Circle
Parabola
Ellipse
Hyperbola
0 of 250 Questions completed
Questions:
You have already completed the quiz before. Hence you can not start it again.
Quiz is loading…
You must sign in or sign up to start the quiz.
You must first complete the following:
0 of 250 Questions answered correctly
Your time:
Time has elapsed
You have reached 0 of 0 point(s), (0)
Earned Point(s): 0 of 0, (0)
0 Essay(s) Pending (Possible Point(s): 0)
A circle is given by \(x^2+(y-1)^2=1\), another circle \(C\) touches it externally and also the \(X\)-axis, then the locus of its centre is
Let the centre of circle \(C\) be \((h, k)\). Then as this circle touches axis of \(x\), its radius \(=|k|\)
Also, it touches the given circle \(x^2+(y-1)^2=1\), centre \((0,1)\) radius 1 , externally
Therefore, the distance between centres = sum of radii
\(
\begin{array}{lc}
\Rightarrow & \sqrt{(h-0)^2+(k-1)^2}=1+|k| \\
\Rightarrow & h^2+k^2-2 k+1=(1+|k|)^2 \\
\Rightarrow & h^2+k^2-2 k+1=1+2|k|+k^2 \\
\Rightarrow & h^2=2 k+2|k|
\end{array}
\)
\(\therefore\) Locus of \((h, k)\) is, \(x^2=2 y+2|y|\)
Now if \(y>0\), it becomes \(x^2=4 y\)
and if \(y \leq 0\), it becomes \(x=0\)
\(\therefore\) Combining the two, the required locus is
\(
\left\{(x, y): x^2=4 y\right\} \cup\{(0, y): y \leq 0\}
\)
If the circles \(x^2+y^2+2 a x+c y+a=0\) and \(x^2+y^2-3 a x+d y-1=0\) intersect in two distinct points \(P\) and \(Q\), then the line \(5 x+b y-a=0\) passes through \(P\) and \(Q\) for
\(
\begin{aligned}
& s_1=x^2+y^2+2 a x+c y+a=0 \\
& \quad s_2=x^2+y^2-3 a x+d y-1=0
\end{aligned}
\)
Equation of common chord of circles \(s_1\) and \(s_2\) is given by
\(
\begin{array}{ll}
s_1-s_2=0 & \\
\Rightarrow & 5 a x+(c-d) y+a+1=0
\end{array}
\)
Given, that \(5 x+b y-a=0\) passes through \(P\) and \(Q\)
\(\therefore\) The two equations should represent the same line
\(
\begin{array}{ll}
\Rightarrow & \frac{a}{1}=\frac{c-d}{b}=\frac{a+1}{-a} \\
\Rightarrow \quad & a+1=-a^2 \\
& a^2+a+1=0
\end{array}
\)
No real value of \(a\).
A circle touches the \(X\)-axis and also touches the circle with centre at \((0,3)\) and radius 2 . The locus of the centre of the circle is
Equation of circle with centre \((0,3)\) and radius 2 is
\(
x^2+(y-3)^2=4
\)
Let centre of the variable circle is \((\alpha, \beta)\)
\(\because\) It touches \(X\)-axis.
\(\therefore\) It’s equation is \((x-\alpha)^2+(y+\beta)^2=\beta^2\)
Circle touch externally
\(
\begin{array}{ll}
\Rightarrow & c_1 c_2=r_1+r_2 \\
\therefore & \sqrt{\alpha^2+(\beta-3)^2}=2+\beta \\
& \alpha^2+(\beta-3)^2=\beta^2+4+4 \beta \\
\Rightarrow & \alpha^2=10(\beta-1 / 2)
\end{array}
\)
\(\therefore\) Locus is \(x^2=10\left(y-\frac{1}{2}\right)\) which is a parabola.
If a circle passes through the point \((a, b)\) and cuts the circle \(x^2+y^2=p^2\) orthogonally, then the equation of the locus of its centre is
Let the centre be \((\alpha, \beta)\)
\(\because\) It cuts the circle \(x^2+y^2=p^2\) orthogonally
\(\therefore\) Using \(2 g_1 g_2+2 f_1 f_2=c_1+c_2\), we get
\(
\begin{aligned}
& 2(-\alpha) \times 0+2(-\beta) \times 0=c_1-p^2 \\
& \Rightarrow \quad c_1=p^2 \\
&
\end{aligned}
\)
Let equation of circle is
\(
x^2+y^2-2 \alpha x-2 \beta y+p^2=0
\)
It passes through
\(
(a, b) \Rightarrow a^2+b^2-2 \alpha a-2 \beta b+p^2=0
\)
\(\therefore\) Locus of \((\alpha, \beta)\) is
\(
\therefore \quad 2 a x+2 b y-\left(a^2+b^2+p^2\right)=0
\)
\(A B C D\) is a square of side length 2 units. \(C_1\) is the circle touching all the sides of the square \(A B C D\) and \(C_2\) is the circumcircle of square \(A B C D\). Lis a fixed line in the same plane and \(R\) is a fixed point.
If \(P\) is any point of \(C_1\) and \(Q\) is another point on \(C_2\), then \(\frac{P A^2+P B^2+P C^2+P D^2}{Q A^2+Q B^2+Q C^2+Q D^2}\) is equal to
Without loss of generally it we can assume the square \(A B C D[latex] with its vertices [latex]A(1,1), B(-1,1), C(-1,-1), D(1,-1)\) \(P\) to be the point \((0,1)\) and \(Q\) as \((\sqrt{2}, 0)\).
\(
\begin{aligned}
& \text { Then, } \frac{P A^2+P B^2+P C^2+P D^2}{Q A^2+Q B^2+Q C^2+Q D^2} \\
& =\frac{1+1+5+5}{2\left[(\sqrt{2}-1)^2+1\right]+2\left((\sqrt{2}+1)^2+1\right)} \\
& =\frac{12}{16}=0.75 \\
&
\end{aligned}
\)
\(A B C D\) is a square of side length 2 units. \(C_1\) is the circle touching all the sides of the square \(A B C D\) and \(C_2\) is the circumcircle of square \(A B C D\). Lis a fixed line in the same plane and \(R\) is a fixed point. If a circle is such that it touches the line \(L\) and the circle \(C_1\) externally, such that both the circles are on the same side of the line, then the locus of centre of the circle is
Let \(C^{\prime}\) be the circle touching circle \(C_1\) and \(L\), so that \(C_1\) and \(C^{\prime}\) are on the same side of \(L\). Let us draw a line \(T\) parallel to \(L\) at a distance equal to the radius of circle \(C_1\), on opposite side of \(L\). Then, the centre of \(C^{\prime}\) is equidistant from the centre of \(C_1\) and from line \(T\).
\(\Rightarrow\) locus of centre of \(C^{\prime}\) is a parabola.
\(A B C D\) is a square of side length 2 units. \(C_1\) is the circle touching all the sides of the square \(A B C D\) and \(C_2\) is the circumcircle of square \(A B C D\). Lis a fixed line in the same plane and \(R\) is a fixed point. A line \(L^{\prime}\) through \(A\) is drawn parallel to \(B D\). Point \(S\) moves such that its distances from the line \(B D\) and the vertex \(A\) are equal. If locus of \(S\) cuts \(L^{\prime}\) at \(T_2\) and \(T_3\) and \(A C\) at \(T_1\), then area of \(\Delta T_1 T_2 T_3\) is
Since, \(S\) is equidistant from \(A\) and line \(B D\), it traces a parabola. Clearly, \(A C\) is the axis, \(A(1,1)\) is the focus and \(T_1\left(\frac{1}{2}, \frac{1}{2}\right)\) is the vertex of parabola.
\(
A T_1=\frac{1}{\sqrt{2}} .
\)
\(T_2 T_3\) = latusrectum of parabola
\(
\begin{gathered}
=4 \times \frac{1}{\sqrt{2}}=2 \sqrt{2} \\
\therefore \quad \text { Area }\left(\Delta T_1 T_2 T_3\right)=\frac{1}{2} \times \frac{1}{\sqrt{2}} \times 2 \sqrt{2}=\frac{1}{2}=1 \text { sq units. }
\end{gathered}
\)
If the lines \(3 x-4 y-7=0\) and \(2 x-3 y-5=0\) are two diameters of a circle of area \(49 \pi\) square units, the equation of the circle is
Point of intersection of \(3 x-47-7=0\) and \(2 x-3 y-5=0\) is \((1,-1)\) which is the centre of the circle and radius \(=7\)
\(\therefore\) Equation is \((x-1)^2+(y+1)^2=49\)
\(
\Rightarrow \quad x^2+y^2-2 x+2 y-47=0
\)
Let \(C\) be the circle with centre \((0,0)\) and radius 3 units. The equation of the locus of the mid-points of the chords of the circle \(C\) that subtend an angle of \(\frac{2 \pi}{3}\) at its centre is
Let \(M(h, k)\) be the mid-point of chord \(A B\) where
\(
\angle A O B=\frac{2 \pi}{3}
\)
\(\therefore \quad \angle A O M=\frac{\pi}{3}\).
Also, \(\quad O M=3 \cos \frac{\pi}{3}=\frac{3}{2}\)
\(\Rightarrow \quad \sqrt{h^2+k^2}=\frac{3}{2}\)
\(\Rightarrow \quad h^2+k^2=\frac{9}{4}\)
\(\therefore\) Locus of \((h, k)\) is \(x^2+y^2=\frac{9}{4}\)
Tangents are drawn from the point \((17,7)\) to the circle \(x^2+y^2=169\).
Statement I The tangents are mutually perpendicular. because
Statement II The locus of the points from which mutually perpendicular tangents can be drawn to the given circle is \(x^2+y^2=338\)
Equation of director circle of the given circle \(x^2+y^2=169\) is \(x^2+y^2=2 \times 169=338\).
We know from every point on director circle, the tangents drawn to given circle are perpendicular to each other. Here, \((17,7)\) lies on director circle.
\(\therefore\) The tangent from \((17,7)\) to given circle are mutually perpendicular.
Consider a family of circles which are passing through the point \((-1,1)\) and are tangent to \(X\)-axis. If \((h, k)\) are the coordinate of the centre of the circles, then the set of values of \(k\) is given by the interval
Equation of circle whose centre is \((h, k)\)
\(
(x-h)^2+(y-k)^2=k^2
\)
(radius of circle \(=k\) because circle is tangent to \(x\)-axis)
Equation of circle passing through \((-1,+1)\)
\(
\begin{array}{ll}
\therefore & (-1-h)^2+(1-k)^2=k^2 \\
\Rightarrow & 1+h^2+2 h+1+k^2-2 k=k^2 \\
\Rightarrow & h^2+2 h-2 k+2=0 D \geq 0 \\
\therefore & (2)^2-4 \times 1 .(-2 K+2) \geq 0 \\
\Rightarrow & 4-4(-2 k+2) \geq 0 \\
\Rightarrow & 1+2 k-2 \geq 0 \Rightarrow k \geq \frac{1}{2}
\end{array}
\)
A circle \(C\) of radius 1 is inscribed in an equilateral triangle \(P Q R\). The points of contact of \(C\) with the sides \(P Q, Q R, R P\) are \(D, E, F\), respectively. The line \(P Q\) is given by the equation \(\sqrt{3} x+y-6=0\) and the point D is \(\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)\) Further, it is given that the origin and the centre of \(C\) are on the same side of the line \(P Q\). The equation of circle \(C\) is
Slope of \(C D=\frac{1}{\sqrt{3}}\)
\(\therefore\) Parametric equation of \(C D\) is
\(
\frac{x-\frac{3 \sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}=\frac{y-\frac{3}{2}}{\frac{1}{2}}= \pm 1
\)
\(\therefore\) Two possible coordinates of \(C\) are
\(
\left(\frac{\sqrt{3}}{2}+\frac{3 \sqrt{3}}{2}, \frac{1}{2}+\frac{3}{2}\right) \text { or }\left(\frac{-\sqrt{3}}{2}+\frac{3 \sqrt{3}}{2},-\frac{1}{2}+\frac{3}{2}\right)
\)
i.e. \((2 \sqrt{3}, 2)\) or \((\sqrt{3}, 1)\)
As \((0,0)\) and \(C\) lie on the same side of \(P Q\) \(\therefore(\sqrt{3}, 1)\) should be the coordinates of \(C\).
Remark : Remember \(\left(x_1, y_1\right)\) and \(\left(x_2, y_2\right)\) lie on the same or opposite side of a line \(a x+b y+c=0\) according as \(\frac{a x_1+b y_1+c}{a x_2+b y_2+c}>0\) or \(<0 . \therefore\) Equation of the circle is \((x-\sqrt{3})^2+(y-1)^2=1\)
A circle \(C\) of radius 1 is inscribed in an equilateral triangle \(P Q R\). The points of contact of \(C\) with the sides \(P Q, Q R, R P\) are \(D, E, F\), respectively. The line \(P Q\) is given by the equation \(\sqrt{3} x+y-6=0\) and the point D is \(\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)\) Further, it is given that the origin and the centre of \(C\) are on the same side of the line \(P Q\). Points \(E\) and \(F\) are given by
\(\triangle P Q R\) is an equilateral triangle, the incentre \(C\) must coincide with centroid of \(\triangle P Q R\) and \(D, E, F\) must coincide with the mid points of sides \(P Q, Q R\) and \(R P\) respectively.
Also, \(\quad \angle C P D=30^{\circ} \Rightarrow P D=\sqrt{3}\)
Writing the equation of side \(P Q\) in symmetric form we get,
\(
\begin{gathered}
\frac{x-\frac{3 \sqrt{3}}{2}}{-\frac{1}{2}}=\frac{y-\frac{3}{2}}{\frac{\sqrt{3}}{2}}=\mp \sqrt{3} \\
\therefore \text { Coordinates of } P=\left(\frac{\sqrt{3}}{2}+\frac{3 \sqrt{3}}{2}, \frac{-3}{2}+\frac{3}{2}\right)=(2 \sqrt{3}, 0) \\
\text { and coordinates of } Q=\left(\frac{-\sqrt{3}}{2}+\frac{3 \sqrt{3}}{2}, \frac{3}{2}+\frac{3}{2}\right)=(\sqrt{3}, 3)
\end{gathered}
\)
Let coordinates of \(R\) be \((\alpha, \beta)\), then using the formula for centriod of \(\Delta\) we get
\(
\frac{\sqrt{3}+2 \sqrt{3}+\alpha}{3}=\sqrt{3} \text { and } \frac{3+0+\beta}{3}=1
\)
\(\Rightarrow \quad \alpha=0\) and \(\beta=0\)
\(\therefore\) Coordinates of \(R=(0,0)\)
Now, coordinates of \(E=\) mid point of \(Q R=\left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right)\) and coordinates of \(F=\) mid-point of \(P R=(\sqrt{3}, 0)\)
A circle \(C\) of radius 1 is inscribed in an equilateral triangle \(P Q R\). The points of contact of \(C\) with the sides \(P Q, Q R, R P\) are \(D, E, F\), respectively. The line \(P Q\) is given by the equation \(\sqrt{3} x+y-6=0\) and the point D is \(\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)\) Further, it is given that the origin and the centre of \(C\) are on the same side of the line \(P Q\). Equations of the sides \(Q R, R P\) are
Equation of side \(Q R\) is \(y=\sqrt{3} x\) and equation of side \(R P\) is
\(
y=0
\)
Consider \(L_1: 2 x+3 y+p-3=0 ; L_2: 2 x+3 y+p+3=0\) where, \(p\) is a real number, and \(C: x^2+y^2+6 x-10 y+30=0\)
Statement I If line \(L_1\) is a chord of circle \(C\), then line \(L_2\) is not always a diameter of circle \(C\) and
Statement II If line \(L_1\) is a diameter of circle \(C\), then line \(L_2\) is not a chord of circle \(C\)
The given circle is \(x^2+y^2+6 x-10 y+30=0\) Centre \((-3,5)\), radius \(=2\)
\(
\begin{array}{r}
L_1: 2 x+3 y+(p-3)=0 ; \\
L_2: 2 x+3 y+p+3=0
\end{array}
\)
Clearly, \(L_1 \| L_2\)
Distance between \(L_1\) and \(L_2\)
\(
=\left|\frac{p+3-p+3}{\sqrt{2^2+3^2}}\right|=\frac{6}{\sqrt{13}}<2
\)
\(\Rightarrow\) If one line is a chord of the given circle, other line may or may not the diameter of the circle.
Statement \(I\) is true and statement \(II\) is false.
The point diametrically opposite to the point \(P(1,0)\) on the circle \(x^2+y^2+2 x+4 y-3=0\) is
The given circle is \(x^2+y^2+2 x+4 y-3=0\)
Centre \((-1,-2)\)
Let \(Q(\alpha, \beta)\) be the point diametrically opposite to the point \(P(1,0)\),
then, \(\frac{1+\alpha}{2}=-1\) and \(\frac{0+\beta}{2}=-2\)
\(
\Rightarrow \quad \alpha=-3, \beta=-4 \text {, So, } Q \text { is }(-3,-4)
\)
Tangents drawn from the point \(P(1,8)\) to the circle \(x^2+y^2-6 x-4 y-11=0\) touch the circle at the points \(A\) and \(B\). The equation of the circumcircle of the triangle \(P A B\) is
Tangents \(P A\) and \(P B\) are drawn from the point \(P(1,3)\) to circle \(x^2+y^2-6 x-4 y-11=0\) with centre \(C(3,2)\)
Clearly the circumcircle of \(\triangle P A B\) will pass through \(C\) and as \(\angle A=90^{\circ}, P C\) must be a diameter of the circle.
\(\therefore\) Equation of required circle is
\(
\Rightarrow \quad \begin{aligned}
(x-1)(x-3)+(y-2) & =0 \\
\Rightarrow \quad x^2+y^2-4 x-10 y+19 & =0
\end{aligned}
\)
The centres of two circles \(C_1\) and \(C_2\) each of unit radius are at a distance of 6 units from each other. Let \(P\) be the mid point of the line segment joining the centres of \(C_1\) and \(C_2\) and \(C\) be a circle touching circles \(C_1\) and \(C_2\) externally. If a common tangent to \(C_1\) and \(C\) passing through \(P\) is also a common tangent to \(C_2\) and \(C\), then the radius of the circle \(C\) is
Let \(r[latex] be the radius of required circle.
Clearly, in [latex]\Delta C_1 C C_2, C_1 C=C_2 C=r+1\) and \(P\) is mid-point of \(C_1 C_2\)
\(
\begin{array}{ll}
\therefore & C P \perp C_1 C_2 \\
\text { Also, } & P M \perp C C_1
\end{array}
\)
Now, \(\triangle P M C_1 \sim \triangle C P C_1\) (by \(A A\) similarity)
\(
\therefore \quad \frac{M C_1}{P C_1}=\frac{P C_1}{C C_1}
\)
\(
\Rightarrow \quad \frac{1}{3}=\frac{3}{r+1} \Rightarrow r+1=9 \Rightarrow r=8 \text {. }
\)
If \(P\) and \(Q\) are the points of intersection of the circles \(x^2+y^2+3 x+7 y+2 p-5=0\) and \(x^2+y^2+2 x+2 y-p^2=0\) then there is a circle passing through \(P, Q\) and \((1,1)\) for :
The given circles are
\(
\begin{aligned}
& S_1 \equiv x^2+y^2+3 x+7 y+2 p-5=0 \dots(i) \\
& S_2 \equiv x^2+y^2+2 x+2 y-p^2=0 \dots(ii)
\end{aligned}
\)
\(\therefore\) Equation of common chord \(P Q\) is \(S_1-S_2=0\)
\(
\Rightarrow \quad L \equiv x+5 y+p^2+2 p-5=0
\)
\(\Rightarrow\) Equation of circle passing through \(P\) and \(Q\) is \(S_1+\lambda L=0\)
\(
\Rightarrow\left(x^2+y^2+3 x+7 y+2 p-5\right)+\lambda\left(x+5 y+p^2+2 p-5\right)=0
\)
As it passes through \((1,1)\), therefore
\(
\begin{array}{ll}
\Rightarrow & (7+2 p)+\lambda\left(2 p+p^2+1\right)=0 \\
\Rightarrow \quad & \lambda=-\frac{2 p+7}{(p+1)^2}
\end{array}
\)
which does not exist for \(p=-1\)
The circle \(x^2+y^{2 d}=4 x+8 y+5\) intersects the line \(3 x-4 y=m\) at two distinct points if
Circle \(x^2+y^2-4 x-8 y-5=0\)
\(
\begin{aligned}
& \text { Centre }=(2,4) \\
& \text { Radius }=\sqrt{4+16+5}=5
\end{aligned}
\)
If circle is intersecting line \(3 x-4 y=m\), at two distinct points. \(\Rightarrow\) length of perpendicular from centre to the line \(<\) radius
\(
\begin{array}{lc}
\Rightarrow & \frac{|6-16-m|}{5}<5 \\
\Rightarrow & |10+m|<25 \\
\Rightarrow & -25<m+10<25 \\
\Rightarrow & -35<m<15
\end{array}
\)
The circle passing through the point \((-1,0)\) and touching the \(Y\)-axis at \((0,2)\) also passes through the point.
\(\Rightarrow \quad(-1-h)^2+4=h^2 \Rightarrow h=\frac{-5}{2}\)
\(\therefore \quad\) Centre \(\left(\frac{-5}{2}, 2\right)[latex] and [latex]r=\frac{5}{2}\)
Distance of centre from \((-4,0)\) is \(\frac{5}{2}\)
\(\therefore\) It lies on the circle.
The straight line \(2 x-3 y=1\) divides the circular region \(x^2+y^2 \leq 6\) into two parts.
If \(S=\left\{\left(2 \frac{3}{4}\right)\left(\frac{5}{2}, \frac{3}{4}\right)\left(\frac{1}{4},-\frac{1}{4}\right)\left(\frac{1}{8}, \frac{1}{4}\right)\right\}\) then the number of point(s) in \(S\) lying inside the smaller part is
The smaller region of circle is the region given by
\(
\begin{array}{ll}
& x^2+y^2 \leq 6 \dots(i) \\
\text { and } \quad & 2 x-3 y \geq 1 \dots(ii)
\end{array}
\)
We observe that only two points \(\left(2, \frac{3}{4}\right)\) and \(\left(\frac{1}{4},-\frac{1}{4}\right)\) satisfy both the inequations Eqs. (i) and (ii), we get \(\therefore 2\) points in \(S\) lie inside the smaller part.
The two circles \(x^2+y^2=a x\) and \(x^2+y^2=c^2(c>0)\) touch each other if
As centre of one circle is \((0,0)\) and other circle passes through \((0,0)\), therefore
Aslo,
\(
\begin{array}{ll}
\text { Aslo, } \quad & C_1\left(\frac{a}{2}, 0\right) C_2(0,0) \\
& r_1=\frac{|a|}{2} r_2=C \\
& C_1 C_2=r_1-r_2=\frac{|a|}{2} \\
\Rightarrow \quad & c-\frac{|a|}{2}=\frac{|a|}{2} \Rightarrow c=|a|
\end{array}
\)
If the two circles touch each other, then they must touch each other internally.
The locus of the mid-point of the chord of contact of tangents drawn from points lying on the straight line \(4 x-5 y=20\) to the circle \(x^2+y^2=9\) is
Any point \(P\) on line \(4 x-5 y=20\) is \(\left(\alpha, \frac{4 \alpha-20}{5}\right)\)
Equation of chord of contact \(A B\) to the circle \(x^2+y^2=9\)
drawn from point \(P\left(\alpha, \frac{4 \alpha-20}{5}\right)\) is
\(
x \cdot \alpha+y \cdot\left(\frac{4 \alpha-20}{5}\right)=9 \dots(i)
\)
Also, the equation of chord \(A B\) whose mid-point is \((h, k)\) is
\(
h x+k y=h^2+k^2 \dots(ii)
\)
\(\because\) Eqs. (i) and (ii) represent the same line, therefore
\(
\frac{h}{\alpha}=\frac{k}{\frac{4 \alpha-20}{5}}=\frac{h^2+k^2}{9}
\)
\(
\begin{array}{lrl}
\Rightarrow & 5 k \alpha & =4 h \alpha-20 h \\
\text { and } & 9 h & =\alpha\left(h^2+k^2\right) \\
\Rightarrow & \alpha & =\frac{20 h}{4 h-5 k} \text { and } \alpha=\frac{9 h}{h^2+k^2}
\end{array}
\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{20 h}{4 h-5 k}=\frac{9 h}{h^2+k^2} \\
& \Rightarrow \quad 20\left(h^2+k^2\right)=9(4 h-5 k) \\
& \therefore \text { Locus of }(h, k) \text { is } 20\left(x^2+y^2\right)-36 x+45 y=0
\end{aligned}
\)
A tangent PT is drawn to the circle \(x^2+y^2=4\) at the point \(P(\sqrt{3}, 1)\). A straight line \(L\) perpendicular to PT is a tangent to the circle \((x-3)^2+y^2=1\). A possible equation of \(L\) is
Equation of tangent \(P T\) to the circle \(x^2+y^2=4\) at the point \(P(\sqrt{3}, 1)\) is \(x \sqrt{3}+y=4\)
Let the line \(L\), perpendicular to tangent \(P T\) be
\(
x-y \sqrt{3}+\lambda=0 \dots(i)
\)
As it is tangent to the circle \((x-3)^2+y^2=1\)
\(\therefore\) length of perpendicular from centre of circle to the tangent
\(=\) radius of circle.
\(\Rightarrow \quad\left|\frac{3+\lambda}{2}\right|=1 \Rightarrow \lambda=-1\) or -5
From Eq. (i)
Equation of \(L[latex] can be
[latex]
\begin{aligned}
& x-\sqrt{3} y=1 \\
& x-\sqrt{3} y=5
\end{aligned}
\)
A tangent PT is drawn to the circle \(x^2+y^2=4\) at the point \(P(\sqrt{3}, 1)\). A straight line \(L\) perpendicular to PT is a tangent to the circle \((x-3)^2+y^2=1\). A common tangent of the two circles is
Equation of tangent \(P T\) to the circle \(x^2+y^2=4\) at the point \(P(\sqrt{3}, 1)\) is \(x \sqrt{3}+y=4\)
Let the line \(L\), perpendicular to tangent \(P T\) be
\(
x-y \sqrt{3}+\lambda=0 \dots(i)
\)
As it is tangent to the circle \((x-3)^2+y^2=1\)
\(\therefore\) length of perpendicular from centre of circle to the tangent
\(=\) radius of circle.
\(\Rightarrow \quad\left|\frac{3+\lambda}{2}\right|=1 \Rightarrow \lambda=-1\) or -5
From the figure it is clear that the intersection point of two direct common tangents lies on \(X\)-axis.
Aslo
\(\Delta P T_1 C_1 \sim \Delta P T_2 C_2\)
\(\Rightarrow \quad P C_1: P C_2=2: 1\)
or \(P\) divides \(C_1 C_2\) in the ratio \(2: 1\) externally
\(\therefore\) Coordinates of \(P\) are \((6,0)\)
Let the equation of tangent through \(P\) be
\(
y=m(x-6)
\)
As it touches \(x^2+y^2=4\)
\(
\begin{aligned}
& \therefore \quad\left|\frac{6 m}{\sqrt{m^2+1}}\right|=2 \\
& \Rightarrow \quad 36 m^2=4\left(m^2+1\right) \\
& \Rightarrow \quad m= \pm \frac{1}{2 \sqrt{2}} \\
&
\end{aligned}
\)
\(\therefore\) Equations of common tangents are \(y= \pm \frac{1}{2 \sqrt{2}}(x-6)\)
Also \(x=2\) is the common tangent to the two circles.
The length of the diameter of the circle which touches the \(X\)-axis at the point \((1,0)\) and passes through the point \((2,3)\) is
Let centre of the circle ne \((1,4)\)
\([\because\) circle touches \(x\)-axis at \((1,0)]\)
Let the circle passes through the point \(B(2,3)\)
\(\therefore \quad C A=C B \text { (radius) }\)
\(
\begin{array}{lc}
\Rightarrow & C A^2=C B^2 \\
\Rightarrow & (1-1)^2+(h-0)^2=(1-2)^2+(h-3)^2 \\
\Rightarrow & h^2=1+h^2+9-6 h \\
\Rightarrow & h=\frac{10}{6}=\frac{5}{3}
\end{array}
\)
Thus, diameter is \(2 h=\frac{10}{3}\).
The circle passing through \((1,-2)\) and touching the axis of \(x\) at \((3,0)\) also passes through the point
Since, circle touches \(X\)-axis at \((3,0)\)
\(\therefore\) The equation of circle be
\(
(x-3)^2+(y-0)^2+\lambda y=0
\)
As it passes through \((1,-2)\)
\(\therefore\) Put \(x=1, y=-2\)
\(
\Rightarrow \quad(1-3)^2+(-2)^2+\lambda(-2)=0 \Rightarrow \lambda=4
\)
\(\therefore\) Equation of circle is \((x-3)^2+y^2-8=0\)
Now, from the options \((5,-2)\) satisfies equation of circle.
Circle(s) touching \(X\)-axis at a distance 3 from the origin and having an intercept of length \(2 \sqrt{7}\) on \(Y\)-axis is (are)
There can be two possibilities for the given circle as shown in the figure
\(\therefore\) The equations of circle can be
\(
\begin{array}{ll}
& (x-3)^2+(y-4)^2=4^2 \\
\text { or } & (x-3)^2+(y+4)^2=4^2 \\
\text { i.e. } & x^2+y^2-6 x+8 y+9=0 \\
\text { or } & x^2+y^2-6 x+8 y+9=0
\end{array}
\)
Let \(C\) be the circle with centre at \((1,1)\) and radius \(=1\). If \(T\) is the circle centred at \((0, y)\), passing through origin and touching the circle \(C\) externally, then the radius of \(T\) is equal to
Equation of circle \(C=(x-1)^2+(y-1)^2=1\)
Radius of \(T=|y|\)
\(T\) touches \(C\) externally therefore,
Distance between the centres \(=\) sum of their radii
\(
\begin{array}{cc}
\Rightarrow & \sqrt{(0-1)^2+(y-1)^2}=1+|y| \\
\Rightarrow & (0-1)^2+(y-1)^2=(1+|y|)^2 \\
\Rightarrow & 1+y^2+1-2 y=1+y^2+2|y| \\
& 2|y|=1-2 y
\end{array}
\)
If \(y>0\) then, \(2 y=1-2 y \Rightarrow y=\frac{1}{4}\)
If \(y<0\) then, \(-2 y=1-2 y \Rightarrow 0=1\) (not possible)
\(
\therefore \quad y=\frac{1}{4}
\)
A circle \(S\) passes through the point \((0,1)\) and is orthogonal to the circles \((x-1)^2+y^2=16\) and \(x^2+y^2=1\). Then
Let the equation of circle be
\(
x^2+y^2+2 g x+2 f y+c=0
\)
It passes through \((0,1)\)
\(
\therefore \quad 1+2 f+c=0 \dots(i)
\)
This circle is orthogonal to \((x-1)^2+y^2=16\) i.e.
\(
\begin{array}{r}
x^2+y^2-2 x-15=0 \\
x^2+y^2-1=0
\end{array}
\)
\(\therefore\) We should have
\(
2 g(-1)+2 f(0)=c-15
\)
\(
2 g+c-15=0 \dots(ii)
\)
Solving Eqs. (i), (ii) and (iii), we get
\(
c=1, g=7, f=-1
\)
\(\therefore\) Required circle is
\(
x^2+y^2+14 x-2 y+1=0
\)
With centre \((-7,1)\) and radius \(=7\)
Locus of the image of the point \((2,3)\) in the line \((2 x-3 y+4)+k(x-2 y+3)=0, k \in R\), is a
Intersection point of \(2 x-3 y+4=0\) and \(x-2 y+3=0\) is \((1,2)\)
Since, \(P\) is the fixed point for given family of lines
So,
\(
\begin{aligned}
& P B=P A \\
& (\alpha-1)^2+(\beta-2)^2=(2-1)^2+(3-2)^2 \\
& (\alpha-1)^2+(\beta-2)^2=1+1=2 \\
& (x-1)^2+(y-2)^2=(\sqrt{2})^2
\end{aligned}
\)
\(
(x-a)^2+(y-b)^2=r^2
\)
Therefore, given locus is a circle with centre \((1,2)\) and radius \(\sqrt{2}\).
The number of common tangents to the circles \(x^2+y^2-4 x-6 x-12=0\) and \(x^2+y^2+6 x+18 y+26=0\), is
\(
x^2+y^2-4 x-6 y-12=0 \dots(i)
\)
Centre \(C_1=(2,3)\) and Radius, \(r_1=5\) units
\(
x^2+y^2+6 x+18 y+26=0 \dots(ii)
\)
\(
\begin{aligned}
& \text { Centre, } C_2=(-3,-9) \\
& \text { and radius, } r_2=8 \text { units } \\
& \left|C_1 C_2\right|=\sqrt{(2+3)^2+(3+9)^2}=13 \text { units } \\
& r_1+r_2=5+8=13 \\
& \therefore\left|C_1 C_2\right|=r_1+r_2 \\
&
\end{aligned}
\)
Therefore, there are three common tangents.
The centres of those circles which touch the circle, \(x^2+y^2-8 x-8 y-4=0\), externally and also touch the \(X\)-axis, lie on
For the given circle, centre \(:(4,4)\), radius \(=6\)
\(
\begin{aligned}
6+k & =\sqrt{(h-4)^2+(k-4)^2} \\
(h-4)^2 & =20 k+20
\end{aligned}
\)
\(\therefore\) locus of \((h, k)\) is \((x-4)^2=20(y+1)\), which is parabola.
If one of the diameters of the circle, given by the equation, \(x^2+y^2-4 x+6 y-12=0\), is a chord of a circle \(S\), whose centre is at \((-3,2)\), then the radius of \(S\) is
Centre of \(S: O(-3,2)\) and centre of given circle is \(A(2,-3)\)
\(
\Rightarrow \quad O A=5 \sqrt{2}
\)
Also, \(\quad A B=5 \quad(\because A B=\) radius of the given circle)
Now, in \(\triangle O A B\),
\(
\begin{aligned}
& (O B)^2=(A B)^2+(O A)^2=25+50=75 \\
& \therefore \quad O B=5 \sqrt{3} \\
&
\end{aligned}
\)
Let \(R S\) be the diameter of the circle \(x^2+y^2=1\), where \(S\) is the point \((1,0)\). Let \(P\) be a variable point (other than \(R\) and \(S\) ) on the circle and tangents to the circle at \(S\) and \(P\) meet at the point \(Q\). The normal to the circle at \(P\) intersects a line drawn through \(Q\) parallel to \(R S\) at point \(E\). Then the locus of \(E\) passes through the point(s)
Circle : \(x^2+y^2=1\)
Equation of tangent at \(P(\cos \theta, \sin \theta)\)
\(
x \cos \theta+y \sin \theta=1 \dots(i)
\)
Equation of normal at \(P\)
\(
y=x \tan \theta \dots(ii)
\)
Equation of tangent at \(S\) is \(x=1\)
\(
\therefore \quad Q\left(1, \frac{1-\cos \theta}{\sin \theta}\right)=Q\left(1, \tan \frac{\theta}{2}\right)
\)
\(\therefore\) Equation of line through \(Q\) and parallel to \(R S\) is \(y=\tan \frac{\theta}{2}\)
\(\therefore\) Intersection point \(E\) of normal and \(y=\tan \frac{\theta}{2}\)
\(
\tan \frac{\theta}{2}=x \tan \theta
\)
\(
\begin{array}{cc}
\Rightarrow & x=\frac{1-\tan ^2 \frac{\theta}{2}}{2} \\
\therefore & \text { Locus of } E: x=\frac{1-y^2}{2} \text { or } y^2=1-2 x
\end{array}
\)
It is satisfied by the points \(\left(\frac{1}{3}, \frac{1}{\sqrt{3}}\right)\) and \(\left(\frac{1}{3}, \frac{-1}{\sqrt{3}}\right)\).
