Summary
This chapter deals with some basic definitions and operations involving sets. These are summarised below:
0 of 47 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 47 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
Suppose \(A_{1}, A_{2}, \ldots, A_{30}\) are thirty sets each having 5 elements and \(B_{1}, B_{2}, \ldots, B_{n}\) are \(n\) sets each with 3 elements, let \(\bigcup_{i=1}^{30} \mathrm{~A}_{i}=\bigcup_{j=1}^{n} \mathrm{~B}_{j}=\mathrm{S}\) and each element of \(\mathrm{S}\) belongs to exactly 10 of the \(\mathrm{A}_{i}\)’s and exactly 9 of the \(\mathrm{B}_{j}\)’s. then \(n\) is equal to
(c) If elements are not repeated, then number of elements in \(A_{1} \cup A_{2} \cup A_{3} \cdots\) \(\cup A_{30}\) is \(30 \times 5\).
But each element is used 10 times.
So, \(\quad S=\frac{30 \times 5}{10}=15\)
If elements in \(B_{1}, B_{2}, \ldots, B_{n}\), are not repeated, then total number of elements in \(B_{1} \cup B_{2} \cup B_{3} \ldots \cup B_{n}\) is \(3 n\)
But each element is repeated 9 times.
So, \(\quad S=\frac{3 n}{9} \Rightarrow 15=\frac{3 n}{9} \Rightarrow n=45\)
Two finite sets have \(m\) and \(n\) elements. The number of subsets of the first set is 112 more than that of the second set. The values of \(m\) and \(n\) are, respectively,
(b) According to the question,
\(
\begin{array}{ll}
& 2^{m}-2^{n}=112 \\
\Rightarrow & 2^{n}\left(2^{m-n}-1\right)=2^{4} \cdot 7 \\
\Rightarrow & 2^{n}=2^{4} \text { and } 2^{m-n}-1=7 \\
\Rightarrow & n=4 \text { and } 2^{m-n}=8 \\
\Rightarrow & 2^{m-n}=2^{3} \Rightarrow m-n=3 \Rightarrow m-4=3 \Rightarrow m=7
\end{array}
\)
The set \(\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)^{\prime} \cup(\mathrm{B} \cap \mathrm{C})\) is equal to
(b)
\(
\begin{aligned}
\left(A \cap B^{\prime}\right)^{\prime} \cup(B \cap C) =\left(\left(A^{\prime} \cup\left(B^{\prime}\right)^{\prime}\right) \cup(B \cap C)\right.\\
=\left(A^{\prime} \cup B\right) \cup(C \cap B)=A^{\prime} \cup(B \cup(C \cap B))=A^{\prime} \cup B
\end{aligned}
\)
Let \(\mathrm{F}_{1}\) be the set of parallelograms, \(\mathrm{F}_{2}\) the set of rectangles, \(\mathrm{F}_{3}\) the set of rhombuses, \(\mathrm{F}_{4}\) the set of squares and \(\mathrm{F}_{5}\) the set of trapeziums in a plane. Then \(\mathrm{F}_{1}\) may be equal to
(d) We know that every rectangle, rhombus, and square in a plane is a parallelogram but every trapezium is not a parallelogram.
So, \(F_{1}\) is either of \(F_{1}\) or \(F_{2}\) or \(F_{3}\) or \(F_{4}\).
\(
\therefore F_{1}=F_{1} \cup F_{2} \cup F_{3} \cup F_{4}
\)
Let \(\mathrm{S}=\) set of points inside the square, \(\mathrm{T}=\) the set of points inside the triangle and \(\mathrm{C}=\) the set of points inside the circle. If the triangle and circle intersect each other and are contained in a square. Then
(c) The given sets are represented in Venn diagram as shown below:
\(
\text { It is clear from the diagram that, } S \cup T \cup C=S \text {. }
\)
Let \(\mathrm{R}\) be set of points inside a rectangle of sides \(a\) and \(b(a, b>1)\) with two sides along the positive direction of \(x\)-axis and \(y\)-axis. Then
(d) Since, \(R\) be the set of points inside the rectangle.
\(
\therefore \quad R=\{(x, y): 0<x<a \text { and } 0<y<b\}
\)
In a class of 60 students, 25 students play cricket and 20 students play tennis, and 10 students play both the games. Then, the number of students who play neither is
(b)
Let ‘ \(\mathrm{A}\) ‘ be the set of students who play cricket, ‘ \(\mathrm{B}\) ‘ be the set of students who play tennis.
It is given that, \(n(A)=25, n(B)=20\) and \(n(A \cap B)=10=\) students who play both the games
Thus \(n(\mathrm{~A} \cup \mathrm{B})=\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})-\mathrm{n}(\mathrm{A} \cap \mathrm{B})=20+25-10=35\)
Therefore the students who play neither of the cricket and tennis \(=60-35=25\)
In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. Then the number of persons who read neither is
(b) Let \(H\) and \(E\) denote the number of persons who read Hindi and English newspaper respectively.
