Summary
     \(S _n=\frac{n}{2}[2 a+(n-1) d]=\frac{n}{2}(a+l) .\)
     \(S _n=\frac{a\left(r^n-1\right)}{r-1} \text { or } \frac{a\left(1-r^n\right)}{1-r} \text {, if } r \neq 1\)
0 of 58 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 58 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
The first term of an A.P.is \(a\), and the sum of the first \(p\) terms is zero, what is the sum of its next \(q\) terms?
Given that \(a_1=a\) and \(S _p=0\)
Sum of next \(q\) terms of the given A.P. \(= S _{p+q}- S _p\)
\(
\begin{aligned}
& \therefore \quad S _{p+q}=\frac{p+q}{2}[2 a+(p+q-1) d] \\
& \text { and } \quad S _p=\frac{p}{2}[2 a+(p-1) d]=0 \\
& \Rightarrow \quad 2 a+(p-1) d=0 \Rightarrow(p-1) d=-2 a \\
& \Rightarrow \quad d=\frac{-2 a}{p-1} \\
&
\end{aligned}
\)
Sum of next \(q\) terms \(= S _{p+q}- S _p\)
\(
\begin{aligned}
& =\frac{p+q}{2}[2 a+(p+q-1) d]-0 \\
& =\frac{p+q}{2}\left[2 a+(p+q-1)\left(\frac{-2 a}{p-1}\right)\right] \\
& =\frac{p+q}{2}\left[2 a+\frac{(p-1)(-2 a)}{p-1}-\frac{2 a q}{p-1}\right] \\
& =\frac{p+q}{2}\left[2 a-2 a-\frac{2 a q}{p-1}\right]=\frac{(p+q)}{2}\left(\frac{-2 a q}{p-1}\right) \\
& =\frac{-a(p+q) q}{p-1} \quad-a(p+q) q
\end{aligned}
\)
Hence, the required sum \(=\frac{-a(p+q) q}{p-1}\)
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
Let \(₹ x\) be saved in first year.
Annual increment \(=₹ 200\), which forms an A.P.
first term \(=a\) and common difference \(d=200\) \(n=20\) years
\(
\therefore \quad S _n=\frac{n}{2}[2 a+(n-1) d] \Rightarrow S _{20}=\frac{20}{2}[2 a+(20-1) 200]
\)
\(
\begin{aligned}
66000 & =10[2 a+3800] \Rightarrow 6600=2 a+3800 \\
2 a & =6600-3800 \Rightarrow 2 a=2800 \Rightarrow a=1400
\end{aligned}
\)
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter.
(a) Find his salary for the tenth month
(b) What is his total earnings during the first year?
Given that fixed increment in the salary of a man
\(
=₹ 320 \text { each month }
\)
Initial salary \(=₹ 5200\) which makes an A.P.
whose first term \((a)=₹ 5200\) and common difference \((d)=₹ 320\)
(i) Salary for the tenth month
\(
\begin{aligned}
a_{10} & =a+(n-1) d \\
& =5200+(10-1) \times 320=5200+2880=₹ 8080
\end{aligned}
\)
(ii) Total earning during the first year ( 12 months)
\(
S_{12}=\frac{12}{2}[2 \times 5200+(12-1) \times 320] \left[\because \quad S _n=\frac{n}{2}[2 a+(n-1) d]\right]
\)
\(
=6[10400+3520]=6 \times 13920=₹ 83520
\)
Hence, the required amount is (i) ₹ 8080 (ii) ₹ 83520 .
If the \(p\) th and \(q\) th terms of a G.P. are \(q\) and \(p\) respectively, what is its \(\)(p+q)^{\text {th }}\(\) term?
Let the first term and common ratio of G.P. be \(a\) and \(r\), respectively.
Given that, \(p\) th term \(=q \quad \Rightarrow a r^{p-1}=q \dots(i)\)
\(
\text { and } \quad q \text { th term }=p \Rightarrow a r^{q-1}=p \dots(ii)
\)
On dividing Eq. (i) by Eq. (ii), we get
\(
\frac{a r^{p-1}}{a r^{q-1}}=\frac{q}{p} \Rightarrow r^{p-q}=\frac{q}{p} \Rightarrow r=\left(\frac{q}{p}\right)^{\frac{1}{p-q}}
\)
On substituting the value of \(r\) in Eq. (i), we get
\(
a\left(\frac{q}{p}\right)^{\frac{p-1}{p-q}}=q \Rightarrow a=q\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}}
\)
\(
\begin{aligned}
(p+q) \text { th term, } T_{p+q} & = a \cdot p^{p+q-1} \\
& =q\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}}\left(\frac{q}{p}\right)^{\frac{p+q-1}{p-q}}=q\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}-\frac{p+q-1}{p-q}} \\
& =q\left(\frac{q}{p}\right)^{\frac{q}{p-q}}=\frac{q^{\frac{q}{p-q}+1}}{p^{\frac{q}{p-q}}}=\frac{q^{\frac{p}{p-q}}}{p^{\frac{q}{p-q}}}=\left(\frac{q^p}{p^q}\right)^{\frac{1}{p-q}}
\end{aligned}
\)
A carpenter was hired to build 192 window frames. The first day he made five frames and each day, thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
Here, \(a=5\) and \(d=2\)
Let the carpenter finish the job in \(n\) days. Then, \(S_n=192\)
\(
192=\frac{n}{2}[2 a+(n-1) d] \Rightarrow 192=\frac{n}{2}[2 \times 5+(n-1) 2]
\)
\(
\begin{aligned}
& 192=n[5+n-1] \Rightarrow n^2+4 n-192=0 \quad \Rightarrow \quad(n-12)(n+16)=0 \\
& n=12
\end{aligned}
\)
We know the sum of the interior angles of a triangle is \(180^{\circ}\). Show that the sums of the interior angles of polygons with \(3,4,5,6, \ldots\) sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.
We know that, sum of interior angles of a polygon of side \(n\) is \((n-2) \times 180^{\circ}\).
Let \(t_n=(n-2) \times 180^{\circ}\)
Since \(t_n\) is linear in \(n\), it is \(n\)th term of some A.P.
\(
t_3=a=(3-2) \times 180^{\circ}=180^{\circ}
\)
Common difference, \(d=180^{\circ}\)
Sum of the interior angles for a 21 sided polygon is:
\(
t_{21}=(21-2) \times 180^{\circ}=3420^{\circ}
\)
A side of an equilateral triangle is \(20 cm\) long. A second equilateral triangle is inscribed in it by joining the mid points of the sides of the first triangle. The process is continued as shown in the accompanying diagram. Find the perimeter of the sixth inscribed equilateral triangle.
The side of the first equilateral \(\triangle ABC =20 cm\)
By joining the mid points of the sides of this triangle, we get the second equilateral triangle which each side \(=\frac{20}{2}=10 cm\)
\([\because \quad\) The line joining the mid-points of two sides of a triangle is \(1 / 2\) and parallel to third side of the triangle]
Similarly each side of the third equilateral triangle \(=\frac{10}{2}=5 cm\)
\(\therefore\) Perimeter of first triangle \(=20 \times 3=60 cm\)
Perimeter of the second triangle \(=10 \times 3=30 cm\)
and the perimeter of the third triangle \(=5 \times 3=15 cm\)
Therefore, the series will be \(60,30,15, \ldots\)
which is G.P. in which \(a=60\), and \(r=\frac{30}{60}=\frac{1}{2}\)
Now, we have to find the perimeter of the sixth inscribed equilateral triangle
\(
\begin{aligned}
\therefore \quad a_6 & =a r^{6-1} \\
& =60 \times\left(\frac{1}{2}\right)^5=60 \times \frac{1}{32}=\frac{15}{8} cm
\end{aligned}
\)
Hence, the required perimeter \(=\frac{15}{8} cm\)
In a potato race 20 potatoes are placed in a line at intervals of 4 metres with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
We have,
the distance travelled to bring the first potato, \(a_1=2 \times 24=48 m\), the distance travelled to bring the second potato, \(a_2=2 \times(24+4)=56 m\), the distance travelled to bring the third potato, \(a_3=2 \times(24+4+4)=64 m\),
As, \(a_2-a_1=56-48=8\) and \(a_3-a_2=64-56=8\) i. e. \(a_2-a_1=a_3-a_2\)
So, \(a_1, a_2, a_3, \ldots\) are in A.P.
Also, \(a=48, d=8, n=20\)
Now,
\(
\begin{aligned}
& S_{20}=\frac{20}{2}[2 a+(20-1) d] \\
& =10[2 \times 48+19 \times 8] \\
& =10 \times(96+152) \\
& =10 \times 248 \\
& =2480
\end{aligned}
\)
In a cricket tournament 16 school teams participated. A sum of Rs 8000 is to be awarded among themselves as prize money. If the last placed team is awarded Rs 275 in prize money and the award increases by the same amount for successive finishing places, how much amount will the first place team receive?