For how many values of \(p\), the circle \(x^2+y^2+2 x+4 y-p=0\) and the co-ordinate axes have exactly three common points?
(2) Equation of circle can be written as
\(
(x+1)^2+(y+2)^2=p+5 \dots(i)
\)
Case I. For \(p=0\), circle passes through origin and cuts \(x\)-axis and \(y\)-axis at \((-2,0)\) and \((0,-4)\) respectively.
Case II. If circle touch X-axis, then
\(
(1)^2=-p \Rightarrow p=-1
\)
From Eq. (i), we get
\(
(x+1)^2+(y+2)^2=2^2
\)
Cut off \(Y\)-axis at (put \(x=0\) )
\(
\begin{aligned}
&(y+2)^2=3 \\
& \Rightarrow y=-2 \pm \sqrt{3} \\
& \text { or }(0,-2 \pm \sqrt{3})
\end{aligned}
\)
Case III. If circle touch \(Y\)-axis, then
\((2)^2=-p\)
\(
\Rightarrow \quad p=-4
\)
From Eq. (i), we get
\(
(x+1)^2+(y+2)^2=1
\)
Cut off \(X\)-axis at (put \(y=0\) )
\(
(x+1)^2=-3 \text { (impossible) }
\)
Tangent to the curve \(y=x^2+6\) at a point \((1,7)\) touches the circle \(x^2+y^2+16 x+12 y+c=0\) at a point \(Q\). Then the coordinates of \(Q\) are
Equation of tangent at \((1,7)\) to \(y=x^2+6\)
\(\Rightarrow \quad \frac{1}{2}(y+7)=x \cdot 1+6\)
\(\Rightarrow \quad y=2 x+5 \dots(i)\)
This tangent also touches the circle.
\(
x^2+y^2+16 x+12 y+c=0 \dots(ii)
\)
Now, solving Eqs. (i) and (ii), we get
\(
\Rightarrow \quad \begin{aligned}
x^2+(2 x+5)^2+16 x+12(2 x+5)+c & =0 \\
\Rightarrow \quad 5 x^2+60 x+85+c & =0
\end{aligned}
\)
Since, roots are equal, so
\(
\begin{aligned}
& B^2-4 A C=0 \\
& \Rightarrow \quad(60)^2-4 \times 5 \times(85+c)=0 \\
& \Rightarrow \quad 85+c=180 \\
& \Rightarrow \quad 5 x^2+60 x+180=0 \\
& \Rightarrow \quad x=-\frac{60}{10}=-6 \quad \Rightarrow \quad y=-7 \\
&
\end{aligned}
\)
Hence, point of contact is \((-6,-7)\).
Let \(P\) be a point \((1,0)\) and \(Q\) a point on the locus \(y^2=8 x\). The locus of mid-point of \(P Q\) is
\(P \equiv(1,0)\), let \(Q \equiv(h, k)\)
such that \(\quad k^2=8 h \dots(i)\)
Let \((\alpha, \beta)\) be the mid-point of \(P Q\).
\(
\begin{array}{ll}
\therefore & \alpha=\frac{h+1}{2}, \beta=\frac{k+0}{2} \\
\Rightarrow & h=2 \alpha-1, k=2 \beta
\end{array}
\)
From Eq. (i), we get
\(
\begin{aligned}
(2 \beta)^2 & =8(2 \alpha-1) \\
\Rightarrow \quad \beta^2 & =4 \alpha-2 \\
\Rightarrow \quad \beta^2-4 \alpha+2 & =0
\end{aligned}
\)
\(\therefore\) Required locus is \(y^2-4 x+2=0\).
The axis of a parabola is along the line \(y=x\) and the distance of its vertex from origin is \(\sqrt{2}\) and that from its focus is \(2 \sqrt{2}\). If vertex and focus both lie in the first quadrant, the equation of the parabola is
Coordinates of \(S\) are \(\left(2 \sqrt{2} \cos 45^{\circ}, 2 \sqrt{2} \sin 45^{\circ}\right)\) i.e. \((2,2)\).
\(
\begin{aligned}
& \therefore \quad S P=P M \\
& \Rightarrow \quad(S P)^2=(P M)^2 \\
& \Rightarrow \quad(x-2)^2+(y-2)^2=\left[\frac{(x+y)}{\sqrt{2}}\right]^2 \\
& \Rightarrow \quad 2\left(x^2+y^2-4 x-4 y+8\right)=x^2+y^2+2 x y \\
& \Rightarrow x^2+y^2-2 x y-8 x-8 y+16=0 \\
& \therefore \quad(x-y)^2=8(x+y-2) \\
&
\end{aligned}
\)
The equations of the common tangents to the parabolas \(y=x^2\) and \(y=-(x-2)^2\) is/are
Equation of tangent to \(y=x^2\) is
\(
y=m x-\frac{1}{4} m^2 \dots(i)
\)
Equation of tangent to \((x-2)^2=-y\) is
\(
y=m(x-2)+\frac{1}{4} m^2 \dots(ii)
\)
\(\because\) Eqs. (i) and (ii) are identical.
\(
\Rightarrow \quad m=0 \text { or } 4
\)
\(\therefore\) Common tangents are \(y=0\) and \(y=4 x-4=4(x-1)\).
The locus of the vertices of the family of parabolas \(y=\frac{a^3 x^2}{3105}+\frac{a^2 x}{2}-2 a\) is
Given parabola is
\(
y=\frac{a^3 x^2}{3}+\frac{a^2 x}{2}-2 a \dots(i)
\)
For vertex \(\frac{d y}{d x}=0 \Rightarrow x=-\frac{3}{4 a}\)
Substitute \(x=-\frac{3}{4 a}\) in Eq. (i), we get
\(
y=-\frac{35 a}{16}
\)
\(\therefore\) Coordinates of vertex are \(\left(-\frac{3}{4 a},-\frac{35 a}{16}\right)\).
For locus let \(x=-\frac{3}{4 a}\) and \(y=-\frac{35 a}{16}\).
\(\therefore \quad x y=\frac{105}{64}\), which is the required locus.
Angle between the tangents to the curve \(y=x^2-5 x+6\) at the points \((2,0)\) and \((3,0)\) is
\(
y=x^2-5 x+6
\)
\(\therefore\) Equation of tangent at \((2,0)\) is
\(
\begin{aligned}
\frac{y+0}{2} & =x \cdot 2-\frac{5}{2}(x+2)+6 \\
\Rightarrow \quad y & =-x+2 \dots(i)
\end{aligned}
\)
and equation of tangent at \((3,0)\) is
\(
\Rightarrow \quad y=x-3
\)
\(\because\) Eqs. (i) and (ii) are perpendicular.
\(\therefore\) Angle between tangents is \(\pi / 2\).
Consider the circle \(x^2+y^2=9\) and the parabola \(y^2=8 x\). They intersect at \(P\) and \(Q\) in the first and fourth quadrants, respectively. Tangents to the circle at \(P\) and \(Q\) intersect the \(X\)-axis at \(R\) and tangents to the parabola at \(P\) and \(Q\) intersect the \(X\)-axis at \(S\).
(i) The ratio of the areas of the \(\triangle P Q S\) and \(\triangle P Q R\) is
(a) \(1: \sqrt{2}\)
(b) \(1: 2\)
(c) \(1: 4\)
(d) \(1: 8\)
(ii) The radius of the circumcircle of the \(\triangle P R S\) is
(a) 5
(b) \(3 \sqrt{3}\)
(c) \(3 \sqrt{2}\)
(d) \(2 \sqrt{3}\)
(iii) The radius of the incircle of the \(\triangle P Q R\) is
(a) 4
(b) 3
(c) \(8 / 3\)
(d) 2
(i) Coordinates of \(P\) and \(Q\) are \((1,2 \sqrt{2})\) and \((1,-2 \sqrt{2})\).
Area of \(\triangle P Q R=\frac{1}{2} \cdot 4 \sqrt{2} \cdot 8=16 \sqrt{2}\)
Area of \(\triangle P Q S=\frac{1}{2} \cdot 4 \sqrt{2} \cdot 2=4 \sqrt{2}\)
\(\therefore\) Ratio of area of \(\triangle P Q S\) and \(\triangle P Q R\) is \(1: 4\).
(ii) Equation of circumcircle of \(\triangle P R S\) is
\(
(x+1)(x-9)+y^2+\lambda y=0
\)
It will pass through \((1,2 \sqrt{2})\), then
\(
-16+8+\lambda 2 \sqrt{2}=0 \Rightarrow \lambda=\frac{8}{2 \sqrt{2}}=2 \sqrt{2}
\)
Equation of circumcircle is
\(
x^2+y^2-8 x+2 \sqrt{2} y-9=0
\)
Hence, radius is \(3 \sqrt{3}\).
Alternate :
\(
\begin{aligned}
& \text { Let } \angle P S R=\theta \Rightarrow \sin \theta=\frac{2 \sqrt{2}}{2 \sqrt{3}} \\
& \Rightarrow \quad P R=6 \sqrt{2}=2 R \cdot \sin \theta \Rightarrow R=3 \sqrt{3} .
\end{aligned}
\)
(iii) Radius of incircle is \(r=\frac{\Delta}{ s }\).
\(
\begin{aligned}
\text { As } & \Delta=16 \sqrt{2} \\
& \therefore \quad s=\frac{6 \sqrt{2}+6 \sqrt{2}+4 \sqrt{2}}{2}=8 \sqrt{2} \\
& \therefore \quad r=\frac{16 \sqrt{2}}{8 \sqrt{2}}=2 \\
&
\end{aligned}
\)
Statement I: The curve \(y=-\frac{x^2}{2}+x+1\) is symmetric with respect to the line \(x=1\) because
Statement II: A parabola is symmetric about its axis.
\(
y=-\frac{x^2}{2}+x+1 \Rightarrow y-\frac{3}{2}=-\frac{1}{2}(x-1)^2
\)
\(\Rightarrow\) It is symmetric about \(x=1\).
Hence, both statement are true and Statement II is correct explanation of Statement I.
The equation of a tangent to the parabola \(y^2=8 x\) is \(y=x+2\). The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is
Point of intersection of two perpendicular tangents to the parabola lies on directrix of the parabola.
\(\therefore\) Equation of directrix is \(x+2=0\).
So, point is \((-2,0)\).
Consider the two curves \(C_1: y^2=4 x, C_2: x^2+y^2-6 x+1=0\), then
The circle and the parabola touch each other at \(x=1\), i.e. at the points \((1,2)\) and \((1,-2)\) as shown in figure.
A parabola has the origin as its focus and the line \(x=2\) as the directrix. The vertex of the parabola is at
Focus of the parabola is \((0,0)\) and \(x=2\) is the directrix
And we know that axis of the parabola is perpendicular to the directrix and pass through the focus of the parabola
Thus foot of directrix is \((2,0)\)
Also we know that, vertex of the parabola is the mid point of its focus and the foot of directrix
So vertex of parabola is \(\left(\frac{0+2}{2}, \frac{0+0}{2}\right)=(1,0)\)
The tangent \(P T\) and the normal \(P N\) to the parabola \(y^2=4 a x\) at a point \(P\) on it meet its axis at points \(T\) and \(N\), respectively. The locus of the centroid of the \(\triangle P T N\) is a parabola whose
\(
\begin{aligned}
G & \equiv(h, k) \\
\Rightarrow \quad h & =\frac{2 a+a t^2}{3}, k=\frac{2 a t}{3}
\end{aligned}
\)
\(
\Rightarrow \quad\left(\frac{3 h-2 a}{a}\right)=\frac{9 k^2}{4 a^2}
\)
\(\therefore\) Required parabola is
\(
\begin{aligned}
& \quad \frac{9 y^2}{4 a^2}=\frac{(3 x-2 a)}{a}=\frac{3}{a}\left(x-\frac{2 a}{3}\right) \\
& \Rightarrow \quad y^2=\frac{4 a}{3}\left(x-\frac{2 a}{3}\right) \\
& \therefore \text { Vertex } \equiv\left(\frac{2 a}{3}, 0\right) \text {; Focus } \equiv(a, 0) .
\end{aligned}
\)
Let \(A\) and \(B\) be two distinct points on the parabola \(y^2=4 x\). If the axis of the parabola touches a circle of radius \(r\) having \(A B\) as its diameter, The slope of the line joining \(A\) and \(B\) can be
\(
\text { Slope of } A B=\frac{2 t_2-2 t_1}{\left(t_2^2-t_1^2\right)}=\frac{2}{\left(t_2+t_1\right)} \dots(i)
\)
\(
\begin{aligned}
& M=\text { Mid-point of } A B=\left(\frac{t_1^2+t_2^2}{2}, t_1+t_2\right) \\
\therefore & r=\left|t_1+t_2\right| \Rightarrow t_1+t_2= \pm r
\end{aligned}
\)
Now, from Eq. (i),
\(
\text { slope of } A B= \pm \frac{2}{r} \text {. }
\)
If two tangents drawn from a point \(P\) to the parabola \(y^2=4 x\) are at right angles, the locus of \(P\) is
Given equation of parabola is \(y^2=4 x\)
We know that the locus of point \(P\) from which two perpendicular tangents are drawn to the parabola is the directrix of the parabola.
The standard equation of parabola \((y-k)^2=4 p(x-h)\) has focus \((h+p, k)\) and the directrix is \(x = h – p\)
From (i), we get
\(
h = 0 , k = 0 , p =1
\)
\(\Rightarrow\) Directrix of (i) is \(x=0-1=-1\)
Hence, required locus is \(x =- 1\).
Consider the parabola \(y^2=8 x\). Let \(\Delta_1\) be the area of the triangle formed by the end points of its latusrectum and the point \(P\left(\frac{1}{2}, 2\right)\) on the parabola and \(\Delta_2\) be the area of the triangle formed by drawing tangent at \(P\) and at the end points of the latusrectum.
Then, \(\frac{\Delta_1}{\Delta_2}\) is
\(
\begin{aligned}
\Delta_1 & =\text { Area of } \triangle P L L^{\prime} \\
& =\frac{1}{2} \times 8 \times\left(2-\frac{1}{2}\right)=6 \text { sq unitss }
\end{aligned}
\)
Now, equation of \(A B\) is \(y=2 x+1\), equation of \(A C\) is \(y=x+2\) and equation of \(B C\) is \(y=-x-2\)
On solving above equations, we get
\(
A(1,3), B(-1,-1) \text { and } C(-2,0)
\)
\(
\begin{array}{ll}
\therefore & \Delta_2=\frac{1}{2}\left\|\begin{array}{cc}
1+2 & 3-0 \\
-1+2 & -1-0
\end{array}\right\|=3 \text { sq units } \\
\therefore & \frac{\Delta_1}{\Delta_2}=2
\end{array}
\)
Let \((x, y)\) be any point on the parabola \(y^2=4 x\). Let \(P\) be the point that divides the line segment from \((0,0)\) to \((x, y)\) in the ratio \(1: 3\). Then, the locus of \(P\) is
Let \(A(x, y)=A\left(t^2, 2 t\right)\) be any point on the parabola \(y^2=4 x\), then
\(
x=\frac{t^2}{4} \dots(i)
\)
and \(y=\frac{2 t}{4} \dots(ii)\)
From Eqs. (i) and (ii), we get
\(
x=y^2
\)
Let \(L\) be a normal to the parabola \(y^2=4 x\). If \(L\) passes through the point \((9,6)\), then \(L\) is given by
The equation of normal to
\(
y^2=4 x \text { is } y=m x-2 m-m^3 \dots(i)
\)
As it passes through \((9,6)[latex], then
[latex]
6=9 m-2 m-m^3
\)
\(
\begin{aligned}
& \Rightarrow \quad m^3-7 m+6=0 \\
& \Rightarrow(m-1)(m-2)(m+3)=0 \\
& \Rightarrow \quad m=1,2,-3 \\
&
\end{aligned}
\)
From Eq. (i), equations of normals are
\(
\begin{aligned}
& y=x-3, y=2 x-12, y=-3 x+33 \\
\Rightarrow & y-x+3=0, y-2 x+12=0, y+3 x-33=0
\end{aligned}
\)
The shortest distance between line \(y-x=1\) and curve \(x=y^2\) is
The shortest distance between \(y=x-1\) and \(y^2=x\) is along the normal of \(y^2=x\).
Let \(P\left(t^2, t\right)\) be any point on \(y^2=x\).
\(\therefore \quad\) Tangent at \(P\) is \(y=\frac{x}{2 t}+\frac{t}{2}\).
\(\therefore \quad\) Slope of tangent \(=\frac{1}{2 t}\)
and tangent at \(P\) is parallel to \(y-x=1\)
\(\therefore \quad \frac{1}{2 t}=1 \Rightarrow t=\frac{1}{2} \Rightarrow P\left(\frac{1}{4}, \frac{1}{2}\right)\)
Hence, shortest distance \(=P Q=\frac{\left|\frac{1}{2}-\frac{1}{4}-1\right|}{\sqrt{(1+1)}}=\frac{3}{4 \sqrt{2}}=\frac{3 \sqrt{2}}{8}\)
Let \(S\) be the focus of the parabola \(y^2=8 x\) and let \(P Q\) be the common chord of the circle \(x^2+y^2-2 x-4 y=0\) and the given parabola. The area of the \(\triangle P Q S\) is
We observe that both parabola \(y^2=8 x\) and circle \(x^2+y^2-2 x-4 y=0\) pass through origin say \(P(0,0)\).
Let \(Q\) be the point \(\left(2 t^2, 4 t\right)\), then it will satisfy the equation of circle.
\(
\begin{array}{lc}
\therefore & \left(2 t^2\right)^2+(4 t)^2-2\left(2 t^2\right)-4(4 t)=0 \\
\Rightarrow & 4 t^4+12 t^2-16 t=0 \\
\Rightarrow & t(t-1)\left(t^2+t-4\right)=0 \Rightarrow t=0 \text { or } 1
\end{array}
\)
For \(t=0\), we get point \(P\), therefore \(t=1\) gives point \(Q\) as \((2,4)\). Here, \(P(0,0)\) and \(Q(2,4)\) are end points of diameter of the given circle and focus of the parabola is the point \(S(2,0)\).
\(\therefore \quad \angle P S Q=90^{\circ}\)
Hence, area of \(\triangle P Q S=\frac{1}{2} \times 2 \times 4=4\) sq units.
Let \(P Q\) be a focal chord of the parabola \(y^2=4 a x\). The tangent to the parabola at \(P\) and \(Q\) meet at a point lying on the line \(y=2 x+a, a>0\). If chord \(P Q\) subtends an angle \(\theta\) at the vertex of \(y^2=4 a x\), them \(\tan \theta\) is equal to
\(\because P Q\) is the focal chord of \(y^2=4 a x\).
\(\therefore\) Coordinates of \(P\) and \(Q\) are \(\left(a t^2, 2 a t\right)\) and \(\left(\frac{a}{t^2},-\frac{2 a}{t}\right)\).
Tangents at \(P\) and \(Q\) are
\(
t y=x+a t^2 \text { and } t y=x t^2+a
\)
which intersect each other at \(R\left(-a, a\left(t-\frac{1}{t}\right)\right)\).
As \(R\) lies on the line \(y=2 x+a, a>0\)
\(
\begin{aligned}
& \therefore \quad a\left(t-\frac{1}{t}\right)=-2 a+a & \Rightarrow \quad t-\frac{1}{t}=-1
\end{aligned}
\)
\(\because\) Slope of \(O P=\frac{2}{t}\) and slope of \(O Q=-2 t\)
\(
\begin{aligned}
& \therefore \quad \tan \theta=\left|\frac{\frac{2}{t}+2 t}{1-4}\right|=\frac{2}{3}\left|t+\frac{1}{t}\right| \\
& =\frac{2}{3} \sqrt{\left(t-\frac{1}{t}\right)^2+4}=\frac{2}{3} \sqrt{5} \quad\left[\because t-\frac{1}{t}=-1\right] \\
& \because \quad \theta>90^{\circ} & \therefore \quad \tan \theta=-\frac{2}{3} \sqrt{5}
&
\end{aligned}
\)
\(\because\) Slope of \(O P=\frac{2}{t}\) and slope of \(O Q=-2 t\)
\(
\begin{aligned}
& \therefore \quad \tan \theta=\left|\frac{\frac{2}{t}+2 t}{1-4}\right|=\frac{2}{3}\left|t+\frac{1}{t}\right| \\
& =\frac{2}{3} \sqrt{\left(t-\frac{1}{t}\right)^2+4}=\frac{2}{3} \sqrt{5} \quad\left[\because t-\frac{1}{t}=-1\right] \\
& \because \quad \theta>90^{\circ} & \therefore \quad \tan \theta=-\frac{2}{3} \sqrt{5} \\
&
\end{aligned}
\)
Let \(P Q\) be a focal chord of the parabola \(y^2=4 a x\). The tangent to the parabola at \(P\) and \(Q\) meet at a point lying on the line \(y=2 x+a, a>0\). Length of chord \(P Q\) is
\(\because P Q\) is the focal chord of \(y^2=4 a x\).
\(\therefore\) Coordinates of \(P\) and \(Q\) are \(\left(a t^2, 2 a t\right)\) and \(\left(\frac{a}{t^2},-\frac{2 a}{t}\right)\).
Tangents at \(P\) and \(Q\) are
\(
t y=x+a t^2 \text { and } t y=x t^2+a
\)
which intersect each other at \(R\left(-a, a\left(t-\frac{1}{t}\right)\right)\).
As \(R\) lies on the line \(y=2 x+a, a>0\)
\(
\begin{aligned}
& \therefore \quad a\left(t-\frac{1}{t}\right)=-2 a+a \\
& \Rightarrow \quad t-\frac{1}{t}=-1 \\
&
\end{aligned}
\)
\(
\begin{aligned}
&\begin{aligned}
P Q & =a\left(t+\frac{1}{t}\right)^2=a\left\{\left(t-\frac{1}{t}\right)^2+4\right\} \\
& =a(1+4)=5 a
\end{aligned}\\
&\left[\because t-\frac{1}{t}=-1\right]
\end{aligned}
\)
The slope of the line touching the parabolas \(y^2=4 x\) and \(x^2=-32 y\) is
Equation of tangent of \(y^2=4 x\) in terms of slope is
\(
y=m x+\frac{1}{m} \dots(i)
\)
\(\because\) Line Eq. (i) touches \(x^2=-32 y\)
\(
\begin{aligned}
\Rightarrow & x^2 =-32\left(m x+\frac{1}{m}\right) \\
\Rightarrow & x^2+32 m x+\frac{32}{m} =0 \dots(ii)
\end{aligned}
\)
For touching roots of Eq. (ii) are equal.
\(
\begin{aligned}
& \therefore \quad D=0 \\
& \Rightarrow \quad(32 m)^2=4 \cdot 1 \cdot\left(\frac{32}{m}\right) \\
& \Rightarrow \quad m^3=\frac{1}{8} \\
& \therefore \quad m=1 / 2 \\
&
\end{aligned}
\)
The common tangent to the circle \(x^2+y^2=2\) and the parabola \(y^2=8 x\) touch the circle at the points \(P, Q\) and the parabola at the points \(R, S\). Then, the area of the quadrilateral \(P Q R S\) is
Let the tangent to, \(y^2=8 x\) be \(y=m x+\frac{2}{m}\).
If it is common tangent to parabola and circle, then \(y=m x+\frac{2}{m}\) is a tangent to \(x^2+y^2=2\).
\(
\begin{aligned}
& & \frac{\frac{2}{m}}{\sqrt{\left(1+m^2\right)}} & =\sqrt{2} \\
\Rightarrow & & \frac{4}{m^2\left(1+m^2\right)} & =2 \\
\Rightarrow & & m^4+m^2-2 & =0 \\
\Rightarrow & & \left(m^2+2\right)\left(m^2-1\right) & =0 \\
& \therefore & & m= \pm 1
\end{aligned}
\)
\(\therefore\) Required tangents are \(y=x+2\) and \(y=-x-2\).
Their common point is \(T(-2,0)\).
Chord of contact \(P Q\) to circle is
\(
\begin{aligned}
& & x \cdot(-2)+y \cdot 0 & =2 \\
\Rightarrow & & x & =-1
\end{aligned}
\)
Hence, coordinates of \(P\) and \(Q\) are \((-1,1)\) and \((-1,-1)\) and chord of contact \(R S\) to parabola is
\(
\begin{aligned}
& y \cdot 0=4(x-2) \\
& \Rightarrow \quad x=2 \\
&
\end{aligned}
\)
Hence, coordinates of \(R\) and \(S\) are \((2,4)\) and \((2,-4)\).
\(\therefore\) Area of trapezium \(P Q R S=\frac{1}{2}(2+8) \times 3=15\) sq units
Let \(a, r, s\) and \(t\) be non-zero real numbers. Let \(P\left(a t^2 2 a t\right)\), \(Q\left(\frac{a}{t^2}, \frac{-2 a}{t}\right), R\left(a r^2, 2 a r\right)\) and \(S\left(a s^2, 2 a s\right)\) be distinct points on the parabola \(y^2=4 a x\). Suppose that \(P Q\) is the focal chord and lines \(Q R\) and \(P K\) are parallel, where \(K\) is the point \((2 a, 0)\). The value of \(r\) is
\(\because P Q\) is a focal chord, then \(Q\left(\frac{a}{t^2}, \frac{-2 a}{t}\right)\).
Also,
\(
Q R \| P K \Rightarrow m_{Q R}=m_{P K}
\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{2 a r+\frac{2 a}{t}}{a r^2-\frac{a}{t^2}}=\frac{0-2 a t}{2 a-a t^2} \\
& \Rightarrow \quad \frac{2}{r-\frac{1}{t}}=\frac{-2 t}{2-t^2} \\
& {\left[\because r+\frac{1}{t} \neq 0 \text {, otherwise } Q \text { will coincide with } R\right]} \\
& \Rightarrow \quad 2-t^2=-r t+1 \\
& \therefore \quad r=\frac{t^2-1}{t} \\
&
\end{aligned}
\)
Let \(a, r, s\) and \(t\) be non-zero real numbers. Let \(P\left(a t^2 2 a t\right)\), \(Q\left(\frac{a}{t^2}, \frac{-2 a}{t}\right), R\left(a r^2, 2 a r\right)\) and \(S\left(a s^2, 2 a s\right)\) be distinct points on the parabola \(y^2=4 a x\). Suppose that \(P Q\) is the focal chord and lines \(Q R\) and \(P K\) are parallel, where \(K\) is the point \((2 a, 0)\). If \(s t=1\), then the tangent at \(P\) and the normal at \(S\) to the parabola meet at a point whose ordinate is
\(\because P Q\) is a focal chord, then \(Q\left(\frac{a}{t^2}, \frac{-2 a}{t}\right)\).
Also,
\(
Q R \| P K \Rightarrow m_{Q R}=m_{P K}
\)
\(
\begin{aligned}
& \Rightarrow \quad \frac{2 a r+\frac{2 a}{t}}{a r^2-\frac{a}{t^2}}=\frac{0-2 a t}{2 a-a t^2} \\
& \Rightarrow \quad \frac{2}{r-\frac{1}{t}}=\frac{-2 t}{2-t^2} \\
& {\left[\because r+\frac{1}{t} \neq 0 \text {, otherwise } Q \text { will coincide with } R\right]} \\
& \Rightarrow \quad 2-t^2=-r t+1 \\
& \therefore \quad r=\frac{t^2-1}{t} \\
&
\end{aligned}
\)
Tangent at \(P\) is \(\quad t y=x+a t^2 \dots(i)\)
Normal at \(S\) is \(\quad y+s x=2 a s+a s^3 \dots(ii)\)
Putting the value of \(x\) from Eq. (i) in Eq. (ii), then
\(
\begin{aligned}
& y+s\left(t y-a t^2\right)=2 a s+a s^3 \\
& \Rightarrow \quad y+(s t) y-a(s t) t=2 a s+a s^3 \\
& \Rightarrow \quad y+y-a t=\frac{2 a}{t}+\frac{a}{t^3} \quad[\because s t=1] \\
& \Rightarrow \quad 2 y=a\left(t+\frac{2}{t}+\frac{1}{t^3}\right) \\
& \therefore \quad y=\frac{a\left(t^2+1\right)^2}{2 t^3} \\
&
\end{aligned}
\)
Let \(O\) be the vertex and \(Q\) be any point on the parabola \(x^2=8 y\). If the point \(P\) divides the line segment \(O Q\) internally in the ratio \(1: 3\), then the locus of \(P\) is
Let any point \(Q\) on \(x^2=8 y\) is \(\left(4 t, 2 t^2\right)\) and given \(P(h, k)\) divides \(O Q\) in the ratio \(1: 3\) (internally).
Then, \(\quad h=\frac{4 t}{4}=t\) and \(k=\frac{2 t^2}{4} \Rightarrow 2 k=h^2\)
\(\therefore\) Required locus of \(P\) is \(x^2=2 y\).
If the normals of the parabola \(y^2=4 x\) drawn at the end points of its latusrectum are tangents to the circle \((x-3)^2+(y+2)^2=r^2\), then the value of \(r^2\) is
End points of latusrectum of
\(
y^2=4 x \text { are }(1, \pm 2) .
\)
Equation of normal to \(y^2=4 x\) at \((1,2)\) is
\(
\begin{aligned}
y-2 & =-\frac{2}{2}(x-1) \\
\Rightarrow \quad x+y-3 & =0
\end{aligned}
\)
As it is tangent to circle \((x-3)^2+(y+2)^2=r^2\)
\(
\therefore \quad \frac{|3-2-3|}{\sqrt{(1+1)}}=r \Rightarrow r^2=2
\)
Let the curve \(C\) be the mirror image of the parabola \(y^2=4 x\) with respect to the line \(x+y+4=0\). If \(A\) and \(B\) are the points of intersection of \(C\) with the line \(y=-5\), the distance between \(A\) and \(B\) is
Let \(\left(t^2, 2 t\right)\) be any point on \(y^2=4 x\). Let \((h, k)\) be image of \(\left(t^2, 2 t\right)\) with respect to the line \(x+y+4=0\), then
\(
\frac{h-t^2}{1}=\frac{k-2 t}{1}=\frac{-2\left(t^2+2 t+4\right)}{1+1}
\)
\(
\begin{aligned}
& \Rightarrow \quad h=-(2 t+4) \text { and } k=-\left(t^2+4\right) \\
& \Rightarrow \quad(k+4)=-\left(\frac{h+4}{-2}\right)^2 \\
& \Rightarrow \quad(h+4)^2=-4(k+4) \\
&
\end{aligned}
\)
Locus of \((h, k)\) is \((x+4)^2=-4(y+4)\).
\(
\therefore \quad \text { Curve } C \text { is }(x+4)^2=-4(y+4)
\)
Now, intersection of \(C\) with \(y=-5\), then
\(
\begin{array}{lc}
& (x+4)^2=-4(-5+4)=4 \\
\therefore & x+4= \pm 2 \Rightarrow x=-6,-2 \\
\therefore & A(-6,-5) \text { and } B(-2,-5) \\
\therefore & A B=4
\end{array}
\)
Let \(P\) and \(Q\) be distinct points on the parabola \(y^2=2 x\) such that a circle with \(P Q\) as diameter passes through the vertex \(O\) of the parabola. If \(P\) lies in the first quadrant and the area of the \(\triangle O P Q\) is \(3 \sqrt{2}\), then which of the following is (are) the coordinates of \(P\)?
Let \(P\left(\frac{t_1^2}{2}, t_1\right)\) and \(Q\left(\frac{t_2^2}{2}, t_2\right)\) such that \(t_1>0\)
\([\because P\) lies in first quadrant \(]\)
\(\because\) Circle with \(P Q\) as diameter passes through the vertex \(O(0,0)\) of the parabola.
\(
\begin{aligned}
& \therefore \quad \angle P O Q=90^{\circ} \\
& \Rightarrow \text { Slope of } O P \times \text { Slope of } O Q=-1 \\
& \Rightarrow \quad \frac{2}{t_1} \times \frac{2}{t_2}=-1 \\
& \Rightarrow \quad t_1 t_2=-4 \quad\left[\because t_2<0\right] \\
&
\end{aligned}
\)
\(
\begin{aligned}
& \text { Now, area of } \triangle O P Q=3 \sqrt{2} \\
& \Rightarrow \quad \frac{1}{2}\left|\begin{array}{cc}
\frac{t_1^2}{2} & t_1 \\
\frac{t_2^2}{2} & t_2
\end{array}\right|=3 \sqrt{2} \\
& \Rightarrow \quad \frac{1}{4} t_1 t_2\left(t_1-t_2\right)= \pm 3 \sqrt{2} \\
& \Rightarrow \quad t_1-t_2= \pm 3 \sqrt{2} \left[\because t_1 t_2=-4\right]
\end{aligned}
\)
\(
\begin{array}{ll}
\Rightarrow & t_1+\frac{4}{t_1}= \pm 3 \sqrt{2} \\
\text { or } & t_1+\frac{4}{t_1}=3 \sqrt{2} \left[\because t_1>0\right]
\end{array}
\)
\(
\begin{array}{lc}
\Rightarrow & t_1^2-3 \sqrt{2} t_1+4=0 \\
\therefore & t_1=\frac{3 \sqrt{2} \pm \sqrt{2}}{2}=2 \sqrt{2}, \sqrt{2} . \\
\therefore & \text { Point } P \text { can be }(4,2 \sqrt{2}) \text { or }(1, \sqrt{2}) .
\end{array}
\)
Let \(P\) be the point on the parabola \(y^2=8 x\), which is at a minimum distance from the centre \(C\) of the circle \(x^2+(y+6)^2=1\), the equation of the circle passing through \(C\) and having its centre at \(P\), is
Let \(P\left(2 t^2, 4 t\right)\) and \(C(0,-6)\).
