Quiz

RELATION BETWEEN SYSTEM OF MEASUREMENT OF ANGLES :

\(
\begin{aligned}
& \frac{ D }{90}=\frac{ G }{100}=\frac{2 C }{\pi} \\
& 1 \text { Radian }=\frac{180}{\pi} \text { degree } \approx 57^{\circ} 17^{\prime} 15^{\prime \prime} \text { (approximately) } \\
& 1 \text { degree }=\frac{\pi}{180} \text { radian } \approx 0.0175 \text { radian }
\end{aligned}
\)

BASIC TRIGONOMETRIC IDENTITIES 

  • \(\sin ^2 \theta+\cos ^2 \theta=1\) or \(\sin ^2 \theta=1-\cos ^2 \theta\) or \(\cos ^2 \theta=1-\sin ^2 \theta\)
  • \(\sec ^2 \theta-\tan ^2 \theta=1\) or \(\sec ^2 \theta=1+\tan ^2 \theta\) or \(\tan ^2 \theta=\sec ^2 \theta-1\)
  • If \(\sec \theta+\tan \theta= k \Rightarrow \sec \theta-\tan \theta=\frac{1}{ k } \Rightarrow 2 \sec \theta= k +\frac{1}{ k }\)
  • \(\operatorname{cosec}^2 \theta-\cot ^2 \theta=1\) or \(\operatorname{cosec}^2 \theta=1+\cot ^2 \theta\) or \(\cot ^2 \theta=\operatorname{cosec}^2 \theta-1\)
  • If \(\operatorname{cosec} \theta+\cot \theta= k \Rightarrow \operatorname{cosec} \theta-\cot \theta=\frac{1}{ k } \Rightarrow 2 \operatorname{cosec} \theta= k +\frac{1}{ k }\)

TRIGONOMETRIC FUNCTIONS OF ALLIED ANGLES 

  • \(\sin (2 n \pi+\theta)=\sin \theta, \cos (2 n \pi+\theta)=\cos \theta\), where \(n \in I\)
  • \(\sin (-\theta)=-\sin \theta\)
    \(
    \begin{aligned}
    & \cos (-\theta)=\cos \theta \\
    & \cos \left(90^{\circ}-\theta\right)=\sin \theta \\
    & \cos \left(90^{\circ}+\theta\right)=-\sin \theta \\
    & \cos \left(180^{\circ}-\theta\right)=-\cos \theta \\
    & \cos \left(180^{\circ}+\theta\right)=-\cos \theta \\
    & \cos \left(270^{\circ}-\theta\right)=-\sin \theta \\
    & \cos \left(270^{\circ}+\theta\right)=\sin \theta
    \end{aligned}
    \)
    \(
    \sin \left(90^{\circ}-\theta\right)=\cos \theta
    \)
    \(
    \sin \left(90^{\circ}+\theta\right)=\cos \theta
    \)
    \(
    \sin \left(180^{\circ}-\theta\right)=\sin \theta
    \)
    \(
    \sin \left(180^{\circ}+\theta\right)=-\sin \theta
    \)
    \(
    \sin \left(270^{\circ}-\theta\right)=-\cos \theta
    \)
    \(
    \sin \left(270^{\circ}+\theta\right)=-\cos \theta
    \)
    Note :
    (i) \(\sin n \pi=0 ; \cos n \pi=(-1)^n ; \tan n \pi=0\), where \(n \in I\)
    (ii) \(\sin (2 n+1) \frac{\pi}{2}=(-1)^n ; \cos (2 n+1) \frac{\pi}{2}=0\), where \(n \in I\)

