Summary
Solution of a quadratic equation
The equations \(a x^2+b x+c=0\), where \(a, b\) and \(c\) are numbers (real or complex, \(a \neq 0\) ) is called the general quadratic equation in variable \(x\). The values of the variable satisfying the given equation are called roots of the equation.
The quadratic equation \(a x^2+b x+c=0\) with real coefficients has two roots given by \(\frac{-b+\sqrt{ D }}{2 a}\) and \(\frac{-b-\sqrt{ D }}{2 a}\), where \(D =b^2-4 a c\), called the discriminant of the equation.
     \((\alpha+\beta)=\frac{-b}{a}\) and the product of the roots \((\alpha, \beta)=\frac{c}{a}\).
0 of 42 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 42 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
For any two complex numbers \(z_1, z_2\) and any real numbers \(a, b\), \(\left|a z_1-b z_2\right|^2+\left|b z_1+a z_2\right|^2=\ldots \ldots\)
(a)
\(
\begin{aligned}
\mid a z_1 &-\left.b z_2\right|^2+\left|b z_1+a z_2\right|^2 \\
&=\left|a z_1\right|^2+\left|b z_2\right|^2-2 \operatorname{Re}\left(a z_1 \times b \bar{z}_2\right)+\left|b z_1\right|^2+\left|a z_2\right|^2+2 \operatorname{Re}\left(b z_1 \times a \bar{z}_2\right) \\
\quad &=\left(a^2+b^2\right)\left|z_1\right|^2+\left(a^2+b^2\right)\left|z_2\right|^2=\left(a^2+b^2\right)\left(\left|z_1\right|^2+\left|z_2\right|^2\right)
\end{aligned}
\)
\(
\text { The value of } \sqrt{-25} \times \sqrt{-9} \text { is }
\)
(b)
\(
\sqrt{-25} \times \sqrt{-9}=i \sqrt{25} \times i \sqrt{9}=i^2(5 \times 3)=-15
\)
\(
\text { The number } \frac{(1-i)^3}{1-i^3} \text { is equal to }
\)
(d)
\(
\frac{(1-i)^3}{1-i^3}=\frac{(1-i)^3}{(1-i)\left(1+i+i^2\right)}=\frac{(1-i)^2}{i}=\frac{1+i^2-2 i}{i}=\frac{-2 i}{i}=-2
\)
\(
\text { The sum of the series } i+i^2+i^3+\ldots \text { up to } 1000 \text { terms is }
\)
(c)
\(i+i^2+i^3+\ldots\) upto 1000 terms
\(=\left(i+i^2+i^3+i^4\right)+\left(i^5+i^6+i^7+i^8\right)+\ldots 250\) brackets
\(=0+0+0 \ldots+0 \quad\left[\because i^n+i^{n+1}+i^{n+2}+i^{n+3}=0\right.\), where \(\left.n \in N\right]\)
\(
\text { Multiplicative inverse of } 1+i \text { is }
\)
(a)
\(
\text { Multiplicative inverse of } 1+i=\frac{1}{1+i}=\frac{1-i}{1-i^2}=\frac{1}{2}(1-i)
\)
If \(z_1\) and \(z_2\) are complex numbers such that \(z_1+z_2\) is a real number, then \(z_2=\ldots\)
(a)
Let \(z_1=x_1+i y_1\) and \(z_2=x_2+i y_2\) \(z_1+z_2=\left(x_1+x_2\right)+i\left(y_1+y_2\right)\), which is real \(\Rightarrow y_1+y_2=0 \Rightarrow y_1=-y_2\)
\(\because z_2=x_1-i y_1 \quad\) [Assuming \(x_1=x_2\) ] \(\Rightarrow \quad z_2=\bar{z}_1\)
\(
\arg (z)+\arg \bar{z}(\bar{z} \neq 0) \text { is } \dots
\)
(b)
\(
\arg (z)+\arg (\bar{z})=\theta+(-\theta)=0
\)
\(
\text { If }|z+4| \leq 3 \text {, then the greatest and least values of }|z+1| \text { are } \ldots . . \text { and } \ldots . .
\)
(d) Given that, \(|z+4| \leq 3\)
For the greatest value of \(|z+1|\),
\(
|z+1|=|z+4-3|
\)
So, greatest value of \(|z+1|\) is 6 .
We know that the least value of the modulus of a complex number is zero. So, the least value of \(|z+1|\) is zero.
If \(\left|\frac{z-2}{z+2}\right|=\frac{\pi}{6}\) then the locus of \(z\) is …..