\(
\therefore \quad(C P)^2=4 t^4+(4 t+6)^2=z \text { say }
\)
\(
\begin{aligned}
& \therefore \quad \frac{d z}{d t}=0 \\
& \Rightarrow \quad 16 t^3+2(4 t+6) \cdot 4=0 \\
& \Rightarrow \quad t^3+2 t+3=0 \\
& \Rightarrow \quad(t+1)\left(t^2-t+3\right)=0 \\
&
\end{aligned}
\)
\(
\begin{array}{lc}
\therefore & t=-1 \\
\Rightarrow & P(2,-4)
\end{array}
\)
Equation of circle is
\(
\begin{aligned}
(x-2)^2+(y+4)^2 & =(2-0)^2+(-4+6)^2 \\
\Rightarrow x^2+y^2-4 x+8 y+12 & =0
\end{aligned}
\)
The circle \(C_1: x^2+y^2=3\) with centre at \(O\), intersects the parabola \(x^2=2 y\) at the point \(P\) in the first quadrant. Let the tangent to the circle \(C_1\) at \(P\) touches other two circles \(C_2\) and \(C_3\) at \(R_2\) and \(R_3\), respectively. Suppose \(C_2\) and \(C_3\) have equal radii \(2 \sqrt{3}\) and centres \(Q_2\) and \(Q_3\), respectively. If \(Q_2\) and \(Q_3\) lie on the \(Y\)-axis, then
\(\because C_1: x^2+y^2=3\) and parabola \(x^2=2 y\), then
\(
y^2+2 y-3=0 \Rightarrow y=1,-3
\)
\(\therefore \quad P(\sqrt{2}, 1)\) \([\because P\) lies in first quadrant \(]\)
Now, tangent at \(P(\sqrt{2}, 1)\) on the circle \(C_1\) is
\(
x \sqrt{2}+y=3
\)
Let \(Q_2\) or \(Q_3(0, \lambda)\)
\(
\begin{aligned}
& \therefore \quad \frac{|0+\lambda-3|}{\sqrt{(2+1)}}=2 \sqrt{3} \\
& \Rightarrow \quad|\lambda-3|=6 \\
& \therefore \quad \lambda=9 \text { or }-3 \\
& \Rightarrow Q_2(0,-3) \text { and } Q_3(0,9) \text {. } \\
&
\end{aligned}
\)
Alternate (a) \(Q_2 Q_3=12\)
Alternate (b) \(R_2 R_3=\) Length of external common tangent
\(
\begin{aligned}
& =\sqrt{\left(Q_2 Q_3\right)^2-(2 \sqrt{3}+2 \sqrt{3})^2} \\
& =\sqrt{(144-48}=4 \sqrt{6}
\end{aligned}
\)
Alternate (c) Area of \(\triangle O R_2 R_3=\frac{1}{2} \times R_2 R_3 \times \frac{|0+0-3|}{\sqrt{(2+1)}}\)
\(
=\frac{1}{2} \times 4 \sqrt{6} \times \frac{3}{\sqrt{3}}=6 \sqrt{2}
\)
Alternate (d) Area of \(\triangle P Q_2 Q_3=\frac{1}{2} \times Q_2 Q_3 \times \sqrt{2}\)
\(
=\frac{1}{2} \times 12 \times \sqrt{2}=6 \sqrt{2}
\)
Let \(P\) be the point on the parabola \(y^2=4 x\) which is at the shortest distance from the centre \(S\) of the circle \(x^2+y^2-4 x-16 y+64=0\). Let \(Q\) be the point on the circle dividing the line segment \(S P\) internally. Then,
Let \(P\left(t^2, 2 t\right), S(2,8)\) and \(r=\sqrt{(4+64-64)}=2\)
We know that, shortest distance between two curves lies along their common normal. The common normal will pass through centre of circle.
\(\therefore\) Slope of \(P S=\) Slope of normal to the parabola \(y^2=4 x\) at \(P\left(t^2, 2 t\right)\)
\(
\Rightarrow \quad \frac{2 t-8}{t^2-2}=-t \text { or } t^3=8 \Rightarrow t=2
\)
\(
\therefore P(4,4)
\)
Alternate (a) \(\quad S P=\sqrt{(2-4)^2+(8-4)^2}=2 \sqrt{5}\)
Alternate (b) \(\quad S Q=r=2\)
\(
\begin{aligned}
\therefore \quad \frac{S Q}{Q P} & =\frac{S Q}{S P-S Q}=\frac{2}{2 \sqrt{5}-2} \\
& =\frac{1}{(\sqrt{5}-1)} \times \frac{(\sqrt{5}+1)}{(\sqrt{5}+1)}=\frac{\sqrt{5}+1}{4} \\
\Rightarrow \quad S Q: Q P & =(\sqrt{5}+1): 4
\end{aligned}
\)
Alternate (c) Equation of normal at \(P(4,4)\) is
\(
\begin{array}{rlrl}
& & y-4 & =-\frac{4}{2}(x-4) \\
\Rightarrow & & y-4 & =-2 x+8 \\
\Rightarrow & 2 x+y & =12
\end{array}
\)
\(\therefore\) Intercept on \(X\)-axis is 6 .
Alternate (d) Slope of tangent at \(Q=\) Slope of tangent at
\(
P=\frac{1}{2}
\)
The radius of a circle, having minimum area, which touches the curve \(y=4-x^2\) and the lines, \(y=|x|\) is
Centre of circle
\(
\begin{aligned}
& C \equiv(0,4-r) \\
& \because \quad C M=r \\
& \therefore \quad \frac{|10-(4-r)|}{\sqrt{2}}=r \\
& \Rightarrow \quad 4-r=r \sqrt{2} \\
& \text { or } \\
& r=\frac{4}{\sqrt{2}+1} \\
& =4(\sqrt{2}-1) \\
&
\end{aligned}
\)
If a chord, which is not a tangent of the parabola \(y^2=16 x\) has the equation \(2 x+y=p\), and mid-point \((h, k)\), then which of the following is (are) possible value(s) of \(p, h\) and \(k\) ?
(a) Equation of chord of parabola \(y^2=16 x\) whose mid-point \((h, k)\) is
\(
\begin{aligned}
T & =S_1 \\
k y-8(x+h) & =k^2-16 h \\
8 x-k y & =8 h-k^2 \dots(i)
\end{aligned}
\)
Now comparing Eq. (i) and \(2 x+y=p\), then
\(
\begin{array}{ll}
& \frac{8}{2}=\frac{-k}{1}=\frac{8 h-k^2}{p} \\
\Rightarrow & k=-4 \text { and } 4 p=8 h-k^2 \\
\text { or } & k=-4 \text { and } p=2 h-4 \\
\text { Hence, } & p=2, h=3, k=-4
\end{array}
\)
The minimum area of triangle formed by the tangent to the \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) and coordinate axes is
Any tangent to the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) at \(P(a \cos \theta, b \sin \theta)\) is \(\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1\)
It meets coordinate axes at \(A(a \sec \theta, 0)\) and \(B(0, b \operatorname{cosec} \theta)\).
\(
\begin{aligned}
& \therefore \quad \text { Area of } \triangle O A B & =\frac{1}{2} \times a \sec \theta \times b \operatorname{cosec} \theta \\
\Rightarrow & \Delta =\frac{a b}{\sin 2 \theta}
\end{aligned}
\)
For \(\Delta\) to be min, \(\sin 2 \theta\) should be max and we know max value of \(\sin 2 \theta=1\).
\(
\therefore \quad \Delta_{\max }=a b \text { sq units. }
\)
Find the equation of the common tangent in 1st quadrant to the circle \(x^2+y^2=16\) and the ellipse \(\frac{x^2}{25}+\frac{y^2}{4}=1\). Also find the length of the intercept of the tangent between the coordinate axes.
Let the common tangent to circle \(x^2+y^2=16\) and ellipse
\(
\begin{aligned}
x^2 / 25+y^2 / 4 & =1 \text { be } \\
y & =m x+\sqrt{25 m^2+4} \dots(i)
\end{aligned}
\)
As it is tangent to circle \(x^2+y^2=16\), we should have
\(
\begin{array}{rlrl}
& & \frac{\sqrt{25 m^2+4}}{\sqrt{m^2+1}} & =4 \quad \begin{array}{r}
\text { [Using: length of perpendicular } \\
\text { from }(0,0) \text { to }(1)=4]
\end{array} \\
\Rightarrow & & 25 m^2+4 & =16 m^2+16 \\
\Rightarrow & 9 m^2 & =12 \\
\Rightarrow & m & =\frac{-2}{\sqrt{3}}
\end{array}
\)
[Leaving + ve sign to consider tangent in I quadrant]
\(\therefore\) Equation of common tangent is
\(
\begin{aligned}
y & =-\frac{2}{\sqrt{3}} x+\sqrt{25 \cdot \frac{4}{3}+4} \\
\Rightarrow \quad y & =-\frac{2}{\sqrt{3}} x+4 \sqrt{\frac{7}{3}}
\end{aligned}
\)
This tangent meets the axes at \(A(2 \sqrt{7}, 0)\) and \(B\left(0,4 \sqrt{\frac{7}{3}}\right)\).
\(\therefore\) Length of intercepted portion of tangent between axes
\(
\begin{aligned}
A B & =\sqrt{(2 \sqrt{7})+\left(4 \sqrt{\frac{7}{3}}\right)^3} \\
& =14 / \sqrt{3}
\end{aligned}
\)
An ellipse has \(O B\) as semi minor axis, \(F\) and \(F^{\prime}\) its focii and the angle \(F B F^{\prime}\) is a right angle. Then, the eccentricity of the ellipse is
\(
\begin{aligned}
& \because \angle F B F^{\prime}=90^{\circ} \Rightarrow F B^2+F^{\prime} B^2=F F^{\prime 2} \\
& \therefore\left(\sqrt{a^2 e^2+b^2}\right)^2+\left(\sqrt{a^2 e^2+b^2}\right)^2=(2 a e)^2
\end{aligned}
\)
\(
\begin{array}{rlrl}
\Rightarrow & & 2\left(a^2 e^2+b^2\right) & =4 a^2 e^2 \\
\Rightarrow & e^2 =\frac{b^2}{a^2}
\end{array}
\)
\(
\begin{array}{ll}
\text { Also, } & e^2=1-b^2 / a^2=1-e^2 \\
\Rightarrow & 2 e^2=1, e=\frac{1}{\sqrt{2}}
\end{array}
\)
In an ellipse, the distance between its foci is 6 and minor axis is 8 . Then, its eccentricity is
\(
\begin{aligned}
& 2 a e=6 \Rightarrow a e=3 ; 2 b=8 \\
& \Rightarrow \quad b=4 \\
& b^2=a^2\left(1-e^2\right) ; 16=a^2-a^2 e^2 \\
& \Rightarrow \quad a^2=16+9=25 \Rightarrow a=5 \\
& \therefore \quad e=\frac{3}{a}=\frac{3}{5} \\
&
\end{aligned}
\)
Let \(P\left(x_1, y_1\right)\) and \(Q\left(x_2, y_2\right), y_1<0, y_2<0\) be the end points of the latusrectum of the, ellipse \(x^2+4 y^2=4\). The equations of parabolas with latusrectum \(P Q\) are
Given, ellipse is \(x^2+4 y^2=4\)
\(
\begin{array}{ll}
\text { or } & \frac{x^2}{2^2}+\frac{y^2}{1}=1 \Rightarrow a=2, b=1 \\
\therefore & e=\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2} \\
\therefore & a e=\sqrt{3}
\end{array}
\)
As per question \(P \equiv\left(a e,-b^2 / a\right)=\left(\sqrt{3},-\frac{1}{2}\right)\)
\(
\begin{aligned}
& Q \equiv\left(-a e,-b^2 / a\right)=\left(-\sqrt{3},-\frac{1}{2}\right) \\
& \therefore \quad P Q=2 \sqrt{3} \\
&
\end{aligned}
\)
Now, if \(P Q\) is the length of latusrectum to be found, then
\(
P Q=4 a=2 \sqrt{3} \Rightarrow a=\frac{\sqrt{3}}{2}
\)
Also, as \(P Q\) is horizontal, parabola with \(P Q\) as latusrectum can be upward parabola (with vertex at \(A\) ) or down ward parabola (with vertex at \(A^{\prime}\) ).
For upward parabola, \(A r=a=\frac{\sqrt{3}}{2}\)
\(\therefore\) Coordinates of \(A=\left(0,-\left(\frac{\sqrt{3}+1}{2}\right)\right)\)
So, Equation of upward parabola is given by
\(
x^2=2 \sqrt{3}\left(y+\frac{\sqrt{3}+1}{2}\right) \text { or } x^2-2 \sqrt{3} y=3+\sqrt{3} \dots(i)
\)
For downward parabola \(A^{\prime} R=a=\frac{\sqrt{3}}{2}\)
\(\therefore\) Coordinates of \(A^{\prime}=\left(0,-\left(\frac{1-\sqrt{3}}{2}\right)\right)\)
So, equation of downward parabola is given by
\(
\begin{aligned}
& x^2=-2 \sqrt{3}\left(y+\frac{1-\sqrt{3}}{2}\right) \\
& x^2+2 \sqrt{3} y=3-\sqrt{3} \dots(ii)
\end{aligned}
\)
\(\therefore\) Equation of required parabola is given by Eqs. (i) and (ii).
A focus of an ellipse is tat the origin. The directrix is the line \(x=4\) and the eccentricity is \(\frac{1}{2}\). Then, the length of the semi-major axis is
Perpendicular distance of directrix from focus
\(
\begin{aligned}
& =\frac{a}{e}-a e=4 \\
\Rightarrow a\left(2-\frac{1}{2}\right) & =4 \Rightarrow a=\frac{8}{3}
\end{aligned}
\)
\(
\therefore \text { Semi major axis }=8 / 3
\)
The line passing through the extermity \(A\) of the major axis and extremity \(B\) of the minor axis of the ellipse \(x^2+9 y^2=9\) meets its auxiliary circle at the point \(M\). Then, the area of the triangle with vertices at \(A, M\) and the origin \(O\) is
The given ellipse is \(x^2+9 y^2=9\) or \(\quad \frac{x^2}{3^2}+\frac{y^2}{1^2}=1\)
So, the \(A(3,0)\) and \(B(0,1)\)
\(\therefore\) Equation of \(A B\) is \(\frac{x}{3}+\frac{y}{1}=1\) or \(x+3 y-3=0 \dots(i)\)
Also, auxillary circle of given ellipse is
\(
x^2+y^2=9 \dots(ii)
\)
Solving Eqs. (i) and (ii), we get the point \(M\) where line \(A B\) meets the auxillary circle.
Putting \(x=3-3 y\) from Eqs. (i) and (ii)
\(
\begin{array}{rlrl}
\text { we get } & (3-3 y)^2+y^2 =9 \\
\Rightarrow & 9-18 y+9 y^2+y^2 =9 \\
\Rightarrow & 10 y^2-18 y =0 \\
\Rightarrow & y=0, \frac{9}{5} \Rightarrow x =3, \frac{-12}{5}
\end{array}
\)
Clearly, \(M\left(\frac{-12}{5}, \frac{9}{5}\right)\)
\(
\therefore \text { Area of } \triangle O A M=\frac{1}{2} \times\left|\begin{array}{ccc}
0 & 0 & 1 \\
3 & 0 & 1 \\
\frac{-12}{5} & \frac{9}{5} & 1
\end{array}\right|=\frac{27}{10} \text { (Take only the magnitude) }
\)
The normal at a point \(P\) on the ellipse \(x^2+4 y^2=16\) meets the \(X\)-axis at \(Q\). If \(M\) is the mid-point of the line segment \(P Q\), then the locus of \(M\) intersects the latusrectum of the given ellipse at the points
The given ellipse is \(\frac{x^2}{4^2}+\frac{y^2}{2^2}=1\)
such that \(a^2=16\) and \(b^2=4\)
\(
\begin{array}{ll}
\therefore & e^2=1-\frac{4}{16}=\frac{3}{4} \\
\Rightarrow & e=\frac{\sqrt{3}}{2}
\end{array}
\)
Let \(P(4 \cos \theta, 2 \sin \theta)\) be any point on the ellipse, then equation of normal at \(P\) is
\(
\begin{aligned}
\quad 4 x \sin \theta-2 y \cos \theta & =12 \sin \theta \cos \theta \\
\Rightarrow \quad \frac{x}{3 \cos \theta}-\frac{y}{6 \sin \theta} & =1
\end{aligned}
\)
\(\therefore Q\), the point where normal at \(P\) meets \(X\)-axis, has coordinates \((3 \cos \theta, 0)\)
\(\therefore\) Mid-point of \(P Q\) is \(M\left(\frac{7 \cos \theta}{2}, \sin \theta\right)\)
For locus of point \(M\) we consider
\(
x=\frac{7 \cos \theta}{2} \text { and } y=\sin \theta
\)
\(
\Rightarrow \cos \theta=\frac{2 x}{7} \text { and } \sin \theta=y \Rightarrow \frac{4 x^2}{49}+y^2=1 \dots(i)
\)
Also, the latusrectum of given ellipse is
\(
\begin{aligned}
x & = \pm a e= \pm 4 \times \frac{\sqrt{3}}{2}= \pm 2 \sqrt{3} \\
\text { or } \quad x & = \pm 2 \sqrt{3} \dots(ii)
\end{aligned}
\)
Solving Eqs. (i) and (ii), we get
\(
\begin{gathered}
\frac{4 \times 12}{49}+y^2=1 \\
\Rightarrow \quad y^2=\frac{1}{49} \text { or } y= \pm \frac{1}{7} \\
\therefore \text { The required points are }\left( \pm 2 \sqrt{3}, \pm \frac{1}{7}\right) \text {. }
\end{gathered}
\)
In a triangle \(A B C\) with fixeH based \(B C\), the vertex \(A\) moves such that
\(
\cos B+\cos C=4 \sin ^2 \frac{A}{2}
\)
If \(a, b\) and \(c\) denote the lengths of the sides of the triangle opposite to the angles \(A, B\) and \(C\), respectively, then
In \(\triangle A B C\), given that \(\cos B+\cos C=4 \sin ^2 \frac{A}{2}\)
\(
\begin{aligned}
& \Rightarrow \quad 2 \cos \frac{B+C}{2} \cos \frac{B-C}{2}-4 \sin ^2 \frac{A}{2}=0 \\
& \Rightarrow \quad 2 \sin \frac{A}{2}\left[\cos \frac{B-C}{2}-2 \sin \frac{A}{2}\right]=0 \\
& \Rightarrow \quad \sin \frac{A}{2}=0 \text { or }\left(\cos \frac{B-C}{2}-2 \cos \frac{B+C}{2}\right)=0 \qquad\left(\because \frac{A}{2}=90^{\circ}-\left(\frac{B+C}{2}\right)\right)
\end{aligned}
\)
But in a triangle \(\sin \frac{A}{2} \neq 0\)
\(
\begin{aligned}
& \cos \frac{B-C}{2}-2 \cos \frac{B+C}{2}=0 \\
\Rightarrow \quad & \frac{\cos \left(\frac{B+C}{2}\right)}{\cos \left(\frac{B-C}{2}\right)}=\frac{1}{2}
\end{aligned}
\)
Applying componendo and dividendo, we get
\(
\begin{aligned}
& \frac{\cos \left(\frac{B+C}{2}\right)+\cos \left(\frac{B-C}{2}\right)}{\cos \left(\frac{B+C}{2}\right)-\cos \left(\frac{B-C}{2}\right)}=\frac{1+2}{1-2}=-3 \\
\Rightarrow & -\frac{2 \cos \frac{B}{2} \cos \frac{C}{2}}{2 \sin \frac{B}{2} \sin \frac{C}{2}}=-3 \\
\Rightarrow & \quad \tan \frac{B}{2} \tan \frac{C}{2}=\frac{1}{3} \\
\Rightarrow & \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}=\frac{1}{3}
\end{aligned}
\)
\(
\begin{array}{rlrl}
\Rightarrow & \frac{s-a}{s} =\frac{1}{3} \\
& \text { or } & 2 s =3 a \\
\Rightarrow & a+b+c =3 a \\
\text { or } & b+c =2 a \\
\text { i.e. } & A C+A B & =\text { constant } \text { [ } \because \text { base } B C=a \text { is given to be constant] }
\end{array}
\)
\(\Rightarrow A\) moves on an ellipse.
The conic having parametric representation \(x=\sqrt{3}\left(\frac{1-t^2}{1+t^2}\right), y=\frac{2 t}{1+t^2}\) is
\(
\begin{aligned}
\left(\frac{x}{\sqrt{3}}\right)^2+(y)^2 & =\left(\frac{1-t^2}{1+t^2}\right)^2+\left(\frac{2 t}{1+t^2}\right)^2 \\
& =\frac{\left(1+t^2\right)^2}{\left(1+t^2\right)^2}=1 \\
\Rightarrow \quad \frac{x^2}{3}+y^2 & =1
\end{aligned}
\)
Which is an ellipse.
The ellipse \(x^2+4 y^2=4\) is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point \((4,0)\). Then, the equation of the ellipse is
The given ellipse is \(\frac{x^2}{4}+\frac{y^2}{1}=1\)
So, \(A=(2,0)\) and \(B=(0,1)\)
If \(P Q R S\) is the rectangle in which it is inscribed, then
\(
P=(2,1) \text {. }
\)
Let \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) be the ellipse circumscribing the rectangle \(P Q R S\). Then it passes through \(P(2,1)\)
\(
\therefore \quad \frac{4}{a^2}+\frac{1}{b^2}=1 \dots(i)
\)
Also, given that, it passes through \((4,0)\)
\(
\begin{aligned}
& \therefore \quad \frac{16}{a^2}+0=1 \\
& \Rightarrow \quad a^2=16 \\
& \Rightarrow \quad b^2=4 / 3 \quad \text { [substituting } a^2=16 \text { in Eq. (i)] } \\
& \therefore \text { The required ellipse is } \frac{x^2}{16}+\frac{y^2}{4 / 3}=1 \\
& \text { or } x^2+12 y^2=16 \\
&
\end{aligned}
\)
Tangents are drawn from the point \(P(3,4)\) to the ellipse \(\frac{x^2}{9}+\frac{y^2}{4}=1\) touching the ellipse at points \(A\) and \(B\).
The coordinates of \(A\) and \(B\) are
Tangent to \(\frac{x^2}{3^2}+\frac{y^2}{2^2}=1\) at the point \((3 \cos \theta, 2 \sin \theta)\) is
\(
\frac{x \cos \theta}{3}+\frac{y \sin \theta}{2}=1
\)
As it passes through \((3,4)\), we get
\(
\begin{array}{ll}
& \cos \theta+2 \sin \theta=1 \\
\Rightarrow \quad & 4 \sin ^2 \theta=1+\cos ^2 \theta-2 \cos \theta \\
\Rightarrow \quad & 5 \cos ^2 \theta-2 \cos \theta-3=0 \\
\Rightarrow \quad & \cos \theta=1,-\frac{3}{5} \\
\Rightarrow \quad & \sin \theta=0, \frac{4}{5}
\end{array}
\)
\(\therefore\) Required points are \(A(3,0)\) and \(B\left(\frac{9}{5}, \frac{8}{5}\right)\).
Tangents are drawn from the point \(P(3,4)\) to the ellipse \(\frac{x^2}{9}+\frac{y^2}{4}=1\) touching the ellipse at points \(A\) and \(B\).
The orthocenter of the triangle \(P A B\) is
Let \(H\) be orthocentre of \(\triangle P A B\), then as \(B H \perp A P, B H\) is a horizontal line through \(B\).
\(\therefore y\)-coordinate of \(B=8 / 5\)
Let \(H\) has coordinate \((\alpha, 8 / 5)\)
Then, slope of \(P H=\frac{\frac{8}{5}-4}{\alpha-3}=\frac{-12}{5(\alpha-3)}\)
and s lope of \(A B=\frac{\frac{8-0}{5}}{-\frac{9}{5-3}}=\frac{8}{-24}=\frac{-1}{3}\)
But \(P H \perp A B\)
\(
\begin{array}{ll}
\Rightarrow & \frac{-12}{5(\alpha-3)} \times\left(\frac{-1}{3}\right)=-1 \\
\Rightarrow & 4=-5 \alpha+15 \text { or } \alpha=11 / 5
\end{array}
\)
Hence \(H\left(\frac{11}{5}, \frac{8}{5}\right)\).
The equation of the locus of the point whose distances from the point \(P\) and the line \(A B\) are equal, is
Clearly, the moving point traces a parabola with focus at \(P(3,4)\) and directrix as
\(
\begin{aligned}
& A B: \frac{y-0}{x-3}=\frac{-1}{3} \\
& x+3 y-3=0
\end{aligned}
\)
\(\therefore\) Equation of parabola is
\(
(x-3)^2+(y-4)^2=\frac{(x+3 y-3)^2}{10}
\)
\(
9 x^2+y^2-6 x y-54 x-62 y+241=0
\)
Equation of the ellipse whose axes are the axes of coordinates an which passes through the point \((-3,1)\) and has eccentricity \(\sqrt{\frac{2}{5}}\) is
Let the ellipse be \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
It passes through \((-3,1)\), so
\(
\frac{9}{a^2}+\frac{1}{b^2}=1 \dots(i)
\)
Also,
\(
b^2=a^2(1-2 / 5)
\)
\(\Rightarrow\) \(5 b^2=3 a^2 \dots(ii)\)
Solving Eqs. (i) and (ii), we get
\(
a^2=\frac{32}{3}, b^2=\frac{32}{5}
\)
So, the equation of the ellipse is \(3 x^2+5 y^2=32\)
The ellipse \(E_1: \frac{x^2}{9}+\frac{y^2}{4}=1\) is inscribed in a rectangle \(R\) whose sides are parallel to the coordinate axes. Another ellipse \(E_2\) passing through the point \((0,4)\) circumscribes the rectangle \(R\). the eccentricity of the ellipse \(E_2\) is
As rectangle \(A B C D\) circumscribed the ellipse
\(
\frac{x^2}{9}+\frac{y^2}{4}=1
\)
\(
\therefore \quad A=(3,2)
\)
Let the ellipse circumscribing the rectangle \(A B C D\) is
\(
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1
\)
Given that, it passes through \((0,4)\)
\(\therefore \quad b^2=16\)
Also, it passes through \(A(3,2)\)
\(
\begin{array}{ll}
\therefore & \frac{9}{a^2}+\frac{4}{16}=1 \Rightarrow a^2=12 \\
\therefore & e=\sqrt{1-\frac{12}{16}}=\sqrt{\frac{1}{4}}=\frac{1}{2}
\end{array}
\)
Statement I : An equation of a common tangent to the parabola \(y^2=16 \sqrt{3} x\) and the ellipse \(2 x^2+y^2=4\) is \(y=2 x+2 \sqrt{3}\)
Statement II : If the line \(y=m x+\frac{4 \sqrt{3}}{m},(m \neq 0)\) is a common tangent to the parabola \(y^2=16 \sqrt{3} x\) and the ellipse \(2 x^2+y^2=4\), then \(m\) satisfies \(m^2+2 m^2=24\)
Given, equation of ellipse is \(2 x^2+y^2=4\)
\(
\Rightarrow \quad \frac{2 x^2}{4}+\frac{y^2}{4}=1 \Rightarrow \frac{x^2}{2}+\frac{y^2}{4}=1
\)
Equation of tangent to the ellipse \(\frac{x^2}{2}+\frac{y^2}{4}=1\) is
\(
y=m x \pm \sqrt{2 m^2+4} \dots(i)
\)
\(\because\) equation of tangent to the ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) is \(y=m x+c\), where \(c= \pm \sqrt{a^2 m^2+b^2}\)
Now, equation of tangent to the parabola
\(
\because y^2=16 \sqrt{3} x \text { is } y=m x+\frac{4 \sqrt{3}}{m} \dots(ii)
\)
( \(\because\) Equation of tangent to the parabola \(y^2=4 a x\) is \(\left.y=m x+\frac{a}{m}\right)\)
On comparing Eqs. (i) and (ii), we get
\(
\frac{4 \sqrt{3}}{m}= \pm \sqrt{2 m^2+4}
\)
Squaring on both the sides, we get
\(
\begin{aligned}
& 16(3)=\left(2 m^2+4\right) m^2 \\
& \Rightarrow \quad 48=m^2\left(2 m^2+4\right) \\
& \Rightarrow \quad 2 m^2+4 m^2-48=0 \\
& \Rightarrow \quad m^4+2 m^2-24=0 \\
& \Rightarrow \quad\left(m^2+6\right)\left(m^2-4\right)=0 \\
& \Rightarrow \quad m^2=4 \quad\left(\because m^2 \neq-6\right) \\
& \Rightarrow \quad m= \pm 2 \\
& \Rightarrow \text { Equation of common tangents are } y= \pm 2 x \pm 2 \sqrt{3} \\
&
\end{aligned}
\)
Thus, statement I is true. statement II is obviously true.
An ellipse is drawn by taking a diameter of the circle \((x-1)^2+y^2=1\) as its semi-minor axis and diameter of the circle \(x^2+(y-2)^2=4\) is semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is
Equation of circle is \((x-1)^2+y^2=1\)
\(\Rightarrow\) Radius \(=1\) and Diameter \(=2\)
\(\therefore\) Length of semi-minor axis is 2 .
Equation of circle is \(x^2+(y-2)^2=4=(2)^2\)
\(\Rightarrow\) Radius \(=2\) and Diameter \(=4\)
\(\Rightarrow\) Length of semi-major axis is 4
We know, equation of ellipse is given by
\(
\frac{x^2}{\text { (Major-axis) }^2}+\frac{y^2}{(\text { Major-axis) })^2}=1
\)
[/latex]
\begin{aligned}
\Rightarrow \quad \frac{x^2}{(4)^2}+\frac{y^2}{(2)^2}=1 \Rightarrow \frac{x^2}{16}+\frac{y^2}{4} & =1 \\
\Rightarrow \quad x^2+4 y^2 & =16
\end{aligned}
[/latex]
The equation of the circle passing through the foci of the ellipse \(\frac{x^2}{16}+\frac{y^2}{9}=1\), and having centre at \((0,3)\) is
From the given equation of ellipse, we have
\(
\begin{aligned}
& \quad a=4, b=3 e=\sqrt{1-\frac{9}{16}} \\
& \Rightarrow \quad e=\frac{\sqrt{7}}{4}
\end{aligned}
\)
Now, radius of this circle \(=a^2=16\)
\(
\Rightarrow \quad \text { Foci }=( \pm \sqrt{7}, 0)
\)
Now, equation of circle is \((x-0)^2+(y-3)^2=16\)
\(
x^2+y^2-6 y-7=0
\)
A vertical line passing through the point \((h, 0)\) intersects the ellipse \(\frac{x^2}{4}+\frac{y^2}{9}=1\) at the points \(P\) and \(Q\). Let the tangents to the ellipse at \(P\) and \(Q\) meet at the point \(R\). If \(\Delta(h)=\) area of the triangle \(P Q R, \Delta_1=\) \(\frac{1}{2} \leq h \leq \max \Delta(h)\) and \(\Delta_2=\frac{1}{2} \leq h \leq \min \Delta(h)\), then \(\frac{8}{\sqrt{5}} \Delta_1-8 \Delta_2=\)
Vertical line \(x=h\), meets the ellipse \(\frac{x^2}{4}+\frac{y^2}{3}=1\) at
\(
P\left(h, \frac{\sqrt{3}}{2} \sqrt{\left(4-h^2\right)}\right) \text { and } Q\left(h, \frac{-\sqrt{3}}{2} \sqrt{\left(4-h^2\right)}\right)
\)
By symmetry, tangents at \(P\) and \(Q\) will meet each other at \(X\)-axis
Tangent at \(P\) is \(\frac{x h}{4}+\frac{y \sqrt{3}}{6} \sqrt{\left(4-h^2\right)}=1\)
Which meets \(X\)-axis at \(R\left(\frac{4}{h}, 0\right)\)
\(
\text { Area of } \begin{aligned}
\triangle P Q R & =\frac{1}{2} \times \sqrt{3} \sqrt{\left(4-h^2\right)} \times\left(\frac{4}{h}-h\right) \\
\text { i.e. } \quad \Delta(h) & =\frac{\sqrt{3}}{2} \frac{\left(4-h^2\right)^{3 / 2}}{h} \\
\frac{d \Delta}{d h} & =-\sqrt{3}\left[\frac{\sqrt{\left(4-h^2\right)}\left(h^2+2\right)}{h^2}\right]<0
\end{aligned}
\)
\(\therefore \Delta(h)\) is a decreasing function.
\(
\begin{array}{ll}
\therefore & \frac{1}{2} \leq h \leq 1 \\
\Rightarrow & \Delta_{\max }=\Delta\left(\frac{1}{2}\right) \text { and } \Delta_{\max }=\Delta(1)
\end{array}
\)
\(
\begin{aligned}
& \therefore \quad \Delta_1=\frac{\sqrt{3}}{2}\left(\frac{\left(4-\frac{1}{4}\right)^{3 / 2}}{\frac{1}{2}}\right)=\frac{45}{8} \sqrt{5} \\
& \Delta_2=\frac{\sqrt{3}}{2} \cdot \frac{3 \sqrt{3}}{1}=\frac{9}{2} \\
& \therefore \quad \frac{8}{\sqrt{5}} \Delta_1-8 \Delta_2=45-36=9 \\
&
\end{aligned}
\)
The locus of the foot of perpendicular drawn from the centre of the ellipse \(x^2+3 y^2=6\) on any tangent to it is
Given, equation of ellipse can be written as
\(
\Rightarrow \quad \begin{aligned}
& \frac{x^2}{6}+\frac{y^2}{2}=1 \\
& \Rightarrow \quad a^2=6, b^2=2
\end{aligned}
\)
Now, equation of any variable tangent is
\(
y=m x \pm \sqrt{a^2 m^2+b^2} \dots(i)
\)
where \(m\) is slope of the tangent
So, equation of perpendicular line drawn from centre to tangent is
\(
y=\frac{-x}{m} \dots(ii)
\)
Eliminating \(m\),we get
\(
\begin{aligned}
& & \left(x^4+y^4+2 x^2 y^2\right) & =a^2 x^2+b^2 y^2 \\
\Rightarrow & & \left(x^2+y^2\right)^2 & =a^2 x^2+b^2 y^2 \\
\Rightarrow & & \left(x^2+y^2\right)^2 & =6 x^2+2 y^2
\end{aligned}
\)
The area (in sq units) of the quadrilateral formed by the tangents at the end points of the latus rectum to the ellipse \(\frac{x^2}{9}+\frac{y^2}{5}=1\) is
The end point of latusrectum of ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) in first quadrant is \(\left(a e, \frac{b^2}{a}\right)\) and the tangent at this point intersects \(X\)-axis at \(\left(\frac{a}{e}, 0\right)\) and \(Y\) – axis at \((0, a)\).
