In this Section, we shall derive expressions for trigonometric functions of the sum and difference of two numbers (angles) and related expressions. We shall prove the following cases:
\(\text { 1. } \quad \sin (-x)=-\sin x\)Proof:
\(\begin{aligned}Note: The sine function is an odd function that is anti-mirrored perfectly around the y-axis. So, for every absolute value on the x-axis, the value of y will be the same but opposite sign – whether the point x is chosen on the positive x-axis or the negative x-axis.
\(\text { 2. } \quad \cos (-x)=\cos x\)Proof:
Cosine and Sine values are complementary.
Thus, \(\cos x=\sin \left(90^{\circ}-x\right)\)
\(
\Rightarrow \cos (-x)=\sin \left(90^{\circ}+x\right)
\)
We know that, \(\sin (A+B)=\sin A \cos B+\cos A \sin B\)
Thus, using this formula we can expand \(\sin \left(90^{\circ}+x\right)\)
\(
\begin{aligned}
&=\sin 90^{\circ} \times \cos x+\cos 90^{\circ} \times \sin x \\
&=1 \times \cos x+0 \times \sin x \quad \quad\left(\text { Since, } \sin 90^{\circ}=1, \cos 90^{\circ}=0\right) \\
&=\cos x
\end{aligned}
\)
Note: The cosine function is an even function that is mirrored perfectly around the y-axis. So, for every absolute value on the x-axis, the value of y will be the same – whether the point x is chosen on the positive x-axis or the negative x-axis.
\(\text { 3. } \quad \cos (x+y)=\cos x \cos y-\sin x \sin y\)Proof:
Consider the unit circle with centre at the origin. Let \(x\) be the angle \(\mathrm{P}_{4} \mathrm{OP}_{1}\) and \(y\) be the angle \(\mathrm{P}_{1} \mathrm{OP}_{2^{*}}\). Then \((x+y)\) is the angle \(\mathrm{P}_{4} \mathrm{OP}_{2}\). Also let \((-y)\) be the angle \(\mathrm{P}_{4} \mathrm{OP}_{3}\). Therefore, \(P_{1}, P_{2}, P_{3}\) and \(P_{4}\) will have the coordinates \(P_{1}(\cos x\), \(\sin x)\), \(\mathrm{P}_{2}[\cos (x+y), \sin (x+y)], \mathrm{P}_{3}[\cos (-y), \sin (-y)]\) and \(\mathrm{P}_{4}(1,0)\) (Fig 3.13).
Consider the triangles \(\mathrm{P}_{1} \mathrm{OP}_{3}\) and \(\mathrm{P}_{2} \mathrm{OP}_{4}\). They are congruent (Why?). Therefore, \(\mathrm{P}_{1} \mathrm{P}_{3}\) and \(\mathrm{P}_{2} \mathrm{P}_{4}\) are equal. By using distance formula, we get
\(
\begin{aligned}
\mathrm{P}_{1} \mathrm{P}_{3}^{2} &=[\cos x-\cos (-y)]^{2}+\left[\sin x-\sin (-y]^{2}\right.\\
&=(\cos x-\cos y)^{2}+(\sin x+\sin y)^{2} \\
&=\cos ^{2} x+\cos ^{2} y-2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y+2 \sin x \sin y \\
&=2-2(\cos x \cos y-\sin x \sin y) \quad(\text { Why?) }
\end{aligned}
\)
Also,
\(
\begin{aligned}
\mathrm{P}_{2} \mathrm{P}_{4}^{2} &=[1-\cos (x+y)]^{2}+[0-\sin (x+y)]^{2} \\
&=1-2 \cos (x+y)+\cos ^{2}(x+y)+\sin ^{2}(x+y) \\
&=2-2 \cos (x+y)
\end{aligned}
\)
Since \(\mathrm{P}_{1} \mathrm{P}_{3}=\mathrm{P}_{2} \mathrm{P}_{4}\), we have \(\mathrm{P}_{1} \mathrm{P}_{3}^{2}=\mathrm{P}_{2} \mathrm{P}_{4}^{2}\).
