Overview
Binomial theorem
If \(a\) and \(b\) are real numbers and \(n\) is a positive integer, then \((a+b)^n={ }^n C _0 a^n+{ }^n C _1 a^{n-1} b^1+{ }^n C _2 a^{n-2} b^2+\ldots\)
\(
\ldots+{ }^n C _r a^{n-r} b^r+\ldots+{ }^n C _n b^n \text {, where }{ }^n C _r=\frac{{n!}}{{r!} {n-r}!} \text { for } 0 \leq r \leq n
\)
The general term or \((r+1)^{ dh }\) term in the expansion is given by
\(
T _{r+1}={ }^n C _r a^{n-r} b^r
\)
Some important observations
Each coefficient of any row is obtained by adding two coefficients in the preceding row, one on the immediate left and the other on the immediate right and each row is bounded by 1 on both sides.
The \((r+1)^{ \text {th} }\) term or general term is given by
\(
T _{r+1}={ }^n C _r a^{n-r} b^r
\)
Some particular cases
If \(n\) is a positive integer, then
\(
\begin{aligned}
& (a+b)^n={ }^n C _0 a^n b^0+{ }^n C _1 a^n b^1+{ }^n C _2 a^{n-2} b^2+\ldots+{ }^n C _r a^{n-r} b^r+\ldots+ { }^n C _n a^0 b^n \dots(1)
\end{aligned}
\)
In particular
The \(p^{\text {th }}\) term from the end
The \(p^{\text {th }}\) term from the end in the expansion of \((a+b)^n\) is \((n-p+2)^{\text {th }}\) term from the beginning.
Middle terms
The middle term depends upon the value of \(n\).
Binomial coefficient
In the Binomial expression, we have
\(
(a+b)^n={ }^n C _0 a^n+{ }^n C _1 a^{n-1} b+{ }^n C _2 a^{n-2} b^2+\ldots+{ }^n C _n b^n \dots(1)
\)
The coefficients \({ }^n C _0,{ }^n C _1,{ }^n C _2, \ldots,{ }^n C _n\) are known as binomial or combinatorial coefficients.
Putting \(a=b=1\) in (1), we get
\(
{ }^n C _0+{ }^n C _1+{ }^n C _2+\ldots+{ }^n C _n=2^n
\)
Thus the sum of all the binomial coefficients is equal to \(2^n\).
Again, putting \(a=1\) and \(b=-1\) in (1), we get
\(
{ }^n C _0+{ }^n C _2+{ }^n C _4+\ldots={ }^n C _1+{ }^n C _3+{ }^n C _5+\ldots
\)
Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to \(\frac{2^n}{2}=2^{n-1}\).
\(
{ }^n C _0+{ }^n C _2+{ }^n C _4+\ldots={ }^n C _1+{ }^n C _3+{ }^n C _5+\ldots=2^{n-1}
\)
0 of 209 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 209 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
If \(\{p\}\) denotes the fractional part of the number \(p\), then \(\left\{\frac{3^{200}}{8}\right\}\), is equal to : [Main Sep. 06, 2020 (I)]
(d)
\(
\begin{aligned}
& \frac{3^{200}}{8}=\frac{1}{8}\left(9^{100}\right) \\
& =\frac{1}{8}(1+8)^{100}=\frac{1}{8}\left[1+n \cdot 8+\frac{n(n+1)}{2} \cdot 8^2+\ldots\right] \\
& =\frac{1}{8}+\text { Integer } \\
& \therefore\left\{\frac{3^{200}}{8}\right\}=\left\{\frac{1}{8}+\text { integer }\right\}=\frac{1}{8}
\end{aligned}
\)
If \(\alpha\) and \(\beta\) be the coefficients of \(x^4\) and \(x^2\) respectively in the expansion of \(\left(x+\sqrt{x^2-1}\right)^6+\left(x-\sqrt{x^2-1}\right)^6\), then: [Main Jan. 8, 2020 (II)]
\(
(x+a)^n+(x-a)^n=2\left(T_1+T_3+T_5+\ldots . .\right)
\)
\(
\begin{aligned}
& \left(\mathrm{x}+\sqrt{\mathrm{x}^2-1}\right)^6+\left(\mathrm{x}-\sqrt{\mathrm{x}^2-1}\right)^6 \\
& =2\left[T_1+T_3+T_5+T_7\right] \\
& =2\left[{ }^6 \mathrm{C}_0 \mathrm{x}^6+{ }^6 \mathrm{C}_2 \mathrm{x}^4\left(\mathrm{x}^2-1\right)+{ }^6 \mathrm{C}_4 \mathrm{x}^2\left(\mathrm{x}^2-1\right)^2+{ }^6 \mathrm{C}_6\left(\mathrm{x}^2-1\right)^3\right] \\
& =2\left[\mathrm{x}^6+15\left(\mathrm{x}^6-\mathrm{x}^4\right)+15 \mathrm{x}^2\left(\mathrm{x}^4-2 \mathrm{x}^2+1\right)+\left(-1+3 \mathrm{x}^2-3 \mathrm{x}^2+\mathrm{x}^6\right)\right] \\
& =2\left[32 \mathrm{x}^6-48 \mathrm{x}^4+18 \mathrm{x}^2-1\right] \\
& =64 \mathrm{x}^6-96 \mathrm{x}^4+36 \mathrm{x}^2-2 \\
& \alpha=-96 \\
& \beta=36 \\
& \therefore \alpha-\beta=-96-36 \\
& \quad=-132
\end{aligned}
\)
The smallest natural number \(n\), such that the coefficient of \(x\) in the expansion of \(\left(x^2+\frac{1}{x^3}\right)^n\) is \({ }^n \mathrm{C}_{23}\), is : [Main April 10, 2019 (II)]
Given,
\(\left(x^2+\frac{1}{x^3}\right)^n\), its \((r+1)^{\text {th }}\) term, is
\(
\begin{aligned}
T_{r+1} & ={ }^n C_r x^{2 n-2 r} \cdot x^{-3 r} \\
& ={ }^n C_r x^{2 n-5 r}
\end{aligned}
\)
\(
\begin{aligned}
& \therefore 2 n-5 r=1 \\
& \Rightarrow r=\frac{2 n-1}{5}
\end{aligned}
\)
\(
\begin{aligned}
& \therefore \text { Coeff. of } x={ }^n C_{\left(\frac{2 n-1}{5}\right)}={ }^n C_{23} \\
& \therefore \frac{2 n-1}{5}=23 \text { or } n-\left(\frac{2 n-1}{5}\right)=23 \\
& \Rightarrow n=58 \text { or } n=38
\end{aligned}
\)
Minimum value is \(n=38\)
If the fourth term in the Binomial expansion of \(\left(\frac{2}{x}+x^{\log _8 x}\right)^6(\mathrm{x}>0)\) is \(20 \times 8^7\), then a value of \(\mathrm{x}\) is: [Main April 9, 2019 (I)]
\(
\begin{aligned}
& \left(\frac{2}{x}+x^{\log _8 x}\right)^6(x>0) \\
& \Rightarrow T_4=20 \times 8^7 \\
& \Rightarrow{ }^6 C_3\left(\frac{2}{x}\right)^3\left(x^{\log _8 x}\right)^3=20 \times 8^7 \\
& \Rightarrow \frac{160}{x^3} x^{3 \log _8 x}=20 \times 8^7 \\
& \Rightarrow x^{3 \log _8 x-3}=8^6 \\
& \Rightarrow x^{\log _2 x-3}=8^6=2^{18} \\
& \Rightarrow \log _2\left(x^{\log _2 x-3}\right)=\log _2 2^{18} \\
& \Rightarrow\left(\log _2 x-3\right)\left(\log _2 x\right)=18 \\
& \operatorname{Let}_{\log _2 x} x=t \\
& \Rightarrow t^2-3 t-18=0 \\
& \Rightarrow t=6,-3 \\
& \Rightarrow \log _2 x=6 \quad \Rightarrow x=2^6=8^2 \\
& \Rightarrow \log _2 x=-3 \quad \Rightarrow x=2^{-3}=1 / 8 \\
\end{aligned}
\)
The sum of the coefficients of all even degree terms in \(x\) in the expansion of \(\left(x+\sqrt{x^3-1}\right)^6+\left(x-\sqrt{x^3-1}\right)^6,(x>1)\) is equal to: [Main April 8, 2019 (I)]
\(
\begin{aligned}
& \left(\mathrm{x}+\sqrt{\mathrm{x}^3-1}\right)^6+\left(\mathrm{x}-\sqrt{\mathrm{x}^3-1}\right)^6 \\
& =2\left[{ }^6 \mathrm{C}_0 \mathrm{x}^6+{ }^6 \mathrm{C}_2 \mathrm{x}^4\left(\mathrm{x}^3-1\right)+{ }^6 \mathrm{C}_4 \mathrm{x}^2\left(\mathrm{x}^3-1\right)^2+{ }^6 \mathrm{C}_6\left(\mathrm{x}^3-1\right)^3\right] \\
& =2\left[{ }^6 \mathrm{C}_0 \mathrm{x}^6+{ }^6 \mathrm{C}_2 \mathrm{x}^7{ }^6 \mathrm{C}_2 \mathrm{x}^4+{ }^6 \mathrm{C}_4 \mathrm{x}^8+{ }^6 \mathrm{C}_4 \mathrm{x}^2-2^6 \mathrm{C}_4 \mathrm{x}^5+\left(\mathrm{x}^9-1-3 \mathrm{x}^6+3 \mathrm{x}^3\right)\right] \\
& \Rightarrow \text { sum of coefficient of even powers of } \mathrm{x}=2[1-15+15+15-1-3]=24
\end{aligned}
\)
Let \((x+10)^{50}+(x-10)^{50}=\mathrm{a}_0+\mathrm{a}_1 x+\mathrm{a}_2 x^2+\ldots .+\mathrm{a}_{50} x^{50}\), for all \(x \in \mathbf{R}\); then \(\frac{a_2}{a_0}\) is equal to : [Main Jan. 11, 2019 (II)]
\(
\begin{aligned}
& (x+10)^{50}={ }^{50} C_0(10)^{50}+{ }^{50} C_1 x \cdot 10^{49}+{ }^{50} C_2 x^2 \cdot 10^{48}+\cdots(1) \\
& (x-10)^{50}={ }^{50} C_0(10)^{50}-{ }^{50} C_1 x \cdot 10^{49}+{ }^{50} C_2 x^2 \cdot 10^{48}-\cdots(2)
\end{aligned}
\)
Add equation (1) and (2)
\(
\begin{aligned}
& (x+10)^{50}+(x-10)^{50} \\
& =2 \cdot{ }^{50} C_0 \cdot(10)^{50}+2 \cdot{ }^{50} C_2(10)^{48} \cdot x^2+\cdots \\
& \therefore a_0=2 \cdot{ }^{50} C_0(10)^{50}, a_2=2 \cdot{ }^{50} C_2(10)^{48} \\
& \Rightarrow \frac{a_2}{a_0}=\frac{2 \cdot{ }^{50} C_2(10)^{48}}{2 \cdot{ }^{50} C_0(10)^{50}} \\
& \therefore \frac{a_2}{a_0}=\frac{50 \times 49}{2 \times 100}=12.25
\end{aligned}
\)
If the third term in the binomial expansion of \(\left(1+x^{\log _2 x}\right)^5\) equals 2560 , then a possible value of \(x\) is: [Main Jan. 10, 2019 (I)]
(a) Third term of \(\left(1+x^{\log _2 x}\right)^5={ }^5 C_2\left(x^{\log _2 x}\right)^{5-3}\)
\(
={ }^5 C_2\left(x^{\log _2 x}\right)^2
\)
Given, \({ }^5 \mathrm{C}_2\left(x^{\log _2 x}\right)^2=2560\)
\(
\begin{aligned}
& \Rightarrow \quad\left(x^{\log _2 x}\right)^2=256=(\pm 16)^2 \\
& \Rightarrow \quad x^{\log _2 x}=16 \text { or } x^{\log _2 x=-16 \text { (rejected) }} \\
& \Rightarrow \quad x^{\log _2 x}=16 \Rightarrow \log _2 x \log _2 x=\log _2 16=4 \\
& \Rightarrow \quad \log _2 x=\pm 2 \Rightarrow x=2^2 \text { or } 2^{-2} \\
& \Rightarrow x=4 \text { or } \frac{1}{4}
\end{aligned}
\)
If the fractional part of the number \(\frac{2^{403}}{15}\) is \(\frac{k}{15}\), then \(\mathrm{k}\) is equal to: [Main Jan. 9, 2019 (I)]
\(
\begin{aligned}
& \frac{2^{403}}{15}=2^3 \times\left(\frac{2^{400}}{15}\right)=8 \times\left(\frac{16^{100}}{15}\right) \\
& =\frac{8}{15}(1+15)^{100}
\end{aligned}
\)
Using binomial theorem we can write above expression as
\(
\begin{aligned}
& \frac{8}{15}(1+15 . n), n \in N \\
& =\frac{8}{15}+8 . n
\end{aligned}
\)
So the fractional part is \(\frac{8}{15}=\frac{k}{15}\)
Hence, the value of \(k=8\)
The coefficient of \(x^2\) in the expansion of the product \(\left(2-x^2\right) .((1+2 x+\) \(\left.\left.3 x^2\right)^6+\left(1-4 x^2\right)^6\right)\) is [Main Online April 16, 2018]
(a) Let \(a=\left(\left(1+2 x+3 x^2\right)^6+\left(1-4 x^2\right)^6\right)\)
\(\therefore\) Coefficient of \(x^2\) in the expansion of the product \(\left(2-x^2\right)\left(\left(1+2 x+3 x^2\right)^6+\left(1-4 x^2\right)^6\right)\) \(=2\) (Coefficient of \(x^2\) in a) \(-1\) (Constant of expansion) In the expansion of \(\left(\left(1+2 x+3 x^2\right)^6+\left(1-4 x^2\right)^6\right)\).
Constant \(=1+1=2\)
Coefficient of \(x^2=\left[\right.\) Coefficient of \(x^2\) in \(\left.\left({ }^6 C_0(1+2 x)^6\left(3 x^2\right)^0\right)\right]+[\) Cofficient of \(x^2\) in \(\left.\left({ }^6 C_1(1+2 x)^5\left(3 x^2\right)^1\right)\right]\)
\(-\left[{ }^6 \mathrm{C}_1\left(4 x^2\right)\right]\)
\(=60+6 \times 3-24=54\)
\(\therefore\) The coefficient of \(x^2\) in
\(
\begin{aligned}
& \left(2-x^2\right)\left(\left(1+2 x+3 x^2\right)^6+\right. \\
& \left.\left(1-4 x^2\right)^6\right) \\
& =2 \times 54-1(2)=108-2=106
\end{aligned}
\)
The sum of the co-efficients of all odd degree terms in the expansion of \(\left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5,(x>1)\) is : [Main 2018]
(c) Since we know that,
\(
\begin{aligned}
& (\mathrm{x}+\mathrm{a})^5+(\mathrm{x}-\mathrm{a})^5 \\
& =2\left[{ }^5 \mathrm{C}_0 \mathrm{x}^5+{ }^5 \mathrm{C}_2 \mathrm{x}^3 \cdot \mathrm{a}^2+{ }^5 \mathrm{C}_4 \mathrm{x} \cdot \mathrm{a}^4\right] \\
& \quad \therefore \quad\left(\mathrm{x}+\sqrt{\mathrm{x}^3-1}\right)^5+\left(\mathrm{x}-\sqrt{\mathrm{x}^3-1}\right)^5 \\
& =2\left[{ }^5 \mathrm{C}_0 \mathrm{x}^5+{ }^5 \mathrm{C}_2 \mathrm{x}^3\left(\mathrm{x}^3-1\right)+{ }^5 \mathrm{C}_4 \mathrm{x}\left(\mathrm{x}^3-1\right)^2\right] \\
& \quad \Rightarrow \quad 2\left[\mathrm{x}^5+10 \mathrm{x}^6-10 \mathrm{x}^3+5 \mathrm{x}^7-10 \mathrm{x}^4+5 \mathrm{x}\right]
\end{aligned}
\)
\(\therefore\) Sum of coefficients of odd degree terms \(=2\).
The coefficient of \(x^{-5}\) in the binomial expansion of \(\left(\frac{x+1}{x^{\frac{2}{3}}-x^{\frac{1}{3}}+1}-\frac{x-1}{x-x^{\frac{1}{2}}}\right)^{10}\) where \(x \neq 0,1\), is : [Main Online April 9, 2017]
(a) \(\left[\frac{\left(x^{1 / 3}+1\right)\left(x^{2 / 3}-x^{1 / 3}+1\right)}{\left(x^{2 / 3}-x^{1 / 3}+1\right)}-\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}\right]^{10}\)
\(
\begin{aligned}
& =\left(\mathrm{x}^{1 / 3}+1-1-1 / \mathrm{x}^{1 / 2}\right)^{10}=\left(x^{1 / 3}-1 / x^{1 / 2}\right)^{10} \\
& \mathrm{~T}_{r+1}={ }^{10} C_{\mathrm{r}} \frac{20-5 \mathrm{r}}{6} \\
& \text { for } \mathrm{r}=10 \\
& \quad \mathrm{~T}_{11}={ }^{10} \mathrm{C}_{10} \mathrm{x}^{-5}
\end{aligned}
\)
Coefficient of \(\mathrm{x}^{-5}={ }^{10} C_{10}(1)(-1)^{10}=1\)
If the coefficients of \(x^{-2}\) and \(x^{-4}\) in the expansion of \(\left(x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{1}{3}}}\right)^{18},(x\) \(>0\) ), are \(m\) and \(n\) respectively, then \(\frac{\mathrm{m}}{\mathrm{n}}\) is equal to : [Main Online April 10, 2016]
\(
\begin{aligned}
& \text { (b) } T_{r+1}={ }^{18} C_r\left(x^{\frac{1}{3}}\right)^{18-r}\left(\frac{1}{2 x^{\frac{1}{3}}}\right)^r={ }^{18} C_r x^{6-\frac{2 r}{3}} \frac{1}{2^r} \\
& \left\{\begin{array}{l}
6-\frac{2 r}{3}=-2 \Rightarrow r=12 \\
\& 6-\frac{2 r}{3}=-4 \Rightarrow r=15
\end{array}\right\}
\end{aligned}
\)
\(
\Rightarrow \frac{\text { coefficient of } x^{-2}}{\text { coefficient of } x^{-4}}=\frac{{ }^{18} C_{12} \frac{1}{2^{12}}}{{ }^{18} C_{15} \frac{1}{2^{15}}}=182
\)
If the coefficents of \(x^3\) and \(x^4\) in the expansion of \(\left(1+a x+b x^2\right)(1-2 x)^{18}\) in powers of \(x\) are both zero, then \((a, b)\) is equal to: [Main 2014]
\(
\begin{aligned}
& \left(1+a x+b x^2\right)(1-2 x)^{18}=1(1-2 x)^{18}+a x(1-2 x)^{18}+b x^2(1-2 x)^{18} \\
& \text { Coefficient of } x^3:(-2)^3{ }^{18} C_3+a(-2)^2{ }^{18} C_2+b(-2)^{18} C_1=0 \\
& \frac{4 \times(17 \times 16)}{(3 \times 2)}-2 a \times \frac{17}{2}+b=0-(1) \\
& \text { Coefficient of } x^4:(-2)^4{ }^{18} C_4+a(-2)^3{ }^{18} C_3+b(-2)^2{ }^{18} C_2=0 \\
& (4 \times 20)-2 a \times \frac{16}{3}+b=0-(2) \\
& \text { From equations }(1) \text { and }(2), \text { we get } \\
& 4\left(\frac{17 \times 8}{3}-20\right)+2 a\left(\frac{16}{3}-\frac{17}{2}\right)=0 \\
& \Rightarrow a=16 \\
& \Rightarrow b=\frac{2 \times 16 \times 16}{3}-80=\frac{272}{3}
\end{aligned}
\)
If \(X=\left\{4^n-3 n-1: n \in N\right\}\) and \(Y=\{9(n-1): n \in N\}\), where \(N\) is the set of natural numbers, then \(X \cup Y\) is equal to: [Main 2014]
\(
\begin{aligned}
\because X & =\left\{4^n-3 n-1: n \in N\right\} \\
X & =\{0,9,54,243, \ldots\} \text { [put } n=1,2,3, \ldots] \\
Y & =\{9(n-1): n \in N\} \\
Y & =\{0,1,18,27, \ldots\}
\end{aligned}
\)
It is clear that \(X \subset Y\).
\(
\therefore \quad X \cup Y=Y
\)
The number of terms in the expansion of \((1+x)^{101}\left(1+x^2-x\right)^{100}\) in powers of \(x\) is: [Main Online April 9, 2014]
(c) Given expansion is
\(
\begin{aligned}
&(1+x)^{101}\left(1-x+x^2\right)^{100} \\
&=(1+x)(1+x)^{100}\left(1-x+x^2\right)^{100} \\
&=(1+x)\left[(1+x)\left(1-x+x^2\right)\right]^{100} \\
&=(1+x)\left[\left(1-x^3\right)^{100}\right]
\end{aligned}
\)
Expansion \(\left(1-x^3\right)^{100}\) will have \(100+1=101\) terms.
So, \((1+x)\left(1-x^3\right)^{100}\) will have \(2 \times 101=202\) terms
The sum of the rational terms in the binomial expansion of \(\left(2^{\frac{1}{2}}+3^{\frac{1}{5}}\right)^{10}\) is : [Main Online April 23, 2013]
\(
\text { (d) }\left(2^{1 / 2}+3^{1 / 5}\right)^{10}={ }^{10} \mathrm{C}_0\left(2^{1 / 2}\right)^{10} +{ }^{10} \mathrm{C}_1\left(2^{1 / 2}\right)^9\left(3^{1 / 5}\right)+\ldots \ldots+{ }^{10} \mathrm{C}_{10}\left(3^{1 / 5}\right)^{10}\)
There are only two rational terms – first term and last term. Now sum of two rational terms
\(
=(2)^5+(3)^2=32+9=41
\)
For \(\mathrm{r}=0,1, \ldots, 10\), let \(A_r, B_r\) and \(C_r\) denote, respectively, the coefficient of \(\mathrm{x}^{\mathrm{r}}\) in the expansions of \((1+x)^{10}\), [2010]
\((1+x)^{20}\) and \((1+x)^{30}\). Then \(\sum_{\mathrm{r}=1}^{10} A_r\left(B_{10} B_{\mathrm{r}}-C_{10} A_r\right)\) is equal to
Let \(y=\sum_{t=1}^{10} A_r\left(B_{10} B_r-C_{10} A_r\right)\).
Now, \(\sum_{t=1}^{10} A_f B_r=\) coefficient of \(\left[(1+x)^{10}(1+x)^{20}\right]-1\)
\(
\Rightarrow \sum_{\mathrm{r}=1}^{10} \mathrm{~A}_{\mathrm{r}} \mathrm{B}_{\mathrm{r}}=\mathrm{C}_{20}-1=\mathrm{C}_{10}-1
\)
And \(\sum_{t=1}^{10} A_r^2=\) coefficient of \(x^{10}\) in \(\left[(1+x)^{10}(1+x)^{10}\right]-1\) \(\Rightarrow \sum_{\mathrm{r}=1}^{10} \mathrm{~A}_{\mathrm{r}}^2=\mathrm{B}_{10}-1\)
Therefore, \(\mathrm{y}=\mathrm{B}_{10}\left(\mathrm{C}_{10}-1\right)-\mathrm{C}_{10}\left(\mathrm{~B}_{10}-1\right)=\mathrm{C}_{10}-\mathrm{B}_{10}\).
Coefficient of \(t^{24}\) in \(\left(1+t^2\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)\) is [2003S]
(d) \(\left(1+t^2\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)\)
\(
\begin{aligned}
& =\left(1+t^{12}+t^{24}+t^{36}\right)\left(1+t^2\right)^{12} \\
& \therefore \text { Coeff. of } t^{24}=1 \times \text { Coeff. of } t^{24} \text { in }\left(1+t^2\right)^{12}+1 \times \\
& \text { Coeff. of } t^{12} \text { in }\left(1+t^2\right)^{12}+1 \times \text { constant term in }\left(1+t^2\right)^{12} \\
& ={ }^{12} C_{12}+{ }^{12} C_6+{ }^{12} C_0=1+{ }^{12} C_6+1={ }^{12} C_6+2 \\
&
\end{aligned}
\)
In the binomial expansion of \((a-b)^n, n \geq 5\), the sum of the \(5^{\text {th }}\) and \(6^{\text {th }}\) terms is zero. Then \(a / b\) equals [2001S]
(b) In binomial expansion \((a-b)^n, \mathrm{n} \geq 5\);
\(
\begin{aligned}
& T_5+T_6=0 \\
& \Rightarrow{ }^n C_4 a^{n-4} b^4-{ }^n C_5 a a^{n-5} b^5=0 \\
& \Rightarrow \frac{{ }^n C_4}{{ }^n C_5} \cdot \frac{a}{b}=1 \Rightarrow \frac{5}{n-4} \cdot \frac{a}{b}=1 \Rightarrow \quad \frac{a}{b}=\frac{n-4}{5}
\end{aligned}
\)
The coefficient of \(x^4\) in \(\left(\frac{x}{2}-\frac{3}{x^2}\right)^{10}\) is [1983- 1 Mark]
(a) General term in the expansion \(\left(\frac{x}{2}-\frac{3}{x^2}\right)^{10}\) is
\(
T_{r+1}={ }^{10} C_r\left(\frac{x}{2}\right)^{10-r}\left(\frac{-3}{x^2}\right)^r={ }^{10} C_r x^{10-3 r} \frac{(-1)^r 3^r}{2^{10-r}}
\)
To find coeff of \(x^4\), put \(10-3 \mathrm{r}=4 \Rightarrow \mathrm{r}=2\)
\(\therefore\) Coeff of \(\mathrm{x}^4={ }^{10} \mathrm{C}_2 \frac{(-1)^2 3^2}{2^8}=\frac{405}{256}\)
Given positive integers \(r>1, n>2\) and that the coefficient of \((3 r)\) th and \((r+2)\) th terms in the binomial expansion of \((1+x)^{2 n}\) are equal . Then [1983 – 1 Mark]
(a) Given : \(\mathrm{r}\) and \(\mathrm{n}\) are positive integers such that \(\mathrm{r}>1, \mathrm{n}>2\)
Also, in the expansion of \((1+x)^{2 n}\)
Coeff. of \((3 \mathrm{r})^{\text {th }}\) term \(=[latex] Coeff. of [latex](\mathrm{r}+2)^{\mathrm{th}}\) term
\(
\begin{aligned}
& \Rightarrow{ }^{2 \mathrm{n}} \mathrm{C}_{3 \mathrm{r}-1}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{r}+1} \\
& \Rightarrow 3 \mathrm{r}-1=\mathrm{r}+1 \text { or } 3 \mathrm{r}-1+\mathrm{r}+1=2 \mathrm{n} \\
& {\left[\because \text { If }{ }^n C_p={ }^n C_q \text {, then } p=q \text { or } p+q=n\right]} \\
& \Rightarrow \mathrm{r}=1 \text { or } 2 \mathrm{r}=\mathrm{n} \\
&
\end{aligned}
\)
But \(\mathrm{r}>1 \quad \therefore \quad \mathrm{n}=2 \mathrm{r}\)
Let \(X=\left({ }^{10} C_1\right)^2+2\left({ }^{10} C_2\right)^2+3\left({ }^{10} C_3\right)^2+\cdots+10\left({ }^{10} C_{10}\right)^2,\)
where \({ }^{10} C_r, r \in\{1,2, \cdots, 10\}\) denote binomial coefficients. Then, the value of \(\frac{1}{1430} X\) is [Adv. 2018]
\(
\begin{aligned}
& \sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{r}\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}\right)^2=\mathrm{n} \sum_{\mathrm{r}=0}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}{ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1} \\
& =\mathrm{n} \sum_{\mathrm{r}=1}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-\mathrm{r}}{ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1}={ }^{2 \mathrm{n}-1} \mathrm{C}_{\mathrm{n}-1}
\end{aligned}
\)
Now,
\(
\begin{aligned}
\mathrm{X} & =\left({ }^{10} \mathrm{C}_1\right)^2+2\left({ }^{10} \mathrm{C}_2\right)^2+3\left({ }^{10} \mathrm{C}_3\right)^2+\ldots+10\left({ }^{10} \mathrm{C}_{10}\right)^2 \\
& =\sum_{\mathrm{n}=0}^{10} \mathrm{r}\left({ }^{10} \mathrm{C}_{\mathrm{r}}\right)^2=10^{19} \mathrm{C}_9 \\
\therefore & \frac{\mathrm{X}}{1430}=\frac{1}{143}{ }^{19} \mathrm{C}_9=646
\end{aligned}
\)
Let \(m\) be the smallest positive integer such that the coefficient of \(x^2\) in the expansion of \((1+x)^2+(1+x)^3+\ldots+(1+x)^{49}+(1+m x)^{50}\) is \((3 n+\) 1) \({ }^{51} C_3\) for some positive integer \(n\). Then the value of \(n\) is [Adv. 2016]
(5) \((1+x)^2+(1+x)^3+\ldots .+(1+x)^{49}+(1+m x)^{50}\)
\(
\begin{aligned}
& =(1+x)^2\left[\frac{(1+x)^{48}-1}{(1+x)-1}\right]+(1+m x)^{50} \\
& =\frac{1}{x}\left[(1+x)^{50}-(1+x)^2\right]+(1+m x)^{50}
\end{aligned}
\)
Coeff. of \(x^2\) in the above expansion
\(
\begin{aligned}
& =\text { Coeff. of } x^3 \text { in }(1+x)^{50}+\text { Coeff. of } x^2 \text { in }(1+m x)^{50} \\
& ={ }^{50} \mathrm{C}_3+{ }^{50} \mathrm{C}_2 \mathrm{~m}^2 \\
& \therefore(3 \mathrm{n}+1){ }^{51} \mathrm{C}_3={ }^{50} \mathrm{C}_3+{ }^{50} \mathrm{C}_2 \mathrm{~m}^2 \\
& \Rightarrow(3 \mathrm{n}+1)=\frac{{ }^{50} \mathrm{C}_3}{{ }^{51} \mathrm{C}_3}+\frac{{ }^{50} \mathrm{C}_2}{{ }^{51} \mathrm{C}_3} \mathrm{~m}^2 \\
& \Rightarrow 3 \mathrm{n}+1=\frac{16}{17}+\frac{1}{17} \mathrm{~m}^2 \Rightarrow \mathrm{n}=\frac{\mathrm{m}^2-1}{51} \\
&
\end{aligned}
\)
\(\therefore\) Least positive integer \(\mathrm{m}\) for which \(\mathrm{n}\) is an integer ism \(=16\) and then \(n=5\)
The coefficients of three consecutive terms of \((1+x)^{n+5}\) are in the ratio \(5: 10: 14\). Then \(\mathrm{n}=\) [Adv. 2013]
(6) Let the coefficients of three consecutive terms of \((1+x)^{n+5}\) be \({ }^{n+}\) \({ }^5 C_{r-1},{ }^{n+5} C_r,{ }^{n+5} C_{r+1}\), then we have
\(
\begin{aligned}
& { }^{n+5} C_{r-1}:{ }^{n+5} C_r:{ }^{n+5} C_{r+1}=5: 10: 14 \\
& \frac{{ }^{n+5} C_{r-1}}{{ }^{n+5} C_r}=\frac{5}{10} \Rightarrow \frac{r}{n+6-r}=\frac{1}{2}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow n-3 r+6=0 \\
\text { Also } & \frac{{ }^{n+5} C_r}{{ }^{n+5} C_{r+1}}=\frac{10}{14} \Rightarrow \frac{r+1}{n-r+5}=\frac{5}{7} \\
& \Rightarrow 5 n-12 r+18=0
\end{aligned}
\)
Solving (i) and (ii), we get \(n=6\).
The natural number \(m\), for which the coefficient of \(x\) in the binomial expansion of \(\left(x^m+\frac{1}{x^2}\right)^{22}\) is 1540 , is [Main Sep. 05, 2020 (I)]
(13)
\(
\begin{aligned}
& T_{r+1}={ }^{22} C_r \cdot\left(x^m\right)^{22-r} \cdot\left(\frac{1}{x^2}\right)^r \\
& T_{r+1}={ }^{22} C_r \cdot x^{22 m-m r-2 r} \\
& \because 22 m-m r-2 r=1 \\
& \Rightarrow r=\frac{22 m-1}{m+2} \Rightarrow r=22-\frac{3 \cdot 3 \cdot 5}{m+2}
\end{aligned}
\)
So, possible value of \(m=1,3,7,13,43\)
But \({ }^{22} C_r=1540\)
\(\therefore\) Only possible value of \(m=13\).
The coefficient of \(x^4\) in the expansion of \(\left(1+x+x^2+x^3\right)^6\) in powers of \(x\), is [Main Sep. 05, 2020 (II)]
\(
\begin{aligned}
& \text { Coefficient of } x^4 \text { in }\left(\frac{1-x^4}{1-x}\right)^6=\text { coefficient of } x^4 \text { in }\left(1-6 x^4\right)(1-x)^{-6} \\
& =\text { coefficient of } x^4 \text { in }\left(1-6 x^4\right)\left[1+{ }^6 C_1 x+{ }^7 C_2 x^2+\ldots\right] \\
& \quad={ }^9 C_4-6 \cdot 1=126-6=120
\end{aligned}
\)
Let \(\left(2 x^2+3 x+4\right)^{10}=\sum_{r=0}^{20} a_r x^r\). Then \(\frac{a_7}{a_{13}}\) is equal to [Main Sep. 04, 2020 (I)]
Finding the value of \(\frac{a_7}{a_{13}}\) :
Given, \(\left(2 x^2+3 x+4\right)^{10}=\sum_{r=0}^{20} a_r x^r \quad \ldots \ldots(1)\)
To obtain the symmetry, replace \(x\) by \(\frac{2}{x}\) in above equation we get,
\(
\begin{aligned}
& {\left[2\left(\frac{2}{x}\right)^2+3\left(\frac{2}{x}\right)+4\right]^{10}=\sum_{r=0}^{20} a_r \frac{2^r}{x^r}} \\
& \Rightarrow \quad\left[\frac{8}{x^2}+\frac{6}{x}+4\right]^{10}=\sum_{r=0}^{20} a_r \times 2^r\left(\frac{1}{x^r}\right) \\
& \Rightarrow \quad \frac{2^{10}}{x^{20}}\left[2 x^2+3 x+4\right]^{10}=\sum_{r=0}^{20} a_r 2^r\left(\frac{1}{x^r}\right) \\
& \Rightarrow \quad\left[2 x^2+3 x+4\right]^{10}=\sum_{r=0}^{20} a_r 2^{(r-10)} x^{(20-r)} \\
&
\end{aligned}
\)
Substituting equation (1) in equation (2), we get
\(
\sum_{r=0}^{20} a_r x^r=\sum_{r=0}^{20} a_r 2^{(r-10)} x^{(20-r)}
\)
Put \(r=7\) in LHS and \(r=13\) on RHS to find the coefficients of \(x^7\) on both sides and compare them we get,
\(
\begin{aligned}
& a_7= a_{13}(2)^3 \\
& \Rightarrow \frac{a_7}{a_{13}}=8
\end{aligned}
\)
Hence, the value of the ratio \(\frac{a_7}{a_{13}}=8\).
The sum of the rational terms in the expansion of \(\left(\sqrt{2}+3^{1 / 5}\right)^{10}\) is [1997 – 2 Marks]
Given expression : \(\left(\sqrt{2}+3^{1 / 5}\right)^{10}\)
\(
\begin{aligned}
\therefore & T_{r+1}={ }^{10} C_r(\sqrt{2})^{10-r} \cdot\left(3^{1 / 5}\right)^r \cdot(0 \leq r \leq 10) \\
& =\frac{10 !}{r !(10-r) !} \cdot 2^{5-r / 2} \cdot 3^{r / 5}
\end{aligned}
\)
\(\mathrm{T}_{\mathrm{r}+1}\) will be rational if \(2^{5-r / 2}\) and \(3^{\mathrm{r} / 5}\) are rational numbers.
\(\Rightarrow 5-\frac{r}{2}\) and \(\frac{r}{5}\) are integers
\(\Rightarrow \mathrm{r}=0\) and \(\mathrm{r}=10 \Rightarrow \mathrm{T}_1\) and \(\mathrm{T}_{11}\) are rational terms.
Now, \(\mathrm{T}_1+\mathrm{T}_{11}={ }^{10} \mathrm{C}_0 2^{5-0} \cdot 3^0+{ }^{10} \mathrm{C}_{10} 2^{5-5} \cdot 3^2\)
\(
=1.32 .1+1.1 .9=32+9=41
\)
Let \(n\) be positive integer. If the coefficients of \(2 \mathrm{nd}\), 3rd, and 4 th terms in the expansion of \((1+x)^n\) are in A.P., then the value of \(n\) is [1994- 2 Marks]
We know that for \(a\) positive integer \(n\)
\(
(1+x)^n={ }^n C_0+{ }^n C_1 x+{ }^n C_2 x^2+\ldots . .+{ }^n C_n x^n
\)
Since coefficients of \(2^{\text {nd }}, 3^{\text {rd }}\) and \(4^{\text {th }}\) terms are in A.P.
\(
\begin{aligned}
& \therefore{ }^n C_1,{ }^n C_2,{ }^n C_3 \text { are in A.P. } \\
& \Rightarrow 2 \cdot{ }^n C_2={ }^n C_1+{ }^n C_3 \\
& \Rightarrow 2 \times \frac{n(n-1)}{2}=n+\frac{n(n-1)(n-2)}{3 !} \\
& \Rightarrow n-1=1+\frac{n^2-3 n+2}{6} \Rightarrow n^2-9 n+14=0 \\
& \Rightarrow(n-7)(n-2)=0 \Rightarrow \mathrm{n}=7 \text { or } 2
\end{aligned}
\)
But for the existance of \(4^{\text {th }}\) term, \(n=7\).
