0 of 63 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 63 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
\(
\text { Find the } r^{\text {th }} \text { term in the expansion of }\left(x+\frac{1}{x}\right)^{2 r}
\)
We have \(\mathrm{T}_{\mathrm{r}}={ }^{2 r} \mathrm{C}_{r-1}(x)^{2 r-r+1}\left(\frac{1}{x}\right)^{2 r}\).
\(
\begin{aligned}
& =\frac{2 r!}{(r-1)!(r+1)!} x^{r+1-r+1} \\
& =\frac{2 r!}{(r-1)!(r+1)!} x^2
\end{aligned}
\)
\(
\text { Expand the following }\left(1-x+x^2\right)^4
\)
Put \(1-x=y\). Then
\(
\begin{aligned}
\left(1-x+x^2\right)^4= & \left(y+x^2\right)^4 \\
= & { }^4 \mathrm{C}_0 \quad y^4\left(x^2\right)^0+{ }^4 \mathrm{C}_1 y^3\left(x^2\right)^1 \\
& +{ }^4 \mathrm{C}_2 \quad y^2\left(x^2\right)^2+{ }^4 \mathrm{C}_3 \quad y\left(x^2\right)^3+{ }^4 \mathrm{C}_4\left(x^2\right)^4 \\
= & y^4+4 y^3 x^2+6 y^2 x^4+4 y x^6+x^8 \\
= & (1-x)^4+4 x^2(1-x)^3+6 x^4(1-x)^2+4 x^6(1-x)+x^8 \\
= & 1-4 x+10 x^2-16 x^3+19 x^4-16 x^5+10 x^6-4 x^7+x^8
\end{aligned}
\)
\(
\text { Find the } 4^{\text {th }} \text { term from the end in the expansion of }\left(\frac{x^3}{2}-\frac{2}{x^2}\right)^9
\)
Since \(r^{\text {th }}\) term from the end in the expansion of \((a+b)^n\) is \((n-r+2)^{\text {th }}\) term from the beginning. Therefore \(4^{\text {th }}\) term from the end is \(9-4+2\), i.e., \(7^{\text {th }}\) term from the beginning, which is given by
\(
\mathrm{T}_7={ }^9 \mathrm{C}_6\left(\frac{x^3}{2}\right)^3\left(\frac{-2}{x^2}\right)^6={ }^9 \mathrm{C}_3 \frac{x^9}{8} \cdot \frac{64}{x^{12}}=\frac{9 \times 8 \times 7}{3 \times 2 \times 1} \times \frac{64}{x^3}=\frac{672}{x^3}
\)
\(
\text { Evaluate: }\left(x^2-\sqrt{1-x^2}\right)^4+\left(x^2+\sqrt{1-x^2}\right)^4
\)
Putting \(\sqrt{1-x^2}=y\), we get
The given expression \(=\left(x^2-y\right)^4+\left(x^2+y\right)^4=2\left[x^8+{ }^4 \mathrm{C}_2 x^4 y^2+{ }^4 \mathrm{C}_4 y^4\right]\)
\(
\begin{aligned}
& =2 x^8+\frac{4 \times 3}{2 \times 1} x^4 \cdot\left(1-x^2\right)+\left(1-x^2\right)^2 \\
& =2\left[x^8+6 x^4\left(1-x^2\right)+\left(1-2 x^2+x^4\right]\right. \\
& =2 x^8-12 x^6+14 x^4-4 x^2+2
\end{aligned}
\)
\(
\text { Find the coefficient of } x^{11} \text { in the expansion of } (x^3-\frac{2}{x^2})^{12}
\)
Let the general term, i.e., \((r+1)^{\text {th }}\) contain \(x^{11}\).
We have
\(
\begin{aligned}
\mathrm{T}_{r+1} & ={ }^{12} \mathrm{C}_r\left(x^3\right)^{12-r}\left(-\frac{2}{x^2}\right)^r \\
& ={ }^{12} \mathrm{C}_r x^{36-3 r-2 r}(-1)^r 2^r \\
& ={ }^{12} \mathrm{C}_r(-1)^r 2^r x^{36-5 r}
\end{aligned}
\)
Now for this to contain \(x^{11}\), we observe that
\(
36-5 r=11 \text {, i.e., } r=5
\)
Thus, the coefficient of \(x^{11}\) is
\(
{ }^{12} C_5(-1)^5 2^5=-\frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2} \times 32=-25344
\)
Determine whether the expansion of \((x^2-\frac{2}{x})^{18}\) will contain a term containing \(x^{10}\) ?
Let \(\mathrm{T}_{r+1}\) contain \(x^{10}\). Then
\(
\begin{aligned}
\mathrm{T}_{r+1} & ={ }^{18} \mathrm{C}_r\left(x^2\right)^{18-r} \frac{-2}{x} \\
& ={ }^{18} \mathrm{C}_r x^{36-2 r}(-1)^r \cdot 2^r x^r \\
& =(-1)^r 2^r{ }^{18} \mathrm{C}_r x^{36-3 r}
\end{aligned}
\)
Thus,
\(
36-3 r=10 \text {, i.e., } r=\frac{26}{3}
\)
\(
\text { Since } r \text { is a fraction, the given expansion cannot have a term containing } x^{10} \text {. }
\)
\(
\text { Find the term independent of } x \text { in the expansion of }\left(\frac{\sqrt{x}}{\sqrt{3}}+\frac{\sqrt{3}}{2 x^2}\right)^{10} \text {. }
\)
Let \((r+1)^{\text {th }}\) term be independent of \(x\) which is given by
\(
\mathrm{T}_{r+1}={ }^{10} \mathrm{C}_r \sqrt{\frac{x}{3}}^{10-r}{\frac{\sqrt{3}}{2 x^2}}^r
\)
\(
\begin{aligned}
& ={ }^{10} \mathrm{C}_r \frac{x}{3}{ }^{\frac{10-r}{2}} 3^{\frac{r}{2}} \frac{1}{2^r x^{2 r}} \\
& ={ }^{10} \mathrm{C}_r 3^{\frac{r}{2}-\frac{10-r}{2}} 2^{-r} x^{\frac{10-r}{2}-2 r} \\
&
\end{aligned}
\)
Since the term is independent of \(x\), we have
\(
\frac{10-r}{2}-2 r=0 \quad \Rightarrow \quad r=2
\)
Hence \(3^{\text {rd }}\) term is independent of \(x\) and its value is given by
\(
\mathrm{T}_3={ }^{10} \mathrm{C}_2 \frac{3^{-3}}{4}=\frac{10 \times 9}{2 \times 1} \times \frac{1}{9 \times 12}=\frac{5}{12}
\)
Find the middle term in the expansion of \((2 a x-{\frac{b}{x^2}})^{12}\).
Since the power of binomial is even, it has one middle term which is the \(\frac{12+2}{2}\) th term and it is given by
\(
\begin{aligned}
\mathrm{T}_7 & ={ }^{12} \mathrm{C}_6(2 a x)^6\left(\frac{-b}{x^2}\right)^6 \\
& ={ }^{12} \mathrm{C}_6 \frac{2^6 a^6 x^6 \cdot(-b)^6}{x^{12}} \\
& ={ }^{12} \mathrm{C}_6 \frac{2^6 a^6 b^6}{x^6}=\frac{59136 a^6 b^6}{x^6}
\end{aligned}
\)
\(
\text { Find the middle term (terms) in the expansion of }\left(\frac{p}{x}+\frac{x}{p}\right)^9 \text {. }
\)
Since the power of binomial is odd. Therefore, we have two middle terms which are \(5^{\text {th }}\) and \(6^{\text {th }}\) terms. These are given by
\(
\mathrm{T}_5={ }^9 \mathrm{C}_4\left(\frac{p}{x}\right)^5\left(\frac{x}{p}\right)^4={ }^9 \mathrm{C}_4 \frac{p}{x}=\frac{126 p}{x}
\)
and
\(
\mathrm{T}_6={ }^9 \mathrm{C}_5\left(\frac{p}{x}\right)^4\left(\frac{x}{p}\right)^5={ }^9 \mathrm{C}_5 \frac{x}{p}=\frac{126 x}{p}
\)
\(
\text { Is the equation } 2^{4 n+4}-15 n-16 \text {, where } n \in \mathbf{N} \text { is divisible by } 225 \text {. }
\)
We have
\(
\begin{aligned}
2^{4 n+4}-15 n-16= & 2^{4(n+1)}-15 n-16 \\
= & 16^{n+1}-15 n-16 \\
= & (1+15)^{n+1}-15 n-16 \\
= & { }^{n+1} \mathrm{C}_0 15^0+{ }^{n+1} \mathrm{C}_1 15^1+{ }^{n+1} \mathrm{C}_2 15^2+{ }^{n+1} \mathrm{C}_3 15^3 \\
& +\ldots+{ }^{n+1} \mathrm{C}_{n+1}(15)^{n+1}-15 n-16 \\
= & 1+(n+1) 15+{ }^{n+1} \mathrm{C}_2 15^2+{ }^{n+1} \mathrm{C}_3 15^3 \\
& +\ldots+{ }^{n+1} \mathrm{C}_{n+1}(15)^{n+1}-15 n-16 \\
= & 1+15 n+15+{ }^{n+1} \mathrm{C}_2 15^2+{ }^{n+1} \mathrm{C}_3 15^3 \\
& +\ldots+{ }^{n+1} \mathrm{C}_{n+1}(15)^{n+1}-15 n-16 \\
= & 15^2\left[{ }^{n+1} \mathrm{C}_2+{ }^{n+1} \mathrm{C}_3 15+\ldots \text { so on }\right]
\end{aligned}
\)
Thus, \(2^{4 n+4}-15 n-16\) is divisible by 225 .
