Summary
0 of 81 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 81 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Which Octant the following points located:
(i) \((1,-1,3)\)
(ii) \((-1,2,4)\)
(iii) \((-2,-4,-7)\)
(iv) \((-4,2,-5)\)
(i) Location of \(P (1,-1,3)=(x,-y, z)=\) IV octant
(ii) Location of \(Q (-1,2,4)=(-x, y, z)=\) II octant
(iii) Location of \(R (-2,-4,-7)=(-x,-y,-z)=\) VII octant
(iv) Location of \(S(-4,2,-5)=(-x, y,-z)= VI\) octant
Name the octant in which each of the following points lie.
(i) \((1,2,3)\)
(ii) \((4,-2,3)\)
(iii) \((4,-2,-5)\)
(iv) \((4,2,-5)\)
(v) \((-4,2,5)\)
(vi) \((-3,-1,6)\)
(vii) \((2,-4,-7) \quad\)
(viii) \((-4,2,-5)\)
(i) Point \((1,2,3)\) lies in I octant
(ii) Point \((4,-2,3)\) lies in IV octant
(iii) Point \((4,-2,-5)\) lies in VIII octant
(iv) Point \((4,2,-5)\) lies in \(V\) octant
(v) Point \((-4,2,5)\) lies in II octant
(vi) Point \((-3,-1,6)\) lies in III octant
(vii) Point \((2,-4,-7)\) lies in VIII octant
(viii) Point \((-4,2,-5)\) lies in VI octant
Let A, B, C be the feet of perpendiculars from a point \(P\) on \(x, y\), \(z\)-axis respectively. Find the coordinates of \(A, B\) and \(C\) in each of the following where the \(P\) is
(i) \((3,4,2)\)
(ii) \((-5,3,7)\)
(iii) \((4,-3,-5)\)
The coordinates of \(A , B\) and \(C\) are
(i) \(A (3,0,0), B (0,4,0)\) and \(C (0,0,2)\)
(ii) \(A (-5,0,0), B (0,3,0)\) and \(C (0,0,7)\)
(iii) \(A (4,0,0), B (0,-3,0)\) and \(C (0,0,-5)\)
Let A, B, C be the feet of perpendiculars from a point \(P\) on the \(x y, y z\) and \(z x\) planes respectively. Find the coordinates of A, B, C in each of the following where the point \(P\) is
(i) \((3,4,5)\)
(ii) \((-5,3,7)\)
(iii) \((4,-3,-5)\).
The coordinates of \(A , B\) and \(C\) are
(i) \(A (3,4,0), B (0,4,5)\) and \(C (3,0,5)\)
(ii) \(A (-5,3,0), B (0,3,7)\) and \(C (-5,0,7)\)
(iii) \(A (4,-3,0), B (0,-3,-5)\) and \(C (4,0,-5)\)
How far apart are the points \((2,0,0)[latex] and [latex](-3,0,0)\) ?
Given points are \((2,0,0)\) and \((-3,0,0)\)
\(\therefore\) Distance between the given points
\(
=\sqrt{(2+3)^2+(0-0)^2+(0-0)^2}=\sqrt{25}=5
\)
Hence, the required distance \(=5\).
Find the distance from the origin to \((6,6,7)\).
Coordinates of the origin are \((0,0,0)\)
\(\therefore\) Distance from \((0,0,0)\) to \((6,6,7)\)
\(
\begin{aligned}
& =\sqrt{(6-0)^2+(6-0)^2+(7-0)^2} \\
& =\sqrt{36+36+49}=\sqrt{121} \\
& =11 \text { units. }
\end{aligned}
\)
Hence, the required distance \(=11\) units.
If \(x^2+y^2=1\), then the point \(\left(x, y, \sqrt{1-x^2-y^2}\right)\) is at a distance ____ unit from the origin.
Given point is \(\left(x, y, \sqrt{1-x^2-y^2}\right)\)
\(\therefore\) Distance between the origin and the point is
\(
\begin{aligned}
& =\sqrt{(x-0)^2+(y-0)^2+\left(\sqrt{1-x^2-y^2}-0\right)^2} \\
& =\sqrt{1}=1 .Â
\end{aligned}
\)
Are the point \(A (1,-1,3), B (2,-4,5)\) and \((5,-13,11)\) are collinear?
Given points are \(A (1,-1,3), B (2,-4,5)\) and \(C (5,-13,11)\)
\(
\begin{aligned}
AB & =\sqrt{(2-1)^2+(-4+1)^2+(5-3)^2} \\
& =\sqrt{1+9+4}=\sqrt{14} \\
BC & =\sqrt{(5-2)^2+(-13+4)^2+(11-5)^2} \\
& =\sqrt{9+81+36}=\sqrt{126}=3 \sqrt{14} \\
AC & =\sqrt{(5-1)^2+(-13+1)^2+(11-3)^2} \\
& =\sqrt{16+144+64}=\sqrt{224}=4 \sqrt{14}
\end{aligned}
\)
Here we observe that \(\sqrt{14}+3 \sqrt{14}=4 \sqrt{14}\)
So \(AB + BC = AC\).
Hence, the given points are collinear.
Three consecutive vertices of a parallelogram \(ABCD\) are \(A (6,-2,4), B (2,4,-8)\), \(C(-2,2,4)\). Find the coordinates of the fourth vertex.
[Hint: Diagonals of a parallelogram have the same mid-point.]
Let the coordinates of the fourth vertex \(D\) be \((x, y, z)\)
Mid-point of diagonal \(A C\) is \(P\left(\frac{6-2}{2}, \frac{-2+2}{2}, \frac{4+4}{2}\right) \equiv P(2,0,4)\)
Also, mid-point of \(B D\) is \(P\left(\frac{x+2}{2}, \frac{y+4}{2}, \frac{z-8}{2}\right)\).
Now, \(P\left(\frac{x+2}{2}, \frac{y+4}{2}, \frac{z-8}{2}\right) \equiv P(2,0,4)\)
One equating coordinates, we get
\(
\begin{aligned}
& \frac{x+2}{2}=2 \Rightarrow x=2 ; \\
& \frac{y+4}{2}=0 \Rightarrow y=-4 ; \\
& \frac{z-8}{2}=4 \Rightarrow z=16
\end{aligned}
\)
So, the coordinate of fourth vertex \(D\) are given as \((2,-4,16)\).
The triangle \(ABC\) with vertices \(A (0,4,1), B (2,3,-1)\) and \(C (4,5,0)\) is ____ angled.