The given ellipse is \(\frac{x^2}{9}+\frac{y^2}{5}=1\)
Then, \(a^2=9, b^2=5\)
\(
\Rightarrow \quad e=\sqrt{\left(1-\frac{5}{9}\right)}=\frac{2}{3}
\)
\(\therefore\) End point of latusrectum in first quadrant is \(L(2,5 / 3)\)
Equation of tangent at \(L\) is \(\frac{2 x}{9}+\frac{y}{3}=1\)
It meets \(X\)-axis at \(A(9 / 2,0)\) and \(Y\)-axis at \(B(0,3)\)
\(
\therefore \text { Area of } \triangle O A B=\frac{1}{2} \times \frac{9}{2} \times 3=\frac{27}{4}
\)
By symmetry area of quadrilateral
\(
=4 \times(\text { Area } \triangle O A B)=4 \times \frac{27}{4}=27 \text { sq units }
\)
Let \(E_1\) and \(E_2\) be two ellipses whose centers are at the origin. The major axes of \(E_1\) and \(E_2\) lie along the \(X\)-axis and the \(Y\)-axis, respectively. Let \(S\) be the circle \(x^2+(y-1)^2=2\). The straight line \(x+y=3\) touches the curves, \(S, E_1\) and \(E_2\) at \(P, Q\) and \(R\) respectively. Suppose that \(P Q=P R=\frac{2 \sqrt{2}}{3}\). If \(e_1\) and \(e_2\) are the eccentricities of \(E_1\) and \(E_2\), respectively, then the correct expression(s) is (are)
Let \(E_1: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\), where \(a>b\) and \(E_2: \frac{x^2}{c^2}+\frac{y^2}{d^2}=1\), where \(c<d\)
Also, \(S: x^2+(y-1)^2=2\)
Tangent at \(P\left(x_1, y_1\right)\) to \(S\) is \(x+y=3\)
To find point of contact put \(x=3-y\) in \(S\), we get \(P(1,2)\) writing equation of tangent in parametric form
\(
\begin{aligned}
& \frac{x-1}{\frac{-1}{\sqrt{2}}}=\frac{y-2}{\frac{1}{\sqrt{2}}}= \pm \frac{2 \sqrt{2}}{3} \\
& x=\frac{-2}{3}+1 \text { or } \frac{2}{3}+1 \text { and } y=\frac{2}{3}+2 \text { or } \frac{-2}{3}+2 \\
\Rightarrow \quad & x=\frac{1}{3} \text { or } \frac{5}{3} \text { and } y=\frac{8}{3} \text { or } \frac{4}{3} \\
\therefore \quad & Q\left(\frac{5}{3}, \frac{4}{3}\right) \text { and } R\left(\frac{1}{3}, \frac{8}{3}\right)
\end{aligned}
\)
Equation of tangent to \(E_1\) at \(Q\) is \(\frac{5 x}{3 a^2}+\frac{4 y}{3 b^2}=1\) which is identical to \(\frac{x}{3}+\frac{y}{3}=1\) \(\Rightarrow a^2=5\) and \(b^2=4 \Rightarrow e_1^2=1-\frac{4}{5}=\frac{1}{5}\)
Equation of tangent to \(E_2\) at \(R\) is
\(
\begin{aligned}
& \frac{x}{3 c^2}+\frac{8 y}{3 d^2}=1 \text { identical to } \frac{x}{3}+\frac{y}{3}=1 \\
& \Rightarrow \quad c^2=1, d^2=8 \Rightarrow e_2^2=1-\frac{1}{8}=\frac{7}{8} \\
& \therefore \quad e_1^2+e_2^2=\frac{43}{40}, e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}},\left|e_1^2-e_2^2\right|=\frac{27}{40}
\end{aligned}
\)
Suppose that the foci of the ellipse \(\frac{x^2}{9}+\frac{y^2}{5}=1\) are \(\left(f_1, 0\right)\) and \(\left(f_2 0\right)\) where \(f_1>0\) and \(f_2>0\). Let \(P_1\) and \(P_2\) be two parabolas with a common vertex at \((0,0)\) and with foci at \(\left(f_1, 0\right)\) and \(\left(2 f_2, 0\right)\), respectively. Let \(T_1\) be a tangent to \(P_1\) which passes through \(\left(2 f_2, 0\right)\) and \(T_2\) be a tangent to \(P_2\) which passes through \(\left(f_1, 0\right)\). If \(m_1\) is the slope of \(T_1\) and \(m_2\) is the slope of \(T_2\), then the 9 value of \(\left(\frac{1}{m_1^2}+m_2^2\right)\) is
\(
\begin{aligned}
& \text { Ellipse } \frac{x^2}{9}+\frac{y^2}{5}=1 \Rightarrow a=3, b=\sqrt{5} \text { and } e=\frac{2}{3} \\
& \therefore \quad f_1=2 \text { and } f_2=-2 \\
& P_1: y^2=8 x \text { and } P_2: y^2=-16 x \\
& T_1: y=m_1 x+\frac{2}{m_1} \\
& 0=-4 m_1+\frac{2}{m_1} \Rightarrow m_1^2=\frac{1}{2} \\
&
\end{aligned}
\)
It passes through \((-4,0)\),
\(
T_2: y=m_2 x-\frac{4}{m_2}
\)
It passes through \((2,0)\)
\(
\begin{array}{rcrl}
& 0=2 m_2-\frac{4}{m_2} \Rightarrow m_2^2=2 \\
\therefore & \frac{1}{m_1^2}+m_2^2=4
\end{array}
\)
Let \(F_1\left(x_1, 0\right)\) and \(F_2\left(x_2, 0\right)\) for \(x_1<0\) and \(x_2>0\), be the foci of the ellipse \(\frac{x^2}{9}+\frac{y^2}{8}=1\). Suppose a parabola having vertex at the origin and focus at \(F_2\) intersects the ellipse at point \(M\) in the first quadrant and at point \(N\) in the fourth quadrant. The orthocentre of the triangle \(F_1 M N\) is
For ellipse \(\frac{x^2}{9}+\frac{y^2}{8}=1, e=\sqrt{\left(1-\frac{8}{9}\right)}=\frac{1}{3}\)
\(
\therefore \quad F_1(-1,0) \text { and } F_2(1,0)
\)
Parabola with vertex at \((0,0)\) and focus at \(F_2(1,0)\) is \(y^2=4 x\). Intersection points of ellipse and parabola are \(M\left(\frac{3}{2}, \sqrt{6}\right)\) and \(N\left(\frac{3}{2},-\sqrt{6}\right)\)
For orthocentre of \(\Delta F_1 M N\), clearly one altitude is \(X\)-axis i.e. \(y=0\) and altitude from \(M\) to \(F_1 N\) is
\(
y-\sqrt{6}=\frac{5}{2 \sqrt{6}}\left(x-\frac{3}{2}\right)
\)
Putting \(y=0\) in above equation, we get \(x=-\frac{9}{10}\)
Orthocentre \(\left(-\frac{9}{10}, 0\right)\)
Let \(F_1\left(x_1, 0\right)\) and \(F_2\left(x_2, 0\right)\) for \(x_1<0\) and \(x_2>0\), be the foci of the ellipse \(\frac{x^2}{9}+\frac{y^2}{8}=1\). Suppose a parabola having vertex at the origin and focus at \(F_2\) intersects the ellipse at point \(M\) in the first quadrant and at point \(N\) in the fourth quadrant. If the tangents to the ellipse at \(M\) and \(N\) meet at \(R\) and the normal to the parabola at \(M\) meets the \(X\)-axis at \(Q\), then the ratio of area of the triangle \(M Q R\) to area of the quadrilateral \(M F_1 N F_2\) is
Tangents to ellipse at \(M\) and \(N\) are
\(
\frac{x}{6}+\frac{y \sqrt{6}}{8}=1 \text { and } \frac{x}{6}-\frac{y \sqrt{6}}{8}=1
\)
their intersection point is \(R(6,0)\)
Also, normal to parabola at \(M\left(\frac{3}{2}, \sqrt{6}\right)\) is
\(
y-\sqrt{6}=-\frac{\sqrt{6}}{2}\left(x-\frac{3}{2}\right)
\)
Its intersection with \(x\)-axis is \(Q\left(\frac{7}{2}, 0\right)\)
Now, \(\quad \operatorname{ar}(\triangle M Q R)=\frac{1}{2} \times \frac{5}{2} \times \sqrt{6}=\frac{5 \sqrt{6}}{4}\)
Also, \(\operatorname{area}\left(M F_1 N F_2\right)=2 \times\) Area of \(\left(F_1 M F_2\right)\)
\(
\begin{aligned}
= & 2 \times \frac{1}{2} \times 2 \times \sqrt{6}=2 \sqrt{6} \\
\frac{\operatorname{arca}(\triangle M Q R)}{\operatorname{area}\left(M F_1 N F_2\right)} & =\frac{5 \sqrt{6}}{4 \times 2 \sqrt{6}}=5: 8
\end{aligned}
\)
Let \(F_1\left(x_1, 0\right)\) and \(F_2\left(x_2, 0\right)\) for \(x_1<0\) and \(x_2>0\), be the foci of the ellipse \(\frac{x^2}{9}+\frac{y^2}{8}=1\). Suppose a parabola having vertex at the origin and focus at \(F_2\) intersects the ellipse at point \(M\) in the first quadrant and at point \(N\) in the fourth quadrant. The eccentricity of an ellipse whose centre is at the origin is \(1 / 2\). If one of its directices is \(x=-4\), then the equation of the normal to it at \((1,3 / 2)\) is
Here, \(e=\frac{1}{2}\) and \(x=-\frac{a}{e}=-4\)
\(\therefore \quad a=2\)
and \(b^2=a^2\left(1-e^2\right)=4(1-1 / 4)=3\)
\(\therefore\) Equation of ellipse is \(\frac{x^2}{4}+\frac{y^2}{3}=1\)
\(\Rightarrow\) Equation of normal at \((1,3 / 2)\) is
\(
\frac{4 x}{1}-\frac{3 y}{3 / 2}=4-3
\)
or \(4 x-2 y=1\)
The locus of a point \(P(\alpha, \beta)\) moving under the condition that the line \(y=\alpha x+\beta\) is a tangent to the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) is
Tangent to the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) is
\(
y=m x \pm \sqrt{a^2 m^2-b^2}
\)
Given that \(y=\alpha x+\beta\) is the tangent of hyperbola
\(
\begin{aligned}
& \Rightarrow & m=\alpha \text { and } a^2 m^2-b^2 & =\beta^2 \\
& & a^2 \alpha^2-b^2 & =\beta^2
\end{aligned}
\)
Locus is \(a^2 x^2-y^2=b^2\) which is hyperbola.
Let a hyperbola passes through the focus of the ellipse \(\frac{x^2}{25}+\frac{y^2}{16}=1\). The transverse and conjugate axes of this hyperbola coincide with the major and minor axes of the given ellipse, also the product of eccentricities of given ellipse and hyperbola is 1 , then
For the given ellipse \(\frac{x^2}{25}+\frac{y^2}{16}=1\)
\(
\Rightarrow \quad e=\sqrt{\left(1-\frac{16}{25}\right)}=\frac{3}{5}
\)
\(\Rightarrow\) Eccentricity of hyperbola \(=\frac{5}{3}\)
Let the hyperbola be \(\frac{x^2}{A^2}-\frac{y^2}{B^2}=1\) then
\(
B^2=A^2\left(\frac{25}{9}-1\right)=\frac{16}{9} A^2
\)
\(\therefore \frac{x^2}{A^2}-\frac{9 y^2}{16 A^2}=1\), As it passes through focus of ellipse i.e. \((3,0)\)
\(\therefore\) We get \(A^2=9 \Rightarrow B^2=16\)
\(\therefore\) Equation of hyperbola is \(\frac{x^2}{9}-\frac{y^2}{16}=1\), focus of hyperbola is \((5,0)\), vertex of hyperbola is \((3,0)\).
A hyperbola, having the transverse axis of length \(2 \sin \theta\), is confocal with the ellipse \(3 x^2+4 y^2=12\). Then, its equation is
The length of transverse axis \(=2 \sin \theta=2 a\)
\(
\Rightarrow \quad a=\sin \theta
\)
Also for ellipse \(3 x^2+4 y^2=12\)
\(
\begin{gathered}
\text { or } \frac{x^2}{4}+\frac{y^2}{3}=1, a^2=4, b^2=3 \\
e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{3}{4}}=\frac{1}{2}
\end{gathered}
\)
\(\therefore\) Focus of ellipse \(=\left(2 \times \frac{1}{2}, 0\right) \Rightarrow(1,0)\)
As hyperbola is confocal with ellipse, focus of hyperbola \(=(1,0)\)
\(
\begin{array}{rlrl}
\Rightarrow & & a e & =1 \Rightarrow \sin \theta \times e=1 \\
\Rightarrow & & e & =\operatorname{cosec} \theta \\
& & b^2 & =a^2\left(e^2-1\right) \\
& & =\sin ^2 \theta\left(\operatorname{cosec}^2 \theta-1\right)=\cos ^2 \theta
\end{array}
\)
\(\therefore\) Equation of hyperbola is
\(
\frac{x^2}{\sin ^2 \theta}-\frac{y^2}{\cos ^2 \theta}=1
\)
or, \(x^2 \operatorname{cosec}^2 \theta-y^2 \sec ^2 \theta=1\)
Two branches of a hyperbola
Two branches of hyperbola have no common tangent but have a common normal joining \(S S^{\prime}\).
For the hyperbola \(\frac{x^2}{\cos ^2 \alpha}-\frac{y^2}{\sin ^2 \alpha}=1\), which of the following remains constant when \(\alpha\) varies
Given, equation of hyperbola is
\(
\frac{x^2}{\cos ^2 \alpha}-\frac{y^2}{\sin ^2 \alpha}=1
\)
Here, \(a^2=\cos ^2 \alpha\) and \(b^2=\sin ^2 \alpha\)
\(
\begin{array}{rlrl}
\because & b^2 & =a^2\left(e^2-1\right) \\
& \therefore & \sin ^2 \alpha & =\cos ^2 \alpha\left(e^2-1\right) \\
& \text { or } & \sin ^2 \alpha+\cos ^2 \alpha & =\cos ^2 \alpha \cdot e^2
\end{array}
\)
\(
\begin{aligned}
& \text { or } e^2=1+\tan ^2 \alpha=\sec ^2 \alpha \Rightarrow e=\sec \alpha \\
& \therefore \quad a e=\cos \alpha \cdot \frac{1}{\cos \alpha}=1
\end{aligned}
\)
Coordinates of foci are \(( \pm a e, 0)\) i.e. \(( \pm 1,0)\)
Hence, abscissae of foci remain constant, when \(\alpha\) varies.
Consider a branch of the hyperbola
\(
x^2-2 y^2-2 \sqrt{2} x-4 \sqrt{2} y-6=0
\)
with vertex at the point \(A\). Let \(B\) be one of the end points of its latusrectum. If \(C\) is the focus of the hyperbola nearest to the point \(A\), then the area of the triangle \(A B C\) is
The given hyperbola is
\(
\begin{aligned}
x^2-2 y^2-2 \sqrt{2} x-4 \sqrt{2} y-6 & =0 \\
\Rightarrow\left(x^2-2 \sqrt{2} x+2\right)-2\left(y^2+2 \sqrt{2} y+2\right) & =6+2-4
\end{aligned}
\)
\(
\begin{array}{ll}
\Rightarrow & (x-\sqrt{2})^2-2(y+\sqrt{2})^2=4 \\
\Rightarrow & \frac{(x-\sqrt{2})^2}{2^2}-\frac{(y+\sqrt{2})^2}{(\sqrt{2})^2}=1
\end{array}
\)
\(
\therefore \quad a=2, b=\sqrt{2} \Rightarrow e=\sqrt{\left(1+\frac{2}{4}\right)}=\sqrt{\frac{3}{2}}
\)
Clearly, \(\triangle A B C\) is a right triangle.
\(
B\left(a e, \frac{b^2}{a}\right)
\)
\(
\begin{aligned}
\therefore \quad \text { Area of }(\triangle A B C) & =\frac{1}{2} \times A C \times B C \\
& =\frac{1}{2} \times(a e-a) \times \frac{b^2}{a}
\end{aligned}
\)
\(
\begin{aligned}
& =\frac{1}{2}(e-1) b^2=\frac{1}{2}\left(\sqrt{\frac{3}{2}}-1\right) \cdot 2 \\
& =\left(\sqrt{\frac{3}{2}}-1\right)
\end{aligned}
\)
An ellipse intersects the hyperbola \(2 x^2-2 y^2=1\) orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then
The given hyperbola is
\(
x^2-y^2=\frac{1}{2} \dots(i)
\)
which is rectangular hyperbola
\(\therefore \quad e=\sqrt{2}\)
Let the ellipse be \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
Its eccentricity \(=\frac{1}{\sqrt{2}}\)
\(
\therefore \quad b^2=a^2\left(1-e^2\right)=a^2\left(1-\frac{1}{2}\right)=\frac{a^2}{2}
\)
So, the equation of ellipse becomes
\(
x^2+2 y^2=a^2 \dots(ii)
\)
Let the hyperbola (i) and ellipse (ii) intersect each other at \(P\left(x_1, y_1\right)\).
\(\therefore\) (Slope of hyperbola (i) at \(\left.\left(x_1, y_1\right)\right) \times\) (Slope of ellipse (ii) at \(\left(x_1, y_1\right)=-1\)
\(
\Rightarrow \quad \frac{x_1}{y_1} \times \frac{-x_1}{2 y_1}=-1
\)
or \(x_1^2=2 y_1^2 \dots(iii)\)
Also \(\left(x_1, y_1\right)\) lies on \(x^2-y^2=\frac{1}{2}\)
\(
\therefore \quad x_1^2-y_1^2=\frac{1}{2} \dots(iv)
\)
From Eqs. (iii) and (iv), we get \(y_1^2=\frac{1}{2}\) and \(x_1^2=1\) and \(\left(x_1, y_1\right)\) lies on ellipse \(x^2+2 y^2=a^2\)
\(
\therefore \quad x_1^2+2 y_1^2=a^2
\)
\(
\Rightarrow \quad 1+1=a^2 \text { or } a^2=2
\)
\(\therefore\) Equation of ellipse is \(x^2+2 y^2=2\) whose foci \(( \pm 1,0)\).
The circle \(x^2+y^2-8 x=0\) and hyperbola \(\frac{x^2}{9}-\frac{y^2}{4}=1\) intersect at the points \(A\) and \(B\). Equation of a common tangent with positive slope to the circle as well as to the hyperbola is
The intersection points of given circle
\(
x^2+y^2-8 x=0 \dots(i)
\)
and hyperbola
\(
4 x^2-9 y^2=36 \dots(ii)
\)
can be obtained by solving these equations substituting value of \(y^2\) from Eq. (i) in Eq. (ii), we get
\(
\begin{aligned}
4 x^2-9\left(8 x-x^2\right) & =36 \\
13 x^2-72 x-36 & =0 \\
x & =6,-\frac{6}{13} \\
y^2 & =12,-\frac{660}{169} \text { (not possible) }
\end{aligned}
\)
\(
\therefore A(6,2 \sqrt{3}) \text { and } B(6,-2 \sqrt{3}) \text { are points of intersection. }
\)
Equation of tangent to hyperbola having slope \(m\) is
\(
y=m x+\sqrt{\left(9 m^2-4\right)} \dots(iii)
\)
Equation of tangent to circle is
\(
y=m(x-4)+\sqrt{\left(16 m^2+16\right)} \dots(iv)
\)
Eqs. (iii) and (iv) will be identical, then
\(
m=\frac{2}{\sqrt{5}}
\)
So, equation of common tangents
\(
\begin{aligned}
y & =\frac{2 x}{\sqrt{5}}+\sqrt{\left(\frac{36}{5}-4\right)} \\
\Rightarrow \quad y & =\frac{2 x}{\sqrt{5}}+\frac{4}{\sqrt{5}}
\end{aligned}
\)
or \(2 x-\sqrt{5} y+4=0\)
The circle \(x^2+y^2-8 x=0\) and hyperbola \(\frac{x^2}{9}-\frac{y^2}{4}=1\) intersect at the points \(A\) and \(B\). Equation of the circle with \(A B\) as its diameter is
The intersection points of given circle
\(
x^2+y^2-8 x=0 \dots(i)
\)
and hyperbola
\(
4 x^2-9 y^2=36 \dots(ii)
\)
can be obtained by solving these equations substituting value of \(y^2\) from Eq. (i) in Eq. (ii), we get
\(
\begin{aligned}
4 x^2-9\left(8 x-x^2\right) & =36 \\
13 x^2-72 x-36 & =0 \\
x & =6,-\frac{6}{13} \\
y^2 & =12,-\frac{660}{169} \text { (not possible) }
\end{aligned}
\)
\(
\therefore A(6,2 \sqrt{3}) \text { and } B(6,-2 \sqrt{3}) \text { are points of intersection. }
\)
Equation of circle with \(A B\) as its diameter is
\(
\begin{aligned}
& (x-6)(x-6)+(y-2 \sqrt{3})(y+2 \sqrt{3})=0 \\
& \Rightarrow \quad x^2+y^2-12 x+24=0 \\
&
\end{aligned}
\)
The line \(2 x+y=1\) is tangent to the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\). If this line passes through the point of intersection of the nearest directrix and the \(X\)-axis, then the eccentricity of the hyperbola is
\(\because\) line \(2 x+y=1\) is tangent to the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)
\(
\begin{aligned}
\therefore & (1)^2 =a^2(-2)^2-b^2 \\
\Rightarrow & 4 a^2-b^2 =1
\end{aligned}
\)
Intersection point of nearest directrix \(x=\frac{a}{e}\) and \(X\)-axis is \(\left(\frac{a}{e}, 0\right)\) As, \(2 x+y=1\) passes through \(\left(\frac{a}{e}, 0\right)\)
\(\therefore \quad \frac{2 a}{e}+0=1 \Rightarrow a=\frac{e}{2} \dots(ii)\)
and \(b^2=a^2\left(e^2-1\right)=\frac{e^2}{4}\left(e^2-1\right) \dots(iii)\)
Substituting the values of \(a\) and \(b\) from Eqs. (ii) and (iii) in Eq. (i), then
\(
\begin{aligned}
& e^2-\frac{e^2}{4}\left(e^2-1\right)=1 \\
& \Rightarrow \quad\left(e^2-4\right)\left(e^2-1\right)=0 \\
& \therefore \quad e^2=4, e^2 \neq 1 \quad(\because e>1) \\
& \text { Hence } e=2 \\
&
\end{aligned}
\)
Let \(P(6,3)\) be a point on the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\). If the normal at the point \(P\) intersects the \(X\)-axis at \((9,0)\), then the eccentricity of the hyperbola is
Equation of normal at \(P(6,3)\) is
\(
\frac{a^2 x}{6}+\frac{b^2 y}{3}=a^2+b^2
\)
\(\because\) Normal intersects the \(X\)-axis at \((9,0)\), then
\(
\frac{9 a^2}{6}+0=a^2+b^2 \Rightarrow 3 a^2=2 a^2+2 b^2
\)
or \(a^2=2 b^2\)
or \(a^2=2 a^2\left(e^2-1\right)\)
\(\therefore \quad e^2=\frac{3}{2}\)
Hence, \(e=\sqrt{\frac{3}{2}}\)
Let the eccentricity of the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) be reciprocal to that of the ellipse \(x^2+4 y^2=4\). If the hyperbola passes through a focus of the ellipse, then
Given, ellipse is \(x^2+4 y^2=4\)
or \(\quad \frac{x^2}{4}+\frac{y^2}{1}=1\)
\(\therefore \quad e=\sqrt{\left(1-\frac{1}{4}\right)}=\frac{\sqrt{3}}{2}\)
and foci are \(( \pm \sqrt{3}, 0)\)
\(\therefore\) Eccentricity of hyperbola \(=\frac{2}{\sqrt{3}}=e_1\)
and \(b^2=a^2\left(e_1^2-1\right)=a^2\left(\frac{4}{3}-1\right)=\frac{a^2}{3}\)
then equation of hyperbola becomes
\(
x^2-3 y^2=a^2
\)
which pass through \(( \pm \sqrt{3}, 0)\)
\(
\begin{aligned}
3-0 & =a^2 \\
\Rightarrow a^2 & =3
\end{aligned}
\)
\(\therefore\) Equation of hyperbola is
\(
x^2-3 y^2=3
\)
and foci of hyperbola are \(\left( \pm \sqrt{3} \times \frac{2}{\sqrt{3}}, 0\right)\) i.e., \(( \pm 2,0)\)
Tangents are drawn to the hyperbola \(\frac{x^2}{9}-\frac{y^2}{4}=1\), parallel to the straight line \(2 x-y=1\). The points of contact of the tangents on the hyperbola are
Equation of tangent at \(\left(x_1, y_1\right)\) is
\(
\frac{x x_1}{9}-\frac{y y_1}{4}=1 \dots(i)
\)
Equation of line parallel to
\(
2 x-y=\lambda \dots(ii)
\)
\(\because\) Line (ii) is tangent of \(\frac{x^2}{9}-\frac{y^2}{4}=1\), then
\(
\begin{array}{rlrl}
& & \lambda^2 & =9 \times 2^2-4 \\
\therefore \quad & \lambda & = \pm 4 \sqrt{2}
\end{array}
\)
From Eq. (ii), Equation of tangent is
\(
2 x-y= \pm 4 \sqrt{2} \dots(iii)
\)
Comparing Eqs. (i) and (iii), we get \(\frac{x_1}{18}=\frac{y_1}{4}= \pm \frac{1}{4 \sqrt{2}}\)
or \(\quad x_1= \pm \frac{9}{2 \sqrt{2}}\) and \(y_1= \pm \frac{1}{\sqrt{2}}\)
Hence, points of contact of the tangents on the hyperbola are
\(
\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right) \text { and }\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)
\)
Consider the hyperbola \(H: x^2-y^2=1\) and a circle \(S\) with centre \(N\left(x_2, 0\right)\). Suppose that \(H\) and \(S\) touch each other at a point \(P\left(x_1, y_1\right)\) with \(x_1>1\) and \(y_1>0\). The common tangent to \(H\) and \(S\) at \(P\) intersects the \(X\)-axis at point \(M\). If \((l, m)\) is the centroid of the triangle \(P M N\), then the correct expression(s) is(are)
\(
H: x^2-y^2=1
\)
\(S:\) Circle with centre \(N\left(x_2, 0\right)\)
Common tangent to \(H\) and \(S\) at \(P\left(x_1, y_1\right)\) is
\(
x x_1-y y_1=1 \Rightarrow m_1=\frac{x_1}{y_1}
\)
Also radius of circle \(S\) with centre \(N\left(x_2, 0\right)\) through point of contact \(\left(x_1, y_1\right)\) is perpendicular to tangent.
\(
\begin{array}{lll}
\therefore & m_1 m_2=-1 \Rightarrow \frac{x_1}{y_1} \times \frac{0-y_1}{x_2-x_1}=-1 \\
\Rightarrow & x_1=x_2-x_1 \text { or } x_2=2 x_1
\end{array}
\)
\(M\) is the point of intersection of tangent at \(P\) and \(X\)-axis
\(
\therefore \quad M\left(\frac{1}{x_1}, 0\right)
\)
\(\because\) Centroid of \(\triangle P M N\) is \((\ell, m)\)
\(
\therefore \quad x_1+\frac{1}{x_1}+x_2=3 \ell \text { and } y_1=3 m
\)
Using \(x_2=2 x_1\),
\(
\begin{array}{ll}
\Rightarrow & \frac{1}{3}\left(3 x_1+\frac{1}{x_1}\right)=l \text { and } \frac{y_1}{3}=m \\
\therefore & \frac{d l}{d x_1}=1-\frac{1}{3 x_1^2}, \frac{d m}{d y_1}=\frac{1}{3}
\end{array}
\)
Also, \(\left(x_1, y_1\right)\) lies on \(H\),
\(
\begin{aligned}
& \therefore \quad x_1^2-y_1^2=1 \text { or } y_1=\sqrt{\left(x_1^2-1\right)} \\
& \therefore \quad m=\frac{1}{3} \sqrt{\left(x_1^2-1\right)} \\
& \therefore \quad \frac{d m}{d x_1}=\frac{x_1}{3 \sqrt{\left(x_1^2-1\right)}} \\
&
\end{aligned}
\)
The eccentricity of the hyperbola whose length of the latusrectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is
\(\because \frac{2 b^2}{a}=8\) and \(2 b=\frac{1}{2}(2 a e)\)
\(\Rightarrow \quad b^2=4 a\) and \(b=\frac{1}{2} a e\) or \(b^2=\frac{1}{4} a^2 e^2\)
\(\Rightarrow \quad a^2\left(e^2-1\right)=\frac{1}{4} a^2 e^2 \Rightarrow 4 e^2-4=e^2 \quad\) or \(e^2=\frac{4}{3}\)
\(\therefore \quad e=\frac{2}{\sqrt{3}}\)
\(\Rightarrow b^2=4 a\) and \(b=\frac{1}{2} a e\) or \(b^2=\frac{1}{4} a^2 e^2\)
A hyperbola passes through the point \(P(\sqrt{2}, \sqrt{3})\) and has foci at \(( \pm 2,0)\). Then the taught to this hyperbola at \(P\) also passes through the point
Let Equation of hyperbola is \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) When it passes through \(P(\sqrt{2}, \sqrt{3})\), then \(\frac{2}{a^2}-\frac{3}{b^2}=1\)
\(
\begin{aligned}
& \Rightarrow \quad 2 b^2-3 a^2=a^2 b^2 \dots(i) \\
& \text { and } a e=2 \Rightarrow a^2+b^2=4 \dots(ii)
\end{aligned}
\)
From Eqs. (i) and (ii), we get \(2\left(4-a^2\right)-3 a^2=a^2\left(4-a^2\right)\)
\(
\begin{aligned}
& \Rightarrow a^2-9 a^2+8=0 \Rightarrow\left(a^2-1\right)\left(a^2-8\right)=0 \\
& \therefore a^2=1 \quad\left(\because a^2 \neq 8\right) \\
&
\end{aligned}
\)
From Eq. (ii), \(b^2=3\)
\(\therefore\) Equation of Hyperbola is \(\frac{x^2}{1}-\frac{y^2}{3}=1\)
Equation of tangent at \(P(\sqrt{2}, \sqrt{3})\) is \(\frac{x \sqrt{2}}{1}-\frac{y \sqrt{3}}{3}=1\)
Which is passes through \((2 \sqrt{2}, 3 \sqrt{2})\)
If \(2 x-y+1=0\) is a tangent to the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{16}=1\), then which of the following cannot be sides of a right angled triangle?
\(( a , b , c ) \because 2 x-y+1=0\) is a tangent of \(\frac{x^2}{a^2}-\frac{y^2}{16}=1\), then
\(
(1)^2=a^2(2)^2-16 \text { or }(2 a)^2=(1)^2+(4)^2
\)
\(\therefore 2 a, 4,1\) are the sides of a right angled triangle.
Matching the information given in the three columns of the following table. Columns 1, 2 and 3 contain conics, equations of tangents to the conics and points of contact, respectively.
\(
\begin{array}{|c|c|c|c|c|c|}
\hline & \text { Column } 1 & & \text { Column } 2 & & \text { Column } 3 \\
\hline \text { (I) } & \begin{array}{l}
x^2+y^2 \\
=a^2
\end{array} & \text { (i) } & m y=m^2 x+a & \text { (P) } & \left(\frac{a}{m^2}, \frac{2 a}{m}\right) \\
\hline \text { (II) } & \begin{array}{l}
x^2+a^2 y^2 \\
=a^2
\end{array} & \text { (ii) } & \begin{array}{l}
y=m x \\
+a \sqrt{m^2+1}
\end{array} & \text { (Q) } & \left(\frac{-m a}{\sqrt{m^2+1}}, \frac{a}{\sqrt{m^2+1}}\right) \\
\hline \text { (III) } & y^2=4 a x & \text { (iii) } & \begin{array}{l}
y=m x \\
+\sqrt{a^2 m^2-1}
\end{array} & \text { (R) } & \left(\frac{-a^2 m}{\sqrt{a^2 m^2+1}}, \frac{1}{\sqrt{a^2 m^2+1}}\right. \\
\hline \text { (IV) } & \begin{array}{l}
x^2-a^2 y^2 \\
=a^2
\end{array} & \text { (iv) } & \begin{array}{l}
y=m x \\
+\sqrt{a^2 m^2+1}
\end{array} & \text { (S) } & \left(\frac{-a^2 m}{\sqrt{a^2 m^2-1}}, \frac{-1}{\sqrt{a^2 m^2-1}}\right) \\
\hline
\end{array}
\)
The tangent to a suitable conic (Column 1 ) at \(\left(\sqrt{3}, \frac{1}{2}\right)\) is found to be \(\sqrt{3} x+2 y=4\), then which of the following options is the only correct combination?
I. \(x^2+y^2=a^2\)
Equations of tangents in terms of slopes are
\(
y=m x+a \sqrt{\left(m^2+1\right)}
\)
and points of contact in terms of slopes are
\(
\left(\frac{-m a}{\sqrt{\left(m^2+1\right)}}, \frac{a}{\sqrt{\left(m^2+1\right)}}\right)(Q)
\)
\(\therefore I\) (ii) (Q) (Ans. Q.No. 112) (Here, \(a=\sqrt{2}, m= \pm 1\) )
II. \(x^2+a^2 y^2=a^2\) or \(\frac{x^2}{a^2}+\frac{y^2}{1^2}=1\)
Equations of tangents in terms of slopes are
\(
y=m x+\sqrt{\left(a^2 m^2+1\right)}
\)
and points of contact in terms of slopes are
\(
\left(\frac{-a^2 m}{\sqrt{\left(a^2 m^2+1\right)}}, \frac{1}{\sqrt{\left(a^2 m^2+1\right)}}\right)
\)
\(\therefore\) II (iv) (R) (Ans. Q.No. 111) (Here, \(a=2, m=\frac{-\sqrt{3}}{2}\) )
III. \(y^2=4 a x\)
Equation of tangent in terms of slopes are
\(
y=m x+\frac{a}{m} \text { or } m y=m^2 x+a
\)
and points of contact in terms of slopes are
\(
\left(\frac{a}{m^2}, \frac{2 a}{m}\right)
\)
\(\therefore\) III (i) (P) (Ans. Q.No. 113) (Here, \(a=8, m=1\) )
Matching the information given in the three columns of the following table. Columns 1, 2 and 3 contain conics, equations of tangents to the conics and points of contact, respectively.
