Overview
A statement involving the symbols \({ }^{\prime}>{ }^{\prime},{ }^{\prime}<,{ }^{\prime} \geq{ }^{\prime},{ }^{\prime} \leq\) ‘ is called an inequality. For example \(5>3, x \leq 4, x+y \geq 9\).
Solution of an inequality
The value(s) of the variable(s) which makes the inequality a true statement is called its solutions. The set of all solutions of an inequality is called the solution set of the inequality. For example, \(x-1 \geq 0\), has infinite number of solutions as all real values greater than or equal to one make it a true statement. The inequality \(x^2+1<0\) has no solution in \(R\) as no real value of \(x\) makes it a true statement.
To solve an inequality we can
Representation of solution of linear inequality in one variable on a number line
To represent the solution of a linear inequality in one variable on a number line, we use the following conventions:
Graphical representation of the solution of a linear inequality
Two important results
If \(a\) is any positive real number, i.e., \(a>0\), then
0 of 103 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 103 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
The region represented by \(\{z=x+i y \in \mathrm{C}:|z|-\operatorname{Re}(z) \leq 1\}\) is also given by the inequality: [ Main Sep. 06, 2020 (I)]
\(
\begin{aligned}
& \text { (b) } \because|z|-\operatorname{Re}(z) \leq 1 \quad(\because z=x+i y) \\
& \Rightarrow \sqrt{x^2+y^2}-x \leq 1 \Rightarrow \sqrt{x^2+y^2} \leq 1+x \\
& \Rightarrow x^2+y^2 \leq 1+x^2+2 x \\
& \Rightarrow y^2 \leq 1+2 x \Rightarrow y^2 \leq 2\left(x+\frac{1}{2}\right)
\end{aligned}
\)
Consider the two sets :
\(A=\left\{m \in \mathbf{R}\right.\) : both the roots of \(x^2-(m+1) x+m+4=0\) are real \(\}\) and \(B=[-3,5)\).
Which of the following is not true? [Main Sep. 03, 2020 (I)]
(a) Given sets \(A=\left\{m \in R\right.\) : both the roots of \(x^2-(m+1) x+m+4=0\) are real \(\}\) and \(B=[-3,5)\) \(\because\) Roots of \(x^2-(m+1) x+m+4=0\) are real, \(m \in R\)
\(\therefore \quad D \geq 0 \Rightarrow(m+1)^2-4(m+4) \geq 0\)
\(\Rightarrow \quad m^2-2 m-15 \geq 0\)
\(\Rightarrow \quad m^2-5 m+3 m-15 \geq 0\)
\(\Rightarrow \quad m(m-5)+3(m-5) \geq 0\)
\(\Rightarrow \quad(m+3)(m-5) \geq 0\)
\(\Rightarrow \quad m \in(-\infty,-3] \cup[5, \infty) \quad[\because A=(-\infty,-3] \cup[5, \infty)]\)
\(\therefore \quad A-B=(-\infty,-3) \cup[5, \infty)\)
\(A \cap B=\{-3\}, B-A=(-3,5)\) and \(A \cup B=R\)
Hence, option (a) is correct.
If \(\mathrm{A}=\{x \in \mathrm{R}:|x|<2\}\) and \(\mathrm{B}=\{x \in \mathrm{R}:|x-2| \geq 3\}\); then: [Main Jan. 9, 2020 (II)]
(b) \(A=\{x: x \in(-2,2)\}\)
\(
\begin{aligned}
& B=\{x: x \in(-\infty,-1] \cup[5, \infty)\} \\
& A \cap B=\{x: x \in(-2,-1]\} \\
& A \cup B=\{x: x \in(-\infty, 2) \cup[5, \infty)\} \\
& A-B=\{x: x \in(-1,2)\} \\
& B-A=\{x: x \in(-\infty,-2] \cup[5, \infty)\}
\end{aligned}
\)
Let \(S\) be the set of all real roots of the equation, \(3^x\left(3^x-1\right)+2=\left|3^x-1\right|+\left|3^x-2\right|\). Then \(S\): [Main Jan. 8, 2020 (II)]
(b)
Let \(3^x=y\)
\(
\therefore \quad y(y-1)+2=|y-1|+|y-2|
\)
Case 1: when \(y>2\)
\(
\begin{aligned}
& y^2-y+2=y-1+y-2 \\
& y^2-3 y+5=0
\end{aligned}
\)
\(D<0[\therefore\) Equation not satisfy. \(]\)
Case 2: when \(1 \leq y \leq 2\)
\(
\begin{aligned}
& y^2-y^2+2=y-1-y+2 \\
& y^2-y+1=0 \\
&Â \quad D<0[\therefore \text { Equation not satisfy. }]
\end{aligned}
\)
Case 3: when \(y \leq 1\)
\(
\begin{aligned}
& y^2-y+2=-y+1-y+2 \\
& y^2+y-1=0 \\
& \therefore y=\frac{-1+\sqrt{5}}{2} \\
& =\frac{-1-\sqrt{5}}{2}[\therefore \text { Equation not Satisfy }]
\end{aligned}
\)
\(\therefore\) Only one \(-1+\frac{\sqrt{5}}{2}\) satisfy equation
All the pairs \((\mathrm{x}, \mathrm{y})\) that satisfy the inequality \(2 \sqrt{\sin ^2 x-2 \sin x+5} \cdot \frac{1}{4 \sin ^2 y} \leq 1\) also satisfy the equation: [Main April 10, 2019 (I)]
(d) Given inequality is,
\(
\begin{aligned}
& 2 \sqrt{\sin ^2 x-2 \sin x+5} \leq 2^{2 \sin ^2 y} \\
& \Rightarrow \sqrt{\sin ^2 x-2 \sin x+5} \leq 2 \sin ^2 y \\
& \Rightarrow \sqrt{(\sin x-1)^2+4} \leq 2 \sin ^2 y
\end{aligned}
\)
We know that for \(\sin ^2 y \leqslant 1\)
max value is \(\left|\sin ^2 y\right|=1\)
Now max value for \(\sqrt{(\sin x-1)^2+4}=2\) is
\(
\begin{aligned}
& (\sin x-1)^2+4=4 \\
& \sin x-1=0 \\
& \sin x=1 \\
\therefore & \sin x=|\sin y|
\end{aligned}
\)
\(\Rightarrow\) all the pairs that satisfy the inequality along with the equation \(
\sin x=|\sin y|\)
The number of integral values of \(\mathrm{m}\) for which the quadratic expression, \((1+2 \mathrm{~m}) x^2-2(1+3 \mathrm{~m}) x+4(1+\mathrm{m}), x \in \mathrm{R}\), is always positive, is: [Main Jan. 12, 2019 (II)]
\(
\begin{aligned}
& (1+2 m) x^2-2(1+3 m) x+4(1+m)>0 \\
& \therefore D<0 \\
& 4(1+3 m)^2-16(1+2 m)(1+m)<0 \\
& \Rightarrow 1+9 m^2+6 m-4-12 m-8 m^2<0 \\
& \Rightarrow m^2-6 m-3<0 \\
& \Rightarrow(m-3)^2<12 \\
& \Rightarrow-2 \sqrt{3}<m-3<2 \sqrt{3} \\
& \Rightarrow 3-2 \sqrt{3}<m<3+2 \sqrt{3}
\end{aligned}
\)
Also
\(
\begin{aligned}
& 2 m+1>0 \\
& \Rightarrow m>-\frac{1}{2}
\end{aligned}
\)
Possible integral values of \(m\) are \(0,1,2,3,4,5,6\)
Hence, number of integral values of \(m\) is 7.
If \(\mathrm{f}(\mathrm{x})=\left(\frac{3}{5}\right)^{\mathrm{x}}+\left(\frac{4}{5}\right)^{\mathrm{x}}-1, \mathrm{x} \in \mathrm{R}\), then the equation \(f(x)=0\) has: [Main Online April 9, 2014]
(b) \(f(x)=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x-1\)
Put \(f(x)=0\)
\(
\begin{gathered}
\Rightarrow \quad 0=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x-1 \\
\Rightarrow \quad\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1 \\
\Rightarrow 3^x+4^x=5^x \dots(i)
\end{gathered}
\)
For \(x=1\)
\(
3^1+4^1>5^1
\)
For \(x=3\)
\(
3^3+4^3=91<5^3
\)
Only for \(x=2\), equation (i) Satisfy
So, only one solution \((x=2)\)
If \(\alpha \in\left(0, \frac{\pi}{2}\right)\) then \(\sqrt{x^2+x}+\frac{\tan ^2 \alpha}{\sqrt{x^2+x}}\) is always greater than or equal to [2003S]
(a) Let \(a=\sqrt{x^2+x}\) and \(b=\frac{\tan ^2 \alpha}{\sqrt{x^2+x}}\)
\(
\begin{array}{ll}
\quad & \mathrm{AM} \geq \mathrm{GM}, \quad \therefore \quad \frac{a+b}{2} \geq \sqrt{a b} \\
\Rightarrow & a+b \geq 2 \sqrt{a b} \\
\Rightarrow & \sqrt{x^2+x}+\frac{\tan ^2 \alpha}{\sqrt{x^2+x}} \geq 2 \sqrt{\tan ^2 \alpha}=2 \tan \alpha
\end{array}
\)
\(
[\because \alpha \in(0, \pi / 2)]
\)
The set of all real numbers \(x\) for which \(x^2-|x+2|+x>0\), is [2002S]
(b) For \(x<-2,|x+2|=-(x+2)\)
\(
\begin{array}{ll}
\therefore & x^2-|x+2|+x>0 \\
\Rightarrow & x^2+x+2+x>0 \quad \Rightarrow(x+1)^2+1>0,
\end{array}
\)
which is valid \(\forall x \in R\)
But \(x<-2, \quad \therefore x \in(-\infty,-2) \dots(1)\)
For \(x \geq 2,|x+2|=x+2\)
\(
\begin{aligned}
& \therefore x^2-|x+2|+x>0 \Rightarrow x^2-x-2+x>0 \\
& \Rightarrow x^2>2 \Rightarrow x>\sqrt{2} \text { or } x<-\sqrt{2}
\end{aligned}
\)
i.e., \(x \in(-\infty,-\sqrt{2)} \cup(\sqrt{2, \infty})\)
But \(x \geq-2 \Rightarrow x \in[-2,-\sqrt{2}) \cup(\sqrt{2, \infty}) \dots(ii)\)
From (i) and (ii),
\(
\begin{aligned}
& x \in(-\infty,-2) \cup[-2,-\sqrt{2}) \cup(\sqrt{2}, \infty) \\
\Rightarrow \quad & x \in(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)
\end{aligned}
\)
If \(a_1, a_2 \ldots ., a_n\) are positive real numbers whose product is a fixed number \(\mathrm{c}\), then the minimum value of \(a_1+a_2+\ldots \ldots+a_{n-1}+2 a_n\) is [2002S]
(a) Since for positive real numbers,
\(
\begin{aligned}
& \text { A.M. } \geq \text { G.M. } \\
& \therefore \quad \frac{\left(a_1+a_2+\ldots+a_{n-1}+2 a_n\right)}{n} \geq\left(a_1 a_2 \ldots a_{n-1} 2 a_n\right)^{1 / n} \\
& \Rightarrow \quad a_1+a_2+a_3+\ldots .+a_{n-1}+2 a_n \geq n(2 c)^{1 / n}
\end{aligned}
\)
Hence, required minimum value \(=n(2 c)^{1 / n}\)
If \(a, b, c, d\) are positive real numbers such that \(a+b+c+d=2\), then \(M=(a+b)(c+d)\) satisfies the relation [2000S]
(a) Since, for positive real numbers,
A.M. \(\geq\) G.M.
\(
\begin{aligned}
& \quad \frac{(a+b)+(c+d)}{2} \geq \sqrt{(a+b)(c+d)} \Rightarrow M \leq 1 \\
& \text { Also }(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})>0 \\
& \therefore \quad 0 \leq M \leq 1
\end{aligned}
\)
If \(p, q, r\) are \(+\) ve and are in A.P., the roots of quadratic equation \(p x^2+\) \(q x+r=0\) are all real for [1994]
(b) For real roots \(q^2-4 p r \geq 0\)
\(
\begin{aligned}
& \Rightarrow\left(\frac{p+r}{2}\right)^2-4 p r \geq 0 \quad(\because p, q, r \text { are in A.P. }) \\
& \Rightarrow \quad p^2+r^2-14 p r \geq 0 \Rightarrow \frac{p^2}{r^2}-14 \frac{p}{r}+1 \geq 0 \\
& \Rightarrow \quad\left(\frac{p}{r}-7\right)^2-48 \geq 0 \Rightarrow\left|\frac{p}{r}-7\right| \geq 4 \sqrt{3}
\end{aligned}
\)
The number of points of intersection of two curves \(y=2 \sin x\) and \(y=5 x^2+2 x+3\) is [1994]
(a) Given: \(y=5 x^2+2 x+3=5\left(x+\frac{1}{5}\right)^2+\frac{14}{5}>2, \forall x \in R\) While \(y=2 \sin x \leq 2, \forall x \in R\)
\(\therefore\) The two curves do not meet at all.
Alternate:
We have
\(
\begin{aligned}
& y=5 x^2+2 x+3=5\left[x^2+\frac{2}{5} x+\frac{3}{5}\right] \\
& =5\left[\left(x+\frac{1}{5}\right)^2+\frac{3}{5}-\frac{1}{25}\right] \\
& =5\left[\left(x+\frac{1}{5}\right)^2+\frac{14}{25}\right]=5\left(x+\frac{1}{5}\right)^2+\frac{14}{25}>2
\end{aligned}
\)
Since \(y=2 \sin x \leq 2[latex]
[latex]\therefore\) we cannot have any point of intersection.
Hence number of points of intersection is \({ }^{\prime} 0^{\prime}\)
The number of solutions of the equation \(\sin (e)^x=5^x+5^{-x}\) is
\(
\text { [1990 – } 2 \text { Marks] }
\)
(a) Given : \(\sin \left(e^x\right)=5^x+5^{-x}\)
We know \(5^x\) and \(5^{-x}\) both are +ve real numbers.
By using \(\mathrm{AM} \geq \mathrm{GM}, 5^x+\frac{1}{5^x} \geq 2 \Rightarrow 5^x+5^{-x} \geq 2\)
\(\therefore \quad\) R.H.S. of given equation \(\geq 2\)
While \(\sin e^x \in[-1,1]\) i.e. LHS \(\in[-1,1]\)
\(\therefore\) The equation is not possible for any real value of \(x\).