IMPORTANT TRIGONOMETRIC FORMULAE 

  • \(\quad \sin ( A + B )=\sin A \cos B +\cos A \sin B\).
  • \(\quad \sin ( A – B )=\sin A \cos B -\cos A \sin B\).
  • \(\quad \cos ( A + B )=\cos A \cos B -\sin A \sin B\)
  • \(\quad \cos ( A – B )=\cos A \cos B +\sin A \sin B\)
  • \(\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}\)
  • \(\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}\)
  • \(\cot ( A + B )=\frac{\cot B \cot A -1}{\cot B +\cot A }\)
  • \(\cot ( A – B )=\frac{\cot B \cot A +1}{\cot B -\cot A }\)
  • \(\quad 2 \sin A \cos B =\sin ( A + B )+\sin ( A – B )\).
  • \(\quad 2 \cos A \sin B=\sin (A+B)-\sin (A-B)\).
  • \(2 \cos A \cos B =\cos ( A + B )+\cos ( A – B )\)
  • \(\quad 2 \sin A \sin B =\cos ( A – B )-\cos ( A + B )\)
  • \(\sin C +\sin D =2 \sin \left(\frac{ C + D }{2}\right) \cos \left(\frac{ C – D }{2}\right)\)
  • \(\sin C -\sin D =2 \cos \left(\frac{ C + D }{2}\right) \sin \left(\frac{ C – D }{2}\right)\)
  • \(\quad \cos C +\cos D =2 \cos \left(\frac{ C + D }{2}\right) \cos \left(\frac{ C – D }{2}\right)\)
  • \(\cos C -\cos D =2 \sin \left(\frac{ C + D }{2}\right) \sin \left(\frac{ D – C }{2}\right)\)
  • \(\sin 2 \theta=2 \sin \theta \cos \theta=\frac{2 \tan \theta}{1+\tan ^2 \theta}\)
  • \(\cos 2 \theta=\cos ^2 \theta-\sin ^2 \theta=2 \cos ^2 \theta-1=1-2 \sin ^2 \theta=\frac{1-\tan ^2 \theta}{1+\tan ^2 \theta}\)
  • \(1+\cos 2 \theta=2 \cos ^2 \theta\) or \(|\cos \theta|=\sqrt{\frac{1+\cos 2 \theta}{2}}\)
  • \(1-\cos 2 \theta=2 \sin ^2 \theta\) or \(|\sin \theta|=\sqrt{\frac{1-\cos 2 \theta}{2}}\)
  • \(\tan \theta=\frac{1-\cos 2 \theta}{\sin 2 \theta}=\frac{\sin 2 \theta}{1+\cos 2 \theta}\)
  • \(\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^2 \theta}\)
  • \(\cos 2 \theta=\cos ^2 \theta-\sin ^2 \theta=2 \cos ^2 \theta-1=1-2 \sin ^2 \theta=\frac{1-\tan ^2 \theta}{1+\tan ^2 \theta}\)
  • \(1+\cos 2 \theta=2 \cos ^2 \theta\) or \(|\cos \theta|=\sqrt{\frac{1+\cos 2 \theta}{2}}\)
  • \(1-\cos 2 \theta=2 \sin ^2 \theta\) or \(|\sin \theta|=\sqrt{\frac{1-\cos 2 \theta}{2}}\)
  • \(\tan \theta=\frac{1-\cos 2 \theta}{\sin 2 \theta}=\frac{\sin 2 \theta}{1+\cos 2 \theta}\)
  • \(\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^2 \theta}\)
  • \(\sin 3 \theta=3 \sin \theta-4 \sin ^3 \theta\).
  • \(\cos 3 \theta=4 \cos ^3 \theta-3 \cos \theta\).
  • \(\tan 3 \theta=\frac{3 \tan \theta-\tan ^3 \theta}{1-3 \tan ^2 \theta}\)
  • \(\sin ^2 A-\sin ^2 B=\sin ( A + B ) \cdot \sin ( A – B )=\cos ^2 B-\cos ^2 A\).
  • \(\cos ^2 A-\sin ^2 B=\cos ( A + B ) \cdot \cos ( A – B )\).