\(
\begin{array}{|c|c|c|c|c|c|}
\hline & \text { Column } 1 & & \text { Column } 2 & & \text { Column } 3 \\
\hline \text { (I) } & \begin{array}{l}
x^2+y^2 \\
=a^2
\end{array} & \text { (i) } & m y=m^2 x+a & \text { (P) } & \left(\frac{a}{m^2}, \frac{2 a}{m}\right) \\
\hline \text { (II) } & \begin{array}{l}
x^2+a^2 y^2 \\
=a^2
\end{array} & \text { (ii) } & \begin{array}{l}
y=m x \\
+a \sqrt{m^2+1}
\end{array} & \text { (Q) } & \left(\frac{-m a}{\sqrt{m^2+1}}, \frac{a}{\sqrt{m^2+1}}\right) \\
\hline \text { (III) } & y^2=4 a x & \text { (iii) } & \begin{array}{l}
y=m x \\
+\sqrt{a^2 m^2-1}
\end{array} & \text { (R) } & \left(\frac{-a^2 m}{\sqrt{a^2 m^2+1}}, \frac{1}{\sqrt{a^2 m^2+1}}\right. \\
\hline \text { (IV) } & \begin{array}{l}
x^2-a^2 y^2 \\
=a^2
\end{array} & \text { (iv) } & \begin{array}{l}
y=m x \\
+\sqrt{a^2 m^2+1}
\end{array} & \text { (S) } & \left(\frac{-a^2 m}{\sqrt{a^2 m^2-1}}, \frac{-1}{\sqrt{a^2 m^2-1}}\right) \\
\hline
\end{array}
\)
For \(a=\sqrt{2}\), if a tangent is drawn to a suitable conic (Column 1 ) at the point of contact \((-1,1)\), then which of the following options is the only correct combination for obtaining its equation?
I. \(x^2+y^2=a^2\)
Equations of tangents in terms of slopes are
\(
y=m x+a \sqrt{\left(m^2+1\right)}
\)
and points of contact in terms of slopes are
\(
\left(\frac{-m a}{\sqrt{\left(m^2+1\right)}}, \frac{a}{\sqrt{\left(m^2+1\right)}}\right)(Q)
\)
\(\therefore I\) (ii) (Q) (Ans. Q.No. 112) (Here, \(a=\sqrt{2}, m= \pm 1\) )
II. \(x^2+a^2 y^2=a^2\) or \(\frac{x^2}{a^2}+\frac{y^2}{1^2}=1\)
Equations of tangents in terms of slopes are
\(
y=m x+\sqrt{\left(a^2 m^2+1\right)}
\)
and points of contact in terms of slopes are
\(
\left(\frac{-a^2 m}{\sqrt{\left(a^2 m^2+1\right)}}, \frac{1}{\sqrt{\left(a^2 m^2+1\right)}}\right)
\)
\(\therefore\) II (iv) (R) (Ans. Q.No. 111) (Here, \(a=2, m=\frac{-\sqrt{3}}{2}\) )
III. \(y^2=4 a x\)
Equation of tangent in terms of slopes are
\(
y=m x+\frac{a}{m} \text { or } m y=m^2 x+a
\)
and points of contact in terms of slopes are
\(
\left(\frac{a}{m^2}, \frac{2 a}{m}\right)
\)
\(\therefore\) III (i) (P) (Ans. Q.No. 113) (Here, \(a=8, m=1\) )
Matching the information given in the three columns of the following table. Columns 1, 2 and 3 contain conics, equations of tangents to the conics and points of contact, respectively.
\(
\begin{array}{|c|c|c|c|c|c|}
\hline & \text { Column } 1 & & \text { Column } 2 & & \text { Column } 3 \\
\hline \text { (I) } & \begin{array}{l}
x^2+y^2 \\
=a^2
\end{array} & \text { (i) } & m y=m^2 x+a & \text { (P) } & \left(\frac{a}{m^2}, \frac{2 a}{m}\right) \\
\hline \text { (II) } & \begin{array}{l}
x^2+a^2 y^2 \\
=a^2
\end{array} & \text { (ii) } & \begin{array}{l}
y=m x \\
+a \sqrt{m^2+1}
\end{array} & \text { (Q) } & \left(\frac{-m a}{\sqrt{m^2+1}}, \frac{a}{\sqrt{m^2+1}}\right) \\
\hline \text { (III) } & y^2=4 a x & \text { (iii) } & \begin{array}{l}
y=m x \\
+\sqrt{a^2 m^2-1}
\end{array} & \text { (R) } & \left(\frac{-a^2 m}{\sqrt{a^2 m^2+1}}, \frac{1}{\sqrt{a^2 m^2+1}}\right. \\
\hline \text { (IV) } & \begin{array}{l}
x^2-a^2 y^2 \\
=a^2
\end{array} & \text { (iv) } & \begin{array}{l}
y=m x \\
+\sqrt{a^2 m^2+1}
\end{array} & \text { (S) } & \left(\frac{-a^2 m}{\sqrt{a^2 m^2-1}}, \frac{-1}{\sqrt{a^2 m^2-1}}\right) \\
\hline
\end{array}
\)
If a tangent of a suitable conic (Column 1 ) is found to be \(y=x+8\) and its point of contact is \((8,16)\), then which of the following options is the only correct combination?
I. \(x^2+y^2=a^2\)
Equations of tangents in terms of slopes are
\(
y=m x+a \sqrt{\left(m^2+1\right)}
\)
and points of contact in terms of slopes are
\(
\left(\frac{-m a}{\sqrt{\left(m^2+1\right)}}, \frac{a}{\sqrt{\left(m^2+1\right)}}\right)(Q)
\)
\(\therefore I\) (ii) (Q) (Ans. Q.No. 112) (Here, \(a=\sqrt{2}, m= \pm 1\) )
II. \(x^2+a^2 y^2=a^2\) or \(\frac{x^2}{a^2}+\frac{y^2}{1^2}=1\)
Equations of tangents in terms of slopes are
\(
y=m x+\sqrt{\left(a^2 m^2+1\right)}
\)
and points of contact in terms of slopes are
\(
\left(\frac{-a^2 m}{\sqrt{\left(a^2 m^2+1\right)}}, \frac{1}{\sqrt{\left(a^2 m^2+1\right)}}\right)
\)
\(\therefore\) II (iv) (R) (Ans. Q.No. 111) (Here, \(a=2, m=\frac{-\sqrt{3}}{2}\) )
III. \(y^2=4 a x\)
Equation of tangent in terms of slopes are
\(
y=m x+\frac{a}{m} \text { or } m y=m^2 x+a
\)
and points of contact in terms of slopes are
\(
\left(\frac{a}{m^2}, \frac{2 a}{m}\right)
\)
\(\therefore\) III (i) (P) (Ans. Q.No. 113) (Here, \(a=8, m=1\) )
Find the equation of the parabola whose focus is \((-3,2)\) and the directrix is \(x+y=4\).
Let \(P(x, y)\) be any point on the parabola whose focus is \(S(-3,2)\) and the directrix \(x+y-4=0\). Draw \(P M\) perpendicular to \(x+y-4=0\). Then,
\(
\begin{array}{ll}
& S P=P M \\
\Rightarrow \quad & S P^2=P M^2 \\
\Rightarrow \quad & (x+3)^2+(y-2)^2=\left|\frac{x+y-4}{\sqrt{1+1}}\right|^2 \\
\Rightarrow \quad & 2\left(x^2+y^2+6 x-4 y+13\right)=\left(x^2+y^2+16+2 x y-8 x-8 y\right) \\
\Rightarrow \quad & x^2+y^2-2 x y+20 x+10=0
\end{array}
\)
Find the equation of the parabola whose focus is \((-3,0)\) and the directrix is \(x+5=0\).
Let \(P(x, y)\) be any point on the parabola having its focus at \(S(-3,0)\) and directrix as the line \(x+5=0\). Then,
\(S P=P M\), where \(P M\) is the length of the perpendicular from \(P\) on the directrix
\(
\Rightarrow \quad S P^2=P M^2
\)
\(
\Rightarrow \quad(x+3)^2+(y-0)^2=\left|\frac{x+0 y+5}{\sqrt{1}+0}\right|^2
\)
\(\Rightarrow \quad y^2=4 x+16\), which is the required equation of the parabola.
Find the vertex, focus and directrix of the parabola \(4 y^2+12 x-12 y+39=0\).
The given equation is
\(
\begin{array}{ll}
& 4 y^2+12 x-12 y+39=0 \\
\Rightarrow \quad & 4 y^2-12 y=-12 x-39 \\
\Rightarrow \quad & 4\left(y^2-3 y\right)=-12 x-39 \\
\Rightarrow \quad & 4\left(y^2-3 y+\frac{9}{4}\right)=-12 x-39+9
\end{array}
\)
\(
\begin{aligned}
& \Rightarrow \quad 4\left(y-\frac{3}{2}\right)^2=-12\left(x+\frac{5}{2}\right) \\
& \Rightarrow \quad\left(y-\frac{3}{2}\right)^2=-3\left(x+\frac{5}{2}\right) \dots(i)
\end{aligned}
\)
Shifting the origin to the point \((-5 / 2,3 / 2)\) without rotating the axes and denoting the new coordinates with respect to these axes by \(X\) and \(Y\), we obtain
\(
x=X+\left(-\frac{5}{2}\right), y=Y+\frac{3}{2} \dots(ii)
\)
Using these relations equation (i), reduces to
\(
Y^2=-3 X \dots(iii)
\)
This is of the form \(Y^2=-4 a X\). On comparing, we get: \(a=\frac{3}{4}\).
Vertex: The coordinates of the vertex with respect to new axes are \((X=0, Y=0)\). So, coordinates of the vertex with respect to old axes are \((-5 / 2,3 / 2) \text { [Putting } X=0, Y=0 \text { in (ii)] }\).
Focus: The coordinates of the focus of the parabola with respect to new axes are
\(
\left(X=-\frac{3}{4}, Y=0\right) \text {. }
\)
So, coordinates of the focus with respect to old axes are
\(
\left(-\frac{13}{4}, \frac{3}{2}\right) \quad\left[\text { Putting } X=-\frac{3}{4}, Y=0 \text { in (ii) }\right]
\)
Directrix: The equation of the directrix of the parabola with respect to new axes is \(X=\frac{3}{4}\). So, equation of the directrix of the parabola with respect to old axes is
\(
x=-\frac{7}{4} \text { [Putting } X=3 / 4 \text { in (ii)] }
\)
If the tangent at \((1,7)\) to the curve \(x^2=y-6\) touches the circle \(x^2+y^2+16 x+12 y+c=0\) then the value of \(c\) is : [JEE Main 2018]
(c) Equation of tangent at \((1,7)\) to \(x^2=y-6\) is
\(
2 x-y+5=0
\)
Now, perpendicular from centre \(O(-8,-6)\) to \(2 x-y+5=0\) should be equal to radius of the circle
\(
\begin{aligned}
& \therefore\left|\frac{-16+6+5}{\sqrt{5}}\right|=\sqrt{64+36- C } \\
& \quad \Rightarrow \sqrt{5}=\sqrt{100- c } \\
& \quad \Rightarrow c=95
\end{aligned}
\)
If a circle \(C\), whose radius is 3 , touches externally the circle, \(x^2+y^2+2 x-4 y-4=0\) at the point \((2,2)\), then the length of the intercept cut by this circle \(c\), on the \(x\)-axis is equal to [Online April 16, 2018]
Given circle is:
\(
x^2+y^2+2 x-4 y-4=0
\)
its centre is \((-1,2)\) and radius is 3 units.
Let \(A=(x, y)\) be the centre of the circle \(C\)
\(
\therefore \frac{x-1}{2}=2 \Rightarrow x=5 \text { and } \frac{y+2}{2}=2 \Rightarrow y=2
\)
So the centre of \(C\) is \((5,2)\) and its radius is 3
\(\therefore\) equation of centre \(C\) is:
\(
x^2+y^2-10 x-4 y+20=0
\)
\(\therefore\) The length of the intercept it cuts on the \(x\)-axis
\(
=2 \sqrt{g^2-c}=2 \sqrt{25-20}=2 \sqrt{5}
\)
A circle passes through the points \((2,3)\) and \((4,5)\). If its centre lies on the line, \(y-4 x+3=0\), then its radius is equal to [Online April 15, 2018]
(c) Equation of the line passing through the points \((2,3)\) and \((4,5)\) is
\(
y-3=\left(\frac{5-3}{4-2}\right) x-2 \Rightarrow x-y+1=0 \dots(1)
\)
Equation of the perpendicular line passing through the midpoint \((3,4)\) is \(x+y-7=0 \ldots .\). (2)
Lines (1) and (2) intersect at the center of the circle. So, the center of the circle is \((3,4)\)
Therefore, the radius is
\(
\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}=\sqrt{(2-3)^2+(3-4)^2}=\sqrt{2} \text { units. }
\)
Two parabolas with a common vertex and with axes along \(x\) axis and \(y\)-axis, respectively, intersect each other in the first quadrant. if the length of the latus rectum of each parabola is 3 , then the equation of the common tangent to the two parabolas is? [Online April 15, 2018]
(c) As origin is the only common point to \(x\)-axis and \(y\)-axis, so, origin is the common vertex
Let the equation of two of parabolas be \(y^2=4 a x\) and \(x^2=4 b y\)
Now latus rectum of both parabolas \(=3\)
\(\therefore 4 a=4 b=3\)
\(\Rightarrow a=b=\frac{3}{4}\)
\(\therefore\) Two parabolas are \(y^2=3 x\) and \(x^2=3 y\)
Suppose \(y=m x+c\) is the common tangent.
\(\therefore y^2=3 x \Rightarrow(m x+c)^2=3 x \Rightarrow m^2 x^2+(2 m c-3) x+c^2=0\)
As, the tangent touches at one point only
So, \(b^2-4 a c=0\)
\(\Rightarrow(2 m c-3)^2-4 m^2 c^2=0\)
\(\Rightarrow 4 m^2 c^2+9-12 m c-4 m^2 c^2=0\)
\(\Rightarrow c=\frac{9}{12 m}=\frac{3}{4 m} \dots(i)\)
\(\therefore x^2=3 y \Rightarrow x^2=3(m x+c) \Rightarrow x^2-3 m x-3 c=0\)
Again, \(b^2-4 a c=0\)
\(\Rightarrow 9 m^2-4(1)(-3 c)=0\)
\(\Rightarrow 9 m^2=-12 c \dots(ii)\)
Form \((i)\) and (ii)
\(m^2=\frac{-4 c}{3}=\frac{-4}{3}\left(\frac{3}{4 m}\right)\)
\(\Rightarrow m^3=-1 \Rightarrow m=-1 \Rightarrow c=\frac{-3}{4}\)
Hence, \(y=m x+c=-x-\frac{3}{4}\)
\(\Rightarrow 4(x+y)+3=0\)
The tangent to the circle \(C_1: x^2+y^2-2 x-1=0\) at the point \((2,1)\) cuts off a chord of length 4 from a circle \(C_2\) whose centre is \((3,-2)\). The radius of \(C_2\) is [Online April 15, 2018]
(a) Here, equation of tangent on \(C_1\) at \((2,1)\) is:
\(
\begin{aligned}
& 2 x+y-(x+2)-1=0 \\
& \text { Or } x+y=3
\end{aligned}
\)
If it cuts off the chord of the circle \(C_2\) then the equation of the chord is:
\(
x+y=3
\)
\(\therefore\) distance of the chord from \((3,-2)\) is :
\(
d=\left|\frac{3-2-3}{\sqrt{2}}\right|=\sqrt{2}
\)
Also, length of the chord is \(l=4\)
\(
\begin{aligned}
\therefore \text { radius of } C_2=r & =\sqrt{\left(\frac{l}{2}\right)^2+d^2} \\
& =\sqrt{(2)^2+(\sqrt{2})^2}=\sqrt{6}
\end{aligned}
\)
Tangent and normal are drawn at \(P(16,16)\) on the parabola \(y^2=16 x\), which intersect the axis of the parabola at \(A\) and \(B\), respectively. If \(C\) is the centre of the circle through the points \(P, A\) and \(B\) and \(\angle C P B=\theta\), then a value of \(\tan \theta\) is : [JEE Main 2018]
(a) Equation of tnagent at \(P (16,16)\) is given as:
\(
x-2 y+16=0
\)
Slope of \(PC \left( m _1\right)=\frac{4}{3}\)
Slope of PB \(\left(m_2\right)=-2\)
Hence, \(\tan \theta=\left|\frac{ m _1- m _2}{1+ m _1 \cdot m _2}\right|=\left|\frac{\frac{4}{3}+2}{1-\frac{4}{3} \cdot 2}\right|\)
\(\Rightarrow \tan \theta=2\)
Tangents drawn from the point \((-8,0)\) to the parabola \(y^2=8 x\) touch the parabola at \(P\) and \(Q\). If \(F\) is the focus of the parabola, then the area of the triangle \(P F Q\) (in sq. units) is equal to Online April 15, 2018]
(a) Equation of the chord of contact \(P Q\) is given by:
\(T=0\)
or \(T \equiv y y_1-4\left(x+x_1\right)\), where \(\left(x_1, y_1\right) \equiv(-8,0)\)
\(\therefore\) Equation becomes: \(x=8\)
& Chord of contact is \(x=8\)
\(\therefore\) Coordinates of point \(P\) and \(Q\) are \((8,8)\) and \((8,-8)\)
and focus of the parabola is \(F(2,0)\)
\(\therefore\) Area of triangle \(P Q F=\frac{1}{2} \times(8-2) \times(8+8)=48\) sq. units
Two sets \(A\) and \(B\) are as under :
\(
\begin{aligned}
& A=\{(a, b) \in R \times R:|a-5|<1 \text { and }|b-5|<1\} ; \\
& B=\left\{(a, b) \in R \times R: 4(a-6)^2+9(b-5)^2 \leq 36\right\} . \text { Then : }
\end{aligned}
\) [2018]
(a) \(A =\{( a , b ) \in R \times R 😐 a -5|<1,| b -5|<1\}\)
Let \(a-5,=x, b-5=y\)
Set A contains all points inside \(|x|<1,|y|<1\)
\(
B =\left\{( a , b ) \in R \times R : 4( a -6)^2+9( B -5)^2 \leq 36\right\}
\)
Set \(B\) contains all points inside or on
\(
\frac{(x-1)^2}{9}+\frac{y^2}{4}=1
\)
\(\therefore \quad( \pm 1, \pm 1)\) lies inside the ellipse.
Hence, \(A \subset B\).
If the length of the latus rectum of an ellipse is 4 units and the distance between a focus and its nearest vertex on the major axis is \(\frac{3}{2}\) units, then its eccentricity is? [Online April 16, 2018]
(d) Let for ellipse coordinates of focus and vertex are \((a e, 0)\) and \((a, 0)\) respectively.
\(\therefore\) Distance between focus and vertex \(=a(1-e)=\frac{3}{2}\) (given)
\(\Rightarrow a-\frac{3}{2}=a e\)
\(\Rightarrow a^2+\frac{9}{4}-3 a=a^2 e^2 \dots(i)\)
Length of latus rectum \(=\frac{2 b^2}{a}=4\)
\(\Rightarrow b^2=2 a \dots(ii)\)
\(
e^2=1-\frac{b^2}{a^2}
\)
\(\Rightarrow e^2=1-\frac{2 a}{a^2} \text { (from(ii)) }\)
(from(ii))
\(\Rightarrow e^2=1-\frac{2}{a} \dots(iii)\)
Substituting the value of \(e^2\) in eq. (i) we get;
\(\Rightarrow a^2+\frac{9}{4}-3 a=a^2\left(1-\frac{2}{a}\right)\)
\(\Rightarrow a=\frac{9}{4}\)
\(\therefore\) from eq. (iii) we get;
\(e^2=1-\frac{2}{a}=1-\frac{8}{9}=\frac{1}{9}\)
\(\Rightarrow e=\frac{1}{3}\)
Tangents are drawn to the hyperbola \(4 x^2-y^2=36\) at the points \(P\) and \(Q\). If these tangents intersect at the point \(T(0,3)\) then the area (in sq. units) of \(\triangle PTQ\) is : [JEE Main 2018]
(d) Here equation of hyperbola is \(\frac{x^2}{9}-\frac{y^2}{36}=1\) Now, \(PQ\) is the chord of contant
\(\therefore \quad\) Equation of \(P Q\) is : \(\frac{x(0)}{9}-\frac{y(3)}{36}=1\)
\(\Rightarrow y=-12\)
\(\therefore \quad\) Area of \(\triangle PQT =\frac{1}{2} \times TR \times PQ\)
\(\because \quad P \equiv(3 \sqrt{5},-12) \quad \therefore TR =3+12=15\),
\(\therefore \quad\) Area of \(\triangle PQT =\frac{1}{2} \times 15 \times 6 \sqrt{5}=45 \sqrt{5}\) sq. units
The locus of the point of intersection of the lines, \(\sqrt{2} x-y+4 \sqrt{2} k=0\) and \(\sqrt{2} k x+k y-4 \sqrt{2}=0(k\) is any non-zero real parameter) is. [Online April 16, 2018]
(a) Here, lines are:
\(
\begin{aligned}
& \sqrt{2} x-y+4 \sqrt{2} k=0 \\
& \Rightarrow \sqrt{2} x+4 \sqrt{2} k=y \dots(i)
\end{aligned}
\)
\(
\text { and } \sqrt{2} k x+k y-4 \sqrt{2}=0 \dots(ii)
\)
Put the value of \(y\) from (i) in (ii) we get;
\(
\begin{aligned}
& \Rightarrow 2 \sqrt{2} k x+4 \sqrt{2}\left(k^2-1\right)=0 \\
& \Rightarrow x=\frac{2\left(1-k^2\right)}{k}, y=\frac{2 \sqrt{2}\left(1+k^2\right)}{k} \\
& \therefore\left(\frac{y}{4 \sqrt{2}}\right)^2-\left(\frac{x}{4}\right)^2=1
\end{aligned}
\)
\(\therefore\) length of transverse axis
\(
2 a=2 \times 4 \sqrt{2}=8 \sqrt{2}
\)
Hence, the locus is a hyperbola with length of its transverse axis equal to \(8 \sqrt{2}\)
The radius of a circle, having minimum area, which touches the curve \(y=4-x^2\) and the lines, \(y=|x|\) is: [JEE Main 2017]
It is given that the radius of circle is minimum and it touches the curve \(y=4-x^2\) and the lines,
\(
y=|x|
\)
Let us draw \(y=4-x^2\) and \(y=|x|\)
Let us assume that the radius of the circle is \(r\). Then from figure it is clear that the center of the circle will be \((0,4-r)\)
Since \(y=x\) is tangent to the circle, the line obtained by joining the center with the contact point will be perpendicular to the line \(y=x\). The length of this perpendicular is equal to the radius of the circle.
We know that the length of perpendicular (d) drawn from point \((\alpha, \beta)\) on the line
\(A x+B y+C=0\) is given by
\(
d=\frac{|A \alpha+B \beta+C|}{\sqrt{A^2+B^2}}
\)
Hence, we have
\(
\begin{gathered}
\alpha=0 \\
\beta=4-r \\
d=r \\
\therefore r=\frac{|0-(4-r)+0|}{\sqrt{1^2+(-1)^2}} \\
\Rightarrow r=\frac{|-(4-r)|}{\sqrt{2}} \\
\Rightarrow r=\frac{|(4-r)|}{\sqrt{2}}
\end{gathered}
\)
From the figure, it is clear that radius \(r\) is less than 4. Therefore,
\(
\begin{aligned}
& |4-r|=4-r \\
& \therefore r=\frac{4-r}{\sqrt{2}} \\
& \Rightarrow \sqrt{2} r+r=4 \\
& \Rightarrow r=\frac{4}{\sqrt{2}+1} \\
&
\end{aligned}
\)
Let is rationalize the number
\(
r=\frac{4(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}=\frac{4(\sqrt{2}-1)}{2-1}=4(\sqrt{2}-1)
\)
The equation \(\operatorname{Im}\left(\frac{i z-2}{z-i}\right)+1=0, z \in C , z \neq i\) represents a part of a circle having radius equal to: [Online April 9, 2017]
(c) Let \(z=x+y\)
\(
\operatorname{Im}\left[\left(\frac{i x-y-2}{x+(y-1) i}\right)\left(\frac{x-(y-1) i}{x-(y-1) i}\right)\right]+1=0
\)
On solving, we get:
\(
\begin{gathered}
2 x^2+2 y^2-y-1=0 \\
\Rightarrow x^2+y^2-1 / 2 y-1 / 2=0 \\
\Rightarrow x^2+\left(y-\frac{1}{4}\right)^2=\frac{9}{16} \\
\Rightarrow \quad r=\frac{3}{4}
\end{gathered}
\)
A line drawn through the point \(P (4,7)\) cuts the circle \(x^2+y^2=9\) at the points \(A\) and \(B\). Then \(P A \cdot P B\) is equal to : [Online April 9, 2017]
\(
\begin{aligned}
\text { (b) } \quad & P(4,7) \cdot \text { Here, } x=4, y=7 \\
x-y & =-3 \\
\therefore \quad & P A \times P B=P T^2
\end{aligned}
\)
\(
\begin{aligned}
& \text { Also; } PT =\sqrt{ x ^2+ y ^2-( x – y )^2} \\
\Rightarrow \quad & PT =\sqrt{16+49-9}=\sqrt{56} \\
\Rightarrow \quad & PT ^2=56 \therefore PA \times PB =56
\end{aligned}
\)
The two adjacent sides of a cyclic quadrilateral are 2 and 5 and the angle between them is \(60^{\circ}\). If the area of the quadrilateral is \(4 \sqrt{3}\), then the perimeter of the quadrilateral is : [Online April 9, 2017]
Here; \(\cos \theta=\frac{a^2+b^2-c^2}{2 a b}\) and \(\theta=60^{\circ}\)
\(
\begin{aligned}
& \Rightarrow \cos 60^{\circ}=\frac{4+25-c^2}{2.2 .5} \\
& \Rightarrow 10=29-c^2 \\
& \Rightarrow c^2=19 \\
& \Rightarrow c=\sqrt{19}
\end{aligned}
\)
also; \(\cos \theta=\frac{a^2+b^2-c^2}{2 a b}\) and \(\theta=120^{\circ}\)
\(
\begin{aligned}
& \Rightarrow-\frac{1}{2}=\frac{ a ^2+ b ^2-19}{2 ab } \\
& \Rightarrow a^2+b^2-19=-a b \\
& \Rightarrow a^2+b^2+a b=19 \\
& \therefore \text { Area }=\frac{1}{2} \times 2 \times 5 \sin 60+\frac{1}{2} ab \sin 120^{\circ}=4 \sqrt{3} \\
& \Rightarrow \frac{5 \sqrt{3}}{2}+\frac{ ab \sqrt{3}}{4}=4 \sqrt{3} \\
& \Rightarrow \frac{ ab }{4}=4-\frac{5}{2}=\frac{3}{2} \\
& \Rightarrow ab =6 \\
& \therefore a ^2+ b ^2=13 \\
& \Rightarrow a =2, b =3 \\
& \text { Perimeter }=\text { Sum of all sides } \\
& =2+5+2+3=12 \\
&
\end{aligned}
\)
Let \(z \in C\), the set of complex numbers. Then the equation, \(2|z+3 i|-|z-i|=0\) represents : [Online April 8, 2017]
\(
\begin{aligned}
& \text { (a) Let } z = x +1 y \\
& \Rightarrow 2|x+i(y+3)=| x+i(y-1) \mid \\
& \Rightarrow \quad 2 \sqrt{x^2+(y+3)^2}=\sqrt{x^2+(y-1)^2}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \quad 4 x^2+4(y+3)^2=x^2+(y-1)^2 \\
& \Rightarrow \quad 3 x^2=y^2-2 y+1-4 y^2-24 y-36 \\
& \Rightarrow \quad 3 x^2+3 y^2+26 y+35=0 \quad \text { (which is a circle) } \\
& \Rightarrow \quad x^2+y^2+\frac{26}{3} y+\frac{35}{3}=0
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow r=\sqrt{0+\frac{169}{9}-\frac{35}{3}} \\
& \Rightarrow r=\sqrt{\frac{64}{9}}=\frac{8}{3}
\end{aligned}
\)
If a point \(P\) has co-ordinates \((0,-2)\) and \(Q\) is any point on the circle, \(x^2+y^2-5 x-y+5=0\), then the maximum value of \(( PQ )^2\) is : [Online April 8, 2017]
(b) Given that \(x^2+y^2-5 x-y+5=0\)
\(
\begin{aligned}
\Rightarrow & ( x -5 / 2)^2-\frac{25}{4}+( y -1 / 2)^2-1 / 4=0 \\
\Rightarrow & ( x -5 / 2)^2+( y -1 / 2)^2=3 / 2 \\
& \text { on circle }\left[Q \equiv\left(5 / 2+\sqrt{3 / 2} \cos Q, \frac{1}{2}+\sqrt{3 / 2} \sin Q\right)\right]
\end{aligned}
\)
\(
\begin{aligned}
\Rightarrow PQ ^2 & =\left(\frac{5}{2}+\sqrt{3 / 2} \cos Q\right)^2+\left(\frac{5}{2}+\sqrt{3 / 2} \sin Q\right)^2 \\
\Rightarrow \quad PQ ^2 & =\frac{25}{2}+\frac{3}{2}+5 \sqrt{3 / 2}(\cos Q+\sin Q) \\
& =14+5 \sqrt{3 / 2}(\cos Q+\sin Q)
\end{aligned}
\)
\(
\begin{aligned}
& \therefore \text { Maximum value of } PQ ^2 \\
& \qquad=14+5 \sqrt{3 / 2} \times \sqrt{2}=14+5 \sqrt{3}
\end{aligned}
\)
If two parallel chords of a circle, having diameter 4 units, lie on the opposite sides of the centre and subtend angles \(\cos ^{-1}\left(\frac{1}{7}\right)\) and \(\sec ^{-1}(7)\) at the centre respectively, then the distance between these chords, is : [Online April 8, 2017]
\(
\begin{aligned}
& \text { Since } \cos 2 \theta=1 / 7 \Rightarrow 2 \cos ^2 Q-1=1 / 7 \\
\Rightarrow & 2 \cos ^2 \theta=8 / 7 \\
\Rightarrow & \cos ^2 \theta=4 / 7 \\
\Rightarrow & \cos ^2 \theta=\frac{4}{7} \\
\Rightarrow & \cos ^2 \phi=\frac{2}{\sqrt{7}}
\end{aligned}
\)
\(
\text { Also, } \begin{aligned}
\sec ^2 \phi & =7=\frac{1}{2 \cos ^2 \phi-1}=7 \\
& =\cos ^2 \phi-1=\frac{1}{7} \\
& =2 \cos ^2 \phi=\frac{8}{7} \\
& =\cos \phi=\frac{2}{\sqrt{7}} \\
P _1 P _2 & = r \cos \theta+ r \cos \phi \\
& =\frac{4}{\sqrt{7}}+\frac{4}{\sqrt{7}}=\frac{8}{\sqrt{7}}
\end{aligned}
\)
If one of the diameters of the circle, given by the equation, \(x^2\) \(+y^2-4 x+6 y-12=0\), is a chord of a circle \(S\), whose centre is at \((-3,2)\), then the radius of \(S\) is: [JEE Main 2016]
Centre of S : \(O (-3,2)\) centre of given circle \(A (2,-3)\)
\(
\Rightarrow OA =5 \sqrt{2}
\)
Also \(AB =5(\because AB = r\) of the given circle \()\)
\(\Rightarrow\) Using pythagoras theorem in \(\triangle OAB\)
\(
r =5 \sqrt{3}
\)
Equation of the tangent to the circle, at the point \((1,-1)\) whose centre is the point of intersection of the straight lines \(x-y=1\) and \(2 x+y=3\) is : [Online April 10, 2016]
(a) Point of intersection of lines
\(
\begin{aligned}
& x-y=1 \text { and } 2 x+y=3 \text { is }\left(\frac{4}{3}, \frac{1}{3}\right) \\
& \text { Slope of } O P=\frac{\frac{1}{3}+1}{\frac{4}{3}-1}=\frac{\frac{4}{3}}{\frac{1}{3}}=4 \\
& \text { Slope of tangent }=-\frac{1}{4}
\end{aligned}
\)
Equation of tangent \(y+1=-\frac{1}{4}(x-1)\)
\(
\begin{aligned}
& 4 y+4=-x+1 \\
& x+4 y+3=0
\end{aligned}
\)
A circle passes through \((-2,4)\) and touches the \(y\)-axis at \((0,2)\). Which one of the following equations can represent a diameter of this circle? [Online April 9, 2016]
\(EF =\) perpendicular bisector of chord \(AB\)
\(BG =\) perpendicular to \(y\)-axis
Here \(C =\) centre of the circle
mid-point of chord \(A B, D=(-1,3)\)
slope of \(A B=\frac{4-2}{-2-0}=-1\)
\(\because \quad EF \perp AB\)
\(\therefore \quad\) Slope of EF \(=1\)
Equation of \(EF , y-3=1(x+1)\)
\(\Rightarrow y=x+4 \dots(i)\)
Equation of BG
\(
y=2 \dots(ii)
\)
From equations (i) and (ii)
\(
x=-2, y=2
\)
since \(C\) be the point of intersection of \(E F\) and \(B G\), therefore centre, \(C =(-2,2)\)
Now coordinates of centre \(C\) satisfy the equation
\(
2 x-3 y+10=0
\)
Hence \(2 x-3 y+10=0\) is the equation of the diameter
Locus of the image of the point \((2,3)\) in the line \((2 x-3 y+4)\) \(+ k ( x -2 y +3)=0, k \in R\), is a : [JEE Main 2015]
(a) Intersection point of \(2 x-3 y+4=0\) and \(x-2 y+3=0\) is \((1,2)\)
Since, \(P\) is the fixed point for given family of lines
So,
\(
\begin{aligned}
& \text { PB }=\text { PA } \\
& (\alpha-1)^2+(\beta-2)^2=(2-1)^2+(3-2)^2 \\
& (\alpha-1)^2+(\beta-2)^2=1+1=2 \\
& (x-1)^2+(y-2)^2=(\sqrt{2})^2 \\
& (x-a)^2+(y-b)^2=r^2
\end{aligned}
\)
Therefore, given locus is a circle with centre \((1,2)\) and radius \(\sqrt{2}\).
The number of common tangents to the circles \(x^2+y^2-4 x\) \(-6 x-12=0\) and \(x^2+y^2+6 x+18 y+26=0\), is : [JEE Main 2015]
(a) \(x^2+y^2-4 x-6 y-12=0 \dots(i)\)
Centre, \(C _1=(2,3)\)
Radius, \(r_1=5\) units
\(
x^2+y^2+6 x+18 y+26=0 \dots(ii)
\)
Centre, \(C_2=(-3,-9)\)
Radius, \(r_2=8\) units
\(C _1 C _2=\sqrt{(2+3)^2+(3+9)^2}=13\) units
\(
\begin{aligned}
& r_1+r_2=5+8=13 \\
& \therefore C_1 C_2=r_1+r_2
\end{aligned}
\)
Therefore there are three common tangents.