If \(\log _{0.3}(\mathrm{x}-1)<\log _{0.09}(x-1)\), then \(x\) lies in the interval – [1985 – 2 Marks]
(a) First of all for \(\log (x-1)\) to be defined, \(x-1>0\)
\(
\Rightarrow x>1
\)
Now, \(\log _{0.3}(x-1)<\log _{0.09}(x-1)\)
\(
\begin{aligned}
& \Rightarrow \log _{0.3}(x-1)<\log _{(0.3)}(x-1) \\
& \Rightarrow \log _{0.3}(x-1)<\frac{1}{2} \log _{0.3}(x-1) \\
& \Rightarrow 2 \log _{0.3}(x-1)<\log _{0.3}(x-1) \\
& \Rightarrow \log _{0.3}(x-1)^2<\log _{0.3}(x-1) \\
& \Rightarrow(x-1)^2>(x-1)
\end{aligned}
\)
[Here inequality is reversed because base lies between 0 and 1]
\(
\Rightarrow(x-1)^2-(x-1)>0 \Rightarrow(x-1)(x-2)>0
\)
On combining (i) and (ii), we get \(x>2\)
\(
\therefore \quad x \in(2, \infty)
\)
If \(a^2+b^2+c^2=1\), then \(a b+b c+c a\) lies in the interval [1984 – 2 Marks]
(c) Given : \(a^2+b^2+c^2=1 \ldots .(\mathrm{i})\)
We know \((a+b+c)^2 \geq 0\)
\(
\begin{aligned}
& \Rightarrow \quad a^2+b^2+c^2+2 a b+2 b c+2 c a \geq 0 \\
& \Rightarrow \quad 2(a b+b c+c a) \geq-1 \quad \text { [using (i)] } \\
& \Rightarrow \quad a b+b c+c a \geq-1 / 2 \dots(ii)
\end{aligned}
\)
Also we know that
\(
\begin{aligned}
& \frac{1}{2}\left[(a-b)^2+(b-c)^2+(c-a)^2\right] \geq 0 \\
\Rightarrow & a^2+b^2+c^2-a b-b c-c a \geq 0 \\
\Rightarrow & a b+b c+c a \leq 1 \quad \text { [using (i) }]
\end{aligned}
\)
On combining (ii) and (iii), we get
\(
-1 / 2 \leq a b+b c+c a \leq 1, \therefore a b+b c+c a \in[-1 / 2,1]
\)
The largest interval for which \(x^{12}-x^9+x^4-x+1>0\) is [1982 – 2 Marks]
\(
\text { (d) Given expression } x^{12}-x^9+x^4-x+1=f(x) \text { (let) }
\)
For \(\mathrm{x}<0\), put \(x=-y\) where \(y>0\) then we get
\(
f(x)=y^{12}+y^9+y^4+y+1>0 \text { for } y>0
\)
For \(0<x<1, \quad x^9<x^4 \Rightarrow-x^9+x^4>0\)
Also \(1-x>0\) and \(x^{12}>0\)
\(
\Rightarrow x^{12}-x^9+x^4+1-x>0 \quad \Rightarrow f(x)>0
\)
For \(x>1 ; f(x)=x\left(x^3-1\right)\left(x^8+1\right)+1>0\)
So, \(f(x)>0\) for \(-\infty<x<\infty\).
If \(p, q, r\) are any real numbers, then [1982 – 2 Marks]
(b) If \(p=5, q=3, r=2 ; \max (p, q)=5 ; \max (p, q, r)=5\) \(\Rightarrow \max (p, q)=\max (p, q, r)\)
\(\therefore \quad\) (a) is not true. Similarly we can show that (c) is not true.
Also \(\min (p, q)=\frac{1}{2}(p+q-|p-q|)\)
Let \(p<q\), then \(\mathrm{LHS}=p\)
and R.H.S. \(=\frac{1}{2}(p+q-q+p)=p\)
Similarly, we can prove that \((b)\) is true for \(q<p\) too.
Two towns A and B are 60 km apart. A school is to be built to serve 150 students in town A and 50 students in town B. If the total distance to be travelled by all 200 students is to be as small as possible, then the school should be built at [1982- 2 Marks]
(c) Let the distance of school from \(A=x\)
\(\therefore \quad\) The distance of the school form \(B=60-x\) Total distance covered by 200 students
\(
=2[150 x+50(60-x)]=2[100 x+3000] \text {, }
\)
Which is minimum, when \(x=0\)
\(\therefore \quad\) School should be built at town \(A\).
The number of real solutions of the equation \(|x|^2-3|x|+2=0\) is [1982 – 2 Marks]
(a) \(|x|^2-3|x|+2=0\)
Case I : \(x<0\), then \(|x|=-x\)
\(\Rightarrow x^2+3 x+2=0 \Rightarrow(x+1)(x+2)=0\)
\(x=-1,-2(\) both acceptable as \(x<0)\)
Case II : \(x>0\), then \(|x|=x\)
\(\Rightarrow x^2-3 x+2=0 \Rightarrow(x-1)(x-2)=0\)
\(x=1,2\) ( both acceptable as \(x>0\) )
Hence, there are 4 real solutions.
The least value of the expression \(2 \log _{10} x-\log _x(0.01)\), for \(x>1\), is [1980]
\(
\text { (b) Let } y=2 \log _{10} x-\log _x 0.01
\)
\(
\begin{aligned}
& =2 \log _{10} x-\frac{\log _{10} 0.01}{\log _{10} x}=2 \log _{10} x+\frac{2}{\log _{10} x} \\
& =2\left[\log _{10} x+\frac{2}{\log _{10} x}\right]
\end{aligned}
\)
Here \(x>1 \Rightarrow \log _{10} x>0\)
Also the sum of a real positive number and its reciprocal is always greater than or equal to 2.
\(\therefore \quad y \geq 2 \times 2 \Rightarrow y \geq 4, \therefore\) Least value of \(y\) is 4.
Let \(a>0, b>0\) and \(c>0\). Then the roots of the equation \(a x^2+b x+c=0\) [1979]
(c) Since, \(a, b, c>0\); therefore \(a, b, c\) should be real because order relation is not defined in the set of complex numbers.
\(\therefore \quad\) Roots of equation are either real or complex conjugate.
Let \(\alpha, \beta\) be the roots of \(a x^2+b x+c=0\), then
\(
\alpha+\beta=-\frac{b}{a}=-v e, \quad \alpha \beta=\frac{c}{a}=+v e
\)
\(\Rightarrow\) Either both \(\alpha, \beta\) are – ve, if roots are real or both \(\alpha, \beta\) have \(–\) ve real parts, if roots are complex conjugate.
If \(x, y\) and \(z\) are real and different and \(u=x^2+4 y^2+9 z^2-6 y z-3 z x-2 x y\), then \(u\) is always. [1979]
\(
\begin{aligned}
& \text { (a) } u=x^2+4 y^2+9 z^2-6 y x-3 z x-2 x y \\
& \quad=\frac{1}{2}\left[2 x^2+8 y^2+18 z^2-12 y z-6 z x-4 x y\right] \\
& =\frac{1}{2}\left[\left(x^2-4 x y+4 y^2\right)+\left(4 y^2+9 z^2-12 y z\right)\right. \\
& \left.+\left(x^2+9 z^2-6 z x\right)\right] \\
& =\frac{1}{2}\left[(x-2 y)^2+(2 y-3 z)^2+(3 z-x)^2\right] \geq 0
\end{aligned}
\)
Hence, \(\)u\(\) is always non-negative.
\(
\text { The equation } x+2 y+2 z=1 \text { and } 2 x+4 y+4 z=9 \text { have }
\) [1979]
(d) The given equations are
\(
x+2 y+2 z=1 \dots(i)
\)
and \(2 x+4 y+4 z=9 \dots(ii)\)
On multiplying (i), by 2 and then subtracting from (ii), we get \(0=7\), which is not possible
\(\therefore \quad\) No solution.
The number of distinct real roots of \(x^4-4 x^3+12 x^2+x-1=0\) is [2011]
(2) Given : \(x^4-4 x^3+12 x^2+x-1=0\)
\(
\Rightarrow x^4-4 x^3+6 x^2-4 x+1+6 x^2+5 x-2=0
\)
\(
\begin{aligned}
& \Rightarrow(x-1)^4+6 x^2+5 x-2=0 \\
& \Rightarrow(x-1)^4=-6 x^2-5 x+2
\end{aligned}
\)
The solution of the above polynomial is the intersection points of the curves \(y=(x-1)^4\) and
\(
y=-6 x^2-5 x+2 \text { or } y=(x-1)^4 \text { and }\left(x+\frac{5}{12}\right)^2=-\frac{1}{6}\left(y-\frac{73}{24}\right)
\)
Clearly, the two curves have two points of intersection. Hence the given polynomial has two real roots.
The minimum value of the sum of real numbers \(a^{-5}, a^{-4}, 3 a^{-3}, 1, a^8\) and \(a^{10}\) where \(a>0\) is [2011]
(8) \(\because a>0, \therefore a^{-5}, a^{-4}, 3 a^{-3}, 1, a^8, a^{10}>0\)
Using AM \(\geq\) GM for positive real numbers, we get
\(
\begin{aligned}
& \frac{\frac{1}{a^5}+\frac{1}{a^4}+\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{a^3}+1+a^8+a^{10}}{8} \geq \\
& \left(\frac{1}{a^5} \cdot \frac{1}{a^4} \cdot \frac{1}{a^3} \cdot \frac{1}{a^3} \cdot \frac{1}{a^3} \cdot 1 \cdot a^8 \cdot a^{10}\right)^{\frac{1}{8}} \\
& \Rightarrow \frac{1}{a^5}+\frac{1}{a^4}+\frac{3}{a^3}+1+a^8+a^{10} \geq 8(1)^{\frac{1}{8}}
\end{aligned}
\)
Let \((x, y, z)\) be points with integer coordinates satisfying the system of homogeneous equations :
\(
\begin{array}{r}
3 x-y-z=0 \\
-3 x+z=0 \\
-3 x+2 y+z=0
\end{array}
\)
Then the number of such points for which \(x^2+y^2+z^2 \leq 100\) is [2009]
(7) Given system of equations:
\(
\begin{aligned}
& 3 x-y-z=0 \\
& -3 x+z=0
\end{aligned}
\)
and \(-3 x+2 y+z=0\)
Let \(x=p\), where \(p\) is an integer, then \(y=0\) and \(z=3 p\)
But \(x^2+y^2+z^2 \leq 100 \Rightarrow p^2+9 p^2 \leq 100\)
\(
\Rightarrow p^2 \leq 10 \Rightarrow p=0, \pm 1, \pm 2 \pm 3
\)
i.e. \(p\) can take 7 different values.
\(\therefore \quad\) Number of points \((x, y, z)\) are 7.
The sum of all the real roots of the equation \(|x-2|^2+|x-2|-2=0 \text { is }\) [1997 – 2 Marks]
\(|x-2|^2+|x-2|-2=0\)
Case 1: \(x \geq 2\)
\(
\begin{aligned}
& \Rightarrow \quad(x-2)^2+(x-2)-2=0 \\
& \Rightarrow \quad x^2-3 x=0 \Rightarrow x(x-3)=0 \\
& \Rightarrow \quad x=0,3
\end{aligned}
\)
But 0 is rejected as \(x \geq 2\)
\(
\therefore \quad x=3
\)
Case 2: \(x<2\)
\(
\begin{aligned}
& \{-(x-2)\}^2-(x-2)-2=0 \\
& \Rightarrow x^2+4-4 x-x=0 \Rightarrow(x-1)(x-4)=0 \\
& \Rightarrow x=1,4
\end{aligned}
\)
But 4 is rejected as \(x<2\)
\(
\therefore \quad x=1
\)
\(\therefore\) the sum of the roots is \(3+1=4\).
Let \(n\) and \(k\) be positive such that \(n \geq \frac{k(k+1)}{2}\). The number of solutions \(\left(x_1, x_2, \ldots . x_k\right), x_1 \geq 1, x_2 \geq 2, \ldots, x_k \geq k\), all integers, satisfying \(x_1+x_2+\ldots .+x_k=n\), is [1996 – 2 Marks]
The number of solution of \(x_1+x_2+\ldots+x_k=n\) \(=\) Coefficient of \(t^n\) in \(\left(t+t^2+t^3+\ldots\right)\left(t^2+t^3+\ldots\right)\left(t^k+t^{k+1}+\ldots\right)\) \(=\) Coefficient of \(t^n\) in \(t^{1+2+\ldots+k}\left(1+t+t^2+\ldots\right)^k\)
Now, \(1+2+\ldots+k=\frac{k(k+1)}{2}=p\) [say]
and \(1+t+t^2+\ldots=\frac{1}{1-t}\)
Thus, the number of required solutions
\(=\) Coefficient of \(t^{n-p}\) in \((1-t)^{-k}\)
\(=\) Coefficient of \(t^{n-p}\) in \(\left[1+{ }^k C_1 t+{ }^{k+1} C_2 t^2+{ }^{k+2} C_3 t^3+\ldots\right]\)
\(={ }^{k+n-p-1} C_{n-p}={ }^r C_{n-p}\)
where, \(r=k+n-p-1=k+n-1-\frac{1}{2} k(k+1)\)
\(
=\frac{1}{2}\left(2 k+2 n-2+k^2-k\right)=\frac{1}{2}\left(2 n-k^2+k-2\right)
\)
If \(x<0, y<0, x+y+\frac{x}{y}=\frac{1}{2}\) and \((x+y) \frac{x}{y}=-\frac{1}{2}\), then \(x=\) and \(y=\ldots \ldots\) [1990 – 2 Marks]
Given \(x<0, \quad y<0\),
\(
x+y+\frac{x}{y}=\frac{1}{2} \quad \text { and } \quad(x+y) \cdot \frac{x}{y}=-\frac{1}{2}
\)
Let \(x+y=a\) and \(\frac{x}{y}=b\)
\(
\therefore \quad a+b=\frac{1}{2} \text { and } a b=-\frac{1}{2}
\)
On solving the above two equations, we get \(a+\left(-\frac{1}{2 a}\right)=\frac{1}{2}\)
\(
\Rightarrow 2 a^2-a-1=0 \Rightarrow a=1,-1 / 2 \Rightarrow b=-1 / 2,1
\)
Hence, from equation (i), \(x+y=1\) and \(\frac{x}{y}=-\frac{1}{2}\)
or \(x+y=\frac{-1}{2}\) and \(\frac{x}{y}=1\)
But \(x, y<0\)
\(
\therefore x+y<0 \Rightarrow x+y=\frac{-1}{2} \text { and } \frac{x}{y}=1
\)
On solving the above equations, we get \(x=-1 / 4\) and \(y=-1 / 4\).
The solution of equation \(\log _7 \log _5(\sqrt{x+5}+\sqrt{x})=0\) is [1986 – 2 Marks]
\(
\begin{aligned}
& \log _7 \log _5(\sqrt{x+5}+\sqrt{x})=0 \\
& \Rightarrow \quad \log _5(\sqrt{x+5}+\sqrt{x})=1 \\
& \Rightarrow \quad \sqrt{x+5}+\sqrt{x}=5 \Rightarrow x+5=25+x-10 \sqrt{x} \\
& \Rightarrow \quad 2=\sqrt{x} \Rightarrow x=4, \text { which satisfies the given equation. }
\end{aligned}
\)
Is the given statement below true?
