Overview
Relation between degree and radian
The circumference of a circle always bears a constant ratio to its diameter. This constant ratio is a number denoted by \(\pi\) which is taken approximately as \(\frac{22}{7}\) for all practical purpose. The relationship between degree and radian measurements is as follows:
\(
\begin{aligned}
& 2 \text { right angle }=180^{\circ}=\pi \text { radians } \\
& 1 \text { radian }=\frac{180^{\circ}}{\pi}=57^{\circ} 16^{\prime} \text { (approx) } \\
& 1^{\circ}=\frac{\pi}{180} \text { radian }=0.01746 \text { radians (approx) } \\
&
\end{aligned}
\)
Trigonometric functions
Trigonometric ratios are defined for acute angles as the ratio of the sides of a right angled triangle. The extension of trigonometric ratios to any angle in terms of radian measure (real numbers) are called trigonometric functions. The signs of trigonometric functions in different quadrants have been given in the following table:
Domain and range of trigonometric functions
\(Sine, cosine and tangent of some angles less than \(90^{\circ}\)
\(
\begin{array}{|l|c|c|c|c|c|c|c|c|}
\hline & 0^{\circ} & 15^{\circ} & 18^{\circ} & 30^{\circ} & 36^{\circ} & 45^{\circ} & 6 0 & 90^{\circ} \\
\hline \text { sine } & 0 & \frac{\sqrt{6}-\sqrt{2}}{4} & \frac{\sqrt{5}-1}{4} & \frac{1}{2} & \frac{\sqrt{10-2 \sqrt{5}}}{4} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 \\
\text { cosine } & 1 & \frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{10+2 \sqrt{5}}}{4} & \frac{\sqrt{3}}{2} & \frac{\sqrt{5}+1}{4} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\
\hline \text { tan } & 0 & 2-\sqrt{3} & \frac{\sqrt{25-10 \sqrt{5}}}{5} & \frac{1}{\sqrt{3}} & \sqrt{5-2 \sqrt{5}} & 1 & \sqrt{3} & \text { defined } \\
\hline
\end{array}
\)
Allied or related angles
The angles \(\frac{n \pi}{2} \pm \theta\) are called allied or related angles and \(\theta \pm n \times 360^{\circ}\) are called coterminal angles. For general reduction, we have the following rules. The value of any trigonometric function for \(\left(\frac{n \pi}{2} \pm \theta\right)\) is numerically equal to
Functions of negative angles
Let \(\theta\) be any angle. Then
\(
\begin{aligned}
\sin (-\theta) & =-\sin \theta, \cos (-\theta)=\cos \theta \\
\tan (-\theta) & =-\tan \theta, \cot (-\theta)=-\cot \theta \\
\sec (-\theta) & =\sec \theta, \operatorname{cosec}(-\theta)=-\operatorname{cosec} \theta
\end{aligned}
\)
Some formulae regarding compound angles
An angle made up of the sum or differences of two or more angles is called a compound angle. The basic results in this direction are called trigonometric identities as given below:
Trigonometric functions of an angle of \(18^{\circ}\)
Let \(\theta=18^{\circ}\). Then \(2 \theta=90^{\circ}-3 \theta\)
Therefore, \(\quad \sin 2 \theta=\sin \left(90^{\circ}-3 \theta\right)=\cos 3 \theta\)
or \(\sin 2 \theta=4 \cos ^3 \theta-3 \cos \theta\)
Since, \(\quad \cos \theta \neq 0\), we get
\(
2 \sin \theta=4 \cos ^2 \theta-3=1-4 \sin ^2 \theta \text { or } \quad 4 \sin ^2 \theta+2 \sin \theta-1=0 \text {. }
\)
Hence, \(\quad \sin \theta=\frac{-2 \pm \sqrt{4+16}}{8}=\frac{-1 \pm \sqrt{5}}{4}\)
Since, \(\quad \theta=18^{\circ}, \sin \theta>0\), therefore, \(\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}\)
Also, \(\cos 18^{\circ}=\sqrt{1-\sin ^2 18^{\circ}}=\sqrt{1-\frac{6-2 \sqrt{5}}{16}}=\sqrt{\frac{10+2 \sqrt{5}}{4}}\)
Now, we can easily find \(\cos 36^{\circ}\) and \(\sin 36^{\circ}\) as follows:
\(
\begin{aligned}
& \cos 36^{\circ}=1-2 \sin ^2 18^{\circ}=1-\frac{6-2 \sqrt{5}}{8}=\frac{2+2 \sqrt{5}}{8}=\frac{\sqrt{5}+1}{4} \\
& \cos 36^{\circ}=\frac{\sqrt{5}+1}{4}
\end{aligned}
\)
Also, \(\sin 36^{\circ}=\sqrt{1-\cos ^2 36^{\circ}}=\sqrt{1-\frac{6+2 \sqrt{5}}{16}}=\frac{\sqrt{10-2 \sqrt{5}}}{4}\)
Trigonometric equations
Equations involving trigonometric functions of a variables are called trigonometric equations. Equations are called identities, if they are satisfied by all values of the unknown angles for which the functions are defined. The solutions of a trigonometric equations for which \(0 \leq \theta<2 \pi\) are called principal solutions. The expression involving integer \(n\) which gives all solutions of a trigonometric equation is called the general solution.
General Solution of Trigonometric Equations
0 of 153 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 153 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
For any \(\theta \in(\pi / 4, \pi / 2)\), the expression \(3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\) \(\cos \theta)^{2}+4 \sin ^{6} \theta\) equals [Main Jan. 9, 2019 (I)]
(a) \(3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\cos \theta)^{2}+4 \sin ^{6} \theta\)
\(
\begin{aligned}
&=3(1-2 \sin \theta \cos \theta)^{2}+6(1+2 \sin \theta \cos \theta)+4 \sin ^{6} \theta \\
&=3\left(1+4 \sin ^{2} \theta \cos ^{2} \theta-4 \sin \theta \cos \theta\right)+6 -12 \sin \theta \cos \theta+4 \sin ^{6} \theta\\
&=9+12 \sin ^{2} \theta \cos ^{2} \theta+4 \sin ^{6} \theta \\
&=9+12 \cos ^{2} \theta\left(1-\cos ^{2} \theta\right)+4\left(1-\cos ^{2} \theta\right)^{3} \\
&=9+12 \cos ^{2} \theta-12 \cos ^{4} \theta+4\left(1-\cos ^{6} \theta-3 \cos ^{2} \theta+3 \cos ^{4} \theta\right) \\
&=9+4-4 \cos ^{6} \theta \\
&=13-4 \cos ^{6} \theta
\end{aligned}
\)
Let \(f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)\) where \(x \in R \quad\) and \(k \geq 1\). Then \(f_{4}(x)-f_{6}(x)\) equals
[Main 2014]
(b) Let \(f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)\)
Consider \(f_{4}(x)-f_{6}(x)=\frac{1}{4}\left(\sin ^{4} x+\cos ^{4} x\right)\)
\(
\begin{aligned}
&-\frac{1}{6}\left(\sin ^{6} x+\cos ^{6} x\right) \\
&=\frac{1}{4}\left[1-2 \sin ^{2} x \cos ^{2} x\right]-\frac{1}{6}\left[1-3 \sin ^{2} x \cos ^{2} x\right] \\
&=\frac{1}{4}-\frac{1}{6}=\frac{1}{12}
\end{aligned}
\)
If \(2 \cos \theta+\sin \theta=1\left(\theta \neq \frac{\pi}{2}\right)\), then \(7 \cos \mathrm{\theta}+6 \sin \mathrm{\theta}\) is equal to: [Main Online April 11, 2014]
(d) Given \(2 \cos \theta+\sin \theta=1\)
Squaring both sides, we get
\(
\begin{aligned}
&(2 \cos \theta+\sin \theta)^{2}=1^{2} \\
&\Rightarrow 4 \cos ^{2} \theta+\sin ^{2} \theta+4 \sin \theta \cos \theta=1 \\
&\Rightarrow 3 \cos ^{2} \theta+\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+4 \sin \theta \cos \theta=1
\end{aligned}
\)
\(\begin{aligned}
&\Rightarrow 3 \cos ^{2} \theta+4 \sin \theta \cos \theta=0\\
&\Rightarrow 3 \cos ^{2} \theta+4 \sin \theta \cos \theta=0\\
&\Rightarrow \cos \theta(3 \cos \theta+4 \sin \theta)=0\\
&\Rightarrow 3 \cos \theta+4 \sin \theta=0 \Rightarrow 3 \cos \theta=-4 \sin \theta\\
&\Rightarrow \frac{-3}{4}=\tan \theta=\sqrt{\sec ^{2} \theta-1}=\frac{-3}{4}\left(\because \tan \theta=\sqrt{\sec ^{2} \theta-1}\right)\\
&\Rightarrow \sec ^{2} \theta-1=\left(\frac{-3}{4}\right)^{2}=\frac{9}{16}\\
&\Rightarrow \sec ^{2} \theta=\frac{9}{16}+1=\frac{25}{16} \Rightarrow \sec \theta=\frac{5}{4}\\
&\text { or } \cos \theta=\frac{4}{5}\\
&\sin ^{2} \theta+\frac{16}{25}=1 \Rightarrow \sin ^{2} \theta=1-\frac{16}{25}=\frac{9}{25}\\
&\sin \theta=\pm \frac{3}{5}\\
&=7 \times \frac{4}{5}+6 \times \frac{3}{5}=\frac{28}{5}+\frac{18}{5}=\frac{46}{5}
\end{aligned}\)
The expression \(\frac{\tan \mathrm{A}}{1-\cot \mathrm{A}}+\frac{\cot \mathrm{A}}{1-\tan \mathrm{A}}\) can be written as: [Main 2013]
(b) Given expression can be written as
\(
\begin{aligned}
\frac{\sin A}{\cos A} \times \frac{\sin A}{\sin A-\cos A}+\frac{\cos A}{\sin A} \times \frac{\cos A}{\cos A-\sin A} \\
&\left(\because \tan A=\frac{\sin A}{\cos A} \text { and } \cot A=\frac{\cos A}{\sin A}\right)
\end{aligned}
\)
\(\begin{aligned}
&=\frac{1}{\sin A-\cos A}\left\{\frac{\sin ^{3} A-\cos ^{3} A}{\cos A \sin A}\right\} \\
&\because a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
&=\frac{\sin ^{2} A+\sin A \cos A+\cos ^{2} A}{\sin A \cos A} \\
&=1+\sec \mathrm{A} \operatorname{cosec} \mathrm{A}
\end{aligned}\)
Given both \(\theta\) and \(\varphi\) are acute angles and \(\sin \theta=\frac{1}{2}, \cos \varphi=\frac{1}{3}\), then the value of \(\theta+\varphi\) belongs to \([2004 \mathrm{~S}]\)
(b) Given : \(\sin \theta=1 / 2\) and \(\theta\) is acute angle
\(
\therefore \theta=\pi / 6
\)
Also given, \(\cos \phi=\frac{1}{2}\) and \(\varphi\) is acute angle.
\(
\begin{aligned}
&\therefore 0<\frac{1}{3}<\frac{1}{2} \\
&\Rightarrow \cos \pi / 2<\cos \phi<\cos \pi / 3 \text { or } \pi / 3<\phi<\pi / 2 \\
&\therefore \frac{\pi}{3}+\frac{\pi}{6}<\theta+\phi<\frac{\pi}{2}+\frac{\pi}{6} \text { or } \frac{\pi}{2}<\theta+\phi<\frac{2 \pi}{3} \\
&\Rightarrow \theta+\phi \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)
\end{aligned}
\)
If \(\omega\) is an imaginary cube root of unity then the value of \(\sin \left\{\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{4}\right\}\) is [1994]
\(\begin{aligned}
&\text { (c) } \sin \left\{\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{4}\right\}=\sin \left\{\left(\omega+\omega^{2}\right) \pi-\frac{\pi}{4}\right\} \\
&=\sin \left(-\pi-\frac{\pi}{4}\right)=-\sin \left(\pi+\frac{\pi}{4}\right)=\sin \pi / 4=1 / \sqrt{2}
\end{aligned}\)
If \(\tan \theta=-\frac{4}{3}\), then \(\sin \theta\) is [1979]
(b) \(\tan \theta=\frac{-4}{3} \Rightarrow \theta \in\) II quad or IV quad.
\(
\begin{aligned}
&\Rightarrow 0<\sin \theta<1 \text { or }-1<\sin \theta<0 \\
&\Rightarrow \sin \theta=\frac{4}{5} \text { or }-\frac{4}{5}
\end{aligned}
\)
Which of the following number(s) is/are rational? [1998 – 2 Marks]
(c) We know, \(\sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}\) (irrational) \(\cos 15^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}(\) irrational \()\)
\(\begin{aligned}
&\sin 15^{\circ} \cdot \cos 15^{\circ}=\frac{1}{2}\left(2 \sin 15^{\circ} \cos 15^{\circ}\right) \\
&=\frac{1}{2} \sin 30^{\circ}=\frac{1}{4}(\text { rational }) \\
&\sin 15^{\circ} \cos 75^{\circ}=\sin 15^{\circ} \cos \left(90-15^{\circ}\right) \\
&=\sin 15^{\circ} \sin 15^{\circ}=\sin ^{2} 15^{\circ}=\frac{1}{2}\left(1+\cos 30^{\circ}\right) \\
&=\frac{1}{2}\left(1-\frac{\sqrt{3}}{2}\right) \text { (irrational) }
\end{aligned}\)
In this questions there are entries in columns 1 and 2. Each entry in column 1 is related to exactly one entry in column 2. Write the correct letter from column 2 against the entry number in column 1 in your answer book. \(\frac{\sin 3 \alpha}{\cos 2 \alpha}\) is [1992 – 2 Marks]
   Column I             Column II
(A) positive      (p) \(\left(\frac{13 \pi}{48}, \frac{14 \pi}{48}\right)\)
(B) negative     (q) \(\left(\frac{14 \pi}{48}, \frac{18 \pi}{48}\right)\)
                 (r) \(\left(\frac{18 \pi}{48}, \frac{23 \pi}{48}\right)\)
                 (s) \(\left(0, \frac{\pi}{2}\right)\)
(a) \((\mathrm{A} \rightarrow \mathrm{r} ; \mathrm{B} \rightarrow \mathbf{p})\)
(p) If \(\frac{13 \pi}{48}<\alpha<\frac{14 \pi}{48}\) then \(\frac{13 \pi}{16}<3 \alpha<\frac{14 \pi}{16}\)
and \(\frac{13 \pi}{24}<2 \alpha<\frac{14 \pi}{24}\)
\(\Rightarrow 3 \alpha \in\) II quad and \(2 \alpha \in\) II quad \(\Rightarrow \sin 3 \alpha=+\) ve
\(\cos 2 \alpha=-\mathrm{ve} \therefore \frac{\sin 3 \alpha}{\cos 2 \alpha}=-v e\)
\(\therefore\) (B) corresponds to \((\mathrm{p})\).
(q) If \(\alpha \in\left(\frac{14 \pi}{48}, \frac{18 \pi}{48}\right)\) then \(\frac{14 \pi}{16}<3 \alpha<\frac{18 \pi}{16}\)
and \(\frac{14 \pi}{24}<2 \alpha<\frac{18 \pi}{24}\)
\(\Rightarrow 3 \alpha \in\) II or III quad and \(2 \alpha \in\) II quad
\(\Rightarrow\) Nothing can be said about the sign of \(\frac{\sin 3 \alpha}{\cos 2 \alpha}\) over this interval.
(r) If \(\alpha \in\left(\frac{18 \pi}{48}, \frac{23 \pi}{48}\right)\) then \(\frac{18 \pi}{16}<3 \alpha<\frac{23 \pi}{16}\)
and \(\frac{18 \pi}{24}<2 \alpha<\frac{23 \pi}{24}\)
\(\Rightarrow 3 \alpha \in\) III quad and \(2 \alpha \in\) II quad
\(\Rightarrow \quad \sin 3 \alpha=-\mathrm{ve}, \cos 2 \mathrm{a}=-\mathrm{ve}, \quad \therefore \frac{\sin 3 \alpha}{\cos 2 \alpha}=+v e\)
\(\therefore\) (A) corresponds to (r)
(s) If \(\alpha \in(0, \pi / 2)\), then \(0<3 \alpha<3 \pi / 2\) and \(0<2 \alpha<\pi\)
\(\Rightarrow\) Nothing can be said about the sign of \(\frac{\sin 3 \alpha}{\cos 2 \alpha}\) over the given interval.
Let \(\mathrm{O}\) be the origin, and \(\overrightarrow{\mathrm{OX}}, \overrightarrow{\mathrm{OY}}, \overrightarrow{\mathrm{OZ}}\) be three unit vectors in the directions of the sides \(\overrightarrow{\mathrm{QR}}, \overrightarrow{\mathrm{RP}}, \overrightarrow{\mathrm{PQ}}\) respectively, of a triangle \(\mathrm{PQR}\). [Adv. 2017]
\(|\overrightarrow{\mathrm{OX}} \times \overrightarrow{\mathrm{OY}}|=\)
(a) \(\overrightarrow{\mathrm{OX}}, \overrightarrow{\mathrm{OY}}, \overrightarrow{\mathrm{OZ}}\) are unit vectors in the directions of sides \(\overrightarrow{\mathrm{OR}}, \overrightarrow{\mathrm{RP}}\) and \(\overrightarrow{\mathrm{PQ}}\) respectively,
\(\begin{aligned}
&\therefore \quad \overrightarrow{\mathrm{OX}}=\frac{\overrightarrow{\mathrm{QR}}}{|\overrightarrow{\mathrm{QR}}|}, \overrightarrow{\mathrm{OY}}=\frac{\overrightarrow{\mathrm{RP}}}{|\overrightarrow{\mathrm{RP}}|}, \overrightarrow{\mathrm{OZ}}=\frac{\overrightarrow{\mathrm{PQ}}}{|\overrightarrow{\mathrm{PQ}}|} \\
&\therefore \quad|\overrightarrow{\mathrm{OX}} \times \overrightarrow{\mathrm{OY}}|=\frac{|\overrightarrow{\mathrm{OR}} \times \overrightarrow{\mathrm{RP}}|}{|\overrightarrow{\mathrm{QR}}||\overrightarrow{\mathrm{RP}}|}=\frac{|\overrightarrow{\mathrm{QR}}||\overrightarrow{\mathrm{RP}}| \sin (\mathrm{P}+\mathrm{Q})}{|\overrightarrow{\mathrm{QR}}||\overrightarrow{\mathrm{RP}}|} \\
&=\sin (\mathrm{P}+\mathrm{Q})
\end{aligned}\)
Let \(\mathrm{O}\) be the origin, and \(\overrightarrow{\mathrm{OX}}, \overrightarrow{\mathrm{OY}}, \overrightarrow{\mathrm{OZ}}\) be three unit vectors in the directions of the sides \(\overrightarrow{\mathrm{QR}}, \overrightarrow{\mathrm{RP}}, \overrightarrow{\mathrm{PQ}}\) respectively, of a triangle \(\mathrm{PQR}\). [Adv. 2017]
If the triangle \(\mathrm{PQR}\) varies, then the minimum value of \(\cos (\mathrm{P}+\mathrm{Q})+\) \(\cos (\mathrm{Q}+\mathrm{R})+\cos (\mathrm{R}+\mathrm{P})\) is
Â
(b) \(\cos (\mathrm{P}+\mathrm{Q})+\cos (\mathrm{Q}+\mathrm{R})+\cos (\mathrm{R}+\mathrm{P})\)
\(=\cos (180-\mathrm{R})+\cos (180-\mathrm{P})+\cos (180-\mathrm{Q})\)
\(=-[\cos P+\cos Q+\cos R]\)
In any \(\mathrm{PQR}, \cos P+\cos Q+\cos R \leq \frac{3}{2}\)
\(\Rightarrow \quad-(\cos P+\cos Q+\cos R) \geq-\frac{3}{2}\)
\(\therefore \quad\) Required minimum value \(=-\frac{3}{2}\)
Find the range of values of \(t\) for which \(2 \sin t=\frac{1-2 x+5 x^{2}}{3 x^{2}-2 x-1}, t \in\) \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\). [2005 – 2 Marks]
(a) \(\text { Given : } 2 \sin t=\frac{1-2 x+5 x^{2}}{3 x^{2}-2 x-1}, \quad t \in[-\pi / 2, \pi / 2]\)
\(\Rightarrow(6 \sin t-5) x^{2}+2(1-2 \sin t) x-(1+2 \sin t)=0\)
The given equation will hold, if \(x\) be some real number, and hence, \(D \geq 0\)
\(
\begin{aligned}
&\Rightarrow 4(1-2 \sin t)^{2}+4(6 \sin t-5)(1+2 \sin t) \geq 0 \\
&\Rightarrow 16 \sin ^{2} t-8 \sin t-4 \geq 0 \Rightarrow\left(4 \sin ^{2} t-2 \sin t-1\right) \geq 0 \\
&\Rightarrow 4\left(\sin t-\frac{\sqrt{5}+1}{4}\right)\left(\sin t+\frac{\sqrt{5}-1}{4}\right) \geq 0 \\
&\Rightarrow \sin t \leq-\left(\frac{\sqrt{5}-1}{4}\right) \text { or } \sin t \geq \frac{\sqrt{5}+1}{4} \\
&\Rightarrow \sin t \leq \sin (-\pi / 10) \text { or } \quad \sin t \geq \sin (3 \pi / 10) \\
&\Rightarrow t \leq-\pi / 10 \quad \text { or } \quad t \geq 3 \pi / 10 \\
&\text { [Note that } \sin x \text { is an increasing function from }-\pi / 2 \text { to } \pi / 2] \\
&\therefore \quad \text { range of } t \text { is }[-\pi / 2,-\pi / 10] \cup[3 \pi / 10, \pi / 2]
\end{aligned}
\)
If \(L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)\) and \(M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)\), then \(:\) [Main Sep. 05, 2020 (II)]
(d) \(\mathrm{L}+\mathrm{M}=1-2 \sin ^{2} \frac{\pi}{8}=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}\dots….(i)\)
and \(\mathrm{L}-\mathrm{M}=-\cos \frac{\pi}{8} \dots….(ii)\)
From equations (i) and (ii),
\(
\begin{aligned}
&L=\frac{1}{2}\left(\frac{1}{\sqrt{2}}-\cos \frac{\pi}{8}\right)=\frac{1}{2 \sqrt{2}}-\frac{1}{2} \cos \frac{\pi}{8} \text { and } \\
&M=\frac{1}{2}\left(\frac{1}{\sqrt{2}}+\cos \frac{\pi}{8}\right)=\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}
\end{aligned}
\)
The set of all possible values of \(\theta\) in the interval \((0, \pi)\) for which the points \((1,2)\) and \((\sin \theta, \cos \theta)\) lie on the same side of the line \(x+y=\) 1 is: [Main Sep. 02, 2020 (II)]
(a) Let \(f(x, y)=x+y-1\)
Given \((1,2)\) and \((\sin \theta, \cos \theta)\) are lies on same side.
\(
\begin{aligned}
&\therefore f(1,2) \cdot f(\sin \theta, \cos \theta)>0 \\
&\Rightarrow 2[\sin \theta+\cos \theta-1]>0 \\
&\Rightarrow \sin \theta+\cos \theta>1 \Rightarrow \sin \left(\theta+\frac{\pi}{4}\right)>\frac{1}{\sqrt{2}} \\
&\Rightarrow \theta+\frac{\pi}{4} \in\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right) \Rightarrow \theta \in\left(0, \frac{\pi}{2}\right)
\end{aligned}
\)
The value of \(\cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right)\) is [Main Jan. 9, 2020 (I)]
\(
\begin{aligned}
&\text { (b) } \cos ^{3} \frac{\pi}{8}\left[4 \cos ^{3} \frac{\pi}{8}-3 \cos \frac{\pi}{8}\right]\\
&+\sin ^{3} \frac{\pi}{8}\left[3 \sin \frac{\pi}{8}-4 \sin ^{3} \frac{\pi}{8}\right]\\
&=4 \cos ^{6} \frac{\pi}{8}-4 \sin ^{6} \frac{\pi}{8}-3 \cos ^{4} \frac{\pi}{8}+3 \sin ^{4} \frac{\pi}{8}\\
&=4\left[\left(\cos ^{2} \frac{\pi}{8}-\sin ^{2} \frac{\pi}{8}\right)\right]\\
&\left[\left(\sin ^{4} \frac{\pi}{8}+\cos ^{4} \frac{\pi}{8}+\sin ^{2} \frac{\pi}{8} \cos ^{2} \frac{\pi}{8}\right)\right]\\
&-3\left[\left(\cos ^{2} \frac{\pi}{8}-\sin ^{2} \frac{\pi}{8}\right)\left(\cos ^{2} \frac{\pi}{8}+\sin ^{2} \frac{\pi}{8}\right)\right]\\
&=\cos \frac{\pi}{4}\left[4\left(1-\sin ^{2} \frac{\pi}{8} \cos ^{2} \frac{\pi}{8}\right)-3\right]\\
&=\frac{1}{\sqrt{2}}\left[1-\frac{1}{2}\right]=\frac{1}{2 \sqrt{2}}
\end{aligned}
\)
The angle of elevation of the top of a vertical tower standing on a horizontal plane is observed to be \(45^{\circ}\) from a point \(\mathrm{A}\) on the plane. Let \(B\) be the point \(30 \mathrm{~m}\) vertically above the point \(A\). If the angle of elevation of the top of the tower from \(\mathrm{B}\) be \(30^{\circ}\), then the distance (in \(\mathrm{m})\) of the foot of the tower from the point \(A\) is: [Main April 12, 2019(II)]
(a) Let the height of the tower be \(h\) and the distance of the foot of the tower from the point \(A\) is \(d\).