Let the prize amount got by first place team be \(₹ a\)
Since, the prize money increases by the same amount for successive finishing places, therefore the series will be A.P.
\(
\therefore \quad \begin{aligned}
a_n & =275, n=16 \text { and } S _{16}=8000 \\
a_n & =a+(n-1) d \\
275 & =a+(16-1)(-d)
\end{aligned}
\)
\([\because\) Common difference \(d\) is \((-)\) as the series is decreasing \(]\)
\(
\Rightarrow \quad 275=a-15 d \dots(i)
\)
Now
\(
\begin{aligned}
S _n & =\frac{n}{2}[2 a+(n-1) d] \\
S _{16} & =\frac{16}{2}[2 a+15(-d)]
\end{aligned}
\)
\(
\Rightarrow \quad 8000=8[2 a-15 d] \Rightarrow 2 a-15 d=1000 \dots(ii)
\)
Solving eq. (i) and eq. (ii) we get
\(
a=725 \text { and } d=30
\)
Hence, the required award received by first place term \(=₹ 725\).
If \(a_1, a_2, a_3, \ldots, a_n\) are in A.P., where \(a_i>0\) for all \(i\), What is the value of
\(
\frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}
\)
Given that \(a_1, a_2, a_3, a_4, \ldots, a_n\) are in A.P.
\(\therefore\) Common difference \(d=a_2-a_1=a_3-a_2=a_4-a_3=\ldots=a_n-a_{n-1}\)
\(
\begin{aligned}
& \text { If } a_2-a_1=d \text { then } \sqrt{a_2^2}-\sqrt{a_1^2}=d \\
& \Rightarrow \quad\left(\sqrt{a_2}-\sqrt{a_1}\right)\left(\sqrt{a_2}+\sqrt{a_1}\right)=d \quad\left[\because \quad a^2-b^2=(a+b)(a-b)\right]
\end{aligned}
\)
\(
\frac{1}{\sqrt{a_1}+\sqrt{a_2}}=\frac{\sqrt{a_2}-\sqrt{a_1}}{d}
\)
Similarly
\(
\frac{1}{\sqrt{a_2}+\sqrt{a_3}}=\frac{\sqrt{a_3}-\sqrt{a_2}}{d}
\)
\(
\begin{array}{cc}
\frac{1}{\sqrt{a_3}+\sqrt{a_4}}= & \frac{\sqrt{a_4}-\sqrt{a_3}}{d} \\
\cdots & \cdots \\
\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}= & \frac{\sqrt{a_n}-\sqrt{a_{n-1}}}{d}
\end{array}
\)
Adding the above terms, we get
\(
\frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\frac{1}{\sqrt{a_3}+\sqrt{a_4}}+\cdots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}
\)
\(
\begin{gathered}
=\frac{1}{d}\left[\sqrt{a_2}-\sqrt{a_1}+\sqrt{a_3}-\sqrt{a_2}+\sqrt{a_4}-\sqrt{a_3}+\cdots \sqrt{a_n}-\sqrt{a_{n-1}}\right] \\
=\frac{1}{d}\left[\sqrt{a_n}-\sqrt{a_1}\right] \dots(i)
\end{gathered}
\)
\(
\begin{aligned}
& \text { Now } \quad a_n=a_1+(n-1) d \\
& \Rightarrow \quad a_n-a_1=(n-1) d \\
& \Rightarrow \quad \sqrt{a_n^2}-\sqrt{a_1^2}=(n-1) d \\
& \Rightarrow \quad\left(\sqrt{a_n}+\sqrt{a_1}\right)\left(\sqrt{a_n}-\sqrt{a_1}\right)=(n-1) d \\
& \Rightarrow \quad \sqrt{a_n}-\sqrt{a_1}=\frac{(n-1) d}{\sqrt{a_n}+\sqrt{a_1}} \\
& \Rightarrow \quad \frac{\sqrt{a_n}-\sqrt{a_1}}{d}=\frac{n-1}{\sqrt{a_n}+\sqrt{a_1}} \dots(ii)\\
&
\end{aligned}
\)
From Eq. (i) and eq. (ii) we get
\(
\begin{aligned}
& \frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\frac{1}{\sqrt{a_3}+\sqrt{a_4}} \\
& +\cdots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}=\frac{n-1}{\sqrt{a_n}+\sqrt{a_1}}
\end{aligned}
\)
Find the sum of the series \(\left(3^3-2^3\right)+\left(5^3-4^3\right)+\left(7^3-6^3\right)+\ldots\) to (i) \(n\) terms (ii) 10 terms
Given series
\(
\Rightarrow \quad\left(3^3-2^3\right)+\left(5^3-4^3\right)+\left(7^3-6^3\right)+\cdots
\)
\(
=\left(3^3+5^3+7^3+\cdots\right)-\left(2^3+4^3+6^3+\cdots\right)
\)
\(
\Rightarrow\left[3^3+5^3+7^3+\ldots(2 n+1)^3\right]-\left[2^3+4^3+6^3+\cdots(2 n)^3\right]
\)
\(
\begin{aligned}
& \therefore \quad T _n=(2 n+1)^3-(2 n)^3 \\
& =(2 n+1-2 n)\left[(2 n+1)^2+(2 n+1)(2 n)+(2 n)^2\right] \\
& {\left[\because a^3-b^3=(a-b)\left(a^2+a b+b^2\right)\right]} \\
& =1 \cdot\left[4 n^2+1+4 n+4 n^2+2 n+4 n^2\right] \\
& =12 n^2+6 n+1 \\
&
\end{aligned}
\)
(i)
\(
\begin{aligned}
S _n & =\sum T _n=12 \sum n^2+6 \sum n+n \\
& =12 \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{6 n(n+1)}{2}+n \\
& =2 n(n+1)(2 n+1)+3 n(n+1)+n \\
& =n[2(n+1)(2 n+1)+3(n+1)+1] \\
& =n\left[2\left(2 n^2+3 n+1\right)+3 n+3+1\right] \\
& =n\left[4 n^2+6 n+2+3 n+4\right]=n\left[4 n^2+9 n+6\right] \\
& =4 n^3+9 n^2+6 n
\end{aligned}
\)
(ii)
\(
\begin{aligned}
S _{10} & =4(10)^3+9(10)^2+6(10)=4 \times 1000+900+60 \\
& =4000+960=4960
\end{aligned}
\)
Find the \(r^{ th }\) term of an A.P. sum of whose first \(n\) terms is \(2 n+3 n^2\).
\(
\text { [Hint: } a_n= S _n- S _{n-1} \text { ] }
\)
\(
\begin{array}{ll}
\text { Given that } & S _n=2 n+3 n^2 \\
\Rightarrow & S _1=2 \times 1+3(1)^2=5 \\
\Rightarrow & S _2=2 \times 2+3 \times 4=16 \\
\Rightarrow & S _3=2 \times 3+3 \times 9=33
\end{array}
\)
\(
\begin{aligned}
S_1 & =a_1=5 \\
S_2-S_1 & =a_2=16-5=11 \\
d & =a_2-a_1=11-5=6
\end{aligned}
\)
Now
\(
\begin{aligned}
T _r & =a_1+(r-1) d \\
& =5+(r-1) 6=5+6 r-6=6 r-1
\end{aligned}
\)
Hence, the required \(r\) th term is \(6 r-1\)
If \(A\) is the arithmetic mean and \(G _1, G _2\) be two geometric means between any two numbers, calculate \(\frac{ G _1^2}{ G _2}+\frac{ G _2^2}{ G _1}\)
Let the numbers be \(a\) and \(b\).
Then, \(A=\frac{a+b}{2}\) or \(2 A=a+b \dots(i)\)
Also, \(G_1\) and \(G_2\) are geometric means between \(a\) and \(b\), then \(a, G_1, G_2, b\) are in G.P.
Let \(r\) be the common ratio.