If \(x\) and \(y\) are positive real numbers and \(m, n\) are any positive integers, then \(\frac{x^n y^m}{\left(1+x^{2 n}\right)\left(1+y^{2 m}\right)}>\frac{1}{4}\) [1989 – 1 Mark]
\(\mathrm{x} \& \mathrm{y}\) are positive real numbers and \(\mathrm{m} \& \mathrm{n}\) are positive integers Since for two +ve numbers A.M. \(\geq\) G.M.
\(
\begin{aligned}
& \therefore \quad \frac{1+x^{2 n}}{2} \geq\left(1 \times x^{2 n}\right)^{1 / 2} \text { and } \frac{1+y^{2 m}}{2} \geq\left(1 \times y^{2 m}\right)^{1 / 2} \\
& \Rightarrow\left(\frac{1+x^{2 n}}{2}\right) \geq x^n \dots(i)
\end{aligned}
\)
and \(\left(\frac{1+y^{2 m}}{2}\right) \geq y^m\) \dots(ii)
Multiplying (i) and (ii), we get
\(
\frac{\left(1+x^{2 n}\right)\left(1+y^{2 m}\right)}{4} \geq x^n y^m \Rightarrow \frac{1}{4} \geq \frac{x^n y^m}{\left(1+x^{2 n}\right)\left(1+y^{2 m}\right)}
\)
Hence, the statement is false.
Is this statement true or False?
If \(n_1, n_2, \ldots . . n_p\) are \(p\) positive integers, whose sum is an even number, then the number of odd integers among them is odd. [1985 – 1 Mark]
Consider \(N=n_1+n_2+n_3+\ldots+n_p\), where \(N\) is an even number.
Let \(k\) numbers among these \(p\) numbers be odd, then \((p-k)\) numbers are even numbers. Now sum of \((p-k)\) even numbers is even and for \(N\) to be an even number, sum of \(k\) odd numbers must be even which is possible only when \(k\) is even.
\(\therefore \quad\) The given statement is false.
Is this statement true or false? For every integer \(n>1\), the inequality \((n !)^{1 / n}<\frac{n+1}{2}\) holds. [1981-2 Marks]
Consider \(n\) numbers, namely \(1,2,3,4, \ldots, n\). Since, A.M. > G.M.
\(
\begin{aligned}
& \therefore \quad \frac{1+2+3+4 \ldots+n}{n}>(1.2 .3 .4 \ldots n)^{1 / n} \\
& \Rightarrow \frac{n(n+1)}{2 n}>(n !)^{1 / n} \Rightarrow(n !)^{1 / n}<\frac{n+1}{2}, \text { True }
\end{aligned}
\)
If \(3^x=4^{x-1}\), then \(x=\) [Adv. 2013]
\(
\begin{aligned}
& (\mathbf{a}, \mathbf{b}, \mathbf{c}) \\
& 3^{\mathrm{x}}=4^{\mathrm{x}-1} \Rightarrow \mathrm{x} \log 3=2(\mathrm{x}-1) \log 2 \\
& \quad \Rightarrow \mathrm{x}=\frac{2 \log 2}{2 \log 2-\log 3} \Rightarrow \mathrm{x}=\frac{2 \log _3 2}{2 \log _3 2-1}=\frac{2}{2-\log _2 3}
\end{aligned}
\)
\(
\text { Also } x=\frac{1}{1-\frac{1}{2} \log _2 3}=\frac{1}{1-\log _4 3}
\)
Number of divisor of the form \(4 n+2(n \geq 0)\) of the integer 240 is [1998-2 Marks]
We can write 240 as \(2^4 .3^1 .5^1\)
But we want divisors of the form \(4 \mathrm{n}+2\)
That is, we want even divisors of the form \(2(2 n+1)\) and \(n \geqslant 0\)
The divisor is 2 ( when \(\mathrm{n}=0\) ) or divisors are odd multiples of 2
So the divisors are \(2,6,10\) and 30
Hence the answer is 4
The product of \(n\) positive numbers is unity Then their sum is [1991-2 Marks]
(d) Let \(x_1, x_2, \ldots, x_n\) be the \(n\) +ve numbers
According to the question,
\(
x_1 x_2 x_3 \ldots x_n=1 \dots(i)
\)
We know that for positive numbers A.M. \(\geq\) G.M.
\(
\begin{array}{ll}
\therefore & \frac{x_1+x_2+\ldots+x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} \\
\Rightarrow & \frac{x_1+x_2+\ldots+x_n}{n} \geq 1 \\
& \text { [using eq. (i)] } \\
\Rightarrow x_1+x_2+\ldots+x_n \geq n
\end{array}
\)
\(
\text { The equation } x^{3 / 4\left(\log _2 x\right)^2+\log _2 x-5 / 4}=\sqrt{2} \text { has }
\) [1989- 2 Marks]
(a, b, c) Given equation: \(\frac{3}{x^4}\left(\log _2 x\right)^2+\log _2 x-\frac{5}{4}=\sqrt{2}\) For \(x>0\), taking log on both sides to the base \(x\), we get
\(
\frac{3}{4}\left(\log _2 x\right)^2+\left(\log _2 x\right)-\frac{5}{4}=\log _x \sqrt{2}=\frac{1}{2} \log _x 2
\)
Let \(\log _2 x=y\), then we get, \(\frac{3}{4} y^2+y-\frac{5}{4}=\frac{1}{2 y}\)
\(
\begin{aligned}
& \Rightarrow \quad 3 y^3+4 y^2-5 y-2=0 \\
& \Rightarrow \quad(y-1)(y+2)(3 y+1)=0 \Rightarrow y=1,-2,-1 / 3 \\
& \Rightarrow \quad \log _2 x=1,-2,-1 / 3 \Rightarrow x=2,2^{-2}, 2^{-1 / 3} \\
& \Rightarrow \quad x=2, \frac{1}{4}, \frac{1}{2^{1 / 3}}, \text { all are possible because they are positive }
\end{aligned}
\)
If \(a, b\) and \(c\) are distinct positive numbers, then the expression \((b+c-\) \(a)(c+a-b)(a+b-c)-a b c\) is [1986- 2 Marks]
Since, as AM \(>\) GM
\(
\begin{aligned}
& \Rightarrow \frac{(b+c-a)+(c+a-b)}{2}>((b+c-a)(c+a-b))^{1 / 2} \\
& \Rightarrow \quad \quad c>((b+c-a)(c+a-b))^{1 / 2} \dots(i)
\end{aligned}
\)
Similarly, \(b>((a+b-c)(b+c-a))^{1 / 2} \dots(ii)\)
and \(\quad a>((a+b-c)(c+a-b))^{1 / 2} \dots(iii)\)
On multiplying Eqs. (i), (ii) and (iii), we get \(a b c>(a+b-c)(b+c-a)(c+a-b)\)
Hence, \(\quad(a+b-c)(b+c-a)(c+a-b)-a b c<0\)
If \(S\) is the set of all real \(x\) such that \(\frac{2 x-1}{2 x^3+3 x^2+x}\) is positive, then \(S\) contains [1986- 2 Marks]
(a, d) Wavy curve method:
Let \(f(x)=\left(x-\alpha_1\right)\left(x-\alpha_2\right) \ldots\left(x-\alpha_n\right)\)
To find sign of \(f(x)\), plot \(\alpha_1, \alpha_2, \ldots \alpha_n\) on number line in ascending order of magnitude. Starting from right extreme interval i.e., interval \(\left(\frac{1}{2}, \infty\right)\) , put \(+\) ve, \(–\) ve signs alternately in the intervals on the number line. \(f\) \((x)\) is positive in the intervals having + ve sign and negative in the intervals having -ve sign.
Using the wavy curve method for the function,
\(
f(x)=\frac{2 x-1}{2 x^3+3 x^2+x}=\frac{2 x-1}{x(2 x+1)(x+1)}
\)
We get
Clearly \(f(x)>0\), when \(x \in(-\infty,-1) \cup(-1 / 2,0) \cup(1 / 2, \infty)\)
Hence, \(S\) contains \((-\infty,-3 / 2)\) and \((1 / 2,3)\)
Find the set of all \(\mathrm{x}\) for which \(\frac{2 x}{\left(2 x^2+5 x+2\right)}>\frac{1}{(x+1)}\) [1987 – 3 Marks]
Given : \(\frac{2 x}{2 x^2+5 x+2}>\frac{1}{x+1}\)
\(
\begin{aligned}
& \Rightarrow \frac{2 x}{2 x^2+5 x+2}-\frac{1}{x+1}>0 \\
& \Rightarrow \frac{2 x^2+2 x-2 x^2-5 x-2}{\left(2 x^2+5 x+2\right)(x+1)}>0 \\
& \Rightarrow \frac{-3 x-2}{(2 x+1)(x+1)(x+2)}>0 \Rightarrow \frac{(3 x+2)}{(x+1)(x+2)(2 x+1)}<0 \\
& \Rightarrow \frac{(3 x+2)(x+1)(x+2)(2 x+1)}{(x+1)^2(x+2)^2(2 x+1)^2}<0 \\
& \Rightarrow(3 x+2)(x+1)(x+2)(2 x+1)<0
\end{aligned}
\)
Using wavey curve method, we get
\(
\text { Clearly Inequality (i) holds for, } x \in(-2,-1) \cup(-2 / 3,-1 / 2)
\)
If one root of the quadratic equation \(a x^2+b x+c=0\) is equal to the \(n\) th power of the other, then \(
\begin{aligned}
& \left(a c^n\right)^{\frac{1}{n+1}}+\left(a^n c\right)^{\frac{1}{n+1}}+b=0 \\
& {[1983 \text { – 2 Marks] }}\end{aligned}\).
Is this true?
Let \(\alpha, \beta\) be the roots of eq. \(a x^2+b x+c=0\)
According to the question, \(\beta=\alpha^n\)
\(
\begin{gathered}
\text { Also, } \alpha+\beta=-b / a ; \alpha \beta=c / a \\
\alpha \beta=\frac{c}{a} \Rightarrow \alpha \cdot \alpha^n=\frac{c}{a} \\
\Rightarrow \quad a^{n+1}=\frac{c}{a} \Rightarrow \alpha=\left(\frac{c}{a}\right)^{\frac{1}{n+1}}
\end{gathered}
\)
then
\(
\begin{aligned}
& \alpha+\beta=-b / a \Rightarrow \alpha+\alpha^n=\frac{-b}{a} \\
& \Rightarrow\left(\frac{c}{a}\right)^{\frac{1}{n+1}}+\left(\frac{c}{a}\right)^{\frac{n}{n+1}}=\frac{-b}{a} \\
& \Rightarrow \quad a \cdot\left(\frac{c}{a}\right)^{\frac{1}{n+1}}+a \cdot\left(\frac{c}{a}\right)^{\frac{n}{n+1}}+b=0 \\
& \Rightarrow \quad \frac{n}{n+1} c^{\frac{1}{n+1}}+a^{\frac{1}{n+1}} c^{\frac{n}{n+1}}+b=0 \\
& \Rightarrow \quad\left(a^n c\right)^{\frac{1}{n+1}}+\left(a c^n\right)^{\frac{1}{n+1}}+b=0
\end{aligned}
\)
\(\mathrm{mn}\) squares of euqal size are arranged to from a rectangle of dimension \(m\) by \(n\), where \(m\) and \(n\) are natural numbers. Two squares will be called ‘neighbours’ if they have exactly one common side. A natural number is written in each square such that the number written in any square is the arithmetic mean of the numbers written in its neighbouring squares. This is possible only if all the numbers used are equal. Is this statement true or false? [1982 – 5 Marks]
\(
\text { For any square there can be at most } 4 \text {, neighbouring squares. }
\)
Let us consider a square \(d\) as shown in the figure. It has four neighbouring square \(p, q, r, s\) as shown.
According to the question,
\(
\begin{array}{ll}
& p+q+r+s=4 d \\
\Rightarrow \quad & (d-p)+(d-q)+(d-r)+(d-s)=0
\end{array}
\)
Sum of four tve numbers can be zero only if these are zero individually
\(
\begin{aligned}
& \therefore \quad d-p=0=d-q=d-r=d-s \\
& \Rightarrow \quad p=q=r=s=d
\end{aligned}
\)
Hence, all the numbers written are same.
Is that the equation \(\)e^{\sin x}-e^{-\sin x}-4=0\(\) has no real solution. [1982- 2 Marks]
\(e^{\sin x}-e^{-\sin x}-4=0\)
Let \(e^{\sin x}=y\) then \(e^{-\sin x}=1 / y\)
\(\therefore \quad\) Given equation becomes, \(y-\frac{1}{y}-4=0\)
\(
\Rightarrow y^2-4 y-1=0 \Rightarrow y=2+\sqrt{5}, 2-\sqrt{5}
\)
But \(\mathrm{y}\) is real \(+\mathrm{ve}\) number,
\(
\begin{aligned}
& \therefore \quad y \neq 2-\sqrt{5} \Rightarrow y=2+\sqrt{5} \\
& \Rightarrow \quad e^{\sin x}=2+\sqrt{5} \Rightarrow \sin x=\log _e(2+\sqrt{5})
\end{aligned}
\)
But \(2+\sqrt{5}>e \Rightarrow \log _e\left(2+\sqrt{5)}>\log _e e\right.\)
\(
\Rightarrow \log _e(2+\sqrt{5})>1
\)
Hence, \(\sin x>1\), which is not possible.
\(\therefore \quad\) Given equation has no real solution.
Find the solution set of the system [1980]
\(
\begin{gathered}
x+2 y+z=1 \\
2 x-3 y-w=2 \\
x \geq 0 ; y \geq 0 ; z \geq 0 ; w \geq 0
\end{gathered}
\)
The given system is
\(
\begin{aligned}
& x+2 y+z=1 \dots(i)\\
& 2 x-3 y-\omega=2 \dots(ii)
\end{aligned}
\)
where \(x, y, z\), then \(\omega \geq 0\)
Multiplying eqn. (i) by 2 and subtracting from (ii), we get \(7 y+2 z+\omega=0 \Rightarrow \omega=-(7 y+2 z)\)
Now if \(y, z>0\), then \(\omega<0\) (not possible)
If \(y=0, z=0\), then \(x=1\) and \(\omega=0\).
\(\therefore \quad\) The only solution is \(x=1, y=0, z=0, \omega=0\).