By the diagram,
\(
\begin{gathered}
\tan 45^{\circ}=\frac{h}{d}=1 \\
h=d \dots ….(i)
\end{gathered}
\)
\(\tan 30^{\circ}=\frac{h-30}{d}\)
\(
\sqrt{3}(h-30)=d \dots ….(ii)
\)
Put the value of \(h\) from (i) to (ii),
\(
\begin{aligned}
&\sqrt{3} d=d+30 \sqrt{3} \\
&d=\frac{30 \sqrt{3}}{\sqrt{3-1}}=15 \sqrt{3}(\sqrt{3}+1)=15(3+\sqrt{3})
\end{aligned}
\)
The value of \(\cos ^{2} 10^{\circ}-\cos 10^{\circ} \cos 50^{\circ}+\cos ^{2} 50^{\circ}\) is: [Main April 9, 2019 (II)]
(b) \(\cos ^{2} 10^{\circ}-\cos 10^{\circ} \cos 50^{\circ}+\cos ^{2} 50^{\circ}\)
\(
\begin{aligned}
&=\left(\frac{1+\cos 20^{\circ}}{2}\right)+\left(\frac{1+\cos 100^{\circ}}{2}\right)-\frac{1}{2}\left(2 \cos 10^{\circ} \cos 50^{\circ}\right) \\
&=1+\frac{1}{2}\left(\cos 20^{\circ}+\cos 100^{\circ}\right)-\frac{1}{2}\left[\cos 60^{\circ}+\cos 40^{\circ}\right] \\
&=\left(1-\frac{1}{4}\right)+\frac{1}{2}\left[\cos 20^{\circ}+\cos 100^{\circ}-\cos 40^{\circ}\right] \\
&=\frac{3}{4}+\frac{1}{2}\left[2 \cos 60^{\circ} \times \cos 40^{\circ}-\cos 40^{\circ}\right] \\
&=\frac{3}{4}
\end{aligned}
\)
If \(\cos (\alpha+\beta)=\frac{3}{5}, \sin (\alpha-\beta)=\frac{5}{13}\) and \(0<\alpha, \beta<\frac{\pi}{4}\), then \(\tan (2 \alpha)\) is equal to : [Main April 8, 2019(I)]
(b) \(\alpha+\beta\) and \(\alpha-\beta\) both are acute angles.
\(\cos (\alpha+\beta)=\frac{3}{5}\), then \(\sin (\alpha+\beta)=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}\)
\(\tan (\alpha+\beta)=\frac{4}{3}\)
And \(\sin (\alpha-\beta)=\frac{5}{13}\), then
\(\cos (\alpha-\beta)=\sqrt{1-\left(\frac{5}{13}\right)^{2}}=\frac{12}{13}\)
\(\Rightarrow \tan (\alpha-\beta)=\frac{5}{12}\)
Now, \(\tan 2 \alpha=\tan ((\alpha+\beta)+(\alpha-\beta))\)
\(=\frac{\tan (\alpha+\beta)+\tan (\alpha-\beta)}{1-\tan (\alpha+\beta) \cdot \tan (\alpha-\beta)}=\frac{\frac{4}{3}+\frac{5}{12}}{1-\frac{4}{3} \cdot \frac{5}{12}}=\frac{63}{16}\)
If \(\sin ^{4} \alpha+4 \cos ^{4} \beta+2=4 \sqrt{2} \sin \alpha \cos \beta ; \alpha, \beta \in[0, \pi]\), then \(\cos (\alpha+\beta)\) \(-\cos (\alpha-\beta)\) is equal to: [Main Jan. 12, 2019 (II)]
(d)
\(
\text { A.M. } \geq \text { G.M. }
\)
\(\frac{\sin ^{4} \alpha+4 \cos ^{4} \beta+1+1}{4} \geq\left(\sin ^{4} \alpha \cdot 4 \cdot \cos ^{4} \beta .1 .1\right) \frac{1}{4}\)
\(
\begin{aligned}
&\Rightarrow \text { A.M. }=\text { G.M. } \Rightarrow \sin ^{4} \alpha=1=4 \cos ^{4} \beta \\
&\sin \alpha=1, \cos \beta=\pm \frac{1}{\sqrt{2}} \\
&\sin \beta=\frac{1}{\sqrt{2}} \operatorname{as} \beta \in[0, \pi] \\
&\cos (\alpha+\beta)-\cos (\alpha-\beta)=-2 \sin \alpha \sin \beta \\
&=-\sqrt{2}
\end{aligned}
\)
Let \(f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)\) for \(\mathrm{k}=1,2,3, \ldots\) Then for all \(\mathrm{x} \in \mathrm{R}\), the value of \(f_{4}(x)-f_{6}(x)\) is equal to: [Main Jan. 11, 2019(I)]
\(
\begin{aligned}
&\text { (a) } f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)\\
&f_{4}(x)=\frac{1}{4}\left[\sin ^{4} x+\cos ^{4} x\right]\\
&=\frac{1}{4}\left[\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-\frac{(\sin 2 x)^{2}}{2}\right]\\
&=\frac{1}{4}\left[1-\frac{(\sin 2 x)^{2}}{2}\right]
\end{aligned}
\)
\(
\begin{aligned}
& f_{6}(x)=\frac{1}{6}\left[\sin ^{6} x+\cos ^{6} x\right] \\
=& \frac{1}{6}\left[\left(\sin ^{2} x+\left(\cos ^{2} x\right)-\frac{3}{4}\left(\sin ^{2} x\right)^{2}\right]\right.\\
=& \frac{1}{6}\left[1-\frac{3}{4}(\sin 2 x)^{2}\right] \\
& \text { Now } f_{4}(x)-f_{(6)}(x)=\frac{1}{4}-\frac{1}{6}-\frac{(\sin 2 x)^{2}}{8}+\frac{1}{8}(\sin 2 x)^{2} \\
=& \frac{1}{12}
\end{aligned}
\)
If \(5\left(\tan ^{2} x-\cos ^{2} x\right)=2 \cos 2 x+9\), then the value of \(\cos 4 x\) is: [Main 2017]
(a) We have
\(
\begin{aligned}
&5 \tan ^{2} \mathrm{x}-5 \cos ^{2} \mathrm{x}=2\left(2 \cos ^{2} \mathrm{x}-1\right)+9 \\
&\quad \Rightarrow 5 \tan ^{2} \mathrm{x}-5 \cos ^{2} \mathrm{x}=4 \cos ^{2} \mathrm{x}-2+9 \\
&\quad \Rightarrow 5 \tan ^{2} \mathrm{x}=9 \cos ^{2} \mathrm{x}+7 \\
&\quad \Rightarrow 5\left(\sec ^{2} \mathrm{x}-1\right)=9 \cos ^{2} \mathrm{x}+7 \\
&\text { Let } \cos ^{2} \mathrm{x}=\mathrm{t} \\
&\quad \Rightarrow \frac{5}{\mathrm{t}}-9 \mathrm{t}-12=0 \\
&\Rightarrow 9 \mathrm{t}^{2}+12 \mathrm{t}-5=0 \\
&\quad \Rightarrow 9 \mathrm{t}^{2}+15 \mathrm{t}-3 \mathrm{t}-5=0 \\
&\Rightarrow(3 \mathrm{t}-1)(3 \mathrm{t}+5)=0 \\
&\Rightarrow \mathrm{t}=\frac{1}{3} \text { as } \mathrm{t} \neq-\frac{5}{3} \\
&\cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1=2\left(\frac{1}{3}\right)-1=-\frac{1}{3} \\
&\cos 4 \mathrm{x}=2 \cos ^{2} 2 \mathrm{x}-1=2\left(-\frac{1}{3}\right)^{2}-1=-\frac{7}{9}
\end{aligned}
\)
If \(\mathrm{m}\) and \(\mathrm{M}\) are the minimum and the maximum values of \(4+\frac{1}{2} \sin ^{2} 2 x-2 \cos ^{4} x, x \in R\), then \(M-m\) is equal to : [Main Online April 9, 2016]
(b) \(4+\frac{1}{2} \sin ^{2} 2 x-2 \cos ^{4} x\)
\(
=4+2\left(1-\cos ^{2} x\right) \cos ^{2} x-2 \cos ^{4} x
\)
\(
\begin{aligned}
=-4 &\left\{\cos ^{4} x-\frac{\cos ^{2} x}{2}-1+\frac{1}{16}-\frac{1}{16}\right\} \\
=-4 &\left\{\left(\cos ^{2} x-\frac{1}{4}\right)^{2}-\frac{17}{16}\right\} \\
0 \leq \cos ^{2} x & \leq 1 \\
-\frac{1}{4} & \leq \cos ^{2} x-\frac{1}{4} \leq \frac{3}{4} \\
0 & \leq\left(\cos ^{2} x-\frac{1}{4}\right)^{2} \leq \frac{9}{16} \\
-\frac{17}{16} & \leq\left(\cos ^{2} x-\frac{1}{4}\right)^{2}-\frac{17}{16} \leq \frac{9}{16}-\frac{17}{16} \\
\frac{17}{4} & \geq-4\left\{\left(\cos ^{2} x-\frac{1}{4}\right)^{2}-\frac{17}{16}\right\} \geq \frac{1}{2} \\
M &=\frac{17}{4} \\
m &=\frac{1}{2} \\
M-m &=\frac{17}{4}-\frac{2}{4}=\frac{15}{4}
\end{aligned}
\)
The value of \(\sum_{k=1}^{13} \frac{1}{\sin \left(\frac{\pi}{4}+\frac{(k-1) \pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{k \pi}{6}\right)}\) is equal to [Adv. 2016]
(c)Â
\(
\begin{aligned}
& 2 \sum_{k=1}^{13} \frac{\sin \left(\frac{\pi}{6}\right)}{\sin \left(\frac{\pi}{4}+\frac{(k-1) \pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{k \pi}{6}\right)} \\
& =2 \sum \frac{\sin \left\{\left(\frac{\pi}{4}+\frac{k \pi}{6}\right)-\left(\frac{\pi}{4}+\frac{(k-1) \pi}{6}\right)\right\}}{\sin \left(\frac{\pi}{4}+\frac{(k-1) \pi}{6}\right) \cdots \in\left(\frac{\pi}{4}+\frac{k \pi}{6}\right)} \\
& =2 \sum_{k=1}^{13}\left\{\cot \left(\frac{\pi}{4}+\frac{(k-1) \pi}{6}\right)-\cot \left(\frac{\pi}{4}+\frac{k \pi}{6}\right)\right\} \\
& =2\left[\cot \left(\frac{\pi}{4}\right)-\cot \left(\frac{\pi}{4}+\frac{13 \pi}{6}\right)\right] \\
& =2[1-(2-\sqrt{3})] \\
& =2(\sqrt{3}-1)
\end{aligned}
\)
If \(\cos \alpha+\cos \beta=\frac{3}{2}\) and \(\sin \alpha+\sin \beta =\frac{1}{2}\) and \(\theta\) is the the arithmetic mean of \(\alpha\) and \(\beta\), then \(\sin 2 \theta+\cos 2 \theta\) is equal to: [Main Online April 11, 2015]
(b) Let \(\cos \alpha+\cos \beta=\frac{3}{2}\)
\(\Rightarrow 2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}=\frac{3}{2}\)
and \(\sin \alpha+\sin \beta=\frac{1}{2}\)
\(
\Rightarrow 2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}=\frac{1}{2}
\)
On dividing (ii) by (i), we get
\(
\tan \left(\frac{\alpha+\beta}{2}\right)=\frac{1}{3}
\)
Given : \(\theta=\frac{\alpha+\beta}{2} \Rightarrow 2 \theta=\alpha+\beta\)
Consider \(\sin 2 \theta+\cos 2 \theta=\sin (\alpha+\beta)+\cos (\alpha+\beta)\)
\(
=\frac{\frac{2}{3}}{1+\frac{1}{9}}+\frac{1-\frac{1}{9}}{1+\frac{1}{9}}=\frac{6}{10}+\frac{8}{10}=\frac{7}{5}
\)
Let \(\theta \in\left(0, \frac{\pi}{4}\right)\) and \(t_{1}=(\tan \theta)^{\tan \theta}, t_{2}=(\tan \theta)^{\cot \theta}, t_{3}=(\cot \theta)^{\tan \theta}\) and \(t_{4}=\) \((\cot \theta)^{\cot \theta}\), then [2006-3 M,-1]
(b) Given: \(\theta \in\left(0, \frac{\pi}{4}\right) \Rightarrow \tan \theta<1\) and \(\cot \theta>1\)
Let \(\tan \theta=1-x\) and \(\cot \theta=1+y\),
where \(x, y>0\) and are very small, then
\(
\begin{aligned}
&\therefore t_{1}=(1-x)^{1-x}, t_{2}=(1-x)^{1+y} \\
&\mathrm{t}_{3}=(1+y)^{1-x}, t_{4}=(1+y)^{1+y} \\
&\text { Clearly, } t_{4}>t_{3} \text { and } t_{1}>t_{2} \text { also, } t_{3}>t_{1} \\
&\therefore t_{4}>t_{3}>t_{1}>t_{2}
\end{aligned}
\)
The values of \(\theta \in(0,2 \pi)\) for which \(2 \sin ^{2} \theta-5 \sin \theta+2>0\), are [2006-3M, -1]
(a) \(2 \sin ^{2} \theta-5 \sin \theta+2>0\)
\(
\begin{aligned}
&\Rightarrow(\sin \theta-2)(2 \sin \theta-1)>0 \\
&\because-1 \leq \sin \theta \leq 1, \quad \therefore \sin \theta<\frac{1}{2}
\end{aligned}
\)
\(
\text { From graph, we get } x \in\left(0, \frac{\pi}{6}\right) \cup\left(\frac{5 \pi}{6}, 2 \pi\right)
\)
If \(\alpha+\beta=\pi / 2\) and \(\beta+\gamma=\alpha\), then \(\tan \alpha\) equals [2001S]
(c) Given : \(\alpha+\beta=\pi / 2 \Rightarrow \alpha=\pi / 2-\beta\)
\(
\begin{aligned}
&\Rightarrow \tan \alpha=\tan (\pi / 2-\beta)=\cot \beta=\frac{1}{\tan \beta} \\
&\Rightarrow \tan \alpha \tan \beta=1 \Rightarrow 1+\tan \alpha \tan \beta=2 .
\end{aligned}
\)
Now, \(\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}\)
\(
\begin{aligned}
&\Rightarrow \tan \gamma=\frac{\tan \alpha-\tan \beta}{2} \\
&\Rightarrow 2 \tan \gamma=\tan \alpha-\tan \beta \Rightarrow \tan \alpha=2 \tan \gamma+\tan \beta
\end{aligned}
\)
The maximum value of \(\left(\cos \alpha_{1}\right) \cdot\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{n}\right)\), under the restrictions
\(0 \leq \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \leq \frac{\pi}{2}\) and \(\left(\cot \alpha_{1}\right) \cdot\left(\cot \alpha_{2}\right) \ldots\left(\cot \alpha_{n}\right)=1\) is [2001S]
(a) Given : \(\left(\cot \alpha_{1}\right) \cdot\left(\cot \alpha_{2}\right) \ldots\left(\cot \alpha_{n}\right)=1\)
\(
\begin{aligned}
\Rightarrow\left(\cos \alpha_{1}\right)\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{n}\right) \\
=&\left(\sin \alpha_{1}\right)\left(\sin \alpha_{2}\right) \ldots\left(\sin \alpha_{n}\right) \dots ….(i)
\end{aligned}
\)
Let \(\mathrm{y}=\left(\cos \alpha_{1}\right)\left(\cos \alpha_{2}\right) \ldots\left(\cos \alpha_{n}\right)\) (to be max.)
\(
\Rightarrow \mathrm{y}^{2}=\left(\cos ^{2} \alpha_{1}\right)\left(\cos ^{2} \alpha_{2}\right) \ldots\left(\cos ^{2} \alpha_{n}\right)
\)
\(
\begin{aligned}
&=\cos \alpha_{1} \sin \alpha_{1} \cos \alpha_{2} \sin \alpha_{2} \ldots \cos \alpha_{n} \sin \alpha_{n} \quad(\text { From(i)) } \\
&=\frac{1}{2^{n}}\left[\sin 2 \alpha_{1} \sin 2 \alpha_{2} \ldots . \sin 2 \alpha_{n}\right] \\
&\text { Now, } 0 \leq \alpha_{1}, \alpha_{2}, \ldots \ldots \alpha_{n} \leq \pi / 2 \\
&\therefore 0 \leq 2 \alpha_{1}, 2 \alpha_{2}, \ldots \ldots, 2 \alpha_{n} \leq \pi \\
&\Rightarrow 0 \leq \sin 2 \alpha_{1}, \sin 2 \alpha_{2}, \ldots ., \sin 2 \alpha_{n} \leq 1 \\
&\therefore y^{2} \leq \frac{1}{2^{n}} \cdot 1 \Rightarrow y \leq \frac{1}{2^{n / 2}} \\
&\therefore \text { Max. value of } y \text { i.e. }\left(\cos \alpha_{1}\right) \cdot\left(\cos \alpha_{2}\right) \ldots .\left(\cos \alpha_{n}\right)=\frac{1}{2^{n / 2}} .
\end{aligned}
\)
Let \(f(\theta)=\sin \theta(\sin \theta+\sin 3 \theta)\). Then \(f(\theta)\) is [2000S]
(c) \(f(\theta)=\sin \theta(\sin \theta+\sin 3 \theta)\)
\(
\begin{aligned}
&=\sin \theta\left(\sin \theta+3 \sin \theta-4 \sin ^{3} \theta\right) \\
&=\sin \theta\left(4 \sin \theta-4 \sin ^{3} \theta\right)=\sin ^{2} \theta\left(4-4 \sin ^{2} \theta\right) \\
&=4 \sin ^{2} \theta\left(1-\sin ^{2} \theta\right) \\
&=4 \sin ^{2} \theta \cos ^{2} \theta=(2 \sin \theta \cos \theta)^{2}=(\sin 2 \theta)^{2} \geq 0,
\end{aligned}
\)
which is true for all \(\theta\).
\(3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4\left(\sin ^{6} x+\cos ^{6} x\right)=\) [1995S]
\(
\begin{aligned}
&\text { (c) } 3(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4\left(\sin ^{6} x+\cos ^{6} x\right) \\
&=3(1-\sin 2 x)^{2}+6(1+\sin 2 x) \\
&\qquad+4\left[\left(\sin ^{2} x+\cos ^{2} x\right)^{3}-3 \sin ^{2} x \cos ^{2} x\left(\sin ^{2} x+\cos ^{2} x\right)\right]
\end{aligned}
\)
Let \(0<x<\frac{\pi}{4}\) then \((\sec 2 x-\tan 2 x)\) equals [1994]
(b) \(\sec 2 \mathrm{x}-\tan 2 \mathrm{x}=\frac{1-\sin 2 x}{\cos 2 x}=\frac{1-\cos 2\left(\frac{\pi}{4}-x\right)}{\sin 2\left(\frac{\pi}{4}-x\right)}\)
\(
=\frac{2 \sin ^{2}\left(\frac{\pi}{4}-x\right)}{2 \sin \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-x\right)}=\tan \left(\frac{\pi}{4}-x\right)
\)
Given \(A=\sin ^{2} \theta+\cos ^{4} \theta\) then for all real values of \(\theta\) [1980]
\(
\text { (b) } A=\sin ^{2} \theta+\cos ^{4} \theta=\sin ^{2} \theta+\left(1-\sin ^{2} \theta\right)^{2}
\)
\(
=\sin ^{4} \theta-\sin ^{2} \theta+1 \Rightarrow A=\left(\sin ^{2} \theta-\frac{1}{2}\right)^{2}+\frac{3}{4}
\)
Now,
\(
\begin{aligned}
&0 \leq\left(\sin ^{2} \theta-\frac{1}{2}\right)^{2} \leq \frac{1}{4} \\
&\Rightarrow \frac{3}{4} \leq\left(\sin ^{2} \theta-\frac{1}{2}\right)^{2}+\frac{3}{4} \leq 1 \Rightarrow \frac{3}{4} \leq A \leq 1
\end{aligned}
\)
If \(\alpha+\beta+\gamma=2 \pi\), then [1979]
(a) \(\alpha+\beta+\gamma=2 \pi \Rightarrow \frac{\alpha}{2}+\frac{\beta}{2}+\frac{\gamma}{2}=\pi\)
\(
\begin{gathered}
\therefore \tan \left(\frac{\alpha}{2}+\frac{\beta}{2}\right)=\tan \left(\pi-\frac{\gamma}{2}\right)=-\tan \frac{\gamma}{2} \\
\Rightarrow \frac{\tan \alpha / 2+\tan \beta / 2}{1-\tan \alpha / 2 \tan \beta / 2}=-\tan \gamma / 2 \\
\Rightarrow \tan \alpha / 2+\tan \beta / 2+\tan \gamma / 2 \\
=\tan \alpha / 2 \tan \beta / 2 \tan \gamma / 2
\end{gathered}
\)
The maximum value of the expression \(\frac{1}{\sin ^{2} \theta+3 \sin \theta \cos \theta+5 \cos ^{2} \theta}\) is [2010]
(b) Let \(f(\theta)=\frac{1}{g(\theta)}\),
where \(g(\theta)=\sin ^{2} \theta+3 \sin \theta \cos \theta+5 \cos ^{2} \theta\)
Clearly \(f\) is maximum when \(g\) is minimum
Now \(g(\theta)=\frac{1-\cos 2 \theta}{2}+\frac{3}{2} \sin 2 \theta+\frac{5}{2}(1+\cos 2 \theta)\)
\(
\begin{aligned}
&=3+2 \cos 2 \theta+\frac{3}{2} \sin 2 \theta \geq 3+\left(-\sqrt{4+\frac{9}{4}}\right) \\
&\therefore g_{\min }=3-\frac{5}{2}=\frac{1}{2} \Rightarrow f_{\max }=2 .