Given vertices are \(A(0,4,1), B(2,3,-1)\) and \(C(4,5,0)\)
\(
\begin{aligned}
AB & =\sqrt{(2-0)^2+(3-4)^2+(-1-1)^2} \\
& =\sqrt{4+1+4}=\sqrt{9}=3 \\
BC & =\sqrt{(4-2)^2+(5-3)^2+(0+1)^2} \\
& =\sqrt{4+4+1}=\sqrt{9}=3 \\
AC & =\sqrt{(4-0)^2+(5-4)^2+(0-1)^2} \\
& =\sqrt{16+1+1}=\sqrt{18}
\end{aligned}
\)
\(
\because \quad(3)^2+(3)^2=(\sqrt{18})^2 \text {. }
\)
So \(AB ^2+ BC ^2= AC ^2\)
Hence, \(\triangle ABC\) is a right angled triangle.
Find the third vertex of triangle whose centroid is origin and two vertices are \((2,4,6)\) and \((0,-2,-5)\)
Using formula for co-ordinates of centroid of a triangle, the coordinates of the centroid of the triangle, whose vertices are \(\left(x_1, y_1, z_1\right),\left(x_2, y_2, z_2\right)\) and \(\left(x_3, y_3, z_3\right)\) are
\(
\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right)
\)
Given two vertices are \(A(2,4,6)\) and \(B(0,-2,-5)\)
Let the third vertex \(C(x, y, z)\)
\(\therefore\) Centroid of \(\triangle ABC\),
\(
\begin{aligned}
& G=\left(\frac{x+2+0}{3}, \frac{y+4-2}{3}, \frac{z+6-5}{3}\right) \\
& \Rightarrow G=\left(\frac{x+2}{3}, \frac{y+2}{3}, \frac{z+1}{3}\right)
\end{aligned}
\)
Simplifying using given coordinates of centroid
Given centroid is at origin
\(
\therefore G\left(\frac{x+2}{3}, \frac{y+2}{3}, \frac{z+1}{3}\right)=G(0,0,0)
\)
Comparing coordinates, we get
\(
\frac{x+2}{3}=0 \Rightarrow x=-2
\)
\(
\begin{aligned}
& \frac{y+2}{3}=0 \Rightarrow y=-2 \\
& \frac{z+1}{3}=0 \Rightarrow z=-1
\end{aligned}
\)
Therefore, third vertex of the triangle is \((-2,-2,-1)\)
Find the centroid of a triangle, the mid-point of whose sides are \(D (1,2,-3)\), \(E(3,0,1)\) and \(F(-1,1,-4)\).
Let the coordinates of the vertices of \(\triangle A B C\) be \(A \left(x_1, y_1, z_1\right), B \left(x_2, y_2, z_2\right)\) and \(C \left(x_3, y_3, z_3\right)\).
\(
\begin{aligned}
& \text { Mid-point of } BC =(1,2,-3) \\
\therefore \quad & 1=\frac{x_2+x_3}{2} \Rightarrow x_2+x_3=2 \dots(i)
\end{aligned}
\)
\(
\begin{aligned}
2 & =\frac{y_2+y_3}{2} \Rightarrow y_2+y_3=4 \dots(ii) \\
-3 & =\frac{z_2+z_3}{2} \Rightarrow z_2+z_3=-6 \dots(iii)
\end{aligned}
\)
Mid-point of \(AB =(3,0,1)\)
\(
\therefore \quad 3=\frac{x_1+x_2}{2} \Rightarrow x_1+x_2=6 \dots(iv)
\)
\(
\begin{aligned}
& 0=\frac{y_1+y_2}{2} \Rightarrow y_1+y_2=0 \dots(v) \\
& 1=\frac{z_1+z_2}{2} \Rightarrow z_1+z_2=2 \dots(vi)
\end{aligned}
\)
Similarly, mid-point of \(AC =(-1,1,-4)\)
\(
\begin{aligned}
\therefore \quad-1 & =\frac{x_1+x_3}{2} \Rightarrow x_1+x_3=-2 \dots(vii)\\
1 & =\frac{y_1+y_3}{2} \Rightarrow y_1+y_3=2 \dots(viii)\\
-4 & =\frac{z_1+z_3}{2} \Rightarrow z_1+z_3=-8 \dots(ix)
\end{aligned}
\)
Adding eq. (i), (iv) and (vii) we get,
\(
\begin{aligned}
& 2 x_1+2 x_2+2 x_3=2+6-2=6 \\
& \Rightarrow \quad x_1+x_2+x_3=3 \\
& \Rightarrow \quad 6+x_3=3 \Rightarrow x_3=-3 \quad \text { [from eq. (iv)] } \\
& \Rightarrow \quad x_1+2=3 \Rightarrow x_1=1 \quad \text { [from eq. (i)] } \\
& \Rightarrow \quad x_2-2=3 \Rightarrow x_2=5 \quad \text { [from eq. (vii)] } \\
&
\end{aligned}
\)
\(
\text { So, } x_1=1, x_2=5 \text { and } x_3=-3 \text {. }
\)
Similarly, Adding (ii), (v) and (viii) we get
\(
\begin{aligned}
& 2\left(y_1+y_2+y_3\right)=4+0+2=6 \\
& \therefore \quad y_1+y_2+y_3=3 \\
& y_1+4=3 \Rightarrow y_1=-1 \\
& 0+y_3=3 \Rightarrow y_3=3 \\
& y_2+2=3 \Rightarrow y_2=1 \\
&
\end{aligned}
\)
So, \(y_1=-1, y_2=1, y_3=3\)
Adding (iii), (vi) and (ix) we have
\(
2\left(z_1+z_2+z_3\right)=-6+2-8=-12
\)
\(
\begin{aligned}
& \therefore \quad z_1+z_2+z_3=-6 \\
& z_1-6=-6 \quad \Rightarrow \quad z_1=0 \quad \text { [from eq. (iii)] } \\
& 2+z_3=-6 \Rightarrow z_3=-8 \quad \text { [from eq. (vi)] } \\
& \text { and } z_2-8=-6 \quad \Rightarrow \quad z_2=2 \\
&
\end{aligned}
\)
\(
\therefore z_1=1, z_2=1, z_3=-8
\)
So, the points are \(A (1,-1,0), B (5,1,2)\) and \(C (-3,3,-8)\).
\(\therefore\) Centroid of the triangle
\(
G=\left(\frac{1+5-3}{3}, \frac{-1+1+3}{3}, \frac{0+2-8}{3}\right)=(1,1,-2)
\)
Hence, the required coordinates \(=(1,1,-2)\).
The mid-points of the sides of a triangle are \((5,7,11),(0,8,5)\) and \((2,3,-1)\). Find its vertices.
Given that The mid-points of the sides of a triangle \(A B C\) are \(D(5,7,11), E(0,8,5)\) and \(F(2,3,-1)\)
Let the vertices of triangle be \(A\left(x_1, y_1, z_1\right)\), \(B\left(x_2, y_2, z_2\right)\) and \(C\left(x_3, y_3, z_3\right)\).
Mid-point of \(A C\) is \(E\).