(a) We have \(\left|\frac{z-2}{z+2}\right|=\frac{\pi}{6}\)
\(
\Rightarrow \quad \frac{|x+i y-2|}{|x+i y+2|}=\frac{\pi}{6} \Rightarrow \frac{|x-2+i y|}{|x+2+i y|}=\frac{\pi}{6}
\)
\(
\begin{aligned}
&\Rightarrow \quad 6 \mid x-2+i y]=\pi|x+2+i y| \Rightarrow 36|x-2+i y|^2=\pi^2|x+2+i y|^2 \\
&\Rightarrow \quad 36\left[x^2-4 x+4+y^2\right]=\pi^2\left[x^2+4 x+4+y^2\right]
\end{aligned}
\)
\(\Rightarrow \quad\left(36-\pi^2\right) x^2+\left(36-\pi^2\right) y^2-\left(144+4 \pi^2\right) x+144-4 \pi^2=0\), which is a circle.
\(
\text { If }|z|=4 \text { and } \arg (z)=\frac{5 \pi}{6} \text {, then } z= \dots
\)
(a) Let \(z=|z|(\cos \theta+i \sin \theta)\)
Where \(\theta=\arg (z)\)
Given that \(|z|=4\) and \(\arg (z)=\frac{5 \pi}{6}\)
\(
\begin{aligned}
\Rightarrow \quad z &=4\left[\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right] \\
&=4\left[-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right]=-2 \sqrt{3}+2 i
\end{aligned}
\)
State True or False for the following
The order relation is defined on the set of complex numbers.
(b) False
We can compare two complex numbers when they are purely real. Otherwise, the comparison of complex numbers is not possible or has no meaning.
State True or False for the following:
Multiplication of a non-zero complex number by \(-i\) rotates the point about origin through a right angle in the anti-clockwise direction.
Ans: False
Let \(z=x+y i\)
\(z . i=(x+y i) i=x i-y\)
Which rotates at angle of \(180^{\circ}\)
State True or False for the following :
\(
\text { For any complex number } z \text { the minimum value of }|z|+|z-1| \text { is } 1 \text {. }
\)
(a) True
\(
|z|+|z-1|
\)
We know that \(\left|z_1\right|+\left|z_2\right| \geq\left|z_1-z_1\right|\)
\(
\Rightarrow \quad|z|+|z-1| \geq|z-(z-1)| \quad \Rightarrow|z|+|z-1| \geq 1
\)
So, minimum value of \(|z|+|z-1|\) is 1 .
State True or False for the following :
locus represented by \(|z-1|=|z-i|\) is a line perpendicular to the join of \((1,0)\) and \((0,1)\)
(a) True
We have, \(|z-1|=|z-\mathrm{i}|\)
Putting \(z=x+i y\), we get
\(
\begin{aligned}
&\Rightarrow \quad|x-1+i y|=|x-i(1-y)| \\
&\Rightarrow \quad(x-1)^2+y^2=x^2+(1-y)^2 \Rightarrow x^2-2 x+1+y^2=x^2+1+y^2-2 y \\
&\Rightarrow \quad-2 x+1=1-2 y \quad \Rightarrow-2 x+2 y=0 \quad \Rightarrow x-y=0
\end{aligned}
\)
Now, equation of a line through the points \((1,0)\) and \((0,1)\) is:
\(
y-0=\frac{1-0}{0-1}(x-1)
\)
or \(\quad x+y=1\)
This line is perpendicular to the line \(x-y=0\).