\end{aligned}
\)
\(\text { If } \frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7} \text { and } \sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}} . \alpha, \beta \in\left(0, \frac{\pi}{2}\right) \text {, then } \tan (\alpha+2 \beta) \text { is equal to }\) [Main Jan. 8, 2020 (II)]
\(
\begin{aligned}
&\text { (c) } \frac{\sqrt{2} \sin \alpha}{\sqrt{2} \cos \alpha} = \frac{1}{\sqrt{7}} \text { and } \sqrt{\frac{1-\cos {2} \beta}{2}}=\frac{1}{10} \\
&\Rightarrow \frac{\sqrt{2} \sin \beta}{\sqrt{2}}=\frac{1}{\sqrt{10}}
\end{aligned}
\)
\(
\begin{gathered}
\therefore \quad \tan \alpha=\frac{1}{7} \text { and } \sin \beta=\frac{1}{\sqrt{10}} \\
\tan \beta=\frac{1}{3} \\
\therefore \quad \tan 2 \beta=\frac{2 \tan \beta}{1-\tan ^{2} \beta}=\frac{2 \cdot \frac{1}{3}}{1-\frac{1}{9}}=\frac{\frac{2}{3}}{\frac{8}{9}}=\frac{3}{4} \\
\tan (\alpha+2 \beta)=\frac{\tan \alpha+\tan 2 \beta}{1-\tan \alpha \tan 2 \beta} \\
=\frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7} \cdot \frac{3+2}{4}}=\frac{\frac{42}{28}}{\frac{25}{2}}=1
\end{gathered}
\)
Let \(f:[0,2] \rightarrow \mathbf{R}\) be the function defined by
\(f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right) \text {. }\)
If \(\alpha, \beta \in[0,2]\) are such that \(\{x \in[0,2]: f(x) \geq 0\}=[\alpha, \beta]\), then the value of \(\beta-\alpha\) is ___Â [Adv. 2020]
(d)
\(
\begin{aligned}
&\text { Let } \pi x-\frac{\pi}{4}=\theta \in\left[\frac{-\pi}{4}, \frac{7 \pi}{4}\right] \\
&\text { So, }\left(3-\sin \left(\frac{\pi}{2}+2 \theta\right)\right) \sin \theta \geq \sin (\pi+3 \theta) \\
&\Rightarrow(3-\cos 2 \theta) \sin \theta \geq-\sin 3 \theta \\
&\Rightarrow \sin \theta\left[3-4 \sin ^{2} \theta+3-\cos 2 \theta\right] \geq 0 \\
&\Rightarrow \sin \theta(6-2(1-\cos 2 \theta)-\cos 2 \theta) \geq 0 \\
&\Rightarrow \sin \theta(4+\cos 2 \theta) \geq 0 \\
&\Rightarrow \sin \theta \geq 0 \\
&\Rightarrow \theta \in[0, \pi] \Rightarrow 0 \leq \pi x-\frac{\pi}{4} \leq \pi \\
&\Rightarrow x \in\left[\frac{1}{4}, \quad \frac{5}{4}\right] \\
&\Rightarrow[\alpha, \beta]=\left[\frac{1}{4}, \frac{5}{4}\right] \\
&\therefore \beta-\alpha=\frac{5}{4}-\frac{1}{4}=1
\end{aligned}
\)
If \(A>0, B>0\) and \(A+B=\pi / 3\), then the maximum value of \(\tan\) \(A \tan B\) is ____ [1993 – 2 Marks]
(a) \(\text { Given : } A+B=\pi / 3 \Rightarrow \tan (A+B)=\sqrt{3}\)
\(
\begin{aligned}
&\Rightarrow \frac{\tan A+\tan B}{1-\tan A \tan B}=\sqrt{3} \Rightarrow \frac{\tan A+\frac{y}{\tan A}}{1-y}=\sqrt{3} \\
&\Rightarrow \tan ^{2} A+\sqrt{3}(y-1) \tan A+y=0 \quad \text { [Let } y=\tan A \tan B \text { ] }
\end{aligned}
\)
For real value of \(\tan A, 3(y-1)^{2}-4 y \geq 0\)
\(
\begin{aligned}
&\Rightarrow 3 y^{2}-10 y+3 \geq 0 \Rightarrow(y-3)\left(y-\frac{1}{3}\right) \geq 0 \\
&\Rightarrow y \leq \frac{1}{3} \text { or } \geq 3
\end{aligned}
\)
But \(A, B>0\) and \(A+B=\pi / 3 \Rightarrow A, B<\pi / 3\)
\(
\begin{aligned}
&\Rightarrow \tan A \tan B<3 \\
&\Rightarrow y \leq \frac{1}{3} \Rightarrow \text { Max. value of } y \text { is } 1 / 3 .
\end{aligned}
\)
If \(K=\sin (\pi / 18) \sin (5 \pi / 18) \sin (7 \pi / 18)\), then the numerical value of \(\mathrm{K}\) is [1993 – 2 Marks]
(c) \(K=\sin \frac{\pi}{18} \sin \frac{5 \pi}{18} \sin \frac{7 \pi}{18}\) \(=\cos \left(\frac{\pi}{2}-\frac{\pi}{18}\right) \cos \left(\frac{\pi}{2}-\frac{5 \pi}{18}\right) \cos \left(\frac{\pi}{2}-\frac{7 \pi}{18}\right)\) \(=\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}=\frac{1}{2^{3} \sin \frac{\pi}{9}} \cdot \sin \frac{8 \pi}{9}\) \(\left[\cos \alpha \cos 2 \alpha \quad \cos 2^{2} \alpha \ldots \ldots \ldots \cos 2^{n-1} \alpha=\frac{1}{2^{n} \sin \alpha} \cdot \sin \left(2^{n} \alpha\right)\right]\) \(=\frac{1}{8 \sin \pi / 9} \cdot \sin \pi / 9=\frac{1}{8}\)
The value of \(\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14} \sin \frac{7 \pi}{14} \sin \frac{9 \pi}{14} \sin \frac{11 \pi}{14} \sin \frac{13 \pi}{14}\) is equal to [1991 – 2 Marks]
(b)
\(\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14} \sin \frac{7 \pi}{14} \sin \frac{9 \pi}{14} \sin \frac{11 \pi}{14} \sin \frac{13 \pi}{14}\)
\(
\begin{aligned}
=\left(\sin \frac{\pi}{14} \sin \frac{3 \pi}{14} \sin \frac{5 \pi}{14}\right)^{2} \times 1 \\
& {\left[\because \sin \frac{13 \pi}{14}=\sin \frac{\pi}{14}, \sin \frac{11 \pi}{14}=\sin \frac{3 \pi}{14} \text { and } \sin \frac{3 \pi}{14}=\sin \frac{5 \pi}{14}\right] }
\end{aligned}
\)
\(\begin{aligned}
&=\left[\cos \left(\frac{\pi}{2}-\frac{\pi}{14}\right) \cos \left(\frac{\pi}{2}-\frac{3 \pi}{14}\right) \cos \left(\frac{\pi}{2}-\frac{5 \pi}{14}\right)\right]^{2} \\
&=\left[\cos \frac{3 \pi}{7} \cos \frac{2 \pi}{7} \cos \frac{\pi}{7}\right]^{2}=\left[\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}\right]^{2}
\end{aligned}\)
\(\left[\cos \alpha \cos 2 \alpha \quad \cos 2^{2} \alpha \ldots \ldots \ldots \cos 2^{n-1} \alpha\right.\)\(\left.=\frac{1}{2^{n} \sin \alpha} \cdot \sin \left(2^{n} \alpha\right)\right]\)
\(
\begin{aligned}
&=\left(\frac{1}{8 \sin \pi / 7} \sin \frac{8 \pi}{7}\right)^{2}=\left(\frac{\sin (\pi+\pi / 7)}{8 \sin \pi / 7}\right)^{2} \\
&=\left(\frac{-\sin \pi / 7}{8 \sin \pi / 7}\right)^{2}=\left(\frac{1}{8}\right)^{2}=\frac{1}{64}
\end{aligned}
\)
Suppose \(\sin ^{3} x \sin 3 x=\sum_{m=0}^{n} C_{m} \cos m x\) is an identity in \(x\), where \(C_{0}, C_{1}\), \(C_{\mathrm{n}}\) are constants, and \(C_{n} \neq 0\). then the value of \(n\) is [1981 – 2 Marks]
(c) Given \(\sin ^{3} x \cdot \sin 3 x=\sum_{m=0}^{n} C_{m} \cos m x\)
\(
\begin{aligned}
&\sin ^{3} x \sin 3 x=\frac{1}{4}[3 \sin x-\sin 3 x] \sin 3 x \\
&=\quad \frac{1}{4}\left[\frac{3}{2} \cdot 2 \sin x \cdot \sin 3 x-\sin ^{2} 3 x\right] \\
&=\frac{1}{4}\left[\frac{3}{2}(\cos 2 x-\cos x)-\frac{1}{2}(1-\cos 6 x)\right] \\
&=\frac{1}{8}[\cos 6 x+3 \cos 2 x-3 \cos x-1] \\
&\quad \therefore \quad \text { Max value of } m=6 \quad \therefore \quad n=6
\end{aligned}
\)
If \(\tan A=(1-\cos B) / \sin B\), then \(\tan 2 A=\tan B\). True or False? [1983 – 1 Mark]
(b) (True) \(\tan A=\frac{1-\cos B}{\sin B}=\frac{2 \sin ^{2} B / 2}{2 \sin B / 2 \cos / 2}=\tan B / 2\)
Now, \(\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}=\frac{2 \tan B / 2}{1-\tan ^{2} B / 2}=\tan B\) Hence, statement is true.
Let \(f(x)=x \sin \pi x, x>0\). Then for all natural numbers \(n, f^{\prime}(x)\) vanishes at [Adv. 2013]
(b, c) Given: \(f(x)=x \sin \pi x, x>0\) \(\Rightarrow f^{\prime}(x)=\sin \pi x+x \pi \cos \pi x\)
Now, \(f^{\prime}(x)=0 \Rightarrow \tan \pi x=-\pi x\)
From graph of \(y=\tan \pi x\) and \(y=-\pi x\), it is clear that they intersect each other at unique point in the intervals
\((n, n+1) \text { and }\left(n+\frac{1}{2}, n+1\right)\)
\(
\begin{gathered}
\text { Let } \theta, \phi \in[0,2 \pi] \text { be such that } 2 \cos \theta(1-\sin \phi) \\
=\sin ^{2} \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \varphi-1, \tan (2 \pi-\theta)>0 \text { and } \\
-1<\sin \theta<-\frac{\sqrt{3}}{2}, \text { then } \phi \text { cannot satisfy }
\end{gathered}\) [2012]
\((a, c, d)\)
As \(\tan (2 \pi-\theta)>0\) and \(-1<\sin \theta<-\frac{\sqrt{3}}{2}, \theta \in[0,2 \pi]\)
Hence \(\frac{3 \pi}{2}<\theta<\frac{5 \pi}{3}\)
Now \(2 \cos \theta(1-\sin \phi)=\sin ^{2} \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \phi-1\)
\(
\Rightarrow 2 \cos \theta(1-\sin \phi)=2 \sin \theta \cos \phi-1
\)
\(
\Rightarrow 2 \cos \theta+1=2 \sin (\theta+\phi)
\)
As \(\theta \in\left(\frac{3 \pi}{2}, \frac{5 \pi}{3}\right), 1<2 \sin (\theta+\phi)<2\)
As \(\theta+\varphi \in\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)\) or \((\theta+\phi) \in\left(\frac{13 \pi}{6}, \frac{17 \pi}{6}\right)\)
We have \(\varphi \in\left(-\frac{3 \pi}{2},-\frac{2 \pi}{3}\right) \cup\left(\frac{2 \pi}{3}, \frac{7 \pi}{6}\right)\)
If \(\frac{\sin ^{4} x}{2}+\frac{\cos ^{4} x}{3}=\frac{1}{5}\), then [2009]
(a, b) Given:
\(
\frac{\sin ^{4} x}{2}+\frac{\cos ^{4} x}{3}=\frac{1}{5} \Rightarrow 3 \sin ^{4} x+2 \cos ^{4} x=\frac{6}{5}
\)
\(
\begin{aligned}
&\Rightarrow \sin ^{4} x+2\left[\sin ^{4} x+\cos ^{4} x\right]=\frac{6}{5} \\
&\Rightarrow \sin ^{4} x+2\left[1-2 \sin ^{2} x \cos ^{2} x\right]=\frac{6}{5} \\
&\Rightarrow \sin ^{4} x+2-4 \sin ^{2} x\left(1-\sin ^{2} x\right)=\frac{6}{5} \\
&\Rightarrow 5 \sin ^{4} x-4 \sin ^{2} x+2-\frac{6}{5}=0 \\
&\Rightarrow 25 \sin ^{4} x-20 \sin ^{2} x+4=0 \\
&\Rightarrow\left(5 \sin ^{2} x-2\right)^{2}=0 \Rightarrow \sin ^{2} x=\frac{2}{5} \\
&\Rightarrow \cos ^{2} x=\frac{3}{5} \text { and } \tan ^{2} x=\frac{2}{3} \\
&\text { Also } \frac{\sin ^{8} x}{8}+\frac{\cos ^{8} x}{27}=\frac{2}{625}+\frac{3}{625}=\frac{5}{625}=\frac{1}{125}
\end{aligned}
\)
For a positive integer \(n\), let \(f_{n}(\theta)\)
\(=\left(\tan \frac{\theta}{2}\right)(1+\sec \theta)(1+\sec 2 \theta)(1+\sec 4 \theta) \ldots .\left(1+\sec 2^{n} \theta\right) \text {. Then } \) [1999 – 3 Marks]
(a, b, c, d) Note that the multiplicative loop is very important approach in IIT Mathematics
\(
\begin{aligned}
&\left(\tan \frac{\theta}{2}\right)(1+\sec \theta)=\frac{\sin \theta / 2}{\cos \theta / 2} \cdot\left[1+\frac{1}{\cos \theta}\right] \\
&=\frac{(\sin \theta / 2) 2 \cos ^{2} \theta / 2}{(\cos \theta / 2) \cos \theta} \\
&=\frac{(2 \sin \theta / 2) \cos \theta / 2}{\cos \theta}=\frac{\sin \theta}{\cos \theta}=\tan \theta \\
&\therefore \quad f_{n}(\theta)=(\tan \theta / 2)(1+\sec \theta) \\
&(1+\sec 2 \theta)\left(1+\sec 2^{2} \theta\right) \ldots\left(1+\sec 2^{n} \theta\right) \\
&=(\tan \theta)(1+\sec 2 \theta)\left(1+\sec 2^{2} \theta\right) \ldots\left(1+\sec 2^{n} \theta\right) \\
&=\tan 2 \theta \cdot\left(1+\sec 2^{2} \theta\right) \ldots\left(1+\sec 2^{n} \theta\right)=\tan \left(2^{n} \theta\right) \\
&\text { Now, } f_{2}\left(\frac{\pi}{16}\right)=\tan \left(2^{2} \cdot \frac{\pi}{16}\right)=\tan \left(\frac{\pi}{4}\right)=1
\end{aligned}
\)
Therefore, (a) is the correct option.
\(
f_{3}\left(\frac{\pi}{32}\right)=\tan \left(2^{3} \cdot \frac{\pi}{32}\right)=\tan \left(\frac{\pi}{4}\right)=1
\)
Therefore, (b) is the correct option.
\(
f_{4}\left(\frac{\pi}{64}\right)=\tan \left(2^{4} \cdot \frac{\pi}{64}\right)=\tan \left(\frac{\pi}{4}\right)=1
\)
Therefore, (c) is the correct option.
\(
f_{5}\left(\frac{\pi}{128}\right)=\tan \left(2^{5} \cdot \frac{\pi}{128}\right)=\tan \left(\frac{\pi}{4}\right)=1
\)
Therefore, (d) is the correct option.
The minimum value of the expression \(\sin \alpha+\sin \beta+\sin \gamma\), where \(\alpha, \beta, \gamma\) are real numbers satisfying \(\alpha+\beta+\gamma=\pi\) is [1995]
(c) \(\sin \alpha+\sin \beta+\sin \gamma\)
\(
=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}+2 \sin \frac{\gamma}{2} \cos \frac{\gamma}{2}
\)
\(
\begin{aligned}
&=2 \sin \left(\frac{\pi}{2}-\frac{\gamma}{2}\right) \cos \frac{\alpha-\beta}{2}+2 \sin \left(\frac{\pi}{2}-\frac{\alpha+\beta}{2}\right) \cos \frac{\gamma}{2} \\
&=2 \cos \frac{\gamma}{2}\left[\cos \frac{\alpha-\beta}{2}+\cos \frac{\alpha+\beta}{2}\right] \\
&=2 \cos (\alpha / 2) \cos (\beta / 2) \cos (\gamma / 2)
\end{aligned}
\)
\(\therefore\) Each \(\cos ((\alpha / 2), \cos (\beta / 2), \cos (\gamma / 2)\) lies between \(-1\) and 1 .
\(
\begin{aligned}
&\Rightarrow-1 \leq \cos \alpha / 2, \cos \beta / 2, \cos \gamma / 2 \leq 1 \\
&\Rightarrow-2 \leq 2 \cos \alpha / 2, \cos \beta / 2, \cos \gamma / 2 \leq 2 \\
&\Rightarrow-2 \leq \cos \alpha+\cos \beta+\cos \gamma \leq 2 \\
&\therefore \quad \text { Min value of } \sin \alpha+\sin \beta+\sin \gamma=-2
\end{aligned}
\)
Let \(2 \sin ^{2} x+3 \sin x-2>0\) and \(x^{2}-x-2<0(x\) is measured in radians). Then \(x\) lies in the interval [1994]
(d) \(2 \sin ^{2} x+3 \sin x-2>0\)
\(
\begin{aligned}
&(2 \sin x-1)(\sin x+2)>0 \\
&\quad \Rightarrow 2 \sin x-1>0 \quad(\because-1 \leq \sin x \leq 1) \\
&\quad \Rightarrow \sin x>1 / 2 \Rightarrow x \in(\pi / 6,5 \pi / 6) \\
&\text { Also } x^{2}-x-2<0 \\
&\Rightarrow(x-2)(x+1)<0 \Rightarrow-1<x<2
\end{aligned}
\)
On combining (i) and (ii), we get \(x \in(\pi / 6,2)\).
The expression \(3\left[\sin ^{4}\left(\frac{3 \pi}{2}-\alpha\right)+\sin ^{4}(3 \pi+\alpha)\right]-\) \(2\left[\sin ^{6}\left(\frac{\pi}{2}+\alpha\right)+\sin ^{6}(5 \pi-\alpha)\right]\) is equal to [1986 – 2 Marks]
(b) \(3\left[\sin ^{4}\left(\frac{3 \pi}{2}-\alpha\right)+\sin ^{4}(3 \pi+\alpha)\right]\)
\(
-2\left[\sin ^{6}(\pi / 2+\alpha)+\sin ^{6}(5 \pi-\alpha)\right]
\)
\(
\begin{aligned}
&=3\left[\cos ^{4} \alpha+\sin ^{4} \alpha\right]-2\left[\cos ^{6} \alpha+\sin ^{6} \alpha\right] \\
&=3\left[\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)^{2}-2 \sin ^{2} \alpha \cos ^{2} \alpha\right] \\
&-2\left[\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)^{3}-3 \cos ^{2} \alpha \sin ^{2} \alpha\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)\right]= \\
&\quad 3\left[1-2 \sin ^{2} \alpha \cos ^{2} \alpha\right]-2\left[1-3 \cos ^{2} \alpha \sin ^{2} \alpha\right] \\
&=3-6 \sin ^{2} \alpha \cos ^{2} \alpha-2+6 \sin ^{2} \alpha \cos ^{2} \alpha=1
\end{aligned}
\)
\(\left(1+\cos \frac{\pi}{8}\right)\left(1+\cos \frac{3 \pi}{8}\right)\left(1+\cos \frac{5 \pi}{8}\right)\left(1+\cos \frac{7 \pi}{8}\right)\) is equal to [1984 – 3 Marks]
(c) Given,
\(
\begin{aligned}
&(1+\cos \pi / 8)(1+\cos 3 \pi / 8)(1+\cos 5 \pi / 8)(1+\cos 7 \pi / 8) \\
=&(1+\cos \pi / 8)(1+\cos 3 \pi / 8)(1+\cos (\pi-3 \pi / 8)) (1+\cos (\pi-\pi / 8)) \\
=&(1+\cos \pi / 8)(1+\cos 3 \pi / 8)(1-\cos 3 \pi / 8)(1-\cos \pi / 8)=\\
&\left(1-\cos ^{2} \pi / 8\right)\left(1-\cos ^{2} 3 \pi / 8\right)=\sin ^{2} \pi / 8 \sin ^{2} 3 \pi / 8 \\
=& \frac{1}{4} \cdot[2 \sin \pi / 8 \sin (\pi / 2-\pi / 8)]^{2} \\
=& \frac{1}{4} \cdot[2 \sin \pi / 8 \cos (\pi / 8)]^2=\frac{1}{4} \cdot \sin ^{2} \pi / 4=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}
\end{aligned}
\)\(\)
In any triangle \(A B C\), prove that
\(\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2} \text {. }\) [2000 – 3 Marks]
\(
\begin{aligned}
&\because A+B+C=\pi \\
&\Rightarrow \quad \frac{A}{2}+\frac{B}{2}+\frac{C}{2}=\frac{\pi}{2} \Rightarrow \frac{A}{2}+\frac{B}{2}=\frac{\pi}{2}-\frac{C}{2} \\
&\Rightarrow \cot \left(\frac{A}{2}+\frac{B}{2}\right)=\cot \left(\frac{\pi}{2}-\frac{C}{2}\right) \\
&\Rightarrow \quad \frac{\cot \frac{A}{2} \cdot \cot \frac{B}{2}-1}{\cot \frac{A}{2}+\cot \frac{B}{2}}=\tan \frac{C}{2} \\
&\Rightarrow \cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}
\end{aligned}
\)
Prove that \(\sum_{k=1}^{n-1}(n-k) \cos \frac{2 k \pi}{n}=-\frac{n}{2}\), where \(n \geq 3\) is an integer. [1997 – 5 Marks]
\(\text { Let } S=\sum_{k=1}^{n-1}(n-k) \cos \frac{2 k \pi}{n}\)
\(
\begin{aligned}
\Rightarrow S=&(n-1) \cos \frac{2 \pi}{n}+(n-2) \cos 2 . \frac{2 \pi}{n}+\ldots \ldots \\
&+1 \cdot \cos (n-1) \cos \frac{2(\mathrm{n}-1) \pi}{n} \quad \ldots \text { (i) }
\end{aligned}
\)
We know that \(\cos \theta=\cos (2 \pi-\theta)\)
Replacing each angle \(\theta\) by \(2 \pi-\theta\) in (i), we get
\(
\begin{array}{r}
S=(n-1) \cos (n-1) \frac{2 \pi}{n}+(n-2) \cos (n-2) \frac{2 \pi}{n}+\ldots \ldots \\
+1 . \cos \frac{2 \pi}{n} \ldots \text { (ii) }
\end{array}
\)
On adding terms in (i) and (ii) having the same angle and taking \(n\) common, we get
\(
\therefore 2 S=n\left[\cos \frac{2 \pi}{n}+\cos \frac{4 \pi}{n}+\cos \frac{6 \pi}{n}+\ldots .+\cos (n-1) \frac{2 \pi}{n}\right]
\)
Angles are in A.P. with common difference \((d)=\frac{2 \pi}{n}\)
\(
\begin{aligned}
2 S &=n\left[\frac{\sin (n-1) \frac{\pi}{n}}{\sin \frac{\pi}{n}} \cos \frac{\frac{2 \pi}{n}+(n-1) \frac{2 \pi}{n}}{2}\right] \\
&=n .1 \cos \pi=-n, \quad \because \sin (\pi-\theta)=\sin \theta, \quad \therefore S=-n / 2
\end{aligned}
\)
Prove that the values of the function \(\frac{\sin x \cos 3 x}{\sin 3 x \cos x}\) do not lie between \(\frac{1}{3}\) and 3 for any real \(x\). [1997 – 5 Marks]
Let \(y=\frac{\sin x \cos 3 x}{\sin 3 x \cos x}=\frac{\tan x}{\tan 3 x}\)
\(
\begin{aligned}
&=\frac{\tan x\left(1-3 \tan ^{2} x\right)}{3 \tan x-\tan ^{3} x}=\frac{1-3 \tan ^{2} x}{3-\tan ^{2} x} \\
\Rightarrow & 3 y-\left(\tan ^{2} x\right) y=1-3 \tan ^{2} x \Rightarrow 3 y-1=(y-3) \tan ^{2} x \\
\Rightarrow & \tan ^{2} x=\frac{3 y-1}{y-3}=\frac{(3 y-1)(y-3)}{(y-3)^{2}} \\
\text { Since, } \tan ^{2} x>0, \quad \therefore(3 y-1)(y-3)>0 \\
\Rightarrow &\left(y-\frac{1}{3}\right)(y-3)>0 \Rightarrow y<\frac{1}{3} \quad \text { or } \quad y>3
\end{aligned}
\)
\(
\therefore y \text { cannot lie between } \frac{1}{3} \text { and } 3 \text {. }
\)
Find the smallest positive number \(p\) for which the equation \(\cos (p \sin\) \(x)=\sin (p \cos x)\) has a solution \(x \in[0,2 \pi]\). [1995 – 5 Marks]
Given: \(\cos \theta=\sin \varphi\), where \(\theta=p \sin x, \varphi=p \cos x\)
Above is possible when both \(\theta=\varphi=\frac{\pi}{4}\) or \(\theta=\varphi=\frac{5 \pi}{4}\)
\(
\therefore \quad p \sin x=\frac{\pi}{4} \quad \text { or } \quad p \sin x=\frac{5 \pi}{4}
\)
and \(p \cos x=\frac{\pi}{4}\) or \(p \cos x=\frac{5 \pi}{4}\)
On squaring and adding, \(p^{2}=\frac{\pi^{2}}{16} .2\) or \(\frac{25 \pi^{2}}{16} .2\)
\(\therefore \quad p=\frac{\pi}{4} \sqrt{2}\) only for least positive value or \(p=\frac{\pi}{4} \sqrt{2}\)
Determine the smallest positive value of \(x\) (in degrees) for which \(\tan \left(x+100^{\circ}\right)=\tan \left(x+50^{\circ}\right) \tan (x) \tan \left(x-50^{\circ}\right)\). [1993 – 5 Marks]
Given: \(\tan \left(x+100^{\circ}\right)=\tan \left(x+50^{\circ}\right) \tan x \tan \left(x-50^{\circ}\right)\)
\(
\begin{aligned}
&\Rightarrow \frac{\tan \left(x+100^{\circ}\right)}{\tan x}=\tan \left(x+50^{\circ}\right) \tan \left(x-50^{\circ}\right) \\
&\Rightarrow \frac{\sin \left(x+100^{\circ}\right) \cos x}{\cos \left(x+100^{\circ}\right) \sin x}=\frac{\sin \left(x+50^{\circ}\right) \sin \left(x-50^{\circ}\right)}{\cos \left(x+50^{\circ}\right) \cos \left(x-50^{\circ}\right)} \\
&\Rightarrow \frac{\sin \left(2 x+100^{\circ}\right)+\sin 100^{\circ}}{\sin \left(2 x+100^{\circ}\right)-\sin 100^{\circ}}=\frac{\cos 100^{\circ}-\cos 2 x}{\cos 100^{\circ}+\cos 2 x}
\end{aligned}
\)
By componendo and dividendo,
\(/
\begin{aligned}
&\Rightarrow \frac{2 \sin \left(2 x+100^{\circ}\right)}{2 \sin 100^{\circ}}=\frac{2 \cos 100^{\circ}}{-2 \cos 2 x} \\
&\Rightarrow 2 \sin \left(2 x+100^{\circ}\right) \cos 2 x=-2 \sin 100^{\circ} \cos 100^{\circ} \\
&\Rightarrow \sin \left(4 x+100^{\circ}\right)+\sin 100^{\circ}=-\sin 200^{\circ} \\
&\Rightarrow \sin \left(4 x+10^{\circ}+90^{\circ}\right)+\sin \left(90^{\circ}+10^{\circ}\right)=-\sin \left(180+20^{\circ}\right) \\
&\Rightarrow \cos \left(4 x+10^{\circ}\right)+\cos 10^{\circ}=\sin 20^{\circ} \\
&\Rightarrow \cos \left(4 x+10^{\circ}\right)=\sin 20^{\circ}-\cos 10^{\circ} \\
&\Rightarrow \cos \left(4 x+10^{\circ}\right)=\sin 20^{\circ}-\sin 80^{\circ} \\
&=-2 \cos 50^{\circ} \sin 30^{\circ}=-2 \cos 50^{\circ} \cdot \frac{1}{2} \\
&=-\cos 50^{\circ}=\cos 130^{\circ}
\end{aligned}
\)
\(\Rightarrow 4 x+10^{\circ}=130^{\circ} \Rightarrow x=30^{\circ}\)
Show that the value of \(\frac{\tan x}{\tan 3 x}\), wherever defined never lies between \(\frac{1}{3}\) and \(3 .\) [1992 – 4 Marks]
Let \(y=\frac{\tan x}{\tan 3 x} \Rightarrow y=\frac{\tan x\left(1-3 \tan ^{2} x\right)}{3 \tan x-\tan ^{3} x}\) \(\Rightarrow 3 y-3 \tan ^{2} x=1-3 \tan ^{2} x\)
\(\Rightarrow(y-3) \tan ^{2} x=3 y-1 \Rightarrow \tan ^{2} x=\frac{3 y-1}{y-3}\)
\(\Rightarrow \frac{3 y-1}{y-3}>0 \quad(\because\) L.H.S. is a prefect square \()\)
\(\Rightarrow \frac{(3 y-1)(y-3)}{(y-3)^{2}}>0 \Rightarrow(3 y-1)(y-3)>0\)
\(\Rightarrow y<\frac{1}{3}\) or \(y>3\)
Thus \(y\) never lies between \(\frac{1}{3}\) and 3 .