Therefore, \(2-2(\cos x \cos y-\sin x \sin y)=2-2 \cos (x+y)\).
Hence \(\cos (x+y)=\cos x \cos y-\sin x \sin y\)
Proof:
Replacing \(y\) by \(-y\) in identity 3 , we get
\(\cos (x+(-y))=\cos x \cos (-y)-\sin x \sin (-y)\)
or \(\cos (x-y)=\cos x \cos y+\sin x \sin y\)
Proof:
If we replace \(x\) by \(\frac{\pi}{2}\) and \(y\) by \(x\) in Identity (4), we get
\(
\cos \left(\frac{\pi}{2}-x\right)=\cos \frac{\pi}{2} \cos x+\sin \frac{\pi}{2} \sin x=\sin x
\)
Proof:
Using the Identity 5 , we have
\(
\sin \left(\frac{\pi}{2}-x\right)=\cos \left[\frac{\pi}{2}-\left(\frac{\pi}{2}-x\right)\right]=\cos x .
\)
Proof:
We know that
\(
\begin{aligned}
\sin (x+y) &=\cos \left(\frac{\pi}{2}-(x+y)\right)=\cos \left(\left(\frac{\pi}{2}-x\right)-y\right) \\
&=\cos \left(\frac{\pi}{2}-x\right) \cos y+\sin \left(\frac{\pi}{2}-x\right) \sin y \\
&=\sin x \cos y+\cos x \sin y
\end{aligned}
\)
Proof:
If we replace \(y\) by \(-y\), in the Identity 7 , we get the result.
9. By taking suitable values of \(x\) and \(y\) in the identities \(3,4,7\) and 8 , we get the following results:
Proof:
\(\begin{array}{ll}\(
\begin{array}{ll}
\cos (\pi+x)=-\cos x & \sin (\pi+x)=-\sin x \\
\cos (2 \pi-x)=\cos x & \sin (2 \pi-x)=-\sin x
\end{array}
\)
Similar results for \(\tan x, \cot x, \sec x\) and \(\operatorname{cosec} x\) can be obtained from the results of \(\sin\) \(x\) and \(\cos x\).
10. If none of the angles \(x, y\) and \((x+y)\) is an odd multiple of \(\frac{\pi}{2}\), then
\(
\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}
\)
Proof:
Since none of the \(x, y\) and \((x+y)\) is an odd multiple of \(\frac{\pi}{2}\), it follows that \(\cos x\), \(\cos y\) and \(\cos (x+y)\) are non-zero. Now
\(
\tan (x+y)=\frac{\sin (x+y)}{\cos (x+y)}=\frac{\sin x \cos y+\cos x \sin y}{\cos x \cos y-\sin x \sin y} .