For what values of \(m\), does the system of equations
\(
\begin{aligned}
& 3 x+m y=m \\
& 2 x-5 y=20
\end{aligned}
\)
has solution satisfying the conditions \(x>0, y>0\). [1980]
The given equations are \(3 x+m y-m=0\) and \(2 x-5 y-20=0\)
By cross-multiplication method, we get
\(
\begin{aligned}
& \frac{x}{-20 m-5 m}=\frac{y}{-2 m+60}=\frac{1}{-15-2 m} \\
& \Rightarrow \quad x=\frac{25 m}{2 m+15}, y=\frac{2 m-60}{2 m+15}
\end{aligned}
\)
If \(x>0\), then \(\frac{25 m}{2 m+15}>0\)
\(
\Rightarrow m<-\frac{15}{2} \text { or } m>0 \dots(i)
\)
If \(y>0\), then \(\frac{2(m-30)}{2 m+15}>0\)
\(
\Rightarrow \mathrm{m}<-\frac{15}{2} \text { or } \mathrm{m}>30 \dots(ii)
\)
On combining (i) and (ii), we get the common values of \(\mathrm{m}\) as follows :
\(
\mathrm{m}<-\frac{15}{2} \text { or } \mathrm{m}>30 \quad \therefore \quad \mathrm{m} \in\left(-\infty, \frac{-15}{2}\right) \cup(30, \infty)
\)
Let \(y=\sqrt{\frac{(x+1)(x-3)}{(x-2)}}\)
Find all the real values of \(x\) for which \(y\) takes real values. [1980]
\(y=\sqrt{\frac{(x+1)(x-3)}{(x-2)}}\)
\(\mathrm{y}\) will take all real values if \(\frac{(x+1)(x-3)}{(x-2)} \geq 0\)
By wavy curve method
\(
x \in[-1,2) \cup[3, \infty)
\)
[2 is not included as it makes the denominator zero, and hence \(\)y\(\) an undefined number.]
Given \(n^4<10^n\) for a fixed positive integer \(n \geq 2\),then \((n+1)^4<10^{n+1} .\)Is this statement true? [1980]
Given : \(n^4<10^n\) for a fixed \(+\) ve integer \(n \geq 2\).
To prove : \((n+1)^4<10^{n+1}\)
Proof : Since \(n^4<10^n \Rightarrow 10 n^4<10^{n+1} \dots(i)\)
So it is sufficient to prove that \((n+1)^4<10 n^4\)
Now \(\left(\frac{n+1}{n}\right)^4=\left(1+\frac{1}{n}\right)^4 \leq\left(1+\frac{1}{2}\right)^4[\because n \geq 2]\)
\(
\begin{aligned}
& =\frac{81}{16}<10 \\
\Rightarrow \quad(n+1)^4 & <10 n^4 \dots(ii)
\end{aligned}
\)
From (i) and (ii), \((n+1)^4<10^{n+1}\)
Find all integers \(x\) for which \((5 x-1)<(x+1)^2<(7 x-3)\) [1978]
There are two parts of this question
\((5 x-1)<(x+1)^2\) and \((x+1)^2<(7 x-3)\)
Taking first part
\(
\begin{aligned}
& (5 x-1)<(x+1)^2 \Rightarrow 5 x-1<x^2+2 x+1 \\
& \Rightarrow x^2-3 x+2>0 \Rightarrow(x-1)(x-2)>0
\end{aligned}
\)
Using wavy curve method
\(
\Rightarrow x<1 \text { or } x>2 \dots(i)
\)
Taking second part
\(
\begin{aligned}
& (x+1)^2<(7 x-3) \Rightarrow x^2-5 x+4<0 \\
& \Rightarrow \quad(x-1)(x-4)<0
\end{aligned}
\)
Using wavy curve method
\(
\Rightarrow \quad 1<x<4 \dots(ii)
\)
On combining (i) and (ii) [taking common solution], we get \(2<\mathrm{x}<4\), but \(x\) is an integer therefore \(x=3\).
Sketch the solution set of the following system of inequalities: \(x^2+y^2-2 x \geq 0 ; 3 x-y-12 \leq 0 ; y-x \leq 0 ; y \geq 0 .\) [1978]
\(x^2+y^2-2 x \geq 0 \Rightarrow x^2-2 x+1+y^2 \geq 1\)
\(\Rightarrow(x-1)^2+y^2 \geq 1\), which represents the boundary and exterior region of the circle with centre at \((1,0)\) and radius as 1 .
For \(3 x-y \leq 12\), the corresponding equation is \(3 x-y=12\). Two points on it can be taken as \((4,0),(2,-6)\). Also putting \((0,0)\) in given inequation, we get \(0 \leq 12\) which is true.
\(\therefore\) given inequation represents that half plane region on one side of the line \(3 x-y=12\), which contains origin.
For \(y \leq x\), the corresponding equation is \(y=x\). Two points on it can be taken as \((0,0)\) and \((1,1)\). Also putting \((2,1)\) in the given inequation, we get \(1 \leq 2\), which is true. So \(y \leq x\) represents that half plane on one side of the line \(y=x\), which contains the points \((2,1) \cdot y \geq 0\) represents upper half cartesian plane.
Combining all we find the solution set as the shaded region in the graph.
\(
\text { Show that the square of } \frac{\sqrt{26-15 \sqrt{3}}}{5 \sqrt{2}-\sqrt{38+5 \sqrt{3}}} \text { is a rational number. }
\) [1978]
\(
\begin{aligned}
& \text { Let } x=\frac{\sqrt{26-15 \sqrt{3}}}{5 \sqrt{2}-\sqrt{38+5 \sqrt{3}}} \\
& \Rightarrow \quad x^2=\frac{26-15 \sqrt{3}}{50+38+5 \sqrt{3}-10 \sqrt{76+10 \sqrt{3}}} \\
& \Rightarrow x^2=\frac{26-15 \sqrt{3}}{88+5 \sqrt{3}-10 \sqrt{75+1+10 \sqrt{3}}} \\
& \Rightarrow x^2=\frac{26-15 \sqrt{3}}{88+5 \sqrt{3}-10 \sqrt{\left(5 \sqrt{3)^2}+(1)^2+2 \times 5 \sqrt{3} \times 1\right.}} \\
& \Rightarrow \quad x^2=\frac{26-15 \sqrt{3}}{88+5 \sqrt{3}-10 \sqrt{(5 \sqrt{3}+1)^2}} \\
& =\frac{26-15 \sqrt{3}}{3(26-15 \sqrt{3})}=\frac{1}{3} \text {, which is a rational number. } \\
&
\end{aligned}
\)
If \((m, n)=\frac{\left(1-x^m\right)\left(1-x^{m-1}\right) \ldots \ldots \ldots\left(1-x^{m-n+1}\right)}{(1-x)\left(1-x^2\right) \ldots \ldots \ldots \ldots\left(1-x^n\right)}\)
where \(m\) and \(n\) are positive integers \((n \leq m)\), then \((m, n+1)=(m-1, n+1)+x^{m-n-1}(m-1, n)\). Is this true?[1978]
\(
\mathrm{RHS}=(\mathrm{m}-1, \mathrm{n}+1)+\mathrm{x}^{\mathrm{m}-\mathrm{n}-1}(m-1, n)
\)
\(
\begin{aligned}
& =\frac{\left(1-x^{m-1}\right)\left(1-x^{m-2}\right) \ldots\left(1-x^{m-n-1}\right)}{(1-x)\left(1-x^2\right) \ldots\left(1-x^{n+1}\right)} \\
& +x^{m-n-1}\left[\frac{\left(1-x^{m-1}\right)\left(1-x^{m-2}\right) \ldots\left(1-x^{m-n}\right)}{(1-x)\left(1-x^2\right) \ldots\left(1-x^n\right)}\right] \\
& =\frac{\left(1-x^{m-1}\right)\left(1-x^{m-2}\right) \ldots\left(1-x^{m-n}\right)}{(1-x)\left(1-x^2\right) \ldots\left(1-x^n\right)} \\
& {\left[\frac{1-x^{m-n-1}}{1-x^{n+1}}+x^{m-n-1}\right]} \\
& {\left[\frac{1-x^{m-n-1}+x^{m-n-1}-x^m}{1-x^{n+1}}\right]} \\
& =\frac{\left(1-x^m\right)\left(1-x^{m-1}\right) \ldots\left(1-x^{m-n}\right)}{(1-x)\left(1-x^2\right) \ldots\left(1-x^n\right)\left(1-x^{n+1}\right)} \\
& =(m, n+1)=\text { L.H.S. } \\
&
\end{aligned}
\)
\(\text { Solve for } x: 4^x-3^{x-\frac{1}{2}}=3^{x+\frac{1}{2}}-2^{2 x-1}\) [1978]
\(
\begin{aligned}
& 4^x-3^{x-1 / 2}=3^{x+1 / 2}-\frac{\left(2^2\right)^x}{2} \\
& \Rightarrow 4^x-\frac{3^x}{\sqrt{3}}=3^x \sqrt{3}-\frac{4^x}{2} \\
& \Rightarrow \frac{3}{2} \cdot 4^x=3^x\left(\sqrt{3}+\frac{1}{\sqrt{3}}\right) \Rightarrow \frac{3}{2} \cdot 4^x=3^x \frac{4}{\sqrt{3}} \\
& \Rightarrow \frac{4^{x-1}}{4^{1 / 2}}=\frac{3^{x-1}}{\sqrt{3}} \Rightarrow 4^{x-3 / 2}=3^{x-3 / 2} \\
& \Rightarrow\left(\frac{4}{3}\right)^{x-3 / 2}=1 \Rightarrow x-\frac{3}{2}=0 \Rightarrow x=3 / 2
\end{aligned}
\)
Let \([\alpha]\) denote the greatest integer \(\leq \alpha\). Then \([\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]+\ldots+[\sqrt{120}]\) is equal to [JEE Main 2023]
\(
\begin{aligned}
& {[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]+\ldots+[120]} \\
& E=1+1+1+2+2+2+2+2+3+3+3+3+3 \\
& +3+3+4+4+\ldots \\
& E=3 \times 1+5 \times 2+7 \times 3+\ldots+19 \times 9+10 \times 21 \\
& =\sum_{r=1}^{10}(2 r+1) r=2\left[\frac{10 \times 11 \times 21}{6}\right]+\frac{10 \times 11}{2} \\
& =770+55 \\
& =825
\end{aligned}
\)
The number of points, where the curve \(f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in R\) cuts \(x\)-axis, is equal to [JEE Main 2023]
Firstly, we know that the given function
\(f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1\) intersects the \(x\)-axis where \(f(x)=0\). Setting \(f(x)\) equal to zero gives us:
\(
e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1=0 \text {. }
\)
Let \(t=e^{2 x}\). The equation now becomes:
\(
t^4-t^3-3 t^2-t+1=0 \text {. }
\)
Dividing by \(t^2\) and rearranging the equation gives :
\(
t^2-t-3-\frac{1}{t}+\frac{1}{t^2}=0
\)
If we let \(y=t+\frac{1}{t}\), we get :
\(
y^2-y-5=0
\)
This quadratic equation in y can be solved using the quadratic formula to give two roots :
\(
y=\frac{1 \pm \sqrt{21}}{2} .
\)
Since \(y=t+\frac{1}{t}\), and \(t>0\) (as \(t=e^{2 x}\) ), we must choose the root where \(y>2\). Thus, we take \(y=\frac{1+\sqrt{21}}{2}\).
So, we have :
\(
t+\frac{1}{t}=\frac{1+\sqrt{21}}{2}
\)
Solving for \(t\) gives us :
\(
t^2-y t+1=0
\)
or \(t=\frac{y \pm \sqrt{y^2-4}}{2} .\)
Substituting \(y=\frac{1+\sqrt{21}}{2}\) into the formula gives :
\(
t=\frac{\frac{1+\sqrt{21}}{2} \pm \sqrt{\left(\frac{1+\sqrt{21}}{2}\right)^2-4}}{2} .
\)
This quadratic formula for \(t\) yields two possible values \((t=2.37\) and \(t=0.42)\). Both of them are positive, thus both are acceptable values for \(t=e^{2 x}\).
Finally, to get \(x\), take the natural \(\log\) of both sides and divide by 2 :
\(
x=\frac{1}{2} \ln (t)
\)
This gives us two solutions for \(x\), corresponding to the two positive solutions for \(t\). So, the number of points where the curve \(f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1\) intersects the \(x\)-axis is 2 .
If \(a\) and \(b\) are the roots of the equation \(x^2-7 x-1=0\), then the value of \(\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}\) is equal to [JEE Main 2023]
\(
x^2-7 x-1=0<_b^a
\)
By newton’s theorem
\(
\begin{aligned}
& S _{ n +2}-7 S _{ n +1}- S _{ n }=0 \\
& S _{21}-7 S _{20}- S _{19}=0 \\
& S _{20}-7 S _{19}- S _{18}=0 \\
& S _{19}-7 S _{18}- S _{17}=0 \\
& \frac{ S _{21}+ S _{17}}{ S _{19}}=\frac{ S _{21}+\left( S _{19}-7 S _{18}\right)}{ S _{19}} \\
& =\frac{ S _{21}+ S _{19}-7\left( S _{20}-7 S _{19}\right)}{ S _{19}} \\
& =\frac{50 S _{19}+\left( S _{21}-7 S _{20}\right)}{ S _{19}} \\
& =51 \cdot \frac{ S _{19}}{ S _{19}}=51
\end{aligned}
\)
If the value of real number \(a>0\) for which \(x^2-5 a x+1=0\) and \(x^2-a x-5=0\) have a common real root is \(\frac{3}{\sqrt{2 \beta}}\) then \(\beta\) is equal to [JEE Main 2023]
\(
\begin{aligned}
& x^2-5 \alpha x+1=0 \dots(1)\\
& x^2-\alpha x-5=0 \dots(2)
\end{aligned}
\)
have a common root.