State True or False for the following :
\(
\text { If } z \text { is a complex number such that } z \neq 0 \text { and } \operatorname{Re}(z)=0 \text {, then } \operatorname{Im}\left(z^2\right)=0 \text {. }
\)
(b) True
\(
\begin{aligned}
&z=x+i y \\
&\operatorname{Re} (z)=0 \quad x=0 \\
&z=i y \\
&z^2=i^2 y^2 \\
&=-y^2 \\
&\operatorname{Im}\left(z^2\right)=0
\end{aligned}
\)
State True or False for the following :
\(
\text { The inequality }|z-4|<|z-2| \text { represents the region given by } x>3 \text {. }
\)
(a) True
Given that: \(|z-4|<|z-2|\)
Let \(z=x+y i\)
\(
\begin{aligned}
&\Rightarrow|x+y i-4|<|x+y i-2| \\
&\Rightarrow|(x-4)+y i|<|(x-2)+y i| \\
&\Rightarrow \sqrt{(x-4)^2+y^2}<\sqrt{(x-2)^2+y^2} \\
&\Rightarrow(x-4)^2+y^2<(x-2)^2+y^2 \\
&\Rightarrow(x-4)^2<(x-2)^2 \\
&\Rightarrow x^2+16-8 x<x^2+4-4 x \\
&\Rightarrow-8 x+4 x<-16+4 \\
&\Rightarrow-4 x<-12 \\
&\Rightarrow x>3
\end{aligned}
\)
State True or False for the following :
Let \(z_1\) and \(z_2\) be two complex numbers such that \(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\), then \(\arg \left(z_1-z_2\right)=0\)
(a) False
Explanation:
Given \(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\)
\(
\begin{aligned}
&\Rightarrow\left|z_1+z_2\right|^2=\left|z_1\right|^2+\left|z_2\right|^2+2\left|z_1\right|\left|z_2\right| \\
&\Rightarrow\left|z_1\right|^2+\left|z_2\right|^2+2 \operatorname{Re}\left(z_1 \bar{z}_2\right)=\left|z_1\right|^2+\left|z_2\right|^2+2\left|z_1\right|\left|z_2\right| \\
&\Rightarrow 2 \operatorname{Re}\left(z_1 \bar{z}_2\right)=2\left|z_1\right|\left|z_2\right| \\
&\Rightarrow \cos \left(\theta_1-\theta_2\right)=1 \\
&\Rightarrow \theta_1-\theta_2=0 \\
&\therefore \arg \left(z_1\right)-\arg \left(z_2\right)=0
\end{aligned}
\)
State True or False for the following :
2 is not a complex number.
(a) False
\(
\text { Since, every real number is a complex number. So, } 2 \text { is a complex number. Hence, it is false. }
\)
(a) Given that, \(z=i+\sqrt{3}\).
So, \(|z|=|i+\sqrt{3}|=\sqrt{1^2+(\sqrt{3})^2}=2\)
Also, \(z\) lies in first quadrant.
\(
\Rightarrow \arg (z)=\tan ^{-1} \frac{1}{\sqrt{3}}=\frac{\pi}{6}
\)
So, the polar from of \(z\) is \(2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\).
(b) We have, \(z=-1+\sqrt{-3}=-1+i \sqrt{3}\)
Here \(z\) lies in second quadrant.
\(
\Rightarrow \quad \arg (z)=\operatorname{amp}(z)=\pi-\tan ^{-1}\left|\frac{\sqrt{3}}{-1}\right|=\pi-\tan ^{-1} \sqrt{3}=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}
\)
(c) Given that, \(|z+2|=|z-2|\)
\(\Rightarrow \quad|x+2+i y|=|x-2+i y|\)
\(\Rightarrow \quad(x+2)^2+y^2=(x-2)^2+y^2 \quad \Rightarrow x^2+4 x+4=x^2-4 x+4\)
\(\Rightarrow \quad 8 x=0\)
\(\therefore x=0\)
It is a straight line which is a perpendicular bisector of segment joining the points \((-2,0)\) and \((2,0)\).
1) We have \(|z+2 i|=|z-2 i|\)
Putting \(z=x+i y\), we get
\(
\begin{aligned}
&\Rightarrow|x+i(y+2)|^2=|x+i(y-2)|^2 \quad \Rightarrow x^2+(y+2)^2=x^2+(y-2)^2 \\
&\Rightarrow 4 y=0 \quad \Rightarrow y=0
\end{aligned}
\)
It is a straight line, which is a perpendicular bisector of segment joining \((0,-2)\) and \((0,2)\)
(e) Given that, \(|z+4 i| \geq 3\)
\(
\begin{array}{ll}
\Rightarrow \quad|x+i y+4 i| \geq 3 & \Rightarrow|x+i(y+4)| \geq 3 \\
\Rightarrow \quad \sqrt{x^2+(y+4)^2} \geq 3 & \Rightarrow x^2+y^2+8 y+16 \geq 9 \\
\Rightarrow \quad x^2+y^2+8 y+7 \geq 0 &
\end{array}
\)
This represents the region on or outside the circle having centre \((0,-4)\) and radius 3 .
(f) Given that, \(|z+4| \leq 3\)
\(\Rightarrow|x+i y+4| \leq 3 \quad \Rightarrow|x+4+i y| \leq 3\)
\(\Rightarrow \quad \sqrt{(x+4)^2+y^2} \leq 3 \quad \Rightarrow(x+4)^2+y^2 \leq 9\)
\(\Rightarrow \quad x^2+8 x+16+y^2 \leq 9 \quad \Rightarrow x^2+8 x+y^2+7 \leq 0\)
This represents the region on inside circle having centre \((-4,0)\) and radius 3.