\(
\therefore \quad\left(\frac{x_1+x_3}{2}, \frac{y_1+y_3}{2}, \frac{z_1+z_3}{2}\right) \equiv(0,8,5)
\)
So, \(C\left(x_3, y_3, z_3\right) \equiv C\left(-x_1, 16-y_1, 10-z_1\right)\) (i)
Mid-point of \(A B[latex] is [latex]F\).
\(
\therefore \quad\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right) \equiv(2,3,-1)
\)
\(
\text { So, } B\left(x_2, y_2, z_2\right) \equiv B\left(4-x_1, 6-y_1,-2-z_1\right) \dots(ii)
\)
Mid-point of \(B C\) is \(D\)
\(
\begin{aligned}
\therefore \quad \frac{-x_1+4-x_1}{2} & =5, \frac{16-y_1+6-y_1}{2}=7, \\
\frac{10-z_1-2-z_1}{2} & =11
\end{aligned}
\)
\(
\begin{array}{llr}
\Rightarrow & x_1=-3, y_1=4 \text { and } z_1=-7 \\
\therefore & A \equiv(-3,4,-7) \\
\text { So, } & B \equiv(7,2,5) & \text { [Using (ii)] } \\
\text { and } & C \equiv(3,12,17) \quad \text { [Using (i)] }
\end{array}
\)
Three vertices of a Parallelogram \(ABCD\) are \(A (1,2,3), B (-1,-2,-1)\) and \(C (2,3,2)\). Find the fourth vertex \(D\).
\(
\text { Let the coordinates of } D \text { be }(a, b, c) \text {. }
\)
We know that the diagonals of a parallelogram bisect each other.
\(\therefore\) Mid-point of \(AC\) i.e. \(O =\left(\frac{1+2}{2}, \frac{2+3}{2}, \frac{3+2}{2}\right)\)
\(
=\left(\frac{3}{2}, \frac{5}{2}, \frac{5}{2}\right)
\)
\(
\text { Mid-point of } BD \text { i.e. } O =\left(\frac{a-1}{2}, \frac{b-2}{2}, \frac{c-1}{2}\right)
\)
Equating the corresponding coordinate, we have
\(
\begin{aligned}
& \frac{a-1}{2}=\frac{3}{2} \quad \Rightarrow \quad a=4 \\
& \frac{b-2}{2}=\frac{5}{2} \quad \Rightarrow \quad b=7
\end{aligned}
\)
and \(\frac{c-1}{2}=\frac{5}{2} \Rightarrow c=6\)
Hence, the coordinates of \(D=(4,7,6)\).
Find the coordinate of the points which trisect the line segment joining the points \(A (2,1,-3)\) and \(B (5,-8,3)\).
Let \(C\) and \(D\) be the points which divide the given line \(AB\) into three equal parts.
Here \(AC : CB =1: 2\)
Let \(\left(x_1, y_1, z_1\right)\) be the coordinates of \(C\)
\(
\begin{aligned}
\therefore \quad x_1 & =\frac{1 \times 5+2 \times 2}{1+2}=3 \\
y_1 & =\frac{1 \times-8+2 \times 1}{1+2}=-2
\end{aligned}
\)
\(
z_1=\frac{1 \times 3+2 \times-3}{1+2}=-1
\)
So \(C=(3,-2,-1)\).
Now \(D[latex] is the mid-point [latex]=C B\)
Let the coordinates of \(D\) be \(\left(x_2, y_2, z_2\right)\)
\(
\begin{aligned}
& x_2=\frac{3+5}{2}=4 \\
& y_2=\frac{-8-2}{2}=-5 \\
& z_2=\frac{3-1}{2}=1
\end{aligned}
\)
So, \(D=(4,-5,1)\).
Hence, the required coordinates are \(C(3,-2,-1)\) and \(D(4,-5,1)\).
If the origin is the centriod of a triangle \(ABC\) having vertices \(A (a, 1,3)\), \(B (-2, b,-5)\) and \(C (4,7, c)\), find the values of \(a, b, c\).
Coordinates of the centroid \(G =(0,0,0)\)
\(
\begin{aligned}
\therefore & 0 & =\frac{x_1+x_2+x_3}{3} \Rightarrow 0=\frac{a-2+4}{3} \Rightarrow a=-2 \\
& 0 & =\frac{y_1+y_2+y_3}{3} \Rightarrow 0=\frac{1+b+7}{3} \Rightarrow b=-8 \\
\text { and } & 0 & =\frac{z_1+z_2+z_3}{3} \Rightarrow 0=\frac{3-5+c}{3} \Rightarrow c=2
\end{aligned}
\)
Hence, the required values are \(a=-2, b=-8\) and \(c=2\).
Let \(A (2,2,-3), B (5,6,9)\) and \(C (2,7,9)\) be the vertices of a triangle. The internal bisector of the angle \(A\) meets \(BC\) at the point \(D\). Find the coordinates of \(D\).
Given that \(AD\) is the internal bisector of \(\angle A\)
\(
\begin{aligned}
\therefore \quad \frac{ AB }{ AC } & =\frac{ BD }{ DC } \\
AB & =\sqrt{(5-2)^2+(6-2)^2+(9+3)^2} \\
& =\sqrt{9+16+144}=\sqrt{169}=13 \\
\therefore \quad AC & =\sqrt{(2-2)^2+(7-2)^2+(9+3)^2} \\
& =\sqrt{0+25+144}=13 \\
\therefore \quad \frac{ AB }{ AC } & =\frac{ BD }{ DC }=\frac{13}{13} \Rightarrow BD = DC
\end{aligned}
\)
\(\Rightarrow D\) is the mid-point of \(B C\)
\(
\begin{aligned}
\therefore \quad \text { Coordinates of } D & =\left(\frac{5+2}{2}, \frac{6+7}{2}, \frac{9+9}{2}\right) \\
& =\left(\frac{7}{2}, \frac{13}{2}, 9\right)
\end{aligned}
\)
Hence, the required coordinates are \(\left(\frac{7}{2}, \frac{13}{2}, 9\right)\).
Given that the three points \(A (2,3,4), B (-1,2,-3)\) and \(C (-4,1,-10)\) are collinear and find the ratio in which \(C\) divides \(AB\).
Given points are \(A (2,3,4), B (-1,2,-3)\) and \(C (-4,1,-10)\)
\(
\begin{aligned}
AB & =\sqrt{(2+1)^2+(3-2)^2+(4+3)^2} \\
& =\sqrt{9+1+49}=\sqrt{59} \\
BC & =\sqrt{(-1+4)^2+(2-1)^2+(-3+10)^2} \\
& =\sqrt{9+1+49}=\sqrt{59} \\
AC & =\sqrt{(2+4)^2+(3-1)^2+(4+10)^2} \\
& =\sqrt{36+4+196}=\sqrt{236}=2 \sqrt{59} \\
\therefore \quad AB + BC & = AC \\
\sqrt{59}+\sqrt{59} & =2 \sqrt{59}
\end{aligned}
\)
Hence, \(A , B\) and \(C\) are collinear and \(AC : BC =2 \sqrt{59}: \sqrt{59}=2: 1\) Hence, \(C\) divides \(AB\) is \(2: 1\) externally.