Find numerically the greatest term in the expansion of \((2+3 x)^9\), where
\(x=\frac{3}{2}\)
\(
\text { We have }(2+3 x)^9=2^9\left(1+\frac{3 x}{2}\right)^9
\)
\(
\frac{\mathrm{T}_{r+1}}{\mathrm{~T}_r}=\frac{2^9\left[{ }^9 \mathrm{C}_r\left(\frac{3 x}{2}\right)^r\right]}{2^9\left[{ }^9 \mathrm{C}_{r-1}\left(\frac{3 x}{2}\right)^{r-1}\right]}
\)
\(
=\frac{{ }^9 \mathrm{C}_r}{{ }^9 \mathrm{C}_{r-1}}\left|\frac{3 x}{2}\right|
\)
\(
=\frac{10-r}{r}\left|\frac{3 x}{2}\right|=\frac{10-r}{r}\left(\frac{9}{4}\right) \quad \text { Since } \quad x=\frac{3}{2}
\)
Therefore,
\(
\begin{aligned}
\frac{\mathrm{T}_{r+1}}{\mathrm{~T}_r} \geq 1 & \Rightarrow \frac{90-9 r}{4 r} \geq 1 \\
& \Rightarrow 90-9 r \geq 4 r \\
& \Rightarrow r \leq \frac{90}{13} \\
& \Rightarrow r \leq 6 \frac{12}{13}
\end{aligned}
\)
Thus the maximum value of \(r\) is 6 . Therefore, the greatest term is \(\mathrm{T}_{r+1}=\mathrm{T}_7\).
Hence,
\(
\begin{aligned}
\mathrm{T}_7 & =2^9\left[{ }^9 \mathrm{C}_6\left(\frac{3 x}{2}\right)^6\right], \quad \text { where } x=\frac{3}{2} \\
& =2^9 \cdot{ }^9 \mathrm{C}_6\left(\frac{9}{4}\right)^6=2^9 \cdot \frac{9 \times 8 \times 7}{3 \times 2 \times 1}\left(\frac{3^{12}}{2^{12}}\right)=\frac{7 \times 3^{13}}{2}
\end{aligned}
\)
If \(n\) is a positive integer, find the coefficient of \(x^{-1}\) in the expansion of
\(
(1+x)^n\left(1+\frac{1}{x}\right)^n
\)
We have
\(
(1+x)^n 1+\frac{1}{x}^n=(1+x)^n \quad \frac{x+1}{x} \quad=\frac{(1+x)^{2 n}}{x^n}
\)
Now to find the coefficient of \(x^{-1}\) in \((1+x)^n \quad 1+\frac{1}{x}^n\), it is equivalent to finding coefficient of \(x^{-1}\) in \(\frac{(1+x)^{2 n}}{x^n}\) which in turn is equal to the coefficient of \(x^{n-1}\) in the expansion of \((1+x)^{2 n}\).
Since \((1+x)^{2 n}={ }^{2 n} \mathrm{C}_0 x^0+{ }^{2 n} \mathrm{C}_1 x^1+{ }^{2 n} \mathrm{C}_2 x^2+\ldots+{ }^{2 n} \mathrm{C}_{n-1} x^{n-1}+\ldots+{ }^{2 n} \mathrm{C}_{2 n} x^{2 n}\)
Thus the coefficient of \(x^{n-1}\) is \({ }^{2 n} \mathrm{C}_{n-1}\)
Which of the following is larger?
\(
99^{50}+100^{50} \text { or } 101^{50}
\)
We have \((101)^{50}=(100+1)^{50}\)
\(
=100^{50}+50(100)^{49}+\frac{50.49}{2.1}(100)^{48}+\frac{50.49 .48}{3.2 .1}(100)^{47}+\ldots \dots(1)
\)
Similarly \(\quad 99^{50}=(100-1)^{50}\)
\(
=100^{50}-50.100^{49}+\frac{50.49}{2.1}(100)^{48}-\frac{50.49 .48}{3.2 .1}(100)^{47}+\ldots \dots(2)
\)
Subtracting (2) from (1), we get
\(
\begin{aligned}
& 101^{50}-99^{50}=2 \\
& 50 \cdot(100)^{49}+\frac{50 \cdot 49 \cdot 48}{3 \cdot 2 \cdot 1} 100^{47}+\ldots \\
& \Rightarrow \quad 101^{50}-99^{50}=100^{50}+2 \frac{50 \cdot 49 \cdot 48}{3 \cdot 2 \cdot 1} 100^{47}+\ldots \\
& \Rightarrow \quad 101^{50}-99^{50}>100^{50} \\
& \text { Hence } 101^{50}>99^{50}+100^{50}
\end{aligned}
\)
Find the coefficient of \(x^{50}\) after simplifying and collecting the like terms in the expansion of \((1+x)^{1000}+x(1+x)^{999}+x^2(1+x)^{998}+\ldots+x^{1000}\).
Since the above series is a geometric series with the common ratio \(\frac{x}{1+x}\)
\(
a=(1+x)^{1000}
\)
\(
r=\frac{x}{x+1}
\)
\(
\mathrm{n}=1001
\)
its sum is
\(
\frac{(1+x)^{1000} 1-\frac{x}{1+x}}{1-\frac{x}{1+x}}
\)
\(
=\frac{(1+x)^{1000}-\frac{x^{1001}}{1+x}}{\frac{1+x-x}{1+x}}=(1+x)^{1001}-x^{1001}
\)
\(
\text { Hence, coefficient of } x^{50} \text { is given by }
\)
\(
{ }^{1001} \mathrm{C}_{50} = \frac{(1001) !}{(951) !(50) !}
\)
If \(a_1, a_2, a_3\) and \(a_4\) are the coefficient of any four consecutive terms in the expansion of \((1+x)^n\), then
\(
\frac{a_1}{a_1+a_2}+\frac{a_3}{a_3+a_4}=\frac{2 a_2}{a_2+a_3}
\). Is this true?
Let \(a_1, a_2, a_3\) and \(a_4\) be the coefficient of four consecutive terms \(\mathrm{T}_{r+1}, \mathrm{~T}_{r+}\) \({ }_2, \mathrm{~T}_{r+3}\), and \(\mathrm{T}_{r+4}\) respectively. Then
\(
\begin{aligned}
& a_1=\text { coefficient of } \mathrm{T}_{r+1}={ }^n \mathrm{C}_r \\
& a_2=\text { coefficient of } \mathrm{T}_{r+2}={ }^n \mathrm{C}_{r+1} \\
& a_3=\text { coefficient of } \mathrm{T}_{r+3}={ }^n \mathrm{C}_{r+2} \\
& a_4=\text { coefficient of } \mathrm{T}_{r+4}={ }^n \mathrm{C}_{r+3}
\end{aligned}
\)
and, Thus
\(
\begin{aligned}
\frac{a_1}{a_1+a_2} & =\frac{{ }^n \mathrm{C}_r}{{ }^n \mathrm{C}_r+{ }^n \mathrm{C}_{r+1}} \\
& =\frac{{ }^n \mathrm{C}_r}{{ }^{n+1} \mathrm{C}_{r+1}} \quad\left(\because{ }^n \mathrm{C}_r+{ }^n \mathrm{C}_{r+1}={ }^{n+1} \mathrm{C}_{r+1}\right) \\
& =\frac{r+1}{n+1}
\end{aligned}
\)
Similarly,
\(
\begin{aligned}
\frac{a_3}{a_3+a_4} & =\frac{{ }^n \mathrm{C}_{r+2}}{{ }^n \mathrm{C}_{r+2}+{ }^n \mathrm{C}_{r+3}} \\
& =\frac{{ }^n \mathrm{C}_{r+2}}{{ }^{n+1} \mathrm{C}_{r+3}}=\frac{r+3}{n+1}
\end{aligned}
\)
Hence,
\(
\text { L.H.S. }=\frac{a_1}{a_1+a_2}+\frac{a_3}{a_3+a_4}=\frac{r+1}{n+1}+\frac{r+3}{n+1}=\frac{2 r+4}{n+1}
\)
and
\(
\text { R.H.S. }=\frac{2 a_2}{a_2+a_3}=\frac{2\left({ }^n \mathrm{C}_{r+1}\right)}{{ }^n \mathrm{C}_{r+1}+{ }^n \mathrm{C}_{r+2}}=\frac{2\left({ }^n \mathrm{C}_{r+1}\right)}{{ }^{n+1} \mathrm{C}_{r+2}}
\)
\(
=\frac{2(r+2)}{n+1}
\)
The total number of terms in the expansion of \((x+a)^{51}-(x-a)^{51}\) after simplification is
(c)
\(
\begin{array}{l}
\text { for }(x+a)^{51}-(x-a)^{51} \\
\text { Since }(x+a)^{51}={ }^{51} C_0 x^{51}+{ }^{51} C_1 x^{50} a+{ }^{51} C_2 x^{49} a^2+\ldots+{ }^{51} C_{51} a^{51} \\
\text { and }(x-a)^{51}={ }^{51} C_0 x^{51}-{ }^{51} C_1 x^{50} a+{ }^{51} C_2 x^{49} a^2 \ldots{ }^{51} C_{51} a^{51}
\end{array}
\)
Subtracting above values,
\(
(x+a)^{51}-(x-a)^{51}=2\left({ }^{51} C_1 x^{50} a+{ }^{51} C_3 x^{48} a^3+\ldots+{ }^{51} C_{51} a^{51}\right)
\)
i.e. \(1^{\text {st, }} 3^{\text {rd }}, 5^{\text {th, }} 7^{\text {th }} \ldots\) \(49^{\text {th }}, 51^{\text {th }}\) term are there.
