Past JEE Main Entrance Papers

Definition of Limits

Let \(\lim _{x \rightarrow a} f(x)=L\). It would mean that when we approach the point \(x=a\) from the values which are just greater than or smaller than \(x=a, f(x)\) would have a tendency to move closer to the value ‘ \(L\) ‘.

Left Hand Limit and Right Hand Limit of a Function:

  • The left hand limit (LHL) at \(x=a: \lim _{x \rightarrow a^{-}} f(x)\), Describes the behaviour of \(f(x)\) to the immediate left of \(x=a\).
  • The left hand limit (RHL) at \(x=a: \lim _{x \rightarrow a^{+}} f(x)\), Describes the behaviour of \(f(x)\) to the immediate right of \(x=a\).
  • The value of \(f(x)\) at \(x=a: f(a)\) Gives the precise value that \(f(x)\) takes at \(x=a\)
  • The limit of \(f ( x )\) at \(x = a\) is said to exist if the function approaches the same value from both sides. That is Limit of a function \(f(x)\) is said to exist as \(x \rightarrow\) a when \(\operatorname{Lim}_{x \rightarrow a^{-}} f(x)=\underset{x \rightarrow a^{-}}{\operatorname{Lim}} f(x)=\) Finite and fixed quantity.
  • In \(\operatorname{Lim}_{ x \rightarrow a } f(x), x \rightarrow a\) necessarily implies \(x \neq a\). That is while evaluating limit at \(x = a\), we are not concerned with the value of the function at \(x = a\). In fact the function may or may not be defined at \(x = a\).

Note: We have used the concept of \(\infty\) (infinity) in the discussions above. Lets discuss this concept in some what more detail:
\(\Rightarrow\) Infinity does not stand for any particular real number. In fact, it cannot be defined precisely.This is a deep concept. For any number you can think of, no matter how large, infinity is still larger. When we say that \(x \rightarrow \infty\), we mean that \(x\) increase in an unbounded fashion, that is, becomes indefinitely large.
\(\Rightarrow\) We cannot apply the normal rules of arithmetic to infinity. For example, saying that
\(
\infty-\infty=0 \text { or } \frac{\infty}{\infty}=1
\)
is absurd because such quantities are not defined.

Limit Laws

Let \(f(x)\) and \(g(x)\) be defined for all \(x \neq a\) over some open interval containing \(a\). Assume that \(L\) and \(M\) are real numbers such that \(\lim _{x \rightarrow a} f(x)=L\) and \(\lim _{x \rightarrow a} g(x)=M\). Let \(c\) be a constant. Then, each of the following statements holds:

  • Sum law for limits: \(\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=L+M\)
  • Difference law for limits: \(\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)=L-M\)
  • Constant multiple law for limits: \(\lim _{x \rightarrow a} c f(x)=c \cdot \lim _{x \rightarrow a} f(x)=c L\)
  • Product law for limits: \(\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=L \cdot M\)
  • Quotient law for limits: \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{L}{M}\) for \(M \neq 0\)
  • Power law for limits: \(\lim _{x \rightarrow a}(f(x))^n=\left(\lim _{x \rightarrow a} f(x)\right)^n=L^n\) for every positive integer \(n\).
  • Root law for limits: \(\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}=\sqrt[n]{L}\) for all \(L\) if \(n\) is odd and for \(L \geq 0\) if \(n\) is even and \(f(x) \geq 0\).

Indeterminate Forms

If direct substitution of \(x=a\) while evaluating \(\lim _{x \rightarrow a}(x)\) leads to one of the following forms \(\frac{0}{0}, \infty, \infty-\infty, 1^{\infty}, 0^0, \infty{ }^0, \infty \times 0\) then it is called indeterminate form.
e.g. \(\lim _{x \rightarrow 1} \frac{x^2-1}{x-1}=\frac{0}{0}\) indeterminate form.
\(\lim _{x \rightarrow a} \frac{x^n-a^n}{x-a}=\frac{0}{0}\) indeterminate form.
\(\lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{0}{0}\) indeterminate form.

Infinity \((\infty)\) is a symbol and not a number. It is a symbol for the behaviour of a variable which continuously increases and passes through all limits. Thus, the statement \(x=\infty\) is meaningless, we should write \(x \rightarrow \infty\).

Similarly, \(-\infty\) is a symbol for the behaviour of a variable which continuously decreases and passes through all limits. Thus, the statement \(x=-\infty\) is meaningless, we should write \(x \rightarrow-\infty\).
Also, \(\frac{1}{x} \rightarrow 0\), if \(x \rightarrow+\infty\) and \(\frac{1}{x} \rightarrow 0\), if \(x \rightarrow-\infty\).
We cannot plot \(\infty\) on paper. Infinity does not obey laws of elementary algebra.