Subtracting (1) with (2) we’ll get \(x=\frac{6}{4 \alpha}\)
Substituting in (1)
\(
\begin{aligned}
& \frac{36}{16 \alpha^2}-\frac{30}{4}+1=0 \\
& \Rightarrow \alpha^2=\frac{9}{26} \\
& \alpha=\frac{3}{\sqrt{2 \times 13}} \\
& \therefore \beta=13
\end{aligned}
\)
Let \(\alpha_1, \alpha_2, \ldots, \alpha_7\) be the roots of the equation \(x^7+3 x^5-13 x^3-15 x=0\) and \(\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|\). Then \(\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6\) is equal to [JEE Main 2023]
\(
\begin{aligned}
& x^7+3 x^5-13 x^3-15 x=0 \\
& x\left(x^6+3 x^4-13 x^2-15\right)=0 \\
& x=0=\alpha_7 \\
& \text { Let } x^2=t \\
& t^3+3 t^2-13 t-15=0 \\
& (t+1)(t+5)(t-3)=0 \\
& t=x^2=-1,-5,3 \\
& x= \pm i, \pm \sqrt{5} i, \pm \sqrt{3} \\
& \alpha_1, \alpha_2= \pm \sqrt{5} i, \alpha_3, \alpha_4= \pm \sqrt{3}, \alpha_5, \alpha_6= \pm i \\
& \alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6=5+3+1=9
\end{aligned}
\)
Let \(\alpha \in R\) and let \(\alpha, \beta\) be the roots of the equation \(x^2+60^{\frac{1}{4}} x+a=0\). If \(\alpha^4+\beta^4=-30\), then the product of all possible values of \(a\) is [JEE Main 2023]
\(
\begin{aligned}
& x^2+60^{\frac{1}{4}} x+a=0 \\
& \therefore \alpha+\beta=-60^{\frac{1}{4}}, \alpha \beta=a \\
& \text { Now } \alpha^4+\beta^4=-30 \\
& \Rightarrow\left(\alpha^2+\beta^2\right)^2-2 a^2=-30 \\
& \Rightarrow\left[(\alpha+\beta)^2-2 a\right]^2-2 a^2=-30 \\
& \Rightarrow\left(60^{\frac{1}{2}}-2 a\right)^2-2 a^2=-30 \\
& \Rightarrow 60+4 a^2-4 \cdot 60^{\frac{1}{2}} a-2 a^2+30=0 \\
& \Rightarrow 2 a^2-8 \sqrt{15} a+90=0
\end{aligned}
\)
Product of value of \(a=45\)
Let \(\lambda \in R\) and let the equation \(E\) be \(|x|^2-2|x|+|\lambda-3|=0\). Then the largest element in the set \(S =\{x+\lambda: x\) is an integer solution of \(E \}\) is [JEE Main 2023]
\(
\begin{aligned}
& D \geq 0 \Rightarrow 4-4|\lambda-3| \geq 0 \\
& |\lambda-3| \leq 1 \\
& -1 \leq \lambda-3 \leq 1 \\
& 2 \leq \lambda \leq 4 \\
& |x|=\frac{2 \pm \sqrt{4-4|\lambda-3|}}{2} \\
& =1 \pm \sqrt{1-|\lambda-3|} \\
& x_{\text {largest }} \quad=1+1=2 \text {, when } \lambda=3
\end{aligned}
\)
Largest element of \(S=2+3=5\)
The number of real roots of the equation \(x|x|-5|x+2|+6=0\), is : [JEE Main 2023]
Case-I:
When \(x<-2\) then
\(
\begin{aligned}
& -x^2+5(x+2)+6=0 \\
& \Rightarrow x^2-5 x-16=0
\end{aligned}
\)
\(
\Rightarrow x=\frac{5 \pm \sqrt{25+64}}{2}
\)
\(\therefore x=\frac{5-\sqrt{89}}{2}\) is accepted
Case-II :
When \(-2 \leq x<0\) then
\(
\begin{aligned}
& -x^2-5(x+2)+6=0 \\
\Rightarrow & x^2+5 x+4=0 \\
\Rightarrow & (x+1)(x+4)=0
\end{aligned}
\)
\(x=-1\) is accepted
Case-III :
When \(x \geq 0\) then
\(
\begin{gathered}
x^2-5(x+2)+6=0 \\
\Rightarrow x^2-5 x-4=0 \\
x=\frac{5 \pm \sqrt{25+16}}{2} \\
=\frac{5 \pm \sqrt{41}}{2} \\
x=\frac{5-\sqrt{41}}{2} \text { is accepted }
\end{gathered}
\)
\(\therefore 3\) real roots are possible.
Let \(\alpha, \beta\) be the roots of the equation \(x^2-\sqrt{2} x+2=0\). Then \(\alpha^{14}+\beta^{14}\) is equal to [JEE Main 2023]
Find the roots of the quadratic equation:
The quadratic formula is \(x=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\). For the quadratic equation \(x^2-\sqrt{2} x+2=0\), we have \(a=1, b=-\sqrt{2}, c=2\). Plugging these into the quadratic formula gives:
\(
x=\frac{\sqrt{2} \pm \sqrt{(-\sqrt{2})^2-4(1)(2)}}{2(1)}=\frac{\sqrt{2} \pm \sqrt{2-8}}{2}=\frac{\sqrt{2} \pm \sqrt{6} i}{2} .
\)
So, we have two roots, \(\alpha\) and \(\beta\), which are:
So, we have two roots, \(\alpha\) and \(\beta\), which are:
\(
\begin{aligned}
& \alpha=\frac{\sqrt{2}+\sqrt{6} i}{2}, \\
& \beta=\frac{\sqrt{2}-\sqrt{6} i}{2} .
\end{aligned}
\)
Express the roots in exponential form:
We can express complex numbers in the form \(r e^{i \theta}\). For \(\alpha\) and \(\beta\), we find the magnitude \(r=\sqrt{2}\) and the arguments \(\theta=\frac{\pi}{3},-\frac{\pi}{3}\) respectively. So, we have:
\(
\begin{aligned}
& \alpha=\sqrt{2} e^{i \frac{\pi}{3}} \\
& \beta=\sqrt{2} e^{-i \frac{\pi}{3}}
\end{aligned}
\)
Calculate the 14 th power of the roots:
To find \(\alpha^{14}\) and \(\beta^{14}\), we use the property of exponents which says that \(\left(a^m\right)^n=a^{m n}\). So, we have:
\(
\begin{aligned}
& \alpha^{14}=\left(\sqrt{2} e^{i \frac{\pi}{3}}\right)^{14}=2^7 e^{i \frac{14 \pi}{3}}=128 e^{i \frac{2 \pi}{3}}, \\
& \beta^{14}=\left(\sqrt{2} e^{-i \frac{\pi}{3}}\right)^{14}=2^7 e^{-i \frac{14 \pi}{3}}=128 e^{-i \frac{2 \pi}{3}} .
\end{aligned}
\)
Add the 14th powers of the roots:
We want to find the real part of \(\alpha^{14}+\beta^{14}\). To do this, we use the property that \(e^{i x}=\cos (x)+i \sin (x)\). We have:
\(
\alpha^{14}+\beta^{14}=128 e^{i \frac{2 \pi}{3}}+128 e^{-i \frac{2 \pi}{3}}=128(2) \cos \left(\frac{2 \pi}{3}\right)=-128
\)
The set of all \(a \in R\) for which the equation \(x|x-1|+|x+2|+a=0\) has exactly one real root, is : [JEE Main 2023]
\(
x|x-1|+|x+2|+a=0
\)
Case I: If \(x<-2\) then
\(
\begin{aligned}
& -x^2+x-x-2+a=0 \\
& a=x^2+2
\end{aligned}
\)
\(y=x^2+2\) is decreasing \(\forall x \in(-\infty,-2)\)
Case II: If \(-2 \leq x<1\) then
\(
\begin{aligned}
& -x^2+x+x+2+a=0 \\
& a=x^2-2 x-2
\end{aligned}
\)
\(y=x^2-2 x-2\) is decreasing \(\forall x \in[-2,1)\).
Case III: If \(x \geq 1\) then
\(
\begin{aligned}
& x^2-x+x+2+a=0 \\
& a=-\left(x^2+2\right)
\end{aligned}
\)
\(y=-\left(x^2+2\right)\) is decreasing \(\forall x \in[1, \infty)\)
\(\therefore\) Exactly one real root \(\forall x \in R\)
Let \(\alpha, \beta\) be the roots of the quadratic equation \(x^2+\sqrt{6} x+3=0\). Then \(\frac{\alpha^{23}+\beta^{23}+\alpha^{14}+\beta^{14}}{\alpha^{15}+\beta^{15}+\alpha^{10}+\beta^{10}}\) is equal to : [JEE Main 2023]
Given quadratic equation: \(x^2+\sqrt{6} x+3=0\)
We can find the roots using the quadratic formula: \(x=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}\)
Here, \(a=1, b=\sqrt{6}[latex], and [latex]c=3\).
Substituting these values into the quadratic formula, we have:
\(
x=\frac{-\sqrt{6} \pm \sqrt{(\sqrt{6})^2-4(1)(3)}}{2(1)}
\)
Simplifying further :
\(
\begin{aligned}
& x=\frac{-\sqrt{6} \pm \sqrt{6-12}}{2} \\
& x=\frac{-\sqrt{6} \pm \sqrt{-6}}{2}
\end{aligned}
\)
Since the discriminant is negative, the roots are complex numbers. We can express them using the imaginary unit \(i\) :
\(
\begin{aligned}
& x=\frac{-\sqrt{6} \pm \sqrt{6} i}{2} \\
& \Rightarrow x=\frac{-1}{2} \sqrt{6} \pm \frac{1}{2} \sqrt{6} i \\
& \therefore \alpha, \beta=\sqrt{3} e ^{ \pm \frac{3 \pi i}{4}} .
\end{aligned}
\)
The required expression can be rewritten in terms of the argument of the exponential form of the roots, which simplifies the calculation:
\(
=\frac{(\sqrt{3})^{23}\left(2 \cos \frac{69 \pi}{4}\right)+(\sqrt{3})^{14}\left(2 \cos \frac{42 \pi}{4}\right)}{(\sqrt{3})^{15}\left(2 \cos \frac{45 \pi}{4}\right)+(\sqrt{3})^{10}\left(2 \cos \frac{30 \pi}{4}\right)}
\)
Here, the exponential power of \(\sqrt{3}\) in the numerator is larger by 8 compared to the denominator, so we can divide the numerator and denominator by \((\sqrt{3})^8=81\) to simplify:
\(
=\frac{(\sqrt{3})^{15}\left(2 \cos \frac{69 \pi}{4}\right)+(\sqrt{3})^6\left(2 \cos \frac{42 \pi}{4}\right)}{(\sqrt{3})^7\left(2 \cos \frac{45 \pi}{4}\right)+(\sqrt{3})^2\left(2 \cos \frac{30 \pi}{4}\right)}
\)
Since the cosine function has a period of \(2 \pi\), we can reduce the arguments of the cosine function in the numerator and denominator.
We have \(69 \pi / 4=\pi / 4+17 \pi=\pi / 4\),
\(
\begin{aligned}
& 42 \pi / 4=2 \pi / 4+10 \pi=\pi / 2, \\
& 45 \pi / 4=\pi / 4+11 \pi=\pi / 4, \text { and } \\
& 30 \pi / 4=2 \pi / 4+7 \pi=\pi / 2 .
\end{aligned}
\)
Therefore, the required expression simplifies to :
\(
\begin{aligned}
& =\frac{(\sqrt{3})^{15}\left(2 \cos \frac{\pi}{4}\right)+(\sqrt{3})^6\left(2 \cos \frac{\pi}{2}\right)}{(\sqrt{3})^7\left(2 \cos \frac{\pi}{4}\right)+(\sqrt{3})^2\left(2 \cos \frac{\pi}{2}\right)} \\
& =\frac{(\sqrt{3})^{15} \sqrt{2}+(\sqrt{3})^6 \cdot 0}{(\sqrt{3})^7 \sqrt{2}+(\sqrt{3})^2 \cdot 0} \\
& =\frac{(\sqrt{3})^{15} \sqrt{2}}{(\sqrt{3})^7 \sqrt{2}} \\
& =(\sqrt{3})^{15-7} \\
& =(\sqrt{3})^8 \\
& =81
\end{aligned}
\)
Let \(\alpha, \beta, \gamma\) be the three roots of the equation \(x^3+b x+c=0\). If \(\beta \gamma=1=-\alpha\), then \(b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3\) is equal to : [JEE Main 2023]
Concept:
For a cubic equation, \(a x^3+b x^2+c x+d=0\)
Sum of roots \(=\frac{-b}{a}\)
Product of roots taken two at a time \(=\frac{c}{a}\)
Product of roots \(=\frac{-d}{a}\)
Given cubic equation is :
\(
x^3+b x+c=0
\)
\(\because \alpha, \beta, \gamma\) are the roots of above equation.
And \(\beta \gamma=1=-\alpha\)
So, product of roots \(=-c\)
\(
\begin{aligned}
& \Rightarrow \alpha \beta \gamma=-c \\
& \Rightarrow(-1)(1)=-c \\
& \Rightarrow c=1
\end{aligned}
\)
Since, \(\alpha=-1\) is the root. So,
\(
\begin{aligned}
& \Rightarrow-1-b+c=0 \\
& \Rightarrow c-b=1 \\
& \Rightarrow 1-b=1 \Rightarrow b=0
\end{aligned}
\)
The given equation becomes \(x^3+1=0\)
So, roots are \(-1,-\omega,-\omega^2\)
\(
\begin{aligned}
& \therefore b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3 \\
& =0+2-3(-1)^3-6(-\omega)^3-8\left(-\omega^2\right)^3 \\
& =2+3+6 \omega^3+8 \omega^6 \\
& =5+6+8=19
\end{aligned}
\)
Let \(A=\{x \in R:[x+3]+[x+4] \leq 3\}\), \(B=\left\{x \in R: 3^x\left(\sum_{r=1}^{\infty} \frac{3}{10^x}\right)^{x-3}<3^{-3 x}\right\}\), Then, [JEE Main 2023]
We have,
\(
\begin{aligned}
& A=\{x \in R:[x+3]+[x+4] \leq 3\} \\
& \text { Here, }[x+3]+[x+4] \leq 3 \\
& \Rightarrow[x]+3+[x]+4 \leq 3 \\
& (\because[x+n]=[x]+n, n \in I) \\
& \Rightarrow 2[x]+4 \leq 0 \Rightarrow[x] \leq-2 \\
& \Rightarrow x \in(-\infty,-1)
\end{aligned}
\)
\(
A \equiv(-\infty,-1) \dots(i)
\)
Also,
\(
B=\left\{x \in R: 3^x\left(\sum_{r=1}^{\infty} \frac{3}{10^x}\right)^{x-3}<3^{-3 x}\right\}
\)
Here,
\(
\begin{aligned}
& 3^x\left(\frac{3}{10}+\frac{3}{10^2}+\frac{3}{10^3}+\ldots\right)^{x-3}<3^{-3 x} \\
\Rightarrow & 3^x\left(\frac{\frac{3}{10}}{1-\frac{1}{10}}\right)^{x-3}<3^{-3 x} \\
\Rightarrow & 3^x\left(\frac{1}{3}\right)^{x-3}<3^{-3 x} \\
\Rightarrow & 3^{x-x+3}<3^{-3 x} \Rightarrow 3^3<3^{-3 x}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \quad-3 x>3 \Rightarrow x<-1 \\
& \Rightarrow \quad x \in(-\infty,-1) \\
& \Rightarrow \quad B \equiv(-\infty,-1) \ldots \ldots . . .(i i)
\end{aligned}
\)
From equations (i) and (ii), we get
\(
A=B
\)
The sum of all the roots of the equation \(\left|x^2-8 x+15\right|-2 x+7=0\) is : [JEE Main 2023]
We have, \(\left|x^2-8 x+15\right|-2 x+7=0\)
\(
\Rightarrow|(x-3)(x-5)|-2 x+7=0
\)
Now, when \(x \leq 3\) or \(x \geq 5\), then
\(
\begin{gathered}
x^2-8 x+15-2 x+7=0 \\
\Rightarrow x^2-10 x+22=0 \\
\Rightarrow x^2-10 x+25-3=0 \\
\Rightarrow(x-5)^2-3=0 \\
\Rightarrow(x-5)= \pm \sqrt{3} \\
\Rightarrow x=5+\sqrt{3}, 5-\sqrt{3}
\end{gathered}
\)
Since, \(x \leq 3\) or \(x \geq 5\)
\(
\therefore x=5+\sqrt{3}
\)
When, \(3<x<5\), then
\(
\begin{aligned}
& -\left(x^2-8 x+15\right)-2 x+7=0 \\
& \Rightarrow-x^2+8 x-15-2 x+7=0 \\
& \Rightarrow-x^2+6 x-8=0 \\
& \Rightarrow x^2-6 x+8=0 \\
& \Rightarrow(x-4)(x-2)=0 \Rightarrow x=2,4
\end{aligned}
\)
Since, \(3<x<5\)
\(
\therefore x=4
\)
\(\therefore\) Sum of roots \(=(5+\sqrt{3})+4=9+\sqrt{3}\)
The number of integral values of \(k\), for which one root of the equation \(2 x^2-8 x+k=0\) lies in the interval \((1,2)\) and its other root lies in the interval \((2,3)\), is : [JEE Main 2023]
\(
2 x^2-8 x+k=0
\)
\(
\begin{aligned}
& f(1)>0 \Rightarrow k>6 \\
& f(2)<0 \Rightarrow k<8 \\
& f(3)>0 \Rightarrow k>6 \\
& k \in(6,8)
\end{aligned}
\)
Only 1 integral value of \(k\) is 7 .