If the incentre of an equilateral triangle is \((1,1)\) and the equation of its one side is \(3 x+4 y+3=0\), then the equation of the circumcircle of this triangle is : [Online April 11, 2015]
(a) Let radius of circumcircle be According to the question,
\(
\frac{ r }{2}=\frac{10}{5} \Rightarrow r =4
\)
So equation of required circle is
\(
\begin{aligned}
& (x-1)^2+(y-1)^2=16 \\
& \Rightarrow x^2+y^2-2 x-2 y-14=0
\end{aligned}
\)
If a circle passing through the point \((-1,0)\) touches \(y\)-axis at \((0,2)\), then the length of the chord of the circle along the \(x\)-axis is : [Online April 11, 2015]
(b) Let ‘ \(h\) ‘ be the radius of the circle and since circle touches \(y\)-axis at \((0,2)\) therefore centre \(=(h, 2)\)
Now, eqn of circle is
\(
\begin{aligned}
& (h+1)^2+2^2=h^2 \\
& \Rightarrow 2 h+5=0
\end{aligned}
\)
\(
h =-\frac{5}{2}
\)
From the figure, it is clear that \(AB\) is the chord along \(x\)-axis
\(
\therefore AB =2( AM )=2 \sqrt{\frac{25}{4}-4}=2\left(\frac{3}{2}\right)=3
\)
Let the tangents drawn to the circle, \(x^2+y^2=16\) from the point \(P(0, h)\) meet the \(x\)-axis at point \(A\) and \(B\). If the area of \(\triangle A P B\) is minimum, then \(h\) is equal to: [Online April 10, 2015]
(a) \(OP =\frac{4}{\sin \theta}\)
\(
OB =\frac{4}{\cos \theta}
\)
\(
\begin{aligned}
& \text { Area }=O P \times O B=\frac{16}{\sin \theta \cos \theta}=\frac{32}{\sin 2 \theta} \\
& \text { least value } \sin 2 \theta=1 ; \theta=45^{\circ}
\end{aligned}
\)
So, \(h =\frac{4}{\sin 45^{\circ}}=4 \sqrt{2}\)
If \(y+3 x=0\) is the equation of a chord of the circle, \(x^2+y^2-30 x=0\), then the equation of the circle with this chord as diameter is: [Online April 10, 2015]
(d) Given that \(y+3 x=0\) is the equation of a chord of the circle then
\(
\begin{aligned}
& y=-3 x \dots(i)\\
& \left(x^2\right)+(-3 x)^2-30 x=0 \\
& 10 x^2-30 x=0 \\
& 10 x(x-3)=0 \\
& x=0, y=0
\end{aligned}
\)
so the equation of the circle is
\(
\begin{aligned}
& (x-3)(x-0)+(y+9)(y-0)=0 \\
& x^2-3 x+y^2+9 y=0 \\
& x^2+y^2-3 x+9 y=0
\end{aligned}
\)
The largest value of \(r\) for which the region represented by the set \(\{\omega \in C|\omega-4-i| \leq r\}\) is contained in the region represented by the set \((z \in c /|z-1| \leq|z+i|)\), is equal to: [Online April 10, 2015]
(a) Radius
\(
CP =\frac{4+1}{\sqrt{2}}
\)
\(
=\frac{5}{\sqrt{2}}=\frac{5}{2} \sqrt{2}
\)
Let \(C\) be the circle with centre at \((1,1)\) and radius \(=1\). If \(T\) is the circle centred at \((0, y)\), passing through origin and touching the circle \(C\) externally, then the radius of \(T\) is equal to [JEE Main 2014]
Equation of circle
\(
\begin{aligned}
& C \equiv(x-1)^2+(y-1)^2=1 \\
& \text { Radius of } T =|y| \\
&
\end{aligned}
\)
\(T\) touches \(C\) externally therefore, Distance between the centres \(=\) sum of their radii
\(
\begin{aligned}
\Rightarrow & \sqrt{(0-1)^2+(y-1)^2}=1+|y| \\
\Rightarrow & (0-1)^2+(y-1)^2=(1+|y|)^2 \\
\Rightarrow & 1+y^2+1-2 y=1+y^2+2|y| \\
& 2|y|=1-2 y
\end{aligned}
\)
If \(y>0\) then \(2 y=1-2 y \Rightarrow y=\frac{1}{4}\)
If \(y<0\) then \(-2 y=1-2 y \Rightarrow 0=1\) (not possible)
\(
\therefore \quad y=\frac{1}{4}
\)
The equation of circle described on the chord \(3 x+y+5=0\) of the circle \(x^2+y^2=16\) as diameter is: [Online April 19, 2014]
(a) Given circle is \(x^2+y^2-16=0\)
Eqn of chord say \(A B\) of given circle is
\(
3 x+y+5=0 \text {. }
\)
Equation of required circle is
\(
\begin{aligned}
& x^2+y^2-16+\lambda(3 x+y+5)=0 \\
& \Rightarrow x^2+y^2+(3 \lambda) x+(\lambda) y+5 \lambda-16=0 \dots(1) \\
& \text { Centre } C =\left(\frac{-3 \lambda}{2}, \frac{-\lambda}{2}\right) .
\end{aligned}
\)
Centre \(C =\left(\frac{-3 \lambda}{2}, \frac{-\lambda}{2}\right)\).
If line \(A B\) is the diameter of circle (1), then
\(C\left(\frac{-3 \lambda}{2}, \frac{-\lambda}{2}\right)\) will lie on line \(AB\)
i.e. \(3\left(\frac{-3 \lambda}{2}\right)+\left(\frac{-\lambda}{2}\right)+5=0\)
\(
\Rightarrow-\frac{9 \lambda-\lambda}{2}+5=0 \Rightarrow \lambda=1
\)
Hence, required eqn of circle is
\(
\begin{aligned}
& x^2+y^2+3 x+y+5-16=0 \\
& \Rightarrow x^2+y^2+3 x+y-11=0
\end{aligned}
\)
For the two circles \(x^2+y^2=16\) and \(x^2+y^2-2 y=0\), there is/are [Online April 12, 2014]
\(
\begin{aligned}
& \text { (d) Let, } S_1 \text { : } x^2+y^2=16 \text { or } x^2+y^2=4^2 \\
& \text { Center of } S_1 \text { is } C_1 \text { : } \text { radius of circle } r_1=4 \text {, centre } C _1(0,0) \\
& \text { we have, } \text { and } S_2 \text { : } x^2+y^2-2 y=0 \\
& \Rightarrow x^2+\left(y^2-2 y+1\right)-1=0 \text { or } x^2+(y-1)^2=1^2 \\
& \text { Center of } S _2 \text { is } C _2 \text { : } \text { Radius } 1 \text {, centre } C_2(0,1) \\
& \left|C_1 C_2\right|=1 \\
& \left|r_2-r_1\right|=|4-1|=3 \\
& \left|C_1 C_2\right|<\left|r_2-r_1\right|
\end{aligned}
\)
\(\therefore S _2\) is completely within \(S _1\) and hence there are no common tangents to the two circles.
The set of all real values of \(\lambda\) for which exactly two common tangents can be drawn to the circles \(x^2+y^2-4 x-4 y+6=0\) and \(x^2+y^2-10 x-10 y+\lambda=0\) is the interval: [Online April 11, 2014]
(b) The equations of the circles are
\(
x^2+y^2-10 x-10 y+\lambda=0 \dots(1)
\)
and \(x^2+y^2-4 x-4 y+6=0 \dots(2)\)
\(C _1=\) centre of \((1)=(5,5)\)
\(C _2=\) centre of \((2)=(2,2)\)
\(d=\) distance between centres
\(
\begin{aligned}
& = C _1 C _2=\sqrt{9+9}=\sqrt{18} \\
& r_1=\sqrt{50-\lambda}, r_2=\sqrt{2}
\end{aligned}
\)
For exactly two common tangents we have
\(
\begin{aligned}
& r_1-r_2<C_1 C_2<r_1+r_2 \\
& \Rightarrow \sqrt{50-\lambda}-\sqrt{2}<3 \sqrt{2}<\sqrt{50-\lambda}+\sqrt{2} \\
& \Rightarrow \sqrt{50-\lambda}-\sqrt{2}<3 \sqrt{2} \text { or } 3 \sqrt{2}<\sqrt{50-\lambda}+\sqrt{2} \\
& \Rightarrow \sqrt{50-\lambda}<4 \sqrt{2} \text { or } 2 \sqrt{2}<\sqrt{50-\lambda} \\
& \Rightarrow 50-\lambda<32 \text { or } 8<50-\lambda \\
& \Rightarrow \lambda>18 \text { or } \lambda<42
\end{aligned}
\)
Required interval is \((18,42)\)
If the point \((1,4)\) lies inside the circle \(x^2+y^2-6 x-10 y+P=0\) and the circle does not touch or intersect the coordinate axes, then the set of all possible values of \(P\) is the interval: [Online April 9, 2014]
The equation of circle is
\(
\begin{aligned}
& x^2+y^2-6 x-10 y+P=0 \dots(i)\\
& (x-3)^2+(y-5)^2=(\sqrt{34- P })^2
\end{aligned}
\)
Centre \((3,5)\) and radius ‘ \(r\) ‘ \(=\sqrt{34-P}\)
If circle does not touch or intersect the \(x\)-axis then radius \(x<y\) – coordiante of centre \(C\)
\(
\begin{aligned}
& \text { or } \sqrt{34- P }<5 \\
& \Rightarrow 34- P <25 \\
& \Rightarrow P >9 \dots(ii)
\end{aligned}
\)
Also if the circle does not touch or intersect \(x\)-axis the radius \(r<x\)-coordinate of centre \(C\).
or \(\sqrt{34- P }<3 \Rightarrow 34- P <9 \Rightarrow P >25\)
If the point \((1,4)\) is inside the circle, then its distance from centre \(C < r\).
or \(\sqrt{34- P }<3 \Rightarrow 34- P <9 \Rightarrow P >25 \dots(iii)\)
If the point \((1,4)\) is inside the circle, then its distance from centre \(C < r\).
or \(\sqrt{\left[(3-1)^2+(5-4)^2\right]}<\sqrt{34-P}\)
\(\Rightarrow 5<34- K\)
\(\Rightarrow P <29 \dots(iv)\)
Now all the conditions (ii), (iii) and (iv) are satisfied if \(25< P <29\) which is required value of \(P\).
Let \(a\) and \(b\) be any two numbers satisfying \(\frac{1}{ a ^2}+\frac{1}{ b ^2}=\frac{1}{4}\). Then, the foot of perpendicular from the origin on the variable line, \(\frac{ x }{ a }+\frac{ y }{ b }=1\), lies on: [Online April 9, 2014]
(c) Let the foot of the perpendicular from \((0,0)\) on the variable line \(\frac{x}{a}+\frac{y}{b}=1\) is \(\left(x_1>y_1\right)\) Hence, perpendicular distance of the variable line \(\frac{x}{a}+\frac{y}{b}=1\) from the point \(O (0,0)= OA\)
\(
\Rightarrow \frac{|-1|}{\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}}=\sqrt{x_1^2+y_1^2}
\)
\(
\Rightarrow \frac{1}{\frac{1}{a^2}+\frac{1}{b^2}}=x_1^2+y_1^2
\)
\(
\Rightarrow 4=x_1^2+y_1^2\left[\because \frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{4}\right] \text {, }
\)
which is equation of a circle with radius 2 .
Hence \(\left(x_1, y_1\right)\) i.e., the foot of the perpendicular from
the point \((0,0)\) to the variable line \(\frac{x}{a}+\frac{x}{b}=1\) is lies on a circle with radius \(=2\)
The circle passing through \((1,-2)\) and touching the axis of \(x\) at \((3,0)\) also passes through the point [JEE Main 2013]
(c) Since circle touches \(x\)-axis at \((3,0)\) \(\therefore\) the equation of circle be
\(
(x-3)^2+(y-0)^2+\lambda y=0
\)
As it passes through \((1,-2)\)
\(
\begin{aligned}
& \therefore \text { Put } x=1, y=-2 \\
& \Rightarrow(1-3)^2+(-2)^2+\lambda(-2)=0 \\
& \Rightarrow \lambda=4
\end{aligned}
\)
\(\therefore\) equation of circle is
\(
(x-3)^2+y^2-8=0
\)
Now, from the options \((5,-2)\) satisfies equation of circle.
If a circle of unit radius is divided into two parts by an arc of another circle subtending an angle \(60^{\circ}\) on the circumference of the first circle, then the radius of the arc is: [Online April 25, 2013]
Let us denote the centre of the unit circle as \(O\) and the points of intersection of circle of unit radius with the other circle as \(A, B\). Let us consider the intercepted \(\operatorname{arc} A B\) as less than semicircle. Let \(C\) be any point on the circumference. Since intercepted arc less than semicircle will only subtend an obtuse angle \(C\) will not lie on intercepted arc AB. We drop perpendicular \(OD\) on \(AB\). So we have the diagram as
We know that the central angle subtended by an arc at the centre is twice the inscribed angle. Here \(\angle A C B\) is an inscribed angle of arc \(AB\) with measure given to us as \(\angle A C B=60^{\circ}\). So the central angle \(\angle A O B\) will have the measure
\(
\angle A O B=2 \times \angle A C B=2 \times 60^{\circ}=120^{\circ}
\)
Now we observe the triangle AOB where the lengths of radii are given to us as
\(O A=O B=1\). Here \(AOB\) is an isosceles triangle whose perpendicular from apex \(O\) that is \(A D\) will bisect the angle at \(O\) and the opposite \(A B\). So we have
\(
\begin{aligned}
& \angle A O D=\angle B O D=\frac{120^{\circ}}{2}=60^{\circ} \\
& A D=B D=\frac{A B}{2}
\end{aligned}
\)
So in triangle AOD we have
\(
\begin{aligned}
& \sin (\angle A O D)=\frac{A D}{O A} \\
& \Rightarrow \sin \left(60^{\circ}\right)=\frac{A D}{1} \\
& \Rightarrow A D=1 \cdot \sin 60^{\circ}=1 \times \frac{\sqrt{3}}{2} \\
& \Rightarrow A D=\frac{\sqrt{3}}{2}
\end{aligned}
\)
So we have the required length of the chord as;
\(
A B=A D+B D=2 A D=2 \times \frac{\sqrt{3}}{2}=\sqrt{3}
\)
Statement 1: The only circle having radius \(\sqrt{10}\) and a diameter along line \(2 x+y=5\) is \(x^2+y^2-6 x+2 y=0\).
Statement 2: \(2 x+y=5\) is a normal to the circle \(x^2+y^2-6 x+2 y=0\) [Online April 25, 2013]
(a) Circle: \(x^2+y^2-6 x+2 y=0 \dots(i)\)
Line: \(2 x+y=5 \dots(ii)\)
Centre \(=(3,-1)\)
Now, \(2 \times 3-1=5\), hence centre lies on the given line. Therefore line passes through the centre. The given line is normal to the circle.
Thus statement- 2 is true, but statement- 1 is not true as there are infinite circle according to the given conditions.
If the circle \(x^2+y^2-6 x-8 y+\left(25-a^2\right)=0\) touches the axis of \(x\), then a equals. [Online April 23, 2013]
\(
\begin{aligned}
& x^2+y^2-6 x-8 y+\left(25-a^2\right)=0 \\
& \text { Radius }=4=\sqrt{9+16+\left(25-a^2\right)} \\
& \Rightarrow a = \pm 4
\end{aligned}
\)
If a circle \(C\) passing through \((4,0)\) touches the circle \(x^2+y^2\) \(+4 x-6 y-12=0\) externally at a point \((1,-1)\), then the radius of the circle \(C\) is: [Online April 22, 2013]
(a) Let \(A\) be the centre of given circle and \(B\) be the centre of circle C.
\(
\begin{aligned}
& x ^2+ y ^2+4 x -6 y -12=0 \\
& \therefore A =(-2,3) \text { and } B =(g, f)
\end{aligned}
\)
Now, from the figure, we have
\(
\begin{aligned}
& \frac{-2+g}{2}=1 \text { and } \frac{3+f}{2}=-1 \text { (By mid point formula) } \\
& \Rightarrow g=4 \text { and } f=-5
\end{aligned}
\)
If two vertices of an equilateral triangle are \(A (-a, 0)\) and \(B(a, 0), a>0\), and the third vertex \(C\) lies above \(x\)-axis then the equation of the circumcircle of \(\triangle A B C\) is : [Online April 22, 2013]
(a) Let \(C =(x, y)\)
Now, \(CA ^2= CB ^2= AB ^2\)
\(\Rightarrow(x+a)^2+y^2=(x-a)^2+y^2=(2 a)^2\)
\(\Rightarrow x^2+2 a x+a^2+y^2=4 a^2 \dots(i)\)
and \(x^2-2 a x+a^2+y^2=4 a^2 \dots(ii)\)
From (i) and (ii), \(x=0\) and \(y= \pm \sqrt{3} a\)
Since point \(C (x, y)\) lies above the \(x\)-axis and \(a>0\), hence \(y=\sqrt{3} a\)
\(
\therefore \quad C =(0, \sqrt{3} a)
\)
Let the equation of circumcircle be
\(
x^2+y^2+2 g x+2 f y+C=0
\)
Since points \(A (-a, 0), B (a, 0)\) and \(C (0, \sqrt{3} a)\) lie on the circle, therefore
\(
\begin{aligned}
& a^2-2 g a+ C =0 \dots(iii) \\
& a^2+2 g a+ C =0 \dots(iv) \\
& \text { and } 3 a^2+2 \sqrt{3} a f+ C =0 \dots(v)
\end{aligned}
\)
From (iii), (iv), and (v)
\(
g=0, c=-a^2, f=-\frac{a}{\sqrt{3}}
\)
Hence equation of the circumcircle is
\(
x^2+y^2-\frac{2 a}{\sqrt{3}} y-a^2=0
\)
\(
\begin{aligned}
& \Rightarrow x^2+y^2-\frac{2 \sqrt{3} a y}{3}-a^2=0 \\
& \Rightarrow 3 x^2+3 y^2-2 \sqrt{3} a y=3 a^2
\end{aligned}
\)
If each of the lines \(5 x+8 y=13\) and \(4 x-y=3\) contains a diameter of the circle \(x^2+y^2-2\left(a^2-7 a+11\right) x-2\left(a^2-6 a+6\right) y+b^3+1=0\), then [Online April 9, 2013]
(d) Point of intersection of two given lines is \((1,1)\). Since each of the two given lines contains a diameter of the given circle, therefore the point of intersection of the two given lines is the centre of the given circle.
Hence centre \(=(1,1)\)
\(
\begin{aligned}
& \therefore a^2-7 a+11=1 \Rightarrow a=2,5 \dots(i) \\
& \text { and } a^2-6 a+6=1 \Rightarrow a=1,5 \dots(ii)
\end{aligned}
\)
From both (i) and (ii), \(a=5\)
Now on replacing each of \(\left(a^2-7 a+11\right)\) and \(\left(a^2-6 a+6\right)\) by 1 , the equation of the given circle is
\(
\begin{aligned}
& x^2+y^2-2 x-2 y+b^3+1=0 \\
& \Rightarrow(x-1)^2+(y-1)^2+b^3=1 \\
& \Rightarrow b^3=1-\left[(x-1)^2+(y-1)^2\right] \\
& \therefore b \in(-\infty, 1)
\end{aligned}
\)
The length of the diameter of the circle which touches the \(x\)-axis at the point \((1,0)\) and passes through the point \((2,3)\) is: [JEE Main 2012]
(a) Let centre of the circle be \((1, h )\) \([\because\) circle touches \(x[latex]-axis at [latex](1,0)]\)
Let the circle passes through the point \(B(2,3)\)
\(
\begin{array}{ll}
\therefore & C A=C B \text { (radius) } \\
\Rightarrow & C A^2=C B^2 \\
\Rightarrow & (1-1)^2+(h-0)^2=(1-2)^2+(h-3)^2 \\
\Rightarrow & h^2=1+h^2+9-6 h \\
\Rightarrow & h=\frac{10}{6}=\frac{5}{3}
\end{array}
\)
The number of common tangents of the circles given by \(x^2+y^2-8 x-2 y+1=0\) and \(x^2+y^2+6 x+8 y=0\) is [Online May 26, 2012]
Given circles are
\(
\begin{aligned}
& x^2+y^2-8 x-2 y+1=0 \\
& \text { and } x^2+y^2+6 x+8 y=0
\end{aligned}
\)
Their centres and radius are
\(
\begin{aligned}
& C_1(4,1), r_1=\sqrt{16}=4 \\
& C_2(-3,-4), r_2=\sqrt{25}=5
\end{aligned}
\)
Now, \(C_1 C_2=\sqrt{49+25}=\sqrt{74}\)
\(
r_1-r_2=-1, r_1+r_2=9
\)
Since, \(r_1-r_2<C_1 C_2<r_1+r_2\) \(\therefore\) Number of common tangents \(=2\)
If the line \(y=m x+1\) meets the circle \(x^2+y^2+3 x=0\) in two points equidistant from and on opposite sides of \(x\)-axis, then [Online May 19, 2012]
(b) Circle: \(x^2+y^2+3 x=0\)
Centre, \(B=\left(-\frac{3}{2}, 0\right)\)
Radius \(=\frac{3}{2}\) units.
\(
\begin{aligned}
& \text { Line: } y=m x+1 \\
& y \text {-intercept of the line }=1 \\
& \therefore A =(0,1)
\end{aligned}
\)
Slope of line, \(m=\tan \theta=\frac{O A}{O B}\)
\(
\begin{aligned}
& \Rightarrow m=\frac{1}{\frac{3}{2}}=\frac{2}{3} \\
& \Rightarrow 3 m-2=0
\end{aligned}
\)
If three distinct points \(A, B, C\) are given in the 2-dimensional coordinate plane such that the ratio of the distance of each one of them from the point \((1,0)\) to the distance from \((-1,0)\) is equal to \(\frac{1}{2}\), then the circumcentre of the triangle \(A B C\) is at the point [Online May 19, 2012]
(a) Let \(P(1,0)\) and \(Q(-1,0), A(x, y)\)
\(
\begin{aligned}
& \text { Given: } \frac{A P}{A Q}=\frac{B P}{B Q}=\frac{C P}{C Q}=\frac{1}{2} \\
& \Rightarrow 2 A P=A Q \\
& \Rightarrow 4(A P)^2=A Q^2 \\
& \Rightarrow 4\left[(x-1)^2+y^2\right]=(x+1)^2+y^2 \\
& \Rightarrow 4\left(x^2+1-2 x\right)+4 y^2=x^2+1+2 x+y^2 \\
& \Rightarrow 3 x^2+3 y^2-8 x-2 x+4-1=0 \\
& \Rightarrow 3 x^2+3 y^2-10 x+3=0 \\
& \Rightarrow x^2+y^2-\frac{10}{3} x+1=0 \dots(1)
\end{aligned}
\)
\(\therefore \quad\) A lies on the circle given by (1). As \(B\) and \(C\) also follow the same condition.
\(\therefore\) Centre of circumcircle of \(\triangle A B C=\) centre of circle given by (1)
\(
=\left(\frac{5}{3}, 0\right) .
\)
The equation of the circle passing through the point \((1,2)\) and through the points of intersection of \(x^2+y^2-4 x-6 y-21=0\) and \(3 x+4 y+5=0\) is given by [Online May 7, 2012]
(d) Point \((1,2)\) lies on the circle \(x^2+y^2+2 x+2 y-11=0\), because coordinates of point \((1,2)\) satisfy the equation \(x^2+y^2+2 x+2 y-11=0\)
Now, \(x^2+y^2-4 x-6 y-21=0 \dots(i)\)
\(
\begin{aligned}
& x^2+y^2+2 x+2 y-11=0 \dots(ii)\\
& 3 x+4 y+5=0 \dots(iii)
\end{aligned}
\)
From (i) and (iii),
\(
\begin{aligned}
& x^2+\left(-\frac{3 x+5}{4}\right)^2-4 x-6\left(-\frac{3 x+5}{4}\right)-21=0 \\
& \Rightarrow 16 x^2+9 x^2+30 x+25-64 x+72 x+120-336=0 \\
& \Rightarrow 25 x^2+38 x-191=0 \quad \text { (iv) }
\end{aligned}
\)
From (ii) and(iii),
\(
\begin{aligned}
& x^2+\left(-\frac{3 x+5}{4}\right)^2+2 x+2\left(-\frac{3 x+5}{4}\right)-11=0 \\
& \Rightarrow 16 x^2+9 x^2+30 x+25+32 x-24 x-40-176=0 \\
& \Rightarrow 25 x^2+38 x-191=0 \quad \ldots \text { (v) }
\end{aligned}
\)
Thus we get the same equation from (ii) and (iii) as we get from equation (i) and (iii). Hence the point of intersections of (ii) and (iii) will be same as the point of intersections of (i) and (iii). Therefore the circle (ii) passing through the point of intersection of circle(i) and point \((1,2)\) also as shown in the figure.
Hence equation(ii) i.e. \(x^2+y^2+2 x+2 y-11=0\) is the equation of required circle.
The equation of the circle passing through the point \((1,0)\) and \((0,1)\) and having the smallest radius is – [JEE Main 2011 RS]
(b) Circle whose diametric end points are \((1,0)\) and \((0,1)\) will be of smallest radius. Equation of this smallest circle is
\(
\begin{aligned}
& (x-1)(x-0)+(y-0)(y-1)=0 \\
& \Rightarrow x^2+y^2-x-y=0
\end{aligned}
\)
The two circles \(x^2+y^2=a x\) and \(x^2+y^2=c^2(c>0)\) touch each other if [JEE Main 2011]
(a) If the two circles touch each other, then they must touch each other internally.
So, \(\frac{|a|}{2}=c-\frac{|a|}{2} \Rightarrow|a|=c\)
The circle \(x^2+y^2=4 x+8 y+5\) intersects the line \(3 x-4 y=m\) at two distinct points if [JEE Main 2010]
(a) Circle \(x^2+y^2-4 x-8 y-5=0\)
Centre \(=(2,4)\), Radius \(=\sqrt{4+16+5}=5\)
If circle is intersecting line \(3 x-4 y=m\), at two distinct points.
\(\Rightarrow\) length of perpendicular from centre to the line <radius
\(\Rightarrow \frac{|6-16-m|}{5}<5 \Rightarrow|10+m|<25\)
\(\Rightarrow-25<m+10<25 \Rightarrow-35<m<15\)
If \(P\) and \(Q\) are the points of intersection of the circles \(x^2+y^2+3 x+7 y+2 p-5=0\) and \(x^2+y^2+2 x+2 y-p^2=0\) then there is a circle passing through \(P, Q\) and \((1,1)\) for: [JEE Main 2009]
(a) The given circles are
\(
\begin{aligned}
& S_1 \equiv x^2+y^2+3 x+7 y+2 p-5=0 \dots(1) \\
& S_2 \equiv x^2+y^2+2 x+2 y-p^2=0 \dots(2)
\end{aligned}
\)
\(\therefore \quad\) Equation of common chord \(P Q\) is
\(
\begin{aligned}
& S_1-S_2=0 \\
& \Rightarrow \quad L \equiv x+5 y+p^2+2 p-5=0 \\
&
\end{aligned}
\)
\(\Rightarrow\) Equation of circle passing through \(P\) and \(Q\) is
\(
S_1+\lambda L =0
\)
\(
\begin{aligned}
\Rightarrow\left(x^2+y^2+3 x+7 y+2 p-5\right) & \\
& +\lambda\left(x+5 y+p^2+2 p-5\right)=0
\end{aligned}
\)
As it passes through \((1,1)\), therefore
\(
\begin{aligned}
& (7+2 p )+\lambda\left(2 p + p ^2+1\right)=0 \\
\Rightarrow & \lambda=-\frac{2 p+7}{(p+1)^2}
\end{aligned}
\)
which does not exist for \(p=-1\)
Three distinct points \(A, B\) and \(C\) are given in the 2-dimensional coordinates plane such that the ratio of the distance of any one of them from the point \((1,0)\) to the distance from the point \((-1,0)\) is equal to \(\frac{1}{3}\). Then the circumcentre of the triangle \(ABC\) is at the point: [JEE Main 2009]
(a) Given that \(P(1,0), Q(-1,0)\)
and \(\frac{A P}{A Q}=\frac{B P}{B Q}=\frac{C P}{C Q}=\frac{1}{3}\)
\(
\Rightarrow 3 A P=A Q
\)
Let \(A=(x, y)\) then
\(
\begin{aligned}
& 3 A P=A Q \Rightarrow 9 A P^2=A Q^2 \\
& \Rightarrow 9(x-1)^2+9 y^2=(x+1)^2+y^2 \\
& \Rightarrow 9 x^2-18 x+9+9 y^2=x^2+2 x+1+y^2 \\
& \Rightarrow 8 x^2-20 x+8 y^2+8=0 \\
& \Rightarrow x^2+y^2-\frac{5}{3} x+1=0 \dots(1)
\end{aligned}
\)
\(\therefore \quad\) A lies on the circle given by eq (1). As \(B\) and \(C\) also follow the same condition, they must lie on the same circle.
\(\therefore\) Centre of circumcircle of \(\triangle A B C\)
\(=\) Centre of circle given by \((1)=\left(\frac{5}{4}, 0\right)\)
The point diametrically opposite to the point \(P(1,0)\) on the circle \(x^2+y^2+2 x+4 y-3=0\) is [JEE Main 2008]
(c) The given circle is \(x^2+y^2+2 x+4 y-3=0\)
Centre \((-1,-2)\)
Let \(Q(\alpha, \beta)\) be the point diametrically opposite to the point \(P(1,0)\), then \(\frac{1+\alpha}{2}=-1\) and \(\frac{0+\beta}{2}=-2\)
\(
\Rightarrow \alpha=-3, \beta=-4
\)
So, \(Q\) is \((-3,-4)\)
Consider a family of circles which are passing through the point \((-1,1)\) and are tangent to \(x\)-axis. If \((h, k)\) are the coordinate of the centre of the circles, then the set of values of \(k\) is given by the interval [JEE Main 2007]
Equation of circle whose centre is \((h, k)\)
i.e \((x-h)^2+(y-k)^2=k^2\)
\(
\begin{aligned}
& \text { (radius of circle }=k \text { because circle is tangent to } x \text {-axis) } \\
& \text { Equation of circle passing through }(-1,+1) \\
& \therefore(-1-h)^2+(1-k)^2=k^2 \\
& \Rightarrow 1+h^2+2 h+1+k^2-2 k=k^2 \\
& \Rightarrow h^2+2 h-2 k+2=0 \\
& D \geq 0 \\
& \therefore(2)^2-4 \times 1 .(-2 k+2) \geq 0 \\
& \Rightarrow 4-4(-2 k+2) \geq 0 \Rightarrow 1+2 k-2 \geq 0 \Rightarrow k \geq \frac{1}{2} \\
&
\end{aligned}
\)
Let \(C\) be the circle with centre \((0,0)\) and radius 3 units. The equation of the locus of the mid points of the chords of the circle \(C\) that subtend an angle of \(\frac{2 \pi}{3}\) at its center is [JEE Main 2006]
(d) Let \(M(h, k)\) be the mid point of chord \(A B\) where
\(
\angle A O B=\frac{2 \pi}{3}
\)
\(
\begin{aligned}
& \therefore \angle A O M=\frac{\pi}{3} \text {. Also } O M=3 \cos \frac{\pi}{3}=\frac{3}{2} \\
& \Rightarrow \sqrt{h^2+k^2}=\frac{3}{2} \Rightarrow h^2+k^2=\frac{9}{4}
\end{aligned}
\)
\(\therefore\) Locus of \((h, k)\) is \(x^2+y^2=\frac{9}{4}\)
If the lines \(3 x-4 y-7=0\) and \(2 x-3 y-5=0\) are two diameters of a circle of area \(49 \pi\) square units, the equation of the circle is [JEE Main 2006]
(d) Point of intersection of \(3 x-4 y-7=0\) and \(2 x-3 y-5=0\) is \((1,-1)\) which is the centre of the circle and radius \(=7\)
\(\therefore\) Equation is \((x-1)^2+(y+1)^2=49\)
\(\Rightarrow x^2+y^2-2 x+2 y-47=0\)
If a circle passes through the point \((a, b)\) and cuts the circle \(x^2+y^2=p^2\) orthogonally, then the equation of the locus of its centre is [JEE 2005]
(d) Let the centre be \((\alpha, \beta)\)
\(\because\) It cuts the circle \(x^2+y^2=p^2\) orthogonally
\(\therefore\) Using \(2 g_1 g_2+2 f_1 f_2=c_1+c_2\), we get
\(
2(-\alpha) \times 0+2(-\beta) \times 0=c_1-p^2
\)
\(
c_1=p^2
\)
Let equation of circle is
\(
x^2+y^2-2 \alpha x-2 \beta y+p^2=0
\)
It passes through
\(
(a, b) \Rightarrow a^2+b^2-2 \alpha a-2 \beta b+p^2=0
\)
\(\therefore\) Locus of \((\alpha, \beta)\) is
\(
\therefore 2 a x+2 b y-\left(a^2+b^2+p^2\right)=0 .
\)
If the pair of lines \(a x^2+2(a+b) x y+b y^2=0\) lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then [JEE 2005]
As per question area of one sector \(=3\) area of another sector
\(\Rightarrow\) angle at centre by one sector \(=3 \times\) angle at centre by another sector
Let one angle be \(\theta\) then other \(=3 \theta\)
Clearly \(\theta+3 \theta=180 \Rightarrow \theta=45^{\circ}\)
\(\therefore\) Angle between the diameters represented by combined equation
\(
a x^2+2(a+b) x y+b y^2=0 \text { is } 45^{\circ}
\)
\(\therefore\) Using \(\tan \theta=\frac{2 \sqrt{h^2-a b}}{a+b}\)
we get \(\tan 45^{\circ}=\frac{2 \sqrt{(a+b)^2-a b}}{a+b}\)
\(\Rightarrow 1=\frac{2 \sqrt{a^2+b^2+a b}}{a+b}\)
\(\Rightarrow(a+b)^2=4\left(a^2+b^2+a b\right)\)
\(\Rightarrow a^2+b^2+2 a b=4 a^2+4 b^2+4 a b\)
\(\Rightarrow 3 a^2+3 b^2+2 a b=0\)
If the circles \(x^2+y^2+2 a x+c y+a=0\) and \(x^2+y^2-3 a x+d y-1=0\) intersect in two distinct points \(P\) and \(Q\) then the line \(5 x+b y-a=0\) passes through \(P\) and \(Q\) for [JEE 2005]
(b)
\(
\begin{aligned}
& s_1=x^2+y^2+2 a x+c y+a=0 \\
& s_2=x^2+y^2-3 a x+d y-1=0
\end{aligned}
\)
Equation of common chord of circles \(s_1\) and \(s_2\) is given by \(s_1-s_2=0\)
\(
\Rightarrow 5 a x+(c-d) y+a+1=0
\)
Given that \(5 x+b y-a=0\) passes through \(P\) and \(Q\)
\(\therefore\) The two equations should represent the same line
\(
\begin{aligned}
& \Rightarrow \frac{a}{1}=\frac{c-d}{b}=\frac{a+1}{-a} \Rightarrow a+1=-a^2 \\
& a^2+a+1=0
\end{aligned}
\)
No real value of \(a\).