(g) \(z=\frac{1+2 i}{1-i}=\frac{(1+2 i)(1+i)}{(1+i)(1+i)}=\frac{1+2 i+i+2 i^2}{1-i^2}\)
\(
=\frac{1-2+3 i}{1+1}=\frac{-1}{2}+\frac{3 i}{2}
\)
Hence, \(\bar{z}\) lies in the third quadrant.
(h) Given that, \(z=1-i\)
\(
\Rightarrow \quad \frac{1}{z}=\frac{1}{1-i}=\frac{1+i}{(1-i)(1+i)}=\frac{1+i}{1-i^2}=\frac{1}{2}(1+i)
\)
Thus, reciprocal of \(z\) lies in first quadrant.
\(
\text { What is the conjugate of } \frac{2-i}{(1-2 i)^2} ?
\)
(a) We have \(z=\frac{2-i}{(1-2 i)^2}\)
\(
\begin{array}{ll}
\Rightarrow \quad z & =\frac{2-i}{1+4 i^2-4 i}=\frac{2-i}{1-4-4 i}=\frac{2-i}{-3-4 i} \\
& =\frac{(2-i)}{-(3+4 i)}=-\left[\frac{(2-i)(3-4 i)}{(3+4 i)(3-4 i)}\right] \\
& =-\left(\frac{6-8 i-3 i+4 i^2}{9+16}\right)=-\frac{(-11 i+2)}{25} \\
& =\frac{-1}{25}(2-11 i)=\frac{1}{25}(-2+11 i) \\
\therefore \quad \bar{z} & =\frac{1}{25}(-2-11 i)=\frac{-2}{25}-\frac{11}{25} i
\end{array}
\)
\(
\text { If }\left|z_1\right|=\left|z_2\right| \text {, is it necessary that } z_1=z_2 \text { ? }
\)
Ans: not necessary
If \(\left|Z_1\right|=\left|Z_2\right|\) then \(z_1\) and \(z_2\) are at the same distance from origin.
But if \(\arg \left(z_1\right) \neq \arg \left(z_2\right)\), then \(z_1\) and \(z_2\) are different.
So, if \(\left|z_1\right|=\left|z_2\right|\), then it is not necessary that \(z_1=z_2\).
Consider \(Z_1=3+4 i\) and \(Z_2=4+3 i\)
\(
\text { If } \frac{\left(a^2+1\right)^2}{2 a-i}=x+i y \text {, what is the value of } x^2+y^2 \text { ? }
\)
(a)
\(
\begin{aligned}
&\left(a^2+1\right)^2 / 2 a-i=x+i y \\
&\Rightarrow \quad\left|\frac{\left.(a^2+1\right)^2}{2 a-i}\right|=|x+i y| \\
&\Rightarrow \quad \frac{\left|\left(a^2+1\right)^2\right|}{|2 a-i|}=|x+i y| \Rightarrow \frac{\left(a^2+1\right)^2}{\sqrt{(2 a)^2+(-1)^2}}=\sqrt{x^2+y^2} \\
&\Rightarrow \quad x^2+y^2=\frac{\left(a^2+1\right)^4}{4 a^2+1}
\end{aligned}
\)
\(
\text { Find } z \text { if }|z|=4 \text { and } \arg (z)=\frac{5 \pi}{6} \text {. }
\)
(b) Let \(z=|z|(\cos \theta+i \sin \theta)\), where \(\theta=\arg (z)\).
Given that, \(|z|=4\) and \(\arg (z)=\frac{5 \pi}{6}\).