\(\therefore\) applying A.P.
\(
a+(n-1) d=51
\)
i.e. \(1+(n-1) 2=51\)
i.e. \(2(n-1)=50\)
i.e. \(n=26\)
\(
\text { If the coefficients of } x^7 \text { and } x^8 \text { in } (2+\frac{x}{3})^{n} \text { are equal, then } n \text { is }
\)
b is the correct choice. Since \(\mathrm{T}_{r+1}={ }^n \mathrm{C}_r a^{n-r} x^r\) in expansion of \((a+x)^n\),
Therefore,
\(
\mathrm{T}_8={ }^n \mathrm{C}_7(2)^{n-7}\left(\frac{x}{3}\right)^7={ }^n \mathrm{C}_7 \frac{2^{n-7}}{3^7} x^7
\)
and
\(
\mathrm{T}_9={ }^n \mathrm{C}_8(2)^{n-8}\left(\frac{x}{3}\right)^8={ }^n \mathrm{C}_8 \frac{2^{n-8}}{3^8} x^8
\)
Therefore, \({ }^n \mathrm{C}_7 \frac{2^{n-7}}{3^7}={ }^n \mathrm{C}_8 \frac{2^{n-8}}{3^8}\) (since it is given that coefficient of \(x^7=\operatorname{coefficient} x^8\) )
\(
=\frac{2^{n-8}}{3^8} \cdot \frac{3^7}{2^{n-7}}
\)
\(
\Rightarrow \quad \frac{8}{n-7}=\frac{1}{6} \Rightarrow n=55
\)
If \(\left(1-x+x^2\right)^n=a_0+a_1 x+a_2 x^2+\ldots+a_{2 n} x^{2 n}\), then \(a_0+a_2+a_4+\ldots\) \(+a_{2 n}\) equals.
a is the correct choice. Putting \(x=1\) and \(-1\) in
we get
\(
\begin{aligned}
\left(1-x+x^2\right)^n & =a_0+a_1 x+a_2 x^2+\ldots+a_{2 n} x^{2 n} \\
1 & =a_0+a_1+a_2+a_3+\ldots+a_{2 n} \dots(1)\\
3^n & =a_0-a_1+a_2-a_3+\ldots+a_{2 n} \dots(2)
\end{aligned}
\)
and
Adding (1) and (2), we get
\(
3^n+1=2\left(a_0+a_2+a_4+\ldots+a_{2 n}\right)
\)
Therefore \(a_0+a_2+a_4+\ldots+a_{2 n}=\frac{3^n+1}{2}\)
The coefficient of \(x^p\) and \(x^q\) ( \(p\) and \(q\) are positive integers) in the expansion of \((1+x)^{p+q}\) are
Coefficient of \(x^p\) and \(x^q\) in the expansion of \((1+x)^p\) \({ }^{+q}\) are \({ }^{p+q} \mathrm{C}_p\) and \({ }^{p+q} \mathrm{C}_q\)
and
\(
{ }^{p+q} \mathrm{C}_p={ }^{p+q} \mathrm{C}_q
\)
Hence (a) is the correct answer.
The number of terms in the expansion of \((a+b+c)^n\), where \(n \in \mathbf{N}\) is
a is the correct choice. We have
\(
\begin{aligned}
(a+b+c)^n= & {[a+(b+c)]^n } \\
= & a^n+{ }^n \mathrm{C}_1 a^{n-1}(b+c)^1+{ }^n \mathrm{C}_2 a^{n-2}(b+c)^2 \\
& +\ldots+{ }^n \mathrm{C}_n(b+c)^n
\end{aligned}
\)
Further, expanding each term of R.H.S., we note that
First term consist of 1 term.
Second term on simplification gives 2 terms.
Third term on expansion gives 3 terms.
Similarly, fourth term on expansion gives 4 terms and so on.
The total number of terms \(=1+2+3+\ldots+(n+1)\)
\(
=\frac{(n+1)(n+2)}{2}
\)
The ratio of the coefficient of \(x^{15}\) to the term independent of \(x\) in \((x^2+\frac{2}{x})^{15}\) is
(b) is the correct choice. Let \(\mathrm{T}_{r+1}\) be the general term of \(x^2+\frac{2}{x}\), so,
\(
\begin{aligned}
\mathrm{T}_{r+1} & ={ }^{15} \mathrm{C}_r\left(x^2\right)^{15-r} \frac{2}{x} \\
& ={ }^{15} \mathrm{C}_r(2)^r x^{30-3 r} \dots(1)
\end{aligned}
\)
Now, for the coefficient of term containing \(x^{15}\),
\(
30-3 r=15, \quad \text { i.e., } \quad r=5
\)
Therefore, \({ }^{15} \mathrm{C}_5(2)^5\) is the coefficient of \(x^{15}\) (from (1))
To find the term independent of \(x\), put \(30-3 r=0\)
Thus \({ }^{15} \mathrm{C}_{10} 2^{10}\) is the term independent of \(x\) (from (1))
Now the ratio is \(\frac{{ }^{15} \mathrm{C}_5 2^5}{{ }^{15} \mathrm{C}_{10} 2^{10}}=\frac{1}{2^5}=\frac{1}{32}\)
If \(z=(\frac{\sqrt{3}}{2}+\frac{i}{2})^{5}+(\frac{\sqrt{3}}{2}-\frac{i}{2})^{5}\), then
b is the correct choice. On simplification, we get
\(
z=2{ }^5 \mathrm{C}_0 \frac{\sqrt{3}^2}{2}+{ }^5 \mathrm{C}_2 \frac{\sqrt{3}^3}{2} \frac{i}{2}^2+{ }^5 \mathrm{C}_4 \frac{\sqrt{3}}{2} \frac{i}{2}^4
\)
Since \(i^2=-1\) and \(i^4=1, z\) will not contain any \(i\) and hence \(\mathrm{I}_m(z)=0\).
\(
\text { Find the term independent of } x, x \neq 0 \text {, in the expansion of }\left(\frac{3 x^2}{2}-\frac{1}{3 x}\right)^{15} \text {. }
\)
\(
\begin{aligned}
& \left(\frac{3 x^2}{2}-\frac{1}{3 x}\right)^{15} \text { (Given) }\\
& T_{r+1}={ }^{15} \mathrm{C}_r\left(\frac{3 x^2}{2}\right)^{15-r}\left(-\frac{1}{3 x}\right)^r \text { (standard formula of Tr+1) } \\
& T_{r+1}={ }^{15} \mathrm{C}_r(-1)^r 3^{15-2 r} 2^{r-15} X^{30-3 r} \ldots \dots(i)
\end{aligned}
\)
Now, for \(x\),
\(
\begin{aligned}
& 30-3 r=0 \\
& \rightarrow r=10
\end{aligned}
\)
Substituting the value of \(r\) in eq (i),
\(
\begin{aligned}
T_{r+1} & ={ }^{15} \mathrm{C}_{10} 3^{-5} 2^{-5} \\
& ={ }^{15} \mathrm{C}_{10}\left(\frac{1}{6}\right)^5
\end{aligned}
\)
If the term free from \(x\) in the expansion of \((\sqrt{x}-{\frac{k}{x^2}})^{10}\) is 405 , find the value of \(k\).