If a circle passes through the point \((a, b)\) and cuts the circle \(x^2+y^2=4\) orthogonally, then the locus of its centre is [JEE Main 2004]
(b) Let the variable circle is
\(
x^2+y^2+2 g x+2 f y+c=0 \dots(1)
\)
It passes through \((a, b)\)
\(
\therefore a^2+b^2+2 g a+2 f b+c=0 \dots(2)
\)
(1) cuts \(x^2+y^2=4\) orthogonally
\(
\therefore 2(g \times 0+f \times 0)=c-4 \Rightarrow c=4
\)
\(\therefore\) from (2) \(a^2+b^2+2 g a+2 f b+4=0\)
\(\therefore\) Locus of centre \((-g,-f)\) is
\(
a^2+b^2-2 a x-2 b y+4=0
\)
or \(2 a x+2 b y=a^2+b^2+4\)
A variable circle passes through the fixed point \(A(p, q)\) and touches \(x\)-axis. The locus of the other end of the diameter through \(A\) is [JEE 2004]
(d) Let the variable circle be
\(
\begin{aligned}
& x^2+y^2+2 g x+2 f y+c=0 \dots(1) \\
& \therefore p^2+q^2+2 g p+2 f q+c=0 \dots(2)
\end{aligned}
\)
Circle (1) touches \(x\)-axis,
\(
\begin{aligned}
& \therefore g^2-c=0 \Rightarrow c=g^2 . \text { From }(2) \\
& p^2+q^2+2 g p+2 f q+g^2=0 \dots(3)
\end{aligned}
\)
Let the other end of diameter through \((p, q)\) be \((h, k)\), then
\(
\frac{h+p}{2}=-g \text { and } \frac{k+q}{2}=-f
\)
Put in (3)
\(
\begin{aligned}
& p^2+q^2+2 p\left(-\frac{h+p}{2}\right)+2 q\left(-\frac{k+q}{2}\right)+\left(\frac{h+p}{2}\right)^2=0 \\
& \Rightarrow h^2+p^2-2 h p-4 k q=0
\end{aligned}
\)
\(\therefore\) locus of \((h, k)\) is \(x^2+p^2-2 x p-4 y q=0\)
\(
\Rightarrow(x-p)^2=4 q y
\)
If the lines \(2 x+3 y+1=0\) and \(3 x-y-4=0\) lie along diameter of a circle of circumference \(10 \pi\), then the equation of the circle is [JEE 2004]
(d) Two diameters are along
\(
\begin{aligned}
& 2 x+3 y+1=0 \text { and } 3 x-y-4=0 \\
& \text { solving we get centre }(1,-1) \\
& \text { circumference }=2 \pi r=10 \pi \\
& \therefore r=5 .
\end{aligned}
\)
Required circle is, \((x-1)^2+(y+1)^2=5^2\)
\(
\Rightarrow x^2+y^2-2 x+2 y-23=0
\)
Intercept on the line \(y=x\) by the circle \(x^2+y^2-2 x=0\) is \(A B\). Equation of the circle on \(A B\) as a diameter is [JEE 2004]
(d) Solving \(y=x\) and the circle
\(x^2+y^2-2 x=0\), we get
\(x=0, y=0\) and \(x=1, y=1\)
\(\therefore\) Extremities of diameter of the required circle are \((0,0)\) and \((1,1)\). Hence, the equation of circle is
\(
\begin{aligned}
& (x-0)(x-1)+(y-0)(y-1)=0 \\
& \Rightarrow x^2+y^2-x-y=0
\end{aligned}
\)
If the two circles \((x-1)^2+(y-3)^2=r^2\) and \(x^2+y^2-8 x+2 y+8=0\) intersect in two distinct point, then [JEE 2003]
(b) \(\left|r_1-r_2\right|<C_1 C_2\) for intersection
\(
\begin{aligned}
& \Rightarrow r-3<5 \Rightarrow r<8 \quad \ldots \text { (1) } \\
& \text { and } r_1+r_2>C_1 C_2, r+3>5 \Rightarrow r>2 \dots(ii) \\
& \text { From(1) and (2), } 2< r <8 \text {. }
\end{aligned}
\)
From(1) and (2), \(2< r <8\).
The lines \(2 x-3 y=5\) and \(3 x-4 y=7\) are diameters of a circle having area as 154 sq.units. Then the equation of the circle is [JEE 2003]
(d) \(\pi r^2=154 \Rightarrow r=7\)
For centre on solving equation
\(2 x-3 y=5 \& 3 x-4 y=7\) we get \(x=1, y=-1\)
\(\therefore[latex] centre [latex]=(1,-1)\)
Equation of circle, \((x-1)^2+(y+1)^2=7^2\)
\(
x^2+y^2-2 x+2 y=47
\)
If the chord \(y=m x+1\) of the circle \(x^2+y^2=1\) subtends an angle of measure \(45^{\circ}\) at the major segment of the circle then value of \(m\) is [JEE 2002]
(c) Equation of circle \(x^2+y^2=1=(1)^2\)
\(\Rightarrow x^2+y^2=(y-m x)^2\)
\(\Rightarrow x^2=m^2 x^2-2 m x y ;\)
\(\Rightarrow x^2\left(1-m^2\right)+2 m x y=0\). Which represents the pair of lines between which the angle is \(45^{\circ}\).
\(
\begin{aligned}
& \tan 45= \pm \frac{2 \sqrt{m^2-0}}{1-m^2}=\frac{ \pm 2 m}{1-m^2} ; \\
& \Rightarrow 1-m^2= \pm 2 m \Rightarrow m^2 \pm 2 m-1=0 \\
& \Rightarrow m=\frac{-2 \pm \sqrt{4+4}}{2} \\
& =\frac{-2 \pm 2 \sqrt{2}}{2}=-1 \pm \sqrt{2} .
\end{aligned}
\)
The centres of a set of circles, each of radius 3, lie on the circle \(x^2+y^2=25\). The locus of any point in the set is [JEE 2002]
(a) For any point \(P ( x , y )\) in the given circle,
we should have
\(
O A \leq O P \leq O B
\)
\(
\begin{aligned}
& \Rightarrow(5-3) \leq \sqrt{x^2+y^2} \leq 5+3 \\
& \Rightarrow 4 \leq x^2+y^2 \leq 64
\end{aligned}
\)
The centre of the circle passing through \((0,0)\) and \((1,0)\) and touching the circle \(x^2+y^2=9\) is [JEE 2002]
(b) Let the required circle be
\(
x^2+y^2+2 g x+2 f y+c=0
\)
Since it passes through \((0,0)\) and \((1,0)\)
\(
\Rightarrow c=0 \text { and } g=-\frac{1}{2}
\)
Points \((0,0)\) and \((1,0)\) lie inside the circle \(x^2+y^2=9\), so two circles touch internally
\(
\begin{aligned}
& \Rightarrow c_1 c_2=r_1-r_2 \\
& \therefore \sqrt{g^2+f^2}=3-\sqrt{g^2+f^2} \Rightarrow \sqrt{g^2+f^2}=\frac{3}{2} \\
& \Rightarrow f^2=\frac{9}{4}-\frac{1}{4}=2 \quad \therefore f= \pm \sqrt{2} .
\end{aligned}
\)
Hence, the centres of required circle are
\(
\left(\frac{1}{2}, \sqrt{2}\right) \text { or }\left(\frac{1}{2},-\sqrt{2}\right)
\)
The equation of a circle with origin as a centre and passing through equilateral triangle whose median is of length \(3 a\) is [JEE 2002]
(c) Let \(A B C\) be an equilateral triangle, whose median is \(A D\).
\(
\begin{aligned}
& \text { Given } A D=3 a \text {. } \\
& \text { In } \triangle A B D, A B^2=A D^2+B D^2 \text {; } \\
& \Rightarrow x^2=9 a^2+\left(x^2 / 4\right) \text { where } A B=B C=A C=x \text {. } \\
& \frac{3}{4} x^2=9 a^2 \Rightarrow x^2=12 a^2 . \\
& \text { In } \triangle O B D, O B^2=O D^2+B D^2
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow r^2=(3 a-r)^2+\frac{x^2}{4} \\
& \Rightarrow r^2=9 a^2-6 a r+r^2+3 a^2 ; \Rightarrow 6 a r=12 a^2 \\
& \Rightarrow r=2 a
\end{aligned}
\)
So equation of circle is \(x^2+y^2=4 a^2\)
If \(y=m x+c\) is the normal at a point on the parabola \(y^2=8 x\) whose focal distance is 8 units, then \(|c|\) is equal to: [Online April 9, 2017]
\(
\begin{aligned}
\text { (c) } & c =-29 m -9 m ^3 \\
& a =2 \\
& \text { Given }\left( at ^2- a \right)^2+4 a ^2 t ^2=64 \\
\Rightarrow & \left( a \left( t ^2+1\right)\right)=8 \\
\Rightarrow & t ^2+1=4 \Rightarrow t ^2=3 \\
\Rightarrow & t =\sqrt{3} \\
\therefore \quad & c =2 at \left(2+ t ^2\right)
\end{aligned}
\)
\(
\begin{aligned}
= & 2 \sqrt{3}(5) \\
|c| & =10 \sqrt{3}
\end{aligned}
\)
If the common tangents to the parabola, \(x^2=4 y\) and the circle, \(x^2+y^2=4\) intersect at the point \(P\), then the distance of \(P\) from the origin, is : [Online April 8, 2017]
\(
\begin{aligned}
& \text { Tangent to } x^2+y^2=4 \text { is } \\
& y= mx \pm 2 \sqrt{1+m^2} \\
& \text { Also, } x^2=4 y \\
& x^2=4 mx +8 \sqrt{1+m^2} \text { or } x^2=4 mx -8 \sqrt{1+m^2} \\
& \text { For } D =0 \\
& \text { we have; } 16 m ^2+4.8 \sqrt{1+m^2}=0 \\
& \Rightarrow m ^2+2 \sqrt{1+m^2}=0 \\
& \Rightarrow m ^2=-2 \sqrt{1+m^2} \\
& \Rightarrow m ^4=4+4 m ^2 \\
& \Rightarrow m ^4-4 m ^2-4=0 \\
& \Rightarrow m ^2=\frac{4 \pm \sqrt{16+16}}{2} \\
& \Rightarrow m ^2=\frac{4 \pm 4 \sqrt{2}}{2} \\
& \Rightarrow \quad m ^2=2+2 \sqrt{2} \\
&
\end{aligned}
\)
Let \(P\) be the point on the parabola, \(y^2=8 x\) which is at a minimum distance from the centre \(C\) of the circle, \(x^2+(y+6)^2=1\). Then the equation of the circle, passing through \(C\) and having its centre at \(P\) is: [JEE 2016]
(c) Minimum distance \(\Rightarrow\) perpendicular distance
Eqn of normal at \(p\left(2 t^2, 4 t\right)\)
\(
y=-t x+4 t+2 t^3
\)
It passes through \(C (0,-6)\)
\(
\Rightarrow t^3+2 t+3=0 \Rightarrow t=-1
\)
\(
\begin{aligned}
& \text { Centre of new circle }= P \left(2 t ^2, 4 t \right) \\
& = P (2,-4) \\
& \text { Radius }=\text { PC } \\
& =\sqrt{(2-0)^2+(-4+6)^2} \\
&
\end{aligned}
\)
\(
=2 \sqrt{2}
\)
\(\therefore\) Equation of circle is :
\(
\begin{aligned}
& (x-2)^2+(y+4)=(2 \sqrt{2})^2 \\
\Rightarrow & x^2+y^2-4 x+8 y+12=0
\end{aligned}
\)
\(P\) and \(Q\) are two distinct points on the parabola, \(y^2=4 x\), with parameters \(t\) and \(t_1\) respectively. If the normal at \(P\) passes through \(Q\), then the minimum value of \(t_1^2\) is: [Online April 10, 2016]
(a) \(t_1=-t-\frac{2}{t}\)
\(
\begin{aligned}
& t_1^2=t^2+\frac{4}{t^2}+4 \\
& t^2+\frac{4}{t^2} \geq 2 \sqrt{t^2 \cdot \frac{4}{t^2}}=4
\end{aligned}
\)
Minimum value of \(t_1^2=8\)
Let \(O\) be the vertex and \(Q\) be any point on the parabola, \(x ^2=8 y\). If the point \(P\) divides the line segment \(OQ\) internally in the ratio \(1: 3\), then locus of \(P\) is : [JEE Main 2015]
(b) Let \(P ( h , k )\) divides
\(OQ\) in the ratio \(1: 3\)
Let any point \(Q\) on \(x ^2=8 y\) is \(\left(4 t , 2 t ^2\right)\).
Then by section formula
\(
\begin{aligned}
& \Rightarrow \quad k =\frac{ t ^2}{2} \text { and } h = t \\
& \Rightarrow \quad 2 k = h ^2
\end{aligned}
\)
Required locus of \(P\) is \(x ^2=2 y\)
Let PQ be a double ordinate of the parabola, \(y^2=-4 x\), where \(P\) lies in the second quadrant. If \(R\) divides \(P Q\) in the ratio \(2: 1\) then the locus of \(R\) is : [Online April 11, 2015]
\(
\text { (d) Let } P \left(- at _1^2, 2 at _1\right), Q \left(- at _1^2,-2 at _1\right) \text { and } R ( h , k )
\)
By using section formula, we have
\(
\begin{aligned}
& h =- at _1^2, k =\frac{-2 at _1}{3} \\
& k =-\frac{2 at _1}{3}
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow 3 k =-2 at _1 \\
& \Rightarrow 9 k ^2=4 a ^2 t _1^2=4 a (- h ) \\
& \Rightarrow 9 k ^2=-4 a h \\
& \Rightarrow 9 k ^2=-4 h \Rightarrow 9 y ^2=-4 x
\end{aligned}
\)
The slope of the line touching both the parabolas \(y^2=4 x\) and \(x^2=-32 y\) is [JEE Main 2014]
(c) Given parabolas are
\(
\begin{aligned}
& y^2=4 x \dots(i) \\
& x^2=-32 y \dots(ii)
\end{aligned}
\)
Let \(m\) be slope of common tangent
Equation of tangent of parabola (i)
\(
y=m x+\frac{1}{m} \dots(iii)
\)
Equation of tangent of parabola (ii)
\(
y=m x+8 m^2 \dots(iv)
\)
(iii) and (iv) are identical
\(
\Rightarrow \frac{1}{m}=8 m^2 \Rightarrow m^3=\frac{1}{8} \Rightarrow m=\frac{1}{2}
\)
Alternate:
Let tangent to \(y^2=4 x\) be \(y=m x+\frac{1}{m}\)
Since this is also tangent to \(x^2=-32 y\)
\(
\begin{aligned}
& \therefore x^2=-32\left(m x+\frac{1}{m}\right) \\
& \Rightarrow x^2+32 m x+\frac{32}{m}=0
\end{aligned}
\)
Now, \(D =0\)
\(
\begin{aligned}
(32)^2-4\left(\frac{32}{m}\right) & =0 \\
\Rightarrow m^3=\frac{4}{32} \quad \Rightarrow m & =\frac{1}{2}
\end{aligned}
\)
A chord is drawn through the focus of the parabola \(y^2=6 x\) such that its distance from the vertex of this parabola is \(\frac{\sqrt{5}}{2}\), then its slope can be: [Online April 19, 2014]
(a) Equation of parabola, \(y^2=6 x\)
\(
\begin{aligned}
& \Rightarrow y^2=4 \times \frac{3}{2} x \\
& \therefore \text { Focus }=\left(\frac{3}{2}, 0\right)
\end{aligned}
\)
Let equation of chord passing through focus be \(a x+b y+c=0 \dots(1)\)
Since chord is passing through \(\left(\frac{3}{2}, 0\right)\)
\(\therefore\) Put \(x=\frac{3}{2}, y=0[latex] in eqn (1), we get [latex]\frac{3}{2} a+c=0\)
\(\Rightarrow c=-\frac{3}{2} a \dots(2)\)
distance of chord from origin is \(\frac{\sqrt{5}}{2}\)
\(
\frac{\sqrt{5}}{2}=\left|\frac{a(0)+b(0)+c}{\sqrt{a^2+b^2}}\right|=\frac{c}{\sqrt{a^2+b^2}}
\)
Squaring both sides
\(
\begin{aligned}
& \frac{5}{4}=\frac{c^2}{a^2+b^2} \\
& \Rightarrow a^2+b^2=\frac{4}{5} c^2
\end{aligned}
\)
Putting value of \(c\) from (2), we get
\(
\begin{aligned}
& a^2+b^2=\frac{4}{5} \times \frac{9}{4} a^2 \\
& b^2=\frac{9}{5} a^2-a^2=\frac{4}{5} a^2 \\
& \frac{a^2}{b^2}=\frac{5}{4}, \frac{a}{b}= \pm \frac{\sqrt{5}}{2}
\end{aligned}
\)
Slope of chord, \(\frac{d y}{d x}=-\frac{a}{b}=-\left(\frac{ \pm \sqrt{5}}{2}\right)=\mp \frac{\sqrt{5}}{2}\)
Two tangents are drawn from a point \((-2,-1)\) to the curve, \(y^2=4 x\). If \(\alpha\) is the angle between them, then \(|\tan \alpha|\) is equal to: [Online April 12, 2014]
\(
\begin{aligned}
& \text { (d) The locus of the point of intersection of tangents to } \\
& \text { the parabola } y^2=4 a x \text { inclined at an angle } \alpha \text { to each } \\
& \text { other is } \\
& \tan ^2 \alpha(x+a)^2=y^2-4 a x \\
& \text { Given equation of Parabola } y^2=4 x\{a=1\} \\
& \text { Point of intersection }(-2,-1) \\
& \tan ^2 \alpha(-2+1)^2=(-1)^2-4 \times 1 \times(-2) \\
& \Rightarrow \quad \tan ^2 \alpha=9 \\
& \Rightarrow \quad \tan \alpha= \pm 3 \\
& \Rightarrow \quad|\tan \alpha|=3
\end{aligned}
\)
Let \(L_1\) be the length of the common chord of the curves \(x^2+y^2=9\) and \(y^2=8 x\), and \(L_2\) be the length of the latus rectum of \(y^2=8 x\), then: [Online April 11, 2014]
We have
\(
\begin{aligned}
& x^2+(8 x)=9 \\
& x^2+9 x-x-9=0 \\
& x(x+9)-1(x+9)=0 \\
& (x+9)(x-1)=0 \\
& x=-9,1 \\
& \text { for } x=1, y= \pm 2 \sqrt{2 x}= \pm 2 \sqrt{2} \\
& L _1=\text { Length of } AB \\
& \qquad=\sqrt{(2 \sqrt{2}+2 \sqrt{2})^2+(1-1)^2}=4 \sqrt{2} \\
& L _2=\text { Length of latus rectum }=4 a=4 \times 2=8 \\
& L _1< L _2
\end{aligned}
\)
Given : A circle, \(2 x^2+2 y^2=5\) and a parabola, \(y^2=4 \sqrt{5} x\).
Statement-1 : An equation of a common tangent to these curves is \(y=x+\sqrt{5}\).
Statement-2 : If the line, \(y=m x+\frac{\sqrt{5}}{m}(m \neq 0)\) is their common tangent, then \(m\) satisfies \(m^4-3 m^2+2=0\). [JEE Main 2013]
(b) Let common tangent be
\(
y=m x+\frac{\sqrt{5}}{m}
\)
Since, perpendicular distance from centre of the circle to the common tangent is equal to radius of the circle,
therefore \(\frac{\frac{\sqrt{5}}{m}}{\sqrt{1+m^2}}=\sqrt{\frac{5}{2}}\)
On squaring both the side, we get
\(
\begin{aligned}
& m^2\left(1+m^2\right)=2 \\
\Rightarrow & m^4+m^2-2=0 \\
\Rightarrow & \left(m^2+2\right)\left(m^2-1\right)=0 \\
\Rightarrow & m= \pm 1 \quad(\because m \neq \pm \sqrt{2})
\end{aligned}
\)
\(y= \pm(x+\sqrt{5})\), both statements are correct as \(m= \pm 1\) satisfies the given equation of statement-2.
The point of intersection of the normals to the parabola \(y^2=4 x\) at the ends of its latus rectum is : [Online April 23, 2013]
(b) We know that point of intersection of the normal to the parabola \(y^2=4 a x\) at the ends of its latus rectum is \((3 a, 0)\)
Hence required point of intersection \(=(3,0)\)
Statement-1: The line \(x-2 y=2\) meets the parabola, \(y^2+2 x=0\) only at the point \((-2,-2)\).
Statement-2: The line \(y=m x-\frac{1}{2 m}(m \neq 0)\) is tangent to the parabola, \(y^2=-2 x\) at the point \(\left(-\frac{1}{2 m^2},-\frac{1}{m}\right)\). [Online April 22, 2013]
(b) Both statements are true and statement- 2 is the correct explanation of statement-1
\(\therefore \quad\) The straight line \(y=m x+\frac{a}{m}\) is always a tangent to the parabola \(y^2=4 a x\) for any value of \(m\).
The co-ordinates of point of contact \(\left(\frac{a}{m^2}, \frac{2 a}{m}\right)\)
Now, required radius \(= OB =\sqrt{9+16}=\sqrt{25}=5\)
The normal at \(\left(2, \frac{3}{2}\right)\) to the ellipse, \(\frac{x^2}{16}+\frac{y^2}{3}=1\) touches a parabola, whose equation is [Online May 26, 2012]
(a) Ellipse is \(\frac{x^2}{16}+\frac{y^2}{3}=1\)
Now, equation of normal at \((2,3 / 2)\) is
\(
\begin{aligned}
& \frac{16 x}{2}-\frac{3 y}{3 / 2}=16-3 \\
& \Rightarrow \quad 8 x-2 y=13 \\
& \Rightarrow \quad y=4 x-\frac{13}{2}
\end{aligned}
\)
Let \(y=4 x-\frac{13}{2}\) touches a parabola
\(
y^2=4 a x \text {. }
\)
We know, a straight line \(y=m x+c\) touches a parabola \(y^2=4 a x\) if \(a-m c=0\)
\(
\therefore \quad a-(4)\left(-\frac{13}{2}\right)=0 \Rightarrow a=-26
\)
Hence, required equation of parabola is
\(
y^2=4(-26) x=-104 x
\)
The chord \(P Q\) of the parabola \(y^2=x\), where one end \(P\) of the chord is at point \((4,-2)\), is perpendicular to the axis of the parabola. Then the slope of the normal at \(Q\) is [Online May 26, 2012]
(a) Point \(P\) is \((4,-2)\) and \(P Q \perp x\)-axis So, \(Q=(4,2)\)
Equation of tangent at \((4,2)\) is
\(
\begin{aligned}
& y y_1=\frac{1}{2}\left(x+x_1\right) \\
& \Rightarrow 2 y=\frac{1}{2}(x+2) \Rightarrow 4 y=x+2 \\
& \Rightarrow y=\frac{x}{4}+\frac{1}{2}
\end{aligned}
\)
So, slope of tangent \(=\frac{1}{4}\)
\(\therefore\) Slope of normal \(=-4\)
Statement \(1: y=m x-\frac{1}{m}\) is always a tangent to the parabola, \(y^2=-4 x\) for all non-zero values of \(m\).
Statement 2: Every tangent to the parabola, \(y^2=-4 x\) will meet its axis at a point whose abscissa is non-negative. [Online May 7, 2012]
\(
y^2=-4 x
\)
Eqn of tangent
\(
\begin{gathered}
y=m x-\frac{a}{m} . \\
y=m x-\frac{1}{m}
\end{gathered}
\)
\(
-4 a=-4; a=1
\)
Both the given statements are true.
Statement – 2 is not the correct explanation for statement – 1.
The shortest distance between line \(y-x=1\) and curve \(x=y^2\) is [JEE Main 2011]
(a) Shortest distance between two curve occurred along the common normal, so \(-2 t=-1\) \(\Rightarrow t=1 / 2\)
\(
\text { So shortest distance between them is } \frac{3 \sqrt{2}}{8}
\)
If two tangents drawn from a point \(P\) to the parabola \(y^2=4 x\) are at right angles, then the locus of \(P\) is [JEE Main 2010]
(b) The locus of perpendicular tangents is directrix i.e., \(x=-a ; x=-1\)
A parabola has the origin as its focus and the line \(x=2\) as the directrix. Then the vertex of the parabola is at [JEE 2008]
(b) Vertex of a parabola is the mid point of focus and the point where directrix meets the axis of the parabola.
Here focus is \(O(0,0)\) and directrix meets the axis at \(B(2,0)\)
\(\therefore\) Vertex of the parabola is \((1,0)\)
The equation of a tangent to the parabola \(y^2=8 x\) is \(y=x+2\). The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is [JEE Main 2007]
\(
\text { (b) Parabola } y^2=8 x
\)
We know that the locus of point of intersection of two perpendicular tangents to a parabola is its directrix.
Point must be on the directrix of parabola
\(\because\) equation of directrix \(x+2=0\)
\(
\Rightarrow x=-2
\)
Hence the point is \((-2,0)\)
The locus of the vertices of the family of parabolas \(y=\frac{a^3 x^2}{3}+\frac{a^2 x}{2}-2 a\) is [JEE 2006]
(a) Given parabola is \(y=\frac{a^3 x^2}{3}+\frac{a^2 x}{2}-2 a\)
\(
\begin{aligned}
& \Rightarrow y=\frac{a^3}{3}\left(x^3+\frac{3}{2 a} x+\frac{9}{16 a^2}\right)-\frac{3 a}{16}-2 a \\
& \Rightarrow y+\frac{35 a}{16}=\frac{a^3}{3}\left(x+\frac{3}{4 a}\right)^2
\end{aligned}
\)
\(\therefore\) Vertex of parabola is \(\left(\frac{-3}{4 a}, \frac{-35 a}{16}\right)\)
To find locus of this vertex, \(x=\frac{-3}{4 a}\) and \(y=\frac{-35 a}{16}\)
\(\Rightarrow a=\frac{-3}{4 x}\) and \(a=-\frac{16 y}{35}\)
\(\Rightarrow \frac{-3}{4 x}=\frac{-16 y}{35} \Rightarrow 64 x y=105\)
\(\Rightarrow x y=\frac{105}{64}\) which is the required locus.
Let \(P[latex] be the point [latex](1,0)\) and \(Q\) a point on the locus \(y^2=8 x\). The locus of mid point of \(P Q\) is [JEE 2005]
(a) \(P=(1,0) Q=(h, k)\) Such that \(K^2=8 h\) Let \((\alpha, \beta)\) be the midpoint of \(P Q\)
\(
\begin{array}{ll}
\alpha=\frac{h+1}{2}, & \beta=\frac{k+0}{2} \\
2 \alpha-1=h & 2 \beta=k .
\end{array}
\)
\(
\begin{aligned}
& (2 \beta)^2=8(2 \alpha-1) \Rightarrow \beta^2=4 \alpha-2 \\
& \Rightarrow y^2-4 x+2=0 .
\end{aligned}
\)
A circle touches the \(x\) – axis and also touches the circle with centre at \((0,3)\) and radius 2 . The locus of the centre of the circle is [JEE 2005]
(d) Equation of circle with centre \((0,3)\) and radius 2 is \(x^2+(y-3)^2=4\)
Let locus of the variable circle is \((\alpha, \beta)\)
\(\because \quad\) It touches \(x\)-axis.
\(\therefore \quad\) It’s equation is \((x-\alpha)^2+(y+\beta)^2=\beta^2\)
Circle touch externally \(\Rightarrow c_1 c_2=r_1+r_2\)
\(
\begin{aligned}
& \therefore \sqrt{\alpha^2+(\beta-3)^2}=2+\beta \\
& \alpha^2+(\beta-3)^2=\beta^2+4+4 \beta \\
& \Rightarrow \alpha^2=10(\beta-1 / 2)
\end{aligned}
\)
\(\therefore\) Locus is \(x^2=10\left(y-\frac{1}{2}\right)\)
Which is parabola.
If \(a \neq 0\) and the line \(2 b x+3 c y+4 d=0\) passes through the points of intersection of the parabolas \(y^2=4 a x\) and \(x^2 \quad 4 a y\), then [JEE 2004]
(d) Solving equations of parabolas
\(
y^2=4 a x \text { and } x^2=4 a y
\)
we get \((0,0)\) and \((4 a, 4 a)\)
Substituting in the given equation of line
\(
2 b x+3 c y+4 d=0 \text {, }
\)
we get \(d=0\) and \(2 b+3 c=0\)
\(
\Rightarrow d^2+(2 b+3 c)^2=0
\)
The normal at the point \(\left(b t_1{ }^2, 2 b t_1\right)\) on a parabola meets the parabola again in the point \(\left(b t_2{ }^2, 2 b t_2\right)\), then [JEE 2003]
(b) Equation of the normal to a parabola \(y^2=4 b x\) at point \(\left(b t_1^2, 2 b t_1\right)\) is \(y=-t_1 x+2 b t_1+b t_1^3\) As given, it also passes through \(\left(b t_2^2, 2 b t_2\right)\) then
\(
\begin{aligned}
& 2 b t_2=-t_1 b t_2^2+2 b t_1+b t_1^3 \\
& 2 t_2-2 t_1=-t_1\left(t_2^2-t_1^2\right) \\
& =-t_1\left(t_2+t_1\right)\left(t_2-t_1\right) \\
& \Rightarrow 2=-t_1\left(t_2+t_1\right) \Rightarrow t_2+t_1=-\frac{2}{t_1} \\
& \Rightarrow t_2=-t_1-\frac{2}{t_1}
\end{aligned}
\)
Two common tangents to the circle \(x^2+y^2=2 a^2\) and parabola \(y^2=8 a x\) are [JEE 2002]
(b) Any tangent to the parabola \(y^2=8 a x\) is
\(
y=m x+\frac{2 a}{m} \dots(i)
\)
If (i) is a tangent to the circle, \(x^2+y^2=2 a^2\) then,
\(
\begin{aligned}
& \sqrt{2} a= \pm \frac{2 a}{m \sqrt{m^2+1}} \\
& \Rightarrow m^2\left(1+m^2\right)=2 \Rightarrow\left(m^2+2\right)\left(m^2-1\right)=0 \Rightarrow m= \pm 1 .
\end{aligned}
\)
So from (i), \(y= \pm(x+2 a)\).
The eccentricity of an ellipse having centre at the origin, axes along the co-ordinate axes and passing through the points \((4,-1)\) and \((-2,2)\) is : [Online April 9, 2017]
(c) Centre at \((0,0)\)
\(
\begin{aligned}
& \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \\
& \text { at point }(4,-1) \\
& \frac{16}{a^2}+\frac{1}{b^2}=1 \\
\Rightarrow \quad & 16 b^2+a^2=a^2 b^2 \dots(i)\\
& \text { at point }(-2,2) \\
& \frac{4}{a^2}+\frac{4}{b^2}=1 \\
\Rightarrow & 4 b^2+4 a^2=a^2 b^2 \dots(ii) \\
\Rightarrow & 16 b^2+a^2=4 a^2+4 b^2
\end{aligned}
\)
From equations (i) and (ii)
\(
\begin{aligned}
& \Rightarrow \quad 3 a^2=12 b^2 \\
& \Rightarrow \quad a^2=4 b^2 \\
& b ^2= a ^2\left(1-e^2\right) \\
& \Rightarrow \quad e ^2=\frac{3}{4} \\
& \Rightarrow \quad e =\frac{\sqrt{3}}{2}
\end{aligned}
\)
Consider an ellipse, whose centre is at the origin and its major axis is along the \(x\)-axis. If its eccentricity is \(\frac{3}{5}\) and the distance between its foci is 6 , then the area (in sq. units) of the quadrilateral inscribed in the ellipse, with the vertices as the vertices of the ellipse, is : [Online April 8, 2017]
\(
\begin{aligned}
& \text { (d) } e =3 / 5 \& 2 ae =6 \Rightarrow a =5 \\
& \because b ^2= a ^2\left(1- e ^2\right) \\
& \Rightarrow b ^2=25(1-9 / 25)
\end{aligned}
\)
\(
\begin{aligned}
& \Rightarrow \quad b =4 \\
& \therefore \quad \text { area of required quadrilateral }=4(1 / 2 ab ) \\
&=2 ab =40
\end{aligned}
\)
If the tangent at a point on the ellipse \(\frac{x^2}{27}+\frac{y^2}{3}=1\) meets the coordinate axes at \(A\) and \(B\), and \(O\) is the origin, then the minimum area (in sq. units) of the triangle \(O A B\) is : [Online April 9, 2016]
(c) Equation of tangent to ellipse
\(
\frac{x}{\sqrt{27}} \cos \theta+\frac{y}{\sqrt{3}} \sin \theta=1
\)
Area bounded by line and co-ordinate axis
\(
\begin{aligned}
& \Delta=\frac{1}{2} \cdot \frac{\sqrt{27}}{\cos \theta} \cdot \frac{\sqrt{3}}{\sin \theta}=\frac{9}{\sin 2 \theta} \\
& \Delta=\text { will be minimum when } \sin 2 \theta=1 \\
& \Delta_{\min }=9
\end{aligned}
\)
The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse \(\frac{x^2}{9}+\frac{y^2}{5}=1\), is : (JEE Main 2015)
(b) The end point of latus rectum of ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) in first quadrant is \(\left(a e, \frac{b^2}{a}\right)\) and the tangent at this point intersects \(x\)-axis at \(\left(\frac{a}{e}, 0\right)\) and \(y\)-axis at \((0, a)\).
The given ellipse is \(\frac{x^2}{9}+\frac{y^2}{5}=1\)
Then \(a^2=9, b^2=5\)
\(\Rightarrow e=\sqrt{1-\frac{5}{9}}=\frac{2}{3}\)
\(\therefore\) end point of latus rectum in first quadrant is \(L(2,5 / 3)\)
Equation of tangent at \(L\) is \(\frac{2 x}{9}+\frac{y}{3}=1\)
It meets \(x\)-axis at \(A(9 / 2,0)\) and \(y[latex]-axis at [latex]B(0,3)\)
\(\therefore \quad\) Area of \(\triangle OAB =\frac{1}{2} \times \frac{9}{2} \times 3=\frac{27}{4}\)
By symmetry area of quadrilateral \(=4 \times(\) Area \(\triangle O A B)=4 \times \frac{27}{4}=27\) sq. units.