If \(\exp \left\{\left(\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\ldots \ldots \ldots \ldots\right)\right.\) ln 2\(\}\) satisfies the equation \(x^{2}-9 x+8=0\), find the value of \(\frac{\cos x}{\cos x+\sin x}, 0<x<\frac{\pi}{2}\). [1991 – 4 Marks]
Let \(y=\exp \left[\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\ldots \infty\right] \ln 2\)
\(
\begin{aligned}
&=e^{I n \cdot 2^{\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\ldots \infty}} \\
&=2^{\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\ldots . \infty}=\frac{\sin ^{2} x}{2^{1-\sin ^{2} x}}=2^{\tan ^{2} x}
\end{aligned}
\)
As \(y\) satisfies the eq. \(x^{2}-9 x+8=0\)
\(\therefore y^{2}-9 y+8=0\)
\(
\begin{aligned}
&\Rightarrow(y-1)(y-8)=0 \Rightarrow y=1,8 \\
&\Rightarrow 2^{\tan ^{2} x}=1 \text { or } 2^{\tan ^{2} x}=8 \\
&\Rightarrow \tan ^{2} x=0 \text { or } \tan ^{2} x=3 \\
&\Rightarrow \tan x=0 \text { or } \tan x=\sqrt{3},-\sqrt{3} \\
&\Rightarrow x=0 \text { or } x=\pi / 3,2 \pi / 3
\end{aligned}
\)
But given \(0<x<\pi / 2 \Rightarrow x=\pi / 3\)
\(\therefore \frac{\cos x}{\cos x+\sin x}=\frac{1}{1+\tan x}=\frac{1}{1+\sqrt{3}}=\frac{\sqrt{3}-1}{2}\)
\(A B C\) is a triangle such that
\(
\sin (2 A+B)=\sin (C-A)=-\sin (B+2 C)=\frac{1}{2} \text {. }
\)
If \(A, B\) and \(C\) are in arithmetic progression, determine the values of \(A, B\) and \(C\). [1990 – 5 Marks]
Given : In \(\triangle A B C, A, B\) and \(C\) are in A.P.
\(\therefore A+C=2 B\)
\(\mathrm{Also} A+B+C=180^{\circ} \Rightarrow B+2 B=180^{\circ} \Rightarrow B=60^{\circ}\)
Also given that, \(\sin (2 A+B)=\sin (C-A)=-\sin (B+2 C)=\frac{1}{2}\)
\(
\Rightarrow \quad \sin \left(2 A+60^{\circ}\right)=\sin (C-A)=-\sin (60+2 C)=\frac{1}{2} \ldots \text { (i) }
\)
From eq. (i), \(\sin \left(2 A+60^{\circ}\right)=\frac{1}{2} \Rightarrow 2 A+60^{\circ}=30^{\circ}, 150^{\circ}\)
But \(A\) can not be -ve
\(
\therefore 2 A+60^{\circ}=150^{\circ} \Rightarrow 2 A=90^{\circ} \Rightarrow A=45^{\circ}
\)
Again from (i), \(\sin \left(60^{\circ}+2 C\right)=-\frac{1}{2}\)
\(
\begin{aligned}
&\Rightarrow \quad 60^{\circ}+2 C=210^{\circ} \text { or } 330^{\circ} \\
&\Rightarrow C=75^{\circ} \text { or } 135^{\circ}
\end{aligned}
\)
Also from (i), \(\sin (C-A)=\frac{1}{2} \Rightarrow C-A=30^{\circ}, 150^{\circ}\)
For \(A=45^{\circ} ; C=75^{\circ}, 195^{\circ}\)
But \(\mathrm{C}=195^{\circ}\) is not possible.
\(\begin{aligned}
&\therefore C=75^{\circ} \\
&\therefore A=45^{\circ}, B=60^{\circ}, C=75^{\circ} .
\end{aligned}\)
Prove that \(\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha=\cot \alpha\)Â [1988 – 2Â Marks]
We know \(\tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}\) \(\Rightarrow \frac{1-\tan ^{2} \alpha}{\tan \alpha}=2 \cot 2 \alpha \Rightarrow \cot \alpha-\tan \alpha=2 \cot 2 \alpha \dots …(i)\)
Now, we have to prove \(\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha=\cot \alpha\)
LHS \(=\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+4(2 \cot 2.4 \alpha)\) \(=\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+4(\cot 4 \alpha-\tan 4 \alpha)\) [From (i)]
\(=\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+4 \cot 4 \alpha-4 \tan 4 \alpha\)
\(=\tan \alpha+2 \tan 2 \alpha+2(2 \cot 2.2 \alpha)\)
\(=\tan \alpha+2 \tan 2 \alpha+2(\cot \alpha-\tan 2 \alpha)\)
\(=\tan \alpha+2 \tan 2 \alpha+2(2 \cot 2 \alpha-\tan 2 \alpha) \quad\) [From (i)]
\(=\tan \alpha+2 \cot 2 \alpha\)
\(=\tan \alpha+(\cot \alpha-\tan \alpha) \quad\) [From (i)]
\(=\cot \alpha=\) RHS.
Show that \(16 \cos \left(\frac{2 \pi}{15}\right) \cos \left(\frac{4 \pi}{15}\right) \cos \left(\frac{8 \pi}{15}\right) \cos \left(\frac{16 \pi}{15}\right)=1\) [1983 – 2 Marks]
We know,
\(
\begin{aligned}
&\cos A \cos 2 A \cos 4 A \ldots \cos 2^{n} A=\frac{1}{2^{n+1} \sin A} \sin \cdot\left(2^{n+1} A\right) \\
&\therefore 16 \cos \frac{2 \pi}{15} \cos 2\left(\frac{2 \pi}{15}\right) \cos 2^{2}\left(\frac{2 \pi}{15}\right) \cos 2^{3}\left(\frac{2 \pi}{15}\right) \\
&=16 \cdot \frac{\sin \left(2^{4} A\right)}{2^{4} \sin A}, \text { where } A=2 \pi / 15 \\
&=16 . \frac{\sin (32 \pi / 15)}{16 \sin 2 \pi / 15}=\frac{\sin (32 \pi / 15)}{\sin (2 \pi+2 \pi / 15)}=\frac{\sin (32 \pi / 15)}{\sin (32 \pi / 15)}=1
\end{aligned}
\)
Without using tables, Calculate \(\left(\sin 12^{\circ}\right)\left(\sin 48^{\circ}\right)\left(\sin 54^{\circ}\right)=?\) [1982 – 2 Marks]
(b)
\(
\begin{aligned}
& =\frac{1}{2}\left(2 \sin 12^{\circ} \sin 48^{\circ}\right) \sin 54^{\circ} \\
& =\frac{1}{2}\left[\cos \left(36^{\circ}\right)-\cos \left(60^{\circ}\right)\right] \sin 54^{\circ} \\
& =\frac{1}{2}\left(\cos 36^{\circ}-\frac{1}{2}\right) \sin 54^{\circ} \\
& =\frac{1}{4}\left(2 \cos 36^{\circ} \sin 54^{\circ}-\sin 54^{\circ}\right) \\
& =\frac{1}{4}\left(\sin 90^{\circ}+\sin 18^{\circ}-\sin 54^{\circ}\right) \\
& =\frac{1}{4}\left(1+\frac{\sqrt{5}-1}{4}-\frac{\sqrt{5}+1}{4}\right) \\
& =\frac{1}{4}\left(1+\frac{\sqrt{5}-1-\sqrt{5}-1}{4}\right) \\
& =\frac{1}{4}\left(1-\frac{1}{2}\right)=\frac{1}{8}
\end{aligned}
\)
For all \(\theta\) in \([0, \pi / 2]\) show that, \(\cos (\sin \theta) \geq \sin (\cos \theta)\). [1981 – 4 Marks]
\(\begin{aligned}
&\text {We know, }\\
&\cos \theta+\sin \theta=\sqrt{2}\left[\frac{1}{\sqrt{2}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta\right]\\
&=\sqrt{2} \sin (\pi / 4+\theta)\\
&\therefore \cos \theta+\sin \theta \leq \sqrt{2}<\pi / 2\left[\begin{array}{c}
\because \sqrt{2}=1.414 \\
\pi / 2=1.57
\end{array}\right]\\
&\therefore \quad \cos \theta+\sin \theta<\pi / 2 \quad \Rightarrow \quad \cos \theta<\pi / 2-\sin \theta \quad \ldots \text { (i) } \quad \text { As }\\
&\theta \in[0, \pi / 2] \text { in which } \sin \theta \text { increases. }\\
&\therefore \text { Taking sin on both sides of eq. (i), we get }\\
&\sin (\cos \theta)<\sin (\pi / 2-\sin \theta)\\
&\sin (\cos \theta)<\cos (\sin \theta)\\
&\Rightarrow \cos (\sin \theta)>\sin (\cos \theta)
\end{aligned}\)
Given \(A=\left\{x: \frac{\pi}{6} \leq x \leq \frac{\pi}{3}\right\}\) and \(f(x)=\cos x-x(1+x)[latex]; find [latex]f(A)\). [1980]
\(
\begin{aligned}
&A=\left\{x: \frac{\pi}{6} \leq x \leq \frac{\pi}{3}\right\} \\
&f(x)=\cos x-x(1+x) \\
&f^{\prime}(x)=-\sin x-1-2 x<0, \forall x \in A
\end{aligned}
\)
\(\therefore f\) is a decreasing function.
As
\(
\begin{aligned}
\frac{\pi}{6} & \leq x \leq \frac{\pi}{3} \Rightarrow f\left(\frac{\pi}{3}\right) \leq f(x) \leq\left(\frac{\pi}{6}\right) \\
& \Rightarrow \cos \frac{\pi}{3}-\frac{\pi}{3}\left(1+\frac{\pi}{3}\right) \leq f(x) \leq \cos \frac{\pi}{6}-\frac{\pi}{6}\left(1+\frac{\pi}{6}\right) \\
\therefore & f(A)=\left[\frac{1}{2}-\frac{\pi}{3}\left(1+\frac{\pi}{3}\right), \frac{\sqrt{3}}{2}-\frac{\pi}{6}\left(1+\frac{\pi}{6}\right)\right]
\end{aligned}
\)
Given \(\alpha+\beta-\gamma=\pi\), prove that \(\sin ^{2} \alpha+\sin ^{2} \beta-\sin ^{2} \gamma=2 \sin \alpha \sin \beta \cos \gamma\) [1980]
Given \(\alpha+\beta-\gamma=\pi\) and we have to prove that
\(\sin ^{2} \alpha+\sin ^{2} \beta-\sin ^{2} \gamma=2 \sin \alpha \sin \beta \cos \gamma\)
L.H.S. \(=\sin ^{2} \alpha+\sin ^{2} \beta-\sin ^{2} \gamma\)
\(=\sin ^{2} \alpha+\sin (\beta+\gamma) \sin (\beta-\gamma)\)
\(=\sin ^{2} \alpha+\sin (\beta+\gamma) \sin (\pi-\alpha) \quad\left[\text { Since }, \sin ^{2} A-\sin ^{2} B=\sin (A+B) \sin (A-B)\right]\)
\(=\sin ^{2} \alpha+\sin (\beta+\gamma) \sin (\pi-\gamma)\) \(=\sin ^{2} \alpha+\sin (\beta+\gamma) \sin \alpha\)
\(=\sin \alpha(\sin \alpha+\sin (\beta+\gamma))\)
\(=\sin \alpha[\sin [\pi-(\beta-\gamma)]+\sin (\beta+\gamma)]\)
\(=\sin \alpha[\sin (\beta-\gamma)+\sin (\beta+\gamma)]\)
\(=\sin \alpha[2 \sin \beta \cos \gamma]=2 \sin \alpha \sin \beta \cos \gamma=\) R.H.S.
\(\tan \alpha=\frac{m}{m+1}\) and \(\tan \beta=\frac{1}{2 m+1}\), find the possible values of \((\alpha+\beta)\). [1978]
\(
\begin{aligned}
&\text { 52. We know } \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
&\Rightarrow \tan (\alpha+\beta)=\frac{\frac{m}{m+1}+\frac{1}{2 m+1}}{1-\frac{m}{m+1} \cdot \frac{1}{2 m+1}}=\frac{2 m^{2}+2 m+1}{2 m^{2}+2 m+1}=1 \\
&\Rightarrow \alpha+\beta=n \pi+\pi / 4, \text { where } n \in Z
\end{aligned}
\)
If the equation \(\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0\) has real solutions for \(\theta\), then \(\lambda\) lies in the interval: [Main Sep. 02, 2020 (II)]
\(
\begin{aligned}
&\text { (b) } \sin ^{4} \theta+\cos ^{4} \theta=-\lambda\\
&\Rightarrow\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cdot \cos ^{2} \theta=-\lambda\\
&\Rightarrow 1-2 \sin ^{2} \theta \cos ^{2} \theta=-\lambda\\
&\Rightarrow \lambda=\frac{(\sin 2 \theta)^{2}}{2}-1\\
&\Rightarrow \text { as } \sin ^{2} 2 \theta \in[0,1]
\end{aligned}
\)
\(
\Rightarrow \lambda \in\left[-1, \frac{-1}{2}\right]
\)
If \([x]\) denotes the greatest integer \(\leq x\), then the system of linear equations
\([\sin \mathrm{q}] x+[-\cos \mathrm{q}] y=0\)
\([\cot \mathrm{q}] x+y=0\) [Main April 12, 2019 (II)]
(a) According to the question, there are two cases.
Case \(1: \theta \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)\)
In this interval, \([\sin \theta]=0,[-\cos \theta]=0\) and \([\cot \theta]=-1\)
Then the system of equations will be ;
\(0 \cdot x+0 \cdot y=0\) and \(-x+y=0\)
Which have infinitely many solutions.
Case 2: \(\theta \in\left(\pi, \frac{7 \pi}{6}\right)\)
In this interval, \([\sin \theta]=-1\) and \([-\cos \theta]=0\),
Then the system of equations will be;
\(-x+0 \cdot y=0\) and \([\cot \theta] x+y=0\)
Clearly, \(x=0\) and \(y=0\) which has unique solution.
Let \(\mathrm{S}=\left\{\theta \in[-2 \pi, 2 \pi]: 2 \cos ^{2} \theta+3 \sin \theta=0\right\}\). Then the sum of the elements of \(\mathrm{S}\) is: [Main April 9, 2019(I)]
(c) \(2 \cos ^{2} \theta+3 \sin \theta=0\)
\((2 \sin \theta+1)(\sin \theta-2)=0\)
\(\Rightarrow \sin \theta=-\frac{1}{2}\) or \(\sin \theta=2 \rightarrow\) Not possible
The required sum of all solutions in \([-2 \pi, 2 \pi]\) is
\(
=\left(\pi+\frac{\pi}{6}\right)+\left(2 \pi-\frac{\pi}{6}\right)+\left(-\frac{\pi}{6}\right)+\left(-\pi+\frac{\pi}{6}\right)=2 \pi
\)
If \(0 \leq x<\frac{\pi}{2}\), then the number of values of \(\mathrm{x}\) for which \(\sin x-\sin 2 x+\) \(\sin 3 x=0\), is: [Main Jan. 09, \(\)2019(II)]
(d)
\(
\begin{aligned}
&\sin x+\sin 3 x=\sin 2 x \Rightarrow 2 \sin 2 x \cos x=\sin 2 x \\
&\Rightarrow \sin 2 x=0 \text { or } \cos x=1 / 2 \\
&\Rightarrow 2 x \in\{0\}, \quad x \in\{\pi / 3\} \\
&\Rightarrow x={0, \frac{\pi}{3}}, \quad x \in\left[0, \frac{\pi}{2}\right]
\end{aligned}
\)
If sum of all the solutions of the equation \(8 \cos x \cdot\left(\cos \left(\frac{\pi}{6}+x\right) \cdot \cos \left(\frac{\pi}{6}-x\right)-\frac{1}{2}\right)-1\) in \([0, \pi]\) is \(k \pi\), then \(k\) is equal to: [Main 2018]
(a) \(8 \cos x\left(\cos ^{2} \frac{\pi}{6}-\sin ^{2} x-\frac{1}{2}\right)=1\)
\(\Rightarrow \quad 8 \cos x\left(\frac{3}{4}-\frac{1}{2}-\sin ^{2} x\right)=1\)
\(\Rightarrow \quad 8 \cos x\left(\frac{1}{4}-\left(1-\cos ^{2} x\right)\right)=1\)
\(\Rightarrow \quad 8 \cos x\left(\frac{1}{4}-1+\cos ^{2} x\right)=1\)
\(\Rightarrow 8 \cos x\left(\cos ^{2} x-\frac{3}{4}\right)=1\)
\(\Rightarrow 8\left(\frac{4 \cos ^{3} x-3 \cos x}{4}\right)=1\)
\(\Rightarrow 2\left(4 \cos ^{3} x-3 \cos x\right)=1\)
\(\Rightarrow 2 \cos 3 x=1 \Rightarrow \cos 3 x=\frac{1}{2}\)
\(\therefore 3 \mathrm{x}=2 \mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in 1\)
\(\Rightarrow \mathrm{x}=\frac{2 \mathrm{n} \pi}{3} \pm \frac{\pi}{9}\)
In \(x \in[0, \pi]: x=\frac{\pi}{9}, \frac{2 \pi}{3}+\frac{\pi}{9}, \frac{2 \pi}{3}-\frac{\pi}{9}\), only Sum of all the solutions of the equation \(=\left(\frac{1}{9}+\frac{2}{3}+\frac{1}{9}+\frac{2}{3}-\frac{1}{9}\right) \pi=\frac{13}{9} \pi\)
If \(0 \leq x<2 \pi\), then the number of real values of \(x\), which satisfy the equation \(\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0\) is: [Main 2016]
\(
\begin{aligned}
&\text { (a) } \cos x+\cos 2 x+\cos 3 x+\cos 4 x=0\\
&\Rightarrow 2 \cos 2 \mathrm{x} \cos \mathrm{x}+2 \cos 3 \mathrm{x} \cos \mathrm{x}=0\\
&\Rightarrow 2 \cos x\left(2 \cos \frac{5 x}{2} \cos \frac{x}{2}\right)=0\\
&\cos x=0, \cos \frac{5 x}{2}=0, \cos \frac{x}{2}=0\\
&\mathrm{x}=\pi, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{5}, \frac{3 \pi}{5}, \frac{7 \pi}{5}, \frac{9 \pi}{5}
\end{aligned}
\)
The number of \(x \in[0,2 \pi]\) for which \(\left|\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}\right|=1\) is [Main Online April 9, 2016]
(d) \(\left|\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}\right|=1\)
\(\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}=\pm 1\)
\(\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}=\pm 1+\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}\)
by squaring both the sides we will get 8 solutions
Let \(S=\left\{x \in(-\pi, \pi): x \neq 0, \pm \frac{\pi}{2}\right\}\). The sum of all distinct solutions of the equation
\(\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0\) in the set \(S\) is equal to [Adv. 2016]
(c) \(\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0\)
\(
\begin{aligned}
&\Rightarrow \frac{\sqrt{3}}{2} \sin \mathrm{x}+\frac{1}{2} \cos \mathrm{x}=\cos ^{2} \mathrm{x}-\sin ^{2} \mathrm{x} \\
&\Rightarrow \cos \left(\mathrm{x}-\frac{\pi}{3}\right)=\cos 2 \mathrm{x} \Rightarrow \mathrm{x}-\frac{\pi}{3}=2 \mathrm{n} \pi \pm 2 \mathrm{x} \\
&\Rightarrow \mathrm{x}=\frac{2 \mathrm{n} \pi}{3}+\frac{\pi}{9} \text { or } \mathrm{x}=-2 \mathrm{n} \pi-\frac{\pi}{3}
\end{aligned}
\)
For \(\mathrm{x} \in \mathrm{S}, \mathrm{n}=0 \Rightarrow \mathrm{x}=\frac{\pi}{9},-\frac{\pi}{3}\)
Now, \(\mathrm{n}=1 \Rightarrow \mathrm{x}=\frac{7 \pi}{9} ; \quad\) and \(\mathrm{n}=-1 \Rightarrow \mathrm{x}=\frac{-5 \pi}{9}\)
Hence, sum of all values of \(x=\frac{\pi}{9}-\frac{\pi}{3}+\frac{7 \pi}{9}-\frac{5 \pi}{9}=0\)
The number of values of \(\alpha\) in \([0,2 \pi]\) for which \(2 \sin ^{3} \alpha-7 \sin ^{2} \alpha+7 \sin \alpha=2\), is: [Main Online April 9, 2014]
\(
\begin{aligned}
&\text { (c) } 2 \sin ^{3} \alpha-7 \sin ^{2} \alpha+7 \sin \alpha-2=0 \\
&\Rightarrow 2 \sin ^{2} \alpha(\sin \alpha-1)-5 \sin \alpha(\sin \alpha-1) +2(\sin \alpha-1)=0 \\
&\Rightarrow(\sin \alpha-1)\left(2 \sin ^{2} \alpha-5 \sin \alpha+2\right)=0 \\
&\Rightarrow \sin \alpha-1=0 \text { or } 2 \sin ^{2} \alpha-5 \sin \alpha+2=0
\end{aligned}
\)
\(\sin \alpha=1\) or \(\sin \alpha=\frac{5 \pm \sqrt{25-16}}{4}=\frac{5 \pm 3}{4}\) \(\alpha=\frac{\pi}{2}\) or \(\sin \alpha=\frac{1}{2}, 2\)
Now, \(\sin \alpha \neq 2\)
for, \(\sin \alpha=\frac{1}{2}\)
\(
\alpha=\frac{\pi}{3}, \frac{2 \pi}{3}
\)
There are three values of \(\alpha\) between \([0,2 \pi]\)
For \(x \in(0, \pi)\), the equation \(\sin x+2 \sin 2 x-\sin 3 x=3\) has [Adv. 2014]
(d) \(\sin x+2 \sin 2 x-\sin 3 x=3\)
\(\Rightarrow \quad \sin x+4 \sin x \cos x-3 \sin x+4 \sin ^{3} x=3\)
\(\Rightarrow \quad \sin x\left(-2+2 \cos x+4 \sin ^{2} x\right)=3\)
\(\Rightarrow \quad \sin x\left(-2+2 \cos x+4-4 \cos ^{2} x\right)=3\)
\(\Rightarrow \quad 2+2 \cos x-4 \cos ^{2} x=\frac{3}{\sin x}\)
\(\Rightarrow \quad 2-\left(4 \cos ^{2} x-2.2 \cos x \cdot \frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=\frac{3}{\sin x}\)
\(\Rightarrow \frac{9}{4}-\left(2 \cos x-\frac{1}{2}\right)^{2}=\frac{3}{\sin x}\)
\(\therefore\) LHS \(\leq \frac{9}{4}\) and RHS \(\geq 3 \quad[\because 0 \leq \sin x \leq 1]\)
The number of solutions of the pair of equations
\(
\begin{aligned}
&2 \sin ^{2} \theta-\cos 2 \theta=0 \\
&2 \cos ^{2} \theta-3 \sin \theta=0
\end{aligned}
\)
in the interval \([0,2 \pi]\) is [2007 – 3 Marks]
(c) \(2 \sin ^{2} \theta-\cos 2 \theta=0 \Rightarrow 1-2 \cos 2 \theta=0\) \(\Rightarrow \cos 2 \theta=\frac{1}{2} \Rightarrow 2 \theta=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{11 \pi}{3}\) \(\Rightarrow \theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6} \dots…(i)\)
where \(\theta \in[0,2 \pi]\)
Also,
\(
\begin{aligned}
& 2 \cos ^{2} \theta-3 \sin \theta=0 \\
\Rightarrow & 2 \sin ^{2} \theta+3 \sin \theta-2=0
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow(2 \sin \theta-1)(\sin \theta+2)=0 \Rightarrow \sin \theta=\frac{1}{2} \quad[\because \sin \theta \neq-2] \\
&\Rightarrow \theta=\frac{\pi}{6}, \frac{5 \pi}{6} \quad \ldots . \text { (ii), }
\end{aligned}
\)
where \(\theta \in[0,2 \pi]\)
Combining (i) and (ii), we get \(\theta=\frac{\pi}{6}, \frac{5 \pi}{6}\)
Hence, there are two solutions.