\(
\text { The larger of } 99^{50}+100^{50} \text { and } 101^{50} \text { is }……
\) [1982- 2 Marks]
\(
\begin{aligned}
& (101)^{50}-\left\{(99)^{50}+(100)^{50}\right\} \\
& =(100+1)^{50}-(100-1)^{50}-(100)^{50} \\
& =(100)^{50}\left[(1+0.01)^{50}-(1-0.01)^{50}-1\right] \\
& =(100)^{50}\left[2\left(\left(^{50} C_1(0.01)+{ }^{50} C_3(0.01)^3+\ldots .\right)-1\right]\right. \\
& \quad=(100)^{50}\left[2 \times 50 \times \frac{1}{100}+2\left({ }^{50} C_3(0.01)^3+\ldots .\right)-1\right] \\
& =(100)^{50}\left[2\left(\left(^{50} C_3(0.01)^3+\ldots .\right)\right]>0\right. \\
& \quad \therefore(101)^{50}>(99)^{50}+(100)^{50} \quad \therefore(101)^{50} \text { is greater. }
\end{aligned}
\)
If \(a_n=\sum_{r=0}^n \frac{1}{{ }^n C_r}\), then \(\sum_{r=0}^n \frac{r}{{ }^n C_r}\) equals [1998 – 2 Marks]
\(
\begin{aligned}
& \text { (c) Let } b=\sum_{r=0}^n \frac{r}{{ }^n C_r}=\sum_{r=0}^n \frac{n-(n-r)}{{ }^n C_r} \\
& =n a_n-\sum_{r=0}^n \frac{n-r}{{ }^n C_{n-r}} \quad\left[\because{ }^n C_r={ }^n C_{n-r}\right] \\
& =n a_n-b \\
& \Rightarrow 2 b=n a_n \Rightarrow b=\frac{n}{2} a_n \\
&
\end{aligned}
\)
If the constant term in the binomial expansion of \(\left(\sqrt{x}-\frac{k}{x^2}\right)^{10}\) is 405 , then \(|k|\) equals: [Main Sep. 06, 2020 (II)]
\(
\text { (c) } \begin{aligned}
\text { General term }=T_{r+1}= & { }^{10} C_r(\sqrt{x})^{10-r} \cdot\left(-\frac{k}{x^2}\right)^r \\
& ={ }^{10} C_r(-k)^r \cdot x^{\frac{10-r}{2}-2 r} \\
& ={ }^{10} C_r(-k)^r \cdot x^{\frac{10-5 r}{2}}
\end{aligned}
\)
Since, it is constant term, then
\(
\begin{aligned}
& \frac{10-5 r}{2}=0 \Rightarrow r=2 \\
& \therefore{ }^{10} C_2(-k)^2=405 \\
& \Rightarrow k^2=\frac{405 \times 2}{10 \times 9}=\frac{81}{9}=9 \\
& \therefore|k|=3
\end{aligned}
\)
If for some positive integer \(n\), the coefficients of three consecutive terms in the binomial expansion of \((1+x)^{n+5}\) are in the ratio \(5: 10: 14\), then the largest coefficient in this expansion is : [Main Sep. 04, 2020 (II)]
Let the three consecutive terms in the binomial expansion of \((1+\mathrm{x})^{\mathrm{n}+5}\) are \({ }^{\mathrm{n}+5} \mathrm{C}_{\mathrm{r}-1},{ }^{\mathrm{n}+5} \mathrm{C}_{\mathrm{r}}\) and \({ }^{\mathrm{n}+5} \mathrm{C}_{\mathrm{r}+1}\)
Now, according to the given information \({ }^{\mathrm{n}+5} \mathrm{C}_{\mathrm{r}-1}:{ }^{\mathrm{n}+5} \mathrm{C}_{\mathrm{r}}:{ }^{\mathrm{n}+5} \mathrm{C}_{\mathrm{r}+1}=5: 10: 14\)
\(
\Rightarrow \quad \frac{(\mathrm{n}+5) !}{(\mathrm{r}-1) !(\mathrm{n}-\mathrm{r}+6) !}: \frac{(\mathrm{n}+5) !}{\mathrm{r} !(\mathrm{n}-\mathrm{r}+5) !}: \frac{(\mathrm{n}+5) !}{(\mathrm{r}+1) !(\mathrm{n}-\mathrm{r}+4) !}=5: 10: 14
\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{1}{(n-\mathrm{r}+6)(\mathrm{n}-\mathrm{r}+5)}: \frac{1}{\mathrm{r}(\mathrm{n}-\mathrm{r}+5)}: \frac{1}{(\mathrm{r}+1) \mathrm{r}} \\
& \text { So, } \quad \frac{\mathrm{r}}{\mathrm{n}-\mathrm{r}+6}=\frac{5}{10} \\
& \Rightarrow \quad 2 \mathrm{r}=\mathrm{n}-\mathrm{r}+6 \Rightarrow \mathrm{n}+6=3 \mathrm{r} \dots(i)\\
& \text { and } \quad \frac{\mathrm{r}+1}{\mathrm{n}-\mathrm{r}+5}=\frac{5}{7} \\
& \Rightarrow \quad 7 \mathrm{r}+7 \quad=5 \mathrm{n}-5 \mathrm{r}+25 \\
& \Rightarrow \quad 5 \mathrm{n}+18=12 \mathrm{r} \dots(ii)
\end{aligned}
\)
From Eqs. (i) and (ii), we have \(n=6\).
So, the largest coefficient in the expansion is same as the greatest binomial coefficient
\(
\begin{aligned}
& ={ }^{11} \mathrm{C}_5 \text { or }{ }^{11} \mathrm{C}_6 \\
& =\frac{11 !}{5 ! 6 !}=\frac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2}=462
\end{aligned}
\)
If the number of integral terms in the expansion of \(\left(3^{1 / 2}+5^{1 / 8}\right)^n\) is exactly 33 , then the least value of \(n\) is : [Main Sep. 03, 2020 (I)]
(c) Here, \(\left(3^{\frac{1}{2}}+5^{\frac{1}{8}}\right)^n\)
\(
T_{r+1}={ }^n C_r(3)^{\frac{n-r}{2}}(5)^{\frac{r}{8}}
\)
\(\because \frac{n-r}{2}\) and \(\frac{r}{8}\) are integer
So, \(r\) must be \(0,8,16,24 \ldots \ldots\)
Now \(n=t_{33}=a+(n-1) d=0+32 \times 8=256\)
\(
\Rightarrow n=256
\)
If the term independent of \(x\) in the expansion of \(\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9\) is \(k\), then \(18 k\) is equal to : [Main Sep. 03, 2020 (II)]
(c) General term \(=T_{r+1}={ }^9 C_r\left(\frac{3 x^2}{2}\right)^{9-r}\left(-\frac{1}{3 x}\right)^r\)
\(
={ }^9 C_r\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^r x^{18-3 r}
\)
The term is independent of \(x\), then
\(
\begin{aligned}
& 18-3 r=0 \Rightarrow r=6 \\
& \therefore T_7={ }^9 C_6\left(\frac{3}{2}\right)^3\left(-\frac{1}{3}\right)^6={ }^9 C_3\left(\frac{1}{6}\right)^3 \\
& =\frac{9 \times 8 \times 7}{3 \times 2 \times 1}\left(\frac{1}{6}\right)^3=\left(\frac{7}{18}\right) . \\
& \therefore 18 k=18 \times \frac{7}{18}=7 .
\end{aligned}
\)
Let \(\alpha>0, \beta>0\) be such that \(\alpha^3+\beta^2=4\). If the maximum value of the term independent of \(x\) in the binomial expansion of \(\left(\alpha x^{\frac{1}{9}}+\beta x^{-\frac{1}{6}}\right)^{10}\) is \(10 k\), then \(k\) is equal to : [Main Sep. 02, 2020 (I)]
(a) General term of
\(
\begin{gathered}
\left(\alpha x^{\frac{1}{9}}+\beta x^{\frac{-1}{6}}\right)^{10}={ }^{10} C_r\left(\alpha x^{\frac{1}{9}}\right)^{10-r}\left(\beta x^{\frac{-1}{6}}\right)^r \\
={ }^{10} C_r \alpha^{10-r} \beta^r(x)^{\frac{10-r}{9}-\frac{r}{6}}
\end{gathered}
\)
Term independent of \(x\) if \(\frac{10-r}{9}-\frac{r}{6}=0 \Rightarrow r=4\).
\(\therefore\) Term independent of \(x={ }^{10} C_4 \alpha^6 \beta^4\)
Since \(\alpha^3+\beta^2=4\)
Then, by AM-GM inequality
\(
\begin{aligned}
& \frac{\alpha^3+\beta^2}{2} \geq\left(\alpha^3 b^2\right)^{\frac{1}{2}} \\
& \Rightarrow(2)^2 \geq \alpha^3 \beta^2 \Rightarrow \alpha^6 \beta^4 \leq 16
\end{aligned}
\)
\(\because\) The maximum value of the term independent of \(x=10 \mathrm{k}\)
\(
\therefore 10 k={ }^{10} C_4 \cdot 16 \Rightarrow k=336 .
\)
In the expansion of \(\left(\frac{x}{\cos \theta}+\frac{1}{x \sin \theta}\right)^{16}\), if \(l_1\) is the least value of the term independent of \(x\) when \(\frac{\pi}{8} \leq \theta \leq \frac{\pi}{4}\) and \(l_2\) is the least value of the term independent of \(x\) when \(\frac{\pi}{16} \leq \theta \leq \frac{\pi}{8}\), then the ratio \(l_2: l_1\) is equal to : [Main Jan. 9, 2020 (II)]
(b) General term of the given expansion
\(
T_{r+1}={ }^{16} C_r\left(\frac{x}{\sin \theta}\right)^{16-r}\left(\frac{1}{x \cos \theta}\right)^r
\)
For \(r=8\) term is free from ‘ \(x\) ‘
\(
\begin{aligned}
& T_9={ }^{16} C_8 \frac{1}{\sin ^8 \theta \cos ^8 \theta} \\
& T_9={ }^{16} C_8 \frac{2^8}{(\sin 2 \theta)^8}
\end{aligned}
\)
When \(\theta \in\left[\frac{\pi}{8}, \frac{\pi}{4}\right]\), then least value of the term independent of \(x\),
\(
l_1={ }^{16} C_8 2^8
\)
[Q min. value of \(l_1\) at \(\theta=\pi / 4\) ]
When \(\theta \in\left[\frac{\pi}{16}, \frac{\pi}{8}\right]\), then least value of the term independent of \(x\),
\(
l_2={ }^{16} C_8=\frac{2^8}{\left(\frac{1}{\sqrt{2}}\right)^8}={ }^{16} \mathrm{C}_8 \cdot 2^8 \cdot 2^4
\)
[Q min. value of \(l_2\) at \(\theta=\pi / 8\) ]
Now, \(\frac{l_2}{l_1}=\frac{{ }^{16} C_8 \cdot 2^8 \cdot 2^4}{{ }^{16} C_8 \cdot 2^8}=16: 1\)
The total number is irrational terms in the binomial expansion of \(\left(7^{\frac{1}{5}}-3^{\frac{1}{10}}\right)^{60}\) is: [Main Jan. 12, 2019 (II)]
\(
\text { (d) Let the general term of the expansion }
\)
\(
\begin{gathered}
T_{r+1}={ }^{60} C_r\left(7^{\frac{1}{5}}\right)^{60-r}\left(-3^{\frac{1}{10}}\right)^r \\
={ }^{60} C_r \cdot(7)^{12-\frac{r}{5}}(-1)^r \cdot(3)^{\frac{r}{10}}
\end{gathered}
\)
Then, for getting rational terms, \(r\) should be multiple of L.C.M. of \((5,10)\) Then, \(r\) can be \(0,10,20,30,40,50,60\).
Since, total number of terms \(=61\)
Hence, total irrational terms \(=61-7=54\)
A ratio of the \(5^{\text {th }}\) term from the begining to the 5 th term from the end in the binomial expansion of \(\left(2^{\frac{1}{3}}+\frac{1}{2(3)^{\frac{1}{3}}}\right)^{10}\) is: [Main Jan. 12, 2019 (I)]
(c) \(\left(2^{\frac{1}{3}}+\frac{1}{2(3)^{\frac{1}{3}}}\right)^{10}={ }^{10} C_0\left(2^{\frac{1}{3}}\right)^0\left(\frac{1}{2(3)^{1 / 3}}\right)^{10}+\)
\(
\cdots+{ }^{10} C_{10}\left(2^{\frac{1}{3}}\right)^{10}\left(\frac{1}{2(3)^{1 / 3}}\right)^0
\)
\(
\begin{aligned}
& 5^{\text {th }} \text { term from beginning } T_5={ }^{10} C_4\left(2^{\frac{1}{3}}\right)^6 \frac{1}{\left(2.3^{\frac{1}{3}}\right)^4}+{ }^{10} C_{10}\left(2^{\frac{1}{3}}\right)^{10}\left(\frac{1}{2(3)^{1 / 3}}\right)^0 \\
& \text { and } 5^{\text {th }} \text { term from end } T_{11-5+1}={ }^{10} C_6\left(2^{\frac{1}{3}}\right)^4\left(\frac{1}{2.3^{\frac{1}{3}}}\right)^6 \\
& \therefore T_5: T_7={ }^{10} C_4\left(2^{\frac{1}{3}}\right)^6\left(\frac{1}{2.3^{\frac{1}{3}}}\right)^4:{ }^{10} C_6\left(2^{\frac{1}{3}}\right)^4\left(\frac{1}{2.3^{\frac{1}{3}}}\right)^6 \\
& =\left(2^{\frac{1}{3}}\right)^2:\left(\frac{1}{2.3^{\frac{1}{3}}}\right)^2
\end{aligned}
\)
\(
=\frac{2^{\frac{2}{3}} \cdot 2^2 \cdot 3^{\frac{2}{3}}}{1}=4(6)^{\frac{2}{3}}: 1=4 \cdot(36)^{\frac{1}{3}}: 1
\)
The term independent of \(\mathrm{x}\) in expansion of \(\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}\) is [Main 2013]
(c) Given expression can be written as
\(
\begin{aligned}
& \quad\left[\frac{\left(x^{1 / 3}\right)^3+1^3}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(\sqrt{x})^2-1^2}{\sqrt{x}(\sqrt{x}-1)}\right]^{10} \\
& =\left(\left(x^{1 / 3}+1\right)-\left(\frac{\sqrt{x}+1}{\sqrt{x}}\right)\right)^{10}=\left(x^{1 / 3}+1-1-\frac{1}{\sqrt{x}}\right)^{10} \\
& =\left(x^{1 / 3}-x^{-1 / 2}\right)^{10} \\
& \text { General term }=\mathrm{T}_{r+1} \\
& ={ }^{10} \mathrm{C}_{\mathrm{r}}\left(x^{1 / 3}\right)^{10-r}\left(-x^{-1 / 2}\right)^r={ }^{10} C_r x^{\frac{10-r}{3}} \cdot(-1)^r \cdot x^{-\frac{r}{2}} \\
& ={ }^{10} C_r(-1)^r \cdot x^{\frac{10-r}{3}-\frac{r}{2}}
\end{aligned}
\)
Term will be independent of \(x\) when \(\frac{10-r}{3}-\frac{r}{2}=0\)
\(
\Rightarrow r=4
\)
So, required term \(=\mathrm{T}_5={ }^{10} \mathrm{C}_4=210\)
For a positive integer \(n,\left(1+\frac{1}{x}\right)^n\) is expanded in increasing powers of \(x\). If three consecutive coefficients in this expansion are in the ratio, 2 \(: 5: 12\), then \(n\) is equal to [Main Sep. 02, 2020 (II)]
According to the question,
\(
\begin{aligned}
& { }^n C_{r-1}:{ }^n C_r:{ }^n C_{r+1}=2: 5: 12 \\
& \Rightarrow \frac{{ }^n C_r}{{ }^n C_{r-1}}=\frac{5}{2} \Rightarrow \frac{n-r+1}{r}=\frac{5}{2} \\
& \Rightarrow 2 n-7 r+2=0 \dots(i)\\
& \frac{{ }^n C_{r+1}}{{ }^n C_r}=\frac{12}{5} \Rightarrow \frac{n-r}{r+1}=\frac{12}{5} \\
& \Rightarrow 5 n-17 r-12=0 \dots(ii)
\end{aligned}
\)
Solving eqns. (i) and (ii),
\(
n=118, r=34
\)
\(\sum_{r=1}^k(-3)^{r-1} 3 n C_{2 r-1}=0\), where \(k=(3 n) / 2\) and \(n\) is an even positive integer. Is this statement true? [1993 – 5 Marks]
Given, \(\mathrm{n}\) is an even positive integer.
Let \(n=2 m, \therefore k=3 m, n \in N\)
\(
\begin{aligned}
& \text { LHS } \sum_{r=1}^k(-3)^{r-1} \cdot{ }^{3 n} C_{2 r-1}=\sum_{r=1}^{3 m}(-3)^{r-1} \quad{ }^{6 m} C_{2 r-1} \\
& ={ }^{6 m} C_1-3 \cdot{ }^{6 m} C_3+3^2 \cdot{ }^{6 m} C_5 \\
& -\ldots+(-3)^{3 m-16 m} C_{6 m-1} \ldots \text { (i) }
\end{aligned}
\)
Consider \(1+i \sqrt{3}{ }^{6 m}={ }^{6 m} C_0+{ }^{6 m} C_1(i \sqrt{3})+{ }^{6 m} C_2(i \sqrt{3})^2\)
\(+{ }^{6 m} C_3(i \sqrt{3})^3+{ }^{6 m} C_4(i \sqrt{3})^4+{ }^{6 m} C_5(i \sqrt{3})^5\)
\(+\ldots+{ }^{6 m} C_{6 m-1}(i \sqrt{3})^{6 m-1}+{ }^{6 m} C_{6 m}(i \sqrt{3})^{6 m} \ldots(i i)\)
Now, \((1+i \sqrt{3})^{6 m}=\left\{(-2)\left(\frac{-1-i \sqrt{3}}{(2)}\right)\right\}^{6 m}=\left(-2 \omega^2\right)^{6 m}\) \(=2^{6 m}\), where \(\omega\) is cube root of unity.
Then, Eq . (ii) can be written as
\(
\begin{aligned}
& 2^{6 m}=\left\{{ }^{6 m} C_0-{ }^{6 m} C_2 \cdot 3+{ }^{6 m} C_4 \cdot 3^2\right. \\
& \left.-\ldots+(-3)^{3 m} \cdot{ }^{6 m} C_{6 m}\right\}+i \sqrt{3}\left\{{ }^{6 m} C_1-{ }^{6 m} C_3 \cdot 3+\right. \\
& \left.+{ }^{6 m} C_5 \cdot 3^2-\ldots+(-3)^{3 m-1} \cdot{ }^{6 m} C_{6 m-1}\right\}
\end{aligned}
\)
On comparing the imaginary part on both sides, we get
\(\sqrt{3}\left({ }^{6 m} C_1-3+{ }^{6 m} C_3+3^2 \cdot{ }^{6 m} C_5-\ldots+(-3)^{3 m-1} \cdot{ }^{6 m} C_{6 m-1}\right)=0\)
or \({ }^{6 m} C_1-3+{ }^{6 m} C_3+3^2 \cdot{ }^{6 m} C_5-\ldots+(-3)^{3 m-1} \cdot{ }^{6 m} C_{6 m-1}=0\)
\(\Rightarrow \sum_{r=1}^{3 m}(-3)^{3 m-1} \cdot{ }^{3 n} C_{2 r-1}=0\)
or \(\sum_{r=1}^k(-3)^{r-1} \cdot{ }^{3 n} C_{2 r-1}=0\), where \(\mathrm{n}=2 \mathrm{~m}\) and \(\mathrm{k}=3 \mathrm{~m}\).
Let \(R=(5 \sqrt{5}+11)^{2 n+1}\) and \(f=R-[R]\), where [] denotes the greatest integer function. Then \(R f=4^{2 n+1}\). Is this statement true? [1988 – 5 Marks]
Given, \(G=(5 \sqrt{5}+11)^{2 n+1}, 0<G<1\)
and \(R=(5 \sqrt{5}+11)^{2 n+1}\)
\(
\begin{aligned}
& \therefore \quad R-G=2\left\{^{2 n+1} C_1(5 \sqrt{5})^{2 n} \cdot 11+{ }^{2 n+1} C_3\right. \\
&\left.(5 \sqrt{5})^{2 n-2} \cdot(11)^3+\ldots\right\}
\end{aligned}
\)
\(\Rightarrow R-G=\) even integer.
or \(I+f-G=\) even integer
\(
f-G=\text { integer } . . \text { (i) }
\)
where \(0 \leq f<1\) and \(0<G<1\)
\(
\therefore \quad-\mathrm{i}<f-G<1 \dots(ii)
\)
From Eqs. (i) and (ii), we get
\(
\begin{aligned}
& f-G=0 \\
& \therefore \quad f=G \\
& \text { Thus, } R \cdot f=R \cdot G \\
&=(5 \sqrt{5}+11)^{2 n+1} \cdot(5 \sqrt{5}-11)^{2 n+1} \\
&= 4^{2 n+1}
\end{aligned}
\)
The value of \(\sum_{r=0}^{20}{ }^{50-r} C_6\) is equal to: [Main Sep. 04, 2020 (I)]
\(
\begin{aligned}
& \sum_{r=0}^{20}{ }^{50-r} C_6={ }^{50} C_6+{ }^{49} C_6+{ }^{48} C_6+\ldots . .+{ }^{30} C_6 \\
& ={ }^{50} C_6+{ }^{49} C_6+\ldots . .+{ }^{31} C_6+\left({ }^{30} C_6+{ }^{30} C_7\right)-{ }^{30} C_7 \\
& ={ }^{50} C_6+{ }^{49} C_6+\ldots . .+\left({ }^{31} C_6+{ }^{31} C_7\right)-{ }^{30} C_7 \\
& ={ }^{50} C_6+{ }^{50} C_7-{ }^{30} C_7 \\
& ={ }^{51} C_7-{ }^{30} C_7 \\
& { }^n C_r+{ }^n C_{r-1}={ }^{n+1} C_r
\end{aligned}
\)
If \({ }^{20} \mathrm{C}_1+\left(2^2\right){ }^{20} \mathrm{C}_2+\left(3^2\right){ }^{20} \mathrm{C}_3+\ldots \ldots .+\left(20^2\right){ }^{20} \mathrm{C}_{20}=\mathrm{A}\left(2^{\mathrm{b}}\right)\), then the ordered pair \((\mathrm{A}, \mathrm{b})\) is equal to: [Main April 12, 2019 (II)]
(b) Given, \({ }^{20} C_1+2^2 \cdot{ }^{20} C_2+3^2{ }^{20} C_3+\ldots+20^2 \cdot{ }^{20} C_{20}\) \(=A\left(2^b\right)\)
Taking L.H.S.,
\(
\begin{aligned}
& =\sum_{r=1}^{20} r^2 \cdot{ }^{20} C_r=20 \sum_{r=1}^{20} r \cdot{ }^{19} C_{r-1} \\
& =20\left[\sum_{r=1}^{20}(r-1){ }^{19} C_{r-1}+\sum_{r=1}^{20}{ }^{19} C_{r-1}\right] \\
& =20\left[19 \sum_{r=2}^{20}{ }^{18} C_{r-2}+2^{19}\right]=20\left[19 \cdot 2^{18}+2^{19}\right]
\end{aligned}
\)
\(
=420 \times 2^{18}
\)
Now, compare it with R.H.S., \(\mathrm{A}=420\) and \(\mathrm{b}=18\)
If the coefficients of \(x^2\) and \(x^3\) are both zero, in the expansion of the expression \(\left(1+a x+b x^2\right)(1-3 x)^{15}\) in powers of \(x\), then the ordered pair \((a, b)\) is equal to: [Main April 10, 2019 (I)]
(c) Given expression is \(\left(1+a x+b x^2\right)(1-3 x)^{15}\)
Co-efficient of \(x^2=0\)
\(
\begin{aligned}
& \left.\Rightarrow{ }^{15} \mathrm{C}_2(-3)\right)^2+a \cdot{ }^{15} \mathrm{C}_1(-3)+b \cdot{ }^{15} \mathrm{C}_0=0 \\
& \Rightarrow \frac{15 \times 14}{2} \times 9-15 \times 3 a+b=0 \\
& \Rightarrow 945-45 a+b=0 \dots(i)
\end{aligned}
\)
Now, co-efficient of \(x^3=0\)
\(
\begin{aligned}
& \Rightarrow{ }^{15} \mathrm{C}_3(-3)^3+a \cdot{ }^{15} \mathrm{C}_2(-3)^2+b \cdot{ }^{15} \mathrm{C}_1(-3)=0 \\
& \Rightarrow \frac{15 \times 14 \times 13}{3 \times 2} \times(-3 \times 3 \times 3)+a \times \frac{15 \times 14 \times 9}{2}-b \times 3 \times 15=0 \\
& \Rightarrow 15 \times 3[-3 \times 7 \times 13+a \times 7 \times 3-b]=0 \\
& \Rightarrow 21 a-b=273 \dots(ii)
\end{aligned}
\)
From (i) and (ii), we get,
\(
a=28, b=315 \Rightarrow(a, b) \equiv(28,315)
\)
The sum of the series \(2 \cdot{ }^{20} \mathrm{C}_0+5 \cdot{ }^{20} \mathrm{C}_1+8 \cdot{ }^{20} \mathrm{C}_2+11 \cdot{ }^{20} \mathrm{C}_3+\ldots+62 \cdot{ }^{20} \mathrm{C}_{20}
\) is equal to: [Main April 8, 2019 (I)]
(b) \(2 .{ }^{20} \mathrm{C}_0+5 .{ }^{20} \mathrm{C}_1+8 .{ }^{20} \mathrm{C}_2+\ldots \ldots . .+62 .{ }^{20} \mathrm{C}_{20}\)
\(
\begin{aligned}
& =\sum_{r=0}^{20}(3 r+2){ }^{20} C_r=3 \sum_{r=0}^{20} r \cdot{ }^{20} C_r+2 \sum_{r=0}^{20}{ }^{20} C_r \\
& =60 \sum_{r=1}^{20}{ }^{19} C_{n-1}+2 \sum_{r=0}^{20}{ }^{20} C_r \\
& =60 \times 2^{19}+2 \times 2^{20}=2^{21}[15+1]=2^{25}
\end{aligned}
\)
The value of \(\mathrm{r}\) for which \({ }^{20} C_r{ }^{20} C_0+{ }^{20} C_{r-1}{ }^{20} C_1+{ }^{20} C_{r-2}{ }^{20} C_2+\ldots\) \(+{ }^{20} C_0{ }^{20} C_r\) is maximum, is : [Main Jan. 11, 2019 (I)]
Let \(S={ }^{20} \mathrm{C}_r{ }^{20} \mathrm{C}_0+{ }^{20} \mathrm{C}_{r-1}{ }^{20} \mathrm{C}_1+{ }^{20} \mathrm{C}_{r-2}{ }^{20} \mathrm{C}_2+\ldots+{ }^{20} \mathrm{C}_0{ }^{20} \mathrm{C}_r\) The sum \(S\) is the coefficient of \(x^r\) in the expansion of \((1+x)^{20}(x+1)^{20}=(1+x)^{40}\) \(\therefore \mathrm{S}={ }^{40} \mathrm{C}_{\mathrm{r}}\)
\(\mathrm{S}\) is maximum when \(r=20\)
If \(\sum_{\mathrm{r}=0}^{25}\left\{{ }^{50} \mathrm{C}_{\mathrm{r}} \cdot{ }^{50-\mathrm{r}} \mathrm{C}_{25-\mathrm{r}}\right\}=\mathrm{K}\left({ }^{50} \mathrm{C}_{25}\right)\), then K is equal to: [Main Jan. 10, 2019 (II)]
From question, the summation given is:
\(
\begin{aligned}
& \sum_{\mathrm{r}=0}^{25}\left\{{ }^{50} \mathrm{C}_{\mathrm{r}} \cdot 50-\mathrm{r}_{\mathrm{C}_{25}-\mathrm{r}}\right\}=\mathrm{K}\left({ }^{50} \mathrm{C}_{25}\right) \\
& \because\left[{ }^n C_r=\frac{n !}{r !(n-r) !}\right] \\
& \Rightarrow \sum_{r=0}^{25}\left(\frac{50 !}{r !(50-r) !} \times \frac{(50-r) !}{(25-r) ! 25 !}\right)=K^{50} C_{25} \\
& \Rightarrow \sum_{r=0}^{25}\left(\frac{50 !}{25 ! 25 !} \times \frac{25 !}{r !(25-r) !}\right)=K^{50} C_{25}
\end{aligned}
\)
[On multiplying 25! numerator and denominator]
\(
\begin{aligned}
& \because\left[{ }^{50} C_{25}=\frac{50}{25 ! 25 !}\right] \\
& \Rightarrow{ }^{50} \mathrm{C}_{25} \sum_{r=0}^{25}{ }^{25} \mathrm{C}_r=K^{50} C_{25} \\
& \because\left[{ }^{\mathrm{n}} \mathrm{C}_0+{ }^{\mathrm{n}} \mathrm{C}_1+{ }^{\mathrm{n}} \mathrm{C}_2+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=2^{\mathrm{n}}\right] \\
& \Rightarrow \mathrm{K}=\sum_{\mathrm{r}=0}^{25}{ }^{25} \mathrm{C}_r \\
& \therefore \mathrm{K}=2^{25}
\end{aligned}
\)
The coefficient of \(t^4\) in the expansion of \(\left(\frac{1-t^6}{1-t}\right)^3\) [Main Jan. 09, 2019 (II)]
(b) Consider the expression
\(
\begin{gathered}
\left(\frac{1-t^6}{1-t}\right)^3=\left(1-t^6\right)^3(1-t)^{-3} \\
=\left(1-3 t^6+3 t^{12}-t^{18}\right)\left(1+3 t+\frac{3 \cdot 4}{2 !} t^2\right. \\
\left.+\frac{3 \cdot 4 \cdot 5}{3 !} t^3+\frac{3 \cdot 4 \cdot 5 \cdot 6}{4 !} t^4+\ldots \infty\right)
\end{gathered}
\)
Hence, the coefficient of \(t^4=1 \cdot \frac{3 \cdot 4 \cdot 5 \cdot 6}{4 !}\)
\(
=\frac{3 \times 4 \times 5 \times 6}{4 \times 3 \times 2 \times 1}=15
\)
The value of
\(\begin{aligned}
& \left({ }^{21} \mathrm{C}_1-{ }^{10} \mathrm{C}_1\right)+\left({ }^{21} \mathrm{C}_2-{ }^{10} \mathrm{C}_2\right)+\left({ }^{21} \mathrm{C}_3-{ }^{10} \mathrm{C}_3\right)+\left({ }^{21} \mathrm{C}_4-{ }^{10} \mathrm{C}_4\right) \\
& +\ldots . .+\left({ }^2 \mathrm{C}_{10}-{ }^{10} \mathrm{C}_{10}\right) \text { is : }
\end{aligned}\) [Main 2017]
(a) We have \(\left({ }^{21} \mathrm{C}_1+{ }^{21} \mathrm{C}_2 \ldots \ldots . .+{ }^{21} \mathrm{C}_{10}\right)\)
\(
\begin{aligned}
& -\left({ }^{10} \mathrm{C}_1+{ }^{10} \mathrm{C}_2 \ldots .{ }^{10} \mathrm{C}_{10}\right) \\
& =\frac{1}{2}\left[\left({ }^{21} \mathrm{C}_1+\ldots .+{ }^{21} \mathrm{C}_{10}\right)+\left({ }^{21} \mathrm{C}_{11}+\ldots .{ }^{21} \mathrm{C}_{20}\right)\right]-\left(2^{10}-1\right) \\
& \left(\because{ }^{10} \mathrm{C}_1+{ }^{10} \mathrm{C}_2+\ldots .+{ }^{10} \mathrm{C}_{10}=2^{10}-1\right) \\
& =\frac{1}{2}\left[2^{21}-2\right]-\left(2^{10}-1\right) \\
& =\left(2^{20}-1\right)-\left(2^{10}-1\right)=2^{20}-2^{10} \\
&
\end{aligned}
\)
If the number of terms in the expansion of \(\left(1-\frac{2}{x}+\frac{4}{x^2}\right)^n\), \(x \neq 0\), is 28 , then the sum of the coefficients of all the terms in this expansion, is : [Main 2016]
(b) Total number of terms \(={ }^{\mathrm{n}+2} \mathrm{C}_2=28\) \((n+2)(n+1)=56 ; n=6\)
\(\therefore\) Put \(x=1\) in expansion \(\left(1-\frac{2}{x}+\frac{4}{x^2}\right)^6\),
we get sum of coefficient \(=(1-2+4)^6\) \(=3^6=729\).
The sum of coefficients of integral power of \(x\) in the binomial expansion \((1-2 \sqrt{\mathrm{x}})^{50}\) is : [Main 2015]
(c) We know that \((a+b)^n+(a-b)^n\)
\(
\begin{aligned}
& =2\left[{ }^n C_0 a^n b^0+{ }^n C_2 a^{n-2} b^2+{ }^n C_4 a^{n-4} b^4 \ldots\right] \\
& (1-2 \sqrt{\mathrm{x}})^{50}+(1+2 \sqrt{\mathrm{x}})^{50} \\
& 2\left[{ }^{50} C_0+{ }^{50} C_2(2 \sqrt{x})^2+{ }^{50} C_4(2 \sqrt{x})^4 \ldots\right] \\
& =2\left[{ }^{50} \mathrm{C}_0+{ }^{50} \mathrm{C}_2 2^2 \mathrm{x}+{ }^{50} \mathrm{C}_4 2^4 \mathrm{x}^2+\ldots\right]
\end{aligned}
\)
Putting \(\mathrm{x}=1\), we get,
\(
{ }^{50} C_0+{ }^{50} C_2 2^2+{ }^{50} C_4 2^4 \ldots=\frac{3^{50}+1}{2}
\)
Coefficient of \(x^{11}\) in the expansion of \(\left(1+x^2\right)^4\left(1+x^3\right)^7\left(1+x^4\right)^{12}\) is [Adv. 2014]
(c) Coeff. of \(x^{11}\) in exp. of \(\left(1+x^2\right)^4\left(1+x^3\right)^7\left(1+x^4\right)^{12}\) \(=\left[\right.\) Coeff. of \(x^a\) in \(\left.\left(1+x^2\right)^4\right] \times\left[\right.\) Coeff. of \(x^b\) in \(\left.\left(1+x^3\right)^7\right]\)
Such that \(a+b+c=11\)
Here \(a=2 m, b=3 n, c=4 p\)
\(\therefore 2 m+3 n+4 p=11\)
Case I : \(m=0, n=1, p=2\)
Case II : \(m=1, n=3, p=0\)
Case III : \(m=2, n=1, p=1\)
Case IV : \(m=4, n=1, p=0\)
\(\therefore\) Required coefficient.
\(={ }^4 C_0 \times{ }^7 C_1 \times{ }^{12} C_2+{ }^4 C_1 \times{ }^7 C_3 \times{ }^{12} C_0\)
[Coeff. of \(x^c\) in \(\left.(1+x)^4\right]\)
\(
=462+140+504+7=1113 \quad+{ }^4 C_2 \times{ }^7 C_1 \times{ }^{12} C_1+{ }^4 C_4 \times{ }^7 C_1 \times{ }^{12} C_0
\)
The value of \(\left(\begin{array}{c}30 \\ 0\end{array}\right)\left(\begin{array}{c}30 \\ 10\end{array}\right)-\left(\begin{array}{c}30 \\ 1\end{array}\right)\left(\begin{array}{c}30 \\ 11\end{array}\right)+\left(\begin{array}{c}30 \\ 2\end{array}\right)\left(\begin{array}{c}30 \\ 12\end{array}\right) \ldots . .+\left(\begin{array}{l}30 \\ 20\end{array}\right)\left(\begin{array}{l}30 \\ 30\end{array}\right)\) is where \(\left(\begin{array}{l}n \\ r\end{array}\right)={ }^n C_r [2005 \mathrm{~S}]\)
\(
\begin{aligned}
& (1-x)^{30}={ }^{30} C_0 x^0-{ }^{30} C_1 x^1+{ }^{30} C_2 x^2 \\
& +\ldots \ldots \ldots \ldots+(-1)^{30}{ }^{30} C_{30} x^{30} \ldots \ldots \ldots \ldots(i) \\
& (x+1)^{30}={ }^{30} C_0 x^3 \mathrm{O}-{ }^{30} C_1 x^{29}+{ }^{30} C_2 x^{28} \\
& +\ldots \ldots \ldots \ldots+{ }^{30} C_{10} x^{20}+\ldots \ldots \ldots . .+{ }^{30} C_{30} x^0 \ldots \ldots(ii)
\end{aligned}
\)
Multiplying (i) and (ii) and equating the coefficient of \(x^{20}\) on both sides, we get the required sum \(=\) coefficient of \(x^{20}\) in \(\left(1-x^2\right)^{30}={ }^{30} C_{10}\).
The \(\operatorname{sum} \sum_{i=0}^m\left(\begin{array}{l}10 \\ i\end{array}\right)\left(\begin{array}{c}20 \\ m-i\end{array}\right)\), (where \(\left(\begin{array}{l}p \\ q\end{array}\right)=0\) if \(\mathrm{p}>\mathrm{q}\) ) is maximum when \(m\) is [2002S]
(c) \(\begin{aligned} \sum_{i=0}^m{ }^{m 0} C_i^{20} C_{m-i}={ }^{10} C_0{ }^{20} C_m & +{ }^{10} C_1{ }^{20} C_{m-1} \\ & +{ }^{10} C_2{ }^{20} C_{m-2}+\ldots . .+{ }^{10} C_m{ }^{20} C_0\end{aligned}\) \(=\) Coeff. of \(x^m\) in the expansion of product \((1+x)^{10}\)
\(=\) Coeff. of \(x^m\) in the expansion of \((1+x)^{30}\) \(={ }^{30} C_m\)
\(\sum_{i=0}^n{ }^{10} C_i{ }^{20} C_{m-1}\) will be maximum, if \({ }^{30} C_m\) will be maximum.