MAXIMUM & MINIMUM VALUES OF TRIGONOMETRIC EXPRESSIONS 

  • \(a\cos \theta+ b \sin \theta\) will always lie in the interval \(\left[-\sqrt{a^2+b^2}, \sqrt{a^2+b^2}\right]\), i.e. the maximum and minimum values are \(\sqrt{ a ^2+ b ^2},-\sqrt{ a ^2+ b ^2}\) respectively.
  • Minimum value of \(a ^2 \tan ^2 \theta+ b ^2 \cot ^2 \theta=2 ab\), where \(a , b >0\)
  • Minimum value of \(a^2 \cos ^2 \theta+b^2 \sec ^2 \theta\left(\right.\) or \(\left.a^2 \sin ^2 \theta+b^2 \operatorname{cosec}^2 \theta\right)\) is either 2 ab (when \(| a | \geq| b |\) ) or \(a ^2+ b ^2\) (when \(| a | \leq| b |\) ).

IMPORTANT RESULTS

  • \(\sin \theta \sin \left(60^{\circ}-\theta\right) \sin \left(60^{\circ}+\theta\right)=\frac{1}{4} \sin 3 \theta\)
  • \(\cos \theta \cdot \cos \left(60^{\circ}-\theta\right) \cos \left(60^{\circ}+\theta\right)=\frac{1}{4} \cos 3 \theta\)
  • \(\tan \theta \tan \left(60^{\circ}-\theta\right) \tan \left(60^{\circ}+\theta\right)=\tan 3 \theta\)
  • \(\cot \theta \cot \left(60^{\circ}-\theta\right) \cot \left(60^{\circ}+\theta\right)=\cot 3 \theta\)
  • (i) \(\sin ^2 \theta+\sin ^2\left(60^{\circ}+\theta\right)+\sin ^2\left(60^{\circ}-\theta\right)=\frac{3}{2}\)
    (ii) \(\cos ^2 \theta+\cos ^2\left(60^{\circ}+\theta\right)+\cos ^2\left(60^{\circ}-\theta\right)=\frac{3}{2}\)
  • (i) If \(\tan A+\tan B+\tan C=\tan A \tan B \tan C\), then \(A + B + C = n \pi, n \in I\)
    (ii) If \(\tan A \tan B +\tan B \tan C +\tan C \tan A =1\), then \(A+B+C=(2 n+1) \frac{\pi}{2}, n \in I\)
  • \(\cos \theta \cos 2 \theta \cos 4 \theta \ldots \cdot \cos \left(2^{n-1} \theta\right)=\frac{\sin \left(2^n \theta\right)}{2^n \sin \theta}\)
  • \(\cot A-\tan A =2 \cot 2 A\)

CONDITIONAL IDENTITIES

If \(A + B + C =180^{\circ}\), then

  • \(\tan A+\tan B+\tan C=\tan A \tan B \tan C\)
  • \(\cot A \cot B +\cot B \cot C +\cot C \cot A =1\)
  • \(\tan \frac{ A }{2} \tan \frac{ B }{2}+\tan \frac{ B }{2} \tan \frac{ C }{2}+\tan \frac{ C }{2} \tan \frac{ A }{2}=1\)
  • \(\cot \frac{ A }{2}+\cot \frac{ B }{2}+\cot \frac{ C }{2}=\cot \frac{ A }{2} \cot \frac{ B }{2} \cot \frac{ C }{2}\)
  • \(\sin 2 A+\sin 2 B+\sin 2 C =4 \sin A \sin B \sin C\)
  • \(\cos 2 A+\cos 2 B+\cos 2 C =-1-4 \cos A \cos B \cos C\)
  • \(\sin A +\sin B +\sin C =4 \cos \frac{ A }{2} \cos \frac{ B }{2} \cos \frac{ C }{2}\)
  • \(\cos A +\cos B +\cos C =1+4 \sin \frac{ A }{2} \sin \frac{ B }{2} \sin \frac{ C }{2}\)