  • \(\infty+\infty=\infty\) is indeterminate
  • \(\infty-\infty\) is indeterminate.

L’Hospital’s Rule

This rule states that, if \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}\), reduces to \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\).
Then, differentiate numerator and denominator till this form is removed.
i.e. \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}\), provided the later limit exists.

But, if it again take form \(\left(\frac{0}{0}\right.\) or \(\left.\frac{\infty}{\infty}\right)\),
then \(\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)}\)
and this process is continued till \(\left(\frac{0}{0}\right.\) or \(\left.\frac{\infty}{\infty}\right)\) form is removed.

Note: L’Hospital’s rule is applicable to only two indeterminate forms \(\left(\frac{0}{0}\right.\) or \(\left.\frac{\infty}{\infty}\right)\).

General Methods used to Evaluate Limits

Case-I: Factorization :

Important factors : 

  • \(x^n-a^n=(x-a)\left(x^{n-1}+a x^{n-2}+\ldots \ldots \ldots \ldots+a^{n-1}\right), n \in N\)
  • \(x^n+a^n=(x+a)\left(x^{n-1}-a x^{n-2}+\ldots \ldots \ldots . .+a^{n-1}\right), n\) is an odd natural number. \(\text { Note : } \operatorname{Lim}_{ x \rightarrow a } \frac{ x ^{ n }- a ^{ n }}{ x – a }= na ^{ n -1}\)

Case-II: Rationalization or double rationalization :

In this method we rationalise the factor containing the square root and simplify. An Example is given below:

\(
\lim _{x \rightarrow-1} \frac{x+1}{\sqrt{x+5}-2}
\)
\(
\lim _{x \rightarrow-1} \frac{(x+1)(\sqrt{x+5}+2)}{(\sqrt{x+5}-2)(\sqrt{x+5}+2)}=\lim _{x \rightarrow-1} \frac{(x+1)(\sqrt{x+5}+2)}{x+1}
\)
\(
\lim _{x \rightarrow-1} \sqrt{x+5}+2=\sqrt{-1+5}+2=4
\)

Case-III: Limit when \(x \rightarrow \infty\) :

  • Divide by greatest power of \(x\) in numerator and denominator.
  • Put \(x=1 / y\) and apply \(y \rightarrow 0\)

Case-IV: Sandwich Theorem

If \(g(x) \leq f(x) \leq h(x)\) and
\(
\begin{aligned}
& \lim _{x \rightarrow a} g(x)=L \text { and } \\
& \lim _{x \rightarrow a} h(x)=L
\end{aligned}
\)
Then \(\lim _{x \rightarrow a} f(x)=L\)

Example: Prove using sandwich theorem \(\operatorname{Lim}_{x \rightarrow 0}(\sin x / x)=1\)

Solution: In this case \(g(x)=\cos x\) and \(h(x)=1\)
Using the above inequality, \(\cos x<(\sin x) / x<1\). Also, it is very clear that \(\lim _{x \rightarrow 0} \cos x=\cos 0=1\) and \(\lim _{x \rightarrow 0} 1=1\). Hence, by squeeze theorem (sandwich theorem), \(\lim _{x \rightarrow 0}(\sin x) / x=1\).
Hence, we proved that \(\lim _{x \rightarrow 0}(\sin x) / x=1\).  

Case-V: Using substitution

\(\operatorname{Lim}_{x \rightarrow a} f(x)=\underset{h \rightarrow 0}{\operatorname{Lim}} f(a-h)\) or \(\underset{h \rightarrow 0}{\operatorname{Lim}} f(a+h)\) i.e. by substituting \(x\) by \(a – h\) or \(a + h\)

Limit of Trigonometric Functions

  • \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\)
  • \(\lim _{x \rightarrow 0} \frac{\tan x}{x}=1\)
  • \(\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=1\)
  • \(\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=1\)
  • \(\lim _{x \rightarrow 0} \frac{\sin x^0}{x}=\frac{\pi}{180^{\circ}}\)
  • \(\lim _{x \rightarrow 0} \cos x=1\)
  • \(\lim _{x \rightarrow a} \frac{\sin (x-a)}{x-a}=1\)
  • \(\lim _{x \rightarrow a} \frac{\tan (x-a)}{x-a}=1\)

Limit of Exponential Functions

There are two types of exponential limits discussed below

Case-I: Based on Series Expansion

\(e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots \infty\)

To evaluate the exponential limit, we use the following results.