Then, \(b=a r^{4-1}=a r^3 \Rightarrow \frac{b}{a}=r^3 \Rightarrow r=\left(\frac{b}{a}\right)^{1 / 3}\)
\(
\begin{array}{ll}
\therefore & G_1=a r=a\left(\frac{b}{a}\right)^{1 / 3}=a^{2 / 3} b^{1 / 3} \\
\text { and } & G_2=a r^2=a\left(\frac{b}{a}\right)^{2 / 3}=a^{1 / 3} b^{2 / 3} \\
\therefore & \frac{G_1^2}{G_2}+\frac{G_2^2}{G_1}=\frac{G_1^3+G_2^3}{G_1 G_2}=\frac{a^2 b+a b^2}{a b}=a+b=2 A
\end{array}
\)
If \(\theta_1, \theta_2, \theta_3, \ldots, \theta_n\) are in A.P., whose common difference is \(d\), Calculate \(\sec \theta_1 \sec \theta_2+\sec \theta_2 \sec \theta_3+\ldots+\sec \theta_{n-1} \sec \theta_n\)
Since \(\theta_1, \theta_2, \theta_3, \ldots, \theta_n\) are in A.P., we get
\(
\theta_2-\theta_1=\theta_3-\theta_2=\ldots=\theta_n-\theta_{n-1}=d \dots(i)
\)
Now,
\(
\begin{aligned}
\sec \theta_1 \sec \theta_2 & =\frac{1}{\sin d} \cdot \frac{\sin d}{\cos \theta_1 \cos \theta_2}=\frac{1}{\sin d} \cdot \frac{\sin \left(\theta_2-\theta_1\right)}{\cos \theta_1 \cos \theta_2} \\
& =\frac{1}{\sin d} \cdot \frac{\left(\sin \theta_2 \cos \theta_1-\cos \theta_2 \sin \theta_1\right)}{\cos \theta_1 \cos \theta_2}=\frac{\tan \theta_2-\tan \theta_1}{\sin d}
\end{aligned}
\)
Similarly, \(\sec \theta_2 \sec \theta_3=\frac{\tan \theta_3-\tan \theta_2}{\sin d} ; \sec \theta_3 \sec \theta_4=\frac{\tan \theta_4-\tan \theta_3}{\sin d}\); and so on.
\(
\therefore \quad \sec \theta_1 \sec \theta_2+\sec \theta_2 \sec \theta_3+\ldots+\sec \theta_{n-1} \sec \theta_n=\frac{\tan \theta_n-\tan \theta_1}{\sin d}
\)
If the sum of \(p\) terms of an A.P. is \(q\) and the sum of \(q\) terms is \(p\), show that the sum of \(p+q\) terms is \(-(p+q)\). Also, find the sum of first \(p-q\) terms \((p>q)\).
Let first term and common difference of the A.P. be a and \(d\), respectively. Given, \(S_p=q\)
\(
\frac{p}{2}[2 a+(p-1) d]=q \quad \Rightarrow \quad 2 a+(p-1) d=\frac{2 q}{p} \dots(i)
\)
Also, \(S_q=p\)
\(
\Rightarrow \quad \frac{q}{2}[2 a+(q-1) d]=p \quad \Rightarrow \quad 2 a+(q-1) d=\frac{2 p}{q} \dots(ii)
\)
On subtracting Eq. (ii) from Eq. (i), we get
\(
(p-q) d=\frac{2 q}{p}-\frac{2 p}{q} \text { or }(p-q) d=\frac{2\left(q^2-p^2\right)}{p q}
\)
\(
\therefore \quad d=\frac{-2(p+q)}{p q} \dots(iii)
\)
On substituting the value of \(d[latex] into Eq. (i), we get
[latex]
\begin{array}{ll}
& 2 a+(p-1)\left(\frac{-2(p+q)}{p q}\right)=\frac{2 q}{p} \\
\Rightarrow & a=\frac{q}{p}+\frac{(p+q)(p-1)}{p q} \dots(iv)
\end{array}
\)
Now
\(
\begin{aligned}
S_{p+q} & =\frac{p+q}{2}[2 a+(p+q-1) d] \\
& =\frac{p+q}{2}\left[\frac{2 q}{p}+\frac{2(p+q)(p-1)}{p q}-\frac{2(p+q-1)(p+q)}{p q}\right] \\
& =(p+q)\left[\frac{q}{p}+\frac{(p+q)(p-1-p-q+1)}{p q}\right] \\
& =(p+q)\left[\frac{q}{p}+\frac{(p+q)(-q)}{p q}\right] \\
& =(p+q)\left[\frac{q}{p}-\frac{p+q}{p}\right]=-(p+q)
\end{aligned}
\)
Also,
\(
\begin{aligned}
S_{p-q} & =\frac{p-q}{2}[2 a+(p-q-1) d] \\
& =\frac{p-q}{2}\left[\frac{2 q}{p}+\frac{2(p+q)(p-1)}{p q}-\frac{(p-q-1) 2(p+q)}{p q}\right] \\
& =(p-q)\left[\frac{q}{p}+\frac{(p+q)(p-1-p+q+1)}{p q}\right] \\
& =(p-q)\left[\frac{q}{p}+\frac{(p+q) q}{p q}\right] \\
& =(p-q)\left[\frac{q}{p}+\frac{p+q}{p}\right]=(p-q) \frac{(p+2 q)}{p}
\end{aligned}
\)
If \(p\) th, \(q\) th and \(r\) th terms of an A.P. and G.P. are both \(a, b\), and \(c\) respectively. Calculate
\(
a^{b-c} \cdot b^{c-a} \cdot c^{n-b}=1
\)
Let \(A\) and \(d\) be the first term and common difference of \(A\).P., respectively. Also, let \(B\) and \(R\) be the first term and common ratio of G.P., respectively.
It is given that,
\(
\begin{aligned}
& A+(p-1) d=a \dots(i) \\
& A+(q-1) d=b \dots(ii) \\
& A+(r-1) d=c \dots(iii)
\end{aligned}
\)
Also,
\(
\begin{aligned}
& a=B R^{p-1} \dots(iv) \\
& b=B R^{q-1} \dots(v) \\
& c=B R^{r-1} \dots(vi)
\end{aligned}
\)
On subtracting Eq. (ii) from Eq. (i), we get
\(
a-b=d(p-q)
\)
On subtracting Eq. (iii) from Eq. (ii), we get
\(
b-c=d(q-r)
\)
On subtracting Eq. (i) from Eq. (iii), we get
\(
c-a=d(r-p)
\)
\(
\therefore \quad a^{b-c} \cdot b^{c-a} \cdot c^{a-b}
\)
\(
=\left(B R^{(p-1)}\right)^{d(q-r)}\left(B R^{(q-1)}\right)^{d(r-p)}\left(B R^{(r-1)}\right)^{d(p-q)}
\)
\(
=B^{d[(q-r)+(r-p)+(p-q)]} R^{d[(p-1)(q-r)+(q-1)(r-p)+(r-1)(p-q)]}
\)
\(
=B^0 R^0=1
\)
If the sum of \(n\) terms of an A.P. is given by \(S _n=3 n+2 n^2\), then the common difference of the A.P. is
Given that
\(
\text { hat } \begin{aligned}
S _n & =3 n+2 n^2 \\
S _1 & =3(1)+2(1)^2=5 \\
S _2 & =3(2)+2(4)=14 \\
S _1 & =a_1=5 \\
S _2- S _1 & =a_2=14-5=9
\end{aligned}
\)
\(\therefore\) Common difference \(d=a_2-a_1=9-5=4\)
The third term of GP. is 4 . The product of its first 5 terms is
\(
\begin{aligned}
\text { Given that } & T _3 & =4 \\
\Rightarrow & a r^{3-1} & =4 \left[\because \quad T _n=a r^{n-1}\right] \\
\Rightarrow & a r^2 & =4
\end{aligned}
\)
Product of first 5 terms \(=a \cdot a r \cdot a r^2 \cdot a r^3 \cdot a r^4\)
\(
=a^5 r^{10}=\left(a r^2\right)^5=(4)^5
\)
If 9 times the \(9^{\text {th }}\) term of an A.P. is equal to 13 times the \(13^{\text {th }}\) term, then the \(22^{\text {nd }}\) term of the A.P. is
Let the first term and common difference of given A.P. be a and d, respectively.
\(
\begin{aligned}
& & T _n & =a+(n-1) d \\
\therefore & & T _9 & =a+8 d \\
\text { and } & & T _{13} & =a+12 d
\end{aligned}
\)
As per the given condition
\(
\begin{aligned}
& & 9[a+8 d] & =13[a+12 d] \\
\Rightarrow & & 9 a+72 d & =13 a+156 d \Rightarrow-4 a=84 d \\
\Rightarrow & & a & =-21 d \dots(i)
\end{aligned}
\)
Now \(\quad T _{22}=a+21 d=-21 d+21 d=0 \quad\) [from eq. (i)]
If \(x, 2 y, 3 z\) are in A.P., where the distinct numbers \(x, y, z\) are in G.P. then the common ratio of the G.P. is
Since \(x, 2 y, 3 z\) are in A.P.
\(
\begin{aligned}
\therefore & 2 y-x & =3 z-2 y \\
\Rightarrow & 4 y & =x+3 z \dots(i)
\end{aligned}
\)
Now \(x, y, z\) are in G.P.