\)
Dividing numerator and denominator by \(\cos x \cos y\), we have
\(
\begin{aligned}
\tan (x+y) &=\frac{\frac{\sin x \cos y}{\cos x \cos y}+\frac{\cos x \sin y}{\cos x \cos y}}{\frac{\cos x \cos y}{\cos x \cos y}-\frac{\sin x \sin y}{\cos x \cos y}} \\
&=\frac{\tan x+\tan y}{1-\tan x \tan y}
\end{aligned}
\)
11. \(\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}\)
Proof:
If we replace \(y\) by \(-y\) in Identity 10 , we get
\(
\begin{aligned}
\tan (x-y) &=\tan [x+(-y)] \\
&=\frac{\tan x+\tan (-y)}{1-\tan x \tan (-y)}=\frac{\tan x-\tan y}{1+\tan x \tan y}
\end{aligned}
\)
12. If none of the angles \(x, y\) and \((x+y)\) is a multiple of \(\pi\), then
\(
\cot (x+y)=\frac{\cot x \cot y-1}{\cot y+\cot x}
\)
Proof:
Since, none of the \(x, y\) and \((x+y)\) is multiple of \(\pi\), we find that \(\sin x, \sin y\) and \(\sin (x+y)\) are non-zero. Now,
\(
\cot (x+y)=\frac{\cos (x+y)}{\sin (x+y)}=\frac{\cos x \cos y-\sin x \sin y}{\sin x \cos y+\cos x \sin y}
\)
Dividing numerator and denominator by \(\sin x \sin y\), we have
\(
\cot (x+y)=\frac{\cot x \cot y-1}{\cot y+\cot x}
\)
13. \(\cot (x-y)=\frac{\cot x \cot y+1}{\cot y-\cot x}\) if none of angles \(x, y\) and \(x-y\) is a multiple of \(\pi\)
Proof:
If we replace \(y\) by \(-y\) in identity 12 , we get the result
14. \(\cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x=\frac{1-\tan ^{2} x}{1+\tan ^{2} x}\)
Proof:
We know that \(\cos (x+y)=\cos x \cos y-\sin x \sin y\)
Replacing \(y\) by \(x\), we get
\( \begin{aligned} \cos 2 x &=\cos ^{2} x-\sin ^{2} x \\ &=\cos ^{2} x-\left(1-\cos ^{2} x\right)=2 \cos ^{2} x-1 \end{aligned} \)
\(\cos 2 x=\frac{1-\tan ^{2} x}{1+\tan ^{2} x}, \quad x \neq n \pi+\frac{\pi}{2}\), where \(\mathrm{n}\) is an integer
Note:
\(15. \(\sin 2 x=2 \sin x \cos x=\frac{2 \tan x}{1+\tan ^{2} x} x \neq n \pi+\frac{\pi}{2}\), where \(\mathrm{n}\) is an integer
Proof:
We have
\(
\sin (x+y)=\sin x \cos y+\cos x \sin y
\)
Replacing \(y\) by \(x\), we get \(\sin 2 x=2 \sin x \cos x\).
\(
\text { Again } \quad \sin 2 x=\frac{2 \sin x \cos x}{\cos ^{2} x+\sin ^{2} x}
\)
Dividing each term by \(\cos ^{2} x\), we get
\(
\sin 2 x=\frac{2 \tan x}{1+\tan ^{2} x}
\)
16. \(\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}\) if \(2 x \neq n \pi+\frac{\pi}{2}\), where \(\mathrm{n}\) is an integer
Proof:
We know that
\(
\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}
\)
Replacing \(y\) by \(x\), we get \(\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}\)
17. \(\sin 3 x=3 \sin x-4 \sin ^{3} x\)
Proof:
We have,
\(
\begin{aligned}
\sin 3 x &=\sin (2 x+x) \\
&=\sin 2 x \cos x+\cos 2 x \sin x \\
&=2 \sin x \cos x \cos x+\left(1-2 \sin ^{2} x\right) \sin x \\
&=2 \sin x\left(1-\sin ^{2} x\right)+\sin x-2 \sin ^{3} x \\
&=2 \sin x-2 \sin ^{3} x+\sin x-2 \sin ^{3} x \\
&=3 \sin x-4 \sin ^{3} x
\end{aligned}
\)
18. \(\cos 3 x=4 \cos ^{3} x-3 \cos x\)
Proof:
We have,
\(
\begin{aligned}
\cos 3 x &=\cos (2 x+x) \\
&=\cos 2 x \cos x-\sin 2 x \sin x \\
&=\left(2 \cos ^{2} x-1\right) \cos x-2 \sin x \cos x \sin x \\