The mid-point of the sides of a triangle are \((1,5,-1),(0,4,-2)\) and \((2,3,4)\). Find its vertices. Also find the centriod of the triangle.
Let the vertices of the given triangle be \(A \left(x_1, y_1, z_1\right), B \left(x_2, y_2, z_2\right)\) and \(C \left(x_3, y_3, z_3\right)\).
\(D\) is the mid-point of \(B C\)
\(
\begin{aligned}
& \therefore \quad 1=\frac{x_2+x_3}{2} \Rightarrow x_2+x_3=2 \dots(i)\\
& 5=\frac{y_2+y_3}{2} \Rightarrow y_2+y_3=10 \dots(ii)\\
& -1=\frac{z_2+z_3}{2} \Rightarrow z_2+z_3=-2 \dots(iii)\\
&
\end{aligned}
\)
\(E\) is the mid-point of \(A B\)
\(
\begin{aligned}
\therefore \quad 0 & =\frac{x_1+x_2}{2} \quad \Rightarrow x_1+x_2=0 \dots(iv) \\
4 & =\frac{y_1+y_2}{2} \Rightarrow y_1+y_2=8 \dots(v) \\
-2 & =\frac{z_1+z_2}{2} \Rightarrow z_1+z_2=-4 \dots(vi)
\end{aligned}
\)
\(F\) is the mid-point of \(AC\)
\(
\begin{aligned}
\therefore \quad 2 & =\frac{x_1+x_3}{2} \Rightarrow x_1+x_3=4 \dots(vii)\\
3 & =\frac{y_1+y_3}{2} \Rightarrow y_1+y_3=6 \dots(viii)\\
4 & =\frac{z_1+z_3}{2} \Rightarrow z_1+z_3=8 \dots(ix)
\end{aligned}
\)
Adding eq. (i), (iv) and (vii) we get
\(
\begin{aligned}
2\left(x_1+x_2+x_3\right) & =2+0+4 \\
\therefore \quad x_1+x_2+x_3 & =3 \dots(x)
\end{aligned}
\)
Adding (ii), (v) and (viii) we get
\(
\Rightarrow \quad \begin{aligned}
2\left(y_1+y_2+y_3\right) & =10+8+6\\
y_1+y_2+y_3 & =12 \dots(xi)
\end{aligned}
\)
Adding (iii), (vi) and (ix) we get
\(
\begin{aligned}
2\left(z_1+z_2+z_3\right) & =-2-4+8 \\
z_1+z_2+z_3 & =1 \dots(xii)
\end{aligned}
\)
Solving teh above equations
Here, the coordinates of \(B (-1,6,-7)\) Hence, the required coordinates are
\(
\begin{aligned}
& A (1,2,3), B (-1,6,-7) \text { and } C (3,4,5) \\
& \text { and Centroid } G=\left(\frac{1-1+3}{3}, \frac{2+6+4}{3}, \frac{3-7+5}{3}\right) \\
& =\left(1,4, \frac{1}{3}\right) \text {. } \\
&
\end{aligned}
\)
The points \((0,-1,-7),(2,1,-9)\) and \((6,5,-13)\) are collinear. Find the ratio in which the first point divides the join of the other two.
Let the given points are \(A (0,-1,-7), B (2,1,-9)\) and \(C (6,5,-13)\)
\(
\begin{aligned}
AB & =\sqrt{(2-0)^2+(1+1)^2+(-9+7)^2} \\
& =\sqrt{4+4+4}=\sqrt{12}=2 \sqrt{3} \\
BC & =\sqrt{(6-2)^2+(5-1)^2+(-13+9)^2} \\
& =\sqrt{16+16+16}=\sqrt{48}=4 \sqrt{3}
\end{aligned}
\)
\(
\begin{aligned}
AC & =\sqrt{(6-0)^2+(5+1)^2+(-13+7)^2} \\
& =\sqrt{36+36+36}=\sqrt{108}=6 \sqrt{3} \\
2 \sqrt{3}+4 \sqrt{3} & =6 \sqrt{3}
\end{aligned}
\)
\(
\begin{array}{ll}
\text { i.e. } & A B+B C=A C \\
\therefore & A B: A C=2 \sqrt{3}: 6 \sqrt{3}=1: 3
\end{array}
\)
\(
\text { Hence, point } A \text { divides } B \text { and } C \text { in } 1: 3 \text { externally. }
\)
What are the coordinates of the vertices of a cube whose edge is 2 units, one of whose vertices coincides with the origin and the three edges passing through the origin, coincides with the positive direction of the axes through the origin?
Given that each edge of the cuboid is 2 units.
\(\therefore\) Coordinates of the vertices are
\(
\begin{aligned}
& A (2,0,0), B (2,2,0), C (0,2,0) \\
& D (0,2,2), E (0,0,2), F (2,0,2), \\
& G (2,2,2) \text { and } O (0,0,0) \text {. }
\end{aligned}
\)
The distance of point \(P (3,4,5)\) from the \(y z\)-plane is
Given point is \(P (3,4,5)\)
\(\therefore\) Distance of \(P\) from \(y z\)-plane
\(
\begin{aligned}
& =\sqrt{(0-3)^2+(4-4)^2+(5-5)^2} \\
& =\sqrt{9}=3 \text { units }
\end{aligned}
\)
What is the length of foot of perpendicular drawn from the point \(P (3,4,5)\) on \(y\)-axis
On \(y\)-axis, \(x=0\) and \(z=0\) and given point \(P (3,4,5)\)
\(\therefore\) The point \(A\) is \((0,4,0)\)
\(
\begin{aligned}
\therefore \quad PA & =\sqrt{(0-3)^2+(4-4)^2+(0-5)^2} \\
& =\sqrt{9+0+25}=\sqrt{34}
\end{aligned}
\)
Distance of the point \((3,4,5)\) from the origin \((0,0,0)\) is
Given points \(A (3,4,5)\) and the given \(O (0,0,0)\)
\(
\begin{aligned}
\therefore \quad OA & =\sqrt{(3-0)^2+(4-0)^2+(5-0)^2} \\
& =\sqrt{9+16+25}=\sqrt{50}
\end{aligned}
\)
If the distance between the points \((a, 0,1)\) and \((0,1,2)\) is \(\sqrt{27}\), then the value of \(a\) is
Let the given points be \(A (a, 0,1)\) and \(B (0,1,2)\)
\(
\begin{aligned}
\therefore \quad AB & =\sqrt{(a-0)^2+(0-1)^2+(1-2)^2} \\
\sqrt{27} & =\sqrt{a^2+1+1}
\end{aligned}
\)
Squaring both sides, we get
\(
27=a^2+2 \quad \Rightarrow \quad a^2=25 \quad \therefore a= \pm 5
\)
\(x\)-axis is the intersection of two planes
We know that on the \(x y\) and \(x z\)-planes, the line of intersection is \(x\)-axis.