Given, total number of persons, \(n(U)=840\)
Total number of persons who read Hindi newspaper,
\(
n(H)=450
\)
Total number of persons who read English newspaper,
\(
n(E)=300
\)
and \(n(H \cap E)=200\)
\(
\because n(H \cup E)=n(H)+n(E)-n(H \cap E)=550
\)
\(\therefore\) The number of persons who read neither of the newspaper
\(
=n\left(H^{\prime} \cap E^{\prime}\right)=n(U)-n(H \cup E)=290
\)
If \(\mathrm{X}=\left\{8^{n}-7 n-1 \mid n \in \mathbf{N}\right\}\) and \(\mathrm{Y}=\{49 n-49 \mid n \in \mathbf{N}\}\). Then
(a) \(\begin{aligned}
X &=\left\{8^{n}-7 n-1 \mid n \in N\right\}=\{0,49,490, \ldots\} \\
Y &=\{49 n-49 \mid n \in N\}=\{0,49,98,147, \ldots, 490, \ldots\}
\end{aligned}\)
Clearly, every element of \(X\) is in \(Y\) but every element of \(Y\) is not in \(X\).
\(
\therefore \quad X \subset Y
\)
A survey shows that \(63 \%\) of the people watch a News Channel whereas \(76 \%\) watch another channel. If \(x \%\) of the people watch both channel, then
(c) Let \(\mathrm{p} \%\) of the people watch a channel and \(\mathrm{q} \%\) of the people watch another channel
\(\therefore \mathrm{n}(\mathrm{p} \cap \mathrm{q})=\mathrm{x} \%\) and \(\mathrm{n}(\mathrm{p} \cup \mathrm{q}) \leq 100\)
So \(n(p \cup q) \geq n(p)+n(q)-n(p \cap q)\)
\(100 \geq 63+76-x\)
\(100 \geq 139-x\)
\(\Rightarrow x \geq 139-100\)
\(\Rightarrow x \geq 39\)
Now \(n(p)=63\)
\(
\begin{aligned}
&\therefore \mathrm{n}(\mathrm{p} \cap \mathrm{q}) \leq \mathrm{n}(\mathrm{p}) \\
&\Rightarrow \mathrm{x} \leq 63
\end{aligned}
\)
So \(39 \leq x \leq 63\).
If sets \(\mathrm{A}\) and \(\mathrm{B}\) are defined as
\(\mathrm{A}=\left\{(x, y) \mid y=\frac{1}{x}, 0 \neq x \in \mathbf{R}\right\} \quad \mathrm{B}=\{(x, y) \mid y=-x, x \in \mathbf{R}\}\), then
(c) Graph of set A represents the rectangular hyperbola and graph of set B represents a straight line passing through the origin.
Clearly, from the graph nothing is common between them.
\(
\therefore A \cap B=\phi
\)
If \(\mathrm{A}\) and \(\mathrm{B}\) are two sets, then \(\mathrm{A} \cap(\mathrm{A} \cup \mathrm{B})\) equals
(a) \(
\begin{aligned}
&A \cap(A \cup B) \\
&=(A \cap A) \cup(A \cap B) \\
&=A
\end{aligned}
\)
If \(\mathrm{A}=\{1,3,5,7,9,11,13,15,17\} \mathrm{B}=\{2,4, \ldots, 18\}\) and \(\mathbf{N}\) the set of natural numbers is the universal set, then \(\left.\mathrm{A}^{\prime} \cup((\mathrm{A} \cup \mathrm{B}) \cap \mathrm{B}^{\prime}\right)\) is
(b)
\(
\begin{aligned}
&\mathrm{A} \cup \mathrm{B} \\
&=(1,2,3,4,5 \ldots 17,18) \\
&\mathrm{B}^{\prime}=(1,3,5,7,9 \ldots 17,19,20,21 \ldots) \\
&(\mathrm{A} \cup \mathrm{B}) \cap \mathrm{B}^{\prime}=(1,3,5,7,9 . .17)=\mathrm{A} \\
&\mathrm{A}^{\prime} \cup \mathrm{A} \\
&=\text { Universal Set } \\
&=\mathrm{N}
\end{aligned}
\)
Let \(S=\{x \mid x\) is a positive multiple of 3 less than 100\(\}\) \(\mathrm{P}=\{x \mid x\) is a prime number less than 20\(\}\). Then \(n(\mathrm{~S})+n(\mathrm{P})\) is
(a) Given: \(S=\{x \mid x\) is a positive multiple of 3 less than 100\(\}\) and \(P=\{x \mid x\) is a prime number less than 20}
To find: \(n(S)+n(P)\)
\(S=\{x \mid x\) is a positive multiple of 3 less than 100\(\}\)
\(\Rightarrow \mathrm{S}=\{3,6,9,12,15, \ldots \ldots, 99\}\)
\(n(S)=99 / 3=33\)
\(P=\{x \mid x\) is a prime number less than 20\(\}\)
\(\Rightarrow P=\{2,3,5,7,11,13,17,19\}\)
\(\Rightarrow n(P)=8\)
\(n(S)+n(P)=33+8=41\)
Hence, the answer is 41
