(\frac{2 \pi}{\mathrm{n}}\) either in clockwise or anticlockwise direction.
\(
\mathrm{e}^{ \pm} \frac{2 \pi \mathrm{i}}{\mathrm{n}}=\cos \frac{2 \pi}{\mathrm{n}} \pm \mathrm{i} \sin \frac{2 \pi}{\mathrm{n}}
\)
Calculations:
Given, the centre of a regular polygon of \(n\) sides is located at the point \(z=0\) and one of its vertex \(z_1\) is known.
\(\Rightarrow z_2\) be the vertex adjacent to \(z_1\).
\(\Rightarrow z_2\) can be obtained by rotating \(z_1\) by an angle \(\frac{2 \pi}{n}\) either in clockwise or anticlockwise direction.
\(
\begin{aligned}
& \Rightarrow \mathrm{z}_2=\mathrm{z}_1 \mathrm{e}^{ \pm} \frac{2 \pi \mathrm{i}}{\mathrm{n}} \\
& \Rightarrow\left|\mathrm{z}_2\right|=\left|\mathrm{z}_1\right| \mathrm{e}^{ \pm} \frac{2 \pi \mathrm{i}}{\mathrm{n}} \\
& \Rightarrow \mathrm{z}_2=z_1\left(\cos \frac{2 \pi}{n} \pm i \sin \frac{2 \pi}{n}\right)
\end{aligned}
\)
Hence, the centre of a regular polygon of \(n\) sides is located at the point \(z=0\) and one of its vertex \(z_1\) is known. If \(z_2\) be the vertex adjacent to \(z_1\), then \(z_2\) is equal to
\(
z_1\left(\cos \frac{2 \pi}{n} \pm i \sin \frac{2 \pi}{n}\right)
\)
For any complex number \(z\), the minimum value of \(|z|+|z-1|\) is
Let \(z=x+i y\) with \(x, y\) real.
\(
|z|+|z-1|=\sqrt{x^2+y^2}+\sqrt{(x-1)^2+y^2}
\)
Clearly if this has minimum value, then \(y=0\), since any other value of \(y\) would make it larger.
So we must find the minimum value of
\(
\begin{aligned}
& \sqrt{x^2}+\sqrt{(x-1)^2} \\
& |x|+|x-1|
\end{aligned}
\)
Consider the function:
\(
f(x)=|x|+|x-1|
\)
We consider six cases:
Case 1: \(x=0\) Then \(f(x)=f(0)=0+1=1\)
Case 2: \(x=1\) Then \(f(x)=f(1)=1+0=1\)
Case 3: \(x>0\) and \(x-1>0\) which implies \(x>1\)
Then \(f(x)=x+x=1=2 x-1\)
Case 4: \(x>0\) and \(x-1<0\) which implies 00 which is impossible
Then \(f(x)=x+x=1=2 x-1\)
Case 5: \(x<0\) and \(x-1>0\) which is impossible
Case 6: \(x<0\) and \(x-1<0\) which implies \(x<0\)
Then \(f(x)=-x-(x-1)=x-x+1=-2 x+1\)
So \(f(x)=|x|+|x-1|\) is the piecewise function:
\(
f(x)=\left\{\begin{array}{cl}
-2 x+1 & \text { if } x<0 \\
1 & \text { if } 0 \leqslant x<1 \\
2 x-1 & \text { if } x \geqslant 1
\end{array}\right.
\)
Thus the minimum value is of \(|z|+|z-1|\) is 1 .