\(
\begin{array}{rlr}
\Rightarrow \quad z & =4\left[\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right] \quad \text { ( } z \text { lies in II quadrant) } \\
& =4\left[-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right]=-2 \sqrt{3}+2 i &
\end{array}
\)
\(
\text { Find }\left|(1+i) \frac{(2+i)}{(3+i)}\right|
\)
(b)
\(
\begin{aligned}
&\left|(1+i) \frac{(2+i)}{(3+i)} \times \frac{3-i}{3-i}\right|=\left|(1+i) \cdot \frac{6-2 i+3 i-i^2}{9-i^2}\right| \\
&=\left|\frac{(1+i)(7+i)}{9+1}\right| \\
&=\left|\frac{7+i+7 i+i^2}{9+1}\right| \\
&=\left|\frac{7+i+7 i+i^2}{10}\right| \\
&=\left|\frac{7+8 i-1}{10}\right| \\
&=\left|\frac{6+8 i}{10}\right| \\
&=\left|\frac{3}{5}+\frac{4}{5} i\right| \\
&=\sqrt{\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2}=1
\end{aligned}
\)
\(
\text { Find principal argument of }(1+i \sqrt{3})^2
\)
(c)
\(
\begin{gathered}
(1+i \sqrt{3})^2=1+i^2 \cdot 3+2 \sqrt{3} i \\
=1-3+2 \sqrt{3} i=-2+2 \sqrt{3} i \\
\tan \alpha=\left|\frac{2 \sqrt{3}}{-2}\right| \\
\tan \alpha=|-\sqrt{3}|=\sqrt{3} \\
\tan \alpha=\tan \frac{\pi}{3} \\
\alpha=\frac{\pi}{3}Â
\end{gathered}
\)
Now \(\operatorname{Re}(z)<0\) and image(z)>0 \(\arg (z)=\pi-\alpha=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}\) Hence, the principal \(\arg =\frac{2 \pi}{3}\)
\(
\text { Where does } z \text { lie, if }\left|\frac{z-5 i}{z+5 i}\right|=1 \text {. }
\)
(b) We have \(|z-5 i / z+5 i|\)
\(
\begin{array}{ll}
\Rightarrow & |z-5 i|=|z+5 i| \quad \Rightarrow|x+i y-5 i|=|x+i y+5 i| \\
\Rightarrow & |x+i(y-5)|^2=|x+i(y+5)|^2 \quad \Rightarrow x^2+(y-5)^2=x^2+(y+5)^2 \\
\Rightarrow & 20 y=0 \quad \Rightarrow y=0
\end{array}
\)
So, \(z\) lies on the \(x\)-axis (real axis).
\(\sin x+i \cos 2 x\) and \(\cos x-i \sin 2 x\) are conjugate to each other for:
(d)
let \(z=\sin x+i \cos 2 x \quad \bar{z}=\sin x-i \cos 2 x\)
But we are given that \(\bar{z}=\cos x-i \sin 2 x\)
\(\sin x-\mathrm{i} \cos 2 x=\cos x-i \sin 2 x\) Comparing the real and imaginary part, we get
\(\sin \mathrm{x}=\cos \mathrm{x} \quad\) and \(\quad \cos 2 \mathrm{x}=\sin 2 \mathrm{x}\)
\(\tan x=1\) and \(\tan 2 x=1\)
Now, \(\tan 2 x=1\)
\(\Rightarrow \frac{2 \tan x}{1-\tan ^2 x}=1\), which is not satisfied by \(\tan x=1\)
Hence, no value of \(x\) is possible.
The real value of \(\alpha\) for which the expression \(\frac{1-i \sin \alpha}{1+2 i \sin \alpha}\) is purely real is:
(c)
\(z=\frac{1-i \sin \alpha}{1+2 i \sin \alpha}\)
\(
\begin{aligned}
&=\frac{(1-i \sin \alpha)(1-2 i \sin \alpha)}{(1+2 i \sin \alpha)(1-2 i \sin \alpha)}=\frac{1-i \sin \alpha-2 i \sin \alpha+2 i^2 \sin ^2 \alpha}{1-4 i^2 \sin ^2 \alpha} \\
&=\frac{1-3 i \sin \alpha-2 \sin ^2 \alpha}{1+4 \sin ^2 \alpha}=\frac{1-2 \sin ^2 \alpha}{1+4 \sin ^2 \alpha}-\frac{3 i \sin \alpha}{1+4 \sin ^2 \alpha}
\end{aligned}
\)
It is given that \(z\) is a purely real.
\(
\begin{aligned}
&\Rightarrow \quad \frac{-3 \sin \alpha}{1+4 \sin ^2 \alpha}=0 \quad \Rightarrow-3 \sin \alpha=0 \quad \Rightarrow \sin \alpha=0 \\
&\Rightarrow \quad \alpha=n \pi, n \in I
\end{aligned}
\)
If \(z=x+i y\) lies in the third quadrant, then \(\frac{\bar{z}}{z}\) also lies in the third quadrant if
(b) Given that: \(z=x+i y\)
If z lies in the third quadrant.
So \(x<0\) and \(y<0\).