  • \(\lim _{x \rightarrow 0} \frac{e^x-1}{x}=1\)
  • \(\lim _{x \rightarrow 0} \frac{a^x-1}{x}=\log _e a\)

Case-II: Evaluation of Exponential Limits of the Form \(1^{\infty}\)

  • \(\operatorname{Lim}_{x \rightarrow 0}(1+x)^{1 / x}=e=\operatorname{Lim}_{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x\)
  • \(\lim _{x \rightarrow 0}(1+\lambda x)^{1 / x}=e^\lambda = \lim _{x \rightarrow \infty}\left(1+\frac{\lambda}{x}\right)^x\)
  • \(
    \operatorname{Lim}_{x \rightarrow 0} \frac{\operatorname{\ell n}(1+x)}{x}=1,
    \)
  • \(\text { In general, if } \underset{x \rightarrow a}{\operatorname{Lim}} f(x)=0 \text {, then } \underset{x \rightarrow a}{\operatorname{Lim}}(1+f(x))^{1 / f(x)}=e\)
  • If \(\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0\), then \(\lim _{x \rightarrow a}\{1+f(x)\}^{1 / g(x)}=e^{\lim _{x \rightarrow a} \frac{f(x)}{g(x)}}\)
  • \(\text { If } \lim _{x \rightarrow a} f(x)=1 \text { and } \lim _{x \rightarrow a} g(x)=\infty\), then \(\lim _{x \rightarrow a}\{f(x)\}^{g(x)}=\lim _{x \rightarrow a}[1+f(x)-1]^{g(x)} =e^{\lim _{x \rightarrow a}(f(x)-1) g(x)}\)
  • If \(\operatorname{Lim}_{x \rightarrow a} f(x)=1\) and \(\operatorname{Lim}_{x \rightarrow a} g(x)=\infty\), \(\text { then } \operatorname{Lim}_{x \rightarrow a}[f(x)]^{g(x)}=e^{ k }\) where \(k =\operatorname{Lim}_{ x \rightarrow a } g( x )[ f ( x )-1]\)
  • If \(\operatorname{Lim}_{x \rightarrow a} f(x)=A>0 \& \operatorname{Lim}_{x \rightarrow a} g(x)=B\) (a finite quantity), then \(\operatorname{Lim}_{ x \rightarrow a }[ f ( x )]^{\phi( x )}=e^{ B \ln A }= A ^{ B }\)

Limit Using Series Expansion

Binomial expansion, exponential & logarithmic expansion, expansion of \(\sin x, \cos x, \tan x\) should be remembered by heart which are given below :

  • \(a^x=1+\frac{x ln a}{1!}+\frac{x^2 ln^2 a}{2!}+\frac{x^3 ln^3 a}{3!}+\ldots, a>0\)
  • \(\frac{1}{1-x}=1+x+x^2+x^3+\ldots \quad(\text { for }:-1<x<1)\)
  • \(\frac{1}{1+x}=1-x+x^2-x^3+\ldots \quad(\text { for }:-1<x<1)\)
  • \(e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots\)
  • \(\ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\frac{x^5}{5} \ldots \quad(\text { for }:-1<x<1)\)
  • \(\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\frac{x^9}{9!} \ldots\)
  • \(\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!} \ldots\)
  • \(\tan x=x+\frac{x^3}{3}+\frac{2 x^5}{15}+\frac{17 x^7}{315}+\ldots \quad\left(\text { for: }:-\frac{\pi}{2}<x<\frac{\pi}{2}\right)\)
  • \(\sinh x=x+\frac{x^3}{3!}+\frac{x^5}{5!}+\frac{x^7}{7!}+\frac{x^9}{9!} \ldots\)
  • \(\cosh x=1+\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{x^6}{6!}+\frac{x^8}{8!} \ldots\)
  • \(\tanh x=x-\frac{x^3}{3}+\frac{2 x^5}{15}-\frac{17 x^7}{315}+\ldots \quad\left(\text { for }:-\frac{\pi}{2}<x<\frac{\pi}{2}\right)\)
  • \(\sin ^{-1} x=x+\frac{1}{2} \frac{x^3}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7}+\cdots \quad|x|<1\)
  • \(\cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x=\frac{\pi}{2}-\left(x+\frac{1}{2} \frac{x^3}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7}+\cdots\right)|x|<1\)
  • \(\tan ^{-1} x=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots \quad|x|<1\)
  • \((1+x)^n=1+n x+\frac{n(n-1)}{2!} x^2+\ldots, n \in R, x \in(-1,1)\)

You cannot copy content of this page