If \(\mathrm{X}\) and \(\mathrm{Y}\) are two sets and \(\mathrm{X}^{\prime}\) denotes the complement of \(\mathrm{X}\), then \(\mathrm{X} \cap(\mathrm{X} \cup \mathrm{Y})^{\prime}\) is equal to
(c)
\(
\begin{aligned}
&X \cap(X \cup Y)^{\prime}\\
&=X \cap\left(X^{\prime} \cap Y^{\prime}\right) \quad\left[\because(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}\right]\\
&=\left(X \cap X^{\prime}\right) \cap Y^{\prime}\\
&=\phi \cap Y^{\prime}\\
&=\phi \quad[\because \phi \cap A=\phi]
\end{aligned}
\)
Each set \(\mathrm{X}_{r}\) contains 5 elements and each set \(\mathrm{Y}_{r}\) contains 2 elements and \(\bigcup_{r=1}^{20} \mathrm{X}_{r}=\mathrm{S}=\bigcup_{r=1}^{n} \mathrm{Y}_{r}\). If each element of \(\mathrm{S}\) belong to exactly 10 of the \(\mathrm{X}_{r} s\) and to exactly 4 of the \(\mathrm{Y}_{r}^{\prime} s\), then \(n\) is
(b) Since, \(n\left(\mathrm{X}_{r}\right)=5, \bigcup_{r=1}^{20} \mathrm{X}_{r}=\mathrm{S}\), we get \(n(\mathrm{~S})=100\)
But each element of \(\mathrm{S}\) belong to exactly 10 of the \(\mathrm{X}_{r}\) ‘ \(s\)
So, \(\frac{100}{10}=10\) are the number of distinct elements in \(\mathrm{S}\).
Also each element of \(\mathrm{S}\) belong to exactly 4 of the \(\mathrm{Y}_{r}{ }^{\prime} s\) and each \(\mathrm{Y}_{r}\) contain 2 elements. If \(\mathrm{S}\) has \(n\) number of \(\mathrm{Y}_{r}\) in it. Then
\(
\frac{2 n}{4}=10
\)
which gives
\(
n=20
\)
Two finite sets have \(m\) and \(n\) elements respectively. The total number of subsets of first set is 56 more than the total number of subsets of the second set. The values of \(m\) and \(n\) respectively are.
(c) Since, let \(\mathrm{A}\) and \(\mathrm{B}\) be such sets, i.e., \(n(\mathrm{~A})=m, \quad n(\mathrm{~B})=n\)
So \(n(\mathrm{P}(\mathrm{A}))=2^{m}, n(\mathrm{P}(\mathrm{B}))=2^{n}\)
\(\Rightarrow\)
Thus, \(n(\mathrm{P}(\mathrm{A}))-n(\mathrm{P}(\mathrm{B}))=56\), i.e., \(2^{m}-2^{n}=56\)
\(2^{n}\left(2^{m-n}-1\right)=2^{3} 7\)
\(\Rightarrow\)
\(n=3,2^{m-n}-1=7\)
\(\Rightarrow\)
\(m=6\)
The set \((\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \cap\left(\mathrm{A} \cap \mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}\right)^{\prime} \cap \mathrm{C}^{\prime}\) is equal to
(a) \(\text { Since }(A \cup B \cup C) \cap\left(A \cap B^{\prime} \cap C^{\prime}\right)^{\prime} \cap C^{\prime}\)
\(\begin{aligned}
&=(\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})) \cap\left(\mathrm{A}^{\prime} \cup(\mathrm{B} \cup \mathrm{C})\right) \cap \mathrm{C}^{\prime} \\
&=\left(\mathrm{A} \cap \mathrm{A}^{\prime}\right) \cup(\mathrm{B} \cup \mathrm{C}) \cap \mathrm{C}^{\prime} \\
&=\phi \cup(\mathrm{B} \cup \mathrm{C}) \cap \mathrm{C}^{\prime} \\
&=\mathrm{B} \cap \mathrm{C}^{\prime} \cup \phi=\mathrm{B} \cap \mathrm{C}^{\prime}
\end{aligned}\)
If \(\mathrm{A}\) and \(\mathrm{B}\) are two finite sets, then \(n(\mathrm{~A})+n(\mathrm{~B})\) is equal to _____
(a) Since \(n(\mathrm{~A} \cup \mathrm{B})=n(\mathrm{~A})+n(\mathrm{~B})-n(\mathrm{~A} \cap \mathrm{B})\)
So, \(n(\mathrm{~A})+n(\mathrm{~B})=n(\mathrm{~A} \cup \mathrm{B})+n(\mathrm{~A} \cap \mathrm{B})\)
\(\text { If } \mathrm{A} \text { is a finite set containing } n \text { element, then number of subsets of } \mathrm{A} \text { is }\) ____
(c) \(2^{n}\)
Let R and \(\mathrm{S}\) be the sets defined as follows:
\(\mathrm{R}=\{x \in \mathbf{Z} \mid x\) is divisible by 2\(\}\)
\(\mathrm{S}=\{y \in \mathbf{Z} \mid y\) is divisible by 3\(\}\)
then \(\mathrm{R} \cap \mathrm{S}=\phi\). Is this statement true or false?