&=\left(2 \cos ^{2} x-1\right) \cos x-2 \cos x\left(1-\cos ^{2} x\right) \\
&=2 \cos ^{3} x-\cos x-2 \cos x+2 \cos ^{3} x \\
&=4 \cos ^{3} x-3 \cos x
\end{aligned}
\)
19. \(\tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}\) if \(3 x \neq n \pi+\frac{\pi}{2}\), where \(\mathrm{n}\) is an integer
Proof:
We have \(\tan 3 x=\tan (2 x+x)\)
\(
=\frac{\tan 2 x+\tan x}{1-\tan 2 x \tan x}=\frac{\frac{2 \tan x}{1-\tan ^{2} x}+\tan x}{1-\frac{2 \tan x \cdot \tan x}{1-\tan ^{2} x}}
\)
\(=\frac{2 \tan x+\tan x-\tan ^{3} x}{1-\tan ^{2} x-2 \tan ^{2} x}=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x}\)
20. (i) \(\cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}\)
(ii) \(\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}\)
(iii) \(\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}\)
(iv) \(\sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}\)
Proof:
We know that
\(\cos (x+y)=\cos x \cos y-\sin x \sin y \quad \ldots\) (1)
and \(\quad \cos (x-y)=\cos x \cos y+\sin x \sin y \quad \ldots\) (2)
Adding and subtracting (1) and (2), we get
\(\cos (x+y)+\cos (x-y)=2 \cos x \cos y \quad \ldots\) (3)
and \(\quad \cos (x+y)-\cos (x-y)=-2 \sin x \sin y \quad \ldots\) (4)
Further \(\quad \sin (x+y)=\sin x \cos y+\cos x \sin y \quad \ldots\) (5)
and \(\quad \sin (x-y)=\sin x \cos y-\cos x \sin y \quad \ldots\) (6)
Adding and subtracting (5) and (6), we get
\(\begin{array}{ll}\sin (x+y)+\sin (x-y)=2 \sin x \cos y & \ldots(7) \\ \sin (x+y)-\sin (x-y)=2 \cos x \sin y & \ldots(8)\end{array}\)
Let \(x+y=\theta\) and \(x-y=\phi\). Therefore
\(
x=\left(\frac{\theta+\phi}{2}\right) \text { and } y=\left(\frac{\theta-\phi}{2}\right)
\)
Substituting the values of \(x\) and \(y\) in (3), (4), (7) and (8), we get
\(
\begin{aligned}
&\cos \theta+\cos \phi=2 \cos \left(\frac{\theta+\phi}{2}\right) \cos \left(\frac{\theta-\phi}{2}\right) \\
&\cos \theta-\cos \phi=-2 \sin \left(\frac{\theta+\phi}{2}\right) \sin \left(\frac{\theta-\phi}{2}\right) \\
&\sin \theta+\sin \phi=2 \sin \left(\frac{\theta+\phi}{2}\right) \cos \left(\frac{\theta-\phi}{2}\right)
\end{aligned}
\)
\(
\sin \theta-\sin \phi=2 \cos \left(\frac{\theta+\phi}{2}\right) \sin \left(\frac{\theta-\phi}{2}\right)
\)
Since \(\theta\) and \(\phi\) can take any real values, we can replace \(\theta\) by \(x\) and \(\phi\) by \(y\).
Thus, we get
\(
\begin{aligned}
&\cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2} ; \cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}, \\
&\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} ; \sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} .
\end{aligned}
\)
Example 10: Prove that
\(
3 \sin \frac{\pi}{6} \sec \frac{\pi}{3}-4 \sin \frac{5 \pi}{6} \cot \frac{\pi}{4}=1
\)
Solution: We have
\(
\begin{aligned}
\text { L.H.S. } &=3 \sin \frac{\pi}{6} \sec \frac{\pi}{3}-4 \sin \frac{5 \pi}{6} \cot \frac{\pi}{4} \\
&=3 \times \frac{1}{2} \times 2-4 \sin \left(\pi-\frac{\pi}{6}\right) \times 1=3-4 \sin \frac{\pi}{6} \\
&=3-4 \times \frac{1}{2}=1=\text { R.H.S. }
\end{aligned}
\)
Example 11: Find the value of \(\sin 15^{\circ}\).