Equation of \(y\)-axis is considered as
\(
\text { On } y \text {-axis, } x=0 \text { and } z=0
\)
The point \((-2,-3,-4)\) lies in the
\(
\text { The point }(-2,-3,-4) \text { lies in seventh octant. }
\)
A plane is parallel to \(y z\)-plane so it is perpendicular to :
\(
\text { Any plane parallel to } y z \text {-plane is perpendicular to } x \text {-axis. }
\)
The locus of a point for which \(y=0, z=0\) is
We know that one equation of \(x\)-axis, \(y=0, z=0\) Hence, the locus of the point is equation of \(x\)-axis.
The locus of a point for which \(x=0\) is
On the \(y z\)-plane, \(x=0\)
Hence, the locus of the point is \(y z\)-plane.
If a parallelopiped is formed by planes drawn through the points \((5,8,10)\) and \((3,6,8)\) parallel to the coordinate planes, then the length of diagonal of the parallelopiped is
Given points are \(A(5,8,10)\) and \(B(3,6,8)\)
\(
\begin{aligned}
\therefore \quad AB & =\sqrt{(5-3)^2+(8-6)^2+(10-8)^2} \\
& =\sqrt{4+4+4}=\sqrt{12}=2 \sqrt{3}
\end{aligned}
\)
\(L\) is the foot of the perpendicular drawn from a point \(P (3,4,5)\) on the \(x y\)-plane. The coordinates of point \(L\) are
We know that on \(x y\)-plane, \(z=0\).
So, the coordinate of the point \(L\) are \((3,4,0)\).
\(L\) is the foot of the perpendicular drawn from a point \((3,4,5)\) on \(x\)-axis. The coordinates of \(L\) are
We know that \(x\)-axis, \(y=0\) and \(z=0\).
So, the required coordinates are \((3,0,0)\).
The three axes OX, OY, OZ determine ____.
The three axes OX, OY and OZ determine three coordinate planes.
Hence, the filler value is three coordinate planes.
The three planes determine a rectangular parallelopiped which has _____ of rectangular faces.
Three pairs. Hence, the value of the filler is three pairs.
The coordinates of a point are the perpendicular distance from the _____ on respective axes.
Given points.
Hence, the value of the filler is given points.
The three coordinates planes divide the space into _____ parts.
Eight. Hence, the values of the filler is eight.
If a point \(P\) lies in \(y z\)-plane, then the coordinates of a point on \(y z\)-plane is of the form _____.
We know that on \(y z\)-plane, \(x=0\)
So, the coordinates of the required point is \((0, y, z)\). Hence, the value of the filler is \((0, y, z)\).
The equation of \(y z\)-plane is _____.
The equation of \(y z\)-plane is \(x=0\).
Hence, the value of the filler is \(x=0\).
If the point \(P\) lies on \(z\)-axis, then coordinates of \(P\) are of the form _____.
On the \(z\)-axis, \(x=0\) and \(y=0\).
\(\therefore\) The required coordinate is in the form of \((0,0, z)\).
Hence, the value of the filler is \((0,0, z)\).
The equation of \(z\)-axis are _____.
The equation of \(z\)-axis are, \(x=0\) and \(y=0\).
Hence, the value of the filler is \(x=0\) and \(y=0\).
A line is parallel to \(x y\)-plane if all the points on the line have equal _____.
\(z\)-coordinates
Hence, the value of the filler is \(z\)-coordinates.
A line is parallel to \(x\)-axis if all the points on the line have equal ________.
Hence, the value of the filler is \(y\) and \(z\) coordinates.
\(x=a\) represents a plane parallel to ____.
\(x=a\) represents a plane parallel to \(y z\)-plane.
The plane parallel to \(y z\)-plane is perpendicular to _____.
The plane parallel to \(y z\)-plane is perpendicular to \(x\)-axis. Hence, the value of the filler is \(x\)-axis.
The length of the longest piece of a string that can be stretched straight in a rectangular room whose dimensions are 10,13 and 8 units are _____.
The given dimensions are 10,13 and 8
Let \(a=10, b=13\) and \(c=8\)
\(
\begin{aligned}
\therefore \quad \text { Required length } & =\sqrt{a^2+b^2+c^2} \\
& =\sqrt{(10)^2+(13)^2+(8)^2} \\
& =\sqrt{100+169+64}=\sqrt{333}
\end{aligned}
\)
Hence, the value of the filler is \(\sqrt{333}\).
If the distance between the points \((a, 2,1)\) and \((1,-1,1)\) is 5 , then \(a\) ____.
Given points are \((a, 2,1)\) and \((1,-1,1)\)
\(
\begin{aligned}
\therefore \quad \text { Distance } & =\sqrt{(a-1)^2+(2+1)^2+(1-1)^2} \\
5 & =\sqrt{a^2+1-2 a+9}
\end{aligned}
\)
Squaring both sides, we have
\(
\begin{aligned}
& 25=a^2-2 a+10 \\
& \Rightarrow \quad a^2-2 a-15=0 \\
& \Rightarrow \quad a^2-5 a+3 a-15=0 \\
& \Rightarrow \quad a(a-5)+3(a-5)=0 \\
& \Rightarrow \quad(a+3)(a-5)=0 \\
& \therefore \quad a=-3 \text { or } 5 \\
&
\end{aligned}
\)
Hence, the value of the filler is 5 or -3 .
If the mid-points of the sides of a triangle \(AB ; BC\); \(CA\) are \(D (1,2,-3), E (3,0,1)\) and \(F(-1,1,-4)\), then the centriod of the triangle \(A B C\) is _____.
Given that mid-point of a triangle are \(D(1,2,-3), E(3,0,1)\) and \(F(-1,1,-4)\).
From Geometry of centroid, centroid of triangle is same as the centroid of the triangle formed by mid-points of the sides.
The coordinates of the centroid of the triangle, whose vertices are \(\left(x_1, y_1, z_1\right),\left(x_2, y_2, z_2\right)\) and \(\left(x_3, y_3, z_3\right)\) are \(\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right)\)
\(\therefore\) Centroid of triangle
\(
\begin{aligned}
& =G\left(\frac{1+3-1}{3}, \frac{2+0+1}{3}, \frac{-3+1-4}{3}\right) \\
& =G(1,1,-2)
\end{aligned}
\)
Hence, \((1,1,-2)\) are the coordinates of the centroid.
Match each item under the Column I to its correct answer given under Column II.