\(\therefore \quad\) Common ratio \(r=\frac{y}{x}=\frac{z}{y} \dots(ii)\)
\(
\therefore \quad y^2=x z
\)
putting the value of \(x\) from eq. (i), we get
\(
\begin{aligned}
& y^2=(4 y-3 z) z \Rightarrow y^2=4 y z-3 z^2 \\
& \Rightarrow \quad 3 z^2-4 y z+y^2=0 \quad \Rightarrow \quad 3 z^2-3 y z-y z+y^2=0 \\
& \Rightarrow 3 z(z-y)-y(z-y)=0 \quad \Rightarrow \quad(3 z-y)(z-y)=0 \\
& \Rightarrow \quad 3 z-y=0 \text { and } z-y=0 \\
& \Rightarrow \quad 3 z=y \text { and } z \neq y [\because \quad z \text { and } y \text { are distinct numbers }] \\
&
\end{aligned}
\)
\(
\frac{z}{y}=\frac{1}{3} \Rightarrow r=\frac{1}{3} \quad \text { (from eq. (ii)) }
\)
If in an A.P., \(S _n=q n^2\) and \(S _m=q m^2\), where \(S _r\) denotes the sum of \(r\) terms of the A.P., then \(S _q\) equals
The given series is A.P. whose first term is \(a\) and common difference is \(d\)
\(
\begin{array}{rlrl}
\therefore & & S _n & =\frac{n}{2}[2 a+(n-1) d]=q n^2 \\
\Rightarrow & & =2 a+(n-1) d=2 q n \dots(i) \\
& & S _m & =\frac{m}{2}[2 a+(m-1) d]=q m^2 \\
& & 2 a+(m-1) d & =2 q m \dots(ii)
\end{array}
\)
Solving eq. (i) and eq. (ii) we get
\(
\begin{array}{rlr}
2 a+(m-1) d & =\quad 2 q m \\
2 a+(n-1) d & =\quad 2 q n \\
\hline(-) \quad(-) \quad \quad & (-) \\
(m-n) d & =2 q m-2 q n \\
(m-n) d & =2 q(m-n) \\
\therefore \quad d & =2 q
\end{array}
\)
Putting the value of \(d\) in eq. (ii) we get
\(
2 a+(m-1) \cdot 2 q=2 q m \Rightarrow 2 a=2 q m-(m-1) 2 q
\)
\(
\begin{aligned}
2 a & =2 q(m-m+1) \Rightarrow 2 a=2 q \Rightarrow a=q \\
S _q & =\frac{q}{2}[2 a+(q-1) d]=\frac{q}{2}[2 q+(q-1) 2 q] \\
& =\frac{q}{2}\left[2 q+2 q^2-2 q\right]=\frac{q}{2} \times 2 q^2=q^3
\end{aligned}
\)
Let \(S _n\) denote the sum of the first \(n\) terms of an A.P. If \(S _{2 n}=3 S _n\) then \(S _{3 n}: S _n\) is equal to
\(
\begin{aligned}
S _n & =\frac{n}{2}[2 a+(n-1) d] \\
\therefore \quad S _{2 n} & =\frac{2 n}{2}[2 a+(2 n-1) d] \\
S _{3 n} & =\frac{3 n}{2}[2 a+(3 n-1) d]
\end{aligned}
\)
As per the condition of the question, we have
\(
\begin{array}{rlrl}
& & S _{2 n}=3 \cdot S _n \\
\Rightarrow & & \frac{2 n}{2}[2 a+(2 n-1) d] & =3 \cdot \frac{n}{2}[2 a+(n-1) d] \\
\Rightarrow & & 2[2 a+(2 n-1) d] & =3[2 a+(n-1) d] \\
\Rightarrow & & 4 a+(4 n-2) d & =6 a+(3 n-3) d
\end{array}
\)
\(
\begin{aligned}
6 a+(3 n-3) d-4 a-(4 n-2) d & =0 \\
2 a+(3 n-3-4 n+2) d & =0 \quad \Rightarrow \quad 2 a+(-n-1) d=0
\end{aligned}
\)
\(
2 a-(n+1) d=0 \Rightarrow 2 a=(n+1) d \dots(i)
\)
\(
\begin{aligned}
\text { Now } S _{3 n}: S _n & =\frac{3 n}{2}[2 a+(3 n-1) d]: \frac{n}{2}[2 a+(n-1) d] \\
& =\frac{\frac{3 n}{2}[2 a+(3 n-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{3[2 a+(3 n-1) d]}{2 a+(n-1) d} \\
& =\frac{3[(n+1) d+(3 n-1) d]}{(n+1) d+(n-1) d}
\end{aligned}
\)
\(
=\frac{3 d[n+1+3 n-1]}{d(n+1+n-1)}=\frac{3[4 n]}{2 n}=6
\)
The minimum value of \(4^x+4^{1-x}, x \in R\), is
We know that \(AM \geq GM\)
\(
\begin{array}{ll}
\therefore & \frac{4^x+4^{1-x}}{2} \geq \sqrt{4^x \cdot 4^{1-x}} \Rightarrow 4^x+4^{1-x} \geq 2 \sqrt{4^{x+1-x}} \\
\Rightarrow & 4^x+4^{1-x} \geq 2 \cdot 2 \Rightarrow 4^x+4^{1-x} \geq 4
\end{array}
\)
Let \(S _n\) denote the sum of the cubes of the first \(n\) natural numbers and \(s_n\) denote the sum of the first \(n\) natural numbers. Then \(\sum_{r=1}^n \frac{ S _r}{s_r}\) equals
Given that \(\sum_{i=1}^n \frac{ S _r}{ s _r}=\frac{ S _1}{s_1}+\frac{ S _2}{s_2}+\frac{ S _3}{s_3}+\cdots+\frac{ S _n}{s_n}\)
Let \(T _n\) be the \(n\)th term of the above series
\(
\therefore \quad T _n=\frac{ S _n}{s_n}=\frac{\left[\frac{n(n+1)}{2}\right]^2}{\frac{n(n+1)}{2}}=\frac{n(n+1)}{2}=\frac{n^2+n}{2}
\)
Now sum of the given series
\(
\begin{aligned}
\sum T _n & =\frac{1}{2} \sum\left[n^2+n\right]=\frac{1}{2}\left[\sum n^2+\sum n\right] \\
& =\frac{1}{2}\left[\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right] \\
& =\frac{1}{2} \cdot \frac{n(n+1)}{2}\left[\frac{2 n+1}{3}+1\right]=\frac{n(n+1)}{4}\left[\frac{2 n+1+3}{3}\right] \\
& =\frac{n(n+1)}{4} \cdot \frac{(2 n+4)}{3}=\frac{n(n+1)(n+2)}{6}
\end{aligned}
\)
If \(t_n\) denotes the nth term of the series \(2+3+6+11+18+\ldots\) then \(t_{50}\) is
Let \(S _n=2+3+6+11+18+\cdots+t_{50}\)
Using method of difference, we get
\(
\text { and } \quad \begin{aligned}
& S _n=2+3+6+11+18+\cdots+t_{50} \dots(i) \\
& S _n=0+2+3+6+11+\cdots+t_{49}+t_{50} \dots(ii)
\end{aligned}
\)
Subtracting eq. (ii) from eq. (i), we get
\(
\begin{aligned}
& 0=2+1+3+5+7+\cdots-t_{50} \text { terms } \\
& \Rightarrow \quad t_{50}=2+(1+3+5+7+\cdots \text { upto } 49 \text { terms }) \\
& \Rightarrow \quad t_{50}=2+\frac{49}{2}[2 \times 1+(49-1) 2]=2+\frac{49}{2}[2+96] \\
& =2+\frac{49}{2} \times 98=2+49 \times 49=49^2+2 \\
&
\end{aligned}
\)
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is \(216 cm ^3\) and the total surface area is \(252 cm ^2\). The length of the longest edge is
Let the length, breadth and height of a rectangular block be \(\frac{a}{r}, a\) and \(a r\). [Since they are is G.P]
\(
\begin{aligned}
\text { Volume } & =l \times b \times h \\
216 & =\frac{a}{r} \times a \times a r \\
a^3 & =216 \Rightarrow a=6
\end{aligned}
\)
Now total surface area \(=2[l b+b h+l h]\)
\(
\begin{aligned}
& 252=2\left[\frac{a}{r} \cdot a+a \cdot a r+\frac{a}{r} \cdot a r\right] \Rightarrow 252=2\left[\frac{a^2}{r}+a^2 r+a^2\right] \\
& 252=2 a^2\left[\frac{1}{r}+r+1\right] \Rightarrow 252=2 \times(6)^2\left[\frac{1+r^2+r}{r}\right] \\
& 252=72\left[\frac{1+r^2+r}{r}\right] \Rightarrow \frac{252}{72}=\frac{1+r+r^2}{r}
\end{aligned}
\)
\(
\begin{aligned}
& \frac{7}{2}=\frac{1+r+r^2}{r} \Rightarrow 2+2 r+2 r^2=7 r \\
& 2 r^2-5 r+2=0 \Rightarrow 2 r^2-4 r-r+2=0 \\
& 2 r(r-2)-1(r-2)=0 \quad \Rightarrow \quad(r-2)(2 r-1)=0
\end{aligned}
\)
\(
\begin{array}{rlrl}
\Rightarrow & r-2 & =0 \text { and } & 2 r-1=0 \\
\therefore & r & =2, \frac{1}{2}
\end{array}
\)
Therefore, the three edge are:
If \(r=2\) then edges are \(3,6,12\)
If \(r=\frac{1}{2}\) then edges are \(12,6,3\)
So, the length of the longest edge \(=12\)
For \(a, b, c\) to be in GP. the value of \(\frac{a-b}{b-c}\) is equal to _____.