\(
\begin{aligned}
&\bar{z}=\mathrm{x}-\mathrm{i} y \\
&\frac{\bar{z}}{z}=\frac{x-i y}{x+i y} \\
&=\frac{x-i y}{x+i y} \times \frac{x-i y}{x-i y} \\
&=\frac{x^2+i^2 y^2-2 x y i}{x^2-i^2 y^2} \\
&=\frac{x^2-y^2-2 x y i}{x^2+y^2} \\
&=\frac{x^2-y^2}{x^2+y^2}-\frac{2 x y}{x^2+y^2} i
\end{aligned}
\)
When z lies in third quadrant then \(\frac{\bar{z}}{z}\) will also be lie in third quadrant \(\therefore \frac{x^2-y^2}{x^2+y^2}<0\) and \(\frac{-2 x y}{x^2+y^2}<0\)
\(\Rightarrow \mathrm{x}^2-\mathrm{y}^2<0\) and \(2 \mathrm{xy}>0\)
\(\Rightarrow \mathrm{x}^2<\mathrm{y}^2\) and \(\mathrm{xy}>0\)
So \(x<y<0\).
The value of \((z+3)(\bar{z}+3)\) is equivalent to
(a) Let \(z=x+i y\) So, \((z+3)(\bar{z}+3)=(x+i y+3)(x-i y+3)\)
\(
\begin{aligned}
&=[(x+3)+i y][(x+3)-i y] \\
&=(x+3)^2-y^2 i^2=(x+3)^2+y^2 \\
&=|x+3+i y|^2=|z+3|^2
\end{aligned}
\)
If \(\left(\frac{1+i}{1-i}\right)^x=1\), then
\(
\begin{aligned}
& \text { (b) : Given }\left(\frac{1+i}{1-i}\right)^x=1 \\
& \Rightarrow\left(\frac{2 i}{2}\right)^x=1 \\
& \Rightarrow i^x=1 \\
& \Rightarrow i^x=(i)^{4 n} \\
& \Rightarrow x=4 n, n \in I^{+}
\end{aligned}
\)
A real value of \(x\) satisfies the equation \(\left(\frac{3-4 i x}{3+4 i x}\right)=\alpha-i \beta(\alpha, \beta \in \mathbf{R})\) if \(\alpha^2+\beta^2=\)
(a)
\(
\begin{aligned}
&\text { Given that } \frac{3-4 i x}{3+4 i x}=\alpha-i \beta \\
&=\frac{3-4 i x}{3+4 i x} \times \frac{3-4 i x}{3-4 i x}=\alpha-i \beta \\
&\frac{9-12 i x-12 i x+16 i^2 x^2}{9-16 i^2 x^2}=\alpha-i \beta \\
&=\frac{9-16 x^2}{9+16 x^2}-i\frac{24 x}{9+16 x^2}=\alpha-i \beta \ldots \ldots \text { (i) } \\
&\frac{9-16 x^2}{9+16 x^2}+i\frac{24 x}{9+16 x^2}=\alpha+i \beta \ldots \ldots \ldots \text { (ii) }
\end{aligned}
\)
Multiplying eqn (i )and (ii )we get
\(
\begin{aligned}
&\left(\frac{9-16 x^2}{9+16 x^2}\right)^2+\left(\frac{24 x}{9+16 x^2}\right)^2=\alpha^2+\beta^2 \\
&\frac{81+256 x^4-288 x^2+576 x^2}{\left(9+16 x^2\right)^2}=\alpha^2+\beta^2 \\
&\frac{81+256 x^4+288 x^2}{\left(9+16 x^2\right)^2}=\alpha^2+\beta^2 \\
&\frac{\left(9+16 x^2\right)^2}{\left(9+16 x^2\right)^2}=\alpha^2+\beta^2=1
\end{aligned}
\)
Which of the following is correct for any two complex numbers \(z_1\) and \(z_2\)?