\(
\begin{aligned}
\therefore \quad & T_{r+1}={ }^{10} C_r(\sqrt{x})^{10-r}\left(\frac{-k}{x^2}\right)^r \\
& ={ }^{10} C_r(x)^{\frac{1}{2}(10-r)}(-k)^r x^{-2 r} \\
& ={ }^{10} C_r(x)^{5-\frac{r}{2}-2 r}(-k)^r \\
& ={ }^{10} C_r x^{\frac{10-5 r}{2}}(-k)^r
\end{aligned}
\)
For the term free from \(x\),
\(
\frac{10-5 r}{2}=0 \Rightarrow r=2
\)
So, the term free from \(x\) is
\(
\begin{aligned}
& T_{2+1}={ }^{10} C_2(-k)^2 . \\
& \Rightarrow{ }^{10} C_2(-k)^2=405 \\
& \Rightarrow \frac{10 \times 9 \times 8 !}{2 ! \times 8 !}(-k)^2=405 \\
& \Rightarrow 45 k^2=405 \\
& \Rightarrow k^2=9 \quad \therefore k=\pm 3
\end{aligned}
\)
\(
\text { Find the coefficient of } x \text { in the expansion of }\left(1-3 x+7 x^2\right)(1-x)^{16} \text {. }
\)
The given expression is \(\left(1-3 x+7 x^2\right)(1-x)^{16}\).
\(
\begin{aligned}
& =\left(1-3 x+7 x^2\right)\left[{ }^{16} C_0(1)^{16}(-x)^0+{ }^{16} C_1(1)^{15}(-x)+{ }^{16} C_2(1)^{14}(-x)^2+\ldots\right] \\
& =\left(1-3 x+7 x^2\right)\left(1-16 x+120 x^2 \ldots\right)
\end{aligned}
\)
Collecting the term containing \(\mathrm{x}\)
We get \(-16 x-3 x=-19 x\)
Hence, the coefficient of \(x=-19\)
\(
\text { Find the term independent of } x \text { in the expansion of, } (3 x-{\frac{2}{x^2}})^{15} \text {. }
\)
\(
\begin{aligned}
& \therefore \mathrm{T}_{r+1}={ }^{15} C_r(3 x)^{15-r}\left(\frac{-2}{x^2}\right)^r \\
& ={ }^{15} C_r 3^{15-r} x^{15-3 r}(-2)^r
\end{aligned}
\)
For the term independent of \(x\),
\(
15-3 r=0 \Rightarrow r=5
\)
\(\therefore\) The term independent of \(x\) is
\(
\begin{aligned}
& T_{5+1}={ }^{15} C_5 3^{15-5}(-2)^5 \\
& =\frac{15 \times 14 \times 13 \times 12 \times 11 \times 10 !}{5 \times 4 \times 3 \times 2 \times 1 \times 10 !} \cdot 3^{10} \cdot 2^5 \\
& =-3003 \times 3^{10} \times 2^5
\end{aligned}
\)
Find the middle term (terms) in the expansion of \((\frac{x}{a}-\frac{a}{x})^{10}\)
Given Expression (i) \((x / a-a / x)^{10}\)
Here index, \(n=10\) (even). So, there is one middle term which is \((10 / 2+1)\) th term, i.e,6th term.
\(
\begin{aligned}
& \therefore T_6=T_{5+1}={ }^{10} C_5\left(\frac{x}{a}\right)^{10-5}\left(\frac{-a}{x}\right)^5 \\
& =-{ }^{10} C_5\left(\frac{x}{a}\right)^5\left(\frac{a}{x}\right)^5 \\
& =-\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 !}{5 ! \times 5 \times 4 \times 3 \times 2 \times 1}\left(\frac{x}{a}\right)^5\left(\frac{x}{a}\right)^{-5} \\
& =-252
\end{aligned}
\)
Find the middle term (terms) in the expansion of \((3 x-\frac{x^3}{6})^{9}\)
Given Expression (ii) \(\left(3 x-x^3 / 6\right)^9\)
Here index, \(n=9\) (odd)
So, there are two middle terms, which are \(((9+1) / 2)\) th i.e, 5 th term and \(((9+1) / 2\) +1)th i.e, 6th term.
\(
\begin{aligned}
& \therefore T_5=T_{4+1}={ }^9 C_4(3 x)^{9-4}\left(-\frac{x^3}{6}\right)^4 \\
& =\frac{9 \times 8 \times 7 \times 6 \times 5 !}{4 \times 3 \times 2 \times 1 \times 5 !} 3^5 x^5 x^{12} 6^{-4} \\
& =\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \times \frac{3^5}{3^4 \times 2^4} x^{17} \\
& =\frac{189}{8} x^{17}
\end{aligned}
\)
And \(T_6=T_{5+1}={ }^9 C_5(3 x)^{9-5}\left(-\frac{x^3}{6}\right)^5\)
\(
\begin{aligned}
& =-\frac{9 \times 8 \times 7 \times 6 \times 5 !}{5 ! \times 4 \times 3 \times 2 \times 1} \cdot 3^4 \cdot x^4 \cdot x^{15} \cdot 6^{-5} \\
& =-\frac{21}{16} x^{19}
\end{aligned}
\)
\(
\text { Find the coefficient of } x^{15} \text { in the expansion of }\left(x-x^2\right)^{10} \text {. }
\)
The given expression is \(\left(x-x^2\right)^{10}\)
General Term \(\mathrm{T}_{r+1}={ }^n \mathrm{C}_r^{n-r} y^r\)
\(
\begin{aligned}
& ={ }^{10} C_r(x)^{10-r}\left(-x^2\right) r \\
& ={ }^{10} C_r(x)^{10-r}(-1)^r \cdot\left(x^2\right)^r \\
& =(-1)^r \cdot{ }^{10} C_r(x)^{10-r+2 r} \\
& =(-1)^r \cdot{ }^{10} C_r(x)^{10+r}
\end{aligned}
\)
To find the coefficient of \(x^{15}\)
Put \(10+r=15\)
\(
\begin{aligned}
& \Rightarrow r=5 \\
& \therefore \text { Coefficient of } x^{15}=(-1)^5{ }^{10} C_5 \\
& =-{ }^{10} C_5 \\
& =-252
\end{aligned}
\)
Hence, the required coefficient \(=-252\)
Find the coefficient of \(\frac{1}{x^{17}}\) in the expansion of \((x^4-{\frac{1}{x^3}})^{15}\)
The given expression is \(\left(x^4-\frac{1}{x^3}\right)^{15}\)
General Term \(T_{r+1}={ }^n C_r x^{n-r} y^r\)
\(
\begin{aligned}
& ={ }^{15} C_r\left(x^4\right)^{15-r}\left(-\frac{1}{x^3}\right)^r \\
& ={ }^{15} C_r(x)^{60-4 r}(-1)^r \cdot \frac{1}{x^{3 r}} \\
& ={ }^{15} C_r(-1)^r \cdot \frac{1}{x^{3 r-60+4 r}} \\
& ={ }^{15} C_r(-1)^r \cdot \frac{1}{x^{7 r-60}}
\end{aligned}
\)
To find the coefficient of \(\frac{1}{x^{17}}\)
Put \(7 r-60=17\)
\(
\begin{aligned}
& \Rightarrow 7 r=60+17 \\
& \Rightarrow 7 r=77 \\
& \therefore r=11
\end{aligned}
\)
Putting the value of \(r\) in the above expression, we get
\(
\begin{aligned}
& ={ }^{15} C_{11}(-1)^{11} \cdot \frac{1}{x^{17}} \\
& =-{ }^{15} C_4 \cdot \frac{1}{x^{17}} \\
& =-\frac{15 \times 14 \times 13 \times 12}{4 \times 3 \times 2 \times 1} \cdot \frac{1}{x^{17}} \\
& =-1365 \cdot \frac{1}{x^{17}}
\end{aligned}
\)
Hence, the coefficient of \(\frac{1}{x^{17}}=-1365\)
Find the sixth term of the expansion \(\left(y^{\frac{1}{2}}+x^{\frac{1}{3}}\right)^n\), if the binomial coefficient of the third term from the end is 45.
[Hint: Binomial coefficient of third term from the end \(=\) Binomial coefficient of third term from beginning \(={ }^n \mathrm{C}_2\).]
Given expression is \(\left(y^{1 / 2}+x^{1 / 3}\right)^n\)
Binomial coefficient of third term from the end \(=45\)
\(
\begin{aligned}
& \Rightarrow \quad{ }^n C_{n-2}=45 \\
& \Rightarrow \quad{ }^n C_2=45 \\
& \Rightarrow \frac{n(n-1)(n-2) !}{2 !(n-2) !}=45 \\
& \Rightarrow \quad n(n-1)=90 \\
& \Rightarrow \quad n^2-n-90=0 \\
& \Rightarrow(n-10)(n+9)=0 \\
& \Rightarrow \quad n=10[\because n \neq-9]
\end{aligned}
\)
Now, sixth term
\(
\begin{aligned}
& ={ }^{10} C_5\left(y^{1 / 2}\right)^{10-5}\left(x^{1 / 3}\right)^5 \\
& =252 y^{5 / 2} \cdot x^{5 / 3}
\end{aligned}
\)
Find the value of \(r\), if the coefficients of \((2 r+4)^{\text {th }}\) and \((r-2)^{\text {th }}\) terms in the expansion of \((1+x)^{18}\) are equal.