(b) False
Since 6 is divisible by both 3 and 2.
Thus \(\quad R \cap S \neq \phi\)
\(\mathbf{Q} \cap \mathbf{R}=\mathbf{Q}\), where \(\mathbf{Q}\) is the set of rational numbers and \(\mathbf{R}\) is the set of real numbers. Is this statement true?
(a) True, Since\(\mathbf{Q} \subset \mathbf{R}\)
So, \(\mathbf{Q} \cap \mathbf{R}=\mathbf{Q}\)
\(\text { The set }\{x \in \mathbf{R}: 1 \leq x<2\} \text { can be written as }\) _____
(a) Glven: \(\{x \in R: 1 \leq x<2\}\)
To find: roster form of given set
Let \(A=\{x \in R: 1 \leq x<2\}\)
\(
\Rightarrow A=[1,2)
\)
\(\text { When } \mathrm{A}=\phi \text {, then number of elements in } \mathrm{P}(\mathrm{A}) \text { is }\) ____
(d) \(P(A)\) is the power set of set \(A\)
\(
\mathrm{P}(\mathrm{A})=2^{\mathrm{n}}(\mathrm{n}=0)
\)
\(P(A)=2^{0} =1 \)
\(\text { If } \mathrm{A} \text { and } \mathrm{B} \text { are finite sets such that } \mathrm{A} \subset \mathrm{B} \text {, then } n(\mathrm{~A} \cup \mathrm{B}) \)= ____
(a) \(A\) and \(B\) are finite set and \(A \subset B\)
\(A \subset B\) means \(A\) is a subset of \(B\)
If \(A\) is subset of \(B\), then all elements of \(A\) are present in \(B\)
\(
\therefore \mathrm{n}(\mathrm{A} \cup \mathrm{B})=\mathrm{n}(\mathrm{B})
\)
\(\text { If } \mathrm{A} \text { and } \mathrm{B} \text { are any two sets, then } \mathrm{A}-\mathrm{B} \text { is equal to }\) ____
(c) From Venn diagram you can clearly see,
\(A-B=A \cap B^{\prime}\)
\(\text { Power set of the set } \mathrm{A}=\{1,2\} \text { is }\) ____
(d) Given: set \(A=\{1,2\}\)
To find: power set of \(A\)
A power set is a set of all the subsets of set \(A\)
Subsets of \(A\) are \(\{1\},\{2\},\{1,2\}, \Phi\)
Given the sets \(\mathrm{A}=\{1,3,5\} . \mathrm{B}=\{2,4,6\}\) and \(\mathrm{C}=\{0,2,4,6,8\}\). Then the universal set of all the three sets \(\mathrm{A}, \mathrm{B}\) and \(\mathrm{C}\) can be ____
(a) Given: \(A=\{1,3,5\} . B=\{2,4,6\}\) and \(C=\{0,2,4,6,8\}\)
To find: Universal set of all the three sets
Universal set is a set which contains elements of all sets
\(
\Rightarrow U=\{0,1,2,3,4,5,6,8\}
\)
If \(\mathrm{U}=\{1,2,3,4,5,6,7,8,9,10\}, \mathrm{A}=\{1,2,3,5\}, \mathrm{B}=\{2,4,6,7\}\) and \(\mathrm{C}=\{2,3,4,8\}\). Then (i) \((\mathrm{B} \cup \mathrm{C})^{\prime}\) is ____ (ii) \((\mathrm{C}-\mathrm{A})^{\prime}\) is ____
(a) Given: \(U=\{1,2,3,4,5,6,7,8,9,10\}\)
\(
A=\{1,2,3,5\}, B=\{2,4,6,7\}
\)
And \(C=\{2,3,4,8\}\)
Given that: \(U=\{1,2,3,4,5,6,7,8,9,10\}, A=\{1,2,3,5\}, B=\{2,4,6,7\}\) and \(C=\{2,3,4,8\}\)
(i) \((B \cup C)^{\prime}=\{2,3,4,6,7,8\}^{\prime}=\{1,5,9,10\}\)
(ii) \((C-A)^{\prime}=\{1,2,3,5,6,7,9,10\}\)
\(\text { For all sets } \mathrm{A} \text { and } \mathrm{B}, \mathrm{A}-(\mathrm{A} \cap \mathrm{B}) \text { is equal to }\)
(d) Since \(A-B=A \cap B^{\prime}\)
\(A-(A \cap B)=A \cap B^{\prime}\)
Match the following sets for all sets A, B and C
(i) \(\left(\left(A^{\prime} \cup B^{\prime}\right)-A\right)^{\prime}\) (a) \(A-B\)
(ii) \(\left[B^{\prime} \cup\left(B^{\prime}-A\right)\right]^{\prime}\) (b) \(\mathrm{A}\)
(iii) \((A-B)-(B-C)\) (c) \(\mathrm{B}\)
(iv) \((A-B) \cap(C-B)\) (d) \((A \times B) \cap(A \times C)\)