(a) Let, \(z_1=r_1 e^{i \alpha}\) and \(z_2=r_2 e^{i \beta}\)
\(\left|z_1\right|=r_1\) and \(\left|z_2\right|=r_2\)
Option A:
\(z_1 z_2=r_1 \Gamma_2 e^{i(\alpha+\beta)}\)
\(\left|z_1 z_2\right|=r_1 r_2=\left|z_1\right|\left|z_2\right|\)
Option A correct
Option B:
\(\arg \left(z_1 z_2\right)=\alpha+\beta\)
\(=\arg \left(z_1\right)+\arg \left(z_2\right)\)
Option B not correct
Let, \(z_1=a+i b\) and \(z_2=c+i d\)
Option C
\(z_1+z_2=(a+c)+i(b+d)\)
\(\left|\mathrm{z}_1+\mathrm{z}_2\right|=\sqrt{(\mathrm{a}+\mathrm{c})^2+(\mathrm{b}+\mathrm{d})^2}\)
\(\left|\mathrm{z}_1\right|=\sqrt{\mathrm{a}^2+\mathrm{b}^2}\) and \(\left|\mathrm{z}_2\right|=\sqrt{\mathrm{c}^2+\mathrm{d}^2}\)
We cannot say anything about option c and option d
The point represented by the complex number \(2-i\) is rotated about origin through an angle \(\frac{\pi}{2}\) in the clockwise direction, the new position of point is:
(b) Given that: \(z=2-i\)
If z rotated through an angle of \(\frac{\pi}{2}\) about the origin in the clockwise direction. Then the new position \(=z \cdot e^{-\left(\frac{\pi}{2}\right)}\)
\(
\begin{aligned}
&=(2-i) e^{-\left(\frac{\pi}{2}\right)} \\
&=(2-i)\left[\cos \left(\frac{-\pi}{2}\right)+i \sin \left(\frac{-\pi}{2}\right)\right] \\
&=(2-\mathrm{i})(0-\mathrm{i}) \\
&=-1-2 \mathrm{i}
\end{aligned}
\)
Let \(x, y \in \mathbf{R}\), then \(x+i y\) is a non real complex number if:
(d) \(x+y i\) is a non-real complex number if \(y \neq 0\) If \(x, y \in R\)
If \(a+i b=c+i d\), then
(d) Given that: \(a+i b=c+i d\)
\(
\begin{aligned}
&\Rightarrow|\mathrm{a}+\mathrm{ib}|=|c+i \mathrm{~d}| \\
&\Rightarrow \sqrt{a^2+b^2}=\sqrt{c^2+d^2}
\end{aligned}
\)
Squaring both sides, we get \(a^2+b^2=c^2+d^2\)
The complex number \(z\) which satisfies the condition \(\left|\frac{i+z}{i-z}\right|=1\) lies on
(b) Let \(z=x+i y\)
\(
\begin{aligned}
&\left|\frac{i+z}{i-z}\right|=1 \\
&\Rightarrow|i+z|=|i-z| \\
&\Rightarrow|x+y i+i|=|i-x-i y| \\
&\Rightarrow|x+i(y+1)|=|-x+i(1-y)| \\
&\Rightarrow \sqrt{x^2+(y+1)^2}=\sqrt{x^2+(1-y)^2} \\
&\Rightarrow x^2+(y+1)^2=x^2+(1-y)^2 \\
&\Rightarrow y+1=1-y \\
&\Rightarrow 2 y=0 \\
&\Rightarrow y=0
\end{aligned}
\)
It lies on the x-axis.
\(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\) is possible if
(c) Let \(z_1=r_1\left(\cos \theta_1+i \sin \theta_1\right)\) and \(z_2=r_2\left(\cos \theta_2+i \sin \theta_2\right)\)
Since \(\left|z_1+z_2\right|=\left|z_1\right|+\left|z_2\right|\)
\(
\begin{aligned}
&\left|\mathrm{z}_1+\mathrm{z}_2\right|=\mathrm{r}_1 \cos \theta_1+\mathrm{i} \mathrm{r}_1 \sin \theta_1+\mathrm{r}_2 \cos \theta_2+\mathrm{i} r_2 \sin \theta_2 \\
&\left|\mathrm{z}_1+\mathrm{z}_2\right|=\sqrt{r_1^2 \cos ^2 \theta_{+} r_2^2 \cos ^2 \theta_2+2 r_1 r_2 \cos \theta_1 \cos \theta_2+r_1^2 \sin ^2 \theta_1+r_2^2 \sin ^2 \theta_2+2 r_1 r_2 \sin \theta_1 \sin \theta_2} \\
&=\sqrt{r_1^2+r_2^2+2 r_1 r_2 \cos \left(\theta_1-\theta_2\right)} \\