General Term \(T(r+1)={ }^n C_r x^{n-r} y^r\)
For coefficient of \((2 r+4)^{\text {th }}\) term, we have
\(
\begin{aligned}
& \mathrm{T}_{2 r+4}=\mathrm{T}_{2 r+3+1} \\
& ={ }^{18} \mathrm{C}_{2 r+3}(1)^{18-2 r-3} \cdot x^{2 r+3} \\
& \therefore \text { Coefficient of }(2 r+4)^{\text {th }} \text { term }={ }^{18} \mathrm{C}_{2 r+3}
\end{aligned}
\)
Similarly, \(\mathrm{T}_{r-2}=\mathrm{T}_{r-3+1}\)
\(
\begin{aligned}
& ={ }^{18} C_{r-3}(1)^{18-r+3} \cdot x^{r-3} \\
& \therefore \text { Coefficient of }(r-2)^{\text {th }} \text { term }={ }^{18} C_{r-3}
\end{aligned}
\)
As per the condition of the questions,
We have \({ }^{18} C_{2 r+3}={ }^{18} C_{r-3}\)
\(
\begin{aligned}
& \Rightarrow 2 r+3+r-3=18 \\
& \Rightarrow 3 r=18 \\
& \Rightarrow r=6
\end{aligned}
\)
If the coefficient of second, third and fourth terms in the expansion of \((1+x)^{2 n}\) are in A.P. Then \(2 n^2-9 n+7=0\). Is this statement true?
\(
\begin{aligned}
& (1+x)^{2 n}={ }^{2 n} C_0+{ }^{2 n} C_1 x+{ }^{2 n} C_2 x^2+\ldots . .+{ }^{2 n} C_n x^n+\ldots . .+{ }^{2 n} C_{2 n} x^{2 n} \\
& T_2={ }^{2 n} C_1 x, T_3={ }^{2 n} C_2 x^2, T_4={ }^{2 n} C_3 x{ }^3
\end{aligned}
\)
Given, coefficients of \(T_2, T_3\) and \(T_4\) are in A.P.
\(
\begin{aligned}
& \Rightarrow 2 \cdot{ }^{2 n} C_2={ }^{2 n} C_1+{ }^{2 n} C_3 \\
& \Rightarrow \quad 2 \cdot \frac{(2 n) !}{(2 n-2) ! 2 !}=\frac{(2 n) !}{(2 n-1) !}+\frac{(2 n) !}{(2 n-3) ! 3 !} \\
& \Rightarrow(2 n)(2 n-1)=2 n+\frac{2 n(2 n-1)(2 n-2)}{6} \\
& \Rightarrow 6(2 n-1)=6+(2 n-1)(2 n-2) \\
& \Rightarrow 12 n-6=6+4 n^2-6 n+2 \\
& \Rightarrow 4 n^2-18 n+14=0 \\
& \Rightarrow \mathbf2 n^2-9 n+7=0
\end{aligned}
\)
\(
\text { Find the coefficient of } x^4 \text { in the expansion of }\left(1+x+x^2+x^3\right)^{11} \text {. }
\)
Given expression is \(\left(1+x+x^2+x^3\right)^{11}\)
\(
\begin{aligned}
& =\left[(1+x)+x^2(1+x)\right]^{11} \\
& =\left[(1+x)\left(1+x^2\right)\right]^{11} \\
& =(1+x)^{11} \cdot\left(1+x^2\right)^{11}
\end{aligned}
\)
Expanding the above expression, we get
\(
\begin{aligned}
& \left({ }^{11} C_0+{ }^{11} C_1 x+{ }^{11} C_2 x^2+{ }^{11} C_3 x^3+{ }^{11} C_4 x^4+\ldots\right) \cdot\left({ }^{11} C_0+{ }^{11} C_1 x^2+{ }^{11} C_2 x^4+\right) \\
& =\left(1+11 x+55 x^2+165 x^3+330 x^4 \ldots\right) \cdot\left(1+11 x^2+55 x^4+\ldots\right)
\end{aligned}
\)
Collecting the terms containing \(x^4\), we get
\(
(55+605+330) x^4=990 x^4
\)
Hence, the coefficient of \(x^4=990\)
If \(p\) is a real number and if the middle term in the expansion of \((\frac{p}{2}+2)^8\) is 1120 , find \(p\).
Given expression is \((p / 2+2)^8\)
Since index is \(n=8\) there is only one middle term, i.e., \((8 / 2+1)^{\text {th }}=5^{\text {th }}\) term
\(
\begin{aligned}
& T_5=T_{4+1}={ }^8 C_4\left(\frac{p}{2}\right)^{8-4} \cdot 2^4 \\
& \Rightarrow 1120={ }^8 C_4 p^4 \\
& \Rightarrow 1120=\frac{8 \times 7 \times 6 \times 5 \times 4 !}{4 ! \times 4 \times 3 \times 2 \times 1} p^4 \\
& \Rightarrow \quad 1120=7 \times 2 \times 5 \times p^4 \\
& \Rightarrow \quad p^4=\frac{1120}{70} \\
& \Rightarrow p^4=16 \\
& \Rightarrow p^2=4 \\
& \Rightarrow p=\pm 2
\end{aligned}
\)
Is the middle term in the expansion of \(\left(x-\frac{1}{x}\right)^{2 n}\) is
\(
\frac{1 \times 3 \times 5 \times \ldots(2 n-1)}{n!} \times(-2)^n
\)?
Given, expansion is \(\left(x-\frac{1}{x}\right)^{2 n}\). This Binomial expansion has even power. So, this has one middle term.
i.e., \(\left(\frac{2 n}{2}+1\right)\) th term \(=(n+1) t h\) term
\(
\begin{aligned}
& T_{n+1}={ }^{2 n} C_n(x)^{2 n-n}\left(-\frac{1}{x}\right)^n={ }^{2 n} C_n x^n(-1)^n x^{-n} \\
& ={ }^{2 n} C_n(-1)^n=(-1)^n \frac{(2 n) !}{n ! n !}=\frac{1.2 \cdot 3 \cdot 4 \cdot 5 \ldots .(2 n-1)(2 n)}{n ! n !}(-1)^n \\
& =\frac{1.3 \cdot 5 \ldots(2 n-1) \cdot 2 \cdot 4 \cdot 6 \ldots(2 n)}{12.3 \ldots n(n !)}(-1)^n \\
& =\frac{1.3 .5 \ldots(2 n-1) \cdot 2^n(1.2 \cdot 3 \ldots n)(-1)^n}{(1.2 .3 \ldots n)(n !)} \\
& =\frac{[1.3 .5 \ldots(2 n-1)]}{n !}(-2)^n
\end{aligned}
\)
Find \(n\) in the binomial \((\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}})^{n} \quad\) if the ratio of \(7^{\text {th }}\) term from the beginning to the \(7^{\text {th }}\) term from the end is \(\frac{1}{6}\).
In the binomail expansion of \(\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^n[(n+1)-7+1]^{\text {th }}\) i.e., \((n-5)^{\text {th }}\) term from the beginning is the \(7^{\text {th }}\) term from the end.
Now,
\(
T_7={ }^n C_6(\sqrt[3]{2})^{n-6}\left(\frac{1}{\sqrt[3]{3}}\right)^6={ }^n C_6 \times 2^{\frac{n}{3}}-2 \times \frac{1}{3^2}
\)
And,
\(
T_{n-5}={ }^n C_{n-6}(\sqrt[3]{2})^6\left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}={ }^n C_6 \times 2^2 \times \frac{1}{3^{\frac{n}{3}}-2}
\)
It is given that,
\(
\begin{aligned}
& \frac{T_7}{T_{n-5}}=\frac{1}{6} \\
& \Rightarrow \frac{{ }^n C_6 \times 2^{\frac{n}{3}}-2 \times \frac{1}{3^2}}{{ }^n C_6 \times 2^2 \times \frac{1}{3^{\frac{n}{3}}-2}}=\frac{1}{6} \\
& \Rightarrow 2^{\frac{n}{3}}-2-2 \times 3^{\frac{n}{3}}-2-2=\frac{1}{6} \\
& \Rightarrow\left(\frac{1}{6}\right)^{4-\frac{n}{3}}=\frac{1}{6} \\
& \Rightarrow 4-\frac{n}{3}=1 \\
& \Rightarrow n=9
\end{aligned}
\)
Hence, the value of \(n\) is 9 .
\(\text { In the expansion of }(x+a)^n \text { if the sum of odd terms is denoted by } \mathrm{O} \text { and the sum of }\) even term by \(E\). Then
(i) \(\mathrm{O}^2-\mathrm{E}^2=\left(x^2-a^2\right)^n\)
(ii) \(4 \mathrm{OE}=(x+a)^{2 n}-(x-a)^{2 n}\)
Is this statement true?