Let \(S=\left\{x: x \in R\right.\) and \(\left.(\sqrt{3}+\sqrt{2})^{x^2-4}+(\sqrt{3}-\sqrt{2})^{x^2-4}=10\right\}\). Then \(n(S)\) is equal to [JEE Main 2023]
Let \((\sqrt{3}+\sqrt{2})^{x^2-4}=t\)
\(
\begin{aligned}
& t+\frac{1}{t}=10 \\
\Rightarrow & t^2-10 t+1=0 \\
\Rightarrow & t=\frac{10 \pm \sqrt{100-4}}{2}=5 \pm 2 \sqrt{6}
\end{aligned}
\)
Case-I:
\(
\begin{gathered}
t=5+2 \sqrt{6}=(\sqrt{3}+\sqrt{2})^2 \\
\Rightarrow(\sqrt{3}+\sqrt{2})^{x^2-4}=(\sqrt{3}+\sqrt{2})^2 \\
\Rightarrow x^2-4=2 \Rightarrow x^2=6 \Rightarrow x= \pm \sqrt{6}
\end{gathered}
\)
Case-II :
\(
\begin{aligned}
& t=5-2 \sqrt{6}=(\sqrt{3}-\sqrt{2})^2 \\
& (\sqrt{3}+\sqrt{2})^{x^2-4}=(\sqrt{3}-\sqrt{2})^2 \\
& \Rightarrow\left((\sqrt{3}-\sqrt{2})^{-1}\right)^{x^2-4}=(\sqrt{3}-\sqrt{2})^2 \\
& \Rightarrow 4-x^2=2 \\
& \Rightarrow x^2=2 \\
& \Rightarrow x= \pm \sqrt{2}
\end{aligned}
\)
The equation \(e ^{4 x}+8 e ^{3 x}+13 e ^{2 x}-8 e ^x+1=0, x \in R\) has : [JEE Main 2023]
\(
e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^x+1=0
\)
Let \(e ^{ x }= t\)
Now, \(t ^4+8 t ^3+13 t ^2-8 t +1=0\)
Dividing equation by \(t ^2\)
\(
\begin{aligned}
& t^2+8 t+13-\frac{8}{t}+\frac{1}{t^2}=0 \\
& t^2+\frac{1}{t^2}+8\left(t-\frac{1}{t}\right)+13=0 \\
& \left(t-\frac{1}{t}\right)^2+2+8\left(t-\frac{1}{t}\right)+13=0
\end{aligned}
\)
Let \(t -\frac{1}{ t }= z\)
\(
\begin{aligned}
& z^2+8 z+15=0 \\
& (z+3)(z+5)=0 \\
& z=-3 \text { or } z=-5
\end{aligned}
\)
So, \(t-\frac{1}{t}=-3\) or \(t-\frac{1}{t}=-5\)
\(t^2+3 t-1=0\) or \(t^2+5 t-1=0\)
\(t =\frac{-3 \pm \sqrt{13}}{2}\) or \(t =\frac{-5 \pm \sqrt{29}}{2}\)
as \(t=e^x\) so \(t\) must be positive,
\(t=\frac{\sqrt{13}-3}{2}\) or \(\frac{\sqrt{29}-5}{2}\)
So, \(x=\ln \left(\frac{\sqrt{13}-3}{2}\right)\) or \(x=\ln \left(\frac{\sqrt{29}-5}{2}\right)\)
Hence two solutions and both are negative.
The equation \(x^2-4 x+[x]+3=x[x]\), where \([x]\) denotes the greatest integer function, has : [JEE Main 2022]
\(
\begin{aligned}
& x^2-4 x+[x]+3=x[x] \\
& \Rightarrow x^2-4 x+[x]+3-x[x]=0 \\
& \Rightarrow(x-1)(x-3)-[x](x-1)=0 \\
& \Rightarrow(x-1)(x-[x]-3)=0 \\
& \therefore x=1
\end{aligned}
\)
Or
\(
\begin{aligned}
& x-[x]-3=0 \\
& \Rightarrow\{x\}-3=0[\text { As }\{x\}=x-[x]] \\
& \Rightarrow\{x\}=3
\end{aligned}
\)
But we know, \(0<\{x\}<1\)
\(
\therefore\{x\} \neq 3
\)
\(\therefore x\) has only one solution in \((-\infty, \infty)\) which is \(x=1\).
If \(\frac{1}{(20-a)(40-a)}+\frac{1}{(40-a)(60-a)}+\ldots+\frac{1}{(180-a)(200-a)}=\frac{1}{256}\), then the maximum value of \(a\) is : [JEE Main 2022]
\(
\begin{aligned}
& \frac{1}{20}\left(\frac{1}{20-a}-\frac{1}{40-a}+\frac{1}{40-a}-\frac{1}{60-a}+\ldots .+\frac{1}{180-a}-\frac{1}{200-a}\right)=\frac{1}{256} \\
& \Rightarrow \frac{1}{20}\left(\frac{1}{20-a}-\frac{1}{200-a}\right)=\frac{1}{256} \\
& \Rightarrow \frac{1}{20}\left(\frac{180}{(20-a)(200-a)}\right)=\frac{1}{256} \\
& \Rightarrow(20-a)(200-a)=9.256
\end{aligned}
\)
OR \(a^2-220 a+1696=0\)
\(
\Rightarrow a=212,8
\)
Let \(S=\left\{x \in[-6,3]-\{-2,2\}: \frac{|x+3|-1}{|x|-2} \geq 0\right\}\) and \(T=\left\{x \in Z : x^2-7|x|+9 \leq 0\right\}\). Then the number of elements in \(S \cap T\) is : [JEE Main 2022]
\(
\begin{aligned}
& \left|x^2\right|-7|x|+9 \leq 0 \\
& \Rightarrow|x| \in\left[\frac{7-\sqrt{13}}{2}, \frac{7+\sqrt{13}}{2}\right]
\end{aligned}
\)
As \(x \in Z\)
So, \(x\) can be \(\pm 2, \pm 3, \pm 4, \pm 5\)
Out of these values of \(x\),
\(
x=3,-4,-5
\)
satisfy \(S\) as well
\(
n(S \cap T)=3
\)
Let \(\alpha, \beta\) be the roots of the equation \(x^2-\sqrt{2} x+\sqrt{6}=0\) and \(\frac{1}{\alpha^2}+1, \frac{1}{\beta^2}+1\) be the roots of the equation \(x^2+a x+b=0\). Then the roots of the equation \(x^2-(a+b-2) x+(a+b+2)=0\) are : [JEE Main 2022]
\(
\begin{aligned}
& \alpha+\beta=\sqrt{2}, \alpha \beta=\sqrt{6} \\
& \frac{1}{\alpha^2}+1+\frac{1}{\beta^2}+1=2+\frac{\alpha^2+\beta^2}{6} \\
& =2+\frac{2-2 \sqrt{6}}{6}=-a \\
& \left(\frac{1}{\alpha^2}+1\right)\left(\frac{1}{\beta^2}+1\right)=1+\frac{1}{\alpha^2}+\frac{1}{\beta^2}+\frac{1}{\alpha^2 \beta^2} \\
& =\frac{7}{6}+\frac{2-2 \sqrt{6}}{6}=b \\
& \Rightarrow a+b=\frac{-5}{6}
\end{aligned}
\)
So, equation is \(x^2+\frac{17 x}{6}+\frac{7}{6}=0\)
Or \(6 x^2+17 x+7=0\)
Both roots of equation are – ve and distinct
If \(\alpha, \beta\) are the roots of the equation
\(
x^2-\left(5+3^{\sqrt{\log _3 5}}-5^{\sqrt{\log _5 3}}\right) x+3\left(3^{\left(\log _3 5\right)^{\frac{1}{3}}}-5^{\left(\log _5 3\right)^{\frac{2}{3}}}-1\right)=0
\)
then the equation, whose roots are \(\alpha+\frac{1}{\beta}\) and \(\beta+\frac{1}{\alpha}\), is : [JEE Main 2022]
\(
\begin{aligned}
& 3^{\sqrt{\log _3 5}}-5^{\sqrt{\log _5 3}}=3^{\sqrt{\log _3 5}}-\left(3^{\log _3 5}\right)^{\sqrt{\log _5 3}} \\
& 3^{\left(\log _3 5\right)^{\frac{1}{3}}}-5^{\left(\log _5 3\right)^{\frac{2}{3}}}=5^{\left(\log _5 3\right)^{\frac{2}{3}}}-5^{\left(\log _5 3\right)^{\frac{2}{3}}}=0
\end{aligned}
\)
Note: In the given equation ‘ \(x\) ‘ is missing.
So \(x^2-5 x+3(-1)=0 <_\beta^\alpha\)
\(
\begin{aligned}
& \alpha+\beta+\frac{1}{\alpha}+\frac{1}{\beta}=(\alpha+\beta)+\frac{\alpha+\beta}{\alpha \beta} \\
& =5-\frac{5}{3}=\frac{10}{3} \\
& \left(\alpha+\frac{1}{\beta}\right)\left(\beta+\frac{1}{\alpha}\right)=2+\alpha \beta+\frac{1}{\alpha \beta}=2-3-\frac{1}{3}=\frac{-4}{3}
\end{aligned}
\)
The minimum value of the sum of the squares of the roots of \(x^2+(3-a) x+1=2 a\) is: [JEE Main 2022]
\(
x^2+(3-a) x+1=2 a <_\beta^\alpha
\)
\(
\begin{aligned}
& \alpha+\beta=a-3, \alpha \beta=1-2 a \\
& \Rightarrow \alpha^2+\beta^2=(a-3)^2-2(1-2 a) \\
& =a^2-6 a+9-2+4 a \\
& =a^2-2 a+7 \\
& =(a-1)^2+6
\end{aligned}
\)
So, \(\alpha^2+\beta^2 \geq 6\)
If \(\alpha, \beta, \gamma, \delta\) are the roots of the equation \(x^4+x^3+x^2+x+1=0\), then \(\alpha^{2021}+\beta^{2021}+\gamma^{2021}+\delta^{2021}\) is equal to : [JEE Main 2022]
When, \(x^5=1\)
then \(x^5-1=0\)
\(
\Rightarrow(x-1)\left(x^4+x^3+x^2+x+1\right)=0
\)
Given, \(x^4+x^3+x^2+x+1=0\) has roots \(\alpha, \beta, \gamma\) and 8 .
\(\therefore\) Roots of \(x^5-1=0\) are \(1, \alpha, \beta, \gamma\) and 8 .
We know, Sum of \(p^{\text {th }}\) power of \(n^{\text {th }}\) roots of unity \(=0\). (If \(p\) is not multiple of \(n\) ) or \(n\) (If \(p\) is multiple of \(n\) )
\(\therefore\) Here, Sum of \(p ^{\text {th }}\) power of \(n ^{\text {th }}\) roots of unity
Here, \(p=2021\), which is not multiple of 5 .
\(
\begin{aligned}
& \therefore 1^{2021}+\alpha^{2021}+\beta^{2021}+\gamma^{2021}+8^{2021}=0 \\
& \Rightarrow \alpha^{2021}+\beta^{2021}+\gamma^{2021}+8^{2021}=-1
\end{aligned}
\)
Let \(S_1=\left\{x \in R-\{1,2\}: \frac{(x+2)\left(x^2+3 x+5\right)}{-2+3 x-x^2} \geq 0\right\}\) and \(S_2=\left\{x \in R: 3^{2 x}-3^{x+1}-3^{x+2}+27 \leq 0\right\}\). Then, \(S_1 \cup S_2\) is equal to : [JEE Main 2022]
Given,
\(
\frac{(x+2)\left(x^2+3 x+5\right)}{-2+3 x-x^2} \geq 0
\)
\(x^2+3 x+5\) is a quadratic equation
\(
\begin{aligned}
& a=1>0 \text { and } D=(-3)^2-4 \cdot 1 \cdot 5=-11<0 \\
& \therefore x^2+3 x+5>0 \text { (always) }
\end{aligned}
\)
So, we can ignore this quadratic term
\(
\begin{aligned}
& \frac{(x+2)}{-2+3 x-x^2} \geq 0 \\
\Rightarrow & \frac{x+2}{-\left(x^2-3 x+2\right)} \geq 0 \\
\Rightarrow & \frac{x+2}{x^2-3 x+2} \leq 0 \\
\Rightarrow & \frac{x+2}{x^2-2 x-x+2} \leq 0 \\
\Rightarrow & \frac{x+2}{(x-1)(x-2)} \leq 0
\end{aligned}
\)
\(
\begin{aligned}
& \therefore x \in(-\alpha,-2] \cup(1,2) \\
& \therefore S_1=(-\alpha,-2] \cup(1,2)
\end{aligned}
\)
Now,
\(
\begin{aligned}
& 3^{2 x}-3^{x+1}-3^{x+2}+27 \leq 0 \\
& \Rightarrow\left(3^x\right)^2-3 \cdot 3^x-3^2 \cdot 3^x+27 \leq 0
\end{aligned}
\)
Let \(3^x=t\)
\(
\begin{aligned}
& \Rightarrow t^2-3 \cdot t-3^2 \cdot t+27 \leq 0 \\
& \Rightarrow t(t-3)-9(t-3) \leq 0 \\
& \Rightarrow(t-3)(t-9) \leq 0
\end{aligned}
\)
\(
\begin{aligned}
& \therefore 3 \leq t \leq 9 \\
& \Rightarrow 3^1 \leq 3^x \leq 3^2 \\
& \Rightarrow 1 \leq x \leq 2 \\
& \therefore x \in[1,2] \\
& \therefore S_2=[1,2] \\
& \therefore S_1 \cup S_2=(-\alpha, 2] \cup(1,2) \cup[1,2] \\
& =(-\alpha, 2] \cup[1,2]
\end{aligned}
\)
Let \(S\) be the set of all integral values of \(\alpha\) for which the sum of squares of two real roots of the quadratic equation \(3 x^2+(\alpha-6) x+(\alpha+3)=0\) is minimum. Then \(S\) : [JEE Main 2022]
Given quadratic equation,
\(
3 x^2+(\alpha-6) x+(\alpha+3)=0
\)
Let, \(a\) and \(b\) are the roots of the equation,
\(
\therefore a+b=-\frac{\alpha-6}{3}
\)
and \(a b=\frac{\alpha+3}{3}\)
For real roots,
\(
\begin{aligned}
& D \geq 0 \\
& \Rightarrow(\alpha-6)^2-4 \cdot 3 \cdot(\alpha+9) \geq 0 \\
& \Rightarrow \alpha^2-12 \alpha+36-12 \alpha-36 \geq 0 \\
& \Rightarrow \alpha^2-24 \alpha \geq 0 \\
& \Rightarrow \alpha(\alpha-24) \geq 0
\end{aligned}
\)
\(
\therefore \alpha>24 \text { or } \alpha<0
\)
\(\therefore\) Real roots of the equation possible for \(\alpha>24\) or \(\alpha<0\).