\(\cos (\alpha-\beta)=1\) and \(\cos (\alpha+\beta)=1 / e\) where \(\alpha, \beta \in[-\pi, \pi]\). Pairs of \(\alpha, \beta\) which satisfy both the equations is/are \([2005 \mathrm{~S}]\)
(d) Given : \(\cos (\alpha-\beta)=1\) and \(\cos (\alpha+\beta)=1 / \mathrm{e}\),
where \(\alpha, \beta \in[-\pi, \pi]\)
Now, \(\cos (\alpha-\beta)=1 \Rightarrow \alpha-\beta=0 \Rightarrow \alpha=\beta\)
and \(\cos (\alpha+\beta)=1 / \mathrm{e} \Rightarrow \cos 2 \alpha=1 / \mathrm{e}\)
\(\because 0<1 / e<1\)
Now \(2 \alpha \in[-2 \pi, 2 \pi]\)
\(\Rightarrow\) There will be two values of \(2 \alpha\) satisfying \(\cos 2 \alpha=1 / \mathrm{e}\) and two values in \([0,2 \pi]\) in \([-2 \pi, 0]\).
\(\Rightarrow\) There will be four values of \(\alpha\) in \([-\pi, \pi]\) and correspondingly four values of \(\beta\). Hence there are four sets of \((\alpha, \beta)\).
The number of integral values of \(k\) for which the equation \(7 \cos x+5\) \(\sin x=2 k+1\) has a solution is [2002S]
(b) We know, \(-\sqrt{a^{2}+b^{2}} \leq a \cos \theta+b \sin \theta \leq \sqrt{a^{2}+b^{2}}\)
\(\Rightarrow-\sqrt{74} \leq 7 \cos x+5 \sin x \leq \sqrt{74}\)
\(\Rightarrow-\sqrt{74} \leq 2 k+1 \leq \sqrt{74} \Rightarrow-8.6 \leq 2 k+1 \leq 8.6\)
\(\Rightarrow-4.8 \leq k \leq 3.8\)
Hence, \(k\) can take only 8 integral values.
The number of distinct real roots of \(\left|\begin{array}{ccc}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0\) in the interval \(-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}\) is [2001S]
(c) To simplify the det. let \(\sin x=a ; \cos x=b\), then equation becomes
\(
\left|\begin{array}{lll}
a & b & b \\
b & a & b \\
b & b & a
\end{array}\right|=0
\)
\(
\begin{aligned}
&\left|\begin{array}{ccc}
a & b-a & 0 \\
b & a-b & b-a \\
b & 0 & a-b
\end{array}\right|=0\left[C_{2}-C_{1} ; C_{3}-C_{2}\right] \\
&\Rightarrow a(a-b)^{2}-(b-a)[b(a-b)-b(b-a)]=0 \\
&\Rightarrow a(a-b)^{2}-2 b(b-a)(a-b)=0 \\
&\Rightarrow(a-b)^{2}(a-2 b)=0 \Rightarrow(a=b) \text { or } a=2 b \\
&\therefore \frac{a}{b}=1 \text { or } \frac{a}{b}=2 \\
&\Rightarrow \tan x=1 \text { or } \tan x=2
\end{aligned}
\)
But we have \(-\pi / 4 \leq x \leq \pi / 4\)
\(
\begin{aligned}
&\Rightarrow \tan (-\pi / 4) \leq \tan x \leq \tan (\pi / 4) \Rightarrow-1 \leq \tan x \leq 1 \\
&\therefore \tan x=1 \Rightarrow x=\pi / 4
\end{aligned}
\)
Hence, there is only one real not.
In a triangle \(P Q R, \angle R=\pi / 2\). If \(\tan (P / 2)\) and \(\tan (Q / 2)\) are the roots of the equation \(a x^{2}+b x+c=0(a \neq 0)\) then. [1999 – 2 Marks]
(a) Given : In \(\triangle P Q R, \angle R=\pi / 2\)
\(
\Rightarrow \angle P+\angle Q=\pi / 2 \Rightarrow \frac{\angle P}{2}+\frac{\angle Q}{2}=\frac{\pi}{4}
\)
Also \(\tan P / 2\) and \(\tan Q / 2\) are roots of the equation \(a x^{2}+b x+c=0(a \neq 0)\)
\(
\therefore \tan P / 2+\tan Q / 2=-\frac{b}{a} ; \tan P / 2 \tan Q / 2=c / a
\)
Now \(\tan \left(\frac{P+Q}{2}\right)=\frac{\tan P / 2+\tan Q / 2}{1-\tan P / 2 \tan Q / 2}\)
\(
\begin{aligned}
&\Rightarrow \tan \frac{\pi}{4}=\frac{-b / a}{1-c / a} \Rightarrow 1-\frac{c}{a}=-\frac{b}{a} \\
&\Rightarrow a-c=-b \Rightarrow a+b=c
\end{aligned}
\)
\(\sec ^{2} \theta=\frac{4 x y}{(x+y)^{2}}\) is true if and only if [1996 – 1 Mark]
(b) Given: \(\sec ^{2} \theta=\frac{4 x y}{(x+y)^{2}}\)
But \(\sec ^{2} \theta \geq 1 \Rightarrow \frac{4 x y}{(x+y)^{2}} \geq 1\)
\(
\Rightarrow 4 x y \geq x^{2}+y^{2}+2 x y
\)
\(
\Rightarrow x^{2}+y^{2}-2 x y \leq 0 \Rightarrow(x-y)^{2} \leq 0
\)
\(\Rightarrow x=y\), because perfect square of real number can not be negative.
Also \(x \neq 0\), otherwise \(\sec ^{2} \theta\) will become indeterminate.
The general values of \(\theta\) satisfying the equation \(2 \sin ^{2} \theta-3 \sin \theta-2=0\) is [1995S]
\(
\begin{aligned}
&\text { (d) } 2 \sin ^{2} \theta-3 \sin \theta-2=0 \\
&\Rightarrow(2 \sin \theta+1)(\sin \theta-2)=0 \\
&\Rightarrow \sin \theta=-\frac{1}{2} \quad[\because \sin \theta-2=0, \text { is not possible }] \\
&\Rightarrow \quad \sin \theta=\sin (-\pi / 6) \text { and } \sin (7 \pi / 6) \\
&\Rightarrow \quad \theta=n \pi+(-1)^{n}(-\pi / 6) \text { and } n \pi+(-1)^{n} 7 \pi / 6 \\
&\Rightarrow \text { Thus, } \theta=n \pi+(-1)^{n} 7 \pi / 6
\end{aligned}
\)
Let \(n\) be a positive integer such that \(\sin \frac{\pi}{2 n}+\cos \frac{\pi}{2 n}=\frac{\sqrt{n}}{2}\). Then [1994]
(d) \(\sin \frac{\pi}{2 n}+\cos \frac{\pi}{2 n}=\frac{\sqrt{n}}{2}\)
\(\Rightarrow \sin ^{2} \frac{\pi}{2 n}+\cos ^{2} \frac{\pi}{2 n}+2 \sin \frac{\pi}{2 n} \cos \frac{n}{2 n}=\frac{n}{4}\)
\(\Rightarrow 1+\sin \frac{\pi}{n}=\frac{n}{4} \Rightarrow \sin \frac{\pi}{n}=\frac{n-4}{4}\)
For \(n=2\) the given equation is not satisfied.
Considering \(n>1\) and \(n \neq 2,0<\sin \frac{\pi}{n}<1\)
\(
\Rightarrow 0<\frac{n-4}{4}<1 \Rightarrow 4<n<8 .
\)
Number of solutions of the equation [1993 – 1 Mark]
\(\tan x+\sec x=2 \cos x \text { lying in the interval }[0,2 \pi] \text { is : }\)
\(
\begin{aligned}
&\text { (c) } \tan x+\sec x=2 \cos x\\
&\Rightarrow \frac{\sin x}{\cos x}+\frac{1}{\cos x}=2 \cos x\\
&\Rightarrow \sin x+1=2 \cos ^{2} x \Rightarrow 2 \sin ^{2} x+\sin x-1=0\\
&\Rightarrow(2 \sin x-1)(\sin x+1)=0 \Rightarrow \sin x=\frac{1}{2},-1\\
&\Rightarrow x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2} \in[0,2 \pi]
\end{aligned}
\)
But for \(x=\frac{3 \pi}{2}\), given eq. is not defined, Hence, there are only 2 solutions.
The equation \((\cos p-1) x^{2}+(\cos p) x+\sin p=0\)
In the variable \(x\), has real roots. Then \(p\) can take any value in the interval [1990 – 2 Marks]
(d) \((\cos p-1) x^{2}+(\cos p) x+\sin p=0\)
For real roots \(D \geq 0\)
\(
\begin{aligned}
& \Rightarrow \cos ^{2} p-4 \sin p(\cos p-1) \geq 0 \\
& \Rightarrow \cos ^{2} p-4 \sin p \cos p+4 \sin ^{2} p+4 \sin p-4 \sin ^{2} p \geq 0 \\
& \Rightarrow(\cos p-2 \sin p)^{2}+4 \sin p(1-\sin p) \geq 0 \\
\text { Since, } p &(\cos p-2 \sin p)^{2} \geq 0 \text { and } 1-\sin p \geq 0 \\
\therefore D \geq 0, & \forall p \in(0, \pi)
\end{aligned}
\)
The general solution of \(\sin x-3 \sin 2 x+\sin 3 x=\cos x-3 \cos 2 x+\cos 3 x\) is [1989 – 2 Marks]
(b) \(\sin x-3 \sin 2 x+\sin 3 x=\cos x-3 \cos 2 x+\cos 3 x\)
\(\Rightarrow 2 \sin 2 x \cos x-3 \sin 2 x=2 \cos 2 x \cos x-3 \cos 2 x\)
\(\Rightarrow \sin 2 x(2 \cos x-3)=\cos 2 x(2 \cos x-3)\)
\(\Rightarrow \sin 2 x=\cos 2 x \quad[\because \cos x \neq 3 / 2]\)
\(\Rightarrow \tan 2 x=1 \Rightarrow 2 x=n \pi+\pi / 4\)
\(\Rightarrow x=\frac{n \pi}{2}+\frac{\pi}{8}\)
The value of the expression \(\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}\) is equal to [1988 – 2 Marks]
(c) \(\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}\)
\(
\begin{aligned}
&=\frac{\sqrt{3}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}}=\frac{\sqrt{3} \cos 20^{\circ}-\sin 20^{\circ}}{\sin 20^{\circ} \cos 20^{\circ}} \\
&=4\left[\frac{\left.\frac{\sqrt{3}}{2} \cos 20^{\circ}-\frac{1}{2} \sin 20^{\circ}\right]}{2 \sin 20^{\circ} \cos 20^{\circ}}\right] \\
&=4\left[\frac{\sin 60^{\circ} \cos 20^{\circ}-\cos 60^{\circ} \sin 20^{\circ}}{\sin \left(2 \times 20^{\circ}\right)}\right] \\
&=\frac{4 \sin 40^{\circ}}{\sin 40^{\circ}}=4
\end{aligned}
\)
The general solution of the trigonometric equation \(\sin x+\cos x=1\) is given by: [1981 – 2 Marks]
(c) Given: \(\sin x+\cos x=1\)
\(
\Rightarrow \frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos =\frac{1}{\sqrt{2}}
\)
\(
\begin{aligned}
&\Rightarrow \sin x \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4}=\sin \frac{\pi}{4} \\
&\Rightarrow \sin (x+\pi / 4)=\sin \pi / 4 \\
&\Rightarrow x+\pi / 4=n \pi+(-1)^{n} \pi / 4, n \in Z \text { (the set of integers) } \\
&\Rightarrow x=n+(-1)^{n} \pi / 4-\pi / 4
\end{aligned}
\)
where \(n=0, \pm 1, \pm 2, \ldots\)
The equation \(2 \cos ^{2} \frac{x}{2} \sin ^{2} x=x^{2}+x^{-2} ; 0<x \leq \frac{\pi}{2}\) has
(a) Given :
\(2 \cos ^{2}\left(\frac{x}{2}\right) \sin ^{2} x=x^{2}+\frac{1}{x^{2}}\) where \(0<x \leq \frac{\pi}{2}\)
\(
\begin{aligned}
\text { LHS }=& 2 \cos ^{2} \frac{x}{2} \sin ^{2} x=(1+\cos x) \sin ^{2} x \\
& \because 1+\cos x<2 \text { and } \sin ^{2} x \leq 1 \text { for } 0<x \leq \frac{\pi}{2} \\
\therefore(1+\cos x) \sin ^{2} x<2
\end{aligned}
\)
And R.H.S. \(=x^{2}+\frac{1}{x^{2}} \geq 2\)
Thus for \(0<x \leq \frac{\pi}{2}\), given equation is not possible
The number of distinct solutions of the equation \(\frac{5}{4} \cos ^{2} 2 x+\cos ^{4} x+\sin ^{4} x+\cos ^{6} x+\sin ^{6} x=2\) in the interval \([0,2 \pi]\) is [Adv. 2015]
\(
\begin{aligned}
&\text { (b) } \frac{5}{4} \cos ^{2} 2 x+\cos ^{4} x+\sin ^{4} x+\cos ^{6} x+\sin ^{6} x=2 \\
&\Rightarrow \quad \frac{5}{4} \cos ^{2} 2 x+1-\frac{1}{2} \sin ^{2} 2 x+1-\frac{3}{4} \sin ^{2} 2 x=2 \\
&\Rightarrow \quad \frac{5}{4}\left(\cos ^{2} 2 x-\sin ^{2} 2 x\right)=0 \Rightarrow \cos 4 x=0 \\
&\Rightarrow \quad 4 x=(2 n+1) \frac{\pi}{2} \text { or } \quad x=(2 n+1) \frac{\pi}{8}
\end{aligned}
\)
For \(x \in[0,2 \pi]\), \(\mathrm{n}\) can take values 0 to 7 Hence, there are 8 solutions.
The positive integer value of \(n>3\) satisfying the equation \(\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}\) is [2011]
\(
\text { (c) } \frac{1}{\sin \frac{\pi}{n}}-\frac{1}{\sin \frac{3 \pi}{n}}=\frac{1}{\sin \frac{2 \pi}{n}}
\)
\(
\begin{aligned}
&\Rightarrow \frac{\sin \frac{3 \pi}{n}-\sin \frac{\pi}{n}}{\sin \frac{\pi}{n} \sin \frac{3 \pi}{n}}=\frac{1}{\sin \frac{2 \pi}{n}} \Rightarrow \frac{2 \cos \frac{2 \pi}{n} \sin \frac{\pi}{n}}{\sin \frac{\pi}{n} \sin \frac{3 \pi}{n}}=\frac{1}{\sin \frac{2 \pi}{n}} \\
&\Rightarrow \quad 2 \sin \frac{2 \pi}{n} \cos \frac{2 \pi}{n}=\sin \frac{3 \pi}{n} \Rightarrow \sin \frac{4 \pi}{n}-\sin \frac{3 \pi}{n}=0 \\
&\Rightarrow \quad 2 \cos \frac{7 \pi}{2 n} \sin \frac{\pi}{2 n}=0 \Rightarrow \cos \frac{7 \pi}{2 n}=0 \text { or } \sin \frac{\pi}{2 n}=0 \\
&\Rightarrow \quad \frac{7 \pi}{2 n}=(2 k+1) \frac{\pi}{2} \text { or } \frac{\pi}{2 n}=2 \mathrm{k} \pi, \text { where } k \in Z \\
&\Rightarrow \quad n=\frac{7}{2 k+1} \text { or } \mathrm{n}=\frac{1}{4 k}
\end{aligned}
\)
( \(n=\frac{1}{4 k}\) not possible for any integral value of \(k\) )
As \(n>3\); for \(k=0\), we get \(n=7\).
Two parallel chords of a circle of radius 2 are at a distance \(\sqrt{3}+1\) apart. If the chords subtend at the center, angles of \(\frac{\pi}{k}\) and \(\frac{2 \pi}{k}\), where \(k>0\), then the value of \([k]\) is [2010]
[Note : \([k]\) denotes the largest integer less than or equal to \(k\) ]
(d) From the figure,
\(
2 \cos \frac{\pi}{k}+2 \cos \frac{\pi}{2 k}=\sqrt{3}+1
\)
\(
\begin{gathered}
\Rightarrow 2 \times 2 \cos ^{2} \frac{\pi}{2 k}+2 \cos \frac{\pi}{2 k}-2 \\
=\sqrt{3}+1
\end{gathered}
\)
\(
\Rightarrow 4 \cos ^{2} \frac{\pi}{2 k}+2 \cos \frac{\pi}{2 k}-(3+\sqrt{3})=0
\)
\(
\begin{aligned}
&\Rightarrow \cos \frac{\pi}{2 k}=\frac{-2 \pm \sqrt{4+16(3+\sqrt{3})}}{8}=\frac{-1 \pm \sqrt{13+4 \sqrt{3}}}{4} \\
&=\frac{-1 \pm(2 \sqrt{3}+1)}{4}=\frac{\sqrt{3}}{2} \text { or }-\left(\frac{\sqrt{3}+1}{2}\right)
\end{aligned}
\)
As \(\frac{\pi}{2 k}\) is an acute angle, \(\cos \frac{\pi}{2 k}=\frac{\sqrt{3}}{2}=\cos \frac{\pi}{6} \Rightarrow k=3\)
The number of values of \(\theta\) in the interval, \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\) such that \(\theta \neq \frac{\mathrm{n} \pi}{5}\) for \(\mathrm{n}=0, \pm 1, \pm 2\) and \(\tan \theta=\cot 5 \theta\) as well as \(\sin 2 \theta=\cos 4 \theta\) is [2010]
(b) \(\tan \theta=\cot 5 \theta, \theta \neq \frac{n \pi}{5}\)
\(
\begin{aligned}
&\Rightarrow \cos \theta \cos 5 \theta-\sin 5 \theta \sin \theta=0 \Rightarrow \cos 6 \theta=0 \\
&\Rightarrow 6 \theta=\frac{-5 \pi}{2}, \frac{-3 \pi}{2}, \frac{-\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2} \\
&\Rightarrow \theta=\frac{-5 \pi}{12}, \frac{-\pi}{4}, \frac{-\pi}{12}, \frac{\pi}{12}, \frac{\pi}{4}, \frac{5 \pi}{12}
\end{aligned}
\)
Again \(_{\sin 2 \theta} 2=\cos 4 \theta=1-2 \sin ^{2} 2 \theta\)
\(
\begin{aligned}
&\Rightarrow 2 \sin ^{2} 2 \theta+\sin 2 \theta-1=0 \Rightarrow \sin 2 \theta=-1, \frac{1}{2} \\
&\Rightarrow 2 \theta=\frac{-\pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6} \Rightarrow \theta=\frac{-\pi}{4}, \frac{\pi}{12}, \frac{5 \pi}{12}
\end{aligned}
\)
So, common solutions are \(\theta=\frac{-\pi}{4}, \frac{\pi}{12}\) and \(\frac{5 \pi}{12}\)
\(\therefore\) Number of solutions \(=3\).
The number of all possible values of \(\theta\) where \(0<\theta<\pi\), for which the system of equations
\(
\begin{gathered}
(y+z) \cos 3 \theta=(x y z) \sin 3 \theta \\
x \sin 3 \theta=\frac{2 \cos 3 \theta}{y}+\frac{2 \sin 3 \theta}{z} \\
(x y z) \sin 3 \theta=(y+2 z) \cos 3 \theta+y \sin 3 \theta
\end{gathered}
\)
have a solution \(\left(x_{0}, y_{0}, z_{0}\right)\) with \(y_{0} z_{0} \neq 0\), is [2010]
(d) Given equations are
\(x y z \sin 3 \theta=(y+z) \cos 3 \theta\)…(i)
\(x y z \sin 3 \theta=2 z \cos 3 \theta+2 y \sin 3 \theta \quad\)…(ii)
\(x y z \sin 3 \theta=(y+2 z) \cos 3 \theta+y \sin 3 \theta\)…(iii)
On subtracting eq. (ii) from (i), we get
\((\cos 3 \theta-2 \sin \theta) y-(\cos 3 \theta) z=0\)…(iv)
On subtracting eq. (i) from (iii), we get \((\sin 3 \theta) y+(\cos 3 \theta) z=0\)…(v)
Eq. (iv) and (v) from homogeneous system of linear equation.
But \(y \neq 0, z \neq 0\)
\(
\begin{aligned}
&\therefore \frac{\cos 3 \theta-2 \sin 3 \theta}{\sin 3 \theta}=-\frac{\cos 3 \theta}{\cos 3 \theta} \Rightarrow \cos 3 \theta=\sin 3 \theta \\
&\Rightarrow \tan 3 \theta=1 \Rightarrow 3 \theta=n \pi+\frac{\pi}{4} \Rightarrow \theta=(4 n+1) \frac{\pi}{12}, n \in Z \\
&\text { For } \theta \in(0, \pi) \Rightarrow \theta=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{3 \pi}{4}
\end{aligned}
\)
Three such solutions are possible.