We have \((x+a)^n\)
\(
\begin{aligned}
={ }^n C_0 x^n+{ }^n C_1 x^{n-1} a^1+{ }^n C_2 x^{n-2} a^2 \\
+{ }^n C_3 x^{n-3} a^3+\ldots+{ }^n C_n a^n
\end{aligned}
\)
Sum of odd terms,
\(
O={ }^n C_0 x^n+{ }^n C_2 x^{n-2} a^2+\ldots
\)
And sum of even terms,
\(
\begin{gathered}
E={ }^n C_1 x^{n-1} a+{ }^n C_3 x^{n-3} a^3+\ldots \\
\quad \text { Since }(x+a)^n=O+E \cdots \text { (i) } \\
(x-a)^n=O-E \ldots \text { (ii) } \\
\therefore(O+E)(O-E)=(x+a)^n(x-a)^n \\
\Rightarrow O^2-E^2=\left(x^2-a^2\right)^n
\end{gathered}
\)
(ii)
\(
\begin{aligned}
4 O E & =(O+E)^2-(O-E)^2 \\
& =\left[(x+a)^n\right]^2-\left[(x-a)^n\right]^2 \\
& =(x+a)^{2 n}-(x-a)^{2 n}
\end{aligned}
\)
If \(x^p\) occurs in the expansion of \(\left(x^2+1 / x\right)^{2 n}\), then its coefficient is
\(
\frac{(2 n) !}{\left[\frac{1}{3}(4 n-p)\right] !\left[\frac{1}{3}(2 n+p)\right] !}
\). Is this true?
The general term in the expansion of \(\left(x^2+\frac{1}{x}\right)^{2 n}\) is given by
\(
\begin{aligned}
& T_{r+1}=\cdot{ }^{2 n} C_r \times\left(x^2\right)^{(2 n-r)} \times\left(\frac{1}{x}\right)^r \\
& \Rightarrow T_{r+1}=.{ }^{2 n} C_r \times x^{(4 n-3 r)} . \quad \ldots \text { (i) }
\end{aligned}
\)
This term contains \(x^p\) only when \(4 n-3 r=p\).
And, \(4 n-3 r=p \Rightarrow \frac{(4 n-p)}{3}\).
Putting \(4 n-3 r=p\) in (i), we get
coefficent of \(x^p={ }^{2 n} C_r\), where \(r=\frac{(4 n-p)}{3}\)
\(\frac{(2 n) !}{(r !) \times(2 n-r) !}=\frac{(2 n)}{\left\{\left(\frac{4 n-p}{3}\right) !\right\} \times\left\{\left[2 n-\frac{(4 n-p)}{3}\right] !\right\}}\)
\(\frac{(2 n) !}{\left\{\left(\frac{4 n-p}{3}\right) !\right\} \times\left\{\left(\frac{2 n+p}{3}\right) !\right\}}\)
Hence, the coefficent of \(x^p\) in the expansion of \(\left(x^2+\frac{1}{x}\right)^{2 n}\) is
\(
\frac{(2 n) !}{\left\{\frac{(4 n-p)}{3} !\right\} \times\left\{\left(\frac{2 n+p}{3}\right) !\right\}}
\)
\(
\text { Find the term independent of } x \text { in the expansion of }\left(1+x+2 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9
\)
In the expansion of \(E=\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9\), we have
\(
\begin{aligned}
& T_{r+1}=(-1)^r \cdot{ }^9 C_r \cdot\left(\frac{3}{2} x^2\right)(9-r)\left(\frac{1}{3 x}\right)^r \\
& \Rightarrow T_{r+1}=(-1)^r \cdot{ }^9 C_r \cdot \frac{3(9-2 r)}{2^{(9-r)}} \cdot x^{(18-3 r)} . \\
& \left(1+x+2 x^3\right)\left[\left(a_0 \times \frac{1}{x^3}+a_1 \times \frac{1}{x}+a^2\right) \text { from E }\right] \\
& =\left(1+x+2 x^3\right)\left[\left\{(-1)^7 \cdot{ }^9 C_7 \cdot \frac{3^{-5}}{2^2} \times \frac{1}{x^3}\right\}+\left\{(-1)^6 \cdot{ }^9 C_6 \cdot \frac{3^{-3}}{2^3} \times x^0\right\}\right] \\
& {[\quad x=-1 \Rightarrow 18-3 r=-1 \Rightarrow \quad \mathrm{r} \text { is faction }} \\
& 18-3 r=0 \Rightarrow r=6 \text { and } 18-3 r=-3 \Rightarrow r=7] \\
& =\left(1+x+2 x^3\right)\left[\frac{-1}{27 x^3}+\frac{7}{18}\right] \\
& \therefore \quad \text { required term }\left(\frac{-2}{27}+\frac{7}{18}\right)=\frac{17}{54} .
\end{aligned}
\)
The total number of terms in the expansion of \((x+a)^{100}+(x-a)^{100}\) after simplification is
Given expression is
\(
(x+a)^{100}+(x-a)^{100}
\)
Here, \(n=100\) which is even.
\(\therefore\) Total number of terms \(=\frac{n}{2}+1\) \(=\frac{100}{2}+1=51\)
Given the integers \(r>1, n>2\), and coefficients of \((3 r)^{\text {th }}\) and \((r+2)^{\text {nd }}\) terms in the binomial expansion of \((1+x)^{2 n}\) are equal, then
Given that \(r>1\) and \(n>2\)
Then \(\mathrm{T}_{3 r}=\mathrm{T}_{3 r-1+1}\)
\(
={ }^{2 n} C_{3 r-1} \cdot x^{3 r-1}
\)
And \(T_{-}(r+2)=T_{r+1+1}\)
\(
={ }^{2 n} C_{r+1} x^{r+1}
\)
We have \({ }^{2 n} C_{3 r-1}={ }^{2 n} C_{r+1}\)
\(
\begin{aligned}
& \Rightarrow 3 \mathrm{r}-1+\mathrm{r}+1=2 \mathrm{n} \quad \ldots \cdot\left[\because{ }^n C_p={ }^n C_q \Rightarrow n=p+q\right] \\
& \Rightarrow 4 \mathrm{r}=2 \mathrm{n} \\
& \mathrm{n}=2 \mathrm{r}
\end{aligned}
\)
The two successive terms in the expansion of \((1+x)^{24}\) whose coefficients are in the ratio \(1: 4\) are
\(\left[\right.\) Hint: \(\left.\frac{{ }^{24} \mathrm{C}_r}{{ }^{24} \mathrm{C}_{r+1}}=\frac{1}{4} \quad \frac{r+1}{24-r} \quad \frac{1}{4} \Rightarrow 4 r+4=24-4 \Rightarrow r=4\right]\)
Let the two successive terms in the exansion of \((1+x)^{24}\) be \((r+1)\) th and \((r+2)\) th terms.
Now, \(T_{r+1}={ }^{24} C_r x^r\) and
\(
T_{r+2}={ }^{24} C_{r+1} x^{r+1}
\)
Given that, \(\frac{{ }^{24} C_r}{{ }^{24} C_{r+1}}=\frac{1}{4}\)
\(
\begin{aligned}
& \frac{(24) !}{r !(24-r) !} \\
\Rightarrow & \frac{(24) !}{(r+1) !(24-r-1) !}=\frac{1}{4} \\
\Rightarrow & \frac{(r+1) r !(23-r) !}{r !(24-r)(23-r) !}=\frac{1}{4} \\
\Rightarrow & \frac{r+1}{24-r}=\frac{1}{4} \\
\Rightarrow & 4 r+4=24-r \\
\Rightarrow & r=4 \\
\therefore & T_{4+1}=T_5 \text { and } \\
& T_{4+2}=T_6
\end{aligned}
\)
Hence, \(5^{\text {th }}\) and \(6^{\text {th }}\) terms.
The coefficient of \(x^n\) in the expansion of \((1+x)^{2 n}\) and \((1+x)^{2 n-1}\) are in the ratio.
\(\left[\right.\) Hint : \({ }^{2 n} \mathrm{C}_n:{ }^{2 n-1} \mathrm{C}_n]\)
General Term \(\mathrm{T}_{r+1}={ }^{\mathrm{n}} \mathrm{C}_r x^{n-r} y^r\)
In the expansion of \((1+x)^{2 n}\)
We get \(\mathrm{T}_{r+1}={ }^{2 n} \mathrm{C}_r x^r\)
To get the coefficient of \(x^n\)
Put \(r=n\)
\(\therefore\) Coefficient of \(x^n={ }^{2 n} C_n\)
In the expansion of \((1+x)^{2 n-1}\)
We get \(\mathrm{T}_{r+1}={ }^{2 n-1} C_r x^r\)
\(\therefore\) Coefficient of \(x^n={ }^{2 n-1} C_{n-1}\)
The required ratio is \(\frac{{ }^{2 n} C_n}{{ }^{2 n-1} C_{n-1}}\)
\(
\begin{aligned}
& =\frac{\frac{2 n !}{n !(n !)}}{\frac{(2 n-1) !}{(n-1) !(2 n-1-n+1) !}} \\
& =\frac{\frac{22 n !}{n ! n !}}{\frac{(2 n-1) !}{(n-1)(n !)}} \\
& =\frac{2 n !}{n ! n !} \times \frac{(n-1) ! \cdot n !}{(2 n-1) !} \\
& =\frac{2 n(2 n-1) !}{n ! n(n-1) !} \times \frac{(n-1) ! \cdot n !}{(2 n-1) !} \\
& =\frac{2}{1} \\
& =2: 1
\end{aligned}
\)
If the coefficients of \(2^{\text {nd }}, 3^{\text {rd }}\) and the \(4^{\text {th }}\) terms in the expansion of \((1+x)^n\) are in A.P., then value of \(n\) is
\(
\text { [Hint: } 2{ }^n \mathrm{C}_2={ }^n \mathrm{C}_1+{ }^n \mathrm{C}_3 \Rightarrow n^2-9 n+14=0 \Rightarrow n=2 \text { or } 7
\)
\(
\begin{aligned}
(1+x)^n= & { }^n C_0+{ }^n C_1 x+{ }^n C_2 x^2 \\
& +{ }^n C_3 x^3+\ldots+{ }^n C_n x^n
\end{aligned}
\)
So coefficients of \(2 n d\), 3rd and 4th terms are \({ }^n C_1,{ }^n C_2\), and \({ }^n C_3\) respectively.