If the distance between the foci of an ellipse is half the length of its latus rectum, then the eccentricity of the ellipse is: [Online April 11, 2015]
\(
\begin{aligned}
& S_1 S_2=\text { distance between foci } \\
& =2 a e=\frac{1}{2}\left(\text { length of latus rectum }=\frac{2 b^2}{a}\right. \text { ) } \\
& \therefore 2 a e=\frac{1}{2}\left(\frac{2 b^2}{a}\right) \\
& \Rightarrow 2 a^2 e=b^2 \\
& \Rightarrow e=\frac{b^2}{2 a^2}=\frac{a^2\left(1-e^2\right)}{2 a^2}=\frac{1-e^2}{2} \\
& \Rightarrow e^2+2 e-1=0 \\
& \Rightarrow e=\frac{-2+\sqrt{4+4}}{2}=\frac{\sqrt{8-2}}{2}=\sqrt{2}-1
\end{aligned}
\)
The locus of the foot of perpendicular drawn from the centre of the ellipse \(x^2+3 y^2=6\) on any tangent to it is [JEE Main 2014]
(a) Given equation of ellipse can be written as
\(
\begin{aligned}
& \frac{x^2}{6}+\frac{y^2}{2}=1 \\
& \Rightarrow a^2=6, b^2=2
\end{aligned}
\)
Now, equation of any variable tangent is
\(
y=m x \pm \sqrt{a^2 m^2+b^2} \dots(i)
\)
where \(m\) is slope of the tangent
So, equation of perpendicular line drawn from centre to tangent is
\(
y=\frac{-x}{m} \dots(ii)
\)
Eliminating \(m\), we get
\(
\begin{aligned}
& \left(x^4+y^4+2 x^2 y^2\right)=a^2 x^2+b^2 y^2 \\
\Rightarrow & \left(x^2+y^2\right)^2=a^2 x^2+b^2 y^2 \\
\Rightarrow & \left(x^2+y^2\right)^2=6 x^2+2 y^2
\end{aligned}
\)
A stair-case of length \(l\) rests against a vertical wall and a floor of a room. Let \(P\) be a point on the stair-case, nearer to its end on the wall, that divides its length in the ratio \(1: 2\). If the stair-case begins to slide on the floor, then the locus of P is: [Online April 11, 2014]
(b) Let point \(A (a, 0)\) is on \(x\)-axis and \(B (0, b)\) is on \(y\)-axis.
Let \(P (h, k)\) divides \(AB\) in the ratio \(1: 2\).
So, by section formula
\(
h=\frac{2(0)+1(a)}{1+2}=\frac{a}{3}
\)
\(
k=\frac{2(b)+1(0)}{3}=\frac{2 b}{3}
\)
\(\Rightarrow a=3 h\) and \(b=\frac{3 k}{2}\)
Now, \(a^2+b^2=l^2\)
\(\Rightarrow 9 h^2+\frac{9 k^2}{4}=l^2\)
\(
\Rightarrow \frac{h^2}{\left(\frac{l}{3}\right)^2}+\frac{k^2}{\left(\frac{2 l}{3}\right)^2}=1
\)
Now \(e=\sqrt{1-\left(\frac{l^2}{9} \times \frac{9}{4 l^2}\right)}=\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2}\)
Thus, required locus of \(P\) is an ellipse with eccentricity \(\frac{\sqrt{3}}{2}\).
If \(OB\) is the semi-minor axis of an ellipse, \(F _1\) and \(F _2\) are its foci and the angle between \(F_1 B\) and \(F_2 B\) is a right angle, then the square of the eccentricity of the ellipse is: [Online April 9, 2014]
(a) Let \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) be the equation of ellipse.
Given that \(F_1 B\) and \(F_2 B\) are perpendicular to each other.
Slope of \(F_1 B \times\) slope of \(F_2 B=-1\)
\(
\left(\frac{0-b}{-a e-0}\right) \times\left(\frac{0-b}{a e-0}\right)=-1
\)
\(
\begin{aligned}
& \left(\frac{b}{a e}\right) \times\left(\frac{-b}{a e}\right)=-1 \\
& b^2=a^2 e^2 \\
& e^2=\frac{b^2}{a^2} \\
& \left\{\because e^2=1-\frac{b^2}{a^2}\right\} \\
&
\end{aligned}
\)
\(
\begin{aligned}
& 1-\frac{b^2}{a^2}=\frac{b^2}{a^2} \\
& 1=2 \frac{b^2}{a^2} \Rightarrow \frac{b^2}{a^2}=\frac{1}{2} \\
& e^2=1-\frac{b^2}{a^2}=1-\frac{1}{2}=\frac{1}{2} \\
& e^2=\frac{1}{2}
\end{aligned}
\)
No common tangents for these two circles.
The equation of the circle passing through the foci of the ellipse \(\frac{x^2}{16}+\frac{y^2}{9}=1\), and having centre at \((0,3)\) is [JEE Main 2013]
(a) From the given equation of ellipse, we have
\(
a=4, b=3, e=\sqrt{1-\frac{9}{16}}
\)
\(
\Rightarrow e=\frac{\sqrt{7}}{4}
\)
Now, radius of this circle \(=a^2=16\)
\(
\Rightarrow \text { Focii }=( \pm \sqrt{7}, 0)
\)
Now equation of circle is \((x-0)^2+(y-3)^2=16\)
\(
x^2+y^2-6 y-7=0
\)
A point on the ellipse, \(4 x^2+9 y^2=36\), where the normal is parallel to the line, \(4 x-2 y-5=0\), is: [Online April 25, 2013]
(c) Given ellipse is \(4 x^2+9 y^2=36\)
\(
\Rightarrow \frac{x^2}{9}+\frac{y^2}{4}=1
\)
Normal at the point is parallel to the line
\(
4 x-2 y-5=0
\)
Slope of normal \(=2\)
Slope of tangent \(=\frac{-1}{2}\)
Point of contact to ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
and line is \(\left(\frac{a^2 m}{\sqrt{a^2 m^2+b^2}}, \frac{b}{\sqrt{a^2 m^2+b^2}}\right)\)
Now, \(a^2=9, b^2=4\)
\(
\therefore \quad \text { Point }=\left(\frac{-9}{5}, \frac{8}{5}\right)
\)
Let the equations of two ellipses be
\(
E_1: \frac{x^2}{3}+\frac{y^2}{2}=1 \text { and } E_2: \frac{x^2}{16}+\frac{y^2}{b^2}=1,
\)
If the product of their eccentricities is \(\frac{1}{2}\), then the length of the minor axis of ellipse \(E_2\) is : [Online April 22, 2013]
(c) Given equations of ellipses
\(
\begin{aligned}
& E _1: \frac{x^2}{3}+\frac{y^2}{2}=1 \\
& \Rightarrow e_1=\sqrt{1-\frac{2}{3}}=\frac{1}{\sqrt{3}} \\
& \text { and } E _2: \frac{x^2}{16}+\frac{y^2}{b^2}=1 \\
& \Rightarrow e_2=\sqrt{\frac{1-b^2}{16}}=\sqrt{\frac{16-b^2}{4}}
\end{aligned}
\)
Also, given \(e_1 \times e_2=\frac{1}{2}\)
\(
\begin{aligned}
& \Rightarrow \frac{1}{\sqrt{3}} \times \sqrt{\frac{16-b^2}{4}}=\frac{1}{2} \Rightarrow 16-b^2=12 \\
& \Rightarrow b^2=4
\end{aligned}
\)
\(\therefore\) Length of minor axis of
\(
E _2=2 b=2 \times 2=4
\)
Equation of the line passing through the points of intersection of the parabola \(x^2=8 y\) and the ellipse \(\frac{x^2}{3}+y^2=1\) is : [Online April 9, 2013]
(d)
\(
x^2=8 y \dots(i)
\)
\(
\frac{x^2}{3}+y^2=1 \dots(ii)
\)
From (i) and (ii),
\(
\frac{8 y}{3}+y^2=1 \Rightarrow y=-3, \frac{1}{3}
\)
When \(y=-3\), then \(x^2=-24\), which is not possible.
When \(y=\frac{1}{3}\), then \(x= \pm \frac{2 \sqrt{6}}{3}\)
Point of intersection are
\(
\left(\frac{2 \sqrt{6}}{3}, \frac{1}{3}\right) \text { and }\left(-\frac{2 \sqrt{6}}{3}, \frac{1}{3}\right)
\)
Required equation of the line,
\(
y-\frac{1}{3}=0 \Rightarrow 3 y-1=0
\)
If \(P_1\) and \(P_2\) are two points on the ellipse \(\frac{x^2}{4}+y^2=1\) at which the tangents are parallel to the chord joining the points \((0,1)\) and \((2,0)\), then the distance between \(P_1\) and \(P_2\) is [Online May 12, 2012]
(d) Any tangent on an ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) is given by \(y=m x \pm \sqrt{a^2 m^2+b^2}\)
Here \(a=2, b=1\)
\(
\begin{aligned}
& m=\frac{1-0}{0-2}=-\frac{1}{2} \\
& c=\sqrt{4\left(-\frac{1}{2}\right)^2+1^2}=\sqrt{2}
\end{aligned}
\)
So, \(y=-\frac{1}{2} x \pm \sqrt{2}\)
For ellipse : \(\frac{x^2}{4}+\frac{y^2}{1}=1\)
We put \(y=-\frac{1}{2} x+\sqrt{2}\)
\(
\begin{aligned}
& \therefore \frac{x^2}{4}+\left(-\frac{x}{2}+\sqrt{2}\right)^2=1 \\
& \frac{x^2}{4}+\left(\frac{x^2}{4}-2\left(\frac{x}{2}\right) \sqrt{2}+2\right)=1 \\
& \Rightarrow x^2+2 \sqrt{2} x+2=0 \\
& \text { or } x^2-2 \sqrt{2} x+2=0 \\
& \Rightarrow x=\sqrt{2} \text { or }-\sqrt{2}
\end{aligned}
\)
If \(x=\sqrt{2}, y=\frac{1}{\sqrt{2}}\) and \(x=-\sqrt{2}, y=-\frac{1}{\sqrt{2}}\)
\(\therefore\) Points are \(\left(\sqrt{2}, \frac{1}{\sqrt{2}}\right),\left(-\sqrt{2},-\frac{1}{\sqrt{2}}\right)\)
\(
\begin{aligned}
& \therefore P_1 P_2=\sqrt{\left\{\frac{1}{\sqrt{2}}-\left(-\frac{1}{\sqrt{2}}\right)\right\}^2+\{\sqrt{2}-(-\sqrt{2})\}^2} \\
= & \sqrt{\left(\frac{2}{\sqrt{2}}\right)^2+(2 \sqrt{2})^2}=\sqrt{2+8}=\sqrt{10}
\end{aligned}
\)
Equation of the ellipse whose axes are the axes of coordinates and which passes through the point \((-3,1)\) and has eccentricity \(\sqrt{\frac{2}{5}}\) is [JEE Main 2011]
(d) Let the ellipse be \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
It passes through \((-3,1)\) so \(\frac{9}{a^2}+\frac{1}{b^2}=1 \dots(i) \)
\(Also , b^2=a^2(1-2 / 5)\)
\(
\Rightarrow 5 b^2=3 a^2 \dots(ii)
\)
Solving (i) and (ii) we get \(a ^2=\frac{32}{3}, b^2=\frac{32}{5}\)
So, the equation of the ellipse is
\(
3 x^2+5 y^2=32
\)
The ellipse \(x^2+4 y^2=4\) is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point \((4,0)\). Then the equation of the ellipse is : [JEE Main 2009]
(a) The given ellipse is \(\frac{x^2}{4}+\frac{y^2}{1}=1\)
So \(A=(2,0)\) and \(B=(0,1)\)
If \(P Q R S\) is the rectangle in which it is inscribed, then \(P=(2,1)\).
Let \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\) be the ellipse
circumscribing the rectangle \(P Q R S\).
Then it passed through \(P(2,1)\)
\(
\therefore \frac{4}{a^2}+\frac{1}{b^2}=1
\)
Also, given that, it passes through \((4,0)\)
\(
\begin{aligned}
& \therefore \frac{16}{a^2}+0=1 \Rightarrow a^2=16 \\
& \Rightarrow b^2=4 / 3\left[\text { substituting a } a ^2=16 \text { in } eqn ( A )\right]
\end{aligned}
\)
\(\therefore \quad\) The required ellipse is \(\frac{x^2}{16}+\frac{y^2}{4 / 3}=1\)
\(
\text { or } x^2+12 y^2=16
\)
A focus of an ellipse is at the origin. The directrix is the line \(x=4\) and the eccentricity is \(\frac{1}{2}\). Then the length of the semimajor axis is [JEE Main 2008]
(a) Perpendicular distance of directrix from focus \(=\frac{a}{e}-a e=4\)
\(
\Rightarrow a\left(2-\frac{1}{2}\right)=4
\)
\(
\Rightarrow a=\frac{8}{3}
\)
\(\therefore\) Semi major axis \(=8 / 3\)
In an ellipse, the distance between its foci is 6 and minor axis is 8 . Then its eccentricity is [JEE 2006]
\(
\text { (a) } \begin{aligned}
& 2 a e=6 \Rightarrow a e=3 ; 2 b=8 \Rightarrow b=4 \\
& b^2=a^2\left(1-e^2\right) ; 16=a^2-a^2 e^2 \\
& \Rightarrow a^2=16+9=25 \Rightarrow a=5 \\
& \therefore e=\frac{3}{a}=\frac{3}{5}
\end{aligned}
\)
An ellipse has \(O B\) as semi minor axis, \(F\) and \(F^{\prime}\) its focii and the angle \(F B F^{\prime}\) is a right angle. Then the eccentricity of the ellipse is [JEE Main 2005]
\(
\begin{aligned}
\because & \angle F B F^{\prime}=90^{\circ} \Rightarrow F B^2+F^{\prime} B^2=F F^{\prime} 2 \\
& \therefore\left(\sqrt{a^2 e^2+b^2}\right)^2+\left(\sqrt{a^2 e^2+b^2}\right)^2=(2 a e)^2
\end{aligned}
\)
\(
\Rightarrow 2\left(a^2 e^2+b^2\right)=4 a^2 e^2 \Rightarrow e^2=\frac{b^2}{a^2}
\)
\(
\begin{aligned}
& \text { Also } e^2=1-b^2 / a^2=1-e^2 \\
& \Rightarrow 2 e^2=1, e=\frac{1}{\sqrt{2}}
\end{aligned}
\)
The eccentricity of an ellipse, with its centre at the origin, is \(\frac{1}{2}\). If one of the directrices is \(x=4\), then the equation of the ellipse is: [JEE 2004]
(b) \(e=\frac{1}{2}\). Directrix, \(x=\frac{a}{e}=4\)
\(\therefore a=4 \times \frac{1}{2}=2\)
\(
\therefore b=2 \sqrt{1-\frac{1}{4}}=\sqrt{3}
\)
Equation of ellipse is
\(
\frac{x^2}{4}+\frac{y^2}{3}=1 \Rightarrow 3 x^2+4 y^2=12
\)
A hyperbola passes through the point \(P (\sqrt{2}, \sqrt{3})\) and has foci at \(( \pm 2,0)\). Then the tangent to this hyperbola at \(P\) also passes through the point : [JEE Main 2017]
(c) Equation of hyperbola is \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)
foci is \(( \pm 2,0) \Rightarrow a e=2 \Rightarrow a^2 e^2=4\)
Since
\(
\begin{aligned}
\text { Since } b ^2 & = a ^2\left( e ^2-1\right) \\
b ^2 & = a ^2 e ^2- a ^2 \\
\therefore \quad a ^2 & + b ^2=4 \dots(i)
\end{aligned}
\)
Hyperbola passes through \((\sqrt{2}, \sqrt{3})\)
\(
\therefore \frac{2}{ a ^2}-\frac{3}{ b ^2}=1 \dots(ii)
\)
\(
\begin{aligned}
& \frac{2}{4-b^2} \frac{-3}{b^2}=1 \\
\Rightarrow & b^4+b^2-12=0 \\
\Rightarrow & \left(b^2-3\right)\left(b^2+4\right)=0 \\
\Rightarrow & b^2=3 \\
& b^2=-4
\end{aligned}
\) (Not possible)
For \(b ^2=3\)
\(
\begin{aligned}
& \Rightarrow a ^2=1 \\
& \therefore \frac{x^2}{1}-\frac{y^2}{3}=1
\end{aligned}
\)
Equation of tangent is \(\frac{\sqrt{2} x}{1}-\frac{\sqrt{3} y}{3}=1\)
Clearly \((2 \sqrt{2}, 3 \sqrt{3})\) satisfies it.
The locus of the point of intersection of the straight lines, \(tx -2 y -3 t =0\) \(x -2 ty +3=0( t \in R )\), is : [Online April 8, 2017]
(d) Here, \(t x-2 y-3 t=0 \& x-2 t y+3=0\) On solving, we get;
\(
\begin{aligned}
& y=\frac{6 t}{2 t^2-2}=\frac{3 t}{t^2-1} \& x =\frac{3 t ^2+3}{ t ^2-1} \\
& \text { Put } t =\tan \theta \\
\therefore \quad & x =-3 \sec 2 \theta \& 2 y=3(-\tan 2 \theta) \\
\because \quad & \sec ^2 2 \theta-\tan ^2 2 \theta=1
\end{aligned}
\)
\(
\Rightarrow \quad \frac{x^2}{9}-\frac{y^2}{9 / 4}=1
\)
which represents a hyperbola
\(
\therefore \quad a^2=9 \& b^2=9 / 4
\)
\(
\lambda(\text { T.A. })=6 ; e^2=1+\frac{9 / 4}{9}=1+\frac{1}{4} \Rightarrow e=\frac{\sqrt{5}}{2}
\)
Also, semi conjugate axis \(=\sqrt{\frac{9}{4}}=\frac{3}{2}\)
Therefore, the length of conjugate axis would be 3 .
The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is : [JEE Main 2016]
\(
\begin{aligned}
& \text { (a) } \frac{2 b ^2}{ a }=8 \text { and } 2 b =\frac{1}{2}(2 ae ) \\
& \Rightarrow 4 b ^2= a ^2 e ^2 \Rightarrow 4 a ^2\left( e ^2-1\right)= a ^2 e ^2 \\
& \Rightarrow 3 e ^2=4 \Rightarrow e =\frac{2}{\sqrt{3}}
\end{aligned}
\)
A hyperbola whose transverse axis is along the major axis of the conic, \(\frac{x^2}{3}+\frac{y^2}{4}=4\) and has vertices at the foci of this conic. If the eccentricity of the hyperbola is \(\frac{3}{2}\), then which of the following points does NOT lie on it ? [Online April 10, 2016]
(c) \(\frac{x^2}{12}+\frac{y^2}{16}=1\)
\(
e=\sqrt{1-\frac{12}{16}}=\frac{1}{2}
\)
Foci \((0,2) \&(0,-2)\)
So, transverse axis of hyperbola \(=2 b=4 \Rightarrow b=2\)
\(\& a^2=1^2\left(e^2-1\right)\)
\(\Rightarrow a^2=4\left(\frac{9}{4}-1\right)\)
\(\Rightarrow a^2=5\)
\(\therefore\) It’s equation is \(\frac{x^2}{5}-\frac{y^2}{4}=-1\)
The point \((5,2 \sqrt{3})\) does not satisfy the above equation.
Let \(a\) aand \(b\) respectively be the semitransverse and semiconjugate axes of a hyperbola whose eccentricity satisfies the equation \(9 e^2-18 e+5=0\). If \(S(5,0)\) is a focus and \(5 x=9\) is the corresponding directrix of this hyperbola, then \(a^2-b^2\) is equal to : [Online April 9, 2016]
\(S(5,0)\) is focus \(\Rightarrow a e=5 \text { (focus) } \dots(a)\)
\(
x=\frac{a}{5} \Rightarrow \frac{a}{e}=\frac{9}{5} \text { (directrix) } \dots(b)
\)
(a) & (b) \(\Rightarrow a^2=9\)
\(
\begin{aligned}
& \text { (a) } \Rightarrow(e)=\frac{5}{3} \\
& b^2=a^2\left(e^2-1\right) \Rightarrow b^2=16 \\
& a^2-b^2=9-16=-7
\end{aligned}
\)
An ellipse passes through the foci of the hyperbola, \(9 x^2-4 y^2=36\) and its major and minor axes lie along the transverse and conjugate axes of the hyperbola respectively. If the product of eccentricities of the two conics is \(\frac{1}{2}\), then which of the following points does not lie on the ellipse? [Online April 10, 2015]
(c) Equation of hyperbola is
\(
\begin{aligned}
& \frac{x^2}{4}-\frac{y^2}{9}=1 \\
& \text { Its Foci }=( \pm \sqrt{13}, 0)
\end{aligned}
\)
\(
e =\frac{\sqrt{13}}{2}
\)
If e, be the eccentricity of the ellipse, then
\(
e_1 \times \frac{\sqrt{13}}{2}=\frac{1}{2} \quad \Rightarrow e_1=\frac{1}{\sqrt{13}}
\)
Equation of ellipse is
\(
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1
\)
Since ellipse passes through the foci \(( \pm \sqrt{13}, 0)\) of the hyperbola, therefore
\(
a^2=13
\)
Now \(\sqrt{ a ^2- b ^2}= ae _1\)
\(
\begin{aligned}
& \therefore 13-b^2=1 \\
& \Rightarrow b^2=12
\end{aligned}
\)
Hence, equation of ellipse is
\(
\frac{x^2}{13}+\frac{y^2}{12}=1
\)
Now putting the coordinate of the point \(\left(\frac{\sqrt{13}}{2}, \frac{\sqrt{3}}{2}\right)\) in the equation of the ellipse, we get
\(
\frac{13}{4 \times 13}+\frac{3}{4 \times 12}=1
\)
\(\Rightarrow \frac{1}{4}+\frac{1}{16}=1\), which is not true,
Hence the point \(\left(\frac{\sqrt{13}}{2}, \frac{\sqrt{3}}{2}\right)\) does not lie on the ellipse.
The tangent at an extremity (in the first quadrant) of latus rectum of the hyperbola \(\frac{x^2}{4}-\frac{y^2}{5}=1\), meet \(x\)-axis and \(y\)-axis at \(A\) and \(B\) respectively. Then \((O A)^2-(O B)^2\), where \(O\) is the origin, equals: [Online April 19, 2014]
\(
\begin{aligned}
& \quad \text { Given } \frac{x^2}{4}-\frac{y^2}{5}=1 \\
& \Rightarrow \quad a^2=4, b^2=5 \\
& e=\sqrt{\frac{a^2+b^2}{a^2}}=\sqrt{\frac{4+5}{4}}=\frac{3}{2} \\
& L =\left(2 \times \frac{3}{2}, \frac{5}{2}\right)=\left(3, \frac{5}{2}\right)
\end{aligned}
\)
Equation of tangent at \(\left(x_1, y_1\right)\) is
\(
\frac{x x_1}{a^2}-\frac{y y_1}{b^2}=1
\)
Here \(x_1=3, y_1=\frac{5}{2}\)
\(
\Rightarrow \frac{3 x}{4}-\frac{y}{2}=1 \Rightarrow \frac{x}{\frac{4}{3}}+\frac{y}{-2}=1
\)
\(x\)-intercept of the tangent, \(OA =\frac{4}{3}\)
\(y\)-intercept of the tangent, \(OB =-2\)
\(
OA ^2- OB ^2=\frac{16}{9}-4=-\frac{20}{9}
\)
Let \(P (3 \sec \theta, 2 \tan \theta)\) and \(Q (3 \sec \phi, 2 \tan \phi)\) where \(\theta+\phi=\frac{\pi}{2}\), be two distinct points on the hyperbola \(\frac{x^2}{9}-\frac{y^2}{4}=1\). Then the ordinate of the point of intersection of the normals at \(P\) and \(Q\) is: [Online April 11, 2014]
(d) Let the coordinate at point of intersection of normals at \(P\) and \(Q\) be \((h, k)\)
Since, equation of normals to the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) At point \(\left(x_1, y_1\right)\) is \(\frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2\) therefore equation of normal to the hyperbola \(\frac{x^2}{3^2}-\frac{y^2}{2^2}=1\) at point \(P (3 \sec \theta, 2 \tan \theta)\) is
\(
\begin{aligned}
& \frac{3^2 x}{3 \sec \theta}+\frac{2^2 y}{2 \tan \theta}=3^2+2^2 \\
& \Rightarrow 3 x \cos \theta+2 y \cot \theta=3^2+2^2 \dots(1)
\end{aligned}
\)
Similarly, Equation of normal to the hyperbola \(\frac{x^2}{3^2}-\frac{y^2}{2^2}\) at point \(Q (3 \sec \phi, 2 \tan \phi)\) is
\(
\begin{aligned}
& \frac{3^2 x}{3 \sec \phi}+\frac{2^2 y}{2 \tan \phi}=3^2+2^2 \\
& \Rightarrow 3 x \cos \phi+2 y \cot \phi=3^2+2^2 \dots(2)
\end{aligned}
\)
Given \(\theta+\phi=\frac{\pi}{2} \Rightarrow \phi=\frac{\pi}{2}-\theta\) and these passes through \((h, k)\)
\(\therefore\) From eq. (2)
\(
3 x \cos \left(\frac{\pi}{2}-\theta\right)+2 y \cot \left(\frac{\pi}{2}-\theta\right)=3^2+2^2
\)
\(
\Rightarrow 3 h \sin \theta+2 k \tan \theta=3^2+2^2 \dots(3)
\)
and \(3 h \cos \theta+2 k \cot \theta=3^2+2^2 \dots(4)\)
Comparing equation (3) & (4), we get
\(
\begin{aligned}
& 3 h \cos \theta+2 k \cot \theta=3 h \sin \theta+2 k \tan \theta \\
& 3 h \cos \theta-3 h \sin \theta=2 k \tan \theta-2 k \cot \theta \\
& 3 h(\cos \theta-\sin \theta)=2 k(\tan \theta-\cot \theta)
\end{aligned}
\)
\(
\begin{aligned}
& 3 h(\cos \theta-\sin \theta)=2 k \frac{(\sin \theta-\cos \theta)(\sin \theta+\cos \theta)}{\sin \theta \cos \theta} \\
& \text { or, } 3 h=\frac{-2 k(\sin \theta+\cos \theta)}{\sin \theta \cos \theta} \dots(5)
\end{aligned}
\)
Now, putting the value of equation (5) in eq. (3)
\(
\begin{aligned}
& \frac{-2 k(\sin \theta+\cos \theta) \sin \theta}{\sin \theta \cos \theta}+2 k \tan \theta=3^2+2^2 \\
& \Rightarrow 2 k \text { tan } \theta-2 k+2 k \text { tan } \theta=13 \\
& -2 k=13 \Rightarrow k=\frac{-13}{2}
\end{aligned}
\)
Hence, ordinate of point of intersection of normals at \(P\) and \(Q\) is \(\frac{-13}{2}\)
A common tangent to the conics \(x^2=6 y\) and \(2 x^2-4 y^2=9\) is: [Online April 25, 2013]
\(
\begin{aligned}
& x^2-6 y \dots(i) \\
& 2 x^2-4 y^2=9 \dots(ii)
\end{aligned}
\)
Consider the line,
\(
x-y=\frac{3}{2} \dots(iii)
\)
On solving (i) and (iii), we get only
\(
x=3, y=\frac{3}{2}
\)
Hence \(\left(3, \frac{3}{2}\right)\) is the point of contact of conic (i), and line(iii)
On solving (ii) and (iii), we get only \(x=3, y=\frac{3}{2}\)
Hence \(\left(3, \frac{3}{2}\right)\) is also the point of contact of conic (ii) and line (iii).
Hence line (iii) is the common tangent to both the given conics.
A tangent to the hyperbola \(\frac{x^2}{4}-\frac{y^2}{2}=1\) meets \(x\)-axis at \(P\) and \(y\)-axis at \(Q\). Lines \(P R\) and \(Q R\) are drawn such that \(O P R Q\) is a rectangle (where \(O\) is the origin). Then \(R\) lies on : [Online April 23, 2013]
(d) Equation of the tangent at the point ‘ \(\theta\) ‘ is \(\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1\)
\(\Rightarrow P=(a \cos \theta, 0)\) and \(Q=(0,-b \cot \theta)\)
Let \(R\) be \(( h , k ) \Rightarrow h =a \cos \theta, k =-b \cot \theta\)
\(\Rightarrow \frac{k}{h}=\frac{-b}{a \sin \theta} \Rightarrow \sin \theta=\frac{-b h}{a k}\) and \(\cos \theta=\frac{h}{a}\)
By squaring and adding,
\(
\frac{b^2 h^2}{a^2 k^2}+\frac{h^2}{a^2}=1
\)
\(
\Rightarrow \frac{b^2}{k^2}+1=\frac{a^2}{h^2}
\)
\(
\Rightarrow \frac{a^2}{h^2}-\frac{b^2}{k^2}=1
\)
Now, given eq \({ }^{ n }\) of hyperbola is \(\frac{x^2}{4}-\frac{y^2}{2}=1\)
\(
\begin{aligned}
& \Rightarrow a^2=4, b^2=2 \\
& \therefore \text { R lies on } \frac{a^2}{x^2}-\frac{b^2}{y^2}=1 \text { i.e., } \frac{4}{x^2}-\frac{2}{y^2}=1
\end{aligned}
\)
If the foci of the ellipse \(\frac{x^2}{16}+\frac{y^2}{b^2}=1\) coincide with the foci of the hyperbola \(\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}\), then \(b^2\) is equal to [Online May 19,2012 ]
(c) Given equation of ellipse is
\(
\begin{aligned}
& \frac{x^2}{16}+\frac{y^2}{b^2}=1 \\
& \text { eccentricity }=e=\sqrt{1-\frac{b^2}{16}} \\
& \text { foci: } \pm a e= \pm 4 \sqrt{1-\frac{b^2}{16}}
\end{aligned}
\)
Equation of hyperbola is \(\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}\)
\(
\begin{aligned}
& \Rightarrow \frac{x^2}{\frac{144}{25}}-\frac{y^2}{\frac{81}{25}}=1 \\
& \text { eccentricity }=e=\sqrt{1+\frac{81}{25} \times \frac{25}{144}}=\sqrt{1+\frac{81}{144}} \\
& =\sqrt{\frac{225}{144}}=\frac{15}{12} \\
& \text { foci: } \pm a e= \pm \frac{12}{5} \times \frac{15}{12}= \pm 3 \\
&
\end{aligned}
\)
Since, foci of ellipse and hyperbola coincide
\(
\therefore \pm 4 \sqrt{1-\frac{b^2}{16}}= \pm 3 \Rightarrow b^2=7
\)
Since, foci of ellipse and hyperbola coincide
\(
\therefore \pm 4 \sqrt{1-\frac{b^2}{16}}= \pm 3 \Rightarrow b^2=7
\)
If the eccentricity of a hyperbola \(\frac{x^2}{9}-\frac{y^2}{b^2}=1\), which passes through \((k, 2)\), is \(\frac{\sqrt{13}}{3}\), then the value of \(k^2\) is [Online May 7, 2012]
(a) Given hyperbola is
\(
\frac{x^2}{9}-\frac{y^2}{b^2}=1
\)
Since this passes through \((K, 2)\), therefore
\(
\frac{K^2}{9}-\frac{4}{b^2}=1 \dots(1)
\)
Also, given \(e=\sqrt{1+\frac{b^2}{a^2}}=\frac{\sqrt{13}}{3}\)
\(
\begin{aligned}
& \Rightarrow \sqrt{1+\frac{b^2}{9}}=\frac{\sqrt{13}}{3} \Rightarrow 9+b^2=13 \\
& \Rightarrow b= \pm 2
\end{aligned}
\)
Now, from eq \({ }^{ n }(1)\), we have
\(
\begin{aligned}
& \frac{K^2}{9}-\frac{4}{4}=1 \quad(\because b= \pm 2) \\
\Rightarrow \quad & K^2=18
\end{aligned}
\)
The equation of the hyperbola whose foci are \((-2,0)\) and \((2,0)\) and eccentricity is 2 is given by: [JEE 2011]
(b)
\(
\begin{aligned}
& a e=2 \\
& e=2 \\
& \therefore \quad a=1 \\
& b^2=a^2\left(e^2-1\right) \\
& b^2=1(4-1) \\
& b^2=3
\end{aligned}
\)
Equation of hyperbola, \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)
\(
\begin{array}{r}
\Rightarrow \quad \frac{x^2}{1}-\frac{y^2}{3}=1 \\
3 x^2-y^2=3
\end{array}
\)
For the Hyperbola \(\frac{x^2}{\cos ^2 \alpha}-\frac{y^2}{\sin ^2 \alpha}=1\), which of the following remains constant when \(\alpha\) varies =? [JEE 2007]
(b) Given, equation of hyperbola is
\(
\frac{x^2}{\cos ^2 \alpha}-\frac{y^2}{\sin ^2 \alpha}=1
\)
We know that the equation of hyperbola is \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) Here, \(a^2=\cos ^2 \alpha\) and
\(
b^2=\sin ^2 \alpha
\)
We know that, \(b^2=a^2\left(e^2-1\right)\)
\(
\begin{aligned}
& \Rightarrow \sin ^2 \alpha=\cos ^2 \alpha\left(e^2-1\right) \\
& \Rightarrow \sin ^2 \alpha+\cos ^2 \alpha=\cos ^2 \alpha \cdot e^2 \\
& \Rightarrow e^2=1+\tan ^2 \alpha=\sec ^2 \alpha \\
& \Rightarrow e=\sec \alpha
\end{aligned}
\)
\(
\therefore a e=\cos \alpha \cdot \frac{1}{\cos \alpha}=1
\)
Co-ordinates of foci are \(( \pm a e, 0)\)
i.e. \(( \pm 1,0)\)
Hence, abscissae of foci remain constant when \(\)\alpha\(\) varies.
The locus of a point \(P(\alpha, \beta)\) moving under the condition that the line \(y=\alpha x+\beta\) is a tangent to the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) is [JEE 2005]
(d) Tangent to the hyperbola \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\) is
\(
y=m x \pm \sqrt{a^2 m^2-b^2}
\)
Given that \(y=\alpha x+\beta\) is the tangent of hyperbola
\(
\begin{aligned}
& \Rightarrow \quad m=\alpha \text { and } a^2 m^2-b^2=\beta^2 \\
& \therefore \quad a^2 \alpha^2-b^2=\beta^2
\end{aligned}
\)
Locus is \(a^2 x^2-y^2=b^2\) which is hyperbola.
The foci of the ellipse \(\frac{x^2}{16}+\frac{y^2}{b^2}=1\) and the hyperbola \(\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}\) coincide. Then the value of \(b^2\) is [JEE 2003]
\(
\begin{aligned}
& \text { (d) } \frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25} \\
& a=\sqrt{\frac{144}{25}}, b=\sqrt{\frac{81}{25}}, \quad e=\sqrt{1+\frac{81}{144}}=\frac{15}{12}=\frac{5}{4}
\end{aligned}
\)
\(
\begin{aligned}
& \therefore \quad \text { Foci }=( \pm 3,0) \\
& \therefore \quad \text { foci of ellipse }=\text { foci of hyperbola } \\
& \therefore \quad \text { for ellipse } a e=3 \text { but } a=4, \\
& \therefore \quad e=\frac{3}{4} \\
& \text { Then } b^2=a^2\left(1-e^2\right) \\
& \Rightarrow b^2=16\left(1-\frac{9}{16}\right)=7
\end{aligned}
\)
You cannot copy content of this page