\(
\begin{array}{|l|l|r|l|}
\hline & \text { Column I } & & \text { Column II } \\
\hline \text { (a) } & \text { In } x y \text {-plane } & \text { (i) } & \text { Ist octant } \\
\hline \text { (b) } & \text { Point }(2,3,4) \text { lies in the } & \text { (ii) } & y z \text {-plane } \\
\hline \text { (c) } & \begin{array}{l}
\text { Locus of the points } \\
\text { having } x \text {-coordinate } 0 \text { is }
\end{array} & \text { (iii) } & z \text {-coordinate is zero } \\
\hline \text { (d) } & \begin{array}{l}
\text { A line is parallel to } \\
x \text {-axis if and only }
\end{array} & \text { (iv) } & z \text {-axis } \\
\hline \text { (e) } & \begin{array}{l}
\text { If } x=0, y=0 \text { taken } \\
\text { together will represent } \\
\text { the }
\end{array} & \text { (v) } & \text { Parallel to } x y \text {-plane } \\
\hline \text { (f) } & \begin{array}{l}
z=c \text { represent the plane. }
\end{array} & \text { (vi) } & \begin{array}{l}
\text { If all the points on the } \\
\text { line have equal } y \text { and } \\
z \text {-coordinates }
\end{array} \\
\hline \text { (g) } & \begin{array}{l}
\text { Planes } x=a, y=b \\
\text { represent the line }
\end{array} & \text { (vii) } & \begin{array}{l}
\text { From the point on the } \\
\text { respective axes }
\end{array} \\
\hline \text { (h) } & \begin{array}{l}
\text { Coordinates of a point } \\
\text { are the distances from } \\
\text { the origin to the feet of } \\
\text { perpendiculars }
\end{array} & \text { (viii) } & \text { Parallel to } z \text {-axis } \\
\hline \text { (i) } & \begin{array}{l}
\text { A ball is a solid region } \\
\text { in the space enclosed } \\
\text { by a }
\end{array} & (i x) & \text { disc } \\
\hline \text { (j) } & \begin{array}{l}
\text { Region in the plane } \\
\text { enclosed by a circle is } \\
\text { known as a }
\end{array} & (x) & \text { sphere } \\
\hline
\end{array}
\)
(a) In \(x y\)-plane, \(z\)-coordinate is zero.
Hence, \((a) \leftrightarrow(i i i)\).
(b) The point \((2,3,4)\) lies in first octant.
Hence, \((b) \leftrightarrow(i)\).
(c) Locus of the points with \(x\)-coordinate is zero is \(y z\)-plane. Hence, \((c) \leftrightarrow(i i)\).
(d) A line is parallel to \(x\)-axis if and only if all the points on the line have equal \(y\) and \(z\)-coordinates.
Hence, \((d) \leftrightarrow(v i)\).
(e) \(x=0, y=0\) represent \(z\)-axis.
Hence, \((e) \leftrightarrow(i v)\).
(f) \(z=c\) represent a plane parallel to \(x y\)-plane.
Hence, \((f) \leftrightarrow(v)\).
(g) The planes \(x=a, y=b\) represent the line parallel to \(z\)-axis. Hence, \((g) \leftrightarrow\) (viii).
(h) Coordinates of a point are the distances from the origin to the feet of perpendicular from the point on the respective axes.
Hence, \((h) \leftrightarrow\) (vii).
(i) A ball is solid region in the space enclosed by a sphere. Hence, \((i) \leftrightarrow(x)\).
(j) The region in the plane enclosed by a circle is known as a disc. Hence, \((j) \leftrightarrow(i x)\).
The length of the foot of perpendicular drawn from the point \(P (3,4,5)\) on \(y\)-axis is
Let \(l\) be the foot of perpendicular from point \(P\) on the \(y\)-axis. Therefore, its \(x\) and \(z\)-coordinates are zero, i.e., \((0,4,0)\). Therefore, distance between the points ( 0 , \(4,0)\) and \((3,4,5)\) is \(\sqrt{9+25}\) i.e., \(\sqrt{34}\).
What is the perpendicular distance of the point \(P (6,7,8)\) from \(x y\)-plane?
Let \(L\) be the foot of perpendicular drawn from the point \(P (6,7,8)\) to the \(x y\) plane and the distance of this foot \(L\) from \(P\) is \(z\)-coordinate of \(P\), i.e., 8 units.
\(20 L\) is the foot of the perpendicular drawn from a point \(P (6,7,8)\) on the \(x y\) plane. What are the coordinates of point \(L\) ?
Since \(L\) is the foot of perpendicular from \(P\) on the \(x y\)-plane, \(z\)-coordinate is zero in the \(x y\)-plane. Hence, coordinates of \(L\) are \((6,7,0)\).
\(21 L\) is the foot of the perpendicular drawn from a point \((6,7,8)\) on \(x\)-axis. The coordinates of \(L\) are
Since \(L\) is the foot of perpendicular from \(P\) on the \(x\)-axis, \(y\) and \(z\)-coordinates are zero. Hence, the coordinates of \(L\) are \((6,0,0)\).
What is the locus of a point for which \(y=0, z=0\) ?
Locus of the point \(y=0, z=0\) is \(x\)-axis, since on \(x\)-axis both \(y=0\) and \(z=0\).
\(23 L\), is the foot of the perpendicular drawn from a point \(P(3,4,5)\) on the \(x z\) plane. What are the coordinates of point \(L\) ?
Since \(L\) is the foot of perpendicular segment drawn from the point \(P(3,4,5)\) on the \(x z\)-plane. Since the \(y\)-coordinates of all points in the \(x z\)-plane are zero, coordinate of the foot of perpendicular are \((3,0,5)\).
A line is parallel to \(x y\)-plane if all the points on the line have equal _____.
A line parallel to xy-plane if all the points on the line have equal \(z\)-coordinates.
The equation \(x=b\) represents a plane parallel to ____ plane.
Since \(x=0\) represent \(y z\)-plane, therefore \(x=b\) represent a plane parallel to \(y z\)-plane at a unit distance \(b\) from the origin.
Perpendicular distance of the point \(P (3,5,6)\) from \(y\)-axis is ____.
Since \(M\) is the foot of perpendicular from \(P\) on the \(y\)-axis, therefore, its \(x\) and \(z\)-coordinates are zero. The coordinates of \(M\) is \((0,5,0)\). Therefore, the perpendicular distance of the point \(P\) from \(y\)-axis \(\sqrt{3^2+6^2}=\sqrt{45}\).
\(L\) is the foot of perpendicular drawn from the point \(P (3,4,5)\) on \(z x\) planes. The coordinates of \(L\) are ____.
Since \(L\) is the foot of perpendicular from \(P\) on the \(z x\)-plane, \(y\)-coordinate of every point is zero in the \(z x\)-plane. Hence, coordinate of \(L\) are \((3,0,5)\).
The length of the foot of perpendicular drawn from the point \(P (a, b, c)\) on \(z\)-axis is _____.