The number of distinct solutions of the equation, \(\log _{1 / 2}|\sin x|=2-\log _{1 / 2}|\cos x|\) in the interval \([0,2 \pi]\), is ____ [Main Jan. 9,2020(I)]
\(
\begin{aligned}
&\text { (c) } \log _{1 / 2}|\sin x|=2-\log _{1 / 2}|\cos x| \\
&\Rightarrow \quad \log _{1 / 2}|\sin x \cos x|=2 \\
&\Rightarrow \quad|\sin x \cos x|=\frac{1}{4} \\
&\Rightarrow \quad \sin 2 x=\pm \frac{1}{2}
\end{aligned}
\)
\(\text { Hence, total number of solutions }=8 \text {. }\)
Let \(a, b, c\) be three non-zero real numbers such that the equation: \(\sqrt{3} a \cos x+2 b \sin x=c, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\), has two distinct real roots \(\alpha\) and \(\beta\) with \(\alpha+\beta=\frac{\pi}{3}\). Then, the value of \(\frac{b}{a}\) is ____ [Adv. 2018]
(c) Given : \(\sqrt{3} a \cos x+2 b \sin x=c\)
which has two roots \(\alpha\) and \(\beta\), such that \(\alpha+\beta=\frac{\pi}{3}\)
\(\therefore \sqrt{3} \mathrm{a} \cos \alpha+2 \mathrm{~b} \sin \alpha=\mathrm{c}\)…(i)
and \(\sqrt{3}\) a \(\cos \beta+2 b \sin \beta=c\)…(ii)
On subtracting equation (ii) from (i),
\(
\begin{aligned}
& \sqrt{3} \text { a }(\cos \alpha-\cos \beta)+2 b(\sin \alpha-\sin \beta)=0 \Rightarrow \\
&-\sqrt{3} \mathrm{a} 2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}+2 b \cdot 2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}=0 \\
\Rightarrow &-2 \sqrt{3} \mathrm{a} \sin \frac{\pi}{6}+4 \mathrm{~b} \cos \frac{\pi}{6}=0 \\
\Rightarrow &-2 \sqrt{3} \mathrm{a} \times \frac{1}{2}+4 \mathrm{~b} \frac{\sqrt{3}}{2}=0 \Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=\frac{1}{2}=0.5
\end{aligned}
\)
The real roots of the equation \(\cos ^{7} x+\sin ^{4} x=1\) in the interval \((-\pi\), \(\pi)\) are \(\ldots, \ldots\), and ____ [ 1997 – 2 Marks]
(a) \(\cos ^{7} x=1-\sin ^{4} x=\left(1-\sin ^{2} x\right)\left(1+\sin ^{2} x\right)=\cos ^{2} x\left(1+\sin ^{2} x\right)\)
\(\therefore \cos x=0 \Rightarrow x=\pi / 2,-\pi / 2\)
or \(\cos ^{5} x=1+\sin ^{2} x \Rightarrow \cos ^{5} x-\sin ^{2} x=1\)
Now maximum value of each \(\cos x\) or \(\sin x\) is 1.
Hence the above equation will hold when
\(\cos x=1\) and \(\sin x=0\)
Both these imply \(x=0\)
\(
\therefore x=-\frac{\pi}{2}, \frac{\pi}{2}, 0
\)
General value of \(\theta\) satisfying the equation \(\tan ^{2} \theta+\sec 2 \theta=1\) is _____ [1996 – 1 Mark]
(b)
\(
\begin{aligned}
&\tan ^{2} \theta+\sec 2 \theta=1 \\
&\left.t^{2}+\frac{1+t^{2}}{1-t^{2}}=1, \text { [but } t=\tan \theta\right] \\
&\Rightarrow \quad t^{2}\left(t^{2}-3\right)=0 \Rightarrow \tan \theta=0, \pm \sqrt{3} \\
&\Rightarrow \quad \theta=n \pi \text { and } \theta=n \pi \pm \pi / 3
\end{aligned}
\)
The sides of a triangle inscribed in a given circle subtend angles \(\alpha, \beta\) and \(\gamma\) at the centre. The minimum value of the arithmetic mean of \(\cos \left(\alpha+\frac{\pi}{2}\right), \cos \left(\beta+\frac{\pi}{2}\right)\) and \(\left.\cos (\left(\alpha+\frac{\pi}{2}\right) \cos \beta+\frac{\pi}{2}\right)\) is equal to ____ [1987 – 2 Marks]
(a) We know that A.M. \(\geq\) G.M.
\(\Rightarrow\) Minimum value of \(\mathrm{AM}\). is obtained when \(\mathrm{AM}=\mathrm{GM}\)
\(\Rightarrow\) The quantities whose \(\mathrm{AM}\) is being taken are equal
i.e., \(\cos \left(\alpha+\frac{\pi}{2}\right)=\cos \left(\beta+\frac{\pi}{2}\right)\)
\(
=\cos \left(\gamma+\frac{\pi}{2}\right)
\)
\(\Rightarrow \sin \alpha=\sin \beta=\sin \gamma\)
Also \(\alpha+\beta+\gamma=360^{\circ} \Rightarrow \alpha=\beta=\gamma=120^{\circ}=2 \pi / 3\)
\(\therefore\) Min value of A.M.
\(
\begin{aligned}
&=\frac{\cos \left(\frac{2 \pi}{3}+\frac{\pi}{2}\right)+\cos \left(\frac{2 \pi}{3}+\frac{\pi}{2}\right)+\cos \left(\cos \left(\frac{2 \pi}{3}+\frac{\pi}{2}\right)\right)}{3} \\
&=\frac{-3 \sin \frac{2 \pi}{3}}{3}=-\frac{\sqrt{3}}{2}
\end{aligned}
\)
The set of all \(x\) in the interval \([0, \pi]\) for which \(2 \sin ^{2} x-3 \sin x+1 \geq\) 0 , is ____ [1987 – 2 Marks]
(c) Given: \(2 \sin ^{2} x-3 \sin x+1 \geq 0\)
\(\Rightarrow(2 \sin x-1)(\sin x-1) \geq 0\)
\(\Rightarrow\left(\sin x-\frac{1}{2}\right)(\sin x-1) \geq 0 \Rightarrow \sin x \leq \frac{1}{2}\) or \(\sin x \geq 1\)
But we know that \(0 \leq \sin x \leq 1\) for \(x \in[0, \pi]\)
\(
\begin{aligned}
&\Rightarrow \quad 0 \leq \sin x \leq \frac{1}{2} \text { or } \sin x=1 \\
&\Rightarrow \quad x \in[0, \pi / 6] \cup[5 \pi / 6, \pi] \text { or } x=\pi / 2
\end{aligned}
\)
On combining, we get \(x \in[0, \pi / 6] \cup\{\pi / 2\} \cup[5 \pi / 6, \pi]\)
The solution set of the system of equations \(\mathrm{x}+\mathrm{y}=\frac{2 \pi}{3}\), \(\cos x+\cos y=\frac{3}{2}\), where \(x\) and \(y\) are real, is ___ [1987 – 2 Marks]
(a) Given equations: \(x+y=2 \pi / 3\)
and \(\cos x+\cos y=3 / 2\)
From eq. (ii), \(2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}=\frac{3}{2}\)
\(
\begin{aligned}
&\Rightarrow \quad 2 \cos \frac{\pi}{3} \cos \frac{x-y}{2}=\frac{3}{2} \quad \text { [From eq. (i)] } \\
&\Rightarrow \quad 2 . \frac{1}{2} \cos \frac{x-y}{2}=\frac{3}{2} \Rightarrow \cos \frac{x-y}{2}=\frac{3}{2}
\end{aligned}
\)
which is not possible because \(-1 \leq \cos \theta \leq 1\).
Hence, solution of given equations is \(\phi\).
There exists a value of \(\theta\) between 0 and \(2 \pi\) that satisfies the equation \(\sin ^{4} \theta-2 \sin ^{2} \theta-1=0\). The statement is True or False? [1984 – 1 Mark]
(b) (False) Given : \(\sin ^{4} \theta-2 \sin ^{2} \theta-1=0\)
\(
\therefore \quad D=4+4=8
\)
\(
\because \sin ^{2} \theta=\frac{2 \pm \sqrt{8}}{2}=1 \pm \sqrt{2} \text {. }
\)
\(\because\) value of \(\sin ^{2} \theta\) is +ve, \(\quad \therefore \sin ^{2} \theta=\sqrt{2}+1\)
\(\because-1 \leq \sin \theta \leq 1, \quad \therefore \sin ^{2} \theta \neq \sqrt{2}+1\)
Hence, there is no value of \(\theta\), which satisfy the given equation. Hence, the statement is false.
Let \(\alpha\) and \(\beta\) be non-zero real numbers such that \(2(\cos \beta-\cos \alpha)+\cos \alpha\) \(\cos \beta=1\). Then which of the following is/are true? [Adv. 2017]
(a, c) If we consider \(\tan \alpha / 2=x\) and \(\tan \beta / 2=y\), then \(2(\cos \beta-\cos \alpha)+\cos \alpha \cos \beta=1\)
\(
\begin{aligned}
&\Rightarrow \quad 2\left[\frac{1-y^{2}}{1+y^{2}}-\frac{1-x^{2}}{1+x^{2}}\right]=1-\frac{\left(1-x^{2}\right)\left(1-y^{2}\right)}{\left(1+x^{2}\right)\left(1+y^{2}\right)} \\
&\Rightarrow \quad 2\left[\left(1+x^{2}\right)\left(1-y^{2}\right)-\left(1-x^{2}\right)\left(1+y^{2}\right)\right] \\
&\Rightarrow \quad 4\left(x^{2}-y^{2}\right)=2\left(x^{2}+y^{2}\right) \\
&\Rightarrow \quad x^{2}=3 y^{2} \Rightarrow x=\pm \sqrt{3} y \\
&\Rightarrow \quad \tan \frac{\alpha}{2} \pm \sqrt{3} \tan \frac{\beta}{2}=0
\end{aligned}
\)
The number of points in \((-\infty , \infty)\) for which \(x^{2}-x \sin x-\cos x=0\), is [Adv. 2013]
(c) Let \(f(x)=x^{2}-x \sin x-\cos x\)
\(\therefore f(x)=2 x-x \cos x=x(2-\cos x)\)
\(\therefore f\) is increasing on \((0, \infty)\) and decreasing on \((-\infty, 0)\)
Also \(\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow-\infty} f(x)=\infty\) and \(f(0)=-1\)
\(\therefore \quad y=f(x)\) meets \(x\)-axis twice.
i.e., \(f(x)=0\) has two points in \((-\infty, \infty)\).
\(\text { For } 0<\theta<\frac{\pi}{2} \text {, the solution (s) of }\)
\(\sum_{m = 1}^{6} \operatorname{cosec}\left(\theta+\frac{(m-1) \pi}{4}\right) \operatorname{cosec}\left(\theta+\frac{m \pi}{4}\right)=4 \sqrt{2}\) is (are) [2009]
(c,d) Given:
\(
\begin{aligned}
&\frac{1}{\sin (\pi / 4)}\left[\frac{\sin (\theta+\pi / 4-\theta)}{\sin \theta \sin (\theta+\pi / 4)}+\frac{\sin (\theta+\pi / 2-(\theta+\pi / 4))}{\sin (\theta+\pi / 4) \cdot \sin (\theta+\pi / 2)}+\ldots+\right. \\
&\left.\frac{\sin ((\theta+3 \pi / 2)-(\theta+5 \pi / 4))}{\sin (\theta+3 \pi / 2) \cdot \sin (\theta+5 \pi / 4)}\right]=4 \sqrt{2}
\end{aligned}
\)
Using Formula for splitting numerator of first term:
\(
\sin (\theta+\pi / 4-\theta)=\sin (\theta+\pi / 4) \cos (\theta)-\cos (\theta+\pi / 4) \sin (\theta)
\)
\(
\begin{aligned}
&\Rightarrow \sqrt{2}[\cot \theta-\cot (\theta+\pi / 4)+\cot (\theta+\pi / 4)-\cot (\theta+\pi / 2)+\ldots+\cot (\theta+5 \pi / 4)-\cot (\theta+ \\
&3 \pi / 2)]=4 \sqrt{2}
\end{aligned}
\)
\(
\Rightarrow \tan \theta+\cot \theta=4 \Rightarrow \tan \theta=2 \pm \sqrt{3}
\)
\(
\Rightarrow \theta=\frac{\pi}{12} \text { or } \frac{5 \pi}{12}
\)
The number of values of \(x\) in the interval \([0,5 \pi]\) satisfying the equation \(3 \sin ^{2} x-7 \sin x+2=0\) is [1998 – 2 Marks]
(c) \(3 \sin ^{2} x-7 \sin x+2=0\), put \(\sin x=s\)
\(\Rightarrow(s-2)(3 s-1)=0\)
\(\because \quad s=2\) is not possible, \(\quad \therefore s=1 / 3 \Rightarrow \sin x=\frac{1}{3}\)
Number of solutions of \(\sin x=\frac{1}{3}\) from the following graph is 6 between \([0,5 \pi]\)
The values of \(\theta\) lying between \(\theta=0\) and \(\theta=\pi / 2\) and satisfying the equation
[1988 – 2 Marks]
\(\left|\begin{array}{ccc}1+\sin ^{2} \theta & \cos ^{2} \theta & 4 \sin 4 \theta \\ \sin ^{2} \theta & 1+\cos ^{2} \theta & 4 \sin 4 \theta \\ \sin ^{2} \theta & \cos ^{2} \theta & 1+4 \sin 4 \theta\end{array}\right|=0\) are
\(
\text { (a, c) }\left|\begin{array}{rrr}
1+\sin ^{2} \theta & \cos ^{2} \theta & 4 \sin 4 \theta \\
\sin ^{2} \theta & 1+\cos ^{2} \theta & 4 \sin 4 \theta \\
\sin ^{2} \theta & \cos ^{2} \theta & 1+4 \sin 4 \theta
\end{array}\right|=0
\)
Applying \(C_{1} \rightarrow C_{1}+C_{2}\)
\(
\left|\begin{array}{rrr}
2 & \cos ^{2} \theta & 4 \sin 4 \theta \\
2 & 1+\cos ^{2} \theta & 4 \sin 4 \theta \\
1 & \cos ^{2} \theta & 1+4 \sin 4 \theta
\end{array}\right|=0
\)
Applying \(R_{1} \rightarrow R_{1}-R_{2} ; R_{2} \rightarrow R_{2}-R_{3}\)
\(
\left|\begin{array}{rrr}
0 & -1 & 0 \\
1 & 1 & -1 \\
1 & \cos ^{2} \theta & 1+4 \sin 4 \theta
\end{array}\right|=0
\)
\(
\begin{aligned}
&\Rightarrow \quad[1+4 \sin 4 \theta+1]=0 \\
&\Rightarrow \quad 2(1+2 \sin 4 \theta)=0 \Rightarrow \sin 4 \theta=-\frac{1}{2} \\
&\Rightarrow 4 \theta=\pi+\pi / 6 \text { or } 2 \pi-\pi / 6 \\
&\Rightarrow 4 \theta=7 \pi / 6 \text { or } 11 \pi / 6 \\
&\Rightarrow \quad \theta=7 \pi / 24 \text { or } 11 \pi / 24
\end{aligned}
\)
The number of all possible triplets \(\left(a_{1}, a_{2}, \mathrm{a}_{3}\right)\) such that \(a_{1}+a_{2} \cos (2 x)\) \(+a_{3} \sin ^{2}(x)=0\) for all \(x\) is [1987-2 Marks]
(d) \(a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0, \forall x\)
For \(x=0\) and \(x=\pi / 2\), we get \(a_{1}+a_{2}=0\)….(i)
and \(a_{1}-a_{2}+a_{3}=0\)
\(\Rightarrow a_{2}=-a_{1}\) and \(a_{3}=-2 a_{1}\)
\(\therefore\) The given equation becomes
\(
\begin{aligned}
&a_{1}-a_{1} \cos 2 x-2 a_{1} \sin ^{2} x=0, \quad \forall x \\
&\Rightarrow a_{1}\left(1-\cos 2 x-2 \sin ^{2} x\right)=0, \forall x \\
&\Rightarrow a_{1}\left(2 \sin ^{2} x-2 \sin ^{2} x\right)=0, \forall x
\end{aligned}
\)
The above is satisfied for all values of \(a_{1}\).
Hence, infinite number of triplets \(\left(a_{1},-a_{1},-2 a_{1}\right)\) are possible.
Let \(f(x)=\sin (\pi \cos x)\) and \(g(x)=\cos (2 \pi \sin x)\) be two functions defined for \(x>\) 0 . Define the following sets whose elements are written in the increasing order: [Adv. 2019]
\(
X=\left\{x: f^{\prime}(x)=0\right\}, \quad Y=\{x: f(x)=0\} \text {, }
\)
\(Z=[x: g(x)=0\}, W=\left[x: g^{\prime}(x)=0\right\}\).
List – 1 contains the sets \(X, Y, Z\) and \(W\). List – II contains some information regarding these sets.
  Column I        Column II
(I) \(\quad X \quad(P) \supseteq\left\{\frac{\pi}{2}, \frac{3 \pi}{2}, 4 \pi, 7 \pi\right\}\)
(II) \(\quad Y \quad(Q)\) an arithmetic progression
(III) \(\quad Z \quad(R)\) not an arithmetic progression
(IV) \(\quad W \quad(S) \supseteq\left\{\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{13 \pi}{6}\right\}\)
                     (T) \(\supseteq\left\{\frac{\pi}{3}, \frac{2 \pi}{3}, \pi\right\}\)
                    \((U) \supseteq\left\{\frac{\pi}{6}, \frac{3 \pi}{4}\right\}\)
\(
\text { Which of the following is the only correct combination? }
\)
\(
\begin{aligned}
&f(x)=\sin (\pi \cos x) \\
& X=\left\{x: f^{\prime}(x)=0\right\} \\
&f(x)=0 \Rightarrow \sin (\pi \cos x)=0 \Rightarrow \cos x=n \Rightarrow \cos x=1,-1,0 \Rightarrow x=\frac{n \pi}{2} \\
&X=\left\{\frac{n \pi}{2}: n \in N\right\}=\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi \ldots .\right\} \\
&g(x)=\cos (2 \pi \sin x) \\
&Z=\{x: g(x)=0\} \\
&\cos (2 \pi \sin x)=0 \Rightarrow 2 \pi \sin x=(2 n+1) \frac{\pi}{2} \Rightarrow \sin x=\frac{(2 n+1)}{4} \\
&\sin x=-\frac{1}{4}, \frac{1}{4}, \frac{-3}{4}, \frac{3}{4} \\
&Z=\left\{n \pi \pm \sin -1\left(\frac{1}{4}\right), n \pi \pm \sin ^{-1}\left(\frac{3}{4}\right), n \in I\right\} \\
&Y=\{x: f(x)=0\} \\
&f(x)=\sin (\pi \cos x) \Rightarrow f^{\prime}(x)=\cos (\pi \cos x) \cdot(-\pi \sin x)=0 \\
&\sin x=0 \Rightarrow x=n \pi . \\
&\cos (\pi \cos x)=0 \pi \cos x=(2 n+1) \frac{\pi}{2} \Rightarrow \cos =\frac{(2 n+1)}{2} \Rightarrow \cos x=-\frac{1}{2}, \frac{1}{2} \\
&Y=\left\{n \pi, n \pi \pm \frac{\pi}{3}\right\}=\left\{\frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}, 2 \pi, \ldots \ldots\right\} \\
&W=\left\{x: g^{\prime}(x)=0\right\}
\end{aligned}
\)
\(
\begin{aligned}
&g(x)=\cos (2 \pi \sin x) \Rightarrow g^{\prime}(x)=-\sin (2 \pi \sin x) \cdot(2 \pi \cos x)=0 \\
&\cos x=0 \Rightarrow x=(2 n+1) \frac{\pi}{2} \\
&\sin (2 \pi \sin x)=0 \Rightarrow 2 \pi \sin x=n \pi \Rightarrow \sin x=\frac{n}{2}=-1,-\frac{1}{2}, 0, \frac{1}{2}, 1 \\
&W=\left\{\frac{n \pi}{2}, n \pi \pm \frac{\pi}{6}, n \in 1\right\}=\left\{\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \pi, \frac{7 \pi}{6}, \frac{3 \pi}{2}, \ldots . .\right\}
\end{aligned}
\)
Let \(f(x)=\sin (\pi \cos x)\) and \(g(x)=\cos (2 \pi \sin x)\) be two functions defined for \(x>\) 0 . Define the following sets whose elements are written in the increasing order: [Adv. 2019]
\(
X=\left\{x: f^{\prime}(x)=0\right\}, \quad Y=\{x: f(x)=0\} \text {, }
\)
\(Z=[x: g(x)=0\}, W=\left[x: g^{\prime}(x)=0\right\}\).
List – 1 contains the sets \(X, Y, Z\) and \(W\). List – II contains some information regarding these sets.
  Column I        Column II
(I) \(\quad X \quad(P) \supseteq\left\{\frac{\pi}{2}, \frac{3 \pi}{2}, 4 \pi, 7 \pi\right\}\)
(II) \(\quad Y \quad(Q)\) an arithmetic progression
(III) \(\quad Z \quad(R)\) not an arithmetic progression
(IV) \(\quad W \quad(S) \supseteq\left\{\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{13 \pi}{6}\right\}\)
                     (T) \(\supseteq\left\{\frac{\pi}{3}, \frac{2 \pi}{3}, \pi\right\}\)
                    \((U) \supseteq\left\{\frac{\pi}{6}, \frac{3 \pi}{4}\right\}\)
\(
\text { Which of the following is the only correct combination? }
\)
(d)
\(
\begin{aligned}
&f^{\prime}(\mathrm{x})=0 \quad \Rightarrow \quad \cos (\pi \cos x)(-\pi \sin x)=0 \\
&\quad \Rightarrow \quad \cos (\pi \cos x)=0, \sin x=0 \\
&\Rightarrow \quad \pi \cos x=(2 n-1) \frac{\pi}{2}, x=n \pi \\
&\Rightarrow \quad \cos x=(2 n-1) \frac{1}{2}, x=\pi, 2 \pi, 3 \pi, \ldots \ldots \\
&\Rightarrow \quad \cos x=\frac{-1}{2}, \frac{1}{2} . \\
&\Rightarrow \quad x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{8 \pi}{3}, \frac{10 \pi}{3}, \frac{11 \pi}{3}, \frac{13 \pi}{3}, \ldots . . \\
&\therefore Y=\left\{\frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}, 2 \pi, \ldots \ldots \ldots\right\} . \\
&\therefore \quad(\mathrm{II})-\mathrm{Q}, \mathrm{T} .
\end{aligned}
\)
Find all values of \(\theta\) in the interval \(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\) satisfying the equation \((1-\tan \theta)(1+\tan \theta) \sec ^{2} \theta+2^{\tan ^{2} \theta}=0\) [1996 – 2 Marks]
Given : \((1-\tan \theta)(1+\tan \theta) \sec ^{2} \theta+2^{\tan ^{2} \theta}=0\) \(\Rightarrow \quad\left(1-\tan ^{2} \theta\right)\left(1+\tan ^{2} \theta\right)+2^{\tan ^{2} \theta}=0\)
Put \(\tan ^{2} \theta=t\)
\(\therefore \quad(1-t)(1+t)+2^{t}=0\) or \(1-t^{2}+2^{t}=0\)
It is clearly satisfied by \(t=3\).
As \(-8+8=0 \quad \therefore \quad \tan ^{2} \theta=3\)
\(\therefore \quad \theta=\pm \pi / 3\) in the given interval.
Find the values of \(x \in(-\pi,+\pi)\) which satisfy the equation \(8^{\left(1+|\cos x|+\left|\cos ^{2} x\right|+\left|\cos ^{3} x\right|+\ldots \ldots\right)}=4^{3}\) [1984 – 2 Marks]
\(
\begin{aligned}
&8^{\left(1+|\cos x|+\left|\cos ^{2} x\right|+\left|\cos ^{3} x\right|+\ldots .\right)}=4^{3} \\
&\Rightarrow 2^{3\left(1+|\cos x|+\left|\cos ^{2} x\right|+\left|\cos ^{3} x\right|+\ldots\right)}=2^{6} \\
&\Rightarrow 3\left(1+|\cos x|+\left|\cos ^{2} x\right|+\left|\cos ^{3} x\right|+\ldots\right)=6 \\
&\Rightarrow 1+|\cos x|+\left|\cos ^{2} x\right|+\left|\cos ^{3} x\right|+\ldots .=2 \\
&\Rightarrow \frac{1}{1-|\cos x|}=2 \\
&\Rightarrow 1-\cos x=1 / 2 \Rightarrow|\cos x|=\frac{1}{2} \\
&\Rightarrow x=\pi / 3,-\pi / 3,2 \pi / 3,-2 \pi / 3, \ldots .
\end{aligned}
\)
The values of \(x \in(-\pi, \pi)\) are \(\pm \pi / 3, \pm 2 \pi / 3\).