&\text { But }\left|\mathrm{z}_1+\mathrm{z}_2\right|=\left|\mathrm{z}_1\right|+\left|\mathrm{z}_2\right| \\
&\text { So } \sqrt{r_1^2+r_2^2+2 r_1 r_2 \cos \left(\theta_1-\theta_2\right)}=r_1+r_2 \\
&\text { Squaring both sides, we get } \\
&r_1^2+r_2^2+2 r_1 r_2 \cos \left(\theta_1-\theta_2\right)=r_1^2+r_2^2+2 r_1 r_2 \\
&\Rightarrow 2 r_1 r_2-2 r_1 r_2 \cos \left(\theta_1-\theta_2\right)=0 \\
&\Rightarrow 1-\cos \left(\theta_1-\theta_2\right)=0 \\
&\Rightarrow \cos \left(\theta_1-\theta_2\right)=1 \\
&\Rightarrow \theta_1-\theta_2=0 \\
&\Rightarrow \theta_1=\theta_2 \\
&\text { So, arg }\left(z_1\right)=\arg \left(\mathrm{z}_2\right)
\end{aligned}
\)
If \(z\) is a complex number, then
(b) Let \(z=x+y i\)
\(
\begin{aligned}
&|z|=|x+y i| \text { and }|z|^2=|x+y i|^2 \\
&\Rightarrow|z|^2=x^2+y^2 \\
&\text { Now } z^2=x^2+y^2 i^2+2 x y i \\
&z^2=x^2-y^2+2 x y i \\
&|z^2|=\sqrt{\left(x^2-y^2\right)^2+(2x y)^2} \\
&=\sqrt{x^4+y^4-2 x^2 y^2+4 x^2 y^2} \\
&=\sqrt{x^4+y^4+2 x^2 y^2} \\
&=\sqrt{\left(x^2+y^2\right)^2} \\
&\text { So }|z|^2=x^2 + y^2=|z^2| \\
&\text { So }|z|^2=\left|z^2\right|
\end{aligned}
\)
The real value of \(\theta\) for which the expression \(\frac{1+i \cos \theta}{1-2 i \cos \theta}\) is a real number is:
(c) We have, \(\frac{1+i \cos \theta}{1-2 i \cos \theta}=\frac{1+i \cos \theta}{1-2 i \cos \theta} \times \frac{1+2 i \cos \theta}{1+2 i \cos \theta}\) \(=\frac{1+3 i \cos \theta+2 i^2 \cos ^2 \theta}{1^2-(2 i \cos \theta)^2}=\frac{1-2 \cos ^2 \theta}{1+4 \cos ^2 \theta}+i\left(\frac{3 \cos \theta}{1+4 \cos ^2 \theta}\right)\), Since \(\frac{1+i \cos \theta}{1-2 i \cos \theta}\) is a real number.
\(
\begin{aligned}
&\therefore \frac{3 \cos \theta}{1+4 \cos ^2 \theta}=0 \\
&\Rightarrow \cos \theta=0 \\
&\Rightarrow \cos \theta=\cos \frac{\pi}{2} \\
&\therefore \text { General solution is } \theta=2 n \pi \pm \frac{\pi}{2}
\end{aligned}
\)
The value of \(\arg (x)\) when \(x<0\) is:
(c) Let \(z=x+0\) i and \(x<0\)
\(
\Rightarrow|z|=\sqrt{(-1)^2+0^2}=1
\)
Since the point \((-x, 0)\) lies on the negative side of the real axis, \(\therefore\) Principal argument \((z)=\pi\)
If \(f(z)=\frac{7-z}{1-z^2}\), where \(z=1+2 i\), then \(|f(z)|\) is
(a)
\(
\begin{aligned}
&f(z)=\frac{7-z}{1-z^2} \\
&=\frac{7-(1+2 i)}{1-(1+2 i)^2} \\
&=\frac{7-1-2 i}{1-\left(1^2+2^2 i^2+4 i\right)} \\
&=\frac{6-2 i}{1-1+4-4 i} \\
&=\frac{6-2 i}{4-4 i} \\
&=\frac{6-2 i}{4-4 i} \times \frac{4+4 i}{4+4 i} \\
&=\frac{24+24 i-8 i-8 i^2}{4^2-4^2 i^2} \\
&=\frac{24+16 i+8}{16+16} \\
&=\frac{32+16 i}{32} \\
&=1+\frac{1}{2} i
\end{aligned}
\)
Since \(
\begin{aligned}
&z=1+2 i \\
&\therefore|z|=\sqrt{(1)^2+(2)^2} \\
&=\sqrt{1+4} \\
&=\sqrt{5} \\
&\therefore|f(z)|=\sqrt{(1)^2+\left(\frac{1}{2}\right)^2} \\
&=\sqrt{1+\frac{1}{4}} \\
&=\frac{\sqrt{5}}{2} \\
&=\frac{|z|}{2}
\end{aligned}
\)
You cannot copy content of this page