The inequality \(|z-4|<|z-2|\) represents
Let, \(\mathrm{z}=\mathrm{x}+\mathrm{iy}\)
Putting in the given inequality,
\(
\begin{aligned}
& |(x-4)-i y|<|(x-2)+i y| \\
& \Rightarrow \sqrt{(x-4)^2+y^2}<\sqrt{(x-2)^2+y^2}
\end{aligned}
\)
squaring both sides,
\(
\begin{aligned}
& \Rightarrow(\mathrm{x}-4)^2+\mathrm{y}^2<(\mathrm{x}-2)^2+\mathrm{y}^2 \\
& \Rightarrow-8 \mathrm{x}+16<-4 \mathrm{x}+4 \\
& \Rightarrow 4 \mathrm{x}>12 \Rightarrow \mathrm{x}>3 \Rightarrow \operatorname{Re}(\mathrm{z})>3
\end{aligned}
\)
Number of non-zero integral solutions of the equation \((1-i)^n=2^n\) is
Lets first find the value of \(|1-i|\)
Complex number is of the form \(x+i y\)
Where \(x=1\)
\(
\begin{aligned}
y & =-1 \\
|1-i| & =\sqrt{x^2+y^2}=\sqrt{2}
\end{aligned}
\)
\(
\text { Hence, }|1-i|=\sqrt{2}
\)
\(
\text { Given }|1-i|^n=2^n
\)
\(
\begin{aligned}
& \text { Putting }|1-i|=\sqrt{2} \\
& \qquad \begin{aligned}
(\sqrt{2})^n=2^n \\
(\sqrt{2})^n=(\sqrt{2} \times \sqrt{2})^n \\
(\sqrt{2})^n=(\sqrt{2})^{2 \times n} \\
(\sqrt{2})^n=\sqrt{2}^{2 n}
\end{aligned}
\end{aligned}
\)
Comparing Powers
\(
\begin{aligned}
& n=2 n \\
& n-2 n=0 \\
& -n=0 \\
& n=0
\end{aligned}
\)
Hence, There is no non-zero integral solution
If \(\operatorname{Im}\left(\frac{2 z+1}{i z+1}\right)=-2\), then locus of \(z\) is
\(
\begin{aligned}
& z=x+i y \\
& \frac{2(x+i y)+1}{i(x+i y)+1}=-2 \\
= & \frac{2(x+i y)+1}{i x-y+1}
\end{aligned}
\)
\(
=\frac{(2 x+1)+2 i y}{(1-y)+i x} \times \frac{(1-y)-i x}{(1-y)-i x}
\)
\(
=\frac{[(2 x+1)+2 i y][(1-y)-i x]}{(1-y)^2+x^2}
\)
\(
-2 x^2-x+2 y-2 y^2=\left[x^2+(1-y)^2\right](-2)
\)
\(
\begin{aligned}
-x-2 y & =-2 \\
x+2 y & =2 \rightarrow \text { a straight line }
\end{aligned}
\)
Let \(\mathrm{p}, \mathrm{q} \in \mathbb{R}\) and \((1-\sqrt{3} \mathrm{i})^{200}=2^{199}(\mathrm{p}+\mathrm{iq})\), \(\mathrm{i}=\sqrt{-1}\) Then \(\mathrm{p}+\mathrm{q}+\mathrm{q}^2\) and \(\mathrm{p}-\mathrm{q}+\mathrm{q}^2\) are roots of the equation.
\(
\begin{aligned}
& (1-\sqrt{3} i)^{200}=2^{199}(p+i q) \\
& 2^{200}\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)^{200}=2^{199}(p+i q)
\end{aligned}
\)
\(
\begin{aligned}
& 2\left(-\frac{1}{2}-\mathrm{i} \frac{\sqrt{3}}{2}\right)=\mathrm{p}+\mathrm{iq} \\
& \mathrm{p}=-1, \mathrm{q}=-\sqrt{3} \\
& \alpha=\mathrm{p}+\mathrm{q}+\mathrm{q}^2=2-\sqrt{3} \\
& \beta=\mathrm{p}-\mathrm{q}+\mathrm{q}^2=2+\sqrt{3} \\
& \alpha+\beta=4 \\
& \alpha \cdot \beta=1 \\
& \text { equation } \mathrm{x}^2-4 \mathrm{x}+1=0
\end{aligned}
\)
You cannot copy content of this page