Clearly, \({ }^{30} C_m\) will be maximum when \(m=\frac{30}{2}=15\)
\(
\left[\because \operatorname{Max} \cdot\left({ }^n C_r\right)=\left\{\begin{array}{l}
{ }^n C_{n / 2} \text { if } n \text { is even } \\
{ }^n C_{\frac{n+1}{2}} \text { if } n \text { is odd }
\end{array}\right]\right.
\)
For \(2 \leq r \leq n,\left(\begin{array}{l}n \\ r\end{array}\right)+2\left(\begin{array}{c}n \\ r-1\end{array}\right)+\left(\begin{array}{c}n \\ r-2\end{array}\right)=\)
(d) \(\left(\begin{array}{l}n \\ r\end{array}\right)+2\left(\begin{array}{c}n \\ r-1\end{array}\right)+\left(\begin{array}{c}n \\ r-2\end{array}\right)\)
\(
\begin{gathered}
\left.=\left[\left(\begin{array}{l}
n \\
r
\end{array}\right)+\left(\begin{array}{c}
n \\
r-1
\end{array}\right)\right]+\left[\left(\begin{array}{c}
n \\
r-1
\end{array}\right)+\left(\begin{array}{c}
n \\
r-2
\end{array}\right)\right\}\right] \\
=\left[\begin{array}{l}
\text { Here }\left[\begin{array}{l}
n \\
r
\end{array}\right],\left[\begin{array}{c}
n \\
r-1
\end{array}\right] \text { and }\left[\begin{array}{c}
n \\
r-2
\end{array}\right] \\
\text { represent }{ }^n C_r,{ }^n \mathrm{C}_{\mathrm{r}-1} \text { and }{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2}
\end{array}\right]
\end{gathered}
\)
\(
=\left(\begin{array}{c}
n+1 \\
r
\end{array}\right)+\left(\begin{array}{c}
n+1 \\
r
\end{array}\right)=\left(\begin{array}{c}
n+2 \\
r
\end{array}\right) \quad\left[\because{ }^n C_r+{ }^n C_{r-1}={ }^{n+1} C_r\right]
\)
If in the expansion of \((1+x)^m(1-x)^n\), the coefficients of \(x\) and \(x^2\) are 3 and \(-6\) respectively, then \(m\) is [1999 – 2 Marks]
(c) \((1+x)^m(1-x)^n\)
\(
\begin{gathered}
=\left[1+m x+\frac{m(m-1)}{2 !} x^2+\ldots\right]\left[1-n x+\frac{n(n-1)}{2 !} x^2-\ldots\right] \\
=1+(m-n) x+\left[\frac{m(m-1)}{2}+\frac{n(n-1)}{2}-m n\right] x^2+\ldots
\end{gathered}
\)
Given, \(m-n=3 \dots(i)\)
\(
\text { and } \begin{aligned}
& \frac{1}{2} m(m-1)+\frac{1}{2} n(n-1)-m n=-6 \\
& \Rightarrow m^2+n^2-2 m n-(m+n)=-12 \\
& \Rightarrow(m-n)^2-(m+n)=-12 \\
& \Rightarrow m+n=9+12=21 \dots(ii)
\end{aligned}
\)
From (i) and (ii), we get \(m=12\)
The expression \(\left(x+\left(x^3-1\right)^{\frac{1}{2}}\right)^5+\left(x-\left(x^3-1\right)^{\frac{1}{2}}\right)^5\) is a polynomial of degree [1992 – 2 Marks]
(c) Given expression:
\(
\left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5
\)
We know that using binomial theorem,
\(
(x+a)^n+(x-a)^n=2\left[{ }^n C_0 x^n+{ }^n C_2 x^{n-2} a^2\right.
\)
\(\therefore\) The given expression
\(
=2\left[{ }^5 C_0 x^5+{ }^5 C_2 x^3\left(x^3-1\right)+{ }^5 C_4 x\left(x^3-1\right)^2\right]
\)
since maximum power of \(x\) involved in the expansionis 7 . Also, only +ve integral powers of \(x\) are involved in the expansion, therefore given expression is a polynomial of degree 7.
The coefficient of \(x^4\) in the expansion of \(\left(1+x+x^2\right)^{10}\) is ….. [Main Jan. 9, 2020 (I)]
(615) General term of the expansion \(=\frac{10 !}{\alpha ! \beta ! \gamma !} x^{\beta+2 \gamma}\)
For coefficient of \(x^4 ; \beta+2 \gamma=4\)
Here, three cases arise
Case-1: When \(\gamma=0, \beta=4, \alpha=6\)
\(
\Rightarrow \frac{10 !}{\alpha ! \beta ! \gamma !} x^{\beta+2 \gamma}
\)
Case-2: When \(\gamma=1, \beta=2, \alpha=7\)
\(
\Rightarrow \frac{10 !}{7 ! 2 ! 1 !}=360
\)
Case-3: When \(\gamma=2, \beta=0, \alpha=8\)
\(
\Rightarrow \frac{10 !}{8 ! 0 ! 2 !}=45
\)
Hence, total \(=615\)
If the sum of the coefficients of all even powers of \(x\) in the product \(\left(1+x+x^2+\ldots+x^{2 n}\right)\left(1-x+x^2-x^3+\ldots+x^{2 n}\right)\) is 61, then \(n\) is equal to …. [Main Jan. 7, 2020 (I)]
(30)Let \(\left(1-x+x^2 \ldots \ldots x^{2 n}\right)\left(1+x+x^2 \ldots \ldots x^{2 n}\right)\) \(=a_0+a_1 x+a_2 x^2+\ldots \ldots\)
put \(x=1\)
\(
1(2 n+1)=a_0+a_1+a_2+\ldots . a_{2 n} \dots(i)
\)
put \(x=-1\)
\(
1(2 n+1)=a_0+a_1+a_2+\ldots \ldots a_{2 n} \dots(ii)
\)
Adding (i) and (ii), we get,
\(
\begin{aligned}
4 n+2 & =2\left(a_0+a_2+\ldots .\right)=2 \times 61 \\
\Rightarrow & 2 n+1=61 \Rightarrow n=30 .
\end{aligned}
\)
Suppose
\(
\operatorname{det}\left[\begin{array}{cc}
\sum_{k=0}^n k & \sum_{k=0}^n{ }^n C_k k^2 \\
\sum_{k=0}^n{ }^n C_k k & \sum_{k=0}^n{ }^n C_k 3^k
\end{array}\right]=0
\)
holds for some positive integer \(\mathrm{n}\). The \(\sum_{k=0}^n \frac{{ }^n C_k}{k+1}\) equals …… [Adv. 2019]
Finding the value of \(\sum_{k=0}^n \frac{{ }^n C_k}{k+1}\)
Step 1: Consider the given determinant as,
\(
\left|\begin{array}{cc}
\sum_{k=0}^n k & \sum_{k=0}^n{ }^n C_k k^2 \\
\sum_{k=0}^n{ }^n C_k k & \sum_{k=0}^n{ }^n C_k 3^k
\end{array}\right|=0
\)
From the standard formula, we can write the above determinant as,
\(
\left|\begin{array}{cc}
\frac{n(n+1)}{2} & n(n+1) 2^{n-2} \\
n .2^{n-1} & 4^n
\end{array}\right|=0
\)
Step 2: Simplify the above determinant as,
\(
\begin{aligned}
& \Rightarrow \frac{n(n+1)}{2} \cdot 4^n-n^2(n+1) 2^{2 n-3}=0 \\
& \Rightarrow \frac{4^n}{2}-n \frac{4^{n-1}}{2}=0 \\
& \Rightarrow \frac{4^n}{2}=n \frac{4^{n-1}}{2} \\
& \Rightarrow n=\frac{2}{4^{n-1}} \times \frac{4^n}{2} \\
& \Rightarrow n=4^{n-n+1} \\
& \Rightarrow n=4
\end{aligned}
\)
Step 3: Find the value of \(\sum_{k=0}^n \frac{{ }^n C_k}{k+1}\)
\(
\begin{aligned}
& \begin{aligned}
\sum_{k=0}^n \frac{{ }^n C_k}{k+1} & =\sum_{k=0}^4 \frac{{ }^4 C_k}{k+1} \\
& =\frac{1}{5} \sum_{k=0}^4{ }^5 C_{k+1} \\
& =\frac{1}{5}\left(2^5-1\right) \\
& =\frac{1}{5}(32-1) \\
& =\frac{31}{5} \\
& =6.20
\end{aligned} \\
& \text { Therefore, the value of } \sum_{k=0}^n \frac{{ }^n C_k}{k+1}=6.20
\end{aligned}
\)
The sum of the coefficients of the polynomial \(\left(1+x-3 x^2\right)^{2163}\) is \(\text { [1982 – } 2 \text { Marks] }\)
Sum of coefficients is obtained by putting \(x=1\)
ie, \((1+1-3)^{2163}=-1\)
Thus, sum of the coefficients of the polynomial
\(\left(1+x-3 x^2\right)^{2163}\) is \(-1\)
If \(C_r\) stands for \({ }^n C_r\), then the sum of the series
\(
\frac{2\left(\frac{n}{2}\right) !\left(\frac{n}{2}\right) !}{n !}\left[C_0^2-2 C_1^2+3 C_2^2-\ldots \ldots \ldots+(-1)^n(n+1) C_n^2 {]}\right.
\)
where \(n\) is an even positive integer, is equal to [1986 – 2 Marks]
\(
\begin{aligned}
& \mathrm{C}_0^2-2 \mathrm{C}_1^2+3 \mathrm{C}_2^2-4 \mathrm{C}_3^2+\ldots+(-1)^{\mathrm{n}}(\mathrm{n}+1) \mathrm{C}_{\mathrm{n}}^2 \\
& =\left[\mathrm{C}_0^2-\mathrm{C}_1^2+\mathrm{C}_2^2-\mathrm{C}_3^2+\ldots+(-1)^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}^2\right]-\left[\mathrm{C}_1^2-2 \mathrm{C}_2^2+3 \mathrm{C}_3^2-\ldots+(-1)^{\mathrm{n}} \mathrm{nC}_{\mathrm{n}}^2\right] \\
& =(-1)^{\frac{n}{2}} \frac{\mathrm{n} !}{\left(\frac{n}{2}\right) !\left(\frac{n}{2}\right) !}-(-1)^{\frac{n}{2}-1} \frac{n}{2} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\frac{n}{2}} \\
& =(-1)^{\frac{n}{2}} \frac{\mathrm{n} !}{\left(\frac{n}{2}\right) !\left(\frac{n}{2}\right) !}\left(1+\frac{n}{2}\right) \\
& \therefore 2\left(\frac{\mathrm{n}}{2}\right) !\left(\frac{\mathrm{n}}{2}\right) !\left[\mathrm{C}_0^2-2 \mathrm{C}_1^2+3 \mathrm{C}_2^2-\ldots+(-1)^{\mathrm{n}}(\mathrm{n}+2) \mathrm{C}_{\mathrm{n}}^2\right] \\
& =(-1)^{\frac{n}{2}}(\mathrm{n}+2)
\end{aligned}
\)
If the following statement true?
\(
\begin{aligned}
& 2^k\left(\begin{array}{l}
n \\
0
\end{array}\right)\left(\begin{array}{l}
n \\
k
\end{array}\right)-2^{k-1}\left(\begin{array}{l}
n \\
1
\end{array}\right)\left(\begin{array}{l}
n-1 \\
k-1
\end{array}\right) \\
& +2^{k-2\left(\begin{array}{l}
n \\
2
\end{array}\right)}\left(\begin{array}{l}
n-2 \\
k-2
\end{array}\right)-\ldots . .(-1)^k\left(\begin{array}{l}
n \\
k
\end{array}\right)\left(\begin{array}{c}
n-k \\
0
\end{array}\right)=\left(\begin{array}{l}
n \\
k
\end{array}\right) \\
&
\end{aligned}
\)
To show that
\(
\begin{aligned}
& 2^{k, n} C_0 \cdot{ }^n C_k-2^{k-1} \cdot{ }^n C_1 \cdot{ }^{n-1} C_{k-1}+2^{k-2} \cdot{ }^n C_2 \cdot{ }^{n-2} C_{k-2} \\
&-\ldots . .+(-1)^{k n} C_k{ }^{n-k} C_0={ }^n C_k
\end{aligned}
\)
Taking LHS
\(
\begin{aligned}
& 2^k \cdot{ }^n C_0 \cdot{ }^n C_k-2^{k-1} \cdot{ }^n C_1 \cdot{ }^{n-1} C_{k-1}+\ldots+ (-1)^k \cdot{ }^n C_k \cdot{ }^{n-k} C_0\\
&=\sum_{r=0}^k(-1)^r \cdot 2^{k-r} \cdot{ }^n C_r \cdot{ }^{k-r} C_k \cdot{ }^{n-k} C_{k-r} \\
&=\sum_{r=0}^k(-1)^r 2^{k-r} \cdot \frac{n !}{r !(n-r) !} \cdot \frac{(n-r) !}{(k-r) !(n-k) !}
\end{aligned}
\)
\(
\begin{aligned}
& =\sum_{r=0}^k(-1)^r \cdot 2^{k-r} \cdot \frac{n !}{(n-k) ! \cdot k !} \cdot \frac{k !}{r !(k-r) !} \\
& \quad=\sum_{r=0}^k(-1)^r \cdot 2^{k-r}{ }^n C_k \cdot{ }^k C_r=2^k \cdot{ }^n C_k\left\{\sum_{r=0}^k(-1)^r \cdot \frac{1}{2^r} \cdot{ }^k C_r\right\} \\
& \quad=2^k \cdot{ }^n C_k\left(1-\frac{1}{2}\right)^k={ }^n C_k=\text { R.H.S. }
\end{aligned}
\)
For any positive integer \(m, n\left(\right.\) with \(\mathrm{n} \geq \mathrm{m}\) ), let \(\left(\begin{array}{l}n \\ m\end{array}\right)={ }^n C_m\). Given that \(\left(\begin{array}{c}n \\ m\end{array}\right)+\left(\begin{array}{c}n-1 \\ m\end{array}\right)+\left(\begin{array}{c}n-2 \\ m\end{array}\right)+\ldots . .+\left(\begin{array}{c}m \\ m\end{array}\right)=\left(\begin{array}{c}n+1 \\ m+2\end{array}\right)\). Given that
\(
\left(\begin{array}{l}
n \\
m
\end{array}\right)+2\left(\begin{array}{c}
n-1 \\
m
\end{array}\right)+3\left(\begin{array}{c}
n-2 \\
m
\end{array}\right)+\ldots . .+(n-m+1)\left(\begin{array}{c}
m \\
m
\end{array}\right)=\left(\begin{array}{c}
n+2 \\
m+2
\end{array}\right) \text {. }
\) Are these statements true? [2000 – 6 Marks]
Given that for positive integers \(m\) and \(n\) such that \(n \geq m\), then to prove that
\(
\begin{aligned}
& \begin{array}{c}
{ }^n C_m+{ }^{n-1} C_m+{ }^{n-2} C_m+\ldots .+{ }^m C_m={ }^{n+1} C_{m+1} \\
\text { L.H.S. }{ }^m C_m+{ }^{m+1} C_m+{ }^{m+2} C_m+\ldots .+{ }^{n-1} C_m+{ }^n C_m \\
\text { [writing L.H.S. in reverse order] }
\end{array} \\
& \begin{array}{l}
\left({ }^{m+1} C_{m+1}+{ }^{m+1} C_m\right)+{ }^{m+2} C_m+\ldots .+{ }^{n-1} C_m+{ }^n C_m \quad\left[\because \quad{ }^m C_m={ }^{m+1} C_{m+1}\right]
\end{array} \\
& =\left({ }^{m+2} C_{m+1}+{ }^{m+2} C_m\right)+{ }^{m+3} C_m+\ldots .+{ }^n C_m \quad\left[\because \quad{ }^n C_{r+1}+{ }^n C_r={ }^{n+1} C_{r+1}\right]
\end{aligned}
\)
Combining in the same way we get
\(
={ }^n C_{m+1}+{ }^n C_m={ }^{n+1} C_{m+1}=\text { R.H.S. }
\)
Again we have to prove
\(
\begin{aligned}
& \quad{ }^n C_m+2^{n-1} C_m+3{ }^{n-2} C_m+\ldots+(n-m+1){ }^m C_m \\
& ={ }^{n+2} C_{m+2} \\
& =\left[{ }^n C_m+{ }^{n-1} C_m+{ }^{n-2} C_m+\ldots+{ }^m C_m\right]+\left[{ }^{n-1} C_m\right. \\
& \left.+{ }^{n-2} C_m+\ldots .+{ }^m C_m\right]+\left[{ }^{n-2} C_m+\ldots .+{ }^m C_m\right]+\ldots .+\left[{ }^m C_m\right] \\
& {[n-m+1 \text { bracketed terms }]} \\
& ={ }^{n+1} C_{m+1}+{ }^n C_{m+1}{ }^{n-1} C_{m+1} \ldots+{ }^{m+1} C_{m+1} \\
& ={ }^{n+2} C_{m+2} \\
& {[\text { Replacing } n \text { by } n+1 \text { and } m \text { by } m+1 \text { in the previous result.] }} \\
& =\text { R.H.S. }
\end{aligned}
\)
Let \(n\) be a positive integer and
\(
\left(1+x+x^2\right)^n=a_0+a_1 x+\ldots \ldots \ldots . .+a_{2 n} x^{2 n}
\)
It is given that \(a_0^2-a_1^2+a_2^2 \ldots \ldots \ldots \ldots . .+a_{2 n}^2=a_n\). Is this statement true or false? [1994 – 5 Marks]
\(
\text { Given : }\left(1+x+x^2\right)^n=a_0+a_1 x+\ldots .+\mathrm{a}_{2 n} x^{2 n} \dots(i)
\)
where \(n\) is a +ve integer.
On replacing \(\mathrm{x}\) by \(-\frac{1}{x}\) in equation(i), we get
\(
\left(1-\frac{1}{x}+\frac{1}{x^2}\right)^n=a_0-\frac{a_1}{x}+\frac{a_2}{x^2}-\frac{a_3}{x^3}+\ldots .+\frac{a_{2 n}}{x^{2 n}} \dots(ii)
\)
Multiplying equation (i) and (ii) :
\(
\begin{gathered}
\frac{\left(1+x+x^2\right)^n\left(x^2-x+1\right)^n}{x^{2 n}} \\
=\left(a_0+a_1 x+\ldots .+a_{2 n} x^{2 n}\right)\left(a_0-\frac{a_1}{x}+\frac{a_2}{x^2}+\ldots+\frac{a_{2 n}}{x^{2 n}}\right)
\end{gathered}
\)
Equating the constant terms on both sides we get
\(a_0^2-a_1^2+a_2^2-a_3^2+\ldots .+a_{2 n}^2=\) constant term in the expansion of
\(
\frac{\left[\left(1+x+x^2\right)\left(1-x+x^2\right)\right]^n}{x^{2 n}}
\)
\(=\) Coeff. of \(x^{2 n}\) in the expansion of \(\left(1+x^2+x^4\right)^n\)
But replacing \(x\) by \(x^2\) in equation (i), we have
\(
\begin{aligned}
& \left(1+x^2+x^4\right)^n=a_0+a_1 x^2+\ldots+a_{2 n}\left(x^2\right)^{2 n} \\
& \quad \therefore \quad \text { Coeff. of } x^{2 n}=a_n \\
& \therefore \quad a_0^2-a_1^2+a_2^2-a_3^2+\ldots .+a_{2 n}^2=a_n
\end{aligned}
\)
If \(\sum_{r=0}^{2 n} a_r(x-2)^r=\sum_{r=0}^{2 n} b_r(x-3)^r\) and \(a_k=1\) for all \(k \geq n\), then \(b_n={ }^{2 n+1} C_{n+1}\). Is this statement true or false? [1992 – 6 Marks]
Given : \(\sum_{r=0}^{2 n} a_r(x-2)^r=\sum_{r=0}^{2 n} b_r(x-3)^r \dots(i)\)
and \(a_k=1, \forall k \geq n\)
To prove \(: b_n={ }^{2 n+1} C_{n+1}\)
In the given equation (i) let us put \(x-3=y\)
\(
\begin{aligned}
& \Rightarrow x-2=y+1 \\
& \therefore \sum_{r=0}^{2 n} a_r(1+y)^r=\sum_{r=0}^{2 n} b_r(y)^r[\text { From (i) }] \\
& \Rightarrow a_0+a_1(1+y)+\ldots .+a_{n-1}(1+y)^{n-1}+(1+y)^n \\
& +(1+y)^{n+1}+\ldots .+(1+y)^{2 n}
\end{aligned}
\)
\(
=\sum_{r=0}^{2 n} b_r y^r
\)
[Using \(a_k=1, \forall k \geq n\) ]
Equating the coefficients of \(y^n\) on both sides we get
\(
\begin{aligned}
& \Rightarrow{ }^n C_n+{ }^{n+1} C_n+{ }^{n+2} C_n+\ldots .+{ }^{2 n} C_n=b_n \\
& \Rightarrow\left({ }^{n+1} C_{n+1}+{ }^{n+1} C_n\right)+{ }^{n+2} C_n+\ldots .+{ }^{2 n} C_n=b_n
\end{aligned}
\)
\(\left[{ }^n C_n={ }^{n+1} C_{n+1}=1\right]\)
\(
\Rightarrow b_n={ }^{n+2} C_{n+1}+{ }^{n+2} C_n+\ldots .+{ }^{2 n} C_n
\)
\(
\left[{ }^m C_r+{ }^m C_{r-1}={ }^{m+1} C_r\right]
\)
Combining the terms in similar way, we get
\(
\Rightarrow b_n={ }^{2 n} C_{n+1}+{ }^{2 n} C_n \Rightarrow \quad b_n={ }^{2 n+1} C_{n+1}
\)
Given that
\(
C_0-2^2 C_1+3^2 C_2-\ldots \ldots \ldots . .+(-1)^n(n+1)^2 C_n=0,
\)
\(n>2\), where \(C_r={ }^n C_r\).
\(
\text { [1989 – } 5 \text { Marks] }
\). Is this statement true or false?
We know
\(
(1-x)^n=C_0-C_1 x+C_2 x^2-C_3 x^3+\ldots .+(-1)^n C_n x^n
\)
On multiplying both sides by \(x\),
\(
x(1-x)^n=C_0 x-C_1 x^2+C_2 x^3-C_3 x^4+\ldots .+(-1)^n C_n x^{n+1}
\)
On differentiating both sides w.r. to \(x\),
\(
\begin{aligned}
& (1-x)^n-n x(1-x)^{n-1} \\
& =C_0-2 C_1 x+3 C_2 x^2-4 C_3 x^3+\ldots .+(-1)^n(n+1) C_n x^n
\end{aligned}
\)
Again on multiplying both sides by \(x\),
\(
\begin{gathered}
x(1-x)^n-n x^2(1-x)^{n-1} \\
=C_0 x-2 C_1 x^2+3 C_2 x^3-4 C_3 x^4+\ldots .+(-1)^n(n+1) C_n x^{n+1}
\end{gathered}
\)
On differentiating both sides with respect to \(x\),
\(
\begin{aligned}
& (1-x)^n-n x(1-x)^{n-1}-2 n x(1-x)^{n-1}+n x^2(n-1)(1-x)^{n-2} \\
& =C_0-2^2 C_1 x+3^2 C_2 x^2-4^2 C_3 x^3+\ldots .+(-1)^n(n+1)^2 C_n x^n
\end{aligned}
\)
Putting \(x=1\), in above, we get
\(
0=C_0-2^2 C_1+3^2 C_2-4^2 C_3+\ldots .+(-1)^n(n+1)^2 C_n
\)
\(
\text { Given } s_n=1+q+q^2+\ldots \ldots+q^n
\)
\(
\begin{aligned}
& S_n=1+\frac{q+1}{2}+\left(\frac{q+1}{2}\right)^2+\ldots . .+\left(\frac{q+1}{2}\right)^n, q \neq 1 \text { Given that } \\
& { }^{n+1} C_1+{ }^{n+1} C_2 s_1+{ }^{n+1} C_3 s_2+\ldots . .+{ }^{n+1} C_{n+1} s_n=2^n S_n
\end{aligned}
\)
[1984 – 4 Marks]. Is this statement true or false?
\(
\begin{aligned}
& { }^{n+1} C_1+{ }^{n+1} C_2 s_1+{ }^{n+1} C_3 s_2+\ldots .+{ }^{n+1} C_{n+1} s_n \\
& =\sum_{r=1}^{n+1}{ }^{n+1} C_r s_{r-1},
\end{aligned}
\)
where
\(
\begin{aligned}
& s_n=1+q+q^2+\ldots+q^n=\frac{1-q^{n+1}}{1-q} \\
& \therefore \sum_{r=1}^{n+1}{ }^{n+1} C_r\left(\frac{1-q^r}{1-q}\right)=\frac{1}{1-q}\left(\sum_{r=1}^{n+1}{ }^{n+1} C_r-\sum_{r=1}^{n+1}{ }^{n+1} C_r q^r\right) \\
& =\frac{1}{1-q}\left[(1+1)^{n+1}-(1+q)^{n+1}\right] \\
& =\frac{1}{1-q}\left[2^{n+1}-(1+q)^{n+1}\right] \quad \ldots \text { (i) }
\end{aligned}
\)
Also, \(S_n=1+\left(\frac{q+1}{2}\right)+\left(\frac{q+1}{2}\right)^2+\ldots+\left(\frac{q+1}{2}\right)^n\)
\(
=\frac{1-\left(\frac{q+1}{2}\right)^{n+1}}{1-\left(\frac{q+1}{2}\right)}=\frac{2^{n+1}-(q+1)^{n+1}}{2^n(1-q)} \dots(ii)
\)
From equations (i) and (ii),
\(
{ }^{n+1} C_1+{ }^{n+1} C_2 s_1+{ }^{n+1} C_3 s_2+\ldots+{ }^{n+1} C_{n+1} s_n=2^n S_n
\)
If \((1+x)^n=C_0+C_1 x+C_2 x^2+\ldots \ldots+C_n x^n\) then Given that the sum of the products of the \(\mathrm{C}_{\mathrm{i}}\) ‘s taken two at a time, represented by \(\sum_{0 \leq i<j \leq n} \sum C_i C_j\) is equal to \(2^{2 n-1}-\frac{(2 n) !}{2(n !)^2}\). Is this true? [1983 – 3 Marks]
\(
\begin{aligned}
& S=\sum \sum C_i C_j \\
& 0 \leq i<j \leq n \\
& \Rightarrow S=C_0\left(C_1+C_2+C_3+\ldots .+C_n\right)+C_1\left(C_2+C_3+\ldots .+C_n\right) \\
& +C_2\left(C_3+C_4+C_5+\ldots C_n\right)+\ldots C_{n-1}\left(C_n\right) \\
& \Rightarrow S=C_0\left(2^n-C_0\right)+C_1\left(2^n-C_0-C_1\right)+ \\
& C_2\left(2^n-C_0-C_1-C_2\right) \\
& +\ldots .+C_{n-1}\left(2^n-C_0-C_1 \ldots . C_{n-1}\right) \\
& +C_n\left(2^n-C_0-C_1 \ldots C_n\right) \\
& \Rightarrow S=2^n\left(C_0+C_1+C_2+\ldots .+C_{n-1}+C_n\right) \\
& -\left(C_0^2+C_1^2+C_2^2+\ldots .+C_n^2\right)-S \\
& \Rightarrow 2 S=2^n \cdot 2^n-\frac{2 n !}{(n !)^2}=2^{2 n}-\frac{2 n !}{(n !)^2} \\
&
\end{aligned}
\)
Given that
\(
C_1+2 C_2 x+3 C_3 x^2+\ldots \ldots \ldots . .+2 n C_{2 n} x^{2 n-1}=2 n(1+x)^{2 n-1}
\)
where \(C_r=\frac{(2 n) !}{r !(2 n-r) !} \quad r=0,1,2, \ldots \ldots \ldots \ldots \ldots, 2 n\)
then
\(
C_1^2-2 C_2^2+3 C_3^2-\ldots \ldots \ldots \ldots \ldots \ldots .2 n C_{2 n}^2=(-1)^n n C_n \text {. }
\).
Is this statement true? [1979]
Given : \(C_1+2 C_2 x+3 C_3 x^2+\ldots . .+2 n C_{2 n} \pi^{2 n-1}=2 n(1+x)^{2 n-1} \ldots .(\mathrm{i})\)
where \(C_r=\frac{2 n !}{r !(2 n-r) !}\)
Integrating both sides with respect to \(x\), under the limits 0 to \(x\), we get
\(
\begin{aligned}
& {\left[C_1 x+C_2 x^2+C_3 x^3+\ldots .+C_{2 \pi} x^{2 n}\right]{ }_0^x=\left[(1+x)^{2 n}\right]_0^x} \\
& \quad \Rightarrow C_1 x+C_2 x^2+C_3 x^3+\ldots .+C_{2 n} x^{2 n}=(1+x)^{2 n}-1 \\
& \quad \Rightarrow C_0+C_1 x+C_2 x^2+C_3 x^3+\ldots .+C_{2 \pi} x^{2 n}=(1+x)^{2 n} \dots(ii)
\end{aligned}
\)
Changing \(x\) by \(-\frac{1}{x}\), we get
\(
\begin{aligned}
& \Rightarrow C_0-\frac{C_1}{x}+\frac{C_2}{x^2}-\frac{C_3}{x^3}+\ldots .+(-1)^{2 n} \frac{C_{2 n}}{x^{2 n}}=\left(1-\frac{1}{x}\right)^{2 n} \\
& \Rightarrow C_0 x^{2 n}-C_1 x^{2 n-1}+C_2 x^{2 n-2}-C_3 x^{2 n-3} \\
& +\ldots . .+C_{2 n}=(x-1)^{2 n} \dots(iii)
\end{aligned}
\)
Multiplying eqn. (i) and (iii) and equating the coefficients of \(\mathrm{x}^{2 \mathrm{n}-1}\) on both sides, we get
\(
\begin{aligned}
& \quad C_1^2+2 C_2^2-3 C_3^2+\ldots+2 n C_{2 n}^2 \\
&=\text { coeff.of } x^{2 n-1} \text { in } 2 n(x-1)\left(x^2-1\right)^{2 n-1} \\
&=2 n \text { [coeff. of } x^{2 n-2} \text { in }\left(x^2-1\right)^{2 n-1} \left.-\text { coeff. of } x^{2 n-1} \text { in }\left(x^2-1\right)^{2 n-1}\right]\\
&=2 n\left[\left[^{2 n-1} C_{n-1}(-1)^{n-1}-0\right]\right. \\
&=(-1)^{n-1} \cdot 2 n^{2 n-1} C_{n-1} \\
& \quad \Rightarrow\left.-\text { coeff. of } x^{2 n-1} \text { in }\left(x^2-1\right)^{2 n-1}\right] \\
&=(-1)^n \cdot 2 n^{2 n-1} C_{n-1}=(-1)^n n \cdot\left(\frac{2 n}{n} \cdot{ }^{2 n-1} C_{n-1}\right) \\
&=(-1)^n n \cdot{ }^{2 n} C_n=(-1)^n n \cdot C_n . \quad\left(\because 3 C_3^2+\ldots .+2 n C_n C_n\right)
\end{aligned}
\)
The remainder when \(428^{2024}\) is divided by 21 is ____. [JEE Main 2024 (Online) 9th April Morning Shift]
\(
\begin{aligned}
& 428=21 \times 20+8 \\
\Rightarrow \quad & (428)^{2024} \equiv(20 \times 21+8)^{2024} \equiv 8^{2024}(\bmod 21) \\
& 8^2=21 \times 3+1 \\
& 8^{2024}=(21 \times 3+1)^{1012} \\
\Rightarrow \quad & 8^{2024} \equiv(21 \times 3+1)^{1012}(\bmod 21) \\
& \equiv 1^{2012}(\bmod 21) \\
& 428^{2024} \equiv 1(\bmod 21)
\end{aligned}
\)
If the second, third and fourth terms in the expansion of \((x+y)^n\) are 135,30 and \(\frac{10}{3}\), respectively, then \(6\left(n^3+x^2+y\right)\) is equal to ______. [JEE Main 2024 (Online) 6th April Morning Shift]
\(
\begin{aligned}
& T_2={ }^n C_1 y^1 \cdot x^{n-1}=135 \dots(i)\\
& T_3={ }^n C_2 y^2 \cdot x^{n-2}=30 \dots(ii) \\
& T_4={ }^n C_3 y^3 x^{n-3}=\frac{10}{3} \dots(iii)
\end{aligned}
\)
By \(\frac{\text { (i) }}{\text { (ii) }}\)
\(
\frac{{ }^n C_1}{{ }^n C_2} \frac{x}{y}=\frac{9}{2} \dots(iv)
\)
\(
\begin{aligned}
& \text { By } \frac{\text { (ii) }}{\text { (iii) }} \\
& \frac{{ }^n C_2}{{ }^n C_3} \frac{x}{y}=9 \dots(v) \\
&
\end{aligned}
\)
\(
\begin{aligned}
& \text { By } \frac{( iv )}{( v )} \\
& \frac{{ }^n C_1{ }^n C_3}{{ }^n C_2{ }^n C_2}=\frac{1}{2} \\
& \frac{2 n ^2( n -1)( n -2)}{6}=\frac{ n ( n -1)}{2} \frac{ n ( n -1)}{2} \\
& 4 n-8=3 n-3 \\
& \Rightarrow n =5 \\
& \text { put in (v) } \\
& \frac{x}{y}=9 \\
& x=9 y \\
& \text { put in (i) } \\
& { }^5 C_1 x^4\left(\frac{x}{9}\right)=135 \\
& x^5=27 \times 9 \\
& \Rightarrow x=3, \quad y=\frac{1}{3} \\
& 6\left(n^3+x^2+y\right) \\
& =6\left(125+9+\frac{1}{3}\right) \\
& =806
\end{aligned}
\)
If the constant term in the expansion of \(\left(1+2 x-3 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9\) is \(p\), then \(108 p\) is equal to ____. [JEE Main 2024 (Online) 5th April Morning Shift]
General term of \(\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9\)
\(
T_{r+1}={ }^9 C_r\left(\frac{3}{2} x^2\right)^{9-r}\left(-\frac{1}{3 x}\right)^r={ }^9 C_r(-1)^r 3^{9-2 r} 2^{r-9} x^{18-35}
\)
Constant term in expansion of \(\left(1+2 x-3 x^3\right)\)
\(
\begin{aligned}
& \left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9 \\
& =T_7-3 T_8={ }^9 C_6 3^{-3} \cdot 2^{-3}+3^9 C_7 \cdot 3^{-5} \cdot 2^{-2} \\
& =\frac{3 \times 4 \times 7}{3^3 \cdot 2^3}+\frac{3 \times 9 \times 4}{3^5 \times 2^2}= \\
& p=\frac{42+12}{108}=\frac{54}{108} \\
& 108 p=54
\end{aligned}
\)
Let \(a=1+\frac{{ }^2 C _2}{3!}+\frac{{ }^3 C _2}{4!}+\frac{{ }^4 C _2}{5!}+\ldots, b =1+\frac{{ }^1 C _0+{ }^1 C _1}{1!}+\frac{{ }^2 C _0+{ }^2 C _1+{ }^2 C _2}{2!}+\frac{{ }^3 C _0+{ }^3 C _1+{ }^3 C _2+{ }^3 C _3}{3!}+\ldots\)
Then \(\frac{2 b}{a^2}\) is equal to ____. [JEE Main 2024 (Online) 4th April Morning Shift]
\(
\begin{aligned}
& a=1+\frac{{ }^2 C_2}{3!}+\frac{{ }^3 C_2}{4!}+\frac{{ }^4 C_2}{5!}+\ldots \\
& b=1+\frac{{ }^1 C_0+{ }^1 C_1}{1!}+\frac{{ }^2 C_0+{ }^2 C_1+{ }^2 C_2}{2!}+\ldots \\
& b=1+\frac{2}{1!}+\frac{2^2}{2!}+\frac{2}{3!}+\ldots=e^2 \\
& \text { Using } e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x}{3!}+\ldots \\
& a=1+\sum_{r=2}^{\infty} \frac{{ }^r C_2}{(r+1)!}=1+\sum_{r=2} \frac{r(r-1)}{2(r+1)!} \\
& =1+\frac{1}{2} \sum_{r=2}^{\infty} \frac{(r+1) r-2 r}{(r+1)!} \\
& =1+\frac{1}{2} \sum_{r=2}^{\infty} \frac{1}{(r-1)!}-\frac{1}{2} \sum_{r=2} \frac{2 r}{(r+1)!} \\
& =1+\frac{1}{2}\left(\frac{1}{1!}+\frac{1}{2!}+\ldots\right)-\sum_{r=2}^{\infty} \frac{(r+1)-1}{(r+1)!} \\
& =1+\frac{1}{2}(e-1)-\sum_{r=2}^{\infty} \frac{1}{r!}+\sum_{r=2} \frac{1}{(r+1)!} \\
& =1+\frac{1}{2}(e-1)-\left(e-\frac{1}{1!}-\frac{1}{0!}\right)+\left(e-\frac{1}{1!}-\frac{1}{0!}-\frac{1}{2!}\right) \\
& =1+\frac{e}{2}-\frac{1}{2}-e+2+e-2-\frac{1}{2}=\frac{e}{2} \\
& \Rightarrow \frac{2 b}{a^2}=\frac{2}{\frac{e^2}{4}}= 8 \\
&
\end{aligned}
\)
If the Coefficient of \(x^{30}\) in the expansion of \(\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0\) is \(\alpha\), then \(|\alpha|\) equals _____. [JEE Main 2024 (Online) 1st February Morning Shift]
Coefficient of \(x^{30}\) in \(\frac{(1+x)^6\left(1+x^2\right)^7\left(1-x^3\right)^8}{x^6}\)
\(\Rightarrow\) Coefficient of \(x^{36}\) in \((1+x)^6\left(1+x^2\right)^7\left(1-x^3\right)^8\)
\(\Rightarrow\) General term \(={ }^6 C_{r_1}{ }^7 C_{r_2}{ }^8 C_{r_3}(-1)^{r_3} x^{r_1+2 r_2+3 r_3}\)
\(\Rightarrow r_1+2 r_2+3 r_3=36\)
Case-I:
\(
\begin{tabular}{|c|c|c|}
\hline [latex]r _1[latex] & [latex]r _2[latex] & [latex]r _3[latex] \\
\hline 0 & 6 & 8 \\
\hline 2 & 5 & 8 \\
\hline 4 & 4 & 8 \\
\hline 6 & 3 & 8 \\
\hline
\end{tabular}
\)
\(
r_1+2 r_2=12 \quad\left(\text { Taking } r_3=8\right)
\)
Case-II :
\(
\begin{tabular}{|l|l|l|}
\hline[latex]r_1[latex] & [latex]r_2[latex] & [latex]r_3[latex] \\
\hline 1 & 7 & 7 \\
\hline 3 & 6 & 7 \\
\hline 5 & 5 & 7 \\
\hline
\end{tabular}
\)
\(
r_1+2 r_2=15\left(\text { Taking } r_3=7\right)
\)
\(
\begin{aligned}
&\text { Case-III : }\\
&\begin{array}{|l|l|l|}
\hline r_1 & r_2 & r_3 \\
\hline 4 & 7 & 6 \\
\hline 6 & 6 & 6 \\
\hline
\end{array}
\end{aligned}
\)
\(
\begin{aligned}
& \text { Coefficient }=7+(15 \times 21)+(15 \times 35)+(35) \\
& -(6 \times 8)-(20 \times 7 \times 8)-(6 \times 21 \times 8)+(15 \times 28) \\
& +(7 \times 28)=-678=\alpha \\
& |\alpha|=678
\end{aligned}
\)
Let the coefficient of \(x^r\) in the expansion of \((x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+3)^{n-3}(x+2)^2+\ldots \ldots \ldots \ldots+(x+2)^{n-1}\) be \(\alpha_r\). If \(\sum_{r=0}^n \alpha_r=\beta^n-\gamma^n, \beta, \gamma \in N\), then the value of \(\beta^2+\gamma^2\) equals _____. [JEE Main 2024 (Online) 31st January Evening Shift]
\(
\begin{aligned}
& (x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+3)^{n-3} \\
& (x+2)^2+\ldots \ldots+(x+2)^{n-1} \\
& \sum \alpha_r=4^{n-1}+4^{n-2} \times 3+4^{n-3} \times 3^2 \ldots \ldots+3^{n-1} \\
& =4^{n-1}\left[1+\frac{3}{4}+\left(\frac{3}{4}\right)^2 \ldots+\left(\frac{3}{4}\right)^{n-1}\right] \\
& =4^{n-1} \times \frac{1-\left(\frac{3}{4}\right)^n}{1-\frac{3}{4}} \\
& =4^n-3^n=\beta^n-\gamma^n \\
& \beta=4, \gamma=3 \\
& \beta^2+\gamma^2=16+9=25
\end{aligned}
\)
In the expansion of \((1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0\), the sum of the coefficients of \(x^3\) and \(x^{-13}\) is equal to ____. [JEE Main 2024 (Online) 31st January Morning Shift]
\(
\begin{aligned}
& (1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5 \\
& =(1+x)\left(1-x^2\right)\left(\left(1+\frac{1}{x}\right)^3\right)^5 \\
& =\frac{(1+x)^2(1-x)(1+x)^{15}}{x^{15}} \\
& =\frac{(1+x)^{17}-x(1+x)^{17}}{x^{15}}
\end{aligned}
\)
\(=\operatorname{coeff}\left( x ^3\right)\) in the expansion \(\approx \operatorname{coeff}\left( x ^{18}\right)\) in
\(
\begin{aligned}
& (1+x)^{17}-x(1+x)^{17} \\
& =0-1 \\
& =-1
\end{aligned}
\)
coeff \(\left( x ^{-13}\right)\) in the expansion \(\approx \operatorname{coeff}\left( x ^2\right)\) in
\(
\begin{aligned}
& (1+x)^{17}-x(1+x)^{17} \\
& =\binom{17}{2}-\binom{17}{1} \\
& =17 \times 8-17 \\
& =17 \times 7 \\
& =119
\end{aligned}
\)
Hence Answer \(=119-1=118\)
Let \(\alpha=\sum_{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)\) and \(\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)\) If \(5 \alpha=6 \beta\), then \(n\) equals ____. [JEE Main 2024 (Online) 30th January Evening Shift]
\(
\begin{aligned}
\alpha= & \sum_{k=0}^n \frac{{ }^n C_k \cdot{ }^n C_k}{k+1} \cdot \frac{n+1}{n+1} \\
& =\frac{1}{n+1} \sum_{k=0}^n{ }^{n+1} C_{k+1} \cdot{ }^n C_{n-k} \\
\alpha & =\frac{1}{n+1} \cdot{ }^{2 n+1} C_{n+1} \\
\beta & =\sum_{k=0}^{n-1} C_k \cdot \frac{{ }^n C_{k+1}}{k+2} \frac{n+1}{n+1} \\
& \frac{1}{n+1} \sum_{k=0}^{n-1}{ }^n C_{n-k} \cdot{ }^{n+1} C_{k+2} \\
& =\frac{1}{n+1} \cdot{ }^{2 n+1} C_{n+2} \\
\frac{\beta}{\alpha} & =\frac{2 n+1}{2 n+1} C_{n+2} \\
\frac{\beta}{\alpha} & =\frac{2 n+1-(n+2)+1}{n+2}=\frac{5}{6} \\
n & =10
\end{aligned}
\)
Number of integral terms in the expansion of \(\left\{7^{\left(\frac{1}{2}\right)}+11^{\left(\frac{1}{6}\right)}\right\}^{824}\) is equal to ____. [JEE Main 2024 (Online) 30th January Morning Shift]
General term in expansion of \(\left((7)^{1 / 2}+(11)^{1 / 6}\right)^{824}\) is
\(t _{ r +1}={ }^{824} C _{ r }(7)^{\frac{824- r }{2}}(11)^{ r / 6}\)
For integral term, \(r\) must be multiple of 6 .