(v) \(A \times(B \cap C)\) (e) \((A \times B) \cup(A \times C)\)
(vi) \(A \times(B \cup C)\) (f) \((A \cap C)-B\)
(c) (I)
\(\begin{aligned}
\left(\left(A^{\prime} \cup B^{\prime}\right)-A\right)^{\prime} &=\left[A^{\prime} \cup B^{\prime} \cap A\right]^{\prime} & &\left.\quad \text { As } A-B=A \cap B^{\prime}\right] \\
&\left.=[A \cap B)^{\prime} \cap A^{\prime}\right]^{\prime} & & \\
&=\left[(A \cap B)^{\prime}\right]^{\prime} \cup\left(A^{\prime}\right)^{\prime} & & {\left[\text { As }\left(A^{\prime}\right)^{\prime}=A\right] } \\
&=(A \cup B) \cup A & \\
&=A
\end{aligned}\)
(II)
\(\begin{aligned}
{\left[B^{\prime} \cup\left(B^{\prime}-A^{\prime}\right)\right]^{\prime} } &=\left[B^{\prime} \cup\left(B^{\prime} \cap A^{\prime}\right)\right]^{\prime} \\
&=\left(B^{\prime}\right)^{\prime} \cap\left(B^{\prime} \cap A^{\prime}\right)^{\prime} \\
&=B \cap(B \cup A) \\
&=B
\end{aligned}\)
(iii)
\(
\begin{aligned}
(A-B)-(B-C) &=\left(A \cap B^{\prime}\right)-\left(B \cap C^{\prime}\right) \\
&=\left(A \cap B^{\prime}\right) \cap\left(B \cap C^{\prime}\right)^{\prime} \\
&=\left(A \cap B^{\prime}\right) \cap\left(B^{\prime} \cap C\right) \\
&=\left[A \cap\left(B^{\prime} \cap C\right)\right] \cap\left[B^{\prime} \cap\left(B^{\prime} \cap C\right)\right] \\
&=\left[A \cap\left(B^{\prime} \cap C\right)\right] \cap B^{\prime} \\
&=\left(A \cap B^{\prime}\right) \cap B^{\prime} \\
&=\left(A \cap B^{\prime}\right) \\
&=A-B
\end{aligned}\)
(iv)
\(
\begin{aligned}
(A-B) \cap(C-B) &=\left(A \cap B^{\prime}\right) \cap\left(C \cap B^{\prime}\right) \\
&=(A \cap C) \cap B^{\prime} \\
&=(A \cap C)-B
\end{aligned}
\)
(v) \(A \times(B \cap C)=(A \times B) \cap(A \times C)\)
(vi) \(A \times(B \cup C)=(A \times B) \cup(A \times C)\)
\(\text { If } \mathrm{A} \text { is any set, then } \mathrm{A} \subset \mathrm{A}\). Is this statement true or false?
(b) Every set is a subset of itself. Hence, A \(\subset\) A Is true
\(\text { Given that } \mathrm{M}=\{1,2,3,4,5,6,7,8,9\} \text { and if } \mathrm{B}=\{1,2,3,4,5,6,7,8,9\} \text {, then } \mathrm{B} \not \subset \mathrm{M}\). Is this statement true or false?
(a)
\(
\begin{aligned}
&M=\{1,2,3,4,5,6,7,8,9\} \\
&B=\{1,2,3,4,5,6,7,8,9\}
\end{aligned}
\)
Every element of \(M\) and \(B\) is same
Hence, \(M=B\) and \(B \subset M\)
So, the given statement Is false.
The sets A={1, 2, 3, 4} and B={3, 4, 5, 6} are equal?
(d) Sets A and B have the same number of elements but all the elements are not equal. Therefore, A and B are equivalent sets, not equal sets.
\(\mathbf{Q} \cup \mathbf{Z}=\mathbf{Q} \text {, where } \mathbf{Q} \text { is the set of rational numbers and } \mathbf{Z} \text { is the set of integers. }\) Is this statement true?
(b) Since every integer is a rational number
\(\therefore Z \subset Q \Rightarrow Q \cup Z=Q\)
Hence the statement is true.
Let sets \(\mathrm{R}\) and \(\mathrm{T}\) be defined as
\(\mathrm{R}=\{x \in \mathbf{Z} \mid x\) is divisible by 2\(\}\)
\(\mathrm{T}=\{x \in \mathbf{Z} \mid x\) is divisible by 6\(\} .\) Then \(\mathrm{T} \subset \mathrm{R}\), Is this statement true?