Since \(a, b\) and \(c\) are in G.P \(\therefore \quad \frac{b}{a}=\frac{c}{b}=r \quad\) (constant)
\(
\begin{array}{lrl}
\Rightarrow & b=a r \text { and } c=b r \Rightarrow c=a r \cdot r=a r^2 \\
\text { So } & \frac{a-b}{b-c}=\frac{a-a r}{a r-a r^2}=\frac{a(1-r)}{a r(1-r)}=\frac{1}{r}=\frac{a}{b}=\frac{b}{c}
\end{array}
\)
Hence, the correct value of the filler is \(\frac{a}{b}\) or \(\frac{b}{c}\)
The sum of terms equidistant from the beginning and end in an A.P. is equal to
Let A.P be \(a, a+d, a+2 d, a+3 d, \ldots, a+(n-1) d\)
Taking first and last term
\(
a_1+a_n=a+a+(n-1) d=2 a+(n-1) d
\)
Taking second and second last term
\(
a_2+a_{n-1}=(a+d)+[a+(n-2) d]=2 a+(n-1) d=a_1+a_n
\)
Taking third from the beginning and the third from the end
\(
a_3+a_{n-2}=(a+2 d)+[a+(n-3) d]=2 a+(n-1) d=a_1+a_n
\)
From the above pattern, we observe that the sum of terms equidistant from the beginning and the end in an A.P is equal to the [first term + last term]
Hence, the correct value of the filler is first term + last term.
The third term of a G.P. is 4 , the product of the first five terms is ____.Â
\(
\begin{array}{lr}
\text { Given } & T _3=4 \\
\therefore & a r^2=4 \dots(i)
\end{array}
\)
Product of first five terms \(=a \cdot a r \cdot a r^2 \cdot a r^3 \cdot a r^4\)
\(=a^5 r^{10}=\left(a r^2\right)^5=(4)^5\) [from eq. (i)]
Hence, the correct value of the fillter is \((4)^5\).
Two sequences cannot be in both A.P. and G.P. together.
Let us consider a G.P, \(a, a r\) and \(a r^2\)
If it is in A.P then \(a r-a \neq a r^2-a r\)
Hence, the given statement is True.
Every progression is a sequence but the converse, i.e., every sequence is also a progression need not necessarily be true
Let us consider a sequence of prime numbers \(2,3,5,7,11, \ldots\) It is clear that this progression is a sequence but sequence is not a progression because it does not follow a specific pattern. Here, the given statement is True.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
Let us consider an A.P \(a, a+d, a+2 d, \ldots\)
\(
\begin{aligned}
& \therefore \quad a_2+a_4=a+d+a+3 d=2 a+4 d=2 a_3 \\
& \Rightarrow \quad a_3=\frac{a_2+a_4}{2} \\
& \frac{a_3+a_5}{2}=\frac{a+2 d+a+4 d}{2}=\frac{2 a+6 d}{2} \\
& \Rightarrow \quad=a+3 d=a_4 \\
&
\end{aligned}
\)
Hence, the given statement is True.
The sum or difference of two G.P.s, is again a G.P.
Let us consider two G.P.’s
\(
\begin{aligned}
& a_1, a_1 r_1, a_1 r_1^2, a_1 r_1^3 \cdots a_1 r_1^{n-1} \\
\text { and } & a_2, a_2 r_2, a_2 r_2^2, a_2 r_2^3, \cdots a_2 r_2^{n-1}
\end{aligned}
\)
Now Sum of two G.Ps
\(
\left(a_1+a_2\right)+\left(a_1 r_1+a_2 r_2\right)+\left(a_1 r_1^2+a_2 r_2^2\right) \cdots
\)
Now
\(
\frac{T_2}{T_1}=\frac{a_1 r_1+a_2 r_2}{a_1+a_2} \text { and } \frac{T_3}{T_2}=\frac{a_1 r_1^2+a_2 r_2^2}{a_1 r_1+a_2 r_2}
\)
But \(\frac{a_1 r_1+a_2 r_2}{a_1+a_2} \neq \frac{a_1 r_1^2+a_2 r_2^2}{a_1 r_1+a_2 r_2}\)
Now let us consider the difference G.P’s
\(
\begin{aligned}
& \left(a_1-a_2\right)+\left(a_1 r_1-a_2 r_2\right)+\left(a_1 r_1^2-a_2 r_2^2\right) \\
& \therefore \quad \frac{T_2}{T_1}=\frac{a_1 r_1-a_2 r_2}{a_1-a_2} \text { and } \frac{T_3}{T_2}=\frac{a_1 r_1^2-a_2 r_2^2}{a_1 r_1-a_2 r_2} \\
& \text { But } \quad \frac{T_2}{T_1} \neq \frac{T_3}{T_2}
\end{aligned}
\)
Hence, the given statement is False.
If the sum of \(n\) terms of a sequence is quadratic expression then it always represents an A.P.
Let \(\quad S _n=a n^2+b n+c \quad\) (quadratic expression)
\(
S _1=a+b+c
\)
\(
\begin{aligned}
& a_1=a+b+c \\
& S _2=4 a+2 b+c \\
& a_2= S _2- S _1=(4 a+2 b+c)-(a+b+c)=3 a+b \\
& S _3=9 a+3 b+c \\
& a_3= S _3- S _2=(9 a+3 b+c)-(4 a+2 b+c)=5 a+b
\end{aligned}
\)
Common difference
\(
\begin{aligned}
d & =a_2-a_1=(3 a+b)-(a+b+c) \\
& =2 a-c \\
\text { and } d & =a_3-a_2=(5 a+b)-(3 a+b)=2 a
\end{aligned}
\)
Here, we observe that \(a_2-a_1 \neq a_3-a_2\)
So it does not represent an A.P
Hence, the given statement is False.
Match the questions given under Column I with their appropriate answers given under the Column II.
\(
\begin{array}{|c|c|}
\hline \text { Column I } & \text { Column II } \\
\hline \text { (a) } & 4,1, \frac{1}{4}, \frac{1}{16} & \text { (i) } & \text { A.P. } \\
\hline \text { (a) } & 2, 3, 5, 7 & \text { (ii) } & \text { Sequence } \\
\hline \text { (a) } & 13,8,3,-2,-7 & \text { (iii) } & \text { G.P. } \\
\hline
\end{array}
\)
(a) \(4,1, \frac{1}{4}, \frac{1}{16}\)
Here, \(\frac{a_2}{a_1}=\frac{1}{4}, \frac{a_3}{a_2}=\frac{1 / 4}{1}=\frac{1}{4}\) and \(\frac{a_4}{a_3}=\frac{1 / 16}{1 / 4}=\frac{1}{4}\)
Hence it is G.P
\(\therefore \quad(a) \leftrightarrow(i i i)\)
(b) \(2,3,5,7\)
\(
\begin{aligned}
& \text { Here } \quad a_2-a_1=3-2=1 \\
& a_3-a_2=5-3=2 \\
& \therefore \quad a_2-a_1 \neq a_3-a_2 \\
&
\end{aligned}
\)
Hence it is not A.P
\(
\frac{a_2}{a_1}=\frac{3}{2}, \frac{a_3}{a_2}=\frac{5}{3}
\)
So, \(\quad \frac{3}{2} \neq \frac{5}{3}\)
So it is not G.P
Hence it is sequence
\(
\therefore \quad(b) \leftrightarrow(i i)
\)
(c) \(13,8,3,-2,-7\)
Here
\(
a_2-a_1=8-13=-5
\)
So, \(\quad \begin{aligned} & a_3-a_2=3-8=-5 \\ & a_2-a_1=a_3-a_2=-5\end{aligned}\)
So, it is an A.P
Hence \((c) \leftrightarrow(i)\)
Match the questions given under Column I with their appropriate answers given under the Column II.