Hence \(r=0,6,12, \ldots \ldots .822\)
Total = 138.
Remainder when \(64^{32^{32}}\) is divided by 9 is equal to ____. [JEE Main 2024 (Online) 29th January Evening Shift]
Let \(32^{32}= t\)
\(
\begin{aligned}
& 64^{32^{32}}=64^t=8^{2 t}=(9-1)^{2 t} \\
& =9 k +1
\end{aligned}
\)
Hence remainder \(=1\)
If \(\frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots+\frac{{ }^{11} C_9}{10}=\frac{n}{m}\) with \(\operatorname{gcd}(n, m)=1\), then \(n+m\) is equal to ____. [JEE Main 2024 (Online) 29th January Morning Shift]
\(
\begin{aligned}
& \sum_{ r =1}^9 \frac{{ }^{11} C _{ r }}{ r +1} \\
& =\frac{1}{12} \sum_{ r =1}^9{ }^{12} C _{ r +1} \\
& =\frac{1}{12}\left[2^{12}-26\right]=\frac{2035}{6} \\
& \therefore m + n =2041
\end{aligned}
\)
The coefficient of \(x^{2012}\) in the expansion of \((1-x)^{2008}\left(1+x+x^2\right)^{2007}\) is equal to ____. [JEE Main 2024 (Online) 27th January Evening Shift]
\(
\begin{aligned}
& (1-x)(1-x)^{2007}\left(1+x+x^2\right)^{2007} \\
& (1-x)\left(1-x^3\right)^{2007} \\
& (1-x)\left({ }^{2007} C_0-{ }^{2007} C_1\left(x^3\right)+\ldots \ldots\right)
\end{aligned}
\)
General term
\(
\begin{aligned}
& (1-x)\left((-1)^{r 2007} C_r x^{3 r}\right) \\
& (-1)^{r 2007} C_r x^{3 r}-(-1)^{r 2007} C_r x^{3 r+1} \\
& 3 r=2012 \\
& r \neq \frac{2012}{3} \\
& 3 r+1=2012 \\
& 3 r=2011 \\
& r \neq \frac{2011}{3}
\end{aligned}
\)
Hence there is no term containing \(x ^{2012}\).
So coefficient of \(x^{2012}=0\)
The remainder, when \(7^{103}\) is divided by 17 , is ____. [JEE Main 2023 (Online) 13th April Evening Shift]
\(
\begin{aligned}
& 7^{103}=7 \times 7^{102} \\
& =7 \times(49)^{51} \\
& =7 \times(51-2)^{51} \\
& \text { Remainder }=7 \times(-2)^{51} \\
& =-7\left(2^3 \cdot(16)^{12}\right) \\
& =-56(17-1)^{12} \\
& \text { Remainder }=-56 \times(-1)^{12}=-56+68=12
\end{aligned}
\)
Let \(\alpha\) be the constant term in the binomial expansion of \(\left(\sqrt{x}-\frac{6}{x^{\frac{3}{2}}}\right)^n, n \leq 15\). If the sum of the coefficients of the remaining terms in the expansion is 649 and the coefficient of \(x^{-n}\) is \(\lambda \alpha\), then \(\lambda\) is equal to ____. [JEE Main 2023 (Online) 13th April Morning Shift]
Given expression \(\left(\sqrt{x}-\frac{6}{x^{3 / 2}}\right)^n\). Here, \(a=\sqrt{x}\) and \(b=-\frac{6}{x^{3 / 2}}\).
The \(r\)-th term of the binomial expansion of \((a+b)^n\) is given by
\(
T_r={ }^n C_r a^{n-r} b^r \text {. }
\)
Substitute \(a\) and \(b\) in this formula, we get:
\(
T_r={ }^n C_r(\sqrt{x})^{n-r}\left(-\frac{6}{x^{3 / 2}}\right)^r={ }^n C_r(-6)^r x^{\frac{n-4 r}{2}} .
\)
The constant term in the binomial expansion is obtained when the power of \(x\) in the terms equals zero.
This happens when \(\frac{n-4 r}{2}=0\), which gives \(n=4 r\).
\(
\begin{aligned}
& { }^n C_{\frac{n}{4}}(-6)^{\frac{n}{4}}=\alpha \\
& (-5)^n-{ }^n C_{\frac{n}{4}}(-6)^{n / 4}=649
\end{aligned}
\)
By observation \((625+24=649)\), we get \(n=4\)
\(
\therefore \alpha=-24
\)
Now, for coefficient of \(x^{-4}\)
\(
\begin{aligned}
& \frac{n-4 r}{2}=-4 \\
& n=4 r-8 \Rightarrow r=3 \\
& \lambda(-24)=(-6)^3 \cdot{ }^4 C_3 \\
& \Rightarrow \lambda=36
\end{aligned}
\)
The mean of the coefficients of \(x, x^2, \ldots, x^7\) in the binomial expansion of \((2+x)^9\) is ____. [JEE Main 2023 (Online) 11th April Morning Shift]
We have, binomial coefficient, \((2+x)^9\)
\(
T_{r+1}={ }^n C_r 2^{n-r} \times x^r
\)
Coefficient of \(x\left(T_1\right)={ }^9 C_1 \times 2^8\)
Coefficient of \(x^2\left(T_2\right)={ }^9 C_2 \times 2^7\)
Coefficient of \(x^3\left(T_3\right)={ }^9 C_3 \times 2^6\)
. .
. .
. .
Coefficient of \(x^7\left(T_7\right)={ }^9 C_7 \times 2^2\)
Mean \(=\frac{{ }^9 C_1 \times 2^8+{ }^9 C_2 \times 2^7+{ }^9 C_3 \times 2^6+\ldots+{ }^9 C_7 \times 2^2}{7}\)
\(
\begin{aligned}
& { }^9 C_0 \times 2^9+{ }^9 C_1 \times 2^8+{ }^9 C_2 \times 2^7+{ }^9 C_3 \times 2^6+\ldots+{ }^9 C_7 \times 2^2 \\
& =\frac{+{ }^9 C_8 \times 2^1+{ }^9 C_9 \times 2^0-{ }^9 C_0 \times 2^9-{ }^9 C_8 \times 2^1-{ }^9 C_9 \times 2^0}{7} \\
& =\frac{(1+2)^9-2^9-18-1}{7}=\frac{19152}{7}=2736
\end{aligned}
\)
The number of integral terms in the expansion of \(\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680}\) is equal to ____. [JEE Main 2023 (Online) 11th April Morning Shift]
General term of the expansion \(\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680}\)
\(
={ }^{680} C_r\left(3^{1 / 2}\right)^{680-r}\left(5^{1 / 4}\right)^r={ }^{680} C_r \times 3^{\frac{680-r}{2}} \times 5^{\frac{r}{4}}
\)
The term will be integral if \(r\) is a multiple of 4 .
\(\therefore r=0,4,8,12, \ldots, 680\) (which is an AP)
\(
\begin{aligned}
& 680=0+(n-1) 4 \\
& n=\frac{680}{4}+1=171
\end{aligned}
\)
The coefficient of \(x^7\) in \(\left(1-x+2 x^3\right)^{10}\) is ______. [JEE Main 2023 (Online) 10th April Morning Shift]
Given expression is \(\left(1-x+2 x^3\right)^{10}\)
So, general term is \(\frac{10!}{r_{1}!r_{2}!r_{3}!}(1)^{r_1}(-1)^{r_2} \cdot(2)^{r_3} \cdot(x)^{r_2+r_3}\)
Where, \(r_1+r_2+r_3=10\) and \(r_2+3 r_3=7\)
\(
\begin{aligned}
&\text { Now, for possibility, }\\
&\begin{array}{ccc}
r_1 & r_2 & r_3 \\
3 & 7 & 0 \\
7 & 1 & 2 \\
5 & 4 & 1
\end{array}
\end{aligned}
\)
Thus, required co-efficient
\(
\begin{aligned}
& =\frac{10!}{3!7!}(-1)^7+\frac{10!}{5!4!}(-1)^4(2)+\frac{10!}{7!2!}(-1)^1(2)^2 \\
& =-120+2520-1440 \\
& =2520-1560=960
\end{aligned}
\)
Let \([t]\) denote the greatest integer \(\leq t\). If the constant term in the expansion of \(\left(3 x^2-\frac{1}{2 x^5}\right)^7\) is \(\alpha\), then \([\alpha]\) is equal to ____. [JEE Main 2023 (Online) 8th April Morning Shift]
Let \(T _{r+1}\) be the constant term.
\(
T _{r+1}={ }^7 C _r\left(3 x^2\right)^{7-r}\left(\frac{-1}{2 x^5}\right)^r
\)
For constant term, power of \(x\) should be zero.
i.e., \(14-2 r-5 r=0\)
\(
\Rightarrow 14=7 r \Rightarrow r=2
\)
Now, constant term \(=\alpha\)
\(
\begin{aligned}
& \Rightarrow{ }^7 C_2(3)^5\left(\frac{-1}{2}\right)^2=\alpha \\
& \Rightarrow 21 \times 243 \times \frac{1}{4}=\alpha \\
& \Rightarrow[\alpha]=[1275.75]=1275
\end{aligned}
\)
The largest natural number \(n\) such that \(3^n\) divides 66 ! is ____. [JEE Main 2023 (Online) 8th April Morning Shift]
We have,
\(
\begin{aligned}
& {\left[\frac{66}{3}\right]=22} \\
& {\left[\frac{66}{3^2}\right]=7} \\
& {\left[\frac{66}{3^3}\right]=2}
\end{aligned}
\)
Highest powers of 3 is greater than 66 . So, their g.i.f. is always 0 .
\(\therefore\) Required natural number \(=22+7+2=31\)
The coefficient of \(x^{18}\) in the expansion of \(\left(x^4-\frac{1}{x^3}\right)^{15}\) is ___. [JEE Main 2023 (Online) 6th April Morning Shift]
\(
\begin{aligned}
T_{r+1} & ={ }^{15} C_r\left(x^4\right)^{15-r}\left(-\frac{1}{x^3}\right)^r={ }^{15} C_r(-1)^r x^{60-4 r-3 r} \\
& ={ }^{15} C_r(-1)^r x^{60-7 r}
\end{aligned}
\)
\(
\begin{array}{r}
\therefore 60-7 r=18 \\
\Rightarrow 7 r=42 \\
\Rightarrow r=6
\end{array}
\)
\(\therefore\) The coefficient of \(x^{18}\)
\(
={ }^{15} C_6(-1)^6=\frac{15 \times 14 \times 13 \times 12 \times 11 \times 10}{6 \times 5 \times 4 \times 3 \times 2 \times 1}=5005
\)
Let the sixth term in the binomial expansion of \(\left(\sqrt{2^{\log _2\left(10-3^x\right)}}+\sqrt[5]{2^{(x-2) \log _2 3}}\right)^m\) in the increasing powers of \(2^{(x-2) \log _2 3}\), be 21 . If the binomial coefficients of the second, third and fourth terms in the expansion are respectively the first, third and fifth terms of an A.P., then the sum of the squares of all possible values of \(x\) is ____. [JEE Main 2023 (Online) 1st February Evening Shift]
\({ }^m C_1,{ }^m C_2,{ }^m C_3\) are first, third and fifth term of \(A P\)
\(
\begin{aligned}
\therefore \quad & a={ }^m C_1 \\
& a+2 d={ }^m C_2 \\
& a+4 d={ }^m C_3
\end{aligned}
\)
\(
\begin{gathered}
\therefore \quad 2{ }^m C_2-{ }^m C_3=m \\
\Rightarrow m=7 \text { or } m=2
\end{gathered}
\)
\(\because m=2\) is not possible
\(
\therefore m=7
\)
\(
T _6={ }^{ m } C _5\left(10-3^{ x }\right)^{\frac{ m -5}{2}} \cdot\left(3^{ x -2}\right)=21
\)
Putting value of \(m=7\), we get
\(
\begin{aligned}
& T_{5+1}={ }^7 C_5\left(10-3^x\right)^{\frac{7-5}{2}} 3^{x-2}=21 \\
& \Rightarrow \frac{10.3^x-\left(3^x\right)^2}{3^2}=1 \\
& \Rightarrow\left(3^x\right)^2-10 \cdot 3^x+9=0 \\
& \Rightarrow 3^x=9,1 \\
& \Rightarrow x=0,2
\end{aligned}
\)
Sum of squares of values of \(x=0^2+2^2=4\)
If the term without \(x\) in the expansion of \(\left(x^{\frac{2}{3}}+\frac{\alpha}{x^3}\right)^{22}\) is 7315 , then \(|\alpha|\) is equal to ____. [JEE Main 2023 (Online) 1st February Evening Shift]
Given expansion \(\left(x^{\frac{2}{3}}+\frac{\alpha}{x^3}\right)^{22}\)
\(
T_{r+1}={ }^{22} C_r\left(x^{\frac{2}{3}}\right)^{22-r}\left(\frac{\alpha}{x^3}\right)^r
\)
For constant term
\(
\begin{aligned}
& \frac{44-2 r}{3}-3 r=0 \\
& \Rightarrow r=4
\end{aligned}
\)
Now \({ }^{22} C _4 \alpha^4=7315\)
\(
\frac{22 \times 21 \times 20 \times 19}{4 \times 3 \times 2 \times 1} \alpha^4=7315
\)
\(
\begin{aligned}
& \therefore \alpha^4=1 \\
& \therefore|\alpha|=1
\end{aligned}
\)
The remainder, when \(19^{200}+23^{200}\) is divided by 49 , is ____. [JEE Main 2023 (Online) 1st February Morning Shift]
\(
\begin{aligned}
& 19^{200}+23^{200} \\
& =(21-2)^{200}+(21+2)^{200}=49 \lambda+2^{201}
\end{aligned}
\)
Now, \(2^{201}=8^{67}=(7+1)^{67}=49 \lambda+7 \times 67+1\)
\(
\begin{aligned}
& =49 \lambda+470 \\
& =49(\lambda+9)+29 \\
& \therefore \text { Remainder }=29
\end{aligned}
\)
The coefficient of \(x^{-6}\), in the expansion of \(\left(\frac{4 x}{5}+\frac{5}{2 x^2}\right)^9\), is ____. [JEE Main 2023 (Online) 31st January Evening Shift]
Coeff of \(x^{-6}\) in \(\left(\frac{4 x}{5}+\frac{5}{2 x^2}\right)^9\)
\(
\begin{aligned}
T_{r+1} & ={ }^9 C_r\left(\frac{4 x}{5}\right)^{9-r}\left(\frac{5}{2 x^2}\right)^r \\
9-3 r & =-6 \\
r & =5
\end{aligned}
\)
Coeff of \(x^{-6}={ }^9 C_5\left(\frac{4}{5}\right)^4\left(\frac{5}{2}\right)^5=5040\)
If the constant term in the binomial expansion of \(\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^l}\right)^9\) is -84 and the coefficient of \(x^{-3 l}\) is \(2^\alpha \beta\), where \(\beta<0\) is an odd number, then \(|\alpha l-\beta|\) is equal to ____. [JEE Main 2023 (Online) 31st January Evening Shift]
Given binomial expansion of \(\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^l}\right)^9\)
\(
\begin{aligned}
T_{r+1} & ={ }^9 C_r\left(\frac{x^{\frac{5}{2}}}{2}\right)^{9-r}\left(\frac{-4}{x^l}\right)^r \\
& ={ }^9 C_r x^{\frac{45-5 r}{2}-l r} \cdot 2^{r-9} \cdot 4^r \cdot(-1)^r
\end{aligned}
\)
For constant term, power of \(x\) is zero.
So, \(\frac{45-5 r}{2}=l r \Rightarrow 2 l r+5 r=45\)
Now constant term \(=-84\)
and \({ }^9 C_r \cdot 2^{3 r-9}(-1)^r=-84\)
So, \(r=3\) and \(l=5\)
Now for \(x^{-15}, \frac{45-5 r}{2}-5 r=-15\)
\(
\begin{aligned}
& \Rightarrow 45-15 r=-30 \\
& \Rightarrow r=5
\end{aligned}
\)
\(\therefore\) Coefficient \(=-{ }^9 C_5 2^6=-63.2^7\)
\(
\therefore \alpha=7, \beta=-63
\)
and \(|\alpha l-\beta|=|7 \times 5+63|=98\)
The remainder on dividing \(5^{99}\) by 11 is ____. [JEE Main 2023 (Online) 31st January Morning Shift]
\(
\begin{aligned}
& 5^{99}=5^4 \cdot 5^{95} \\
& =625\left[5^5\right]^{19} \\
& =625[3125]^{19} \\
& =625[3124+1]^{19} \\
& =625[11 k \times 19+1] \\
& =625 \times 11 k \times 19+625 \\
& =11 k _1+616+9 \\
& =11\left( k _2\right)+9 \\
& \text { Remainder }=9
\end{aligned}
\)
Let \(\alpha>0\), be the smallest number such that the expansion of \(\left(x^{\frac{2}{3}}+\frac{2}{x^3}\right)^{30}\) has a term \(\beta x^{-\alpha}, \beta \in N\). Then \(\alpha\) is equal to ____. [JEE Main 2023 (Online) 31st January Morning Shift]
\(
\begin{aligned}
& T _{ r +1}={ }^{30} C _{ r }\left( x ^{2 / 3}\right)^{30- r }\left(\frac{2}{ x ^3}\right)^{ r } \\
& ={ }^{30} C _{ r } \cdot 2^{ r } \cdot x ^{\frac{60-11 r }{3}} \\
& \frac{60-11 r }{3}<0 \\
& \Rightarrow 11 r >60 \\
& \Rightarrow r >\frac{60}{11} \\
& \Rightarrow r =6 \\
& T _7={ }^{30} C _6 \cdot 2^6 x ^{-2}
\end{aligned}
\)
We have also observed \(\beta={ }^{30} C _6(2)^6\) is a natural number.
\(
\therefore \alpha=2
\)
\(50^{\text {th }}\) root of a number \(x\) is 12 and \(50^{\text {th }}\) root of another number \(y\) is 18 . Then the remainder obtained on dividing \((x+y)\) by 25 is ____. [JEE Main 2023 (Online) 30th January Evening Shift]
\(
\begin{aligned}
& \text { Given } x^{\frac{1}{50}}=12 \Rightarrow x=12^{50} \\
& y^{\frac{1}{50}}=18 \Rightarrow y=18^{50} \\
& 12 \equiv 13(\operatorname{Mod} 25) \\
& 12^2 \equiv 19(\operatorname{Mod} 25) \\
& 12^3 \equiv-3(\operatorname{Mod} 25) \\
& 12^9 \equiv-2(\operatorname{Mod} 25) \\
& 12^{10} \equiv-1(\operatorname{Mod} 25) \\
& 12^{50} \equiv-1(\operatorname{Mod} 25) \dots(i)
\end{aligned}
\)
Now
\(18 \equiv 7(\operatorname{Mod} 25)\)
\(18^2 \equiv-1(\operatorname{Mod} 25)\)
\(18^{-50} \equiv-1(\operatorname{Mod} 25) \dots(ii)\)
\(\therefore 12^{50}+18^{50} \equiv-2(\operatorname{Mod} 25)\)
\(\equiv 23(\operatorname{Mod} 25)\)
\(\therefore\) Answer \(=23\)
Let the coefficients of three consecutive terms in the binomial expansion of \((1+2 x)^n\) be in the ratio \(2: 5: 8\). Then the coefficient of the term, which is in the middle of those three terms, is ____. [JEE Main 2023 (Online) 29th January Morning Shift]
\(
\begin{aligned}
& t _{ r +1}={ }^{ n } C _{ r }(2 x )^{ r } \\
& \Rightarrow \frac{{ }^{ n } C _{ r -1}(2)^{ r -1}}{{ }^{ n } C _{ r }(2)^{ r }}=\frac{2}{5} \\
& \Rightarrow \frac{\frac{n!}{(r-1)!(n-r+1)!}}{\frac{n!(2)}{r!(n-r)!}}=\frac{2}{5} \\
& \Rightarrow \frac{ r }{ n – r +1}=\frac{4}{5} \Rightarrow 5 r =4 n -4 r +4 \\
& \Rightarrow 9 r =4( n +1) \quad \ldots(1)
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \frac{{ }^n C_r(2)^{ r }}{{ }^{ n } C _{ r +1}(2)^{ r +1}}=\frac{5}{8} \\
& \Rightarrow \frac{\frac{n!}{r!(n-r)!}}{\frac{n!}{(r+1)!(n-r-1)!}}=\frac{5}{4} \Rightarrow \frac{r+1}{n-r}=\frac{5}{4}
\end{aligned}
\)
\(
\Rightarrow 4 r+4=5 n-5 r \Rightarrow 5 n-4=9 r \dots(2)
\)
From (1) and (2)
\(
\Rightarrow 4 n +4=5 n -4 \Rightarrow n =8
\)
(1) \(\Rightarrow r=4\)
so, coefficient of middle term is
\(
{ }^8 C _4 2^4=16 \times \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}=16 \times 70=1120
\)
If the co-efficient of \(x^9\) in \(\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}\) and the co-efficient of \(x^{-9}\) in \(\left(\alpha x-\frac{1}{\beta x^3}\right)^{11}\) are equal, then \((\alpha \beta)^2\) is equal to ____. [JEE Main 2023 (Online) 29th January Morning Shift]
Coefficient of \(x ^9\) in \(\left(\alpha x^3+\frac{1}{\beta x}\right)={ }^{11} C_6 \cdot \frac{\alpha^5}{\beta^6}\)
\(\because\) Both are equal
\(
\begin{aligned}
& \therefore \frac{11}{C_6} \cdot \frac{\alpha^5}{\beta^6}=-\frac{11}{C_5} \cdot \frac{\alpha^6}{\beta^5} \\
& \Rightarrow \frac{1}{\beta}=-\alpha \\
& \Rightarrow \alpha \beta=-1 \\
& \Rightarrow(\alpha \beta)^2=1
\end{aligned}
\)
The remainder when \((2023)^{2023}\) is divided by 35 is ____. [JEE Main 2023 (Online) 25th January Evening Shift]
\(
\begin{aligned}
& (2023)^{2023} \\
& =(2030-7)^{2023} \\
& =(35 K -7)^{2023}
\end{aligned}
\)
\(
={ }^{2023} C _0(35 K )^{2023}(-7)^0+{ }^{2023} C _1(35 K )^{2022}(-7)+\ldots \ldots+\ldots \ldots .+{ }^{2023} C _{2023}(-7)^{2023}
\)
\(
=35 N -7^{2023}
\)
Now,\(-7^{2023}=-7 \times 7^{2022}=-7\left(7^2\right)^{1011}\)
\(
=-7(50-1)^{1011}
\)
\(
=-7\left({ }^{1011} C _0 50^{1011}-{ }^{1011} C _1(50)^{1010}+\ldots . .{ }^{1011} C _{1011}\right)
\)
\(
\begin{aligned}
& =-7(5 \lambda-1) \\
& =-35 \lambda+7
\end{aligned}
\)
\(\therefore\) when \((2023)^{2023}\) is divided by 35 remainder is 7.
The constant term in the expansion of \(\left(2 x+\frac{1}{x^7}+3 x^2\right)^5\) is ____. [JEE Main 2023 (Online) 25th January Morning Shift]
\(
\begin{aligned}
& \left(2 x+\frac{1}{x^7}+3 x^2\right)^5 \\
& \frac{1}{x^{35}}\left(2 x^8+1+3 x^9\right)^5 \\
& \frac{1}{x^{35}}\left(1+x^8(3 x+2)\right)^5
\end{aligned}
\)
Term independent of \(x=\) coefficient of \(x^{35}\) in
\(
\begin{aligned}
& { }^5 C_4\left(x^8(3 x+2)\right)^4 \\
= & { }^5 C_4 \text { coefficient of } x^3 \text { in }(2+3 x)^4 \\
= & { }^5 C_4 \times{ }^4 C_3(2)^1(3)^3 \\
= & 5 \times 4 \times 2 \times 27 \\
= & 1080
\end{aligned}
\)
Let the sum of the coefficients of the first three terms in the expansion of \(\left(x-\frac{3}{x^2}\right)^n, x \neq 0 . n \in N\), be 376. Then the coefficient of \(x^4\) is ______. [JEE Main 2023 (Online) 24th January Evening Shift]
\(
\begin{aligned}
& S=1-3 n+\frac{9 n(n-1)}{2}=376 \\
& 3 n^2-5 n-250=0 \\
& n=10, \frac{-25}{3} \text { (Rejected) } \\
& T_{r+1}={ }^n C_r \cdot x^{n-r}\left(\frac{-3}{x^2}\right)^r \\
& ={ }^n C_r x x^{n-3 r}(-3)^r \\
& ={ }^{10} C_r x^{10-3 r}(-3)^r
\end{aligned}
\)
Here \(r=2\)
\(
\begin{aligned}
\text { Required coefficient } & ={ }^{10} C _2(-3)^2 \\
& =45 \times 9 \\
& =405
\end{aligned}
\)
Suppose \(\sum_{r=0}^{2023} r^2{ }^{2023} C_r=2023 \times \alpha \times 2^{2022}\). Then the value of \(\alpha\) is ____. [JEE Main 2023 (Online) 24th January Morning Shift]
\(
\begin{aligned}
& \text { (1) }{ }^n C_r=\frac{n}{r} \cdot{ }^{n-1} C_{r-1} \\
& \text { Given, } \\
& \sum_{r=0}^{2023} r^2 \cdot{ }^{2023} C_r \\
& =\sum_{r=0}^{2023} r^2 \cdot \frac{2023}{r} \cdot{ }^{2022} C_{r-1} \\
& =2023 \sum_{r=0}^{2023} r \cdot{ }^{2022} C_{r-1} \\
& =2023 \sum_{r=0}^{2023}[(r-1)+1] \cdot{ }^{2022} C_{r-1} \\
& =2023\left[\sum_{r=0}^{2023}(r-1) \cdot{ }^{2022} C_{r-1}+\sum_{r=0}^{2023}{ }^{2022} C_{r-1}\right] \\
& =2023\left[\sum_{r=0}^{2023}(r-1) \cdot \frac{2022}{(r-1)} \cdot{ }^{2021} C_{r-2}+2^{2022}\right] \\
& =2023\left[2022 \sum_{r=0}^{2023}{ }^{2021} C_{r-2}+2^{2022}\right] \\
& =2023\left[2022 \cdot 2^{2021}+2^{2022}\right] \\
& =2023 \cdot 2^{2021}[2022+2] \\
& =2023 \cdot 2^{2021} \cdot 2024
\end{aligned}
\)
\(
\begin{aligned}
& =2023 \cdot \frac{2^{2022}}{2} \cdot 2024 \\
& =2023 \cdot 2^{2022} \cdot 1012 \\
& \therefore \alpha=1012
\end{aligned}
\)
If \(\sum_{k=1}^{10} K^2\left(10_{C_K}\right)^2=22000 L\), then \(L\) is equal to ____. [JEE Main 2022 (Online) 29th July Evening Shift]
Given,
\(
\begin{aligned}
& \sum_{k=1}^{10} k^2\left({ }^{10} C_k\right)^2=2200 L \\
& \Rightarrow \sum_{k=1}^{10}\left(k \cdot{ }^{10} C_k\right)^2=22000 L \\
& \Rightarrow \sum_{k=1}^{10}\left(k \cdot \frac{10}{k} \cdot{ }^9 C_{k-1}\right)^2=22000 L \\
& \Rightarrow \sum_{k=1}^{10}\left(10 \cdot{ }^9 C_{k-1}\right)^2=22000 L
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow 100 \cdot \sum_{k=1}^{10}\left({ }^9 C_{k-1}\right)^2=22000 L \\
& \Rightarrow 100\left(\left({ }^9 C_0\right)^2+\left({ }^9 C_1\right)^2+\ldots .+\left({ }^9 C_9\right)^2\right)=22000 L \\
& \Rightarrow 100\left({ }^{18} C_9\right)=22000 L
\end{aligned}
\)
[Note : \(\left({ }^n C_1\right)^2+\left({ }^n C_2\right)^2+\ldots+\left({ }^n C_n\right)^2={ }^{2 n} C_n\) ]
\(
\begin{aligned}
& \Rightarrow 100 \times \frac{18!}{9!9!}=22000 L \\
& \Rightarrow L=221
\end{aligned}
\)
Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of \(\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^n\), in the increasing powers of \(\frac{1}{\sqrt[4]{3}}\) be \(\sqrt[4]{6}: 1\). If the sixth term from the beginning is \(\frac{\alpha}{\sqrt[4]{3}}\), then \(\alpha\) is equal to _____. [JEE Main 2022 (Online) 29th July Morning Shift]
Fifth term from beginning \(={ }^n C_4\left(2^{\frac{1}{4}}\right)^{n-4}\left(3^{\frac{-1}{4}}\right)^4\)
Fifth term from end \(=(n-5+1)^{\text {th }}\) term from begin \(={ }^n C_{n-4}\left(2^{\frac{1}{4}}\right)^3\left(3^{\frac{-1}{4}}\right)^{n-4}\)
\(
\begin{aligned}
& \text { Given } \frac{{ }^n C_4 2^{\frac{n-4}{4}} \cdot 3^{-1}}{{ }^n C_{n-3} 2^{\frac{4}{4}} \cdot 3^{-\left(\frac{n-4}{4}\right)}}=6^{\frac{1}{4}} \\
& \Rightarrow 6^{\frac{n-8}{4}}=6^{\frac{1}{4}} \\
& \Rightarrow \frac{n-8}{4}=\frac{1}{4} \Rightarrow n=9 \\
& T_6=T_{5+1}={ }^9 C_5\left(2^{\frac{1}{4}}\right)^4\left(3^{\frac{-1}{4}}\right)^5 \\
& =\frac{{ }^9 C_5 \cdot 2}{3^{\frac{1}{4}} \cdot 3}=\frac{84}{3^{\frac{1}{4}}}=\frac{\alpha}{3^{\frac{1}{4}}} \\
& \Rightarrow \alpha=84
\end{aligned}
\)
Let the coefficients of the middle terms in the expansion of \(\left(\frac{1}{\sqrt{6}}+\beta x\right)^4,(1-3 \beta x)^2\) and \(\left(1-\frac{\beta}{2} x\right)^6, \beta>0\), respectively form the first three terms of an A.P. If \(d\) is the common difference of this A.P. , then \(50-\frac{2 d}{\beta^2}\) is equal to _______. [JEE Main 2022 (Online) 28th July Evening Shift]
Coefficients of middle terms of given expansions are \({ }^4 C_2 \frac{1}{6} \beta^2,{ }^2 C_1(-3 \beta),{ }^6 C_3\left(\frac{-\beta}{2}\right)^3\) form an A.P.