Solution: We have
\(
\begin{aligned}
\sin 15^{\circ} &=\sin \left(45^{\circ}-30^{\circ}\right) \\
&=\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ} \\
&=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \times \frac{1}{2}=\frac{\sqrt{3}-1}{2 \sqrt{2}} .
\end{aligned}
\)
Example 12: \(\text { Find the value of } \tan \frac{13 \pi}{12} \text {. }\)
Solution: We have
\(
\begin{aligned}
\tan \frac{13 \pi}{12} &=\tan \left(\pi+\frac{\pi}{12}\right)=\tan \frac{\pi}{12}=\tan \left(\frac{\pi}{4}-\frac{\pi}{6}\right) \\
&=\frac{\tan \frac{\pi}{4}-\tan \frac{\pi}{6}}{1+\tan \frac{\pi}{4} \tan \frac{\pi}{6}}=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}-1}{\sqrt{3}+1}=2-\sqrt{3}
\end{aligned}
\)
Example 13: Prove that
\(
\frac{\sin (x+y)}{\sin (x-y)}=\frac{\tan x+\tan y}{\tan x-\tan y} .
\)
Solution: We have
\(
\text { L.H.S. }=\frac{\sin (x+y)}{\sin (x-y)}=\frac{\sin x \cos y+\cos x \sin y}{\sin x \cos y-\cos x \sin y}
\)
Dividing the numerator and denominator by \(\cos x \cos y\), we get
\(
\frac{\sin (x+y)}{\sin (x-y)}=\frac{\tan x+\tan y}{\tan x-\tan y} .
\)
Example 14: Show that
\(
\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x
\)
Solution: We know that \(3 x=2 x+x\)
Therefore, \(\tan 3 x=\tan (2 x+x)\)
or \(\quad \tan 3 x=\frac{\tan 2 x+\tan x}{1-\tan 2 x \tan x}\)
or \(\quad \tan 3 x-\tan 3 x \tan 2 x \tan x=\tan 2 x+\tan x\)
or \(\quad \tan 3 x-\tan 2 x-\tan x=\tan 3 x \tan 2 x \tan x\)
Example 15: Prove that
\(
\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)=\sqrt{2} \cos x
\)
Solution:
\(\begin{aligned}
\text { L.H.S. } \quad &=\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right) \\
&=2 \cos \left(\frac{\frac{\pi}{4}+x+\frac{\pi}{4}-x}{2}\right) \cos \left(\frac{\frac{\pi}{4}+x-\left(\frac{\pi}{4}-x\right)}{2}\right) \\
&=2 \cos \frac{\pi}{4} \cos x=2 \times \frac{1}{\sqrt{2}} \cos x=\sqrt{2} \cos x=\text { R.H.S. }
\end{aligned}\)
Example 16: Prove that \(\frac{\cos 7 x+\cos 5 x}{\sin 7 x-\sin 5 x}=\cot x\)
Solution: Using the Identities 20 (i) and 20 (iv), we get
\(
\text { L.H.S. }=\frac{2 \cos \frac{7 x+5 x}{2} \cos \frac{7 x-5 x}{2}}{2 \cos \frac{7 x+5 x}{2} \sin \frac{7 x-5 x}{2}}=\frac{\cos x}{\sin x}=\cot x=\text { R.H.S. }
\)
Example 17: Prove that \(=\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x\)
Solution: We have
\(
\begin{aligned}
\text { L.H.S. } &=\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\frac{\sin 5 x+\sin x-2 \sin 3 x}{\cos 5 x-\cos x} \\
&=\frac{2 \sin 3 x \cos 2 x-2 \sin 3 x}{-2 \sin 3 x \sin 2 x}=-\frac{\sin 3 x(\cos 2 x-1)}{\sin 3 x \sin 2 x} \\
&=\frac{1-\cos 2 x}{\sin 2 x}=\frac{2 \sin ^{2} x}{2 \sin x \cos x}=\tan x=\text { R.H.S. }
\end{aligned}
\)
You cannot copy content of this page