\(
\begin{array}{|l|l|l|l|}
\hline \text { Column I } & \text { Column II } \\
\hline \text { (a) } & 1^2+2^2+3^2+\ldots+n^2 & \text { (i) } & {\left[\frac{n(n+1)}{2}\right]^2} \\
\hline \text { (b) } & 1^3+2^3+3^3+\ldots+n^3 & \text { (ii) } & n(n+1) \\
\hline \text { (c) } & 2+4+6+\ldots+2 n & \text { (iii) } & \frac{n(n+1)(2 n+1)}{6} \\
\hline \text { (d) } & 1+2+3+\ldots+n & \text { (iv) } & \frac{n(n+1)}{2} \\
\hline
\end{array}
\)
(a) Let \(S _n=1^2+2^2+3^2+\cdots+n^2\)
\(K ^3-( K -1)^3=3 K ^2-3 K +1\)
For \(K=1\), \(1^3-0^3=3(1)^2-3(1)+1\)
For \(K=2\),
\(2^3-1^3=3(2)^2-3(2)+1\)
For \(K=3\),
\(
3^3-2^3=3(3)^2-3(3)+1
\)
For \(K =n, \quad n^3-(n-1)^3=3(n)^2-3(n)+1\)
Adding Column wise, we get
\(
\begin{aligned}
& n^3-0^3=3\left(1^2+2^2+3^2+\cdots+n^2\right) \\
& -3(1+2+3+\cdots+n)+n \\
& \Rightarrow \quad n^3=3 \cdot S _n-\frac{3 n(n+1)}{2}+n \\
& \Rightarrow \quad n^3+\frac{3 n(n+1)}{2}-n=3 \cdot S _n \\
& \Rightarrow \frac{2 n^3+3 n^2+3 n-2 n}{2}=3 \cdot S _n \\
& \Rightarrow \quad 6 \cdot S _n=2 n^3+3 n^2+n \\
& \Rightarrow \quad 6 \cdot S _n=n\left(2 n^2+3 n+1\right) \\
& \Rightarrow \quad 6 \cdot S _n=n\left[2 n^2+2 n+n+1\right] \\
& \Rightarrow \quad 6 \cdot S _n=n(n+1)(2 n+1) \\
& \Rightarrow \quad S _n=\frac{n(n+1)(2 n+1)}{6} \\
&
\end{aligned}
\)
Here \((a) \leftrightarrow\) (iii).
(b) Let \(S _n=1^3+2^3+3^3+\cdots+n^3\)
\(
K ^4-( K -1)^4=4 K ^3-6 K ^2+4 K -1
\)
For \(K =1 \quad 1^4-0^4=4(1)^3-6(1)^2+4(1)-1\)
For \(K=2 \quad 2^4-1^4=4(2)^3-6(2)^2+4(2)-1\)
For \(K=3 \quad 3^4-2^4=4(3)^3-6(3)^2+4(3)-1\)
For \(K =n \quad n^4-(n-1)^4=4(n)^3-6\left(n^2\right)+4(n)-1\)
Adding column wise, we get
\(
\begin{aligned}
\Rightarrow \quad n^4-0^4= & 4\left(1^3+2^3+3^3+\cdots n^3\right) \\
& -6\left(1^2+2^2+3^2+\cdots+n^2\right) \\
& +4(1+2+3+\ldots n)-n
\end{aligned}
\)
\(\Rightarrow \quad n^4=4 \cdot S _n-\frac{6 n(n+1)(2 n+1)}{6}+\frac{4 n(n+1)}{2}-n\)
\(
\begin{array}{cc}
\Rightarrow & n^4=4 \cdot S _n-n(n+1)(2 n+1)+2 n(n+1)-n \\
\Rightarrow & n^4+n(n+1)(2 n+1)-2 n(n+1)+n=4 \cdot S _n \\
\Rightarrow & n\left[n^3+(n+1)(2 n+1)-2 n-2+1\right]=4 \cdot S _n \\
\Rightarrow & n\left[n^3+2 n^2+3 n+1-2 n-1\right]=4 \cdot S _n \\
\Rightarrow & n\left[n^3+2 n^2+n\right]=4 \cdot S _n \\
\Rightarrow & \frac{n^2\left(n^2+2 n+1\right)}{4}= S _n \\
\Rightarrow & \frac{n^2(n+1)^2}{4}= S _n
\end{array}
\)
\(
S _n=\left[\frac{n(n+1)}{2}\right]^2
\)
Hence \((b) \leftrightarrow(i)\)
(c) Let
\(
\begin{aligned}
S _n & =2+4+6+\ldots .+2 n \\
& =2(1+2+3+\ldots .+n) \\
& =2 \frac{n(n+1)}{2} \\
& =n(n+1)
\end{aligned}
\)
Hence \((c) \leftrightarrow\) (ii)
(d) Let \(S _n=1+2+3+\cdots+n=\frac{n(n+1)}{2}\)
Hence \((d) \leftrightarrow(i v)\)
The first term of an A.P. is \(a\), the second term is \(b\) and the last term is \(c\). The sum of the A.P. is ____.
Let \(d\) be the common diffrence and \(n\) be the number of terms of the A.P.
Since the first term is \(a\) and the second term is \(b\)
Therefore,
\(
d=b-a
\)
Also, the last term is \(c\), so
\(
\begin{aligned}
& c=a+(n-1)(b- a )(\text { since } \quad d=b-a) \\
& \Rightarrow \\
& n-1=\frac{c-a}{b-a} \\
& n=1+\frac{c-a}{b-a}=\frac{b-a+c-a}{b-a}=\frac{b+c-2 a}{b-a} \\
& \text { Therefore, } \\
& S _n=\frac{n}{2}(a+l)=\frac{(b+c-2 a)}{2(b-a)}(a+c) \\
&
\end{aligned}
\)
The \(p^{\text {th }}\) term of an A.P. is \(a\) and \(q^{\text {th }}\) term is \(b\). Calculate the sum of its \((p+q)\) terms
Let \(A\) be the first term and \(D\) be the common difference of the A.P. It is given that
\(
\begin{gathered}
t_p=a \Rightarrow A +(p-1) D =a \dots(1) \\
t_q= b \Rightarrow A +(q-1) D =b \dots(2)
\end{gathered}
\)
Subtracting (2) from (1), we get
\(
\begin{aligned}
(p-1-q+1) D & =a-b \\
D & =\frac{a-b}{p-q} \dots(3)
\end{aligned}
\)
Adding (1) and (2), we get
\(
\begin{aligned}
& 2 A +(p+q-2) D =a+b \\
& \Rightarrow \quad 2 A +(p+q-1) D =a+b+ D \\
& \Rightarrow \quad 2 A +(p+q-1) D =a+b+\frac{a-b}{p-q} \dots(4) \\
& S _{p+q}=\frac{p+q}{2}[2 A +(p+q-1) D ] \\
& =\frac{p+q}{2}\left[a+b+\frac{a-b}{p-q}\right] \text { [(using … (3) and (4)] } \\
&
\end{aligned}
\)
If there are \((2 n+1)\) terms in an A.P.,Find the ratio of the sum of odd terms and the sum of even terms is _____.
Let \(a\) be the first term and \(d\) the common difference of the A.P. Also let \(S _1\) be the sum of odd terms of A.P. having \((2 n+1)\) terms. Then
\(
\begin{aligned}
& S _1=a_1+a_3+a_5+\ldots+a_{2 n+1} \\
& S _1=\frac{n+1}{2}\left(a_1+a_{2 n+1}\right) \\
& S _1=\frac{n+1}{2}[a+a+(2 n+1-1) d]
\end{aligned}
\)
\(
=(n+1)(a+n d)
\)
Similarly, if \(S _2\) denotes the sum of even terms, then
\(
\begin{aligned}
& S _2=\frac{n}{2}[2 a+2 n d]=n(a+n d) \\
& \frac{ S _1}{ S _2}=\frac{(n+1)(a+n d)}{n(a+n d)}=\frac{n+1}{n}
\end{aligned}
\)
At the end of each year the value of a certain machine has depreciated by \(20 \%\) of its value at the beginning of that year. If its initial value was Rs 1250 , find the value at the end of 5 years.
After each year the value of the machine is \(80 \%\) of its value the previous year so at the end of 5 years the machine will depreciate as many times as 5 .
Hence, we have to find the \(6^{\text {th }}\) term of the GP. whose first term \(a_1\) is 1250 and common ratio \(r\) is . 8 .
Hence, value at the end 5 years \(=t_6=a_1 7^5=1250(.8)^5=409.6\)
Find the sum of first 24 terms of the A.P. \(a_1, a_2, a_3, \ldots\) if it is known that \(a_1+a_5+a_{10}+a_{15}+a_{20}+a_{24}=225\).