The coordinates of the foot of perpendicular from the point \(P (a, b, c)\) on \(z\) axis is \((0,0, c )\). The distance between the point \(P (a, b, c)\) and \((0,0, c)\) is \(\sqrt{a^2+b^2}\).
The \(y\)-axis and \(z\)-axis, together determine a plane known as \(y z\)-plane.
True
The point \((4,5,-6)\) lies in the \(VI ^{\text th }}\) octant.
False, the point \((4,5,-6)\) lies in the \(V ^{ \text {th} }\) octant.
The \(x\)-axis is the intersection of two planes \(x y\)-plane and \(x z\) plane.
true
Three mutually perpendicular planes divide the space into 8 octants.
Three mutually perpendicular planes divide the space into 8 octants. True
Â
The equation of the plane \(z=6\) represent a plane parallel to the \(x y\)-plane, having a \(z\)-intercept of 6 units.
True
The equation of the plane \(x=0\) represent the \(y z\)-plane.
true
The point on the \(x\)-axis with \(x\)-coordinate equal to \(x_0\) is written as \(\left(x_0, 0,0\right)\).
true
\(x=x_0\) represent a plane parallel to the \(y z\)-plane.
true
Match each item under the Column I to its correct answer given under Column II.
\(
\begin{array}{|l|l|r|l|}
\hline & \text { Column I } & & \text { Column II } \\
\hline \text { (a) } & \begin{array}{l}
\text { If the centriod of the triangle is } \\
\text { origin and two of its vertices } \\
\text { are (3, – 5, 7) and (–1, 7, – 6) } \\
\text { then the third vertex is }
\end{array} & \text { (i) } & \text { Parallelogram } \\
\hline \text { (b) } & \begin{array}{l}
\text { If the mid-points of the sides of } \\
\text { triangle are (1, 2, – 3), (3, 0, 1) } \\
\text { and (–1, 1, – 4) then the centriod is }
\end{array} & \text { (ii) } & \text { (–2, –2, –1) } \\
\hline \text { (c) } & \begin{array}{l}
\text { The points (3, – 1, – 1), (5, – 4, 0), } \\
\text { (2, 3, – 2) and (0, 6, – 3) are the } \\
\text { vertices of a }
\end{array} & \text { (iii) } & \text { as Isosceles right-angled triangle } \\
\hline \text { (d) } & \begin{array}{l}
\text { Point A(1, –1, 3), B (2, – 4, 5) and } \\
\text { C (5, – 13, 11) are }
\end{array} & \text { (iv) } & \text { (1, 1, – 2) } \\
\hline \text { (e) } & \begin{array}{l}
\text { Point A(2, 4, 3), B (4, 1, 9) and } \\
\text { C (10, – 1, 6) are the vertices of }
\end{array} & \text { (v) } & \text { Collinear } \\
\hline
\end{array}
\)
(a) Let \(A (3,-5,7), B (-1,7,-6), C (x, y, z)\) be the vertices of a \(\Delta ABC\) with centriod \((0\), 0,0 )
Therefore, \((0,0,0)=\left(\frac{3-1+x}{3}, \frac{-5+7+y}{3}, \frac{7-6+z}{3}\right)\). This implies \(\frac{x+2}{3}=0, \frac{y+2}{3}=0\), \(\frac{z+1}{3}=0\)
Hence \(x=-2, y=-2\), and \(z=-1\). Therefore (a) \(\leftrightarrow\) (ii)
(b) Let \(ABC\) be the given \(\triangle\) and \(DEF\) be the mid-points of the sides \(BC , CA , AB\), respectively. We know that the centriod of the \(\triangle ABC =\) centriod of \(\triangle DEF\).
Therefore, centriod of \(\triangle DEF\) is \(\left(\frac{1+3-1}{3}, \frac{2+0+1}{3}, \frac{-3+1-4}{3}\right)=(1,1,-2)\)
Hence (b) \(\leftrightarrow\) (iv)
(c) Mid-point of diagonal AC is \(\left(\frac{3+2}{2}, \frac{-1+3}{2}, \frac{-1-2}{2}\right)=\left(\frac{5}{2}, 1, \frac{-3}{2}\right)\)
Mid-point of diagonal BD is \(\left(\frac{5+0}{2}, \frac{-4+6}{2}, \frac{0-3}{2}\right)=\left(\frac{5}{2}, 1, \frac{-3}{2}\right)\)
Diagonals of parallelogram bisect each other. Therefore (c) \(\leftrightarrow\) (i)
(d)
\(
\begin{aligned}
& |A B|=\sqrt{(2-1)^2+(-4+1)^2+(5-3)^2}=\sqrt{14} \\
& |B C|=\sqrt{(5-2)^2+(-13+4)^2+(11-5)^2}=3 \sqrt{14} \\
& |A C|=\sqrt{(5-1)^2+(-13+1)^2+(11-3)^2}=4 \sqrt{14}
\end{aligned}
\)
Now \(|A B|+|B C|=|A C|\). Hence Points A, B, C are collinear. Hence (d) \(\leftrightarrow\) (v)
(e) \(AB =\sqrt{4+9+36}=7\)
\(
\begin{aligned}
& BC =\sqrt{36+4+9}=7 \\
& CA =\sqrt{64+25+9}=7 \sqrt{2}
\end{aligned}
\)
Now \(AB ^2+ BC ^2= AC ^2\). Hence \(ABC\) is an isosceles right angled triangle and hence (e) \(\leftrightarrow\) (iii)
The points \(P(2,4,6), Q(-2,-2,-2)\) and \(R (6,10,14)\) are collinear. Is this true?
Three points are collinear if the sum of any two distances is equal to the third distance.
\(
\begin{aligned}
& P Q=\sqrt{(-2-2)^2+(-2-4)^2+(-2-6)^2}=\sqrt{16+36+64}=\sqrt{116}=2 \sqrt{29} \\
& QR =\sqrt{(6+2)^2+(10+2)^2+(14+2)^2}=\sqrt{64+144+256}=\sqrt{464}=4 \sqrt{29} \\
& PR =\sqrt{(6-2)^2+(10-4)^2+(14-6)^2}=\sqrt{16+36+64}=\sqrt{116}=2 \sqrt{29}
\end{aligned}
\)
Since \(QR = PQ + PR\). Therefore, the given points are collinear.
Find the coordinates of a point equidistant from the four points \(O (0,0,0)\), \(A (l, 0,0), B (0, m, 0)\) and \(C (0,0, n)\).
Let \(P (x, y, z)\) be the required point. Then \(OP = PA = PB = PC\).
Now \(OP = PA \Rightarrow OP ^2= PA ^2 \Rightarrow x^2+y^2+z^2=(x-l)^2+(y-0)^2+(z-0)^2 \Rightarrow x=\frac{l}{2}\)
Similarly, \(OP = PB \Rightarrow y=\frac{m}{2}\) and \(OP = PC \Rightarrow z=\frac{n}{2}\)
Hence, the coordinate of the required point are \(\left(\frac{l}{2}, \frac{m}{2}, \frac{n}{2}\right)\).