Find all the solution of \(4 \cos ^{2} x \sin x-2 \sin ^{2} x=3 \sin x\) [1983 – 2 Marks]
Given : \(4 \cos ^{2} x \sin x-2 \sin ^{2} x=3 \sin x\)
\(\Rightarrow 4 \cos ^{2} x \sin x-2 \sin ^{2} x-3 \sin x=0\)
\(\Rightarrow 4\left(1-\sin ^{2} x\right) \sin x-2 \sin ^{2} x-3 \sin x=0\)
\(\Rightarrow \sin x\left[4 \sin ^{2} x+2 \sin x-1\right]=0\)
\(\therefore \quad\) Either \(\sin x=0\) or \(4 \sin ^{2} x+2 \sin x-1=0\)
If \(\sin x=0\), then \(x=n \pi\)
\(\Rightarrow\) If \(4 \sin ^{2} x+2 \sin x-1=0\), then \(\sin x=\frac{-1 \pm \sqrt{5}}{4}\)
If \(\sin x=\frac{-1 \pm \sqrt{5}}{4}=\sin 18^{\circ}=\sin \frac{\pi}{10}\), then
\(x=n x+(-1)^{4} \frac{\pi}{10}\)
If \(\sin x=-\left(\frac{\sqrt{5}+1}{4}\right)=\sin \left(-54^{\circ}\right)=\sin \left(\frac{-3 \pi}{10}\right)\),
then \(x=n \pi+(-1)^{n}\left(\frac{-3 \pi}{10}\right)\)
Hence, \(x=n \pi, n \pi+(-1)^{n} \frac{\pi}{10}\) or \(n \pi+(-1)^{n}\left(\frac{-3 \pi}{10}\right)\),
where \(n\) is some integer
(a) Draw the graph of \(y=\frac{1}{\sqrt{2}}(\sin x+\cos x)\) from \(x=-\frac{\pi}{2}\) to \(x=\frac{\pi}{2}\).
(b) If \(\cos (\alpha+\beta)=\frac{4}{5}, \sin (\alpha-\beta)=\frac{5}{13}\), and \(\alpha, \beta\) lies between 0 and \(\frac{\pi}{4}\), find \(\tan 2 \alpha\). [1979]
(a) Given: \(y=\frac{1}{\sqrt{2}}(\sin x+\cos x)=\sin \left(x+\frac{\pi}{4}\right)\)
To draw the graph of \(y=\sin \left(x+\frac{\pi}{4}\right)\), we first draw the graph of \(y=\sin x\) and then on shifting it by \(-\frac{\pi}{4}\).
\(
\begin{aligned}
&\text { (b) } \cos (\alpha+\beta)=\frac{4}{5} \\
&\Rightarrow \tan (\alpha+\beta)=\frac{3}{4}, 0<\alpha, \beta<\frac{\pi}{4} \\
&\sin (\alpha-\beta)=\frac{5}{13} \Rightarrow \tan (\alpha-\beta)=\frac{5}{12} \\
&=\frac{\tan (\alpha+\beta)+\tan (\alpha-\beta)}{1-\tan (\alpha+\beta) \tan (\alpha-\beta)} =\tan 2 \alpha=\tan [(\alpha+\beta)+(\alpha-\beta)] \\
&=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \times \frac{5}{12}}=\frac{9+5}{12} \times \frac{16}{11}=\frac{56}{33}
\end{aligned}
\)
The number of solutions of the equation \(4 \sin ^2 x-4 \cos ^3 x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]\) is : [JEE Main 2024 1st Feb Shift 2]
(d) We start by recognizing that \(\sin ^2 x+\cos ^2 x=1\). Substituting \(\sin ^2 x=1-\cos ^2 x\) into the original equation gives:
\(
4\left(1-\cos ^2 x\right)-4 \cos ^3 x+9-4 \cos x=0
\)
Rearranging and simplifying this equation, we have:
\(
\begin{aligned}
& 4-4 \cos ^2 x-4 \cos ^3 x+9-4 \cos x=0 \\
& 4 \cos ^3 x+4 \cos ^2 x+4 \cos x-13=0 \\
& 4 \cos ^3 x+4 \cos ^2 x+4 \cos x=13
\end{aligned}
\)
Observing the bounds given, \(x \in[-2 \pi, 2 \pi]\), we want to find how many solutions satisfy this cubic equation in terms of \(\cos x\). However, we note that the left-hand side (LHS) of the equation, representing a combination of cosines, could at most approach a maximum sum when \(\cos x=1\), that being \(4(1)+4(1)+4(1)=12\). Yet, we have the equation set to equal 13 , which is impossible given the maximum sum of the LHS can only be 12.
The above reasoning indicates that, within the domain specified, there is no value of \(x\) for which the equation holds true. Therefore, the number of solutions to the equation is zero.
Let the set of all \(a \in R\) such that the equation \(\cos 2 x+a \sin x=2 a-7\) has a solution be \([p, q]\) and \(r=\tan 9^{\circ}-\tan 27^{\circ}-\frac{1}{\cot 63^{\circ}}+\tan 81^{\circ}\), then \(pqr\) is equal to [JEE Main 2024 27th Jan Shift 1]
(c)
\(
\begin{aligned}
& \cos 2 x+a \cdot \sin x=2 a-7 \\
& a(\sin x-2)=2(\sin x-2)(\sin x+2) \\
& \sin x=2, a=2(\sin x+2) \\
& \Rightarrow a \in[2,6] \\
& p=2 \quad q=6 \\
& r=\tan 9^{\circ}+\cot 9^{\circ}-\tan 27^{\circ}-\cot 27^{\circ} \\
& r=\frac{1}{\sin 9 \cdot \cos 9}-\frac{1}{\sin 27 \cdot \cos 27} \\
& =2\left[\frac{4}{\sqrt{5}-1}-\frac{4}{\sqrt{5}+1}\right] \\
& r=4 \\
& p \cdot q \cdot r=2 \times 6 \times 4=48
\end{aligned}
\)
If \(2 \tan ^2 \theta-5 \sec \theta=1\) has exactly 7 solutions in the interval \(\left[0, \frac{n \pi}{2}\right]\), for the least value of \(n \in N\) then \(\sum_{k=1}^n \frac{k}{2^k}\) is equal to : [JEE Main 2024 27th Jan Shift 1]
(d)
\(
\begin{aligned}
& 2 \tan ^2 \theta-5 \sec \theta-1=0 \\
& \Rightarrow 2 \sec ^2 \theta-5 \sec \theta-3=0 \\
& \Rightarrow(2 \sec \theta+1)(\sec \theta-3)=0 \\
& \Rightarrow \sec \theta=-\frac{1}{2}, 3 \\
& \Rightarrow \cos \theta=-2, \frac{1}{3} \\
& \Rightarrow \cos \theta=\frac{1}{3}
\end{aligned}
\)
For 7 solutions \(n=13\)
\(
\begin{aligned}
& \text { So, } \sum_{ k =1}^{13} \frac{ k }{2^{ k }}= S \text { (say) } \\
& S =\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\ldots+\frac{13}{2^{13}} \\
& \frac{1}{2} S =\frac{1}{2^2}+\frac{1}{2^3}+\ldots+\frac{12}{2^{13}}+\frac{13}{2^{14}} \\
& \Rightarrow \frac{ S }{2}=\frac{1}{2} \cdot \frac{1-\frac{1}{2^{13}}}{1-\frac{1}{2}}-\frac{13}{2^{14}} \Rightarrow S =2 \cdot\left(\frac{2^{13}-1}{2^{13}}\right)-\frac{13}{2^{13}}=\frac{1}{2^{13}}\left(2^{14}-15\right)
\end{aligned}
\)
If \(\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}\) is the solution of \(4 \cos \theta+5 \sin \theta=1\), then the value of \(\tan \alpha\) is [JEE Main 2024 29th Jan Shift 1]
(c)
\(
4+5 \tan \theta=\sec \theta
\)
Squaring: \(24 \tan ^2 \theta+40 \tan \theta+15=0\)
\(
\tan \theta=\frac{-10 \pm \sqrt{10}}{12}
\)
and \(\tan \theta=-\left(\frac{10+\sqrt{10}}{12}\right)\) is Rejected.
The sum of the solutions of the equation \(\frac{3 \cos 2 x+\cos ^3 2 x}{\cos ^6 x-\sin ^6 x}=x^3-x^2+6\) is [JEE Main 2024 29th Jan Shift 2]
(c)
\(
\begin{aligned}
& \frac{3 \cos 2 x+\cos ^3 2 x}{\cos ^6 x-\sin ^6 x}=x^3-x^2+6 \\
& \Rightarrow \frac{\cos 2 x\left(3+\cos ^2 2 x\right)}{\cos 2 x\left(1-\sin ^2 x \cos ^2 x\right)}=x^3-x^2+6 \\
& \Rightarrow \frac{4\left(3+\cos ^2 2 x\right)}{\left(4-\sin ^2 2 x\right)}=x^3-x^2+6 \\
& \Rightarrow \frac{4\left(3+\cos ^2 2 x\right)}{\left(3+\cos ^2 2 x\right)}=x^3-x^2+6 \\
& x^3-x^2+2=0 \Rightarrow(x+1)\left(x^2-2 x+2\right)=0
\end{aligned}
\)
so, sum of real solutions \(=-1\)
If \(2 \sin ^3 x+\sin 2 x \cos x+4 \sin x-4=0\) has exactly 3 solutions in the interval \(\left[0, \frac{ n \pi}{2}\right], n \in N\), then the roots of the equation \(x^2+n x+(n-3)=0\) belong to : [JEE Main 2024 30th Jan Shift 1]
(b)
\(
\begin{aligned}
& 2 \sin ^3 x+2 \sin x \cdot \cos ^2 x+4 \sin x-4=0 \\
& 2 \sin ^3 x+2 \sin x \cdot\left(1-\sin ^2 x\right)+4 \sin x-4=0 \\
& 6 \sin x-4=0 \\
& \sin x=\frac{2}{3}
\end{aligned}
\)
\(n = 5\) (in the given interval)
\(
\begin{aligned}
& x^2+5 x+2=0 \\
& x=\frac{-5 \pm \sqrt{17}}{2}
\end{aligned}
\)
Required interval \((-\infty, 0)\)
If \(\tan A =\frac{1}{\sqrt{x\left(x^2+x+1\right)}}, \tan B=\frac{\sqrt{x}}{\sqrt{x^2+x+1}}\) and \(\tan C=\left(x^{-3}+x^{-2}+x^{-1}\right)^{\frac{1}{2}}, 0<A, B, C<\frac{\pi}{2}\), then \(A + B\) is equal to : [JEE Main 2024 1st Feb Shift 1]
(a)
\(
\begin{aligned}
& \text { Finding } \tan (A+B) \text { we get } \\
& \Rightarrow \tan ( A + B )= \\
& \frac{\tan A+\tan B}{1-\tan A \tan B}=\frac{\frac{1}{\sqrt{x\left(x^2+x+1\right)}}+\frac{\sqrt{x}}{\sqrt{x^2+x+1}}}{1-\frac{1}{x^2+x+1}} \\
& \Rightarrow \tan ( A + B )=\frac{(1+x)\left(\sqrt{x^2+x+1}\right)}{\left(x^2+x\right)(\sqrt{x})} \\
& \frac{(1+x)\left(\sqrt{x^2+x+1}\right)}{\left(x^2+x\right)(\sqrt{x})} \\
& \tan (A+B)=\frac{\sqrt{x^2+x+1}}{x \sqrt{x}}=\tan C \\
& A+B=C
\end{aligned}
\)
For \(\alpha, \beta \in\left(0, \frac{\pi}{2}\right)\), let \(3 \sin (\alpha+\beta)=2 \sin (\alpha-\beta)\) and a real number \(k\) be such that \(\tan \alpha= k \tan \beta\). Then the value of \(k\) is equal to : [JEE Main 2024 30th Jan Shift 2]
(b)
\(
\begin{aligned}
& 3 \sin \alpha \cos \beta+3 \sin \beta \cos \alpha \\
& =2 \sin \alpha \cos \beta-2 \sin \beta \cos \alpha \\
& 5 \sin \beta \cos \alpha=-\sin \alpha \cos \beta \\
& \tan \beta=-\frac{1}{5} \tan \alpha \\
& \tan \alpha=-5 \tan \beta
\end{aligned}
\)
If \(m\) and \(n\) respectively are the numbers of positive and negative value of \(\theta\) in the interval \([-\pi, \pi]\) that satisfy the equation \(\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}\), then \(mn\) is equal to [JEE Main 2023 25th Jan Shift 2]
(d)
\(
\begin{aligned}
& \cos 2 \theta \cdot \cos \frac{\theta}{2}=\cos 3 \theta \cdot \cos \frac{9 \theta}{2} \\
& \Rightarrow 2 \cos 2 \theta \cdot \cos \frac{\theta}{2}=2 \cos \frac{9 \theta}{2} \cdot \cos 3 \theta \\
& \Rightarrow \cos \frac{5 \theta}{2}+\cos \frac{3 \theta}{2}=\cos \frac{15 \theta}{2}+\cos \frac{3 \theta}{2} \\
& \Rightarrow \cos \frac{15 \theta}{2}=\cos \frac{5 \theta}{2} \\
& \Rightarrow \frac{15 \theta}{2}=2 k \pi \pm \frac{5 \theta}{2} \\
& 5 \theta=2 k \pi \text { or } 10 \theta=2 k \pi \\
& \theta=\frac{2 k \pi}{5} \theta=\frac{k \pi}{5} \\
& \therefore \theta=\left\{-\pi, \frac{-4 \pi}{5}, \frac{-3 \pi}{5}, \frac{-2 \pi}{5}, \frac{-\pi}{5}, 0, \frac{\pi}{5}, \frac{2 \pi}{5}, \frac{3 \pi}{5}, \frac{4 \pi}{5}, \pi\right\} \\
& m=5, n=5 \\
& \therefore m \cdot n=25
\end{aligned}
\)
Let \(f(\theta)=3\left(\sin ^4\left(\frac{3 \pi}{2}-\theta\right)+\sin ^4(3 \pi+\theta)\right)-2\left(1-\sin ^2 2 \theta\right)\) and \(S=\left\{\theta \in[0, \pi]: f^{\prime}(\theta)=-\frac{\sqrt{3}}{2}\right\}\). If \(4 \beta=\sum_{\theta \in S} \theta\), then \(f(\beta)\) is equal to [JEE Main 2023 29th Jan Shift 1]
(b)
\(
f(\theta)=3\left(\sin ^4\left(\frac{3 \pi}{2}-\theta\right)+\sin ^4(3 x+\theta)\right)-2\left(1-\sin ^2 2 \theta\right)
\)
\(
\begin{aligned}
& S=\left\{\theta \in[0, \pi]: f^{\prime}(\theta)=-\frac{\sqrt{3}}{2}\right\} \\
& \Rightarrow f(\theta)=3\left(\cos ^4 \theta+\sin ^4 \theta\right)-2 \cos ^2 2 \theta
\end{aligned}
\)
\(
\begin{aligned}
&\Rightarrow f(\theta)=3\left(1-\frac{1}{2} \sin ^2 2 \theta\right)-2 \cos ^2 2 \theta\\
&\begin{aligned}
\Rightarrow f(\theta) & =3-\frac{3}{2} \sin ^2 2 \theta-2 \cos ^2 \theta \\
& =\frac{3}{2}-\frac{1}{2} \cos ^2 2 \theta=\frac{3}{2}-\frac{1}{2}\left(\frac{1+\cos 4 \theta}{2}\right)
\end{aligned}
\end{aligned}
\)
\(
\begin{aligned}
& f(\theta)=\frac{5}{4}-\frac{\cos 4 \theta}{4} \\
& f^{\prime}(\theta)=\sin 4 \theta \\
& \Rightarrow f^{\prime}(\theta)=\sin 4 \theta=-\frac{\sqrt{3}}{2} \\
& \Rightarrow 4 \theta= n \pi+(-1)^{ n } \frac{\pi}{3} \\
& \Rightarrow \theta=\frac{ n \pi}{4}+(-1)^{ n } \frac{\pi}{12} \\
& \Rightarrow \theta=\frac{\pi}{12},\left(\frac{\pi}{4}-\frac{\pi}{12}\right),\left(\frac{\pi}{2}+\frac{\pi}{12}\right),\left(\frac{3 \pi}{4}-\frac{\pi}{12}\right) \\
& \Rightarrow 4 \beta=\frac{\pi}{4}+\frac{\pi}{2}+\frac{3 \pi}{4}=\frac{3 \pi}{2} \\
& \Rightarrow \beta=\frac{3 \pi}{8} \Rightarrow f(\beta)=\frac{5}{4}-\frac{\cos \frac{3 \pi}{2}}{4}=\frac{5}{4} \\
&
\end{aligned}
\)
Let \(S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}\)
Then \(\sum_{\theta \in S} \sin ^2\left(\theta+\frac{\pi}{4}\right)\) is equal to [JEE Main 2023 24th Jan Shift 2]
(b)
\(
\begin{aligned}
& \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0 \\
& \tan (\pi \cos \theta)=-\tan (\pi \sin \theta) \\
& \tan (\pi \cos \theta)=\tan (-\pi \sin \theta) \\
& \pi \cos \theta=n \pi-\pi \sin \theta \\
& \sin \theta+\cos \theta=n \text { where } n \in I
\end{aligned}
\)
possible values are \(n =0,1\) and -1 because
\(
-\sqrt{2} \leq \sin \theta+\cos \theta \leq \sqrt{2}
\)
Now it gives \(\theta \in\left\{0, \frac{\pi}{2}, \frac{3 \pi}{4}, \frac{7 \pi}{4}, \frac{3 \pi}{2}, \pi\right\}\)
\(
\text { So } \sum_{\theta=S} \sin ^2\left(\theta+\frac{\pi}{4}\right)=2(0)+4\left(\frac{1}{2}\right)=2
\)
The set of all values of \(\lambda\) for which the equation \(\cos ^2 2 x-2 \sin ^4 x-2 \cos ^2 x=\lambda\) [JEE Main 2023 29th Jan Shift 2]
(d)
\(
\lambda=\cos ^2 2 x-2 \sin ^4 x-2 \cos ^2 x
\)
convert all in to \(\cos x\).
\(
\begin{aligned}
\lambda & =\left(2 \cos ^2 x-1\right)^2-2\left(1-\cos ^2 x\right)^2-2 \cos ^2 x \\
& =4 \cos ^4 x-4 \cos ^2 x+1-2\left(1-2 \cos ^2 x+\cos ^4 x\right)- \\
& 2 \cos ^2 x \\
& =2 \cos ^4 x-2 \cos ^2 x+1-2 \\
& =2 \cos ^4 x-2 \cos ^2 x-1 \\
& =2\left[\cos ^4 x-\cos ^2 x-\frac{1}{2}\right] \\
& =2\left[\left(\cos ^2 x-\frac{1}{2}\right)^2-\frac{3}{4}\right] \\
\lambda_{\max } & =2\left[\frac{1}{4}-\frac{3}{4}\right]=2 \times\left(-\frac{2}{4}\right)=-1 \text { (max Value) } \\
\lambda_{\min } & =2\left[0-\frac{3}{4}\right]=-\frac{3}{2}(\text { MinimumValue) }
\end{aligned}
\)
So, Range \(=\left[-\frac{3}{2},-1\right]\)
If \(\tan 15^{\circ}+\frac{1}{\tan 75^{\circ}}+\frac{1}{\tan 105^{\circ}}+\tan 195^{\circ}=2 a\), then the value of \(\left(a+\frac{1}{a}\right)\) is : [JEE Main 2023 30th Jan Shift 1]
(a)
\(
\begin{aligned}
& \tan 15^{\circ}=2-\sqrt{3} \\
& \frac{1}{\tan 75^{\circ}}=\cot 75^{\circ}=2-\sqrt{3} \\
& \frac{1}{\tan 105^{\circ}}=\cot \left(105^{\circ}\right)=-\cot 75^{\circ}=\sqrt{3}-2 \\
& \tan 195^{\circ}=\tan 15^{\circ}=2-\sqrt{3} \\
\therefore \quad & 2(2-\sqrt{3})=2 a \Rightarrow a =2-\sqrt{3} \\
\Rightarrow & a +\frac{1}{ a }=4
\end{aligned}
\)
If the solution of the equation \(\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right)\), is \(\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)\), where \(\alpha, \beta\) are integers, then \(\alpha+\beta\) is equal to: [JEE Main 2023 30th Jan Shift 1]
(d)
\(
\begin{aligned}
& \log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1 \\
& \Rightarrow \frac{\ln \cos x-\ln \sin x}{\ln \cos x}+4 \frac{\ln \sin x-\ln \cos x}{\ln \sin x}=1 \\
& \Rightarrow(\ln \sin x)^2-4(\ln \sin x)(\ln \cos x)+4(\ln \cos x)^2= \\
& \Rightarrow \ln \sin x=2 \ln \cos x \\
& \Rightarrow \sin ^2 x+\sin x-1=0 \Rightarrow \sin x=\frac{-1+\sqrt{5}}{2} \\
& \therefore \alpha+\beta=4
\end{aligned}
\)
Let
\(
S=\left\{\theta \in[-\pi, \pi]-\left\{ \pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\} \text {. }
\)
\(
\text { If } T =\sum_{\theta \in S} \cos 2 \theta, \text { then } T + n ( S ) \text { is equal }
\) [JEE Main 2022 24th June Shift 1]
(b)
\(
\begin{aligned}
& \sin \theta \tan \theta+\tan \theta=\sin 2 \theta \\
& \tan \theta(\sin \theta+1)=\frac{2 \tan \theta}{1+\tan ^2 \theta} \\
& \tan \theta=0 \Rightarrow \theta=-\pi, 0, \pi \\
& (\sin \theta+1)=2 \cdot \cos ^2 \theta=2(1+\sin \theta)(1-\sin \theta) \\
& \sin \theta=-1 \text { which is not possible } \\
& \sin \theta=\frac{1}{2} \quad \theta=\frac{\pi}{6}, \frac{5 \pi}{6} \\
& n ( s )=5 \\
& T =\cos 0+\cos 2 \pi+\cos 2 \pi+\cos \frac{\pi}{3}+\cos \frac{5 \pi}{3} \\
& T =4 \\
& T + n ( s )=9
\end{aligned}
\)
The number of values of \(x\) in the interval \(\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)\) for which \(14 \operatorname{cosec}^2 x-2 \sin ^2 x=21\) \(-4 \cos ^2 x\) holds, is [JEE Main 2022 25th June Shift 1]
(c)
\(
\begin{aligned}
& x \in\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right) \\
& 14 \operatorname{cosec}^2 x-2 \sin ^2 x=21-4 \cos ^2 x \\
& =21-4\left(1-\sin ^2 x\right) \\
& =17+4 \sin ^2 x \\
& 14 \operatorname{cosec}^2 x-6 \sin ^2 x=17 \\
& \text { let } \sin ^2 x=p \\
& \frac{14}{p}-6 p=17 \Rightarrow 14-6 p^2=17 p \\
& 6 p^2+17 p-14=0 \\
& p=-3.5, \frac{2}{3} \Rightarrow \sin ^2 x=\frac{2}{3} \\
& \Rightarrow \sin x= \pm \sqrt{\frac{2}{3}}
\end{aligned}
\)
So total four solutions
The number of elements in the set \(S=\) \(\left\{\theta \epsilon[-4 \pi, 4 \pi]: 3 \cos ^2 2 \theta+6 \cos 2 \theta-\right.\) \(\left.10 \cos ^2 \theta+5=0\right\}\) is [JEE Main 2022 29th June Shift 1]
(a)
\(
\begin{aligned}
& 3 \cos ^2 2 \theta+6 \cos 2 \theta-10 \cos ^2 \theta+5=0 \\
& 3 \cos ^2 2 \theta+6 \cos 2 \theta-5(1+\cos 2 \theta)+5=0 \\
& 3 \cos ^2 2 \theta+\cos 2 \theta=0 \\
& \operatorname{Cos} 2 \theta=0 \text { OR } \cos 2 \theta=-1 / 3 \\
& \theta \in[-4 \pi, 4 \pi] \\
& 2 \theta=(2 n+1) \cdot \frac{\pi}{2} \\
& \therefore \theta= \pm \pi / 4 . \pm 3 \pi / 4 \ldots \ldots . . \pm 15 \pi / 4
\end{aligned}
\)
Similarly \(\cos 2 \theta=-1 / 3\) gives 16 solution. Total 32 solutions.