We know that in an A.P., the sum of the terms equidistant from the beginning and end is always the same and is equal to the sum of first and last term.
Therefore
\(
d=b-a
\)
\(
\text { i.e., } \quad a_1+a_{24}=a_5+a_{20}=a_{10}+a_{15}
\)
\(
\begin{aligned}
& \text { It is given that }\left(a_1+a_{24}\right)+\left(a_5+a_{20}\right)+\left(a_{10}+a_{15}\right)=225 \\
& \Rightarrow\left(a_1+a_{24}\right)+\left(a_1+a_{24}\right)+\left(a_1+a_{24}\right)=225 \\
& \Rightarrow \quad 3\left(a_1+a_{24}\right)=225 \\
& \Rightarrow \quad a_1+a_{24}=75
\end{aligned}
\)
We know that \(S _n=\frac{n}{2}[a+l]\), where \(a\) is the first term and \(l\) is the last term of an A.P.
Thus, \(S _{24}=\frac{24}{2}\left[a_1+a_{24}\right]=12 \times 75=900\)
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers.
Let the three numbers in A.P. be \(a-d, a, a+d(d>0)[latex]
[latex]
\begin{array}{lr}
\text { Now } & (a- d ) a(a+ d )=224 \\
\Rightarrow & a\left(a^2-d^2\right)=224 \dots(1)
\end{array}
\)
Now, since the largest number is 7 times the smallest, i.e., \(a+d=7(a- d )\)
Therefore,
\(
d=\frac{3 a}{4}
\)
Substituting this value of \(d\) in (1), we get
\(
\begin{aligned}
a\left(a^2-\frac{9 a^2}{16}\right) & =224 \\
a & =8
\end{aligned}
\)
and \(d=\frac{3 a}{4}=\frac{3}{4} \times 8=6\)
Hence, the three numbers are \(2,8,14\).
If \(x, y\) and \(z\) are in A.P. then \(\left(x^2+x y+y^2\right),\left(z^2+x z+x^2\right)\) and \(\left(y^2+y z+z^2\right)\) are consecutive terms of an A.P.. Is this true?
The terms \(\left(x^2+x y+y^2\right),\left(z^2+x z+x^2\right)\) and \(\left(y^2+y z+z^2\right)\) will be in A.P. if
\(
\left(z^2+x z+x^2\right)-\left(x^2+x y+y^2\right)=\left(y^2+y z+z^2\right)-\left(z^2+x z+x^2\right)
\)
\(
\begin{aligned}
z^2+x z-x y-y^2 & =y^2+y z-x z-x^2 \\
x^2+z^2+2 x z-y^2 & =y^2+y z+x y
\end{aligned}
\)
\(
(x+z)^2-y^2=y(x+y+z)
\)
\(
\begin{aligned}
x+z-y & =y \\
x+z & =2 y
\end{aligned}
\)
which is true, since \(x, y, z\) are in A.P. Hence \(x^2+x y+y^2, z^2+x z+x^2, y^2+y z+z^2\) are in A.P.
If \(a, b, c, d\) are in G.P., then \(a^2-b^2, b^2-c^2, c^2-d^2\) are also in G.P.. Is this statement true?
Let \(r\) be the common ratio of the given GP. Then
\(
\begin{aligned}
\frac{b}{a}= & \frac{c}{b}=\frac{d}{c}=r \\
b & =a r, c=b r=a r^2, d=c r=a r^3 \\
a^2-b^2 & =a^2-a^2 r^2=a^2\left(1-r^2\right)
\end{aligned}
\)
\(
\begin{aligned}
& b^2-c^2=a^2 r^2-a^2 r^4=a^2 r^2\left(1-r^2\right) \\
& c^2-d^2=a^2 r^4-a^2 r^6=a^2 r^4\left(1-r^2\right)
\end{aligned}
\)
Therefore,
\(
\frac{b^2-c^2}{a^2-b^2}=\frac{c^2-d^2}{b^2-c^2}=r^2
\)
Hence, \(a^2-b^2, b^2-c^2, c^2-d^2\) are in G.P.
If the sum of \(m\) terms of an A.P. is equal to the sum of either the next \(n\) terms or the next \(p\) terms, then \((m+n)\left(\frac{1}{m}-\frac{1}{p}\right)=(m+p)\left(\frac{1}{m}-\frac{1}{n}\right)\). Is this statement true?
Let the A.P. be \(a, a+d, a+2 d, \ldots\). We are given
\(
a_1+a_2+\ldots+a_m=a_{m+1}+a_{m+2}+\ldots+a_{m+n} \dots(1)
\)
Adding \(a_1+a_2+\ldots+a_m\) on both sides of (1), we get
\(
\begin{aligned}
& 2\left[a_1+a_2+\ldots+a_m\right]=a_1+a_2+\ldots+a_m+a_{m+1}+\ldots+a_{m+n} \\
& 2 S _m= S _{m+n}
\end{aligned}
\)
Therefore, \(2 \frac{m}{2}\{2 a+(m-1) d\}=\frac{m+n}{2}\{2 a+(m+n-1) d\}\) Putting \(2 a+(m-1) d=x\) in the above equation, we get
\(
\begin{aligned}
m x & =\frac{m+n}{2}(x+n d) \\
\Rightarrow \quad(2 m-m-n) x & =(m+n) n d \\
(m-n) x & =(m+n) n d \dots(2)
\end{aligned}
\)
Similarly, if \(a_1+a_2+\ldots+a_m=a_{m+1}+a_{m+2}+\ldots+a_{m+p}\)
Adding \(a_1+a_2+\ldots+a_m\) on both sides
we get,
\(
2\left(a_1+a_2+\ldots+a_m\right)=a_1+a_2+\ldots+a_{m+1}+\ldots+a_{m+p}
\)
or, \(2 S _m= S _{m+p}\)
\(\Rightarrow \quad 2\left[\frac{m}{2}\{2 a+(m-1) d\}\right]=\frac{m+p}{2}\{2 a+(m+p-1) d\}\) which gives
i.e., \((m-p) x=(m+p) p d \dots(3)\)
Dividing (2) by (3), we get
\(
\begin{aligned}
\frac{(m-n) x}{(m-p) x} & =\frac{(m+n) n d}{(m+p) p d} \\
\Rightarrow \quad(m-n)(m+p) p & =(m-p)(m+n) n
\end{aligned}
\)
Dividing both sides by \(m n p\), we get
\(
\begin{aligned}
& (m+p)\left(\frac{1}{n}-\frac{1}{m}\right)=(m+n)\left(\frac{1}{p}-\frac{1}{m}\right) \\
= & (m+n)\left(\frac{1}{m}-\frac{1}{p}\right)=(m+p)\left(\frac{1}{m}-\frac{1}{n}\right)
\end{aligned}
\)
If \(a_1, a_2, \ldots, a_n\) are in A.P. with common difference \(d\) (where \(d \neq 0\) ); then the sum of the series \(\sin d\left(\operatorname{cosec} a_1 \operatorname{cosec} a_2+\operatorname{cosec} a_2 \operatorname{cosec} a_3+\ldots+\operatorname{cosec}\right.\) \(\left.a_{n-1} \operatorname{cosec} a_n\right)\) is equal to
We have
\(
\begin{aligned}
& \sin d\left(\operatorname{cosec} a_1 \operatorname{cosec} a_2+\operatorname{cosec} a_2 \operatorname{cosec} a_3+\ldots+\operatorname{cosec} a_{n-1} \operatorname{cosec} a_n\right) \\
& =\sin d\left[\frac{1}{\sin a_1 \sin a_2}+\frac{1}{\sin a_2 \sin a_3}+\ldots+\frac{1}{\sin a_{n-1} \sin a_n}\right] \\
& =\frac{\sin \left(a_2-a_1\right)}{\sin a_1 \sin a_2}+\frac{\sin \left(a_3-a_2\right)}{\sin a_2 \sin a_3}+\ldots+\frac{\sin \left(a_n-a_{n-1}\right)}{\sin a_{n-1} \sin a_n} \\
& =\frac{\left.\sin a_2 \cos a_1-\cos a_2 \sin a_1\right)}{\sin a_1 \sin a_2}+\frac{\left.\sin a_3 \cos a_2-\cos a_3 \sin a_2\right)}{\sin a_2 \sin a_3}+\ldots+\frac{\left.\sin a_n \cos a_{n-1}-\cos a_n \sin a_{n-1}\right)}{\sin a_{n-1} \sin a_n} \\
& =\left(\cot a_1-\cot a_2\right)+\left(\cot a_2-\cot a_3\right)+\ldots+\left(\cot a_{n-1}-\cot a_n\right) \\
& =\cot a_1-\cot a_n
\end{aligned}
\)
If \(a, b, c, d\) are four distinct positive quantities in A.P., then
\(
\text { Since } a, b, c, d \text { are in A.P., then A.M. > G.M., for the first three terms. }
\)
Therefore, \(b>\sqrt{a c}\) \(\left(\text { Here } \frac{a+c}{2}=b\right)\)
Squaring, we get
\(
b^2>a c \dots(1)
\)
Similarly, for the last three terms
\(
\begin{array}{ll}
AM > GM & \\
c>\sqrt{b d} & \left(\text { Here } \frac{b+d}{2}=c\right) \\
c^2>b d & \dots(2)
\end{array}
\)
Multiplying (1) and (2), we get
\(
\begin{aligned}
& b^2 c^2>(a c)(b d) \\
\Rightarrow & b c>a d
\end{aligned}
\)
If \(a, b, c, d\) are four distinct positive quantities in GP., then
Since \(a, b, c, d\) are in G.P.