(a) This statement is True.
Explanation:
\(R\) and \(T\) can be represented in roster form as follows:
\(
\begin{aligned}
&R=\{\ldots,-8,-6,-4,-2,0,2,4,6,8, \ldots\} \\
&T=\{\ldots,-18,-12,-6,0,6,12,18, \ldots\}
\end{aligned}
\)
Since, every element of \(\mathrm{T}\) is present in \(\mathrm{R}\).
So, \(T \subset R\)
\(\text { Given } \mathrm{A}=\{0,1,2\}, \mathrm{B}=\{x \in \mathbf{R} \mid 0 \leq x \leq 2\} . \text { Then } \mathrm{A}=\mathrm{B} \text {. }\). Is this statement true or false?
(c) \(
A=\{0,1,2\}, B=\{x \in \mathbf{R} \mid 0 \leq x \leq 2\}
\)
Roster form of \(B\) :
\(
B=\{0,1,2\}
\)
Every element of both the sets \(A\) and \(B\) are same
\(
\Rightarrow A=B
\)
So, the given statement Is true.
What is the roaster form of the following sets?
(i) \(\mathrm{A}=\left\{x \mid x\right.\) is a positive integer less than 10 and \(2^{x}-1\) is an odd number \(\}\)
(ii) \(\mathrm{C}=\left\{x: x^{2}+7 x-8=0, x \in \mathbf{R}\right\}\)
(a)
(i) \(2^{x}-1\) is always an odd number for all positive integral values of \(x\). In particular, \(2^{x}-1\) is an odd number for \(x=1,2, \ldots, 9\). Thus, \(\mathrm{A}=\{1,2,3,4,5,6,7,8,9\}\).
(ii) \(x^{2}+7 x-8=0 \quad\) or \((x+8)(x-1)=0\) giving \(x=-8\) or \(x=1\)
Thus, \(\mathrm{C}=\{-8,1\}\)
State which of the following statements are true and which are false.
(i) \(37 \notin\{x \mid x\) has exactly two positive factors \(\}\)
(ii) \(28 \in\{y \mid\) the sum of the all positive factors of \(y\) is \(2 y\}\)
(iii) \(7,747 \in\{t \mid t\) is a multiple of 37 \(\}\)
(b)
(i) False
Since, 37 has exactly two positive factors, 1 and 37,37 belongs to the set.
(ii) True
Since, the sum of positive factors of 28
\(
\begin{aligned}
&=1+2+4+7+14+28 \\
&=56=2(28)
\end{aligned}
\)
(iii) False
7,747 is not a multiple of \(37 .\)
If \(\mathrm{X}\) and \(\mathrm{Y}\) are subsets of the universal set \(\mathrm{U}\), then identify which of the following statements are true and which are false.
(i) \(\mathrm{Y} \subset \mathrm{X} \cup \mathrm{Y}\)
(ii) \(\mathrm{X} \cap \mathrm{Y} \subset \mathrm{X}\)
(iii) \(\mathrm{X} \subset \mathrm{Y} \Rightarrow \mathrm{X} \cap \mathrm{Y}=\mathrm{X}\)
(c)
(i) \(\mathrm{X} \cup \mathrm{Y}=\{x \mid x \in \mathrm{X}\) or \(x \in \mathrm{Y}\}\)
Thus \(x \in \mathrm{Y} \Rightarrow x \in \mathrm{X} \cup \mathrm{Y}\)
Hence, \(\mathrm{Y} \subset \mathrm{X} \cup \mathrm{Y}\)
(ii) \(\mathrm{X} \cap \mathrm{Y}=\{x \mid x \in \mathrm{X}\) and \(x \in \mathrm{Y}\}\)
Thus \(\quad x \in \mathrm{X} \cap \mathrm{Y} \Rightarrow x \in \mathrm{X}\)
Hence \(\mathrm{X} \cap \mathrm{Y} \subset \mathrm{X}\)
(iii) Note that
\(x \in \mathrm{X} \cap \mathrm{Y} \Rightarrow x \in \mathrm{X}\)
Thus \(\mathrm{X} \cap \mathrm{Y} \subset \mathrm{X}\)
Also, since \(\quad \mathrm{X} \subset \mathrm{Y}\),
\(x \in \mathrm{X} \Rightarrow x \in \mathrm{Y} \Rightarrow x \in \mathrm{X} \cap \mathrm{Y}\)
so that \(\mathrm{X} \subset \mathrm{X} \cap \mathrm{Y}\)
Hence the result \(\mathrm{X}=\mathrm{X} \cap \mathrm{Y}\) follows.
Given that \(\mathrm{N}=\{1,2,3, \ldots, 100\}\), then
(i) What is the subset A of \(\mathrm{N}\), whose element are odd numbers.