\(
\begin{aligned}
& \therefore 2.2(-3 \beta)=\beta^2-\frac{5 \beta^3}{2} \\
& \Rightarrow-24=2 \beta-5 \beta^2 \\
& \Rightarrow 5 \beta^2-2 \beta-24=0 \\
& \Rightarrow 5 \beta^2-12 \beta+10 \beta-24=0 \\
& \Rightarrow \beta(5 \beta-12)+2(5 \beta-12)=0 \\
& \beta=\frac{12}{5} \\
& d=-6 \beta-\beta^2 \\
& \therefore 50-\frac{2 d}{\beta^2}=50-2 \frac{\left(-6 \beta-\beta^2\right)}{\beta^2}=50+\frac{12}{\beta}+2=57
\end{aligned}
\)
If \(1+\left(2+{ }^{49} C_1+{ }^{49} C_2+\ldots+{ }^{49} C_{49}\right)\left({ }^{50} C_2+{ }^{50} C_4+\ldots+{ }^{50} C_{50}\right)\) is equal to \(2^{ n } \cdot m\), where \(m\) is odd, then \(n + m\) is equal to _____. [JEE Main 2022 (Online) 28th July Evening Shift]
\(
l=1+\left(1+{ }^{49} C_0+{ }^{49} C_1+\ldots+{ }^{49} C_{49}\right)\left({ }^{50} C_2+{ }^{50} C_4+\ldots+{ }^{50} C_{50}\right)
\)
As \({ }^{49} C_0+{ }^{49} C_1+\ldots \ldots+{ }^{49} C_{49}=2^{49}\)
and \({ }^{50} C_0+{ }^{50} C_2+\ldots+{ }^{50} C_{50}=2^{49}\)
\(
\begin{aligned}
& \Rightarrow{ }^{50} C_2+{ }^{50} C_4+\ldots+{ }^{50} C_{50}=2^{49}-1 \\
& \therefore l=1+\left(2^{49}+1\right)\left(2^{49}-1\right) \\
& =2^{98} \\
& \therefore m=1 \text { and } n=98 \\
& m+n=99
\end{aligned}
\)
Let for the \(9^{\text {th }}\) term in the binomial expansion of \((3+6 x)^{ n }\), in the increasing powers of \(6 x\), to be the greatest for \(x=\frac{3}{2}\), the least value of \(n\) is \(n _0\). If \(k\) is the ratio of the coefficient of \(x^6\) to the coefficient of \(x^3\), then \(k + n _0\) is equal to : [JEE Main 2022 (Online) 27th July Evening Shift]
\(
(3+6 x)^n=3^n(1+2 x)^n
\)
If \(T _9\) is numerically greatest term
\(
\begin{aligned}
& \therefore T_8 \leq T_9 \leq T_{10} \\
& { }^n C_7 3^{n-7}(6 x)^7 \leq{ }^n C_8 3^{n-8}(6 x)^8 \geq{ }^n C_9 3^{n-9}(6 x)^9 \\
& \Rightarrow \frac{n!}{(n-7)!7!} 9 \leq \frac{n!}{(n-8)!8!} 3 \cdot(6 x) \geq \frac{n!}{(n-9)!9!}(6 x)^2 \\
& \Rightarrow \underbrace{\frac{9}{(n-7)(n-8)}} \leq \underbrace{\frac{18\left(\frac{3}{2}\right)}{(n-8) 8} \geq \frac{36}{9.8} \frac{9}{4}}
\end{aligned}
\)
\(
\begin{aligned}
& 72 \leq 27(n-7) \text { and } 27 \geq 9(n-8) \\
& \frac{29}{3} \leq n \text { and } n \leq 11 \\
& \therefore n_0=10 \\
& \text { For }(3+6 x)^{10} \\
& T_{r+1}={ }^{10} C_r \\
& 3^{10-r}(6 x)^r
\end{aligned}
\)
For coeff. of \(x^6\)
\(
r=6 \Rightarrow{ }^{10} C_6 3^4 \cdot 6^6
\)
For coeff. of \(x^3\)
\(
\begin{aligned}
& r=3 \Rightarrow{ }^{10} C_3 3^7 \cdot 6^3 \\
& \therefore k=\frac{{ }^{10} C_6}{{ }^{10} C_3} \cdot \frac{3^4 \cdot 6^6}{3^7 \cdot 6^3}=\frac{10!7!3!}{6!4!10!} \cdot 8 \\
& \Rightarrow k=14 \\
& \therefore k+n_0=24
\end{aligned}
\)
If the coefficients of \(x\) and \(x^2\) in the expansion of \((1+x)^{ p }(1-x)^{ q }, p , q \leq 15\), are -3 and -5 respectively, then the coefficient of \(x^3\) is equal to _____. [JEE Main 2022 (Online) 26th July Morning Shift]
\(
\begin{aligned}
& \text { Coefficient of } x \text { in }(1+x)^p(1-x)^q \\
& -{ }^p C_0{ }^q C_1+{ }^p C_1{ }^q C_0=-3 \Rightarrow p-q=-3 \\
& \text { Coefficient of } x ^2 \text { in }(1+x)^p(1-x)^q \\
& { }^p C_0{ }^q C_2-{ }^p C_1{ }^q C_1+{ }^p C_2{ }^q C_0=-5 \\
& \frac{q(q-1)}{2}-p q+\frac{p(q-1)}{2}=-5 \\
& \frac{q^2-q}{2}-(q-3) q+\frac{(q-3)(q-4)}{2}=-5 \\
& \Rightarrow q=11, p=8 \\
& \text { Coefficient of } x ^3 \text { in }(1+x)^8(1-x)^{11} \\
& =-{ }^{11} C_3+{ }^8 C_1{ }^{11} C_2-{ }^8 C_2{ }^{11} C_1+{ }^8 C_3=23
\end{aligned}
\)
If the maximum value of the term independent of \(t\) in the expansion of \(\left( t ^2 x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{ t }\right)^{15}, x \geqslant 0\), is \(K\), then \(8 K\) is equal to _____. [JEE Main 2022 (Online) 25th July Morning Shift]
General term of \(\left(t^2 x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{15}\) is
\(
\begin{aligned}
& T_{r+1}={ }^{15} C_r \cdot\left(t^2 x^{\frac{1}{5}}\right)^{15-r} \cdot\left(\frac{(1-x)^{\frac{1}{10}}}{t}\right)^r \\
& ={ }^{15} C_r \cdot t^{30-2 r} \cdot x^{\frac{15-r}{5}} \cdot(1-x)^{\frac{r}{10}} \cdot t^{-r} \\
& ={ }^{15} C_r \cdot t^{30-3 r} \cdot x^{\frac{15-r}{5}} \cdot(1-x)^{\frac{r}{10}}
\end{aligned}
\)
Term will be independent of \(t\) when \(30-3 r=0 \Rightarrow r=10\)
\(\therefore T_{10+1}=T_{11}\) will be independent of \(t\)
\(
\begin{aligned}
& \therefore T_{11}={ }^{15} C_{10} \cdot x^{\frac{15-10}{5}} \cdot(1-x)^{\frac{10}{10}} \\
& ={ }^{15} C_{10} \cdot x^1 \cdot(1-x)^1
\end{aligned}
\)
\(T _{11}\) will be maximum when \(x(1-x)\) is maximum.
Let \(f(x)=x(1-x)=x-x^2\)
\(f(x)\) is maximum or minimum when \(f^{\prime}(x)=0\)
\(
\therefore f^{\prime}(x)=1-2 x
\)
For maximum \(/\) minimum \(f^{\prime}(x)=0\)
\(
\begin{aligned}
& \therefore 1-2 x=0 \\
& \Rightarrow x=\frac{1}{2}
\end{aligned}
\)
Now, \(f^{\prime \prime}(x)=-2<0\)
\(\therefore\) At \(x=\frac{1}{2}, f(x)\) maximum
\(\therefore\) Maximum value of \(T _{11}\) is
\(
\begin{aligned}
& ={ }^{15} C_{10} \cdot \frac{1}{2}\left(1-\frac{1}{2}\right) \\
& ={ }^{15} C_{10} \cdot \frac{1}{4}
\end{aligned}
\)
Given \(K={ }^{15} C_{10} \cdot \frac{1}{4}\)
Now, \(8 K=2\left({ }^{15} C_{10}\right)\)
\(
=6006
\)
Let the coefficients of \(x ^{-1}\) and \(x ^{-3}\) in the expansion of \(\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x>0\), be \(m\) and \(n\) respectively. If \(r\) is a positive integer such that \(m n^2={ }^{15} C_r \cdot 2^r\), then the value of \(r\) is equal to _____. [JEE Main 2022 (Online) 29th June Evening Shift]
Given, Binomial expansion
\(
\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}
\)
\(\therefore\) General Term
\(
\begin{aligned}
& T_{r+1}={ }^{15} C_r \cdot\left(2 x^{\frac{1}{5}}\right)^{15-r} \cdot\left(-\frac{1}{x^{\frac{1}{5}}}\right)^r \\
& ={ }^{15} C_r \cdot 2^{15-r} \cdot x^{\frac{1}{5}(15-r-r)} \cdot(-1)^r
\end{aligned}
\)
For \(x^{-1}\) term;
\(
\begin{aligned}
& \frac{1}{5}(15-2 r)=-1 \\
& \Rightarrow 15-2 r=-5 \\
& \Rightarrow 2 r=20 \\
& \Rightarrow r=10
\end{aligned}
\)
\(m\) is the coefficient of \(x^{-1}\) term,
\(
\begin{aligned}
& \therefore m={ }^{15} C_{10} \cdot 2^{15-10} \cdot(-1)^{10} \\
& ={ }^{15} C_{10} \cdot 2^5
\end{aligned}
\)
For \(x^{-3}\) term;
\(
\begin{aligned}
& \frac{1}{5}(15-2 r)=-3 \\
& \Rightarrow 15-2 r=-15 \\
& \Rightarrow 2 r=30 \\
& \Rightarrow r=15
\end{aligned}
\)
\(n\) is the coefficient of \(x^{-3}\) term,
\(
\begin{aligned}
& \therefore n={ }^{15} C_{15} \cdot 2^{15-15} \cdot(-1)^{15} \\
& =1 \cdot 1 \cdot-1 \\
& =-1
\end{aligned}
\)
Given,
\(
\begin{aligned}
& m n^2={ }^{15} C_r \cdot 2^r \\
& \left.\Rightarrow{ }^{15} C_{10} \cdot 2^5 \cdot(1)^2={ }^{15} C_r \cdot 2^r \text { [putting value of } m \text { and } n \right] \\
& \Rightarrow{ }^{15} C_{15-10} \cdot 2^5={ }^{15} C_r \cdot 2^r \\
& \Rightarrow{ }^{15} C_5 \cdot 2^5={ }^{15} C_r \cdot 2^r
\end{aligned}
\)
Comparing both side, we get
\(
r=5
\)
The number of positive integers $k$ such that the constant term in the binomial expansion of \(\left(2 x^3+\frac{3}{x^k}\right)^{12}, x \neq 0 \text { is } 2^8 . I,\) \(
\text { where I is an odd integer, is }\) _____. [JEE Main 2022 (Online) 28th June Morning Shift]
Given Binomial expression is
\(
\left(2 x^3+\frac{3}{x^k}\right)^{12}
\)
General term,
\(
\begin{aligned}
& T_{r+1}={ }^{12} C_r\left(2 x^3\right)^r \cdot\left(\frac{3}{x^k}\right)^{12-r} \\
& =\left({ }^{12} C_r \cdot 2^r \cdot 3^{12-r}\right) \cdot x^{3 r-12 k+k r}
\end{aligned}
\)
For constant term,
\(
\begin{aligned}
& 3 r-12 k+k r=0 \\
& \Rightarrow k(12-r)=3 r \\
& \Rightarrow k=\frac{3 r}{12-r}
\end{aligned}
\)
For \(r =1, k=\frac{3}{11}\) (not integer)
For \(r =2, k=\frac{6}{10}\) (not integer)
For \(r =3, k=\frac{9}{9}=1\) (integer)
For \(r =6, k=\frac{18}{6}=3\) (integer)
For \(r =8, k=\frac{24}{4}=6\) (integer)
For \(r =9, k=\frac{27}{3}=9\) (integer)
For \(r =10, k=\frac{30}{2}=15\) (integer)
For \(r =11, k=\frac{33}{1}=33\) (integer)
So, for \(r=3,6,8,9,10\) and \(11 k\) is positive integer.
When \(k =1\) then \(r =3\) and constant term is
\(
\begin{aligned}
& ={ }^{12} C_3 \cdot 2^3 \cdot 3^9 \\
& =\frac{12 \cdot 11 \cdot 10}{3 \cdot 2 \cdot 1} \cdot 2^3 \cdot 3^9 \\
& =2 \cdot 11 \cdot 2 \cdot 5 \cdot 2^3 \cdot 3^9 \\
& =11 \cdot 5 \cdot 2^5 \cdot 3^9 \\
& =2^5 \cdot\left(55 \cdot 3^9\right) \\
& =2^5(I) \\
& \neq 2^8 \cdot I
\end{aligned}
\)
When \(x =3\) then \(r =6\) and constant term
\(
\begin{aligned}
& ={ }^{12} C_6 \cdot 2^6 \cdot 3^6 \\
& =\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot 2^6 \cdot 3^6 \\
& =2^8 \cdot 231 \cdot 3^6 \\
& =2^8(I)
\end{aligned}
\)
When \(k =6\) then \(r =8\) and constant term
\(
\begin{aligned}
& ={ }^{12} C_8 \cdot 2^8 \cdot 3^4 \\
& =\frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2 \cdot 1} \cdot 2^8 \cdot 3^4 \\
& =2^8 \cdot 55 \cdot 3^6 \\
& =2^8(I)
\end{aligned}
\)
When \(x=9\) then \(r=9\) and constant term
\(
\begin{aligned}
& ={ }^{12} C_9 \cdot 2^9 \cdot 3^3 \\
& =\frac{12 \cdot 11 \cdot 10}{3 \cdot 2 \cdot 1} \cdot 2^9 \cdot 3^3 \\
& =2^{11} \cdot 55 \cdot 3^3
\end{aligned}
\)
Here power of 2 is 11 which is greater than 8 . So, \(k=9\) is not possible.
Similarly for \(k =15\) and \(k =33,2^8 . I\) form is not possible.
\(\therefore k =3\) and \(k =6\) is accepted.
\(\therefore\) For 2 positive integer value of \(k , 2^8\). \(I\) form of constant term possible.
If the sum of the coefficients of all the positive powers of \(x\), in the Binomial expansion of \(\left(x^n+\frac{2}{x^5}\right)^7\) is 939 , then the sum of all the possible integral values of \(n\) is _____. [JEE Main 2022 (Online) 27th June Evening Shift]
Given, Binomial expression is
\(
\begin{aligned}
& =\left(x^n+\frac{2}{x^5}\right)^7 \\
& \therefore \text { General term } \\
& T_{r+1}={ }^7 C_r \cdot\left(x^n\right)^{7-r} \cdot\left(\frac{2}{x^5}\right)^r \\
& ={ }^7 C_r \cdot x^{7 n-n r-5 r} \cdot 2^r
\end{aligned}
\)
For positive power of \(x\),
\(
\begin{aligned}
& 7 n-n r-5 r>0 \\
& \Rightarrow 7 n>r(n+5) \\
& \Rightarrow r<\frac{7 n}{n+5}
\end{aligned}
\)
As \(r\) represent term of binomial expression so \(r\) is always integer.
Given that sum of coefficient is 939 .
When \(r=0\),
sum of coefficient \(={ }^7 C_0 \cdot 2^0=1\)
when \(r=1\),
sum of coefficient \(={ }^7 C_0 \cdot 2^0+{ }^7 C_1 \cdot 2^1=1+14=15\)
when \(r=2\),
sum of coefficient
\(={ }^7 C_0 \cdot 2^0+{ }^7 C_1 \cdot 2^1+{ }^7 C_2 \cdot 2^2\)
\(=1+14+84\)
\(=99\)
when \(r=3\),
sum of coefficient
\(={ }^7 C_0 \cdot 2^0+{ }^7 C_1 \cdot 2^1+{ }^7 C_2 \cdot 2^2+{ }^7 C_3 \cdot 2^3\)
\(=1+14+84+280\)
\(=379\)
when \(r=4\),
sum of coefficient
\(
\begin{aligned}
& ={ }^7 C_0 \cdot 2^0+{ }^7 C_1 \cdot 2^1+{ }^7 C_2 \cdot 2^2+{ }^7 C_3 \cdot 2^3+{ }^7 C_4 \cdot 2^4 \\
& =1+14+84+280+560 \\
& =939
\end{aligned}
\)
\(\therefore\) For \(r=4\) sum of coefficient \(=939\)
To get value of \(r=4\), value of \(\frac{7 n}{n+5}\) should be between 4 and 5 .
\(
\begin{aligned}
& \therefore 4<\frac{7 n}{n+5}<5 \\
& \Rightarrow 4 n+20<7 n<5 n+25 \\
& \therefore 4 n+20<7 n \\
& \Rightarrow 3 n>20 \\
& \Rightarrow n>\frac{20}{3} \\
& \Rightarrow n>6.66
\end{aligned}
\)
and
\(
\begin{aligned}
& 7 n<5 n+25 \\
& \Rightarrow 2 n<25 \\
& \Rightarrow n<12.5 \\
& \therefore 6.66<n<12.5
\end{aligned}
\)
\(\therefore\) Possible integer values of \(n=7,8,9,10,11,12\)
\(\therefore\) Sum of values of \(n=7+8+9+10+11+12=57\)
If the coefficient of \(x^{10}\) in the binomial expansion of \(\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}\) is \(5^k . l\), where \(l , k \in N\) and \(l\) is co-prime to 5 , then \(k\) is equal to _____ [JEE Main 2022 (Online) 27th June Morning Shift]
Given Binomial Expansion
\(
=\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{x}}{5^{\frac{1}{3}}}\right)^{60}
\)
\(\therefore\) General term
\(
\begin{aligned}
& T_{r+1}={ }^{60} C_r \cdot\left(\frac{x^{1 / 2}}{5^{1 / 4}}\right)^{60-r} \cdot\left(\frac{5^{1 / 2}}{x^{1 / 3}}\right)^r \\
& ={ }^{60} C_r \cdot 5^{\left(\frac{r}{4}-15+\frac{r}{2}\right)} \cdot x^{\left(30-\frac{r}{2}-\frac{r}{3}\right)} \\
& ={ }^{60} C_r \cdot 5^{\left(\frac{3 r-60}{4}\right)} \cdot x^{\left(\frac{180-5 r}{6}\right)}
\end{aligned}
\)
For \(x ^{10}\) term,
\(
\begin{aligned}
& \frac{180-5 r}{6}=10 \\
& \Rightarrow 5 r=120 \\
& \Rightarrow r=24
\end{aligned}
\)
\(
\begin{aligned}
& \therefore \text { Coefficient of } x^{10}={ }^{60} C_{24} \cdot 5\left(\frac{3 \times 24-60}{4}\right) \\
& ={ }^{60} C_{24} \cdot 5^3 \\
& =\frac{60!}{24!36!} \cdot 5^3
\end{aligned}
\)
It is given that,
\(
\frac{60!}{24!36!} \cdot 5^3=5^k \cdot l \dots(1)
\)
Also given that, I is coprime to 5 means I can’t be multiple of 5 . So we have to find all the factors of 5 in 60 !, 24 ! and 36 !
[Note : Formula for exponent or degree of prime number in n!.
Exponent of \(p\) in \(n!=\left\lceil\frac{n}{p}\right\rceil+\left\lceil\frac{n}{p^2}\right\rceil+\left\lceil\frac{n}{p^3}\right\rceil+\ldots .\). until 0 comes here \(p\) is a prime number. ]
\(\therefore\) Exponent of 5 in 60 !
\(
\begin{aligned}
& =\left\lceil\frac{60}{5}\right\rceil+\left\lceil\frac{60}{5^2}\right\rceil+\left\lceil\frac{60}{5^3}\right\rceil+\ldots . . \\
& =12+2+0+\ldots . . \\
& =14
\end{aligned}
\)
Exponent of 5 in 24 !
\(
\begin{aligned}
& =\left\lceil\frac{24}{5}\right\rceil+\left\lceil\frac{24}{5^2}\right\rceil+\left\lceil\frac{24}{5^3}\right\rceil+\ldots \ldots \\
& =4+0+0 \ldots \ldots \\
& =4
\end{aligned}
\)
Exponent of 5 in 36 !
\(
\begin{aligned}
& =\left\lceil\frac{36}{5}\right\rceil+\left\lceil\frac{36}{5^2}\right\rceil+\left\lceil\frac{36}{5^3}\right\rceil+\ldots \ldots . . \\
& =7+1+0 \ldots \ldots \\
& =8
\end{aligned}
\)
\(\therefore\) From equation (1), exponent of 5 overall
\(
\begin{aligned}
& \frac{5^{14}}{5^4 \cdot 5^8} \cdot 5^3=5^k \\
& \Rightarrow 5^5=5^k \\
& \Rightarrow k=5
\end{aligned}
\)
If \(\left({ }^{40} C_0\right)+\left({ }^{41} C_1\right)+\left({ }^{42} C_2\right)+\ldots \ldots+\left({ }^{60} C_{20}\right)=\frac{m}{n}{ }^{60} C_{20} m\) and \(n\) are coprime, then \(m+n\) is equal to _____. [JEE Main 2022 (Online) 26th June Evening Shift]
Here property used is
\(
{ }^n C_r+{ }^n C_{r+1}={ }^{n+1} C_{r+1}
\)
Given, \({ }^{40} C_0+{ }^{41} C_1+{ }^{42} C_2+\ldots+{ }^{60} C_{20}=\frac{m}{n}{ }^{60} C_{20}\)
As \({ }^{40} C_0={ }^{41} C_0=1\)
So, we replace \({ }^{40} C_0\) with \({ }^{41} C_0\).
\(
\begin{aligned}
& \Rightarrow{ }^{41} C_0+{ }^{41} C_1+{ }^{42} C_2+\ldots \ldots+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\
& \Rightarrow{ }^{42} C_1+{ }^{42} C_2+\ldots \ldots+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\
& \Rightarrow{ }^{43} C_2+{ }^{43} C_3+\ldots \ldots+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\
& \Rightarrow{ }^{44} C_3+{ }^{44} C_4+\ldots \ldots+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\
& \Rightarrow{ }^{45} C_4+{ }^{45} C_5+\ldots \ldots+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20}
\end{aligned}
\)
\(\vdots\)
\(
\begin{aligned}
& \Rightarrow{ }^{60} C_{19}+{ }^{60} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\
& \Rightarrow{ }^{61} C_{20}=\frac{m}{n} \cdot{ }^{60} C_{20} \\
& \Rightarrow \frac{61!}{20!41!}=\frac{m}{n} \cdot \frac{60!}{20!40!} \\
& \Rightarrow \frac{61}{41}=\frac{m}{n} \\
& \therefore m=61 \text { and } n=41 \\
& \therefore m+n=61+41=102
\end{aligned}
\)
If the sum of the co-efficient of all the positive even powers of \(x\) in the binomial expansion of \(\left(2 x^3+\frac{3}{x}\right)^{10}\) is \(5^{10}-\beta \cdot 3^9\), then \(\beta\) is equal to _____. [JEE Main 2022 (Online) 25th June Evening Shift]
Given, Binomial Expansion
\(
\left(2 x^3+\frac{3}{x}\right)^{10}
\)
General term
\(
\begin{aligned}
& T_{r+1}={ }^{10} C_r \cdot\left(2 x^3\right)^{10-r} \cdot\left(\frac{3}{x}\right)^r \\
& ={ }^{10} C_r \cdot 2^{10-r} \cdot 3^r \cdot x^{30-3 r} \cdot x^{-r} \\
& ={ }^{10} C_r \cdot 2^{10-r} \cdot 3^r \cdot x^{30-4 r}
\end{aligned}
\)
For positive even power of \(x, 30-4 r\) should be even and positive.
For \(r =0,30-4 \times 0=30\) (even and positive)
For \(r =1,30-4 \times 1=26\) (even and positive)
For \(r=2,30-4 \times 2=22\) (even and positive)
For \(r=3,30-4 \times 3=18\) (even and positive)
For \(r=4,30-4 \times 4=14\) (even and positive)
For \(r=5,30-4 \times 5=10\) (even and positive)
For \(r=6,30-4 \times 6=6\) (even and positive)
For \(r =7,30-4 \times 7=2\) (even and positive)
For \(r =8,30-4 \times 8=-2\) (even but not positive)
So, for \(r=1,2,3,4,5,6\) and 7 we can get positive even power of \(x\).
\(\therefore\) Sum of coefficient for positive even power of \(x\)
\(
\begin{aligned}
& ={ }^{10} C_0 \cdot 2^{10} \cdot 3^0+{ }^{10} C_1 \cdot 2^9 \cdot 3^1+{ }^{10} C_2 \cdot 2^8 \cdot 3^2+{ }^{10} C_3 \cdot 2^7 \cdot 3^3+{ }^{10} C_4 \cdot 2^6 \\
& ={ }^{10} C_{10} \cdot 2^{10} \cdot 3^0+{ }^{10} C_1 \cdot 2^9 \cdot 3^1+\ldots \ldots+{ }^{10} C_{10} \cdot 2^0 \cdot 3^{10}-\left[{ }^{10} C_8 \cdot 2^2 \cdot 3\right. \\
& =(2+3)^{10}-\left[45 \cdot 4 \cdot 3^8+10 \cdot 2 \cdot 3^9+1 \cdot 1 \cdot 3^{10}\right]
\end{aligned}
\)
\(
\begin{aligned}
& =5^{10}-\left[60 \times 3^9+20 \cdot 3^9+3 \cdot 3^9\right] \\
& =5^{10}-(60+20+3) 3^9 \\
& =5^{10}-83 \cdot 3^9 \\
& \therefore \beta=83
\end{aligned}
\)
Let \(C _{ r }\) denote the binomial coefficient of \(x ^{ r }\) in the expansion of \((1+x)^{10}\). If for \(\alpha, \beta\) \(\in R , C_1+3.2 C_2+5.3 C_3+\ldots . . .\). upto 10 terms \(=\frac{\alpha \times 2^{11}}{2^\beta-1}\left(C_0+\frac{C_1}{2}+\frac{C_2}{3}+\ldots \ldots \text { upto } 10 \text { terms }\right)\) then the value of \(\alpha+\beta\) is equal to ____. [JEE Main 2022 (Online) 25th June Morning Shift]
Given,
\(C_1+3.2 C_2+5.3 C_3+\ldots . .\). upto 10 terms
\(
=\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(C_0+\frac{C_1}{2}+\frac{C_2}{3}+\ldots . . \text { upto } 10 \text { terms }\right)
\)
Now, L.H.S. :
\(
\begin{aligned}
& C_1+3 \cdot 2 C_2+5 \cdot 3 C_3+\ldots . . \text { upto } 10 \text { terms } \\
& =1 \cdot 1 C_1+3 \cdot 2 C_2+5 \cdot 3 C_3+\ldots . . \text { upto } 10 \text { terms } \\
& =\sum_{r=1}^{10} r \cdot(2 r-1)^{10} C_r \\
& =\sum_{r=1}^{10}\left(2 r^2-r\right) \cdot{ }^{10} C_r \\
& =2 \cdot \sum_{r=1}^{10} r^2 \cdot{ }^{10} C_r-\sum_{r=1}^{10} r \cdot{ }^n C_r
\end{aligned}
\)
[We know, \(\sum_{r=1}^n r \cdot{ }^n C_r=n \cdot 2^{n-1}\)
\(
\begin{aligned}
& \text { and } \sum_{r=1}^n r^2 \cdot{ }^n C_r=\sum_{r=1}^n\left(r \cdot{ }^n C_r\right) \cdot r \\
& =\sum_{r=1}^n\left(r \cdot \frac{n}{r} \cdot{ }^{n-1} C_{r-1}\right) \cdot r \\
& =\sum_{r=1}^n\left(n \cdot{ }^{n-1} C_{r-1}\right) \cdot r \\
& =n \sum_{r=1}^n(r-1+1)^{n-1} C_{r-1} \\
& =n \cdot \sum_{r=1}^n(r-1) \cdot{ }^{n-1} C_{r-1}+n \cdot \sum_{r=1}^n{ }^{n-1} C_{r-1} \\
& \left.=n \cdot(n-1) \cdot 2^{n-2}+n \cdot 2^{n-1}\right] \\
& =2\left(n(n-1) 2^{n-2}+n \cdot 2^{n-1}\right)-n \cdot 2^{n-1}
\end{aligned}
\)
\(
\begin{aligned}
& \text { Put } n=10 \\
& =2\left(10 \cdot 9 \cdot 2^8+10 \cdot 2^9\right)-10 \cdot 2^9 \\
& =45 \cdot 2^{10}+10 \cdot 2^{10}-5 \cdot 2^{10} \\
& =2^{10}(45+10-5) \\
& =2^{10} \cdot(50) \\
& =25 \cdot 2^{11}
\end{aligned}
\)
R.H.S. :-
\(\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(C_0+\frac{C_1}{2}+\frac{C_2}{3}+\ldots .\right.\). upto 10 terms \()\)
\(\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{C_0}{1}+\frac{C_1}{2}+\frac{C_2}{3}+\ldots .\right.\). upto 10 terms \()\)
\(
\begin{aligned}
& \frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\sum_{r=0}^n \frac{{ }^n C_r}{r+1}\right) \\
& =\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\sum_{r=0}^n \frac{{ }^{n+1} C_{r+1}}{n+1}\right) \\
& =\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{{ }^{n+1} C_1+{ }^{n+1} C_2+\ldots .+{ }^{n+1} C_{n+1}}{n+1}\right) \\
& =\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{{ }^{n+1} C_0+{ }^{n+1} C_2+\ldots .+{ }^{n+1} C_{n+1}-{ }^{n+1} C_0}{n+1}\right) \\
& =\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{2^{n+1}-1}{n+1}\right)
\end{aligned}
\)
Putting value of \(n=10\), we get
\(
=\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{2^{11}-1}{11}\right)
\)
Using L.H.S. = R.H.S.
\(
\begin{aligned}
& \Rightarrow 25 \cdot 2^{11}=\frac{\alpha \cdot 2^{11}}{2^\beta-1}\left(\frac{2^{11}-1}{11}\right) \\
& \Rightarrow 25 \cdot 2^{11}=2^{11}\left(\frac{\alpha}{11}\right)\left(\frac{2^{11}-1}{2^\beta-1}\right)
\end{aligned}
\)
By comparing both sides,
\(
\begin{aligned}
& \frac{\alpha}{11}=25 \Rightarrow \alpha=275 \\
& \text { and } \frac{2^{11}-1}{2^\beta-1}=1 \\
& \Rightarrow 2^{11}=2^\beta \\
& \Rightarrow \beta=11 \\
& \therefore \alpha+\beta=275+11=286
\end{aligned}
\)
The remainder on dividing \(1+3+3^2+3^3+\ldots . .+3^{2021}\) by 50 is ____. [JEE Main 2022 (Online) 24th June Evening Shift]
Given,
\(
\begin{aligned}
& 1+3+3^2+3^3+\ldots \ldots+3^{2021} \\
& =3^0+3^1+3^2+3^3+\ldots+3^{2021}
\end{aligned}
\)
This is a G.P with common ratio \(=3\)
\(
\begin{aligned}
& \therefore \text { Sum }=\frac{1\left(3^{2022}-1\right)}{3-1} \\
& =\frac{3^{2022}-1}{2} \\
& =\frac{\left(3^2\right)^{2011}-1}{2} \\
& =\frac{(10-1)^{1011}-1}{2}
\end{aligned}
\)
\(
=\frac{\left[{ }^{1011} C_0 \cdot 10^{1011} \_{ }^{1011} C_1 \cdot 10^{1010}+\ldots . . \cdot-{ }^{1011} C_{1009} \cdot(10)^2+{ }^{1011} C_{1010} \cdot 10-{ }^{1011} C_{1011}\right]-1}{2}
\)
\(
\begin{aligned}
& =\frac{10^2\left[{ }^{1011} C_0 \cdot(10)^{1009} \_{ }^{1011} C_1 \cdot(1008)+\ldots . .{ }^{1011} C_{1000}\right]+10110-1-1}{2} \\
& =\frac{100 k+10110-2}{2} \\
& =\frac{100 k+10108}{2} \\
& =50 k+5054 \\
& =50 k+50 \times 101+4 \\
& =50[k+101]+4 \\
& =50 k^{\prime}+4
\end{aligned}
\)
\(\therefore\) By dividing 50 we get remainder as 4 .
If the sum of the coefficients in the expansion of \((x+y)^n\) is 4096 , then the greatest coefficient in the expansion is _____. [JEE Main 2021 (Online) 1st September Evening Shift]
\(
\begin{aligned}
& (x+y)^n \Rightarrow 2^n=4096 \\
& 2^{10}=1024 \times 2 \\
& \Rightarrow 2^n=2^{12} \\
& 2^{11}=2048 \\
& n=12 \\
& 2^{12}=4096 \\
& 12 C_6=\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7}{6 \times 5 \times 4 \times 3 \times 2 \times 1} \\
& =11 \times 3 \times 4 \times 7 \\
& =924
\end{aligned}
\)
If the coefficient of \(a^7 b^8\) in the expansion of \((a+2 b+4 a b)^{10}\) is \(K .2^{16}\), then \(K\) is equal to _____. [JEE Main 2021 (Online) 31st August Evening Shift]
\(
\begin{aligned}
& \frac{10!}{\alpha!\beta!\gamma!} a^\alpha(2 b)^\beta \cdot(4 a b)^\gamma \\
& \frac{10!}{\alpha!\beta!\gamma!} a^{\alpha+\gamma} \cdot b^{\beta+\gamma} \cdot 2^\beta \cdot 4^\gamma
\end{aligned}
\)
\(
\begin{aligned}
&\alpha+\beta+\gamma=10 \ldots (1)\\
&\alpha+\gamma=7 \ldots (2) \\
&\beta+\gamma=8 \ldots (3)
\end{aligned}
\)
\(
(2)+(3)-(1) \Rightarrow \gamma=5
\)
\(
\begin{aligned}
& \alpha=2 \\
& \beta=3 \\
& \text { so coefficients }=\frac{10!}{2!3!5!} 2^3 .2^{10} \\
& =\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5}{2 \times 3 \times 2 \times 5!} \times 2^{13} \\
& =315 \times 2^{16} \Rightarrow k=315
\end{aligned}
\)
If \(\left(\frac{3^6}{4^4}\right) k\) is the term, independent of \(x\), in the binomial expansion of \(\left(\frac{x}{4}-\frac{12}{x^2}\right)^{12}\), then \(k\) is equal to _____. [JEE Main 2021 (Online) 31st August Morning Shift]
\(
\begin{aligned}
& \left(\frac{x}{4}-\frac{12}{x^2}\right)^{12} \\
& T_{r+1}=(-1)^r \cdot{ }^{12} C_r\left(\frac{x}{4}\right)^{12-r}\left(\frac{12}{x^2}\right)^r \\
& T_{r+1}=(-1)^r \cdot{ }^{12} C_r\left(\frac{1}{4}\right)^{12-r}(12)^r \cdot(x)^{12-3 r}
\end{aligned}
\)
Term independent of \(x \Rightarrow 12-3 r=0 \Rightarrow r=4\)
\(
\begin{aligned}
& T_5=(-1)^r \cdot{ }^{12} C_r\left(\frac{1}{4}\right)^8(12)^4=\frac{3^6}{4^4} \cdot k \\
& \Rightarrow k =55
\end{aligned}
\)
\(3 \times 7^{22}+2 \times 10^{22}-44\) when divided by 18 leaves the remainder ____. [JEE Main 2021 (Online) 27th August Evening Shift]
\(
\begin{aligned}
& 3(1+6)^{22}+2 \cdot(1+9)^{22}-44=(3+2-44)=18 \cdot 1 \\
& =-39+18 \cdot 1 \\
& =(54-39)+18(1-3) \\
& =15+181_1 \\
& \Rightarrow \text { Remainder }=15
\end{aligned}
\)
Let \(\binom{n}{k}\) denotes \({ }^n C_k\) and \(\left[\begin{array}{l}n \\ k\end{array}\right]=\) \(
\left\{\begin{array}{c}
\binom{n}{k}, \quad \text { if } 0 \leq k \leq n \\
0, \quad \text { otherwise }
\end{array}\right.
\)
If \(A_k=\sum_{i=0}^9\binom{9}{i}\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^8\binom{8}{i}\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right]\) and \(A _4- A _3=190 p\), then \(p\) is equal to :
\(
\begin{aligned}
& A_k=\sum_{i=0}^9{ }^9 C_i{ }^{12} C_{k-i}+\sum_{i=0}^8{ }^8 C_i{ }^{13} C_{k-i} \\
& A_k={ }^{21} C_k+{ }^{21} C_k=2 \cdot{ }^{21} C_k \\
& A_4-A_3=2\left({ }^{21} C_4-{ }^{21} C_3\right)=2(5985-1330) \\
& 190 p=2(5985-1330) \Rightarrow p=49
\end{aligned}
\)
Let \(n \in N\) and \([x]\) denote the greatest integer less than or equal to \(x\). If the sum of \((n+\) 1) terms \({ }^n C_0, 3 \cdot{ }^n C_1, 5 \cdot{ }^n C_2, 7 \cdot{ }^n C_3, \ldots\). is equal to \(2^{100} \cdot 101\), then \(2\left[\frac{n-1}{2}\right]\) is equal to ____. [JEE Main 2021 (Online) 25th July Evening Shift]
\(
\text { 1. }{ }^n C_0+3 \cdot{ }^n C_1+5 \cdot{ }^n C_2+\ldots+(2 n+1) \cdot{ }^n C_n
\)
\(
\begin{aligned}
& T_r=(2 r+1)^n C_r \\
& S=\sum T_r \\
& S=\sum(2 r+1)^n C_r=\sum 2 r^n C_r+\sum{ }^n C_r \\
& S=2\left(n .2^{n-1}\right)+2^n=2^n(n+1) \\
& 2^n(n+1)=2^{100} .101 \Rightarrow n=100 \\
& 2\left[\frac{n-1}{2}\right]=2\left[\frac{99}{2}\right]=98
\end{aligned}
\)
If the co-efficient of \(x^7\) and \(x^8\) in the expansion of \(\left(2+\frac{x}{3}\right)^n\) are equal, then the value of \(n\) is equal to _____. [JEE Main 2021 (Online) 25th July Evening Shift]
\(
\begin{aligned}
& { }^n C_7 2^{n-7} \frac{1}{3^7}={ }^n C_8 2^{n-8} \frac{1}{3^8} \\
& \Rightarrow n -7=48 \Rightarrow n =55
\end{aligned}
\)
The ratio of the coefficient of the middle term in the expansion of \((1+x)^{20}\) and the sum of the coefficients of two middle terms in expansion of \((1+x)^{19}\) is _____. [JEE Main 2021 (Online) 25th July Morning Shift]
Coeff. of middle term in \((1+ x )^{20}={ }^{20} C_{10}\) & Sum of coeff. of two middle terms in \((1+\) \(x )^{19}={ }^{19} C_9+{ }^{19} C_{10}\)
\(
\text { So required ratio }=\frac{{ }^{20} C_{10}}{{ }^{19} C_9+{ }^{19} C_{10}}=\frac{{ }^{20} C_{10}}{{ }^{20} C_{10}}=1
\)
The term independent of ‘ \(x\) ‘ in the expansion of \(\left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10}\), where \(x \neq 0,1\) is equal to ____. [JEE Main 2021 (Online) 25th July Morning Shift]
\(
\begin{aligned}
& \left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10} \\
& =\left(\frac{\left(x^{1 / 3}\right)^3+\left(1^{1 / 3}\right)^3}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(\sqrt{x})^2-(1)^2}{x-x^{1 / 2}}\right)^{10} \\
& =\left(\frac{\left(x^{1 / 3}+1\right)\left(x^{2 / 3}-x^{1 / 3}+1\right)}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-1)}\right)^{10} \\
& =\left(\left(x^{1 / 3}+1\right)-\frac{(\sqrt{x}+1)}{\sqrt{x}}\right)^{10} \\
& =\left(\left(x^{1 / 3}+1\right)-\left(1+\frac{1}{\sqrt{x}}\right)\right)^{10} \\
& =\left(x^{1 / 3}-\frac{1}{x^{1 / 2}}\right)^{10}
\end{aligned}
\)
[Note:
For \(\left(x^\alpha \pm \frac{1}{x^\beta}\right)^n\) the \((r+1)^{\text {th }}\) term with power \(m\) of \(x\) is
\(
\left.r=\frac{n \alpha-m}{\alpha+\beta}\right]
\)
Here \(\alpha=\frac{1}{3}, \beta=\frac{1}{2}\) and \(m =0\) then \(r=\frac{10 \times \frac{1}{3}-0}{\frac{1}{3}+\frac{1}{2}}=\frac{10}{3} \times \frac{6}{5}=4\)
\(\therefore T_5\) is the term independent of \(x\).