Now, sum of square of roots
\(
\begin{aligned}
& =a^2+b^2 \\
& =(a+b)^2-2 a b \\
& =\frac{(\alpha-6)^2}{9}-2 \cdot \frac{(\alpha+3)}{3} \\
& =\frac{\alpha^2-12 \alpha+36-6 \alpha-18}{9} \\
& =\frac{\alpha^2-18 \alpha+18}{9}=f(x)
\end{aligned}
\)
\(\therefore\) Sum of square of roots are minimum when \(a^2+b^2=\) minimum.
\(
\therefore f(\alpha)_{\min }=\frac{\alpha^2-18 \alpha+18}{9}
\)
Value of quadratic equation \(\alpha^2-18 \alpha+18\) is minimum at \(\alpha=-\frac{b}{2 a}=-\frac{(-18)}{2.1}=9\)
But for real roots \(\alpha\) should be less than 0 or greater than 24 .
So, there is no value of \(\alpha\) in the range \(\alpha>24 \cup \alpha<0\) where sum of squares of two real roots is minimum.
\(\therefore S\) is an empty set.
The number of distinct real roots of \(x^4-4 x+1=0\) is : {JEE Main 2022]
\(
\begin{aligned}
& f(x)=x^4-4 x+1=0 \\
& f^{\prime}(x)=4 x^3-4 \\
& =4(x-1)\left(x^2+1+x\right)
\end{aligned}
\)
\(
f^{\prime}(x)=0 \Rightarrow x=1
\)
\(x=1\) is point of minima.
\(
\begin{aligned}
& f(1)=-2 \\
& f(0)=1
\end{aligned}
\)
Let \(A=\{x \in R:|x+1|<2\}\) and \(B=\{x \in R:|x-1| \geq 2\}\). Then which one of the following statements is NOT true? [JEE Main 2022]
\(
A=(-3,1) \text { and } B=(-\infty,-1] \cup[3, \infty)
\)
So, \(A-B=(-1,1)\)
\(
B-A=(-\infty,-3] \cup[3, \infty)=R-(-3,3)
\)
\(A \cap B=(-3,-1]\)
and \(A \cup B=(-\infty, 1) \cup[3, \infty)=R-[1,3)\)
The number of distinct real roots of the equation \(x^7-7 x-2=0\) is [JEE Main 2022]
Given equation \(x^7-7 x-2=0\)
Let \(f(x)=x^7-7 x-2\)
\(
f^{\prime}(x)=7 x^6-7=7\left(x^6-1\right)
\)
and \(f^{\prime}(x)=0 \Rightarrow x=+1\)
and \(f(-1)=-1+7-2=5>0\)
\(
f(1)=1-7-2=-8<0
\)
So, roughly sketch of \(f(x)\) will be
So, number of real roots of \(f(x)=0\) and 3
\(
f(x)=2 \text { has } 3 \text { real distinct solution. }
\)
The sum of the roots of the equation \(x+1-2 \log _2\left(3+2^x\right)+2 \log _4\left(10-2^{-x}\right)=0\), is : [JEE Main 2021]
\(
\begin{aligned}
& x+1-2 \log _2\left(3+2^x\right)+2 \log _4\left(10-2^{-x}\right)=0 \\
& \log _2\left(2^{x+1}\right)-\log _2\left(3+2^x\right)^2+\log _2\left(10-2^{-x}\right)=0 \\
& \log _2\left(\frac{2^{x+1} \cdot\left(10-2^{-x}\right)}{\left(3+2^x\right)^2}\right)=0 \\
& \frac{2\left(10.2^{-x}-1\right)}{\left(3+2^x\right)^2}=1 \\
& \Rightarrow 20.2^x-2=9+2^{2 x}+6.2^x \\
& \therefore\left(2^x\right)^2-14\left(2^x\right)+11=0
\end{aligned}
\)
Roots are \(2^{x_1} \& 2^{x_2}\)
\(
\begin{aligned}
& \therefore 2^{x_1} \cdot 2^{x_2}=11 \\
& x_1+x_2=\log _2(11)
\end{aligned}
\)
Let \(\alpha=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}\) and \(\beta=\min _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}\). If \(8 x^2+b x+c=0\) is a quadratic equation whose roots are \(\alpha^{1 / 5}\) and \(\beta^{1 / 5}\), then the value of \(c – b\) is equal to [JEE Main 2021]
\(
\begin{aligned}
& \alpha=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\} \\
& =\max \left\{2^{6 \sin 3 x} \cdot 2^{8 \cos 3 x}\right\} \\
& =\max \left\{2^{6 \sin 3 x+8 \cos 3 x}\right\}
\end{aligned}
\)
and \(\beta=\min \left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}=\min \left\{2^{6 \sin 3 x+8 \cos 3 x}\right\}\)
Now range of \(6 \sin 3 x+8 \cos 3 x\)
\(
\begin{aligned}
& =\left[-\sqrt{6^2+8^2},+\sqrt{6^2+8^2}\right]=[-10,10] \\
& \alpha=2^{10} \& \beta=2^{-10}
\end{aligned}
\)
So, \(\alpha^{1 / 5}=2^2=4\)
\(
\Rightarrow \beta^{1 / 5}=2^{-2}=1 / 4
\)
quadratic \(8 x^2+b x+c=0\)
\(
\begin{aligned}
& -\frac{b}{8}=\frac{17}{4} \Rightarrow b=-34 \\
& \frac{c}{8}=1 \Rightarrow c=8 \\
& \therefore c-b=8+34=42
\end{aligned}
\)
Let \(\alpha, \beta\) be two roots of the equation \(x^2+(20)^{1 / 4} x +(5)^{1 / 2}=0\). Then \(\alpha^8+\beta^8\) is equal to [JEE Main 2021]
\(
\begin{aligned}
& x^2+(20)^{1 / 4} x+(5)^{1 / 2}=0 \\
& \Rightarrow x^2+\sqrt{5}=-(20)^{1 / 4} x
\end{aligned}
\)
Squaring both sides, we get
\(
\begin{aligned}
& \left(x^2+\sqrt{5}\right)^2=\sqrt{20} x^2 \\
& \Rightarrow x^4=-5 \Rightarrow x^8=25 \\
& \Rightarrow \alpha^8+\beta^8=50
\end{aligned}
\)
If \([x]\) be the greatest integer less than or equal to \(x\), then \(\sum_{n=8}^{100}\left[\frac{(-1)^n n}{2}\right]\) is equal to: [JEE Main 2021]
\(
\begin{aligned}
& \sum_{n=8}^{100}\left[\frac{(-1)^n n}{2}\right] \\
& =[4]+[-4.5]+[5]+[-5.5]+[6]+\ldots . .+[-49.5]+[50] \\
& =4-5+5-6+6 \ldots . .-50+50 \\
& =4
\end{aligned}
\)
The number of real solutions of the equation, \(x^2-|x|-12=0\) is : [JEE Main 2021]
\(
\begin{aligned}
& |x|^2-|x|-12=0 \\
& \Rightarrow(|x|+3)(|x|-4)=0 \\
& \Rightarrow|x|=4 \\
& \Rightarrow x= \pm 4
\end{aligned}
\)
The number of real roots of the equation \(e^{6 x}-e^{4 x}-2 e^{3 x}-12 e^{2 x}+e^x+1=0\) is : [JEE Main 2021]
\(
\begin{aligned}
& \text { Let } e^{6 x}-e^{4 x}-2 e^{3 x}-12 e^{2 x}+e^x+1=0 \\
& \Rightarrow e^{6 x}-2 e^{3 x}+1-e^x\left[e^{3 x}+12 e^x-1\right]=0 \\
& \Rightarrow\left(e^{3 x}-1\right)^2-e^x\left(e^{3 x}-1\right)-12 e^{2 x}=0 \\
& \Rightarrow\left(e^{3 x}-1\right)^2-4 e^x\left(e^{3 x}-1\right)+3 e^x\left(e^{3 x}-1\right)-12 e^{2 x}=0 \\
& \Rightarrow\left(e^{3 x}-1\right)\left[e^{3 x}-1-4 e^x\right]+3 e^x\left[e^{3 x}-1-4 e^x\right]=0 \\
& \Rightarrow\left(e^{3 x}-1+3 e^x\right)\left(e^{3 x}-1-4 e^x\right)=0 \\
& \text { Either } e^{3 x}=1+4 e^x
\end{aligned}
\)
From the above graphs, only two roots are possible.
Let \([x]\) denote the greatest integer less than or equal to \(x\). Then, the values of \(x \in R[latex] satisfying the equation [latex]\left[e^x\right]^2+\left[e^x+1\right]-3=0\) lie in the interval : [JEE Main 2021]
\(
\begin{aligned}
& {\left[e^x\right]^2+\left[e^x+1\right]-3=0} \\
& \Rightarrow\left[e^x\right]^2+\left[e^x\right]+1-3=0 \\
& \text { Let }\left[e^x\right]=t \\
& \Rightarrow t^2+t-2=0 \\
& \Rightarrow t=-2,1 \\
& {\left[e^x\right]=-2 \text { (Not possible) }} \\
& \text { or }\left[e^x\right]=1 \therefore 1 \leq e^x<2 \\
& \Rightarrow \ln (1) \leq x<\ln (2) \\
& \Rightarrow 0 \leq x<\ln (2) \\
& \Rightarrow x \in[0, \ln 2)
\end{aligned}
\)
If \(\alpha\) and \(\beta\) are the distinct roots of the equation \(x^2+(3)^{1 / 4} x+3^{1 / 2}=0\), then the value of \(\alpha^{96}\left(\alpha^{12}-1\right)+\beta^{96}\left(\beta^{12}-1\right)\) is equal to : [JEE Main 2021]
\(
\begin{aligned}
& \text { As, }\left(\alpha^2+\sqrt{3}\right)=-(3)^{1 / 4} . \alpha \\
& \Rightarrow\left(\alpha^4+2 \sqrt{3} \alpha^2+3\right)=\sqrt{3} \alpha^2 \text { (On squaring) } \\
& \therefore\left(\alpha^4+3\right)=(-) \sqrt{3} \alpha^2 \\
& \Rightarrow \alpha^8+6 \alpha^4+9=3 \alpha^4 \text { (Again squaring) } \\
& \therefore \alpha^8+3 \alpha^4+9=0 \\
& \Rightarrow \alpha^8=-9-3 \alpha^4
\end{aligned}
\)
(Multiply by \(\alpha^4\) )
So, \(\alpha^{12}=-9 \alpha^4-3 \alpha^8\)
\(
\begin{aligned}
& \therefore \alpha^{12}=-9 \alpha^4-3\left(-9-3 \alpha^4\right) \\
& \Rightarrow \alpha^{12}=-9 \alpha^4+27+9 \alpha^4
\end{aligned}
\)
Hence, \(\alpha^{12}=(27)^2\)
\(
\begin{aligned}
& \Rightarrow\left(\alpha^{12}\right)^8=(27)^8 \\
& \Rightarrow \alpha^{96}=(3)^{24}
\end{aligned}
\)
\(
\therefore \alpha^{96}\left(\alpha^{12}-1\right)+\beta^{96}\left(\beta^{12}-1\right)=(3)^{24} \times 52
\)
Let \(\alpha, \beta ; \alpha>\beta\), be the roots of the equation \(x^2-\sqrt{2} x-\sqrt{3}=0\). Let \(P _n=\alpha^n-\beta^n, n \in N\). Then \((11 \sqrt{3}-10 \sqrt{2}) P _{10}+(11 \sqrt{2}+10) P _{11}-11 P _{12}\) is equal to [JEE Main 2024]
\(
\begin{aligned}
& x^2-\sqrt{2} x-\sqrt{3}=0 \\
& P_n=\alpha^n-\beta^n
\end{aligned}
\)
\(\alpha\) and \(\beta\) are the roots of the equation
Using Newton’s theorem
\(
\begin{aligned}
& P_{n+2}-\sqrt{2} P_{n+1}-\sqrt{3} P_n=0 \\
& \text { Put } n=10 \\
& P_{12}-\sqrt{2} P_{11}-\sqrt{3} P_{10}=0 \\
& P_{12}=\sqrt{2} P_{11}+\sqrt{3} P_{10}
\end{aligned}
\)
Put \(n=9\)
\(
\begin{aligned}
& P_{11}-\sqrt{2} P_{10}-\sqrt{3} P_9=0 \\
& P_{11}=\sqrt{2} P_{10}+\sqrt{3} P_9 \\
& (11 \sqrt{3}-10 \sqrt{2}) P_{10}+(11 \sqrt{2}+10) P_{11}-11 P_{12}
\end{aligned}
\)
Put the value of \(P_{12} \& P_{12}\) in above equation.