(ii) What is the subset \(\mathrm{B}\) of \(\mathrm{N}\), whose element are represented by \(x+2\), where \(x \in \mathrm{N}\).
(d)
(i) \(\mathrm{A}=\{x \mid x \in \mathrm{N}\) and \(x\) is odd \(\}=\{1,3,5,7, \ldots, 99\}\)
(ii) \(\mathrm{B}=\{y \mid y=x+2, x \in \mathrm{N}\}\)
So, for
\(
\begin{gathered}
1 \in \mathrm{N}, y=1+2=3 \\
2 \in \mathrm{N}, y=2+2=4,
\end{gathered}
\)
and so on. Therefore, \(\mathrm{B}=\{3,4,5,6, \ldots, 100\}\)
Given that \(\mathrm{E}=\{2,4,6,8,10\}\). If \(n\) represents any member of \(\mathrm{E}\), then, Find the following sets containing all numbers represented by
(i) \(n+1\)
(ii) \(n^{2}\)
(a)
Given \(\mathrm{E}=\{2,4,6,8,10\}\)
(i) Let \(\mathrm{A}=\{x \mid x=n+1, n \in \mathrm{E}\}\)
Thus, for
\(
\begin{aligned}
&2 \in \mathrm{E}, x=3 \\
&4 \in \mathrm{E}, x=5,
\end{aligned}
\)
and so on. Therefore, \(\mathrm{A}=\{3,5,7,9,11\}\).
(ii) Let \(\mathrm{B}=\left\{x \mid x=n^{2}, n \in \mathrm{E}\right\}\)
So, for \(\quad 2 \in \mathrm{E}, x=(2)^{2}=4,4 \in \mathrm{E}, x=(4)^{2}=16,6 \in \mathrm{E}, x=(6)^{2}=36\), and so on. Hence, \(B=\{4,16,36,64,100\}\)
For all sets A, B and C Is \((\mathrm{A} \cap \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})\)? Is this statement true?
(b) False
Consider the following sets \(A, B\) and \(C\):
\(
\begin{aligned}
&A=\{1,2,3\} \\
&B=\{2,3,5\} \\
&C=\{4,5,6\}
\end{aligned}
\)
Now
\((\mathrm{A} \cap \mathrm{B}) \cup \mathrm{C}=(\{1,2,3\} \cap\{2,3,5\}) \cup\{4,5,6\}\)
\(=\{2,3\} \cup\{4,5,6\}\)
\(=\{2,3,4,5,6\}\)
And
\(
\begin{aligned}
\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C}) &=\{1,2,3\} \cap[\{2,3,5\} \cup\{4,5,6\}\\
&=\{1,2,3\} \cap\{2,3,4,5,6\} \\
&=\{2,3\} \\
(\mathrm{A} \cap \mathrm{B}) \cup \mathrm{C} & \neq \mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})
\end{aligned}
\)
Is it possible to prove that for all the sets \(A\) and \(B\)
\(\mathrm{A}-(\mathrm{A} \cap \mathrm{B})=\mathrm{A}-\mathrm{B}\)?
(a)
We have
\(
\begin{aligned}
\mathrm{A}-(\mathrm{A} \cap \mathrm{B}) &=\mathrm{A} \cap(\mathrm{A} \cap \mathrm{B})^{\prime} \quad\left(\text { since } \mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{B}^{\prime}\right) \\
&\left.=\mathrm{A} \cap\left(\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right) \quad \text { [by De Morgan’s law }\right) \\
&=\left(\mathrm{A} \cap \mathrm{A}^{\prime}\right) \cup\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right) \quad \text { [by distributive law] } \\
&=\phi \cup\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right) \\
&=\mathrm{A} \cap \mathrm{B}^{\prime}=\mathrm{A}-\mathrm{B}
\end{aligned}
\)
For all sets A, B and C Is \((\mathrm{A}-\mathrm{B}) \cap(\mathrm{C}-\mathrm{B})=(\mathrm{A} \cap \mathrm{C})-\mathrm{B}\)?