\(
\therefore T _5={ }^{10} C_4=210
\)
If the constant term, in binomial expansion of \(\left(2 x^r+\frac{1}{x^2}\right)^{10}\) is 180 , then \(r\) is equal to ____. [JEE Main 2021 (Online) 22th July Evening Shift]
\(
\begin{aligned}
& \left(2 x^r+\frac{1}{x^2}\right)^{10} \\
& \text { General term }={ }^{10} C_R\left(2 x^2\right)^{10-R} x^{-2 R} \\
& \Rightarrow 2^{10-R 10} C_R=180 \ldots \ldots .(1)
\end{aligned}
\)
\(
\begin{aligned}
& \&(10- R ) r -2 R =0 \\
& r=\frac{2 R}{10-R} \\
& r=\frac{2(R-10)}{10-R}+\frac{20}{10-R} \\
& \Rightarrow r=-2+\frac{20}{10-R} \dots(2)
\end{aligned}
\)
\(R=8\) or 5 reject equation (1) not satisfied
At \(R=8\)
\(
\Rightarrow 2^{10-R} \times{ }^{10} C_R=180 \Rightarrow r=8
\)
The number of elements in the set \(\left\{n \in\{1,2,3, \ldots \ldots ., 100\} \mid(11)^n>(10)^n+(9)^n\right\}\) is ____. [JEE Main 2021 (Online) 22th July Evening Shift]
\(
\begin{aligned}
& 11^n>10^n+9^n \\
& \Rightarrow 11^n-9^n>10^n \\
& \Rightarrow(10+1)^n-(10-1)^n>10^n
\end{aligned}
\)
\(
\Rightarrow 2\left\{{ }^n C_1 \cdot 10^{n-1}+{ }^n C_3 10^{n-10}+{ }^n C_5 10^{n-5}+\ldots \ldots\right\}>10^n
\)
\(
\Rightarrow \frac{1}{5}\left[{ }^n C_1 10^n+{ }^n C_3 10^{n-2}+{ }^n C_5 10^{n-4}+\ldots . .\right]>10^n
\)
\(
\Rightarrow \frac{1}{5}\left[{ }^n C_1+{ }^n C_3 10^{-2}+{ }^n C_5 10^{-4}+\ldots . .\right]>1
\)
Clearly the above inequality is true for \(n \geq 5\)
For \(n=4\), we have \(\frac{1}{5}\left[4+\frac{4}{10^2}\right]=\frac{4}{5}\left(\frac{101}{100}\right)<1\)
\(\Rightarrow\) Inequality does not hold good for \(n=1,2,3,4\)
So, required number of elements \(=\{5,6,7\), \(\qquad\) \(100\}=96\)
The number of rational terms in the binomial expansion of \(\left(4^{\frac{1}{4}}+5^{\frac{1}{6}}\right)^{120}\) is ____. [JEE Main 2021 (Online) 20th July Morning Shift]
\(
\begin{aligned}
& \left(4^{\frac{1}{4}}+5^{\frac{1}{6}}\right)^{120} \\
& T_{r+1}={ }^{120} C_r\left(2^{1 / 2}\right)^{120-r}(5)^{r / 6}
\end{aligned}
\)
for rational terms \(r=6 \lambda\)
\(
0 \leq r \leq 120
\)
So total no of terms are 21.
The term independent of \(x\) in the expansion of \(\left[\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right]^{10}, x \neq 1\), is equal to ____. [JEE Main 2021 (Online) 18th March Evening Shift]
\(
\begin{aligned}
& \left(\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right)^{10} \\
& =\left(\frac{\left(x^{1 / 3}\right)^3+\left(1^{1 / 3}\right)^3}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(\sqrt{x})^2-(1)^2}{x-x^{1 / 2}}\right)^{10} \\
& =\left(\frac{\left(x^{1 / 3}+1\right)\left(x^{2 / 3}-x^{1 / 3}+1\right)}{x^{2 / 3}-x^{1 / 3}+1}-\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-1)}\right)^{10} \\
& =\left(\left(x^{1 / 3}+1\right)-\frac{(\sqrt{x}+1)}{\sqrt{x}}\right)^{10} \\
& =\left(\left(x^{1 / 3}+1\right)-\left(1+\frac{1}{\sqrt{x}}\right)\right)^{10} \\
& =\left(x^{1 / 3}-\frac{1}{x^{1 / 2}}\right)^{10}\left(x^{-\frac{1}{2}}\right)^r
\end{aligned}
\)
For being independent of \(x: \frac{10-r}{3}-\frac{r}{2}=0 \Rightarrow r=4\)
Term independent of \(x={ }^{10} C_4=210\)
Let \({ }^n C_r\) denote the binomial coefficient of \(x ^{\Gamma}\) in the expansion of \((1+ x )^n\). If \(\sum_{k=0}^{10}\left(2^2+3 k\right)^{10} C_k=\alpha \cdot 3^{10}+\beta \cdot 2^{10}, \alpha, \beta \in R\), then \(\alpha+\beta\) is equal to ____. [JEE Main 2021 (Online) 18th March Evening Shift]
\(
\begin{aligned}
& \sum_{k=0}^{10}\left(2^2+3 k\right)^{10} C_k \\
& =4 \sum_{k=0}^{10}{ }^{10} C_k+3 \sum_{k=0}^{10} k \cdot{ }^{10} C_k \\
& =4\left(2^{10}\right)+3 \sum_{k=0}^{10} k \cdot \frac{10}{k} \cdot{ }^9 C_{k-1} \\
& =4\left(2^{10}\right)+3 \cdot 10\left(2^9\right) \\
& =4\left(2^{10}\right)+3.5 \cdot 2^{10} \\
& =2^{10}(19)
\end{aligned}
\)
According to question,
\(
\begin{aligned}
& 19\left(2^{10}\right)=\alpha .3^{10}+\beta \cdot 2^{10} \\
& \therefore \alpha=0, \beta=19 \\
& \Rightarrow \alpha+\beta=19
\end{aligned}
\)
Let the coefficients of third, fourth and fifth terms in the expansion of \(\left(x+\frac{a}{x^2}\right)^n, x \neq 0\), be in the ratio \(12: 8: 3\). Then the term independent of \(x\) in the expansion, is equal to _____. [JEE Main 2021 (Online) 17th March Evening Shift]
\(
\begin{aligned}
& T_{r+1}=n_{C_r} x^{n-r} \cdot\left(\frac{a}{x^2}\right)^r \\
& ={ }^n C_r a^r x^{n-3 r} \\
& T_3={ }^n C_2 a^2 x^{n-6}, T_4={ }^n C_3 a^3 x^{n-9}, T_5={ }^n C_4 a^4 x^{n-12}
\end{aligned}
\)
\(
\Rightarrow a(n-2)=2 \dots(i)
\)
and \(\frac{\text { coefficient of } T_4}{\text { coefficient of } T_5}=\frac{{ }^n C_3 \cdot a^3}{{ }^n C_4 \cdot a^4}=\frac{4}{a(n-3)}=\frac{8}{3}\)
\(
\Rightarrow a(n-3)=\frac{3}{2} \dots(ii)
\)
by (i) and (ii) \(n=6, a=\frac{1}{2}\)
for term independent of ‘ \(x\) ‘
\(
\begin{aligned}
& n-3 r=0 \Rightarrow r=\frac{n}{3} \Rightarrow r=\frac{6}{3}=2 \\
& T_3={ }^6 C_2\left(\frac{1}{2}\right)^2 x^0=\frac{15}{4}=3.75 \approx 4
\end{aligned}
\)
If \((2021)^{3762}\) is divided by 17 , then the remainder is ______. [JEE Main 2021 (Online) 17th March Morning Shift]
\(
\begin{aligned}
& 2021=17 m-2 \\
& (2021)^{3762}=(17 m-2)^{3762}=\text { multiple of } 17+2^{3762} \\
& =17 \lambda+2^2\left(2^4\right)^{940} \\
& =17 \lambda+4(17-1)^{940} \\
& =17 \lambda+4(17 \mu+1) \\
& =17 k+4 ;(k \in I) \\
& \therefore \text { Remainder }=4
\end{aligned}
\)
Let \(n\) be a positive integer. Let
\(
A=\sum_{k=0}^n(-1)^{k n} C_k\left[\left(\frac{1}{2}\right)^k+\left(\frac{3}{4}\right)^k+\left(\frac{7}{8}\right)^k+\left(\frac{15}{16}\right)^k+\left(\frac{31}{32}\right)^k\right] \text {. If }
\)
\(63 A=1-\frac{1}{2^{30}}\), then \(n\) is equal to [JEE Main 2021 (Online) 16th March Evening Shift]
\(
A=\sum(-1)^{k_n} C_k\left(\frac{1}{2}\right)^k+\sum(-1)^{k_n} C_k\left(\frac{3}{4}\right)^k+\ldots \ldots
\)
\(
\begin{aligned}
& =\left(1-\frac{1}{2}\right)^n+\left(1-\frac{3}{4}\right)^n+\ldots \ldots+\left(1-\frac{31}{32}\right)^n \\
& =\left(\frac{1}{2}\right)^n+\left(\frac{1}{2}\right)^{2 n}+\left(\frac{1}{2}\right)^{3 n}+\ldots \ldots+\left(\frac{1}{2}\right)^{5 n}
\end{aligned}
\)
\(
=\left(\frac{1}{2}\right)^n\left(\frac{1-\left(\frac{1}{2}\right)^{5 n}}{1-\left(\frac{1}{2}\right)^n}\right)=\frac{2^{5 n}-1}{2^{5 n}\left(2^n-1\right)}
\)
\(
\therefore 63 A=\frac{63\left(2^{5 n}-1\right)}{2^{5 n}\left(2^n-1\right)}=\frac{63}{\left(2^n-1\right)}\left(1-\frac{1}{2^{5 n}}\right)
\)
Given, \(63 A=1-\frac{1}{2^{30}}\)
\(
\therefore \frac{63}{\left(2^n-1\right)}\left(1-\frac{1}{2^{5 n}}\right)=1-\frac{1}{2^{30}}
\)
For \(n=6\), L.H.S \(=\) R.H.S
\(
\therefore n =6
\)
Let \(m , n \in N\) and \(\operatorname{gcd}(2, n )=1\). If \(30\binom{30}{0}+29\binom{30}{1}+\ldots \ldots+2\binom{30}{28}+1\binom{30}{29}=n .2^m\), then \(n+m\) is equal to _____. [JEE Main 2021 (Online) 26th February Morning Shift]
\(
\text { (Here }\binom{n}{k}={ }^n C_k \text { ) }
\)
\(
30\left({ }^{30} C_0\right)+29\left({ }^{30} C_1\right)+\ldots .+2\left({ }^{30} C_{28}\right)+1\left({ }^{30} C_{29}\right)
\)
\(
=30\left({ }^{30} C_{30}\right)+29\left({ }^{30} C_{29}\right)+\ldots \ldots+2\left({ }^{30} C_2\right)+1\left({ }^{30} C_1\right)
\)
\(
\begin{aligned}
& =\sum_{r=1}^{30} r\left({ }^{30} C_r\right) \\
& =\sum_{r=1}^{30} r\left(\frac{30}{r}\right)\left({ }^{29} C_{r-1}\right) \\
& =30 \sum_{r=1}^{30}{ }^{29} C_{r-1}
\end{aligned}
\)
\(
\begin{aligned}
& =30\left({ }^{29} C_0+{ }^{29} C_1+{ }^{29} C_2+\ldots .+{ }^{29} C_{29}\right) \\
& =30\left(2^{29}\right)=15(2)^{30}=n(2)^m
\end{aligned}
\)
\(
\begin{aligned}
& \therefore n =15, m =30 \\
& \Rightarrow n + m =45
\end{aligned}
\)
If the remainder when \(x\) is divided by 4 is 3 , then the remainder when \((2020+x)^{2022}\) is divided by 8 is ____. [JEE Main 2021 (Online) 25th February Evening Shift]
\(
\begin{aligned}
& \text { Let } x=4 k+3 \\
& (2020+x)^{2022} \\
& =(2020+4 k+3)^{2022} \\
& =(4(505)+4 k+3)^{2022} \\
& =(4 P+3)^{2022} \\
& =(4 P+4-1)^{2022} \\
& =(4 A-1)^{2022} \\
& 2022 C_0(4 A)^0(-1)^{2022}+{ }^{2022} C_1(4 A)^1(-1)^{2021}+\ldots . . \\
& =1+2022(4 A)(-1)+\ldots . . \\
& =1+8 \lambda
\end{aligned}
\)
\(\therefore\) Reminder is 1 .
The total number of two digit numbers ‘ \(n\) ‘, such that \(3^n+7^n\) is a multiple of 10 , is ____. [JEE Main 2021 (Online) 25th February Evening Shift]
\(
\begin{aligned}
& \because 7^n=(10-3)^n=10 k+(-3)^n \\
& 7^n+3^n=10 k+(-3)^n+3^n
\end{aligned}
\)
\(
10 K+(-3)^n+3^n
\)
\(10 K\) if \(n=\) odd \(10 K+2.3^n\) if \(n=\) even
\(
\text { Let } n =2 t ; t \in N
\)
\(
\begin{aligned}
& \therefore 3^n=3^{2 t}=(10-1)^t \\
& =10 p+(-1)^t \\
& =10 p \pm 1
\end{aligned}
\)
\(\therefore\) if \(n=\) even then \(7^n+3^n\) will not be multiply of 10
So if \(n\) is odd then only \(7^n+3^n\) will be multiply of 10
\(\therefore n=11,13,15 \ldots 99\)
Hence, there are 45 two digit number.
For integers \(n\) and \(r\), let \(\binom{n}{r}=\left\{\begin{array}{cc}{ }^n C_r, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.\) The maximum value of \(k\)
for which the sum \(\sum_{i=0}^k\binom{10}{i}\binom{15}{k-i}+\sum_{i=0}^{k+1}\binom{12}{i}\binom{13}{k+1-i}\) exists, is equal to ____. [JEE Main 2021 (Online) 24th February Evening Shift]
Finding the maximum value for which the sum
\(
\sum_{i=0}^k\binom{10}{i}\binom{15}{k-i}+\sum_{i=0}^{k+1}\binom{12}{i}\binom{13}{k+1-i}:
\)
Given that \(\binom{n}{r}= \begin{cases}n C_r, & \text { if } n \geq r \geq 0 \\ 0, & \text { Otherwise }\end{cases}\)
\(
\begin{aligned}
& (1+x)^{10}=10 C_0+10 C_1 x+10 C_2 x^2+\ldots \ldots+10 C_{10} x^{10} \\
& (1+x)^{15}=15 C_0+15 C_1 x+15 C_2 x^2+\ldots \ldots+15 C_{k-1} x^{k-1}+15 C_{k+1} \\
& x^{k+1}+\ldots 15 C_{15} x^{15} \\
& \sum_{i=0}^k\left(10 C_i\right)\left(15 C_{k-i}\right)=10 C_0 15 C_k+10 C_1 15 C_{k-1}+\ldots+10 C_k 15 C_0
\end{aligned}
\)
Coefficient of \(x_k\) in \((1+x)^{25}=25 C_k\)
\(
\sum_{i=0}^{k+1}\left(12 C_i\right)\left(13 C_{k+1-i}\right)=12 C_0 13 C_{k+1}+12 C_1 13 C_k+\ldots+12 C_{k+1} 13 C_0
\)
Coefficient of \(x^{k+1}\) in \((1+x)^{25}=25 C_{k+1}\)
\(
25 C_k+25 C_{k+1}=26 C_{k+1}
\)
For maximum value
As per given, \(k\) can be as large as possible.
Hence, \(k\) can be as large as possible .
The sum of the coefficient of \(x^{2 / 3}\) and \(x^{-2 / 5}\) in the binomial expansion of \(\left(x^{2 / 3}+\frac{1}{2} x^{-2 / 5}\right)^9\) is [JEE Main 2024 (Online) 9th April Evening Shift]
\(
\begin{aligned}
& T_{r+1}={ }^9 C_r\left(\frac{x^{-2 / 5}}{2}\right)^r\left(x^{2 / 3}\right)^{9-r} \\
& ={ }^9 C_r \frac{1}{2^r} x^{\frac{2}{3}(9-r)+\left(\frac{-2 r}{5}\right)} \\
& ={ }^9 C_r \cdot \frac{1}{2^r} \cdot x^{6-\frac{16 r}{15}}
\end{aligned}
\)
For coefficient of \(x^{2 / 3}\)
\(
\begin{aligned}
& \Rightarrow 6-\frac{16 r}{15}=\frac{2}{3} \\
& \Rightarrow 90-16 r=10 \\
& \Rightarrow r=5
\end{aligned}
\)
For coefficient of \(x^{-2 / 5}\)
\(
\begin{aligned}
& \Rightarrow 6-\frac{16 r}{15}=\frac{-2}{5} \\
& \Rightarrow 90-16 r=-6 \\
& \Rightarrow r=6
\end{aligned}
\)
Sum of coefficient of \(x^{2 / 3} \& x^{-2 / 5}\)
\(
\begin{aligned}
& ={ }^9 C_5 \cdot \frac{1}{2^5}+{ }^9 C_6 \cdot \frac{1}{2^6} \\
& =\frac{9!}{5!4!}\left(\frac{1}{2^5}\right)+\frac{9!}{6!3!}\left(\frac{1}{2^6}\right)=\frac{21}{4}
\end{aligned}
\)
The coefficient of \(x^{70}\) in \(x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}\) is \({ }^{99} C _{ p }-{ }^{46} C\). Then a possible value of \(p + q\) is : [JEE Main 2024 (Online) 9th April Morning Shift]
\(
x^2(1+x)^{98}+x^3(1+x)^{97}+\ldots+x^{54}(1+x)^{46}
\)
It is a G.P. with first term \(=x^2(1+x)^{98}\) and common ratio \(=\frac{x}{1+x}\)
sum of these term \(=x^2(1+x)^{98}\left(\frac{\left(\frac{x}{1+x}\right)^{53}-1}{\frac{x}{1+x}-1}\right)\)
\(
=x^2(1+x)^{98}\left((1+x)-x^{53}(1+x)^{-52}\right)
\)
\(
=x^2(\underbrace{1+x)^{99}}_{\begin{array}{l}
\text { Coeff } \\
\text { of } x^{68}
\end{array}}-x^{55} \underbrace{(1+x)^{46}}_{\text {Coeff of } x^{15}}
\)
\(
\begin{aligned}
& ={ }^{99} C _{68}-{ }^{46} C _{15} \\
& \Rightarrow p=68, q=15 \\
& \Rightarrow p+q=83
\end{aligned}
\)
If the term independent of \(x\) in the expansion of \(\left(\sqrt{ a } x^2+\frac{1}{2 x^3}\right)^{10}\) is 105 , then \(a ^2\) is equal to : [JEE Main 2024 (Online) 8th April Evening Shift]
\(
\begin{aligned}
& \left(\sqrt{a} x^2+\frac{1}{2 x^3}\right)^{10} \\
& T_{r+1}={ }^{10} C_r\left(\sqrt{a} x^2\right)^{10-r}\left(\frac{1}{2 x^3}\right)^r
\end{aligned}
\)
Independent of \(x \Rightarrow 20-2 r-3 r=0\)
\(
r=4
\)
Independent of \(x\) is \({ }^{10} C_4(\sqrt{a})^6\left(\frac{1}{2}\right)^4=105\)
\(
\begin{gathered}
\frac{210}{2 \times 8} a^3=105 \\
\Rightarrow \quad a=2 \\
a^2=4
\end{gathered}
\)
If the constant term in the expansion of \(\left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[3]{5}}\right)^{12}, x \neq 0\), is \(\alpha \times 2^8 \times \sqrt[5]{3}\), then \(25 \alpha\) is equal to : [JEE Main 2024 (Online) 5th April Evening Shift]
\(
\begin{aligned}
& \left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[5]{3}}\right)^{12} \\
& T_{r+1}={ }^{12} C r\left(\frac{\sqrt[5]{3}}{x}\right)^{12-r}\left(\frac{2 x}{\sqrt[3]{5}}\right)^r
\end{aligned}
\)
For constant term \(-12+r+r=0\)
\(
\begin{aligned}
& \Rightarrow \quad r=6 \\
& \therefore \quad \text { Constant term }={ }^{12} C_6 \frac{(3)^{\frac{6}{5}}}{(5)^{\frac{6}{3}}}(2)^6 \\
& ={ }^{12} C_6 \times \frac{2^6}{25} \times 3.3^{\frac{1}{5}} \\
& =\frac{231}{25} \times 2^8 \cdot 3^{\frac{1}{5}} \cdot 3 \\
& =\frac{693}{25} \cdot 2^8 \sqrt[5]{3} \\
& \therefore \quad \alpha=\frac{693}{25} \\
& 25 \alpha=693
\end{aligned}
\)
If the coefficients of \(x^4, x^5\) and \(x^6\) in the expansion of \((1+x)^n\) are in the arithmetic progression, then the maximum value of \(n\) is: [JEE Main 2024 (Online) 4th April Evening Shift]
\(
\begin{aligned}
& (1+x)^n={ }^n C_0+{ }^n C_1 x^1+{ }^n C_2 x^2+\ldots{ }^n C_n x^n \\
& { }^n C_4,{ }^n C_5 \&{ }_5{ }_5-{ }^n C_4={ }^n C_6-{ }^n C_5 \\
& \Rightarrow \frac{n!}{5!(n-5)!}-\frac{n!}{4!(n-4)!}=\frac{n!}{6!(n-6)!}-\frac{n!}{5!(n-5)!} \\
& \Rightarrow 30(n-9)(n-6)=5(n-4)(n-11) \\
& \Rightarrow 30 n^2-450 n+1620=5 n^2 \\
& \Rightarrow \frac{1}{n-5}\left[\frac{n-4-5}{5(n-4)}\right]=\frac{1}{5}\left[\frac{n-5-6}{6(n-5)}\right] \\
& \Rightarrow \frac{n-9}{5(n-4)}=\frac{1}{5}\left[\frac{n-11}{6}\right] \\
& \Rightarrow n^2-21 n+98=0 \\
& n_{\max }=14
\end{aligned}
\)
The sum of all rational terms in the expansion of \(\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}\) is equal to: [JEE Main 2024 (Online) 4th April Morning Shift]
\(
\begin{aligned}
& T_{r+1}={ }^{15} C _r\left(2^{1 / 5}\right)^{15-r}\left(5^{1 / 3}\right)^r \\
& ={ }^{15} C_r 5^{r / 3} 2^{\left(3-\frac{r}{5}\right)}
\end{aligned}
\)
For rational terms,
\(\frac{r}{3}\) and \(\frac{r}{5}\) must be integer
3 and 5 divide \(r \Rightarrow 15\) divides \(r \Rightarrow r=0\) and \(r=15\)
\(
\begin{aligned}
& { }^{15} C_0 5^0 2^3+{ }^{15} C_{15} 5^5 2^{(0)} \\
& =8+3125 \\
& =3133
\end{aligned}
\)
Let \(m\) and \(n\) be the coefficients of seventh and thirteenth terms respectively in the expansion of \(\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}\). Then \(\left(\frac{ n }{ m }\right)^{\frac{1}{3}}\) is :[JEE Main 2024 (Online) 1st February Evening Shift]
\(
\begin{aligned}
& t _7={ }^{18} C _6\left(\frac{ x ^{\frac{1}{3}}}{3}\right)^{12}\left(\frac{ x ^{\frac{-2}{3}}}{2}\right)^6={ }^{18} C _6 \frac{1}{(3)^{12}} \cdot \frac{1}{2^6} \\
& t _{13}={ }^{18} C _{12}\left(\frac{ x ^{\frac{1}{3}}}{3}\right)^6\left(\frac{ x ^{\frac{-2}{3}}}{2}\right)^{12}={ }^{18} C _{12} \frac{1}{(3)^6} \cdot \frac{1}{2^{12}} \cdot x ^{-6} \\
& \therefore m={ }^{18} C_6\left(\frac{1}{3}\right)^{12}\left(\frac{1}{2}\right)^6 \\
& n={ }^{18} C_{12}\left(\frac{1}{3}\right)^6\left(\frac{1}{2}\right)^{12}
\end{aligned}
\)
\(
\begin{aligned}
\left(\frac{m}{n}\right)^{\frac{1}{3}} & =\left(\frac{{ }^{18} C_6\left(\frac{1}{3}\right)^{12}\left(\frac{1}{2}\right)^6}{{ }^{18} C_{12}\left(\frac{1}{3}\right)^6\left(\frac{1}{2}\right)^{12}}\right)^{\frac{1}{3}} \\
& =\left(\frac{\left(\frac{1}{3}\right)^6}{\left(\frac{1}{2}\right)^6}\right)^{\frac{1}{3}}=\left(\left(\frac{2}{3}\right)^6\right)^{\frac{1}{3}}=\frac{4}{9} \\
\therefore\left(\frac{n}{m}\right)^{\frac{1}{3}} & =\frac{9}{4}
\end{aligned}
\)
Let \(a\) be the sum of all coefficients in the expansion of \(\left(1-2 x+2 x^2\right)^{2023}\left(3-4 x^2+2 x^3\right)^{2024}\) and \(b=\lim _{x \rightarrow 0}\left(\frac{\int_0^x \frac{\log (1+t)}{t^{2024}+1} d t}{x^2}\right)\). If the equation \(c x^2+d x+e=0\) and \(2 b x^2+a x+4=0\) have a common root, where \(c, d, e \in R\), then \(d : c : e\) equals [JEE Main 2024 (Online) 31st January Morning Shift]
Put \(x=1\)
\(
\begin{aligned}
& \therefore a=1 \\
& b=\lim _{x \rightarrow 0} \frac{\int_0^x \frac{\ln (1+t)}{1+t^{2024}} dt }{x^2}
\end{aligned}
\)
Using L’ HOPITAL Rule
\(
b =\lim _{ x \rightarrow 0} \frac{\ln (1+ x )}{\left(1+ x ^{2024}\right)} \times \frac{1}{2 x }=\frac{1}{2}
\)
Now, \(cx ^2+ dx + e =0, x ^2+ x +4=0\)
\(
\begin{aligned}
& ( D <0) \\
& \therefore \frac{ c }{1}=\frac{ d }{1}=\frac{ e }{4}
\end{aligned}
\)
Suppose \(2-p, p, 2-\alpha, \alpha\) are the coefficients of four consecutive terms in the expansion of \((1+x)^n\). Then the value of \(p^2-\alpha^2+6 \alpha+2 p\) equals [JEE Main 2024 (Online) 30th January Evening Shift]
\(
2-p, p, 2-\alpha, \alpha
\)
Binomial coefficients are
\(
\begin{aligned}
& { }^n C_r,{ }^n C_{r+1},{ }^n C_{r+2},{ }^n C_{r+3} \text { respectively } \\
\Rightarrow \quad & { }^n C_r+{ }^n C_{r+1}=2 \\
\Rightarrow \quad & { }^{n+1} C_{r+1}=2 \quad \ldots \ldots(1)
\end{aligned}
\)
Also, \({ }^{ n } C _{ r +2}+{ }^{ n } C _{ r +3}=2\)
\(
\Rightarrow \quad{ }^{n+1} C_{r+3}=2 \dots(2)
\)
From (1) and (2)
\(
\begin{aligned}
& { }^{n+1} C_{r+1}={ }^{n+1} C_{r+3} \\
& \Rightarrow \quad 2 r +4= n +1 \\
& n =2 r +3 \\
& { }^{2 r +4} C _{ r +1}=2
\end{aligned}
\)
\({ }^{n-1} C_r=\left(k^2-8\right)^n C_{r+1} \text { if and only if : }\) [JEE Main 2024 (Online) 27th January Morning Shift]
\(
\begin{aligned}
& { }^{ n -1} C _{ r }=\left( k ^2-8\right)^{ n } C _{ r +1} \\
& \underbrace{ r +1 \geq 0, \quad r \geq 0}_{ r \geq 0} \\
& \frac{{ }^{n-1} C_r}{{ }^n C_{r+1}}=k^2-8 \\
& \frac{r+1}{n}=k^2-8 \\
& \Rightarrow k^2-8>0 \\
& (k-2 \sqrt{2})(k+2 \sqrt{2})>0
\end{aligned}
\)
\(
\begin{aligned}
& k \in(-\infty,-2 \sqrt{2}) \cup(2 \sqrt{2}, \infty) \dots(i)\\
& \therefore n \geq r +1, \frac{ r +1}{ n } \leq 1 \\
& \Rightarrow k ^2-8 \leq 1 \\
& \quad k ^2-9 \leq 0 \\
& \quad-3 \leq k \leq 3 \quad \text {…. (ii) }
\end{aligned}
\)
From equation (i) and (ii) we get
\(
k \in[-3,-2 \sqrt{2}) \cup(2 \sqrt{2}, 3]
\)
If A denotes the sum of all the coefficients in the expansion of \(\left(1-3 x+10 x^2\right)^{ n }\) and \(B\) denotes the sum of all the coefficients in the expansion of \(\left(1+x^2\right)^n\), then : [JEE Main 2024 (Online) 27th January Morning Shift]
Sum of coefficients in the expansion of \(\left(1-3 x+10 x^2\right)^n=A\) then \(A=(1-3+10)^n=8^n\) (put \(x=1\) ) and sum of coefficients in the expansion of
\(
\begin{aligned}
& \left(1+x^2\right)^n=B \\
& \text { then } B=(1+1)^n=2^n \\
& A=B^3
\end{aligned}
\)
Let \(\left(a+b x+c x^2\right)^{10}=\sum_{i=0}^{20} p_i x^i, a, b, c \in N\). If \(p_1=20\) and \(p_2=210\), then \(2(a+b+c)\) is equal to : [JEE Main 2023 (Online) 15th April Morning Shift]
We are given that \(\left(a+b x+c x^2\right)^{10}=\sum_{i=0}^{20} p_i x^i\), and we are given that \(p_1=20\) and \(p_2=210\).
We need to find the value of \(2(a+b+c)\).
Using the multinomial theorem, we can express the expansion of \(\left(a+b x+c x^2\right)^{10}\) as follows:
\(
\sum_{k_1+k_2+k_3=10} \frac{10!}{k_{1}!k_{2}!k_{3}!} a^{k_1}(b x)^{k_2}\left(c x^2\right)^{k_3}
\)
Now we need to find the coefficients of \(x^1\) and \(x^2\) in the expansion:
For \(x^1\) term, we have:
\(
k_2=1, k_1=9, k_3=0
\)
So, \(p_1=\frac{10!}{9!1!0!} a^9 b^1=10 a^9 b\)
For \(x^2\) term, there are two possibilities:
\(
k_2=2, k_1=8, k_3=0 \quad \text { and } \quad k_2=0, k_1=9, k_3=1
\)
So, \(p_2=\frac{10!}{8!2!!} a^8 b^2+\frac{10!}{9!0!1!} a^9 c=45 a^8 b^2+10 a^9 c\)
Now we are given \(p_1=20\) and \(p_2=210\). So, \(10 a^9 b=20 \Longrightarrow a^9 b=2\) and \(45 a^8 b^2+10 a^9 c=210\)
Now, divide the second equation by \(a^8: 45 b^2+10 a c=210\)
We know that \(a^9 b=2\). Taking the \(9^{\text {th }}\) root of both sides: \(a b=\sqrt[9]{2}\)
Now, let \(k=a b=\sqrt[9]{2}\). We can rewrite the equation for \(x^2\) term as:
\(
45 k^2+10 k^9=210
\)
From the equation \(a b=k=\sqrt[9]{2}\), we know that \(a\) and \(b\) are positive integers. Thus, \(k=2\) (as both \(a\) and \(b\) must be factors of 2 ). Now we have:
\(
a+b=2
\)
and from the equation \(a^9 b=2\), we get \(a=1, b=2\) or vice versa.
Now we need to find the value of \(c\). We can use the equation for the \(x^2\) term again:
\(
45 a^8 b^2+10 a^9 c=210
\)
Using \(a=1\) and \(b=2\), we get:
\(
45(1)^8(2)^2+10(1)^9 c=210 \Longrightarrow 180+10 c=210 \Longrightarrow c=3
\)
So, \(a=1, b=2\), and \(c=3\). Now, we need to find the value of \(2(a+b+c)\) :
\(
2(a+b+c)=2(1+2+3)=2(6)=12
\)
The coefficient of \(x^5\) in the expansion of \(\left(2 x^3-\frac{1}{3 x^2}\right)^5\) is: [JEE Main 2023 (Online) 13th April Evening Shift]
Given, \(\left(2 x^3-\frac{1}{3 x^2}\right)^5\)
General term,
\(
\begin{aligned}
& T_{r+1}={ }^5 C_r\left(2 x^3\right)^{5-r}\left(\frac{-1}{3 x^2}\right)^r={ }^5 C_r \frac{(2)^{5-r}}{(-3)^r}(x)^{15-5 r} \\
& \therefore 15-5 r =5 \\
& \therefore r =2 \\
& T_3=10\left(\frac{8}{9}\right) x^5
\end{aligned}
\)
So, coefficient is \(\frac{80}{9}\).
Fractional part of the number \(\frac{4^{2022}}{15}\) is equal to [JEE Main 2023 (Online) 13th April Morning Shift]
\(
\begin{aligned}
& \left\{\frac{4^{2022}}{15}\right\}=\left\{\frac{2^{4044}}{15}\right\} \\
& =\left\{\frac{(1+15)^{1011}}{15}\right\} \\
& =\frac{1}{15}
\end{aligned}
\)
If \(\frac{1}{n+1}{ }^n C _n+\frac{1}{n}{ }^n C _{n-1}+\ldots+\frac{1}{2}{ }^n C _1+{ }^n C _0=\frac{1023}{10}\) then \(n\) is equal to : [JEE Main 2023 (Online) 12th April Morning Shift]
\(
\frac{1}{n+1}{ }^n C _n+\frac{1}{n}{ }^n C _{n-1}+\ldots+\frac{1}{2}{ }^n C _1+{ }^n C _0=\frac{1023}{10}
\)
\(
\begin{aligned}
& \Rightarrow \sum_{r=0}^n \frac{1}{r+1}{ }^n C_r=\frac{1023}{10} \\
& \left(\because{ }^{n+1} C_{r+1}=\frac{n+1}{r+1}{ }^n C_r\right) \\
& \Rightarrow \sum_{r=0}^n \frac{1}{n+1}^{n+1} C_{r+1}=\frac{1023}{10}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \frac{1}{n+1}\left[{ }^{n+1} C_1+{ }^{n+1} C_2+\ldots+{ }^{n+1} C_{n+1}\right]=\frac{1023}{10} \\
& \Rightarrow \frac{2^{n+1}-1}{n+1}=\frac{1023}{10}=\frac{2^{10}-1}{10} \\
& \Rightarrow n+1=10 \\
& \Rightarrow n=9
\end{aligned}
\)
The sum, of the coefficients of the first 50 terms in the binomial expansion of \((1-x)^{100}\), is equal to [JEE Main 2023 (Online) 12th April Morning Shift]
\(
\begin{aligned}
& \left({ }^{100} C_0-{ }^{100} C_1+{ }^{100} C_2-\ldots . .{ }^{100} C_{49}\right)+{ }^{100} C_{50} \\
& +\left(-{ }^{100} C_{51}+{ }^{100} C_{52}-\ldots .+{ }^{100} C_{100}\right)=0 \\
& \lambda_1+{ }^{100} C_{50}+\lambda_2=0 \\
& \lambda_1=-\frac{1}{2}{ }^{100} C_{50} \quad\left(\because \lambda_1=\lambda_2\right) \\
& =-{ }^{99} C_{49}
\end{aligned}
\)
The sum of the coefficients of three consecutive terms in the binomial expansion of \((1+ x )^{ n +2}\), which are in the ratio \(1: 3: 5\), is equal to : [JEE Main 2023 (Online) 11th April Evening Shift]
The problem asks for the sum of the coefficients of three consecutive terms in the binomial expansion of \((1+x)^{n+2}\), which are in the ratio \(1: 3: 5\).
Given that the ratios of the coefficients are 1:3:5, we let the terms be \(T_r, T_{r+1}\), and \(T_{r+2}\). The coefficients of these terms are \({ }^{n+2} C_{r-1},{ }^{n+2} C_r\), and \({ }^{n+2} C_{r+1}\), respectively.