The number of solutions of the equation \(2 \theta-\cos ^2 \theta+\sqrt{2}=0\) is \(R\) is equal to [JEE Main 2022 29th June Shift 1]
(d) Given,
\(
\begin{aligned}
& 2 \theta-\cos ^2 \theta+\sqrt{2}=0 \\
& \Rightarrow 2 \theta+\sqrt{2}=\cos ^2 \theta \\
& \Rightarrow 2 \theta+\sqrt{2}=\frac{1+\cos 2 \theta}{2} \\
& \Rightarrow 4 \theta+2 \sqrt{2}=1+\cos 2 \theta=y \text { (Assume) } \\
& \therefore y=4 \theta+2 \sqrt{2} \text { and } \\
& y=1+\cos 2 \theta
\end{aligned}
\)
For \(y=1+\cos 2 \theta\)
when \(\theta=0, y=1+1=2\)
when \(\theta=\frac{\pi}{4}, y=1+\cos \frac{\pi}{2}=1\)
\(
\theta=\frac{\pi}{2}, y=1+\cos \pi=1-1=0
\)
For \(y=4 \theta+2 \sqrt{2}\)
when \(\theta=0, y=2 \sqrt{2}\)
when \(\theta=\frac{\pi}{2}, y=2 \pi+2 \sqrt{2}\)
\(
\begin{aligned}
& =2(\pi+\sqrt{2}) \\
& =2(3.14+1.41) \\
& =2(4.55) \\
& =9.1
\end{aligned}
\)
when \(\theta=-\frac{\pi}{2}, y=-2 \pi+2 \sqrt{2}\)
\(
\begin{aligned}
& =2(-\pi+\sqrt{2}) \\
& =2(-3.14+1.41) \\
& =-3.46
\end{aligned}
\)
\(\therefore\) Two graph cut’s at only one point so one solution possible.
The number of solutions of the equation \(\sin x =\) \(\cos ^2 x\) in the interval \((0,10)\) is [JEE Main 2022 29th June Shift 2]
(a) Given equation \(\sin x=\cos ^2 x\)
\(
\begin{aligned}
& \Rightarrow \sin ^2 x+\sin x-1=0 \\
& \Rightarrow \sin x=\frac{-1 \pm \sqrt{5}}{2} \\
& \Rightarrow \sin x=\frac{\sqrt{5}-1}{2}
\end{aligned}
\)
\(\therefore\) Number of solution \(= 4\)
The number of solutions of the equation \(\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^2 2 x, x \in[-3 \pi \text {, } 3 \pi] \) is [JEE Main 2022 24th June Shift 2]
(d)
\(
\begin{aligned}
& \cos \left(\frac{\pi}{3}+x\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^2 2 x \\
& x \in[-3 \pi, 3 \pi] \\
& 4\left(\cos ^2\left(\frac{\pi}{3}\right)-\sin ^2 x\right)=\cos ^2 2 x \\
& 4\left(\frac{1}{4}-\sin ^2 x\right)=\cos ^2 2 x \\
& 1-4 \sin ^2 x=\cos ^2 2 x \\
& 1-2(1-\cos 2 x)=\cos ^2 2 x \\
& l e t \cos 2 x=t \\
& -1+2 \cos 2 x=\cos ^2 2 x \\
& t^2-2 t+1=0 \\
& (t-1)^2=0
\end{aligned}
\)
\(
\begin{aligned}
& t=1 \quad \cos 2 x=1 \\
& 2 x=2 n \pi \\
& x=n \pi \\
& n=-3,-2,-1,0,1,2,3
\end{aligned}
\)
The value of \(2 \sin \left(12^{\circ}\right)-\sin \left(72^{\circ}\right)\) is : [JEE Main 2022 25th June Shift 2]
(d)
\(
\begin{aligned}
& \sin 12^{\circ}+\sin 12^{\circ}-\sin 72^{\circ} \\
& =\sin 12^{\circ}-2 \cos 42^{\circ} \sin 30^{\circ} \\
& =\sin 12^{\circ}-\sin 48^{\circ} \\
& =-2 \cos 30^{\circ} \sin 18^{\circ} \\
& =-2 \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{5}-1}{4} \\
& =\frac{\sqrt{3}}{4}(1-\sqrt{5})
\end{aligned}
\)
If \(\sin ^2\left(10^{\circ}\right) \sin \left(20^{\circ}\right) \sin \left(40^{\circ}\right) \sin \left(50^{\circ}\right) \sin \left(70^{\circ}\right)=\alpha-\) \(\frac{1}{16} \sin \left(10^{\circ}\right)\), then \(16+\alpha^{-1}\) is equal to [JEE Main 2022 26th June Shift 1]
(b)
\(
\begin{aligned}
& \sin 10^{\circ}\left(\frac{1}{2} \cdot 2 \sin 20^{\circ} \sin 40^{\circ}\right) \cdot \sin 10^{\circ} \sin \left(60^{\circ}-10^{\circ}\right) \sin \left(60^{\circ}+10^{\circ}\right) \\
& \sin 10^{\circ} \frac{1}{2}\left(\cos 20^{\circ}-\cos 60^{\circ}\right) \cdot \frac{1}{4} \sin 30^{\circ} \\
& \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \sin 10^{\circ}\left(\cos 20^{\circ}-\frac{1}{2}\right) \\
& =\frac{1}{32}\left(2 \sin 10^{\circ} \cos 20^{\circ}-\sin 10^{\circ}\right)
\end{aligned}
\)
\(
\begin{aligned}
& =\frac{1}{32}\left(\sin 30^{\circ}-\sin 10^{\circ}-\sin 10^{\circ}\right) \\
& =\frac{1}{32}\left(\frac{1}{2}-2 \sin 10^{\circ}\right) \\
& =\frac{1}{64}\left(1-4 \sin 10^{\circ}\right) \\
& =\frac{1}{64}-\frac{1}{16} \sin 10^{\circ}
\end{aligned}
\)
Hence \(\alpha=\frac{1}{64}\)
\(
16+\alpha^{-1}=80
\)
\(16 \sin \left(20^{\circ}\right) \sin \left(40^{\circ}\right) \sin \left(80^{\circ}\right)\) is equal to : [JEE Main 2022 26th June Shift 2]
(b)
\(
\begin{aligned}
& 16 \sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ} \\
& =16 \sin 40^{\circ} \sin 20^{\circ} \sin 80^{\circ} \\
& =4(4 \sin (60-20) \sin (20) \sin (60+20)) \\
& =4 \times \sin \left(3 \times 20^{\circ}\right) \\
& {[\because \sin 3 \theta=4 \sin (60-\theta) \times \sin \theta \times \sin (60+\theta)]} \\
& =4 \times \sin 60^{\circ} \\
& =4 \times \frac{\sqrt{3}}{2}=2 \sqrt{3}
\end{aligned}
\)
The value of \(\cos \left(\frac{2 \pi}{7}\right)+\cos \left(\frac{4 \pi}{7}\right)+\cos \left(\frac{6 \pi}{7}\right)\) is equal to : [JEE Main 2022 27 June Shift 1]
(b)
\(
\begin{aligned}
& \cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7} \\
& =\frac{\sin \left(3 \times \frac{\pi}{7}\right)}{\sin \frac{\pi}{7}} \times \cos \left(\frac{\frac{2 \pi}{7}+\frac{6 \pi}{7}}{2}\right) \\
& =\frac{2 \sin \left(\frac{3 \pi}{7}\right)}{2 \sin \frac{\pi}{7}} \times \cos \left(\frac{4 \pi}{7}\right) \\
& =\frac{\sin \left(\frac{7 \pi}{7}\right)+\sin \left(\frac{-\pi}{7}\right)}{2 \sin \frac{\pi}{7}} \\
& =\frac{-\sin \frac{\pi}{7}}{2 \sin \frac{\pi}{7}} \\
& =-\frac{1}{2} \\
&
\end{aligned}
\)
\(\alpha=\sin 36^{\circ}\) is a root of which of the following equation [JEE Main 2022 27th June Shift 2]
(c)
\(
\begin{aligned}
& \cos 72^{\circ}=\frac{\sqrt{5}-1}{4} \\
& \Rightarrow 1-2 \sin ^2 36^{\circ}=\frac{\sqrt{5}-1}{4} \\
& \Rightarrow 4-8 x^2=\sqrt{5}-1 \\
& \Rightarrow 5-8 x^2=\sqrt{5} \\
& \Rightarrow\left(5-8 x^2\right)^2=5 \\
& \Rightarrow 25+64 x^4-80 x^2=5 \\
& \Rightarrow 64 x^4-80 x^2+20=0 \\
& \Rightarrow 16 x^4-20 x^2+5=0
\end{aligned}
\)
If \(\cot \alpha=1\) and \(\sec \beta=-\frac{5}{3}\), where \(\pi<\alpha<\frac{3 \pi}{2}\) and \(\frac{\pi}{2}<\beta<\pi\), then the value of \(\tan (\alpha+\beta)\) and the quadrant in which \(\alpha+\beta\) lies, respectively are [JEE Main 2022 28th June Shift 2]
(a)
\(
\begin{aligned}
& \cot \alpha=1, \sec \beta=\frac{-5}{3}, \cos \beta=\frac{-3}{5}, \tan \beta=\frac{-4}{3} \\
& \tan (\alpha+\beta)=\frac{1-\frac{4}{3}}{1+\frac{4}{3} \times 1}=\frac{-1}{7}
\end{aligned}
\)
If \(e ^{\left(\cos ^2 x+\cos ^4 x+\cos ^5 x+\ldots \infty\right) \log _e 2}\) satisfies the equation \(t^2-9 t+8=0\), then the value of \(\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0<x<\frac{\pi}{2}\right)\) is [JEE Main 2021 24th Feb Shift 1]
(c) Step 1: Simplifying the given equation:
Given that,
\(
e^{\left(\cos ^2 x+\cos ^4 x+\cos ^6 x+\ldots \infty\right) \log _e 2}
\)
Here, \(\cos ^2 x+\cos ^4 x+\ldots+\infty\) is in GP. Then
\(
\begin{aligned}
\cos ^2 x+\cos ^4 x+\ldots \infty & =\frac{\cos ^2 x}{1-\cos ^2 x} \quad\left[\because S _{ n }=\frac{ a }{1- r }\right] \\
& =\frac{\cos ^2 x}{\sin ^2 x} \\
& =\cot ^2 x
\end{aligned}
\)
Substitute this in the given function, we get
\(
\begin{aligned}
e^{\left(\cos ^2 x+\cos ^4 x+\cos ^6 x+\ldots \infty\right) \log _e 2} & =e^{\cot ^2 x \log _e 2} \\
& =e^{\log _e 2^{\cot x}} \quad\left[\because \text { mloga }=\log ^{ m }\right] \\
& =2^{\cot ^2 x}
\end{aligned}
\)
Step 2: Find the value of \(t\) :
\(t^2-9 t+8=0 \quad\) [given]
\(
\begin{array}{lrl}
\Rightarrow & t^2-8 t-t+8=0 \\
\Rightarrow & t(t-8)-1(t-8)=0 \\
\Rightarrow & (t-8)(t-1)=0 \\
\Rightarrow & t=8 \text { or } 1
\end{array}
\)
\(\text { Since, the given equation satisfies the equation } t^2-9 t+8=0 \text {,then }\)
\(
\begin{aligned}
2^{\cot ^2 x} & =8 \\
& \Rightarrow 2^{\cot ^2 x}=2^3 \\
& \Rightarrow \cot ^2 x=3 \quad \quad \quad \text { by comparing] } \\
& \Rightarrow \cot x=\sqrt{3} \\
& \Rightarrow \quad x=\frac{\pi}{6}
\end{aligned}
\)
\(
\begin{aligned}
2^{\cot ^2 x} & =1 \\
& \Rightarrow 2^{\cot ^2 x}=2^0 \\
& \Rightarrow \cot ^2 x=0 \quad \text { by comparing] } \\
& \Rightarrow \cot x=\cot \left(\frac{\pi}{2}\right) \\
& \Rightarrow \quad x=\frac{\pi}{2}
\end{aligned}
\)
But it is given \(0<x<\frac{\pi}{2}\) so, take only \(x=\frac{\pi}{6}\).
Step 4: Find the value of the expression:
By substituting \(x=\frac{\pi}{6}\) in the expression.
\(
\begin{aligned}
\frac{2 \sin x}{\sin x+\sqrt{3} \cos x} & =\frac{2 \sin \left(\frac{\pi}{6}\right)}{\sin \left(\frac{x}{6}\right)+\sqrt{3} \cos \left(\frac{\pi}{6}\right)} \\
& =\frac{2 \times \frac{1}{2}}{\frac{1}{2}+\sqrt{3} \times \frac{\sqrt{3}}{2}} \\
& =\frac{2}{4} \\
& =\frac{1}{2}
\end{aligned}
\)
All possible values of \(\theta \in[0,2 \pi]\) for which \(\sin 2 \theta+\tan 2 \theta>0\) lie in: [JEE Main 2021 25th Feb Shift 1]
(b)
\(
\begin{aligned}
& \tan 2 \theta(1+\cos 2 \theta)>0 \\
& 2 \theta \in\left(0, \frac{\pi}{2}\right) \cup\left(\pi, \frac{3 \pi}{2}\right) \cup\left(2 \pi, \frac{5 \pi}{2}\right) \cup\left(3 \pi, \frac{7 \pi}{2}\right) \\
& \Rightarrow \theta \in\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{5 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{7 \pi}{4}\right)
\end{aligned}
\)
If \(0<x, y<\pi\) and \(\cos x+\cos y-\cos (x+y)=\frac{3}{2}\), then \(\sin x+\cos y\) is equal to : [JEE Main 2021 25th Feb Shift1]
(a)
\(
\begin{aligned}
& 2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)-\left[2 \cos ^2\left(\frac{x+y}{2}\right)-1\right]=\frac{3}{2} \\
& 2 \cos \left(\frac{x+y}{2}\right)\left[\cos \left(\frac{x-y}{2}\right)-\cos \left(\frac{x+y}{2}\right)\right]=\frac{1}{2} \\
& 2 \cos \left(\frac{x+y}{2}\right)\left[2 \sin \left(\frac{x}{2}\right) \cdot \sin \left(\frac{y}{2}\right)\right]=\frac{1}{2} \\
& \cos \left(\frac{x+y}{2}\right) \cdot \sin \left(\frac{x}{2}\right) \cdot \sin \left(\frac{y}{2}\right)=\frac{1}{8} \\
& \text { Possible when } \frac{x}{2}=30^{\circ} \& \frac{y}{2}=30^{\circ} \\
& x=y=60^{\circ} \\
& \sin x+\cos y=\frac{\sqrt{3}}{2}+\frac{1}{2}=\frac{\sqrt{3}+1}{2}
\end{aligned}
\)
The number of integral values of ‘ \(k\) ‘ for which the equation \(3 \sin x +4 \cos x = k +1\) has a solution, \(k \in R\) is [JEE Main 2021 26th Feb Shift 1]
(d)
\(
3 \sin x+4 \cos x=k+1
\)
The equation has a solution if
\(
\begin{aligned}
& -\sqrt{3^2+4^2} \leq k+1 \leq \sqrt{3^2+4^2} \\
& \Rightarrow-5 \leq k+1 \leq 5 \\
& \Rightarrow-6 \leq k \leq 4 \\
& \Rightarrow k=-6,-5,-4,-3,-2,-1,0,1,2,3,4
\end{aligned}
\)
\(\therefore\) There are 11 possible integral values.
If \(\sqrt{3}\left(\cos ^2 x\right)=(\sqrt{3}-1) \cos x+1\), the number of solutions of the given equation when \(x \in\left[0, \frac{\pi}{2}\right]\) is [JEE Main 2021 26th Feb Shift 1]
(c)
\(
\left.\sqrt{3} t^2-(\sqrt{3}-1) t-1=0 \text { (where } t=\cos x\right)
\)
Now, \(t=\frac{(\sqrt{3}-1) \pm \sqrt{4+2 \sqrt{3}}}{2 \sqrt{3}}\)
\(t=\cos x=1\) or \(-\frac{1}{\sqrt{3}} \rightarrow\) rejected as \(x \in\left[0, \frac{\pi}{2}\right]\)
\(
\Rightarrow \cos x=1
\)
\(\Rightarrow\) No. of solution \(=1\)
The value of \(\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}\) is [JEE Main 2023 (Online) 6th April Evening Shift]
(a)
\(
\begin{aligned}
& \tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ} \\
& =\tan 9^{\circ}+\tan \left(90^{\circ}-9^{\circ}\right)-\tan 27^{\circ}-\tan \left(90^{\circ}-27^{\circ}\right) \\
& =\tan 9^{\circ}+\cot 9^{\circ}-\tan 27^{\circ}-\cot 27^{\circ} \\
& =\frac{\sin 9^{\circ}}{\cos 9^{\circ}}+\frac{\cos 9^{\circ}}{\sin 9^{\circ}}-\left(\frac{\sin 27^{\circ}}{\cos 27^{\circ}}+\frac{\cos 27^{\circ}}{\sin 27^{\circ}}\right) \\
& =\frac{\sin ^2 9^{\circ}+\cos ^2 9^{\circ}}{\sin 9^{\circ} \cos 9^{\circ}}-\left(\frac{\sin ^2 27^{\circ}+\cos ^2 27^{\circ}}{\cos 27^{\circ} \sin 27^{\circ}}\right) \\
& =\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}} \\
& =\frac{2 \times 4}{\sqrt{5}-1}-\frac{2 \times 4}{\sqrt{5}+1} \\
& =8\left(\frac{\sqrt{5}+1-\sqrt{5}+1}{5-1}\right)=2(2)=4
\end{aligned}
\)
Let \(\alpha\) and \(\beta\) be two real roots of the \((k+1) \tan ^2 x-\sqrt{2} \cdot \lambda \tan x=(1-k)\), where \(k(\neq-1)\) and \(\lambda\) are real numbers. If \(\tan ^2(\alpha+\beta)=50\), then a value of \(\lambda\) is: [JEE Main 2020 7th Jan Morning]
(a)
\(
\begin{aligned}
& (k+1) \tan ^2 x-\sqrt{2} \lambda \tan x+(k-1)=0 \\
& \tan \alpha+\tan \beta=\frac{\sqrt{2} \lambda}{k+1} \\
& \tan \alpha \tan \beta=\frac{k-1}{k+1} \\
& \tan (\alpha+\beta)=(k-1)=0 \frac{\frac{\sqrt{2} \lambda}{k+1}}{1-\frac{k-1}{k+1}}=\frac{\sqrt{2} \lambda}{2}=\frac{\lambda}{\sqrt{2}} \\
& \tan ^2(\alpha+\beta)=\frac{\lambda^2}{2}=50 \\
& \lambda=10
\end{aligned}
\)
Let \(\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}\) and \(\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}\) where \(\alpha, \beta \in\left(0, \frac{\pi}{2}\right)\). Then \(\tan (\alpha+2 \beta)\) is equal to [JEE Main 2020 8th Jan Evening]
(a)
\(
\begin{aligned}
& \frac{\sqrt{2} \sin \alpha}{\sqrt{2} \cos \alpha}=\frac{1}{7} \text { and } \frac{\sqrt{2} \sin \beta}{\sqrt{2}}=\frac{1}{\sqrt{10}} \\
& \tan \alpha=\frac{1}{7} \\
& \sin \beta=\frac{1}{\sqrt{10}} \\
& \tan \beta=\frac{1}{3} \\
& \tan 2 \beta=\frac{2 \cdot \frac{1}{3}}{1-\frac{1}{9}}=\frac{\frac{2}{3}}{\frac{8}{9}}=\frac{3}{4} \\
& \tan (\alpha+2 \beta)=\frac{\tan \alpha+\tan 2 \beta}{1-\tan \alpha \tan 2 \beta}=\frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7} \cdot \frac{3}{4}}=\frac{\frac{4+21}{28}}{\frac{25}{28}}=1
\end{aligned}
\)
If the equation \(\cos ^4 \theta+\sin ^4 \theta+\lambda=0\) has real solutions for \(\theta\), then \(\lambda\) lies in the interval [JEE Main 2020 2nd Sept Evening]
(a)
\(
\begin{aligned}
& \sin ^4 \theta+\cos ^4 \theta=-\lambda \\
& \Rightarrow \quad 1-2 \sin ^2 \theta \cos ^2 \theta=-\lambda \\
& \Rightarrow \quad \lambda=\frac{(\sin 2 \theta)^2}{2}-1 \\
& \Rightarrow \quad \text { as } \sin ^2 2 \theta \in[0,1] \\
& \Rightarrow \quad \lambda \in\left[-1, \frac{-1}{2}\right]
\end{aligned}
\)
Two vertical poles \(A B=15 m\) and \(CD =10 m\) are standing apart on a horizontal ground with points \(A\) and \(C\) on the ground. If \(P\) is the point of intersection of \(BC\) and \(AD\), then the height of \(P(\) in \(m)\) above the line \(A C\) is : [JEE Main 2020 4th Sept Morning]
(a)
\(
\begin{aligned}
& \tan \theta=\frac{10}{ x }=\frac{ h }{ x _2} \Rightarrow x _2=\frac{ hx }{10} \\
& \tan \phi=\frac{15}{ x }=\frac{ h }{ x _1} \Rightarrow x _1=\frac{ hx }{15} \\
& \text { Now, } x _1+ x _2= x =\frac{ hx }{15}+\frac{ hx }{10} \\
& \Rightarrow 1=\frac{ h }{10}+\frac{ h }{15} \Rightarrow h =6
\end{aligned}
\)
The angle of elevation of a cloud \(C\) from a point \(P , 200 m\) above a still lake is \(30^{\circ}\). If the angle of depression of the image of \(C\) in the lake from the point \(P\) is \(60^{\circ}\), then \(P C(\) in \(m)\) is equal to : [JEE Main 2020 4th Sept Evening]
(a)
\(
\begin{aligned}
& \Rightarrow \ell=\frac{\ell}{2}+200 \\
& \Rightarrow \ell=400
\end{aligned}
\)
So \(\quad PC =\ell=400 m\)
If \(L=\sin ^2\left(\frac{\pi}{16}\right)-\sin ^2\left(\frac{\pi}{8}\right)\) and \(M=\cos ^2\left(\frac{\pi}{16}\right)-\sin ^2\left(\frac{\pi}{8}\right)\), then [JEE Main 2020 5th Sept evening]
(b)
\(L + M =1-2 \sin ^2 \frac{\pi}{8}=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \dots(i)\) and \(L – M =-\cos \frac{\pi}{8} \dots(ii)\)
By (i) and (ii)
\(
\begin{aligned}
& L=\frac{1}{2}\left(\frac{1}{\sqrt{2}}-\cos \frac{\pi}{8}\right)=\frac{1}{2 \sqrt{2}}-\frac{1}{2} \cos \frac{\pi}{8} \\
& \& M=\frac{1}{2}\left(\frac{1}{\sqrt{2}}+\cos \frac{\pi}{8}\right)=\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}
\end{aligned}
\)
The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be \(45^{\circ}\). After walking a distance of 80 meters towards the top, up a slope inclined at an angle of \(30^{\circ}\) to the horizontal plane, the angle of elevation of the top of the hill becomes \(75^{\circ}\). Then the height of the hill (in meters) is [JEE Main 2020 6th Sept Morning]
(b)
\(
\begin{aligned}
& x=80 \cos 30^{\circ}=40 \sqrt{3} \\
& y=80 \sin 30^{\circ}=40 \\
& \text { In } \triangle A D C \\
& \tan 45^{\circ}=\frac{h}{x+z} \Rightarrow h=x+z \\
& \Rightarrow h=40 \sqrt{3}+z \cdots \text { (1) }
\end{aligned}
\)
In \(\triangle E D F\)
\(
\begin{aligned}
& \tan 75^{\circ}=\frac{h-y}{z} \\
& 2+\sqrt{3}=\frac{h-40}{z} \Rightarrow z=\frac{h-40}{2+\sqrt{3}} \dots(2)
\end{aligned}
\)
Put the value of \(z\) from (1)
\(
\begin{aligned}
& h-40 \sqrt{3}=\frac{h-40}{2+\sqrt{3}} \\
& h(1+\sqrt{3})=40(2 \sqrt{3}+3-1) \\
& h(1+\sqrt{3})=80(1+\sqrt{3}) \\
& h=80
\end{aligned}
\)
The angle of elevation of the summit of a mountain from a point on the ground is \(45^{\circ}\). After climbing up one \(km\) towards the summit at an inclination of \(30^{\circ}\) from the ground, the angle of elevation of the summit is found to be \(60^{\circ}\). Then the height (in \(km\) ) of the summit from the ground is : [JEE Main 2020 6th Sept Evening]
(b)
\(
\begin{aligned}
& \because \angle S R P=\angle S P R=15^{\circ} \\
& \therefore P P=S R=1 km
\end{aligned}
\)
\(
\begin{aligned}
&\begin{aligned}
& \text { In } \Delta SPT \\
& \frac{P T}{S P}=\sin 60^{\circ} \\
& P T=\frac{\sqrt{3}}{2} k m
\end{aligned}\\
&\ln \Delta R S U, \sin 30^{\circ}=\frac{S U}{R S} \Rightarrow S U=\frac{1}{2} km
\end{aligned}
\)
\(
\begin{aligned}
& \therefore \text { Height of mountain }=\left(\frac{\sqrt{3}}{2}+\frac{1}{2}\right)=\left(\frac{\sqrt{3}+1}{2}\right) km \\
& =\frac{1}{\sqrt{3}-1} km
\end{aligned}
\)
You cannot copy content of this page