again A.M. > G.M. for the first three terms
\(
\begin{array}{ll}
\frac{a+c}{2}>b & (\text { since } \sqrt{a c}=b)
\end{array}
\)
\(
\Rightarrow a+c>2 b \dots(1)
\)
Similarly, for the last three terms
\(
\begin{aligned}
& \frac{b+d}{2}>c & \text { (since } \sqrt{b d}=c \text { ) } \\
& \Rightarrow b+d>2 c \dots(2) \\
&
\end{aligned}
\)
Adding (1) and (2), we get
\(
\begin{aligned}
& (a+c)+(b+d)>2 b+2 c \\
& a+d>b+c
\end{aligned}
\)
If \(a, b, c\) are three consecutive terms of an A.P. and \(x, y, z\) are three consecutive terms of a G.P. Then \(x^{b-c} \cdot y^{c-a}\cdot z^{a-b}=?\)
We have \(a, b, c\) as three consecutive terms of A.P. Then
\(
b-a=c-b=d \text { (say) }
\)
\(
\begin{aligned}
& c-a=2 d \\
& a-b=-d
\end{aligned}
\)
Now \(x^{b-c} \cdot y^{c-a} \cdot z^{a-b}=x^{-d} \cdot y^{2 d} \cdot z^{-d}\)
\(
\left.=x^{-d}(\sqrt{x z})^{2 d} \cdot z^{-d} \quad \text { (since } y=(\sqrt{x z})\right) \text { as } x, y, z \text { are GP.) }
\)
\(
\begin{aligned}
& =x^{-d} \cdot x^d \cdot z^d \cdot z^{-d} \\
& =x^{-d+d} \cdot z^{d-d} \\
& =x^{\circ} z^{\circ}=1
\end{aligned}
\)
Find the natural number \(a\) for which \(\sum_{k=1}^n f(a+k)=16\left(2^n-1\right)\), where the function \(f\) satisfies \(f(x+y)=f(x)\). \(f(y)\) for all natural numbers \(x, y\) and further \(f(1)=2\).
Given that \(f(x+y)=f(x) \cdot f(y) \text { and } f(1)=2\)
Therefore,
\(
\begin{aligned}
& f(2)=f(1+1)=f(1) \cdot f(1)=2^2 \\
& f(3)=f(1+2)=f(1) \cdot f(2)=2^3 \\
& f(4)=f(1+3)=f(1) \cdot f(3)=2^4
\end{aligned}
\)
and so on. Continuing the process, we obtain
\(
\begin{aligned}
f(k) & =2^k \text { and } f(a)=2^a \\
\sum_{k=1}^n f(a+k) & =\sum_{k=1}^n f(a) \cdot f(k) \\
& =f(a) \sum_{k=1}^n f(k) \\
& =2^a\left(2^1+2^2+2^3+\ldots+2^n\right) \\
& =2^a\left\{\frac{2 \cdot\left(2^n-1\right)}{2-1}\right\}=2^{a+1}\left(2^n-1\right)
\end{aligned} \dots(1)
\)
But, we are given
\(
\begin{aligned}
\sum_{k=1}^n f(a+k) & =16\left(2^n-1\right) \\
2^{a+1}\left(2^n-1\right) & =16\left(2^n-1\right) \\
2^{a+1} & =2^4 \Rightarrow a+1=4 \\
a & =3
\end{aligned}
\)
A sequence may be defined as a
(C) is the correct answer. A sequence is a function \(f: N \rightarrow X\) having domain \(\subseteq N\)
If \(x, y, z\) are positive integers then value of expression \((x+y)(y+z)(z+x)\) is
since
A.M. \(>[latex] GM., [latex]\frac{x+y}{2}>\sqrt{x y}, \frac{y+z}{2}>\sqrt{y z}[latex] and [latex]\frac{z+x}{2}>\sqrt{z x}\)
Multiplying the three inequalities, we get
\(
\frac{x+y}{2} \cdot \frac{y+z}{2} \cdot \frac{y+z}{2}>\sqrt{(x y)(y z)(z x)}
\)
or, \(\quad(x+y)(y+z)(z+x)>8 x y z\)
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is
\(
\begin{aligned}
& t_n=t_{n+1}+t_{n+2} \\
& \Rightarrow \quad a r^{n-1}=a r^n+a r^{n+1} \\
& \Rightarrow \quad 1=r+r^2 \\
& r=\frac{-1 \pm \sqrt{5}}{2} \text {, since } r>0 \\
& r=2 \frac{\sqrt{5}-1}{4}=2 \sin 18^{\circ} \\
&
\end{aligned}
\)
In an A.P. the \(p\) th term is \(q\) and the \((p+q)^{\text {th }}\) term is 0 . Then the \(q\) th term is
Let \(a, d\) be the first term and common difference respectively.
Therefore,
\(
\begin{aligned}
T _p & =a+(p-1) d=q \text { and } \dots(1)\\
T _{p+q} & =a+(p+q-1) d=0 \dots(2)
\end{aligned}
\)
Subtracting (1), from (2) we get \(q d=-q\)
Substituting in (1) we get \(a=q-(p-1)(-1)=q+p-1\)
Now
\(\)
\begin{aligned}
T _q & =a+(q-1) d=q+p-1+(q-1)(-1) \\
& =q+p-1-q+1=p
\end{aligned}
Let \(S\) be the sum, \(P\) be the product and \(R\) be the sum of the reciprocals of 3 terms of a GP. Then \(P^2 R^3: S^3\) is equal to
Let us take a G.P. with three terms \(\frac{a}{r}, a, a r\). Then
\(
\begin{aligned}
& S =\frac{a}{r}+a+a r=\frac{a\left(r^2+r+1\right)}{r} \\
& P =a^3, R =\frac{r}{a}+\frac{1}{a}+\frac{1}{a r}=\frac{1}{a}\left(\frac{r^2+r+1}{r}\right) \\
& \frac{ P ^2 R ^3}{ S ^3}=\frac{a^6 \cdot \frac{1}{a^3}\left(\frac{r^2+r+1}{r}\right)^3}{a^3\left(\frac{r^2+r+1}{r}\right)^3}=1
\end{aligned}
\)
Therefore, the ratio is \(1: 1\)
The 10th common term between the series \(3+7+11+\ldots\) and \(1+6+11+\ldots\) is
The first common term is 11 .
Now the next common term is obtained by adding L.C.M. of the common difference 4 and 5 , i.e., 20 .
Therefore, \(10^{\text {th }}\) common term \(= T _{10}\) of the AP whose \(a=11\) and \(d=20\)
\(
T _{10}=a+9 d=11+9(20)=191
\)
In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is
Let us consider a GP. \(a, a r, a r^2, \ldots\) with \(2 n\) terms. We have \(\frac{a\left(r^{2 n}-1\right)}{r-1}=\frac{5 a\left(\left(r^2\right)^n-1\right)}{r^2-1}\)
(Since common ratio of odd terms will be \(r^2\) and number of terms will be \(n\) )
\(
\begin{aligned}
& \Rightarrow \frac{a\left(r^{2 n}-1\right)}{r-1}=5 \frac{a\left(r^{2 n}-1\right)}{\left(r^2-1\right)} \\
& \Rightarrow a(r+1)=5 a, \text { i.e., } r=4
\end{aligned}
\)
The minimum value of the expression \(3^x+3^{1-x}, x \in R\), is
We know A.M. \(\geq\) GM. for positive numbers.
Therefore, \(\frac{3^x+3^{1-x}}{2} \geq \sqrt{3^x \cdot 3^{1-x}}\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{3^x+3^{1-x}}{2} \geq \sqrt{3^x \cdot \frac{3}{3^x}} \\
& \Rightarrow \quad 3^x+3^{1-x} \geq 2 \sqrt{3}
\end{aligned}
\)
You cannot copy content of this page