\(
\begin{aligned}
& \frac{T_{r+1}}{T_r}=\frac{{ }^{n+2} C_r}{{ }^{n+2} C_{r-1}}=\frac{n+2-r+1}{r}=\frac{n+3-r}{r}=3 \\
& n-4 r+3=0 \ldots \ldots(1) \\
& \frac{T_{r+2}}{T_{r+1}}=\frac{{ }^{n+2} C_{r+1}}{{ }^{n+2} C_r}=\frac{(n+2)-(r+1)+1}{r+1}=\frac{n-r+2}{r+1}=\frac{5}{3} \\
& 3 n-8 r+1=0 \ldots \ldots(2)
\end{aligned}
\)
By solving (1) and (2), we get
\(
\begin{aligned}
& \Rightarrow n=5, r=2 \\
& \begin{aligned}
T_r+T_{r+1}+T_{r+2} & ={ }^7 C_1+{ }^7 C_2+{ }^7 C_3 \\
& =7+21+35=63
\end{aligned}
\end{aligned}
\)
If the \(1011^{\text {th }}\) term from the end in the binominal expansion of \(\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{2022}\) is 1024 times \(1011^{\text {th }} R\) term from the beginning, then \(|x|\) is equal to [JEE Main 2023 (Online) 11th April Evening Shift]
\(
\begin{aligned}
& T _{1011} \text { from beginning }= T _{1010+1} \\
& ={ }^{2022} C _{1010}\left(\frac{4 x }{5}\right)^{1012}\left(\frac{-5}{2 x }\right)^{1010} \\
& T _{1011} \text { from end } \\
& ={ }^{2022} C _{1010}\left(\frac{-5}{2 x }\right)^{1012}\left(\frac{4 x }{5}\right)^{1010} \\
& \text { Given: }{ }^{2022} C _{1010}\left(\frac{-5}{2 x }\right)^{1012}\left(\frac{4 x }{5}\right)^{1010} \\
& =2^{10} \cdot{ }^{2022} C _{1010}\left(\frac{-5}{2 x }\right)^{1010}\left(\frac{4 x }{5}\right)^{1012} \\
& \Rightarrow\left(\frac{-5}{2 x}\right)^2=2^{10}\left(\frac{4 x}{5}\right)^2 \\
& \Rightarrow x^4=\frac{5^4}{2^{16}} \\
& \Rightarrow|x|=\frac{5}{16}
\end{aligned}
\)
Let the number \((22)^{2022}+(2022)^{22}\) leave the remainder \(\alpha\) when divided by 3 and \(\beta\) when divided by 7 . Then \(\left(\alpha^2+\beta^2\right)\) is equal to: [JEE Main 2023 (Online) 10th April Evening Shift]
We have, \((22)^{2022}+(2022)^{22}\)
As 2022 is completely divisible by 3
So, \((2022)^{22}\) is also divisible by 3
\(
(22)^{2022}=(21+1)^{2022}=(3 \times 7+1)^{2022}=7 m+1
\)
\(\Rightarrow(22)^{2022}\) leave a remainder 1 , when divisible by 3 .
\(\therefore(22)^{2022}+(2022)^{22}\) leave a remainder when divisible by 3
\(
\therefore \alpha=1
\)
\(
\begin{aligned}
(22)^{2022}+(2022)^{22} & =(21+1)^{2022}+(2023-1)^{22} \\
& =7 K+1+7 \mu+1=7(K+\mu)+2
\end{aligned}
\)
\(\Rightarrow(22)^{2022}+(2022)^{22}\) leave a remainder 2 when divisible by 7
\(
\therefore \beta=2
\)
Hence, \(\alpha^2+\beta^2=1^2+2^2=5\)
If the coefficients of \(x\) and \(x^2\) in \((1+x)^{ p }(1-x)^{ q }\) are 4 and -5 respectively, then \(2 p+3 q\) is equal to : [JEE Main 2023 (Online) 10th April Evening Shift]
We have, coefficient of \(x\) in \((1+x)^p(1-x)^q=4\) and coefficient of \(x^2\) in \((1+x)^p(1-x)^q=-5\)
\(
\begin{aligned}
& (1+x)^p(1-x)^q \\
& =\left(1+p x+\frac{p(p-1)}{2} x^2+\ldots\right)\left(1-q x+\frac{q(q-1)}{2} x^2+\ldots\right) \\
& =1+(p-q) x+\left(\frac{p(p-1)}{2}+\frac{q(q-1)}{2}-p q\right) x^2+\ldots \ldots
\end{aligned}
\)
Coefficient of \(x\) in \((1+x)^p(1-x)^q=-q+p\)
\(
\Rightarrow p-q=4 \dots(i)
\)
Coefficient of \(x^2\) in \((1+x)^p(1-x)^q=\frac{q(q-1)}{2}-p q+\frac{p(p-1)}{2}\)
\(
\begin{aligned}
& \Rightarrow \frac{q^2-q-2 p q+p^2-p}{2}=-5 \\
& \Rightarrow \frac{p^2+q^2-2 p q-(p+q)}{2}=-5 \\
& \Rightarrow(p-q)^2-(p+q)=-10
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow(4)^2-(p+q)=-10 \quad[\because \text { From Eq. (i) }] \\
& \Rightarrow p+q=26 \ldots \ldots \ldots \ldots(i i)
\end{aligned}
\)
Form Eqs. (i) and (ii), we get \(p=15, q=11\)
\(
\therefore 2 p+3 q=2 \times 15+3 \times 11=30+33=63
\)
If the coefficient of \(x^7\) in \(\left(a x-\frac{1}{b x^2}\right)^{13}\) and the coefficient of \(x^{-5}\) in \(\left(a x+\frac{1}{b x^2}\right)^{13}\) are equal, then \(a^4 b^4\) is equal to : [JEE Main 2023 (Online) 10th April Morning Shift]
The given expression is \(\left(a x-\frac{1}{b x^2}\right)^{13}\)
So,
\(
\begin{aligned}
T_{r+1} & ={ }^{13} C_r(a x)^{13-r}\left(-\frac{1}{b x^2}\right)^r \\
& ={ }^{13} C_r(a)^{13-r} x^{13-r-2 r}(-1 / b)^r \\
& ={ }^{13} C_r(a)^{13-r}\left(-\frac{1}{b}\right)^r x^{13-3 r}
\end{aligned}
\)
For coefficient of \(x^7\) in \(\left(a x-\frac{1}{b x^2}\right)^{13}\)
\(
\begin{gathered}
13-3 r=7 \\
\Rightarrow 3 r=6 \Rightarrow r=2
\end{gathered}
\)
\(\therefore\) Coefficient of \(x^7={ }^{13} C_2 \cdot(a)^{11} \cdot \frac{1}{b^2}\)
Again, the another expression is \(\left(a x+\frac{1}{b x^2}\right)^{13}\)
So, \(T_{n+1}={ }^{13} C_r(a x)^{13-r}\left(\frac{1}{b x^2}\right)^r={ }^{13} C_r(a)^{13-r}\left(\frac{1}{b}\right)^r x^{13-3 r}\)
For coefficient \(x^{-5}\) in \(\left(a x+\frac{1}{b x^2}\right)^{13}\)
\(13-3 r=-5\)
\(
\Rightarrow r=6
\)
So, coefficient of \(x^{-5}={ }^{13} C_6(a)^7 \frac{1}{b^6}\)
Now, according to the question,
\(
\begin{aligned}
& { }^{13} C_2(a)^{11} \frac{1}{b^2}={ }^{13} C_6(a)^7 \frac{1}{b^6} \\
& \Rightarrow a^4 b^4=\frac{{ }^{13} C_6}{{ }^{13} C_2} \\
& \therefore a^4 b^4=22
\end{aligned}
\)
\(25^{190}-19^{190}-8^{190}+2^{190}\) is divisible by : [JEE Main 2023 (Online) 8th April Evening Shift]
The given expression is divisible by 6 and 17 .
Also, \(25^{190}-8^{190}\) is not divisible by 7
but \(19^{190}-2^{190}\) is divisible by 7 ,
So, \(25^{190}-19^{190}-8^{190}+2^{190}\) is divisible by 34 but not by 14 .
The absolute difference of the coefficients of \(x^{10}\) and \(x^7\) in the expansion of \(\left(2 x^2+\frac{1}{2 x}\right)^{11}\) is equal to : [JEE Main 2023 (Online) 8th April Evening Shift]
\(
\text { General term of }\left(2 x^2+\frac{1}{2 x}\right)^{11} \text { is : }
\)
\(
\begin{aligned}
& T _{ r +1}={ }^{11} C _r\left(2 x^2\right)^{11-r}\left(\frac{1}{2 x}\right)^r \\
& ={ }^{11} C _r 2^{11-r} x^{22-2 r} 2^{-r} x^{-r} \\
& ={ }^{11} C _r 2^{11-r} x^{22-3 r}
\end{aligned}
\)
Now, \(22-2 r=10\) and \(22-3 r=7\)
\(
\begin{array}{ll}
\Rightarrow 3 r=12 & \Rightarrow 3 r=15 \\
\Rightarrow r=4 & \Rightarrow r=5
\end{array}
\)
\(
\therefore \text { Coeff. of } x^{10}={ }^{11} C _4 \cdot 2^{11-8}={ }^{11} C _4 \times 8
\)
Coeff. of \(x^7={ }^{11} C_5 \cdot 2^{11-10}={ }^{11} C_4 \times 2\)
Now, required difference
\(
\begin{aligned}
& ={ }^{11} C _4 \times 8-{ }^{11} C _5 \times 2 \\
& =\frac{11 \times 10 \times 9 \times 8 \times 7!}{4!\times 7!} \times 8-\frac{11 \times 10 \times 9 \times 8 \times 7 \times 6!\times 2}{5!6!} \\
& =\frac{11 \times 10 \times 9 \times 8 \times 8}{24}-\frac{11 \times 10 \times 9 \times 8 \times 7 \times 2}{120} \\
& =11 \times 10 \times 8 \times 3-11 \times 3 \times 4 \times 7 \\
& =11 \times 3 \times 4[20-7] \\
& =11 \times 12 \times 13=(12-1) \times 12 \times(12+1) \\
& =12\left(12^2-1\right)=12^3-12
\end{aligned}
\)
If the coefficients of three consecutive terms in the expansion of \((1+x)^n\) are in the ratio \(1: 5: 20\), then the coefficient of the fourth term is [JEE Main 2023 (Online) 8th April Morning Shift]
\(
\begin{aligned}
& \text { Given: }{ }^n C _{r-1}:{ }^n C _r:{ }^n C _{r+1} \\
& =1: 5: 20 \\
& \Rightarrow \frac{n!}{(r-1)!(n-r+1)!} \times \frac{r!(n-r)!}{n!}=\frac{1}{5} \\
& \Rightarrow \frac{r}{(n-r+1)}=\frac{1}{5} \\
& \Rightarrow 5 r=n-r+1 \\
& \Rightarrow n=6 r-1 \ldots \ldots . .(i)
\end{aligned}
\)
Also, \(\frac{n}{r!(n-r)!} \times \frac{(r+1)!(n-r-1)!}{n!}=\frac{5}{20}=\frac{1}{20}\)
\(
\begin{aligned}
& \Rightarrow \frac{(r+1)}{(n-r)}=\frac{1}{4} \\
& \Rightarrow 4 r+4=n-r \\
& \Rightarrow n=5 r+4 \ldots \ldots . .(ii)
\end{aligned}
\)
From (i) and (ii), we get
\(
\begin{aligned}
& 6 r-1=5 r+4 \\
& \Rightarrow r=5
\end{aligned}
\)
So, \(n=5(5)+4=29\)
So, coefficient of \(4^{\text {th }}[latex] terms [latex]={ }^n C _3={ }^{29} C _3\)
\(
=\frac{29!}{3!26!}=\frac{29 \times 28 \times 27}{3 \times 2}=3654
\)
If the coefficient of \(x^7\) in \(\left(a x^2+\frac{1}{2 b x}\right)^{11}\) and \(x^{-7}\) in \(\left(a x-\frac{1}{3 b x^2}\right)^{11}\) are equal, then : [JEE Main 2023 (Online) 6th April Evening Shift]
General term of \(\left(a x^2+\frac{1}{2 b x}\right)^{11}\) is
\(
T_{r+1}={ }^{11} C_r\left(a x^2\right)^{11-r}\left(\frac{1}{2 b x}\right)^r={ }^{11} C_r(a)^{11-r}\left(\frac{1}{2 b}\right)^r x^{22-3 r}
\)
Now, \(22-3 r=7\)
\(
\begin{aligned}
& \Rightarrow 15=3 r \\
& \Rightarrow r=5
\end{aligned}
\)
and general term of \(\left(a x-\frac{1}{3 b x^2}\right)^{11}\) is
\(
\begin{aligned}
T_{r+1} & ={ }^{11} C_r(a x)^{11-r}\left(-\frac{1}{3 b x^2}\right)^r \\
& ={ }^{11} C_r a^{11-r}\left(-\frac{1}{3 b}\right)^r x^{11-3 r}
\end{aligned}
\)
Now, \(11-3 r=-7\)
\(
\Rightarrow 18=3 r \Rightarrow r=6
\)
Since, coefficient of \(x^7\) in \(\left(a x^2+\frac{1}{2 b x}\right)^{11}\)
\(=\) Coefficient of \(x^{-7}\) in \(\left(a x-\frac{1}{3 b x^2}\right)^{11}\)
\(
\begin{aligned}
& \Rightarrow{ }^{11} C_5(a)^6\left(\frac{1}{2 b}\right)^5={ }^{11} C_6(a)^5\left(-\frac{1}{3 b}\right)^6 \\
& \Rightarrow \frac{a}{32 b^5}=\frac{1}{729 b^6} \Rightarrow 729 a b=32
\end{aligned}
\)
Among the statements :
(S1) : \(2023^{2022}-1999^{2022}\) is divisible by 8
(S2) : \(13(13)^n-12 n-13\) is divisible by 144 for infinitely many \(n \in N\)
\(
\begin{aligned}
& \text { We have, } S_1:(2023)^{2022}-(1999)^{2022} \\
& =(1999+24)^{2022}-(1999)^{2022}={ }^{2022} C_0(1999)^{2022}(24)^0 \\
& +{ }^{2022} C_1(1999)^{2021}(24)^1+{ }^{2022} C_2(1999)^{2020}(24)^2 \\
& +\ldots-(1999)^{2022}
\end{aligned}
\)
\(
\begin{aligned}
& ={ }^{2022} C_1(1999)^{2021}(24)+{ }^{2022} C_2(1999)^{2022}(24)^2 \\
& =24\left({ }^{(2022} C_1(1999)^{2021}+{ }^{2022} C_2(1999)^{2022}(24)+\ldots+\ldots\right)
\end{aligned}
\)
\(\Rightarrow S_1\) is divisible by 24
Now, \(S_2: 13(13)^n-12 n-13\)
Here, \(13^n=(1+12)^n\)
\(
\begin{aligned}
& =1+{ }^n C_1 12+{ }^n C_2(12)^2+{ }^n C_3(12)^3 \\
\therefore S_2 & : 13\left(1+{ }^n C_1(12)+{ }^n C_2(12)^2+{ }^n C_3(12)^3+\ldots\right)-12 n-13 \\
& =13+156 n+13\left({ }^n C_2(12)^2+{ }^n C_3(12)^3+\ldots\right)-12 n-13 \\
& =144 \times 13\left({ }^n C_2+{ }^n C_3(12)+\ldots\right)
\end{aligned}
\)
\(\Rightarrow S_2\) is divisible by 144 for infinitely many \(n \in N\)
If \({ }^{2 n} C_3:{ }^n C_3=10: 1\), then the ratio \(\left(n^2+3 n\right):\left(n^2-3 n+4\right)\) is: [JEE Main 2023 (Online) 6th April Morning Shift]
We have, \({ }^{2 n} C_3:{ }^n C_3=10: 1\)
\(
\begin{aligned}
& \Rightarrow \frac{{ }^{2 n} C_3}{{ }^n C_3}=\frac{10}{1} \\
& \Rightarrow \frac{(2 n)!}{3!(2 n-3)!} \times \frac{3!(n-3)!}{n!}=\frac{10}{1} \\
& \Rightarrow \frac{(2 n)(2 n-1)(2 n-2)}{(n)(n-1)(n-2)}=\frac{10}{1} \\
& \Rightarrow 4 n^2-6 n+2=5\left(n^2-3 n+2\right) \\
& \Rightarrow n^2-9 n+8=0 \\
& \Rightarrow n^2-8 n-n+8=0 \\
& \Rightarrow n(n-8)-1(n-8)=0 \\
& \Rightarrow(n-8)(n-1)=0 \\
& \Rightarrow n=8(n=1 \text { not valid }) \\
& \therefore \frac{n^2+3 n}{n^2-3 n+4}=\frac{88}{44}=\frac{2}{1}=2: 1
\end{aligned}
\)
If the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of \(\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{ n }\) is \(\sqrt{6}: 1\), then the third term from the beginning is : [JEE Main 2023 (Online) 6th April Morning Shift]
\(
\begin{aligned}
& T _{r+1}={ }^n C _r x^{n-r} a^r \\
& \frac{T_5}{T_5^{\prime}}=\frac{{ }^n C_4 \times\left((2)^{\frac{1}{4}}\right)^{n-4}\left(\frac{1}{3^{1 / 4}}\right)^4}{{ }^n C_4\left(\frac{1}{3^{1 / 4}}\right)^{n-4}\left(2^{1 / 4}\right)^4}=\sqrt{6}
\end{aligned}
\)
\(\left[\because r\right.\) th term from end in the expansion of \((x+y)^n=r\) th term from beginning in the expansion of \((y+x)^n\) ]
\(
\begin{aligned}
& \Rightarrow \frac{{ }^n C_4(2)^{\frac{n-4}{4}}\left(\frac{1}{3}\right)^{4 / 4}}{{ }^n C_4\left(\frac{1}{3}\right)^{\frac{n-}{4}}(2)^{4 / 4}}=\frac{\sqrt{6}}{1} \\
& \Rightarrow(2)^{\frac{n-8}{4}}(3)^{\frac{n-8}{4}}=6^{1 / 2} \\
& \Rightarrow 6^{\frac{n-8}{4}}=6^{1 / 2}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \frac{n-8}{4}=\frac{1}{2} \\
& \Rightarrow n-8=2 \Rightarrow n=10 \\
& \therefore T_3={ }^{10} C_2(\sqrt[4]{2})^8\left(\frac{1}{\sqrt[4]{3}}\right)^2=45(2)^{\frac{8}{4}} \frac{1}{3^{1 / 2}} \\
& =45(4) \times \frac{\sqrt{3}}{3}=60 \sqrt{3}
\end{aligned}
\)
Let \(x=(8 \sqrt{3}+13)^{13}\) and \(y=(7 \sqrt{2}+9)^9\). If \([t]\) denotes the greatest integer \(\leq t\), then : [JEE Main 2023 (Online) 30th January Evening Shift]
\(
\begin{aligned}
& \text { If } I_1+f=(8 \sqrt{3}+13)^{13}, f^{\prime}=(8 \sqrt{3}-13)^{13} \\
& I_1+f-f^{\prime}=\text { Even } \\
& I_1=\text { Even } \\
& I_2+f-f^{\prime}=(7 \sqrt{2}+9)^9+(7 \sqrt{2}-9)^9 \\
& =\text { Even } \\
& I_2=\text { Even }
\end{aligned}
\)
If the coefficient of \(x^{15}\) in the expansion of \(\left( a x^3+\frac{1}{ b x^{1 / 3}}\right)^{15}\) is equal to the coefficient of \(x^{-15}\) in the expansion of \(\left(a x^{1 / 3}-\frac{1}{b x^3}\right)^{15}\), where \(a[latex] and [latex]b\) are positive real numbers, then for each such ordered pair \(( a , b )\) : [JEE Main 2023 (Online) 30th January Morning Shift]
\(
\begin{aligned}
& \text { For }\left(a x^3+\frac{1}{b x^{\frac{1}{3}}}\right) \\
& T_{r+1}={ }^{15} C_r\left(a x^3\right)^{15-r}\left(\frac{1}{b x^{\frac{1}{3}}}\right)^1 \\
& \therefore x^{15} \rightarrow 3(15-r)-\frac{r}{3}=15 \\
& \Rightarrow 30=\frac{10 r}{3} \Rightarrow r=9
\end{aligned}
\)
Similarly, for \(\left(a x^{\frac{1}{3}}-\frac{1}{b x^3}\right)^{15}\)
\(
T_{r+1}={ }^{15} C_r\left(a x^{\frac{1}{3}}\right)^{15-r}\left(-\frac{1}{b x^3}\right)^2
\)
\(\therefore\) For \(x^{-15} \rightarrow \frac{15-r}{3}-3 r=-15 \Rightarrow r=6\)
\(
\therefore{ }^{15} C_9 \frac{a^6}{b^9}={ }^{15} C_6 \frac{a^9}{b^6} \Rightarrow a b=1
\)
The coefficient of \(x^{301}\) in \((1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots+x^{500}\) is : [JEE Main 2023 (Online) 30th January Morning Shift]
The coefficient of \(x^{301}\) in
\(
\begin{aligned}
& (1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots+x^{500} \\
& { }^{500} C_{301}+{ }^{499} C_{300}+{ }^{498} C_{299}+\ldots+{ }^{199} C_0 \\
& ={ }^{500} C_{199}+{ }^{499} C_{199}+{ }^{498} C_{199}+\ldots+{ }^{199} C_{199} \\
& ={ }^{501} C_{200}
\end{aligned}
\)
Let \(K\) be the sum of the coefficients of the odd powers of \(x\) in the expansion of \((1+x)^{99}\). Let \(a\) be the middle term in the expansion of \(\left(2+\frac{1}{\sqrt{2}}\right)^{200}\). If \(\frac{{ }^{200} C_{99} K}{a}=\frac{2^l m}{n}\), where \(m\) and \(n\) are odd numbers, then the ordered pair \((l, n )\) is equal to [JEE Main 2023 (Online) 29th January Evening Shift]
\(
\begin{aligned}
& K=2^{98} \\
& a={ }^{200} C_{100} 2^{50} \\
& \therefore{ }^{200} C_{99} \cdot 2^{98} C_{100} \cdot 2^{50}=\frac{2^l m}{n} \\
& \Rightarrow \frac{100}{101} \cdot 2^{48}=\frac{2^l m}{n} \\
& \Rightarrow \frac{25}{101} \cdot 2^{50}=\frac{2^l m}{n} \\
& \therefore l=50, m=25, n=101
\end{aligned}
\)
If \(a_r\) is the coefficient of \(x^{10-r}\) in the Binomial expansion of \((1+x)^{10}\), then \(\sum_{r=1}^{10} r^3\left(\frac{a_r}{a_{r-1}}\right)^2\) is equal to [JEE Main 2023 (Online) 25th January Morning Shift]
\(
\begin{aligned}
& a _{ r }={ }^{10} C _{10- r }={ }^{10} C _{ r } \\
& \Rightarrow \sum_{ r =1}^{10} r ^3\left(\frac{{ }^{10} C _{ r }}{{ }^{10} C _{ r -1}}\right)^2=\sum_{ r =1}^{10} r ^3\left(\frac{11- r }{ r }\right)^2=\sum_{ r =1}^{10} r (11- r )^2 \\
& =\sum_{ r =1}^{10}\left(121 r + r ^3-22 r ^2\right)=1210
\end{aligned}
\)
If \(\left({ }^{30} C_1\right)^2+2\left({ }^{30} C_2\right)^2+3\left({ }^{(30} C_3\right)^2+\ldots+30\left({ }^{30} C_{30}\right)^2=\frac{\alpha 60!}{(30!)^2}\) then \(\alpha\) is equal to : [JEE Main 2023 (Online) 24th January Evening Shift]
\(
\begin{aligned}
& S =0 \cdot\left({ }^{30} C _0\right)^2+1 \cdot\left({ }^{30} C _1\right)^2+2 \cdot\left({ }^{30} C _2\right)^2+\ldots \ldots+30 \cdot\left({ }^{30} C _{30}\right)^2 \\
& S =30 \cdot\left({ }^{30} C _0\right)^2+29 \cdot\left({ }^{30} C _1\right)^2+28 \cdot\left({ }^{30} C _2\right)^2+\ldots .+0 \cdot\left({ }^{30} C _0\right)^2 \\
& 2 S =30 \cdot\left({ }^{30} C _0{ }^2+{ }^{30} C _1{ }^2+\ldots \ldots .+{ }^{30} C _{30}{ }^2\right) \\
& S =15 \cdot{ }^{60} C _{30}=15 \cdot \frac{60!}{(30!)^2} \\
& \frac{15 \cdot 10!}{(30!)^2}=\frac{\alpha \cdot 60!}{(30!)^2} \\
& \Rightarrow \alpha=15
\end{aligned}
\)
Alternate:
\(
\begin{aligned}
& 1 \cdot\left({ }^{30} C_1\right)^2+2 \cdot\left({ }^{30} C_2\right)^2+3 \cdot\left({ }^{30} C_3\right)^2+\ldots \ldots+30 \cdot\left({ }^{30} C_{30}\right)^2 \\
& =\sum_{r=1}^{30} r \cdot\left({ }^{30} C_r\right)^2 \\
& =\sum_{r=1}^{30} r \cdot{ }^{30} C_r \cdot{ }^{30} C_r \\
& =\sum_{r=1}^{30} r \cdot \frac{30}{r} \cdot{ }^{29} C_{r-1} \cdot{ }^{30} C_r \\
& =30 \sum_{r=1}^{30}{ }^{29} C_{r-1} \cdot{ }^{30} C_r
\end{aligned}
\)
\(
\begin{aligned}
& =30 \times\left(\text { Coefficient of } x^{29} \text { in }(1+x)^{59}\right) \\
& =30 \times\left({ }^{59} C_{29}\right) \\
& =30 \times \frac{60}{30} \times{ }^{59} C_{29} \times \frac{30}{60} \\
& =30 \times{ }^{60} C_{30} \times \frac{30}{60} \\
& =15 \times \frac{60!}{30!30!} \\
& \therefore \alpha=15
\end{aligned}
\)
The value of \(\sum_{r=0}^{22}{ }^{22} C_r{ }^{23} C_r\) is [JEE Main 2023 (Online) 24th January Morning Shift]
\(
\begin{aligned}
& \sum_{r=0}^{22}{ }^{22} C_r \cdot{ }^{23} C_r \\
& =\sum_{r=0}^{22}{ }^{22} C_r{ }^{23} C_{23-r}\left[\text { using }{ }^n C_r={ }^n C_{n-r}\right] \\
& ={ }^{22} C_0{ }^{23} C_{23}+{ }^{22} C_1{ }^{23} C_{22}+\ldots+{ }^{22} C_{21}{ }^{23} C_2+{ }^{22} C_{22}{ }^{23} C_1
\end{aligned}
\)
We know,
\(
(1+x)^{22}={ }^{22} C_0+{ }^{22} C_1 x+{ }^{22} C_2 x^2+{ }^{22} C_3 x^3+\ldots+{ }^{22} C_{22} x^{22}
\)
and \((1+x)^{23}={ }^{23} C_0+{ }^{23} C_1 x+{ }^{23} C_2 x^2+\ldots+{ }^{23} C_{22} x^{22}+{ }^{23} C_{23} x^{23}\)
Now coefficient of \(x^{23}\) in \((1+x)^{22}(1+x)^{23}\) or \((1+x)^{45}\)
\(
\begin{aligned}
& ={ }^{22} C_0{ }^{23} C_{23}+{ }^{22} C_1{ }^{23} C_{22}+\ldots+{ }^{22} C_{21} \cdot{ }^{23} C_2+{ }^{22} C_{22} \cdot{ }^{23} C_1 \\
& =\sum_{r=0}^{22}{ }^{22} C_r \cdot{ }^{23} C_{23-r}
\end{aligned}
\)
\(\therefore\) Coefficient of \(x^{23}\) in \((1+x)^{45}={ }^{45} C_{23}\)
\(\sum_{r=1}^{20}\left(r^2+1\right)(r!) \text { is equal to }\) [JEE Main 2022 (Online) 29th July Evening Shift]
Given,
\(
\begin{aligned}
& \sum_{r=1}^{20}\left(r^2+1\right)(r!) \\
& \text { Let, } f(r)=\left(r^2+1\right)(r!) \\
& =\left(r^2\right)(r!)+r! \\
& =r(r r!)+r! \\
& =r[(r+1-1) r!]+r! \\
& =r[(r+1) r!-r!]+r! \\
& =r[(r+1)!-(r!)]+r! \\
& =r(r+1)!-r(r!)+r! \\
& =(r+2-2)(r+1)!-r(r!)+r! \\
& =(r+2)(r+1)!-2(r+1)!-[(r+1-1)(r!)]+r! \\
& =(r+2)!-2(r+1)!-(r+1)!+r!+r! \\
& =(r+2)!-3(r+1)!+2 r! \\
& =[(r+2)!-(r+1)!]-2[(r+1)!-r!]
\end{aligned}
\)
\(
\begin{aligned}
& \therefore \sum_{r=1}^{20} f(r) \\
& =\sum_{r=1}^{20}[(r+2)!-(r+1)!]-2 \sum_{r=1}^{20}[(r+1)!-r!]
\end{aligned}
\)
\(
=[(22!+21!+20!+\ldots \ldots+4!+3!)-(21!+20!+19!+\ldots .+3!+2!]-2[(21!+20!+\ldots \ldots+3!+2!)-(20!+19!+\ldots \ldots 1!)]
\)
\(
\begin{aligned}
& =[(22!)-(2!)]-2[(21)!-(1!)] \\
& =22!-2!-2 \cdot(21)!+2 \cdot 1! \\
& =22!-2 \cdot(21)!
\end{aligned}
\)
The remainder when \(7^{2022}+3^{2022}\) is divided by 5 is : [JEE Main 2022 (Online) 28th July Morning Shift]
\(
\begin{aligned}
& 7^{2022}+3^{2022} \\
& =\left(7^2\right)^{1011}+\left(3^2\right)^{1011} \\
& =(50-1)^{1011}+(10-1)^{1011} \\
& =\left(50^{1011}-1011.50^{1010}+\ldots-1\right) \\
& +\left(10^{1011}-1011.10^{1010}+\ldots \ldots-1\right) \\
& =5 m-1+5 n-1=5(m+n)-2 \\
& =5(m+n)-5+3=5(m+n-1)+3 \\
& =5 k+3 \\
& \therefore \text { Remainder }=3
\end{aligned}
\)
The remainder when \((2021)^{2022}+(2022)^{2021}\) is divided by 7 is [JEE Main 2022 (Online) 27th July Morning Shift]
\(
\begin{aligned}
& (2021)^{2022}+(2022)^{2021} \\
& =(7 k-2)^{2022}+\left(7 k_1-1\right)^{2021} \\
& =\left[(7 k-2)^3\right]^{674}+\left(7 k_1\right)^{2021}-2021\left(7 k_1\right)^{2020}+\ldots .-1 \\
& =\left(7 k_2-1\right)^{674}+(7 m-1) \\
& =(7 n+1)+(7 m-1)=7(m+n) \text { (multiple of } 7 \text { ) } \\
& \therefore \text { Remainder }=0
\end{aligned}
\)
\(\sum_{i, j=0}^n { }^n C_i{ }^n C_j \text { is equal to }, i \neq j\)Â [JEE Main 2022 (Online) 26th July Evening Shift]
\(
\begin{aligned}
& \sum_{i, j=0}^n{ }_{i \neq j}^n C_i{ }^n C_j=\sum_{i, j=0}^n{ }^n C_i{ }^n C_j-\sum_{i=j}^n{ }^n C_i{ }^n C_j \\
& =\sum_{j=0}^n{ }^n C_i \sum_{j=0}^n{ }^n C_j-\sum_{i=0}^n{ }^n C_i C_i \\
& =2^n \cdot 2^n-{ }^{2 n} C_n \\
& =2^{2 n}-{ }^{2 n} C_n \\
&
\end{aligned}
\)
The remainder when \((11)^{1011}+(1011)^{11}\) is divided by 9 is [JEE Main 2022 (Online) 25th July Evening Shift]
\(
\begin{aligned}
& \operatorname{Re}\left(\frac{(11)^{1011}+(1011)^{11}}{9}\right)=\operatorname{Re}\left(\frac{2^{1011}+3^{11}}{9}\right) \\
& \text { For } \operatorname{Re}\left(\frac{2^{1011}}{9}\right)
\end{aligned}
\)
\(
2^{1011}=(9-1)^{337}={ }^{337} C_0 9^{337}(-1)^0+{ }^{337} C_1 9^{336}(-1)^1+{ }^{337} C_2 9^{335}(-1)^2+\ldots \ldots+{ }^{337} C_{337} 9^0(-1)^{337}
\)
So, remainder is 8 and \(\operatorname{Re}\left(\frac{3^{11}}{9}\right)=0\)
So, remainder is 8.
For two positive real numbers \(a\) and \(b\) such that \(\frac{1}{a^2}+\frac{1}{b^3}=4\), then minimum value of the constant term in the expansion of \(\left(a x^{\frac{1}{8}}+b x^{-\frac{1}{12}}\right)^{10}\) is : [JEE Main 2022 (Online) 30th June Morning Shift]
Given, Binomial expansion,
\(
\left(a x^{\frac{1}{8}}+b x^{-\frac{1}{12}}\right)^{10}
\)
General term,
\(
\begin{aligned}
& T_{r+1}={ }^{10} C_r \cdot\left(a x^{\frac{1}{8}}\right)^{10-r} \cdot\left(b x^{-\frac{1}{12}}\right)^r \\
& ={ }^{10} C_r \cdot a^{10-r} \cdot b^r \cdot x^{\frac{10-r}{8}} \cdot x^{-\frac{r}{12}} \\
& ={ }^{10} C_r \cdot a^{10-r} \cdot b^r \cdot x^{\left(\frac{10-r}{8}-\frac{r}{12}\right)} \\
& ={ }^{10} C_r \cdot a^{10-r} \cdot b^r \cdot x^{\frac{30-3 r-2 r}{24}} \\
& ={ }^{10} C_r \cdot a^{10-r} \cdot b^r \cdot x^{\frac{30-5 r}{24}}
\end{aligned}
\)
For constant term,
\(
\begin{aligned}
& \frac{30-5 r}{24}=0 \\
& \Rightarrow r=6
\end{aligned}
\)
\(\therefore\) Constant term,
\(
\begin{aligned}
& T_{r+1}=T_{6+1}={ }^{10} C_6 \cdot a^4 \cdot b^6 \\
& =\frac{10!}{6!4!} a^4 \cdot b^6 \\
& =\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} \cdot a^4 \cdot b^6 \\
& =210 a^4 b^6
\end{aligned}
\)
We know, \(G M \geq H M\)
For terms \(a ^2\) and \(b ^3\),
\(
\begin{aligned}
& \sqrt{a^2 b^3} \geq \frac{2}{\frac{1}{a^2}+\frac{1}{b^3}} \\
& \Rightarrow \sqrt{a^2 b^3} \geq \frac{2}{4} \\
& \Rightarrow a^2 b^3 \geq \frac{1}{4} \\
& \Rightarrow\left(a^2 b^3\right)^2 \geq \frac{1}{16} \\
& \therefore a^4 b^6 \geq \frac{1}{16}
\end{aligned}
\)
\(\therefore\) Minimum value of \(a^4 b^6=\frac{1}{16}\)
\(\therefore\) Minimum value of constant term
\(
\begin{aligned}
& T_7=210 \times a^4 b^6 \\
& =210 \times \frac{1}{16} \\
& =\frac{105}{8}
\end{aligned}
\)
Let \(n \geq 5\) be an integer. If \(9^n-8 n-1=64 \alpha\) and \(6^n-5 n-1=25 \beta\), then \(\alpha-\) \(\beta\) is equal to [JEE Main 2022 (Online) 29th June Evening Shift]
Given,
\(
\begin{aligned}
& 9^n-8 n-1=64 \alpha \\
& \Rightarrow \alpha=\frac{(1+8)^n-8 n-1}{64}
\end{aligned}
\)
\(
=\frac{\left({ }^n C_0 \cdot 1+{ }^n C_1 \cdot 8^1+{ }^n C_2 \cdot 8^2+\ldots . .+{ }^n C_n \cdot 8^n\right)-8 n-1}{8^2}
\)
\(
=\frac{1+8 n+{ }^n C_2 \cdot 8^2+\ldots .+{ }^n C_n \cdot 8^n-8 n-1}{8^2}
\)
\(
=\frac{{ }^n C_2 \cdot 8^2+{ }^n C_3 \cdot 8^3+\ldots . .+{ }^n C_n \cdot 8^n}{8^2}
\)
\(
={ }^n C_2+{ }^n C_3 \cdot 8+{ }^n C_4 \cdot 8^2+\ldots .{ }^n C_n \cdot 8^{n-2}
\)
Also given,
\(
\begin{aligned}
& 6^n-5 n-1=25 \beta \\
& \Rightarrow \beta=\frac{(1+5)^n-5 n-1}{25}
\end{aligned}
\)
\(
=\frac{{ }^n C_0 \cdot 1+{ }^n C_1 \cdot 5+{ }^n C_2 \cdot 5^2+\ldots . .+{ }^n C_n \cdot 5^n-5 n-1}{5^2}
\)
\(
=\frac{1+5 n+{ }^n C_2 \cdot 5^2+{ }^n C_3 \cdot 5^3+\ldots .+{ }^n C_n \cdot 5^2-5 n-1}{5^2}
\)
\(
=\frac{{ }^n C_2 \cdot 5^2+{ }^n C_3 \cdot 5^3+{ }^n C_4 \cdot 5^4+\ldots .+{ }^n C_n \cdot 5^n}{5^2}
\)
\(
\begin{aligned}
& ={ }^n C_2+{ }^n C_3 \cdot 5+{ }^n C_4 \cdot 5^2+\ldots \ldots+{ }^n C_n \cdot 5^{n-2} \\
& \therefore \alpha-\beta
\end{aligned}
\)
\(
=\left({ }^n C_2+{ }^n C_3 \cdot 8+{ }^n C_4 \cdot 8^2+\ldots .+{ }^n C_n \cdot 8^{n-2}\right)-\left({ }^n C_2+{ }^n C_3 \cdot 5\right.\left.+{ }^n C_4 \cdot 5^2+\ldots+{ }^n C_n \cdot 5^{n-2}\right)
\)
\(
={ }^n C_3 \cdot(8-5)+{ }^n C_4 \cdot\left(8^2-5^2\right)+\ldots+{ }^n C_n\left(8^{n-2}-5^{n-2}\right)
\)
If the constant term in the expansion of \(\left(3 x^3-2 x^2+\frac{5}{x^5}\right)^{10}\) is \(2^{ k } . l\), where \(l\) is an odd integer, then the value of \(k\) is equal to: [JEE Main 2022 (Online) 29th June Morning Shift]
The general term of \(\left(x_1+x_2+\ldots+x_n\right)^n\) the expansion is
\(
\begin{aligned}
& \frac{n!}{n_{1}!n_{2}!\ldots n_{n}!} x_1^{n_1} x_2^{n_2} \ldots x_n^{n_n} \\
& \text { where } n _1+ n _2+\ldots .+ n _{ n }= n
\end{aligned}
\)
Given,
\(
\begin{aligned}
& \left(3 x^2-2 x^2+\frac{5}{x^5}\right)^{10} \\
& =\frac{\left(3 x^8-2 x^7+5\right)^{10}}{x^{50}}
\end{aligned}
\)
Now constant term in \(\left(3 x^3-2 x^2+\frac{5}{x^5}\right)^{10}=x^{50}\) term in \(\left(3 x^8-2 x^7+5\right)^{10}\)
General term in \(\left(3 x^8-2 x^7+5\right)^{10}\) is
\(
\begin{aligned}
& =\frac{10!}{n_{1}!n_{2}!n_{3}!}\left(3 x^8\right)^{n_1}\left(-2 x^7\right)^{n_2}(5)^{n_3} \\
& =\frac{10!}{n_{1}!n_{2}!n_{3}!}(3)^{n^1}(-2)^{n_2}(5)^{n^3} \cdot x^{8 n_1+7 n_2}
\end{aligned}
\)
\(\therefore\) Coefficient of \(x^{8 n_1+7 n_2}\) is
\(
=\frac{10!}{n_{1}!n_{2}!n_{3}!}(3)^{n_1}(-2)^{n_2}(5)^{n_3}
\)
where \(n_1+n_2+n_3=0\)
For coefficient of \(x ^{50}\) :
\(
8 n_1+7 n_2=50
\)
\(\therefore\) Possible values of \(n_1, n_2\) and \(n_3\) are
\(
\begin{array}{|c|c|c|}
\hline n_1 & n_2 & n_3 \\
\hline 1 & 6 & 3 \\
\hline
\end{array}
\)
\(
\begin{aligned}
& \therefore \text { Coefficient of } x ^{50} \\
& =\frac{10!}{1!6!3!}(3)^1(-2)^6(5)^3 \\
& =\frac{10 \times 9 \times 8 \times 7}{6} \times 3 \times 5^3 \times 2^6 \\
& =5 \times 3 \times 8 \times 7 \times 3 \times 5^3 \times 2^6 \\
& =7 \times 5^4 \times 3^2 \times 2^9 \\
& =2^k . l \\
& \therefore l=7 \times 5^4 \times 3^2=\text { An odd integer } \\
& \text { and } 2^k=2^9 \\
& \Rightarrow k=9
\end{aligned}
\)
The term independent of \(x\) in the expansion of \(\left(1-x^2+3 x^3\right)\left(\frac{5}{2} x^3-\frac{1}{5 x^2}\right)^{11}, x \neq 0\) is : [JEE Main 2022 (Online) 28th June Evening Shift]
General term of Binomial expansion \(\left(\frac{5}{2} x^3-\frac{1}{5 x^2}\right)^{11}\) is
\(
\begin{aligned}
& T_{r+1}={ }^{11} C_r \cdot\left(\frac{5}{2} x^3\right)^{11-r} \cdot\left(-\frac{1}{5 x^2}\right)^r \\
& ={ }^{11} C_r \cdot\left(\frac{5}{2}\right)^{11-r} \cdot\left(-\frac{1}{5}\right)^r \cdot x^{33-5 r}
\end{aligned}
\)
In the term,
\(
\left(1-x^2+3 x^3\right)\left(\frac{5}{2} x^3-\frac{1}{5 x^2}\right)^{11}
\)
Term independent of \(x\) is when
Term independent of \(x\) is when
(1) \(33-5 r=0\)
\(\Rightarrow r=\frac{33}{5} \notin\) integer
(2) \(33-5 r=-2\)
\(\Rightarrow 5 r=35\)
\(\Rightarrow r=7 \in\) integer
(3) \(33-5 r=-3\)
\(\Rightarrow 5 r=36\)
\(\Rightarrow r=\frac{36}{5} \notin\) integer
\(\therefore\) Only for \(r=7\) independent of \(x\) term possible.