Given that, \({ }^n C_1,{ }^n C_2\), and \({ }^n C_3\) are in A.P.
\(
\begin{aligned}
& \therefore 2{ }^n C_2={ }^n C_1+{ }^n C_3 \\
& \Rightarrow 2\left[\frac{n !}{(n-2) ! 2 !}\right]=n+\frac{n !}{3 !(n-3) !} \\
& \Rightarrow 2\left[\frac{n(n-1)}{2 !}\right]=n+\frac{n(n-1)(n-2)}{3 !} \\
& \Rightarrow(n-1)=1+\frac{(n-1)(n-2)}{6} \\
& \Rightarrow \quad 6 n-6=6+n^2-3 n+2 \\
& \Rightarrow n^2-9 n+14=0 \\
& \Rightarrow \quad(n-7)(n-2)=0 \\
& \therefore n=2 \text { or } n=7
\end{aligned}
\)
Since \(n=2\) is not possible, so \(n=7\)
If \(\mathrm{A}\) and \(\mathrm{B}\) are coefficient of \(x^n\) in the expansions of \((1+x)^{2 n}\) and \((1+x)^{2 n-1}\) respectively, then \(\frac{\mathrm{A}}{\mathrm{B}}\) equals
The coefficient of \(x^n\) in the expansion of \((1+x)^{2 n}\) is \({ }^{2 n} C_n\)
\(
A={ }^{2 n} C_n
\)
The coefficient of \(x n\) in the expansion of \((1+x)^{2 n-1}\) is \({ }^{2 n-1} C_n\)
\(
\begin{aligned}
& \mathrm{B}={ }^{2 n-1} \mathrm{C}_n \\
& \therefore \frac{A}{B}=\frac{{ }^{2 n} C_n}{{ }^{2 n-1} C_n}=\frac{2}{1}=2
\end{aligned}
\)
If the middle term of \((\frac{1}{x}+x \sin x)^{10} \quad\) is equal to \(7 \frac{7}{8}\), then value of \(x\) is
Given expression is \(\left(\frac{1}{x}+x \sin x\right)^{10}\)
Number of terms \(=10+1=11\) odd
\(\therefore\) Middle term \(=\frac{11+1}{2}\) th term \(=6^{\text {th }}\) term
\(\mathrm{T}_6=\mathrm{T}_{5+1}\)
\(={ }^{10} C_5\left(\frac{1}{x}\right)^{10-5}(x \sin x)^5\)
\(\therefore{ }^{10} C_5\left(\frac{1}{x}\right)^5 \cdot x^5 \cdot \sin ^5 x=7 \frac{7}{8}\)
\(\Rightarrow{ }^{10} C_5 \cdot \sin ^5 x=\frac{63}{8}\)
\(\Rightarrow \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot \sin ^5 x=\frac{63}{8}\)
\(\Rightarrow 252 \cdot \sin ^5 x=\frac{63}{8}\)
\(\Rightarrow \sin ^5 x=\frac{63}{8 \times 252}\)
\(\Rightarrow \sin ^5 x=\frac{1}{32}\)
\(\Rightarrow \sin ^5 x=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow \sin x=\frac{1}{2}\)
\(
\begin{aligned}
& \Rightarrow \sin \mathrm{x}=\sin \frac{\pi}{6} \\
& \therefore \mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \cdot \frac{\pi}{6}
\end{aligned}
\)
Alternate:
[Hint: \(\mathrm{T}_6={ }^{10} \mathrm{C}_5 \frac{1}{x^5} \cdot x^5 \sin ^5 x=\frac{63}{8} \Rightarrow \sin ^5 x=\frac{1}{2^5} \quad \sin \quad \frac{1}{2}\)
\(
\left.\Rightarrow x=n \pi+(-1)^n \frac{\pi}{6}\right]
\)
\(
\text { The largest coefficient in the expansion of }(1+x)^{30} \text { is }………
\)
Here \(n=30\) which is even
\(\therefore\) The largest coefficient in \((1+\mathrm{x})^n={ }^n C_{\frac{n}{2}}\)
So, the largest coefficient in \((1+x)^{30}={ }^{30} C_{15}\)
Hence, the value of the filler is \({ }^{30} C_{15}\).
\(
\text { The number of terms in the expansion of }(x+y+z)^n …….
\)
The expression \((x+y+z)^n\) can be written \(a[x+(y+z)]^n\)
\(
\begin{aligned}
& \therefore[x+y+z]^n={ }^n C_0 x^n(y+z)^0+{ }^n C 1(x) n-1(y+z)+{ }^n C_2(x){ }^{n-2}(y+z)^2+\ldots+{ }^n C n(y+z)^n \\
& \therefore \text { Number of terms } 1+2+3+4+\ldots(n+1) \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
\)
\(
\text { In the expansion of } (x^2-{\frac{1}{x^2}})^{16} \text {, the value of constant term is } …….
\)
Given \(\left(x^2-1 / x^2\right)^{16}\)
\(
\begin{aligned}
T_{r+1} & ={ }^{16} C_r\left(x^2\right)^{16-r}\left(-\frac{1}{x^2}\right)^r \\
& ={ }^{16} C_r x^{32-4 r}(-1)^r
\end{aligned}
\)
For constant term,
\(
\begin{aligned}
& 32-4 r=0 \Rightarrow r=8 \\
& \therefore T_{8+1}={ }^{16} C_8
\end{aligned}
\)
If the seventh terms from the beginning and the end in the expansion of \((\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}})^{n}\) are equal, then \(n\) equals ……..
The given expansion is \(\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^n\)
\(
\begin{aligned}
& \therefore \mathrm{T}_7=\mathrm{T}_{6+1} \\
& ={ }^n \mathrm{C}_6\left(2^{\frac{1}{3}}\right)^{n-6} \cdot \frac{1}{\left(3^{\frac{1}{3}}\right)^6} \\
& ={ }^n \mathrm{C}_6(2)^{\frac{n-6}{3}} \cdot \frac{1}{(3)^2}
\end{aligned}
\)
Now the \(T_7\) from the end \(=T_7\) from the beginning in \(\left(\frac{1}{\sqrt[3]{2}}+\sqrt[3]{2}\right)^n\).