Find the point on \(x\)-axis which is equidistant from the point \(A (3,2,2)\) and B \((5,5,4)\).
The point on the \(x\)-axis is of form \(P (x, 0,0)\). Since the points \(A\) and \(B\) are equidistant from \(P\). Therefore \(PA ^2= PB ^2\), i.e.,
\(
\begin{aligned}
& (x-3)^2+(0-2)^2+(0-2)^2=(x-5)^2+(0-5)^2+(0-4)^2 \\
& \Rightarrow 4 x=25+25+16-17 \text { i.e., } x=\frac{49}{4} .
\end{aligned}
\)
Thus, the point \(P\) on the \(x\)-axis is \(\left(\frac{49}{4}, 0,0\right)\) which is equidistant from \(A\) and \(B\).
Find the point on \(y\)-axis which is at a distance \(\sqrt{10}\) from the point \((1,2,3)\)
Let the point \(P\) be on \(y\)-axis. Therefore, it is of the form \(P (0, y, 0)\).
The point \((1,2,3)\) is at a distance \(\sqrt{10}\) from \((0, y, 0)\). Therefore
\(
\begin{aligned}
& \sqrt{(1-0)^2+(2-y)^2+(3-0)^2}=\sqrt{10} \\
& \Rightarrow y^2-4 y+4=0 \Rightarrow(y-2)^2=0 \Rightarrow y=2
\end{aligned}
\)
Hence, the required point is \((0,2,0)\).
If a parallelopiped is formed by planes drawn through the points \((2,3,5)\) and \((5,9,7)\) parallel to the coordinate planes, then find the length of edges of a parallelopiped and length of the diagonal.
Length of edges of the parallelopiped are \(5-2,9-3,7-5\) i.e., \(3,6,2\).
Length of diagonal is \(\sqrt{3^2+6^2+2^2}=7\) units.
The points \((0,7,10),(-1,6,6)\) and \((-4,9,6)\) form a right angled isosceles triangle. Is this true?
Let \(P (0,7,10), Q (-1,6,6)\) and \(R (-4,9,6)\) be the given three points.
Here \(PQ =\sqrt{1+1+16}=3 \sqrt{2}\)
\(
\begin{aligned}
& QR =\sqrt{9+9+0}=3 \sqrt{2} \\
& PR =\sqrt{16+4+16}=6
\end{aligned}
\)
Now \(PQ ^2+ QR ^2=(3 \sqrt{2})^2+(3 \sqrt{2})^2=18+18=36=( PR )^2\)
Therefore, \(\triangle PQR\) is a right angled triangle at \(Q\). Also \(PQ = QR\). Hence \(\triangle PQR\) is an isosceles triangle.
The points \((5,-1,1),(7,-4,7),(1-6,10)\) and \((-1,-3,4)\) are the vertices of a rhombus. Is this true?
Let \(A (5,-1,1), B (7,-4,7), C (1,-6,10)\) and \(D (-1,-3,4)\) be the four points of a quadrilateral. Here
\(
\begin{aligned}
& AB =\sqrt{4+9+36}=7, BC =\sqrt{36+4+9}=7, CD =\sqrt{4+9+36}=7, \\
& DA =\sqrt{23+4+9}=7
\end{aligned}
\)
Note that \(AB = BC = CD = DA\). Therefore, \(ABCD\) is a rhombus.
Find the ratio in which the line segment joining the points \((2,4,5)\) and \((3,5,-4)\) is divided by the \(x z\)-plane.
Let the joint of \(P (2,4,5)\) and \(Q (3,5,-4)\) be divided by \(x z\)-plane in the ratio \(k: 1\) at the point \(R (x, y, z)\). Therefore
\(
x=\frac{3 k+2}{k+1}, y=\frac{5 k+4}{k+1}, z=\frac{-4 k+5}{k+1}
\)
Since the point \(R (x, y, z)\) lies on the \(x z\)-plane, the \(y\)-coordinate should be zero,i.e.,
\(
\frac{5 k+4}{k+1}=0 \Rightarrow k=-\frac{4}{5}
\)
Hence, the required ratio is \(-4: 5\), i.e.; externally in the ratio \(4: 5\).
Find the coordinate of the point \(P\) which is five – sixth of the way from \(A\) \((-2,0,6)\) to \(B (10,-6,-12)\).
Let \(P (x, y, z)\) be the required point, i.e., \(P\) divides \(AB\) in the ratio \(5: 1\). Then
\(
P(x, y, z)=\left(\frac{5 \times 10+1 \times-2}{5+1}, \frac{5 \times-6+1 \times 0}{5+1}, \frac{5 \times-12+1 \times 6}{5+1}\right)=(8,-5,-9)
\)
Let \(A (3,2,0), B (5,3,2), C (-9,6,-3)\) be three points forming a triangle. \(A D\), the bisector of \(\angle B A C\), meets \(B C\) in \(D\). Find the coordinates of the point \(D\).
Note that
\(
\begin{aligned}
& AB =\sqrt{(5-3)^2+(3-2)^2+(2-0)^2}=\sqrt{4+1+4}=3 \\
& AC =\sqrt{(-9-3)^2+(6-2)^2+(-3-0)^2}=\sqrt{144+16+9}=13
\end{aligned}
\)
Since \(AD\) is the bisector of \(\angle BAC\), We have \(\frac{ BD }{ DC }=\frac{ AB }{ AC }=\frac{3}{13}\)
i.e., \(D\) divides \(BC\) in the ratio \(3: 13\). Hence, the coordinates of \(D\) are
\(
\left(\frac{3(-9)+13(5)}{3+13}, \frac{3(6)+13(3)}{3+13}, \frac{3(-3)+13(2)}{3+13}\right)=\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)
\)
Determine the point in \(y z\)-plane which is equidistant from three points \(A\) \((2,03)\) B \((0,3,2)\) and \(C(0,0,1)\).
Since \(x\)-coordinate of every point in \(y z\)-plane is zero. Let \(P (0, y, z)\) be a point on the \(y z\)-plane such that \(PA = PB = PC\). Now
\(
\begin{aligned}
& PA = PB \Rightarrow(0-2)^2+(y-0)^2+(z-3)^2=(0-0)^2+(y-3)^2+(z-2)^2, \text { i.e. } z-3 y=0 \\
& \text { and } PB = PC \\
& \Rightarrow y^2+9-6 y+z^2+4-4 z=y^2+z^2+1-2 z \text {, i.e. } 3 y+z=6
\end{aligned}
\)
Simplifying the two equating, we get \(y=1, z=3\)
Here, the coordinate of the point \(P\) are \((0,1,3)\).
You cannot copy content of this page