\(\therefore\) Independent of \(x\) term
\(
\begin{aligned}
& =-\left({ }^{11} C_7\left(\frac{5}{2}\right)^4 \cdot\left(-\frac{1}{5}\right)^7\right) \\
& =-\left(\frac{11 \cdot 10 \cdot 9 \cdot 8}{4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{5^4}{2^4} \cdot-\frac{1}{5^7}\right) \\
& =\frac{11 \cdot 10 \cdot 3}{2^4 \cdot 5^3} \\
& =\frac{11 \cdot 3}{2^3 \cdot 5^2} \\
& =\frac{33}{200}
\end{aligned}
\)
If \(\sum_{k=1}^{31}\left({ }^{31} C_k\right)\left({ }^{31} C_{k-1}\right)-\sum_{k=1}^{30}\left({ }^{30} C_k\right)\left({ }^{30} C_{k-1}\right)=\frac{\alpha(60!)}{(30!)(31!)}\) where \(\alpha \in R\), then the value of \(16 \alpha\) is equal to [JEE Main 2022 (Online) 28th June Morning Shift]
Given,
\(
\sum_{k=1}^{31}\left({ }^{31} C_k\right)\left({ }^{31} C_{k-1}\right)-\sum_{k=1}^{30}\left({ }^{30} C_k\right)\left({ }^{30} C_{k-1}\right)=\frac{\alpha(60!)}{(30!)(31!)}
\)
Now,
\(
\begin{aligned}
& \sum_{k=1}^{31}\left({ }^{31} C_k\right)\left({ }^{31} C_{k-1}\right) \\
& =\left({ }^{31} C_1 \cdot{ }^{31} C_0+{ }^{31} C_2 \cdot{ }^{31} C_1+{ }^{31} C_3 \cdot{ }^{31} C_2+\ldots \ldots+{ }^{31} C_{31} \cdot{ }^{31} C_{30}\right) \\
& =\left({ }^{31} C_0 \cdot{ }^{31} C_{31-1}+{ }^{31} C_1 \cdot{ }^{31} C_{31-2}+\ldots \ldots+{ }^{31} C_{30} \cdot{ }^{31} C_{31-31}\right) \\
& \text { [using }{ }^n C_r={ }^n C_{n-r} \text { ] } \\
& =\left({ }^{31} C_0 \cdot{ }^{31} C_{30}+{ }^{31} C_1 \cdot{ }^{31} C_{29}+\ldots \ldots+{ }^{31} C_{30} \cdot{ }^{31} C_0\right) \\
& ={ }^{62} C_{30}
\end{aligned}
\)
\(
\begin{aligned}
& \text { Now, } \sum_{k=1}^{30}{ }^{30} C_k \cdot{ }^{30} C_{k-1} \\
& =\left({ }^{30} C_1 \cdot{ }^{30} C_0+{ }^{30} C_2 \cdot{ }^{30} C_1+\ldots \ldots+{ }^{30} C_{30} \cdot{ }^{30} C_{29}\right) \\
& =\left({ }^{30} C_0 \cdot{ }^{30} C_{29}+{ }^{30} C_1 \cdot{ }^{30} C_{28}+\ldots \ldots+{ }^{30} C_{29} \cdot{ }^{30} C_0\right) \\
& ={ }^{60} C_{29}
\end{aligned}
\)
\(
\begin{aligned}
& \therefore{ }^{60} C_{30}-{ }^{60} C_{29}=\frac{\alpha(60!)}{30!31!} \\
& \Rightarrow \frac{62.61 \cdot 60!}{30!32!}-\frac{60!}{29!31!}=\frac{\alpha(60!)}{30!31!} \\
& \Rightarrow \frac{62.61 \cdot 60!}{30!32!}-\frac{60!}{\frac{30!}{30} \cdot 31!}=\frac{\alpha(60!)}{30!31!}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \frac{60!}{30!31!}\left(\frac{62.61}{32}-30\right)=\frac{\alpha(60!)}{30!31!} \\
& \Rightarrow \alpha=\frac{62.61}{32}-30 \\
& \Rightarrow 16 \alpha=\frac{62.61-30 \times 32}{2} \\
& \Rightarrow 16 \alpha=\frac{2822}{2}=1411
\end{aligned}
\)
The remainder when \((2021)^{2023}\) is divided by 7 is : [JEE Main 2022 (Online) 26th June Morning Shift]
\(
(2021)^{2023}
\)
\(=(2016+5)^{2023}\) [here 2016 is divisible by 7]
\(
\begin{aligned}
& ={ }^{2023} C_0(2016)^{2023}+\ldots \ldots \ldots .+{ }^{2023} C_{2022}(2016)(5)^{2022}+{ }^{2023} C_{2023}(5)^{2023} \\
& =2016\left[{ }^{2023} C_0 \cdot(2016)^{2022}+\ldots \ldots . .+{ }^{2023} C_{2022} \cdot(5)^{2022}\right]+(5)^{2023}
\end{aligned}
\)
\(
\begin{aligned}
& =2016 \lambda+(5)^{2023} \\
& =7 \times 288 \lambda+(5)^{2023}
\end{aligned}
\)
\(
=7 K+(5)^{2023} \dots(1)
\)
Now, \((5)^{2023}\)
\(
\begin{aligned}
& =(5)^{2022} \cdot 5 \\
& =\left(5^3\right)^{674} \cdot 5 \\
& =(125)^{674} \cdot 5 \\
& =(126-1)^{674} \cdot 5
\end{aligned}
\)
\(
=5\left[{ }^{674} C_0(126)^{674}+\ldots \ldots \ldots . .-{ }^{674} C_{673}(126)+{ }^{674} C_{674}\right]
\)
\(
\begin{aligned}
& =5 \times 126\left[{ }^{674} C_0(126)^{673}+\ldots \ldots .-{ }^{674} C_{673}\right]+5 \\
& =5.7 .18\left[{ }^{674} C_0(126)^{673}+\ldots \ldots .-{ }^{674} C_{673}\right]+5 \\
& =7 \lambda+5
\end{aligned}
\)
Replacing (5) \({ }^{2023}\) in equation (1) with \(7 \lambda+5\), we get,
\(
\begin{aligned}
& (2021)^{2023}=7 K+7 \lambda+5 \\
& =7(K+\lambda)+5
\end{aligned}
\)
\(\therefore\) Remainder \(=5\)
The coefficient of \(x ^{101}\) in the expression \((5+x)^{500}+x(5+x)^{499}+x^2(5+x)^{498}+\ldots . .+x^{500}, x >0\), is [JEE Main 2022 (Online) 25th June Evening Shift]
Given,
\(
(5+x)^{500}+x(5+x)^{499}+x^2(5+x)^{498}+\ldots \ldots . . x^{500}
\)
This is a G.P. with first term \((5+x)^{500}\)
Common ratio \(=\frac{x(5+x)^{499}}{(5+x)^{500}}=\frac{x}{5+x}\) and 501 terms present.
\(
\begin{aligned}
& \therefore \text { Sum }=\frac{(5+x)^{500}\left(\left(\frac{x}{5+x}\right)^{501}-1\right)}{\frac{x}{5+x}-1} \\
& =\frac{(5+x)^{500}\left(\frac{x^{501}-(5+x)^{501}}{(5+x)^{501}}\right)}{\frac{x-5-x}{5+x}} \\
& =\frac{\frac{x^{501}-(5+x)^{501}}{5+x}}{\frac{-5}{5+x}}
\end{aligned}
\)
\(
\begin{aligned}
& =\frac{1}{5}\left((5+x)^{501}-x^{501}\right) \\
& \text { Coefficient of } x ^{101} \text { in }(5+x)^{501} \text { is }={ }^{501} C_{101} \cdot 5^{400} \\
& \therefore \ln \frac{1}{5}\left((5+x)^{500}-x^{501}\right) \text { coefficient of } x { }^{101} \text { is }=\frac{1}{5} \cdot{ }^{501} C_{101} \cdot 5^{400} \\
& ={ }^{501} C_{101} \cdot 5^{399}
\end{aligned}
\)
If \(\frac{1}{2.3^{10}}+\frac{1}{2^2 .3^9}+\ldots \ldots+\frac{1}{2^{10} .3}=\frac{K}{2^{10} .3^{10}}\), then the remainder when \(K\) is divided by 6 is : [JEE Main 2022 (Online) 25th June Morning Shift]
\(
\begin{aligned}
& \frac{1}{2 \cdot 3^{10}}+\frac{1}{2^2 \cdot 3^9}+\ldots+\frac{1}{2^{10} \cdot 3}=\frac{K}{2^{10} \cdot 3^{10}} \\
& \Rightarrow \frac{1}{2 \cdot 3^{10}}\left[\frac{\left(\frac{3}{2}\right)^{10}-1}{\frac{3}{2}-1}\right]=\frac{K}{2^{10} \cdot 3^{10}} \\
& =\frac{3^{10}-2^{10}}{2^{10} \cdot 3^{10}}=\frac{K}{2^{10} \cdot 3^{10}} \Rightarrow K=3^{10}-2^{10}
\end{aligned}
\)
Now \(K=(1+2)^{10}-2^{10}\)
\(
\begin{aligned}
& ={ }^{10} C_0+{ }^{10} C_1 2+{ }^{10} C_2 2^3+\ldots .+{ }^{10} C_{10} 2^{10}-2^{10} \\
& ={ }^{10} C_0+{ }^{10} C_1 2+6 \lambda+{ }^{10} C_9 \cdot 2^9 \\
& =1+20+5120+6 \lambda \\
& =5136+6 \lambda+5 \\
& =6 \mu+5 \\
& \lambda, \mu \in N \\
& \therefore \text { remainder }=5
\end{aligned}
\)
The remainder when \(3^{2022}\) is divided by 5 is : [JEE Main 2022 (Online) 24th June Morning Shift]
\(
\begin{aligned}
& 3^{2022} \\
& =\left(3^2\right)^{1011} \\
& =(9)^{1011} \\
& =(10-1)^{1011}
\end{aligned}
\)
\(
={ }^{1011} C_0(10)^{1011}+\ldots \ldots+{ }^{1011} C_{1010} \cdot(10)^1-{ }^{1011} C_{1011}
\)
\(
=10\left[{ }^{1011} C_0(10)^{1010}+\ldots \ldots+{ }^{1011} C_{1010}\right]-1
\)
\(
=10 K-1
\)
[As \(10\left[{ }^{1011} C_0 \cdot(10)^{1010}+\ldots \ldots+{ }^{1011} C_{1010}\right]\) is multiple of 10 ]
\(
\begin{aligned}
& =10 K+5-5-1 \\
& =10 K-5+5-1 \\
& =5(2 K-1)+4
\end{aligned}
\)
\(\therefore\) Unit digit \(=4\) when divided by 5 .
\(\sum_{k=0}^{20}\left({ }^{20} C_k\right)^2 \text { is equal to : }\) [JEE Main 2021 (Online) 27th August Morning Shift]
\(
\begin{aligned}
& \sum_{k=0}^{20}\left({ }^{20} C_k\right)^2 \\
& =\left({ }^{20} C_0\right)^2+\left({ }^{20} C_1\right)^2+\left({ }^{20} C_2\right)^2+\ldots+\left({ }^{20} C_{20}\right)^2 \\
& ={ }^{40} C_{20}
\end{aligned}
\)
Using the formula :
\(
\left({ }^n C_0\right)^2+\left({ }^n C_1\right)^2+\left({ }^n C_2\right)^2+\ldots+\left({ }^n C_n\right)^2={ }^{2 n} C_n
\)
If \({ }^{20} C_r\) is the co-efficient of \(x ^{\Gamma}\) in the expansion of \((1+ x )^{20}\), then the value of \(\sum_{r=0}^{20} r^2 \cdot{ }^{20} C_r\) is equal to : [JEE Main 2021 (Online) 26th August Morning Shift]
\(
\begin{aligned}
& \sum_{r=0}^{20} r^2 \cdot{ }^{20} C_r \\
& \sum(4(r-1)+r) \cdot{ }^{20} C_r \\
& \sum r(r-1) \cdot \frac{20 \times 19}{r(r-1)} \cdot{ }^{18} C_r+r \cdot \frac{20}{r} \cdot \sum{ }^{19} C_{r-1} \\
& \Rightarrow 20 \times 19.2^{18}+20.2^{19} \\
& \Rightarrow 420 \times 2^{18}
\end{aligned}
\)
A possible value of ‘ \(x\) ‘, for which the ninth term in the expansion of \(\left\{3^{\log _3 \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _3\left(5^{x-1}+1\right)}\right\}^{10}\) in the increasing powers of \(3^{\left(-\frac{1}{8}\right) \log _3\left(5^{x-1}+1\right)}\) is equal to 180 , is : [JEE Main 2021 (Online) 27th July Evening Shift]
\(
\begin{aligned}
& { }^{10} C_8\left(25^{(x-1)}+7\right) \times\left(5^{(x-1)}+1\right)^{-1}=180 \\
& \Rightarrow \frac{25^{x-1}+7}{5^{(x-1)}+1}=4
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \frac{t^2+7}{t+1}=4 ; \\
& \Rightarrow t =1,3=5^{x-1}
\end{aligned}
\)
\(\Rightarrow x-1=0\) (one of the possible value).
\(
\Rightarrow x =1
\)
If the coefficients of \(x ^7\) in \(\left(x^2+\frac{1}{b x}\right)^{11}\) and \(x ^{-7}\) in \(\left(x-\frac{1}{b x^2}\right)^{11}, b \neq 0\), are equal, then the value of \(b\) is equal to : [JEE Main 2021 (Online) 27th July Morning Shift]
Coefficient of \(x ^7\) in \(\left(x^2+\frac{1}{b x}\right)^{11}\) :
General Term \(={ }^{11} C_r\left(x^2\right)^{11-r} \cdot\left(\frac{1}{b x}\right)^r\)
\(={ }^{11} C_r x^{22-3 r} \cdot \frac{1}{b^r}\)
\(22-3 r=7\)
\(r=5\)
\(\therefore\) Required Term \(={ }^{11} C_5 \cdot \frac{1}{b^5} \cdot x^7\)
Coefficient of \(x ^{-7}\) in \(\left(x-\frac{1}{b x^2}\right)^{11}\) :
General Term \(={ }^{11} C_r(x)^{11-r} \cdot\left(-\frac{1}{b x^2}\right)^r\)
\(={ }^{11} C_r x^{11-3 r} \cdot \frac{(-1)^r}{b^r}\)
\(11-3 r=-7 \therefore r=6\)
\(\therefore\) Required Term \(={ }^{11} C_6 \cdot \frac{1}{b^6} x^{-7}\)
According to the question,
\({ }^{11} C_5 \cdot \frac{1}{b^5}={ }^{11} C_6 \cdot \frac{1}{b^6}\)
Since, \(b \neq 0 \therefore b=1\)
The sum of all those terms which are rational numbers in the expansion of \(\left(2^{1 / 3}+3^{1 / 4}\right)^{12}\) is : [JEE Main 2021 (Online) 25th July Evening Shift]
\(
T_{r+1}={ }^{12} C_r\left(2^{1 / 3}\right)^r \cdot\left(3^{1 / 4}\right)^{12-4}
\)
\(T_{r+1}\) will be rational number when \(r=0,3,6,9,12 \& r=0,4,8,12\)
\(
\begin{aligned}
& \Rightarrow r =0,12 \\
& T _1+ T _{13}=1 \times 3^3+1 \times 2^4 \times 1 \\
& =24+16=43
\end{aligned}
\)
If the greatest value of the term independent of ‘ \(x\) ‘ in the expansion of \(\left(x \sin \alpha+a \frac{\cos \alpha}{x}\right)^{10}\) is \(\frac{10!}{(5!)^2}\), then the value of ‘a’ is equal to : [JEE Main 2021 (Online) 25th July Evening Shift]
\(
\begin{aligned}
& T_{r+1}={ }^{10} C_r(x \sin \alpha)^{10-r}\left(\frac{a \cos \alpha}{x}\right)^r \\
& r =0,1,2, \ldots \ldots ., 10
\end{aligned}
\)
\(T_{r+1}\) will be independent of \(x\) when \(10-2 r=0 \Rightarrow r=5\)
\(
\begin{aligned}
& T_6={ }^{10} C_5(x \sin \alpha)^5 \times\left(\frac{a \cos \alpha}{x}\right)^5 \\
& ={ }^{10} C_5 \times a^5 \times \frac{1}{2^5}(\sin 2 \alpha)^5
\end{aligned}
\)
will be greatest when \(\sin 2 \alpha=1\)
\(
\Rightarrow{ }^{10} C_5 \frac{a^5}{2^5}={ }^{10} C_5 \Rightarrow a=2
\)
The lowest integer which is greater than \(\left(1+\frac{1}{10^{100}}\right)^{10^{100}}\) is ____. [JEE Main 2021 (Online) 25th July Evening Shift]
Let \(10^{100}=n\)
Then, \(\left(1+\frac{1}{n}\right)^n\)
\(
\begin{aligned}
& ={ }^n C_0+{ }^n C_1 \cdot \frac{1}{n}+{ }^n C_2 \cdot \frac{1}{n^2}+{ }^n C_3 \cdot \frac{1}{n^3}+\cdots \\
& =1+1+\frac{n(n-1)}{2 n^2}+\frac{n(n-1)(n-2)}{6 n^3}+\cdots \\
& \Rightarrow\left(1+\frac{1}{n}\right)^{n^n}>2
\end{aligned}
\)
We know that
\(
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^n=e \approx 2.72
\)
Hence, lowest integer is 3 which is greater than \(\left(1+\frac{1}{10^{100}}\right)^{10^{100}}\)
If \(b\) is very small as compared to the value of \(a\), so that the cube and other higher powers of \(\frac{b}{a}\) can be neglected in the identity \(\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b}+\ldots \ldots+\frac{1}{a-n b}=\alpha n+\beta n^2+\gamma n^3\), then the value of \(\gamma\) is : [JEE Main 2021 (Online) 25th July Morning Shift]
\(
\begin{aligned}
& (a-b)^{-1}+(a-2 b)^{-1}+\ldots+(a-n b)^{-1} \\
& =\frac{1}{a} \sum_{r=1}^n\left(1-\frac{r b}{a}\right)^{-1} \\
& =\frac{1}{a} \sum_{r=1}^n\left\{\left(1+\frac{r b}{a}+\frac{r^2 b^2}{a^2}\right)+(\text { terms to be neglected })\right\} \\
& =\frac{1}{a}\left[n+\frac{n(n+1)}{2} \cdot \frac{b}{a}+\frac{n(n+1)(2 n+1)}{6} \cdot \frac{b^2}{a^2}\right] \\
& =\frac{1}{a}\left[n^3\left(\frac{b^2}{3 a^2}\right)+\ldots .\right]
\end{aligned}
\)
So, \(\gamma=\frac{b^2}{3 a^3}\)
For the natural numbers \(m, n\), if \((1-y)^m(1+y)^n=1+a_1 y+a_2 y^2+\ldots+a_{m+n} y^{m+n}\) and \( a_1=a_2=10 \text {, then the value of }( m + n ) \text { is equal to : }\) [JEE Main 2021 (Online) 20th July Evening Shift]
\(
(1-y)^m(1+y)^n=1+a_1 y+a_2 y^2+\ldots+a_{m+n} y^{m+n}
\)
Given, \(\left(a_1=a_2=10\right)\)
\(
\left(1-m y+{ }^m C_2 y^2+\ldots \ldots\right)\left(1+n y+{ }^n C_2 y^2+\ldots \ldots\right)=1+a_1 y+a_2 y^2+\ldots
\)
\(
\begin{aligned}
& \Rightarrow n-m=10 \ldots . . \text { (i) } \\
& \Rightarrow{ }^m C_2+{ }^n C_2-m n=10 \ldots \ldots \text { (ii) } \\
& \frac{m(m-1)}{2}+\frac{n(n-1)}{2}-m n=10 \\
& \Rightarrow \frac{m^2-m}{2}+\frac{(10+m)(9+m)}{2}-m(10+m)=10 \\
& \Rightarrow m^2-m+m^2+19 m+90-2\left(m^2+10 m\right)=20 \\
& \Rightarrow 18 m+90-20 m=20 \\
& \Rightarrow 2 m=70 \\
& \Rightarrow m=35 \& n=45 \\
& m+n=80
\end{aligned}
\)
The coefficient of \(x^{256}\) in the expansion of \((1-x)^{101}\left(x^2+x+1\right)^{100}\) is : [JEE Main 2021 (Online) 20th July Morning Shift]
\(
(1-x)^{101}\left(x^2+x+1\right)^{100}
\)
Coefficient of
\(
\begin{aligned}
& x^{256}=\left[(1-x)\left(1+x+x^2\right)\right]^{100}(1-x)=\left(1-x^3\right)^{100}(1-x) \\
& \Rightarrow\left({ }^{100} C_0-{ }^{100} C_1 x^3+{ }^{100} C_2 x^6-{ }^{100} C_3 x^9 \ldots\right)(1-x)
\end{aligned}
\)
\(
\begin{aligned}
& \sum(-1)^r 100 C_r x^{3 r}(1-x) \\
& \Rightarrow 3 r=256 \text { or } 255 \Rightarrow r=\frac{256}{3} \text { (Reject) } \\
& r =85 \\
& \text { Coefficient }={ }^{100} C_{85}={ }^{100} C_{15}
\end{aligned}
\)
Let \(\left(1+x+2 x^2\right)^{20}=a_0+a_1 x+a_2 x^2+\ldots .+a_{40} x^{40}\). Then \(a_1+a_3+a_5+\ldots . .+a_{37}\) is equal to [JEE Main 2021 (Online) 18th March Morning Shift]
\(
\left(1+x+2 x^2\right)^{20}=a_0+a_1 x+a_2 x^2+\ldots+a_{40} x^{40}
\)
Put \(x=1\)
\(
\Rightarrow 4^{20}=a_0+a_1+\ldots \ldots .+a_{40 \ldots} \text { (i) }
\)
Put \(x=-1\)
\(
\Rightarrow 2^{20}=a_0-a_1+\ldots \ldots+-a_{39}+a_{40} \ldots \ldots. (ii)
\)
by (i) – (ii) we get,
\(
\begin{aligned}
& 4^{20}-2^{20}=2\left(a_1+a_3+\ldots \ldots+a_{37}+a_{39}\right) \\
& \Rightarrow a_1+a_3+\ldots \ldots+a_{37}=2^{39}-2^{19}-a_{39} \ldots .(iii)
\end{aligned}
\)
\(
\begin{aligned}
& a_{39}=\text { coeff. } x^{39} \text { in }\left(1+x+2 x^2\right)^{20} \\
& =\frac{20!}{0!1!!}(1)^0(1)^1(2)^{19} \\
& =20.2^{19} \\
& \therefore a_1+a_3+\ldots \ldots+a_{37}=2^{39}-2^{19} .21 \\
& \Rightarrow 2^{19}\left(2^{20}-21\right)
\end{aligned}
\)
The value of \(\sum_{r=0}^6 \left({ }^6 C_r \cdot{ }^6 C_{6-r}\right) \text { is equal to: }\) [JEE Main 2021 (Online) 17th March Evening Shift]
\(
\begin{aligned}
& \sum_{r=0}^6{ }^6 C_r{ }^6 C_{6-r} \\
& ={ }^6 C_0 \cdot{ }^6 C_6+{ }^6 C_1 \cdot{ }^6 C_5+\ldots+{ }^6 C_6 \cdot{ }^6 C_0
\end{aligned}
\)
Now,
\(
\begin{aligned}
& =\left({ }^6 C_0+{ }^6 C_1 x+{ }^6 C_2 x^2+\ldots+{ }^6 C_6 x^6\right) \\
& \left({ }^6 C_0+{ }^6 C_1 x+{ }^6 C_2 x^2+\ldots+{ }^6 C_6 x^6\right)
\end{aligned}
\)
Comparing coefficient of \(x^6\) both sides
\(
\begin{aligned}
& { }^6 C_0 \cdot{ }^6 C_6+{ }^6 C_1 \cdot{ }^6 C_5+\ldots+{ }^6 C_6 \cdot{ }^6 C_0 \\
& ={ }^{12} C_6=924
\end{aligned}
\)
If the fourth term in the expansion of \(\left(x+x^{\log _2 x}\right)^7\) is 4480 , then the value of \(x\) where \(x \in N\) is equal to : [JEE Main 2021 (Online) 17th March Morning Shift]
\(
\begin{aligned}
& T _4={ }^7 C_3 x^4\left(x^{\log _2 x}\right)^3=4480 \\
& \Rightarrow 35 x^4\left(x^{\log _2 x}\right)^3=4480 \\
& \Rightarrow x^4\left(x^{\log _2 x}\right)^3=128
\end{aligned}
\)
take \(\log\) w.r.t. base 2 we get,
\(
\begin{aligned}
& 4 \log _2 x+3 \log _2\left(x^{\log _2 x}\right)=\log _2 128 \\
& \text { Let } \log _2 x=y \\
& 4 y+3 y^2=7 \\
& \Rightarrow y=1, \frac{-7}{3} \\
& \Rightarrow \log _2 x=1, \frac{-7}{3} \\
& \Rightarrow x=2, x=2^{-7 / 3}
\end{aligned}
\)
If \(n\) is the number of irrational terms in the expansion of \(\left(3^{1 / 4}+5^{1 / 8}\right)^{60}\), then \((n-1)\) is divisible by: [JEE Main 2021 (Online) 16th March Morning Shift]
\(
T_{r+1}={ }^{60} C_r\left(3^{1 / 4}\right)^{60-r}\left(5^{1 / 8}\right)^r
\)
rational if \(\frac{60-r}{4}, \frac{r}{8}\), both are whole numbers, \(r \in\{0,1,2, \ldots \ldots 60\}\)
\(
\frac{60-r}{4} \in W \Rightarrow r \in\{0,4,8, \ldots .60\}
\)
and \(\frac{r}{8} \in W \Rightarrow r \in\{0,8,16, \ldots .56\}\)
\(\therefore\) Common terms \(r \in\{0,8,16, \ldots . .56\}\)
So, 8 terms are rational
Then Irrational terms \(=61-8=53=n\)
\(
\therefore n-1=52=13 \times 2^2
\)
Factors 1, 2, 4, 13, 26, 52
Let \([x]\) denote greatest integer less than or equal to \(x\). If for \(n \in N\),
\(
\left(1-x+x^3\right)^n=\sum_{j=0}^{3 n} a_j x^j
\)
then \(\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j}+1\) is equal to : [JEE Main 2021 (Online) 16th March Morning Shift]
\(
\begin{aligned}
& \left(1-x+x^3\right)^n=\sum_{j=0}^{3 n} a_j x^j \\
& \left(1-x+x^3\right)=a_0+a_1 x+a_2 x^2+\ldots \ldots+a_{3 n} x^{3 n}
\end{aligned}
\)
Put \(x=1\)
\(
1=a_0+a_1+a_2+a_3+a_4+\ldots \ldots \ldots+a_{3 n} \dots(1)
\)
Put \(x=-1\)
\(
1=a_0-a_1+a_2-a_3+a_4+\ldots \ldots \ldots(-1)^{3 n} a_{3 n} \ldots \ldots (2)
\)
Add (1) + (2)
\(
\Rightarrow a_0+a_2+a_4+a_6+\ldots \ldots=1
\)
Sub (1) – (2)
\(
\Rightarrow a_1+a_3+a_5+a_7+\ldots \ldots=0
\)
Now, \(\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j}+1\)
\(
\begin{aligned}
& =\left(a_0+a_2+a_4+\ldots \ldots\right)+4\left(a_1+a_3+\ldots \ldots\right) \\
& =1+4 \times 0+1 \\
& =1+1=2
\end{aligned}
\)
The maximum value of the term independent of ‘ \(t\) ‘ in the expansion of \(\left(t x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{10}\) where \(x \in(0,1)\) is : [JEE Main 2021 (Online) 26th February Morning Shift]
\(
\begin{aligned}
& T_{r+1}={ }^{10} C_r\left(t x^{1 / 5}\right)^{10-r}\left[\frac{(1-x)^{1 / 10}}{t}\right]^r \\
& ={ }^{10} C_r t^{(10-2 r)} \times x^{\frac{10-r}{5}} \times(1-x)^{\frac{r}{10}} \\
& \Rightarrow 10-2 r=0 \Rightarrow r=5 \\
& \therefore T_6={ }^{10} C_5 \times x \sqrt{1-x}
\end{aligned}
\)
At maximum, \(\frac{d T_6}{d x}={ }^{10} C_5\left[\sqrt{1-x}-\frac{x}{2 \sqrt{1-x}}\right]=0\)
\(
\begin{aligned}
& \Rightarrow 1-x=x / 2 \Rightarrow 3 x=2 \Rightarrow x=2 / 3 \\
& \left.T_6\right|_{\max }=\frac{10!}{5!5!} \times \frac{2}{3 \sqrt{3}}=\frac{2.10!}{3 \sqrt{3}(5!)^2}
\end{aligned}
\)
If \(n \geq 2\) is a positive integer, then the sum of the series \({ }^{n+1} C_2+2\left({ }^2 C_2+{ }^3 C_2+{ }^4 C_2+\ldots+{ }^n C_2\right)\) is: [JEE Main 2021 (Online) 24th February Evening Shift]
Given that \(n \geq 2\) is a positive integer
\(
\begin{array}{ll}
\therefore{ }^{n+1} C_2+2\left({ }^2 c_2+{ }^3 c_2+{ }^4 c_2+. .+{ }^n c_2\right) & \\
={ }^{n+1} C_2+2\left({ }^3 c_3+{ }^3 c_2+{ }^4 c_2+. .+{ }^n c_2\right) & {\left[\because{ }^n c_n={ }^m c_m\right]} \\
={ }^{n+1} C_2+2\left({ }^4 c_3+{ }^4 c_2+. .+{ }^n c_2\right) & {\left[\because{ }^n c_m+{ }^n c_{m-1}={ }^{n+1} c_m\right]} \\
={ }^{n+1} C_2+2\left({ }^5 c_3+. .+{ }^n c_2\right) & {\left[\because{ }^n c_m+{ }^n c_{m-1}={ }^{n+1} c_m\right]}
\end{array}
\)
Proceeding in this way we get
\(
\begin{gathered}
={ }^{n+1} C_2+2\left({ }^n c_3+{ }^n c_2\right) \\
={ }^{n+1} C_2+2 .{ }^{n+1} c_3
\end{gathered}
\)
\(
=\frac{(n+1)!}{2!(n+1-2)!}+\frac{2 \cdot(n+1)!}{3!(n+1-3)!} \quad\left[\because{ }^n C_m=\frac{n!}{m!(n-m)!}\right]
\)
\(
\begin{aligned}
& =\frac{(n+1)!}{2!(n-1)!}+\frac{2 \cdot(n+1)!}{3!(n-2)!} \\
& =\frac{n(n+1)}{2}+\frac{(n-1)(n)(n+1)}{3} \\
& =n(n+1)\left[\frac{1}{2}+\frac{n-1}{3}\right] \\
& =n(n+1)\left[\frac{3+2 n-2}{6}\right] \\
& =n(n+1)\left[\frac{2 n+1}{6}\right] \\
& =\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
\)
The value of \(-{ }^{15} C_1+2 \cdot{ }^{15} C_2-3 \cdot{ }^{15} C_3+\ldots-15 \cdot{ }^{15} C_{15}+{ }^{14} C_1+{ }^{14} C_3+{ }^{14} C_5+\) \(\ldots+{ }^{14} C_{11}\) is [JEE Main 2021 (Online) 24th February Morning Shift]
\(
\begin{aligned}
& -{ }^{15} C_1+2 \cdot{ }^{15} C_2-3 \cdot{ }^{15} C_3+\ldots .-15 \cdot{ }^{15} C_{15} \\
& =\sum_{r=1}^{15}(-1)^r \cdot r \cdot{ }^{15} C_r \\
& =\sum_{r=1}^{15}(-1)^2 \cdot r \cdot \frac{15}{r} \cdot{ }^{14} C_{r-1} \\
& =15 \sum_{r=1}^{15}(-1)^2 \cdot{ }^{14} C_{r-1} \\
& =15\left(-{ }^{14} C_0+{ }^{14} C_1-{ }^{14} C_2+\ldots .-{ }^{14} C_{14}\right) \\
& =15(0)=0
\end{aligned}
\)
We know
\(
\begin{aligned}
& \Rightarrow 2^{14-1}={ }^{14} C_1+{ }^{14} C_3+{ }^{14} C_5 \ldots+{ }^{14} C_{13} \\
& \Rightarrow 2^{13}={ }^{14} C_1+{ }^{14} C_3+{ }^{14} C_5 \ldots+{ }^{14} C_{13} \\
& \text { Also let, } S={ }^{14} C_1+{ }^{14} C_3+{ }^{14} C_5+\ldots+{ }^{14} C_{11} \\
& \Rightarrow S+{ }^{14} C_{13}={ }^{14} C_1+{ }^{14} C_3+{ }^{14} C_5+\ldots+{ }^{14} C_{11}+{ }^{14} C_{13} \\
& \Rightarrow S+{ }^{14} C_{13}=2^{13} \\
& \Rightarrow S+14=2^{13} \\
& \Rightarrow S=2^{13}-14
\end{aligned}
\)
You cannot copy content of this page