(b) Yes
Let \(x \in(\mathrm{A}-\mathrm{B}) \cap(\mathrm{C}-\mathrm{B})\)
\(\Rightarrow \quad x \in \mathrm{A}-\mathrm{B}\) and \(x \in \mathrm{C}-\mathrm{B}\)
\(\Rightarrow \quad(x \in \mathrm{A}\) and \(x \notin \mathrm{B})\) and \((x \in \mathrm{C}\) and \(x \notin \mathrm{B})\)
\(\Rightarrow \quad(x \in \mathrm{A}\) and \(x \in \mathrm{C})\) and \(x \notin \mathrm{B}\)
\(\Rightarrow \quad(x \in \mathrm{A} \cap \mathrm{C})\) and \(x \notin \mathrm{B}\)
\(\Rightarrow \quad x \in(\mathrm{A} \cap \mathrm{C})-\mathrm{B}\)
So \(\quad(\mathrm{A}-\mathrm{B}) \cap(\mathrm{C}-\mathrm{B}) \subset(\mathrm{A} \cap \mathrm{C})-\mathrm{B} \dots ….(1)\)
Now, conversely
\(
\begin{array}{ll}
\text { Let } y \in(\mathrm{A} \cap \mathrm{C})-\mathrm{B} \\
\Rightarrow y \in(\mathrm{A} \cap \mathrm{C}) \text { and } y \notin \mathrm{B} \\
\Rightarrow (y \in \mathrm{A} \text { and } y \in \mathrm{C}) \text { and }(y \notin \mathrm{B}) \\
\Rightarrow (y \in \mathrm{A} \text { and } y \notin \mathrm{B}) \text { and }(y \in \mathrm{C} \text { and } y \notin \mathrm{B}) \\
\Rightarrow y \in(\mathrm{A}-\mathrm{B}) \text { and } y \in(\mathrm{C}-\mathrm{B}) \\
\Rightarrow y \in(\mathrm{A}-\mathrm{B}) \cap(\mathrm{C}-\mathrm{B}) \\
\text { So } (\mathrm{A} \cap \mathrm{C})-\mathrm{B} \subset(\mathrm{A}-\mathrm{B}) \cap(\mathrm{C}-\mathrm{B}) \dots ….(2) \\
\text { From }(1) \text { and }(2),(\mathrm{A}-\mathrm{B}) \cap(\mathrm{C}-\mathrm{B})=(\mathrm{A} \cap \mathrm{C})-\mathrm{B}
\end{array}
\)
Let \(\mathrm{P}\) be the set of prime numbers and let \(\mathrm{S}=\left\{t \mid 2^{t}-1\right.\) is a prime \(\}\).
Statement \(\mathrm{S} \subset \mathrm{P}\) is true or false.
(b)
Now the equivalent contrapositive statement of \(x \in \mathrm{S} \Rightarrow x \in \mathrm{P}\) is \(x \notin \mathrm{P} \Rightarrow\) \(x \notin \mathrm{S} .\)
Now, we will prove the above contrapositive statement by contradiction method
\(\begin{array}{ll}\text { Let } & x \notin \mathrm{P} \\ \Rightarrow & x \text { is a composite number }\end{array}\)
Let us now assume that \(x \in \mathrm{S}\)
\(\Rightarrow \quad 2^{x}-1=m \quad\) (where \(m\) is a prime number)
\(\Rightarrow \quad 2^{x}=m+1\)
Which is not true for all composite number, say for \(x=4\) because
\(2^{4}=16\) which can not be equal to the sum of any prime number \(m\) and \(1 .\)
Thus, we arrive at a contradiction
\(\Rightarrow \quad x \notin \mathrm{S}\).
Thus, when \(x \notin \mathrm{P}\), we arrive at \(x \notin \mathrm{S}\)
So \(\quad \mathrm{S} \subset \mathrm{P}\).
From 50 students taking examinations in Mathematics, Physics and Chemistry, each of the student has passed in at least one of the subject, 37 passed Mathematics, 24 Physics and 43 Chemistry. At most 19 passed Mathematics and Physics, at most 29 Mathematics and Chemistry and at most 20 Physics and Chemistry. What is the largest possible number that could have passed all three examination?
(d) Let \(\mathrm{M}\) be the set of students passing in Mathematics
\(\mathrm{P}\) be the set of students passing in Physics
\(C\) be the set of students passing in Chemistry
\(
\begin{array}{ll}
\text { Now, } \quad & n(\mathrm{M} \cup \mathrm{P} \cup \mathrm{C})=50, n(\mathrm{M})=37, n(\mathrm{P})=24, n(\mathrm{C})=43 \\
& n(\mathrm{M} \cap \mathrm{P}) \leq 19, n(\mathrm{M} \cap \mathrm{C}) \leq 29, n(\mathrm{P} \cap \mathrm{C}) \leq 20 \text { (Given }) \\
& n(\mathrm{M} \cup \mathrm{P} \cup \mathrm{C})=n(\mathrm{M})+n(\mathrm{P})+n(\mathrm{C})-n(\mathrm{M} \cap \mathrm{P})-n(\mathrm{M} \cap \mathrm{C}) \\
& -n(\mathrm{P} \cap \mathrm{C})+n(\mathrm{M} \cap \mathrm{P} \cap \mathrm{C}) \leq 50 \\
\Rightarrow & 37+24+43-19-29-20+n(\mathrm{M} \cap \mathrm{P} \cap \mathrm{C}) \leq 50 \\
\Rightarrow & n(\mathrm{M} \cap \mathrm{P} \cap \mathrm{C}) \leq 50-36 \\
\Rightarrow & n(\mathrm{M} \cap \mathrm{P} \cap \mathrm{C}) \leq 14
\end{array}
\)
Thus, the largest possible number that could have passed all the three examinations is \(\)14.\(\)
You cannot copy content of this page