\(
\begin{aligned}
& =(11 \sqrt{3}-10 \sqrt{2}) P_{10}+(11 \sqrt{2}+10)\left(\sqrt{2} P_{10}+\sqrt{3} P_9\right)-11\left(\sqrt{2} P_{11}+\sqrt{3} P_{10}\right. \\
& =11 \sqrt{3} P_{10}-10 \sqrt{2} P_{10}+22 P_{10}+10 \sqrt{2} P_{10}+11 \sqrt{6} P_9+10 \sqrt{3} P_9-11 \sqrt{2} P_{11} \\
& =22 P_{10}+11 \sqrt{6} P_9+10 \sqrt{3} P_9-11 \sqrt{2}\left(\sqrt{2} P_{10}+\sqrt{3} P_9\right) \\
& =22 P_{10}+11 \sqrt{6} P_9+10 \sqrt{3} P_9-22 P_{10}-11 \sqrt{6} P_9 \\
& =10 \sqrt{3} P_9
\end{aligned}
\)
Let \(\alpha, \beta\) be the roots of the equation \(x^2+2 \sqrt{2} x-1=0\). The quadratic equation, whose roots are \(\alpha^4+\beta^4\) and \(\frac{1}{10}\left(\alpha^6+\beta^6\right)\), is: [JEE Main 2024]
\(
\begin{aligned}
& x^2+2 \sqrt{2 x}-1=0 \\
& \alpha+\beta=-2 \sqrt{2} \text { and } \alpha \beta=-1 \\
& \alpha^2+\beta^2=(\alpha+\beta)^2-2 \alpha \beta \\
& =8+2=10 \\
& \alpha^4+\beta^4=\left(\alpha^2+\beta^2\right)^2-2(\alpha \beta)^2 \\
& =100-2=98 \\
& \alpha^6+\beta^6=\left(\alpha^2+\beta^2\right)^3-3 \alpha^2 \beta^2\left(\alpha^2+\beta^2\right) \\
& =1000-3(10) \\
& =970 \\
& \therefore \quad \frac{1}{10}\left(\alpha^6+\beta^6\right)=97
\end{aligned}
\)
Equation whose roots are \(\alpha^4+\beta^4\) and \(\frac{1}{10}\left(\alpha^6+\beta^6\right)\) is
\(
\begin{aligned}
& x^2-(98+97) x+98 \times 97=0 \\
& x^2-195 x+9506=0
\end{aligned}
\)
The sum of all the solutions of the equation \((8)^{2 x}-16 \cdot(8)^x+48=0\) is : [JEE Main 2024]
First, let’s start by substituting \(y=(8)^x\) in the given equation. By substituting, the equation \(8^{2 x}-16 \cdot 8^x+48=0\) will be transformed into
\(
y^2-16 y+48=0
\)
Now, we have a quadratic equation in \(y\). To find the roots of this quadratic equation, we can use the quadratic formula:
\(
y=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}
\)
In this case, \(a=1, b=-16\), and \(c=48\). Substituting these values into the formula, we get:
\(
\begin{aligned}
& y=\frac{16 \pm \sqrt{256-192}}{2} \\
& y=\frac{16 \pm \sqrt{64}}{2} \\
& y=\frac{16 \pm 8}{2}
\end{aligned}
\)
Solving for the two possible values of \(y\), we have:
\(
\begin{aligned}
& y=\frac{16+8}{2}=12 \\
& y=\frac{16-8}{2}=4
\end{aligned}
\)
Now, recall that we substituted \(y=(8)^x\). So, we need to solve for \(x\) when \(y=12\) and \(y=4\).
\(
8^x=12
\)
\(
\begin{aligned}
& x=\log _8(12) \\
& 8^x=4 \\
& x=\log _8(4)
\end{aligned}
\)
Therefore, the solutions for \(x\) are \(\log _8(12)\) and \(\log _8(4)\). The sum of these solutions is:
\(
\log _8(12)+\log _8(4)
\)
Using the logarithmic property that \(\log _b(m)+\log _b(n)=\log _b(m \cdot n)\), we get:
\(
\begin{aligned}
& \log _8(12)+\log _8(4)=\log _8(12 \cdot 4) \\
& =\log _8(48)
\end{aligned}
\)
Now, we note that:
\(
48=8 \cdot 6
\)
Thus,
\(
\log _8(48)=\log _8(8 \cdot 6)=\log _8(8)+\log _8(6)=1+\log _8(6)
\)
Therefore, the sum of all the solutions of the equation is: \(1+\log _8(6)\)
Let \(\alpha, \beta\) be the distinct roots of the equation \(x^2-\left(t^2-5 t+6\right) x+1=0, t \in R\) and \(a_n=\alpha^n+\beta^n\). Then the minimum value of \(\frac{a_{2023}+a_{2025}}{a_{2024}}\) is [JEE Main 2024]
\(
\begin{aligned}
& x^2-\left(t^2-5 t+6\right) x+1=0 \\
& \therefore a_{2025}-\left(t^2-5 t+6\right) a_{2024}+a_{2023}=0 \\
& \Rightarrow \frac{a_{2025}+a_{2023}}{a_{2024}}=t^2-5 t+6 \\
& =\left(t+\frac{5}{2}\right)^2+\left(\frac{-1}{4}\right) \\
& \text { Minimum value }=\frac{-1}{4}
\end{aligned}
\)
The coefficients \(a , b , c\) in the quadratic equation \(a x^2+ bx + c =0\) are from the set \(\{1,2,3,4,5,6\}\). If the probability of this equation having one real root bigger than the other is \(p\), then 216 p equals : [JEE Main 2024]
Equation is \(a x^2+b x+c=0\)
\(D >0\) [for roots to be real & distinct]
\(
\Rightarrow b^2-4 a c>0
\)
For \(b<2\) no value of \(a \& c\) are possible
For \(b=3 \Rightarrow a c<\frac{9}{4}\)
\(
(a, c) \in\{(1,1),(1,2),(2,1)\} \Rightarrow 3 \text { cases }
\)
For \(b=4 \Rightarrow a c<4\)
\(
(a, c) \in\{(1,1),(1,2),(2,1),(3,1),(1,3)\} \Rightarrow 5 \text { cases }
\)
For \(b=5 \Rightarrow a c<\frac{25}{4}\)
\(
\begin{aligned}
& (a, c) \in\{(1,1),(1,2),(2,1),(3,1),(1,3),(2,2), \\
& (4,1),(1,4),(3,2),(2,3),(5,1),(1,5),(1,6), \\
& (6,1)\}=14 \text { cases }
\end{aligned}
\)
For \(b=6 \Rightarrow a c<9\)
\(
\begin{aligned}
& (a, c) \in\{(1,1),(1,2),(2,1),(3,1),(1,3),(2,2) \\
& (4,1),(1,4),(3,2),(2,3),(5,1),(1,5),(1,6), \\
& (6,1),(2,4),(4,2)\}=16 \text { cases }
\end{aligned}
\)
Total cases \(=3+5+14+16=38\) cases
\(\Rightarrow\) Probability, \(p=\frac{38}{216}\)
\(
\Rightarrow 216 p=38
\)
If 2 and 6 are the roots of the equation \(a x^2+b x+1=0\), then the quadratic equatio whose roots are \(\frac{1}{2 a+b}\) and \(\frac{1}{6 a+b}\), is : [JEE Main 2024]
\(
\begin{aligned}
& (x-2)(x-6)=0 \\
& \Rightarrow x^2-8 x+12=0 \\
& \Rightarrow \frac{x^2}{12}-\frac{8 x}{12}+1=0 \\
& \therefore a=\frac{1}{12}, b=\frac{-2}{3} \\
& \frac{1}{2 a+b}=\frac{1}{\frac{1}{6}-\frac{2}{3}} \Rightarrow \frac{6}{-3}=-2 \\
& \frac{1}{6 a+b}=\frac{1}{\frac{1}{2}-\frac{2}{3}} \Rightarrow \frac{6}{-1}=-6 \\
& \therefore(x+2)(x+6)=0 \\
& \Rightarrow x^2+8 x+12=0
\end{aligned}
\)
If \(\alpha, \beta\) are the roots of the equation, \(x^2-x-1=0\) and \(S_n=2023 \alpha^n+2024 \beta^n\), then: [JEE Main 2024]
\(
\begin{aligned}
& x^2-x-1=0 \\
& S_n=2023 \alpha^n+2024 \beta^n \\
& S_{n-1}+S_{n-2}=2023 \alpha^{n-1}+2024 \beta^{n-1}+2023 \alpha^{n-2}+2024 \beta^{n-2} \\
& =2023 \alpha^{n-2}[1+\alpha]+2024 \beta^{n-2}[1+\beta] \\
& =2023 \alpha^{n-2}\left[\alpha^2\right]+2024 \beta^{n-2}\left[\beta^2\right] \\
& =2023 \alpha^n+2024 \beta^n \\
& S_{n-1}+S_{n-2}=S_n \\
& P_{u t} n=12 \\
& S_{11}+S_{10}=S_{12}
\end{aligned}
\)
The number of distinct real roots of the equation \(|x+1||x+3|-4|x+2|+5=0\), is [JEE Main 2024]
\(
|x+1||x+3|-4|x+2|+5=0
\)
(I) If \(x<-3\)
\(
\begin{aligned}
& x^2+4 x+3+4 x+8+5=0 \\
& x^2+8 x+16=0 \Rightarrow x=-4 \Rightarrow \text { one solution }
\end{aligned}
\)
\(
\begin{aligned}
& \text { (II) If }-3 \leq x<-2 \\
& -x^2-4 x-3+4 x+8+5=0 \\
& x^2-10=0 \Rightarrow x= \pm \sqrt{10} \Rightarrow \text { do not satisfy }-3 \leq \\
& x<-2
\end{aligned}
\)
\(
\begin{aligned}
& \text { (III) If }-2 \leq x<-1 \\
& -x^2-4 x-3-4 x-8+5=0 \\
& x^2-8 x+6=0 \\
& (x+4)^2=10 \Rightarrow x=-4 \pm \sqrt{10} \Rightarrow \text { do not satisfy } \\
& -2 \leq x<-1
\end{aligned}
\)
(IV) If \(x \geq-1\)
\(
\begin{aligned}
& x^2+4 x+3-4 x-8+5=0 \\
& x^2=0 \\
& x=0 \text { (One solution) }
\end{aligned}
\)
\(x=0\) (One solution)
\(\Rightarrow\) The number of distinct real roots are two
Let \(x_1, x_2, x_3, x_4\) be the solution of the equation \(4 x^4+8 x^3-17 x^2-12 x+9=0\) and \(\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m\). Then the value of \(m\) is [JEE Main 2024]
\(
\begin{aligned}
& 4 x^4+8 x^3-17 x^2-12 x+9=0 \\
& (x+1)\left(4 x^3+4 x^2-21 x+9\right)=0 \\
& (x+1)(x+3)\left(4 x^2-8 x+3\right)=0 \\
& (x+1)(x+3)\left(4 x^2-6 x-2 x+3\right)=0 \\
& (x+1)(x+3)(2 x(2 x-3)-1(2 x-3))=0
\end{aligned}
\)
\(
\frac{(x+1)}{x=-1}
\)
\(
\begin{gathered}
\underset{\downarrow}{(x+1)} \\
x=-3
\end{gathered}
\)
\(
\frac{(2 x-1)}{x=\frac{1}{2}}
\)
\(
\begin{aligned}
& (2 x-3) \\
& x=\frac{3}{2}=0
\end{aligned}
\)
\(
\begin{aligned}
& (4+1)(4+9)\left(4+\frac{1}{4}\right)\left(4+\frac{9}{4}\right)=\frac{125}{16} m \\
& 5 \times 13 \times\left(\frac{17}{4}\right) \times\left(\frac{25}{4}\right)=\frac{125}{16} m \\
& \frac{125}{16} \times[13 \times 17]=\frac{125}{16} m \\
& m=13 \times 17 \\
& m=221
\end{aligned}
\)
The number of real solutions of the equation \(x|x+5|+2|x+7|-2=0\) is [JEE Main 2024]
\(
x|x+5|+2|x+7|-2=0
\)
\(
\begin{aligned}
& \text { (i) } d x \geq-5 \Rightarrow x(x+5)+2(x+7)-2=0 \\
& x^2+7 x+12=0 \Rightarrow x=-3,-4
\end{aligned}
\)
(ii)
\(
\begin{aligned}
& x \in(-7,-5) \\
& x(-x-5)+2(x+7)-2=0 \\
& -x^2-3 x+12=0 \\
& \Rightarrow x^2+3 x-12=0 \\
& \Rightarrow x=\frac{-3-\sqrt{57}}{2} \text { satisfy }
\end{aligned}
\)
(iii)
\(
\begin{aligned}
& x \leq-7 \\
& \Rightarrow x(-x-5)+2(-x-7)-2=0 \\
& -x^2-7 x-16=0 \Rightarrow x^2+7 x+16=0
\end{aligned}
\)
No solution
The number of distinct real roots of the equation \(|x||x+2|-5|x+1|-1=0\) is [JEE Main 2024]
\(
|x| \quad|x+2|-5|x+1|-1=0
\)
\(
\begin{aligned}
& \text { (I) if } x<-2 \\
& x^2+2 x+5 x+5-1=0 \\
& x^2+7 x+4=0 \Rightarrow \text { one root satisfying } x<-2
\end{aligned}
\)
(I) if \(x<-2\)
\(
\begin{aligned}
& \text { (II) if }-2 \leq x<-1 \\
& -x^2-2 x+5 x+5-1=0 \\
& x^2-3 x-4=0 \Rightarrow \text { not root satisfying }-2 \leq x<-1
\end{aligned}
\)
\(
\begin{aligned}
& \text { (III) if }-1 \leq x<0 \\
& -x^2-2 x-5 x-5-1=0 \\
& x^2+7 x+6=0 \\
& x=-1 \text { is only root satisfying }-1 \leq x<0
\end{aligned}
\)
(IV) if \(x \geq 0\)
\(
\begin{aligned}
& x^2+2 x-5 x-5-1=0 \\
& x^2-3 x-6=0
\end{aligned}
\)
one root satisfying \(x \geq 0\)
\(\Rightarrow\) The number of distinct real roots are three.
The number of real solutions of the equation \(x\left(x^2+3|x|+5|x-1|+6|x-2|\right)=0\) is [JEE Main 2024]
The given equation is \(x\left(x^2+3|x|+5|x-1|+6|x-2|\right)=0\), which can be solved by analyzing it in parts. It can be broken down into: \(x=0\) and
\(
x^2+3|x|+5|x-1|+6|x-2|=0 \text {. }
\)
For \(x=0\), it’s clear that it is a solution to the equation since it makes the entire expression equal to zero.
Case (I)
\(
\begin{aligned}
& x<0 \\
& x^2-3 x-5(x-1)-6(x-2)=0 \\
& x^2-14 x+17=0
\end{aligned}
\)
\(\because\) All roots are positive \(\Rightarrow\) no solution
Case (II)
\(
\begin{aligned}
& 0<x<1 \\
& x^2+3 x-5(x-1)-6(x-2)=0 \\
& x^2-8 x+17=0 \\
& \because D<0 \Rightarrow \text { no solution }
\end{aligned}
\)
\(
\begin{aligned}
& \text { Case (III) } \\
& 1<x<2 \\
& x^2+3 x+5(x-1)-6(x-2)=0 \\
& x^2+2 x+7=0 \\
& \Rightarrow \text { no solution } \\
& \text { Case (IV) } \\
& x>2 \\
& x^2+3 x+5(x-1)+6(x-2)=0 \\
& x^2+14 x-19=0 \\
& \text { All roots less than } 2 \\
& \Rightarrow \text { no solution }
\end{aligned}
\)
Here \(x=0\) is only solution.
If \(a, b, c\) are distinct + ve real numbers and \(a^2+b^2+c^2=1\) then \(a b+b c+c a\) is [JEE Main 2002]
\(
\begin{aligned}
& \because(a-b)^2+(b-c)^2+(c-a)^2>0 \\
& \Rightarrow 2\left(a^2+b^2+c^2-a b-b c-c a\right)>0 \\
& \Rightarrow 2>2(a b+b c+c a) \Rightarrow a b+b c+c a<1
\end{aligned}
\)
You cannot copy content of this page