DOMAINS, RANGES ANDPERIODICITY OF TRIGONOMETRIC FUNCTIONS

\(
\begin{array}{llcr}
\text { T-Ratio } & \text{ Domain } & \text { Range } & \text { Period } \\
\sin x & R & {[-1,1]} & 2 \pi \\
\cos x & R & {[-1,1]} & 2 \pi \\
\tan x & R-\{(2 n+1) \pi / 2 ; n \in I\} & R & \pi \\
\cot x & R-[n \pi: n \in I] & R & \pi \\
\sec x & R-\{(2 n+1) \pi / 2: n \in I\} & (-\infty,-1] \cup[1, \infty) & 2 \pi \\
\operatorname{cosec} x & R-\{n \pi: n \in I\} & (-\infty,-1] \cup[1, \infty) & 2 \pi
\end{array}
\)

IMPORTANT NOTES

  • The sum of interior angles of a polygon of \(n\)-sides
    \(
    =( n -2) \times 180^{\circ}=( n -2) \pi \text {. }
    \)
  • Each interior angle of a regular polygon of n sides
    \(
    =\frac{( n -2)}{ n } \times 180^{\circ}=\frac{( n -2)}{ n } \pi \text {. }
    \)
  • Sum of exterior angles of a polygon of any number of sides \(=360^{\circ}=2 \pi\).

GENERAL SOLUTIONS OF SOME TRIGONOMETRIC EQUATIONS (TO BE REMEMBERED) 

  • If \(\sin \theta=0\), then \(\theta= n \pi, n \in I\) (set of integers)
  • If \(\cos \theta=0\), then \(\theta=(2 n+1) \frac{\pi}{2}, n \in I\)
  • If \(\tan \theta=0\), then \(\theta= n \pi, n \in I\)
  • If \(\sin \theta=\sin \alpha\), then \(\theta= n \pi+(-1)^{ n } \alpha, n \in I\)
  • If \(\cos \theta=\cos \alpha\), then \(\theta=2 n \pi \pm \alpha, n \in I\)
  • If \(\tan \theta=\tan \alpha\), then \(\theta= n \pi+\alpha, n \in I\)
  • If \(\sin \theta=1\), then \(\theta=2 n \pi+\frac{\pi}{2}=(4 n+1) \frac{\pi}{2}, n \in I\)
  • If \(\cos \theta=1\) then \(\theta=2 n \pi, n \in I\)
    (i) If \(\sin ^2 \theta=\sin ^2 \alpha\) or \(\cos ^2 \theta=\cos ^2 \alpha\) or \(\tan ^2 \theta=\tan ^2 \alpha\), then \(\theta= n \pi \pm \alpha, n \in I\)
    (j) \(\begin{aligned} & \sin ( n \pi+\theta)=(-1)^{ n } \sin \theta, n \in I \\ & \cos ( n \pi+\theta)=(-1)^{ n } \cos \theta, n \in I \end{aligned}\)

GENERAL SOLUTION OF EQUATION \(a \sin \theta+ b \cos \theta= c\) 

Consider, \(a \sin \theta+ b \cos \theta= c \dots(i)\)

\(\therefore \frac{ a }{\sqrt{ a ^2+ b ^2}} \sin \theta+\frac{ b }{\sqrt{ a ^2+ b ^2}} \cos \theta=\frac{ c }{\sqrt{ a ^2+ b ^2}}\)
equation (i) has the solution only if \(|c| \leq \sqrt{a^2+b^2}\)
let \(\frac{ a }{\sqrt{ a ^2+ b ^2}}=\cos \phi, \frac{ b }{\sqrt{ a ^2+ b ^2}}=\sin \phi \quad \& \phi=\tan ^{-1} \frac{ b }{ a }\)
by introducing this auxiliary argument \(\phi\), equation (i) reduces to
\(
\sin (\theta+\phi)=\frac{c}{\sqrt{a^2+b^2}}
\)
Now this equation can be solved easily.

You cannot copy content of this page