\(
\begin{aligned}
& \therefore \mathrm{T}_7=\mathrm{T}_{6+1} \\
& ={ }^n \mathrm{C}_6\left(\frac{1}{3^{\frac{1}{3}}}\right)^{n-6} \cdot\left(2^{\frac{1}{3}}\right)^6
\end{aligned}
\)
We get \({ }^n C_6(2)^{\frac{n-6}{3}} \cdot\left(\frac{1}{3^2}\right)={ }^n C_6 \frac{1}{\frac{n-6}{3}} \cdot(2)^2\)
\(
\begin{aligned}
& \Rightarrow(2)^{\frac{n-6}{3}} \cdot(3)^{-2}=(3)^{-\left(\frac{n-5}{3}\right)} \cdot(2)^2 \\
& \Rightarrow(2)^{\frac{n-6}{3}} 2 \cdot(3)^{-2+\frac{n-6}{3}}=1 \\
& \Rightarrow 2^{\frac{n-12}{3}} \cdot(3)^{\frac{n-12}{3}}=1 \\
& \Rightarrow(6)^{\frac{n-12}{3}}=(6)^0
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \frac{n-12}{3}=0 \\
& \Rightarrow \mathrm{n}=12
\end{aligned}
\)
The coefficient of \(a^{-6} b^4\) in the expansion of \((\frac{1}{a}-\frac{2 b}{3})^{10}\) is
The given expansion is \(\left(\frac{1}{a}-\frac{2 b}{3}\right)^{10}\)
From \(a^{-6} b^4\)
We can take \(r=4\)
\(
\begin{aligned}
& \therefore T_5=T_{4+1} \\
& ={ }^{10} C_4\left(\frac{1}{a}\right)^{10-4}\left(-\frac{2 b}{3}\right)^4 \\
& ={ }^{10} C_4\left(\frac{1}{a}\right)^6\left(\frac{-2}{3}\right)^4 \cdot b^4 \\
& =\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} \times \frac{16}{81} \cdot a^{-6} b^4 \\
& =210 \times \frac{16}{81} a^{-6} b^4 \\
& =\frac{1120}{27} a^{-6} b^4
\end{aligned}
\)
Alternate:
\(
\left[\text { Hint : } \quad \mathrm{T}_5={ }^{10} \mathrm{C}_4 \frac{1}{a}^b \frac{-2 b}{3}=\frac{1120}{27} a^{-6} b^4\right]
\)
\(
\text { Middle term in the expansion of }\left(a^3+b a\right)^{28} \text { is }………
\)
Number of term in the expansion \(\left(a^3+b a\right)^{28}\)
\(
\begin{aligned}
& =28+1 \\
& =29 \text { (odd) } \\
& \therefore \text { Middle term }=\frac{29+1}{2}=15^{\text {th }} \text { term } \\
& \therefore T_{15}=T_{14+1} \\
& ={ }^{28} C_{14}\left(a^3\right)^{28-14} \cdot(b a)^{14} \\
& ={ }^{28} C_{14}(a)^{42} \cdot b^{14} \cdot a^{14} \\
& ={ }^{28} C_{14} a^{56} b^{14}
\end{aligned}
\)
\(
\text { The ratio of the coefficients of } x^p \text { and } x^q \text { in the expansion of }(1+x)^{p+q} \text { is }…….
\)
Coefficient of \(x^p\) in the expansion of \((1+x)^{p+q}\) is \({ }^{p+q} C_p\).
Coefficient of \(x^q\) in the expansion of \((1+x)^{p+q}\) is \({ }^{p+q} C_q\)
Now,
\(
\frac{{ }^{p+q} C_p}{p+q C_q}=\frac{\frac{(p+q) !}{p ! q !}}{\frac{(p+q) !}{q ! p !}}=1
\)
Hence, the ratio of the coefficients of \(x^p\) and \(x^q\) in the expansion of \((1+x)^{p+q}\) is \(1: 1\).
The position of the term independent of \(x\) in the expansion of \((\sqrt{\frac{x}{3}}+\frac{3}{2 x^2})^{10}\) is ……
Given: \(\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^2}\right)^{10}\)
Thus, \(T_{r+1}={ }^{10} C_r\left(\sqrt{\frac{x}{3}}\right)^{10-r}\left(\frac{3}{2 x^2}\right)^r\)
Now, for constant term,
\(10-5 r=0\)
Thus, \(r=2\)
Therefore, the third term is independent of \(x\).
\(
\text { If } 25^{15} \text { is divided by } 13 \text {, the reminder is }……..
\)
Given \(25^{15}=(26-1)^{15}\)
\(
\begin{aligned}
& ={ }^{15} C_0 26^{15}-{ }^{15} C_1 26^{14}+\ldots+{ }^{15} C_{14} 26-{ }^{15} C_{15} \\
& =\left({ }^{15} C_0 26^{15}-{ }^{15} C_1 26^{14}+\ldots+{ }^{15} C_{14} 26-13\right)+12
\end{aligned}
\)
Clearly when \(25^{15}\) is divided by 13 , then remainder will be 12 .
State if this statement is True or False
\(
\text { The sum of the series }{ }_{r=0}^{{ }^{10}}{ }^{20} \mathrm{C}_r \text { is } 2^{19}+\frac{{ }^{20} \mathrm{C}_{10}}{2}
\)
\(
\begin{aligned}
& \sum_{r=0}^{10}{ }^{20} C_r \\
& \left({ }^{20} C_0+{ }^{20} C_1+\ldots+{ }^{20} C_{10}\right) \\
& =\frac{1}{2}\left\{2\left({ }^{20} C_0+{ }^{20} C_1+\ldots+{ }^{20} C_{10}\right)\right\} \\
& =\frac{2}{2}\left\{\left({ }^{20} C_0+{ }^{20} C_1+\ldots+{ }^{20} C_{10}\right)+\left({ }^{20} C_{20}+{ }^{20} C_{19}+\ldots+{ }^{20} C_{10}\right)\right\} \\
& =\frac{1}{2}\left\{\left({ }^{20} C_0+{ }^{20} C_1+\ldots+{ }^{20} C_{10}+{ }^{20} C_{11}+\ldots+{ }^{20} C_{20}\right)+{ }^{20} C_{10}\right\} \\
& =\frac{1}{2}\left\{22^{20}+{ }^{20} C_{10}\right\}=22^{19}+\frac{1}{2}{ }^{20} C_{10}
\end{aligned}
\)
State if the statement is True or False.
\(
\text { The expression } 7^9+9^7 \text { is divisible by } 64
\)
\(
\begin{aligned}
& 7^9+9^7=(1+8)^7-(1-8)^9 \\
& =\left[{ }^7 C_0+{ }^7 C_1 \cdot 8+{ }^7 C_2(8)^2+{ }^7 C_3(8)^3+\ldots+{ }^7 C_7(8)^7\right]-\left[{ }^9 C_0-{ }^9 C_1 8+{ }^9 C_2(8)^2-{ }^9 C_3(8)^3+\ldots{ }^9 C_9(8)^9\right] \\
& =(7 \times 8+9 \times 8)+\left(21 \times 8^2-36 \times 8^2\right)+\ldots \\
& =(56+72)+(21-36) 8^2+\ldots \\
& =128+64(21-36)+\ldots \\
& =64[2+(21-36)+\ldots]
\end{aligned}
\)
Which is divisible by 64
State if the statement is True or False.
\(
\text { The number of terms in the expansion of }\left[\left(2 x+y^3\right)^4\right]^7 \text { is } 8
\)
Given expression is \(\left[\left(2 x+y^3\right)^4\right]^7=(2 x+3 y)^{28}\)
So, the number of terms \(=28+1=29\)
State if the statement is True or False.
The sum of coefficients of the two middle terms in the expansion of \((1+x)^{2 n-1}\) is equal to \({ }^{2 n-1} C_n\).
\(
(1+x)^{2 n-1}
\)
Here, \(\mathrm{n}\) is an odd number.
Therefore, the middle terms are \(\left(\frac{2 n-1+1}{2}\right)\) th and \(\left(\frac{2 n-1+1}{2}+1\right)\) th, i.e., \(n\)th and \((n+1)\) th terms.
Now, we have
\(
T_n=T_{n-1+1}={ }^{2 n-1} C_{n-1}(x)^{n-1}
\)
And,
\(
T_{n+1}=T_{n+1}={ }^{2 n-1} C_n(x)^n
\)
\(\therefore\) the coefficients of two middle terms are \({ }^{2 n-1} C_{n-1}\) and \({ }^{2 n-1} C_n\).
Now,
\(
{ }^{2 n-1} C_{n-1}+{ }^{2 n-1} C_n={ }^{2 n} C_n
\)
Hence, the sum of the coefficients of two middle terms in the binomial expansion of \((1+x)^{2 n-1}\) is \(^{2 n} C_n\).
State if the statement is True or False.
\(
\text { The last two digits of the numbers } 3^{400} \text { are } 01 \text {. }
\)
Given that \(3^{400}=(9)^{200}=(10-1)^{200}\)
\(
\begin{aligned}
& \therefore(10-1)^{200}={ }^{200} C_0(10)^{200}-{ }^{200} C_1(10)^{199}+\ldots-{ }^{200} C_{199}(10)^1+{ }^{200} C_{200}(1)^{200} \\
& =10^{200}-200 \times 10^{199}+\ldots-10 \times 200+1
\end{aligned}
\)
So, it is clear that last two digits are 01 .
State if the statement is True or False.
If the expansion of \((x-\frac{1}{x^2})^{2n}\) contains a term independent of \(x\), then \(\)n\(\) is a multiple of 2.
Given Binomial expansion is \(\left(x-\frac{1}{x^2}\right)^{2 n}\)
Let \(T_{r+1}\) term is independent of \(x\)
Then, \(T_{r+1}={ }^{2 n} C_r(x)^{2 n-r}\left(-\frac{1}{x^2}\right)^r\) \(={ }^{2 n} C_r x^{2 n-r}(-1)^r x^{-2 r}={ }^{2 n} C_r x^{2 n-3 r}(-1)^r\)
For independent of \(x\)
\(
\begin{aligned}
& 2 n-3 r=0 \\
& \therefore r=\frac{2 n}{3}
\end{aligned}
\)
Which is not a integer
So, the given expansion is not possible
State if the statement is True or False.
Number of terms in the expansion of \((a+b)^n\) where \(n \in \mathbf{N}\) is one less than the power \(n\).
The given statement is False.
In the given expression \((a+b)^n\), the no. of terms is just 1 more than \(n\), i.e., \(n+1\).
You cannot copy content of this page